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Adversarially Robust Decision Tree
Relabeling

Daniël Vos(B) and Sicco Verwer

Delft University of Technology, Delft, The Netherlands
{d.a.vos,s.e.verwer}@tudelft.nl

Abstract. Decision trees are popular models for their interpretation
properties and their success in ensemble models for structured data.
However, common decision tree learning algorithms produce models that
suffer from adversarial examples. Recent work on robust decision tree
learning mitigates this issue by taking adversarial perturbations into
account during training. While these methods generate robust shallow
trees, their relative quality reduces when training deeper trees due the
methods being greedy. In this work we propose robust relabeling, a post-
learning procedure that optimally changes the prediction labels of deci-
sion tree leaves to maximize adversarial robustness. We show this can
be achieved in polynomial time in terms of the number of samples and
leaves. Our results on 10 datasets show a significant improvement in
adversarial accuracy both for single decision trees and tree ensembles.
Decision trees and random forests trained with a state-of-the-art robust
learning algorithm also benefited from robust relabeling.

Keywords: Decision trees · Pruning · Adversarial examples

1 Introduction

With the increasing interest in trustworthy machine learning, decision trees have
become important models [17]. Due to their simple structure humans can inter-
pret the behavior of size-limited decision trees. Additionally, decision trees are
popular for use within ensemble models where random forests [3] and particularly
gradient boosting ensembles [6,7,9,15] achieve top performance on prediction
tasks with tabular data. However, decision trees are optimized without consid-
ering robustness which results in models that misclassify many data points after
adding tiny perturbations [14,26], i.e. adversarial examples. Therefore we are
interested in training tree-based models that correctly predict data points not
only at their original coordinates but also in a radius around these coordinates.
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Recent work has proposed decision tree learning algorithms that take adver-
sarial perturbations into account during training to improve adversarial robust-
ness [4,5,22]. These methods significantly improved robustness for shallow deci-
sion trees, but lacked performance for deeper trees due to their greedy nature.
Optimal methods for robust decision tree learning [12,23] have also been pro-
posed but they use combinatorial optimization solvers which makes them scale
poorly in terms of both tree depth and data size. Adversarial pruning [24,25] is
a method that pre-processes datasets by removing a minimal number of samples
to make the dataset well-separated. While this method helps ignore samples that
will only worsen robustness when predicted correctly, the learning algorithm is
unchanged so the resulting models still suffer from adversarial examples. It is
important to be able to train deeper robust trees as shallow trees can signifi-
cantly underfit the data. Particularly in random forests where we aim to ensemble
unbiased models [2] we need to be able to train very deep trees.

To improve the performance of robust decision trees we propose Robust Rela-
beling1. This post-learning procedure optimally changes the prediction labels of
the decision tree leaves to maximize accuracy against adversarial examples. We
assume that the user specifies an arbitrary region around each sample that rep-
resents the set of all possible perturbations of the sample. Then, we only consider
a sample to be correctly predicted under adversarial attacks if there is no way
for an attacker to perturb the sample such that the prediction is different from
the label. We prove that in binary classification the optimal robust relabeling
is induced by the minimum vertex cover of a bipartite graph. This property
allows us to compute the relabeling in polynomial time in terms of the number
of samples and leaves.

We compare the classification performance of decision trees and tree ensemble
models on 10 datasets from the UCI Machine Learning Repository [8] and find
that robust relabeling improves the average adversarial accuracy for all models.
We also evaluate the performance when relabeling robust decision trees trained
with a state-of-the-art method GROOT [22]. The resulting models improve
adversarial accuracy compared to the default GROOT models by up to 20%.
Additionally, we study the effects of standard Cost Complexity Pruning against
robust relabeling. Both methods reduce the size of the learned decision trees
and can improve both regular accuracy and adversarial accuracy compared to
unpruned models. While, Cost Complexity Pruning performs better on regular
accuracy, robust relabeling results in better adversarial accuracy.

2 Background Information

2.1 Decision Tree Learning

Decision trees are simple models that execute a series of logical tests to arrive
at a prediction value. In our work, we focus on decision trees where a node k
performs an operation of the type ‘feature value ak is less than or equal to some

1 https://github.com/tudelft-cda-lab/robust-relabeling.

https://github.com/tudelft-cda-lab/robust-relabeling
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value bk’. When we follow the path of such decision nodes to a leaf node t, we
find the prediction value ct.

The most popular methods to learn such decision trees are greedy algo-
rithms that recursively create decision nodes to improve predictive accuracy.
For instance, CART [1] starts by creating a root node and tests all possible
combinations of feature ak and value bk to use for a split. These splits are all
scored with the Gini impurity and the best one is selected. The samples are then
sorted into a left side and right side of this split and the algorithm continues
recursively on both sides until no improvements can be made or a user-defined
stopping criterion is reached. While methods like CART have been hugely popu-
lar, their splitting criteria (e.g. Gini impurity or information gain) do not account
for adversarial attacks. Therefore recent work has focused on modifying such
algorithms in a way that the learned trees are robust to perturbations.

Fig. 1. Training decision trees using a (regular) greedy learner and robust greedy
learner. The robust learner greedily perturbed samples close to the split which caused
it to assign sub-optimal predictions to its leaves. This effect increases with the tree
depth. By relabeling these leaves we can improve robustness.

2.2 Robust Decision Tree Learning

In the field of robust decision trees we usually assume that an adversary modifies
our data points at test time in order to cause misclassifications. Then, we aim to
train a decision tree that is maximally robust to such modifications. The type of
modifications that we allow the adversary to make strongly influences the learned
trees. In this work we consider an adversary that can make arbitrary changes to
each test data point i within a radius ε of the original point. In line with previous
works [5,22] we measure this distance with the l∞ norm. Therefore the set of all
possible perturbations applied to data point i is S(i) = {x + δ | ||δ||∞ ≤ ε}. For
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a decision tree T it is especially important to know what leaves TL sample i can
reach after applying perturbations, we refer to this set as T S(i)

L .
To improve the adversarial robustness of decision trees different methods have

been proposed [4,5,22] that take adversarial perturbations into account during
training. These methods are based on the same greedy algorithm that is used to
train regular decision trees, but they use a different function to score the quality
of splits. Then, when a locally optimal split is found, they apply perturbations to
samples that are close to the split in the worst possible arrangement. This means
that some number of samples that were originally on the left side of the split will
be sent to the right and vice versa. Although this generally improves robustness,
the fact that these samples are perturbed greedily can be detrimental to the
quality of the learned tree after creating successive splits. For example in Fig. 1
the fact that samples were greedily perturbed caused the learned decision tree to
create to leaves with bad predictions. Due to their greedy nature, these robust
decision tree learning algorithms are successful in training shallow decision trees
but they perform worse on deeper decision trees.

In recent work, optimal methods for robust decision tree learning [12,23] have
also been proposed. These methods model the entire robust optimization prob-
lem and therefore do not suffer from greedy effects. However, these methods use
combinatorial optimization solvers such as Mixed-Integer Linear Programming
and Maximum Satisfiability. These solvers run in exponential time in terms of
their input size, and the inputs grow with the size of the dataset and the depth
of the tree. In practice, this means that training optimal robust decision trees on
datasets of hundreds of samples is currently computationally infeasible for trees
deeper than 2.

2.3 Minimum Vertex Covers and Robustness

To the best of our knowledge, Wang et al. [24] first published that for any given
dataset D, there can be pairs of samples that can never be simultaneously cor-
rectly predicted against adversarial examples. For example, when considering
perturbations within some radius ε, two samples with different labels that are
within distance 2ε cannot both be correctly predicted when accounting for these
perturbations. Given this fact, one can create a graph G with each vertex rep-
resenting a sample and connect all such pairs. When we compute the minimum
vertex cover of this graph, we find the minimum number of data points C to
remove from D such that D \ C can be correctly predicted. Although D \ C can
be correctly predicted, non-robust learning algorithms can and will still learn
models that suffer from adversarial examples, e.g., because decision planes are
placed too close to the remaining data points.

Wang et al. [24] used this minimum vertex cover idea by removing C from the
training data in order to learn a robust nearest neighbor classifier. Adversarial
pruning [25] uses a similar method to train nearest neighbor models, decision
trees and tree ensembles from D \ C. The authors of ROCT [23] also used the
minimum vertex cover but to compute an upper bound on adversarial accuracy
which improved the time needed to train optimal robust decision trees.
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Fig. 2. Example of the robust relabeling procedure applied to a decision tree that suf-
fers from adversarial examples. We first create a bipartite graph that connects samples
with different labels that can reach the same leaf with perturbations. After remov-
ing the samples corresponding to the graph’s minimum vertex cover we can relabel
the decision tree to correctly predict the remaining samples. The resulting labeling is
maximally robust to adversarial perturbations.

2.4 Relabeling and Pruning Decision Trees

Improving the quality of decision trees with respect to some metric by changing
their leaf predictions is not a new idea. Many pruning algorithms have been
proposed that remove parts of the decision tree to improve generalization. For
example, Cost Complexity Pruning [1] is a widely used method that merges
leaves when this improves the trade-off between the size of the tree and its
predictive performance. Similarly, ideas to relabel decision trees have been used
to improve performance for objectives such as fairness [13] and monotonicity [20].
Such metrics are not aligned with the objective that is optimized during training.
To the best of our knowledge, we are the first to propose using leaf relabeling to
improve adversarial robustness. Since relabeling methods never add new leaves,
they can be seen as pruning methods since they reduce the size of the trees (after
merging leaves that have the same label) (Fig. 2).

3 Robust Relabeling

Since regular decision trees and ensembles suffer from adversarial examples we
are interested in post-processing the learned models to improve their robust-
ness. In this work, we propose ‘robust relabeling’ (Algorithm 1) a method that
keeps the decision tree structure intact but changes the predictions in the leaves
to maximize adversarial accuracy. Robust relabeling is closely related to earlier
works that determine minimum vertex covers to improve robustness [23–25]. In
these works, the authors leverage the fact that samples with overlapping pertur-
bation ranges and different labels can never be simultaneously classified correctly
under optimal adversarial perturbations. We notice that in decision trees, two
samples cannot be simultaneously classified correctly under optimal adversarial
perturbations when they both reach the same leaf. Using this property we can



208 D. Vos and S. Verwer

Algorithm 1. Robust relabeling decision tree
Input: dataset X (n samples, m features), labels y, tree leaves TL

1: L ← {i | yi = 0} � O(n)
2: R ← {i | yi = 1} � O(n)

3: E ← {(u, v) | u ∈ L, v ∈ R, T S(u)
L ∩ T S(v)

L �= ∅} � O(nm|TL| + n2|TL|)
4: M ← maximum matching(L, R, E) � O(n2.5)
5: C ← kőnig’s theorem(M, L, R, E) � O(n)
6: for t ∈ TL do � O(n|TL|)
7: if {i ∈ L | t ∈ T S(i)

L } �= ∅ then
8: ct ← 0
9: else

10: ct ← 1
11: end if
12: end for

find the smallest set of samples to remove from the dataset such that all remain-
ing samples can be classified correctly under perturbations. These samples then
induce a labeling of the decision tree that correctly classifies the largest possible
set of samples against adversarial perturbations.

To robustly relabel a decision tree T we create a bipartite graph G =
(L,R,E) where L represents the set of samples with label yi = 0 and R the
set of samples with label yj = 1. The set of edges E is defined by connecting all
pairs of samples (i, j) that have different labels yi �= yj and overlapping pertur-
bation ranges T S(i)

L ∩T S(j)
L �= ∅. Here S(i) is the set of all possible perturbations

applied to data point i and T S(i)
L is the set of leaves that are reached by S(i). We

find the minimum vertex cover C of G and remove the samples represented by C
from the dataset. We can then relabel the decision tree to classify all remaining
samples correctly even under optimal adversarial attacks.

In this paper, we consider only the case where S(i) describes an l∞ radius
around each data point as this is common in research on robust decision trees.
However, our proof does not make use of this fact and robust relabeling can
easily be extended to other attack models such as different l-norms or arbitrary
sets of perturbations.

Theorem 1. The optimal adversarially robust relabeling for decision tree leaves
TL is determined by the minimum vertex cover of the bipartite graph where sam-
ples i, j with different labels yi �= yj are represented by vertices that share an
edge when their perturbations can reach any same leaf (T S(i)

L ∩ T S(j)
L �= ∅).

Proof. For a sample i to be correctly classified by a decision tree T , all leaves
T S(i)
L reachable by adversarial perturbations applied to Xi need to predict the

correct label, i.e. ∀t ∈ T S(i)
L , ct = yi (otherwise an adversarial example exists).

Given two samples i, j with different labels yi �= yj and overlapping sets of
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reachable leaves by perturbations T S(i)
L ∩ T S(j)

L �= ∅ these samples cannot be
correctly robustly predicted as there exists a leaf t that is in both sets T S(i)

L

and T S(j)
L and that misclassifies one of the samples. Create the bipartite graph

G = (L,R,E) where L = {i | yi = 0}, R = {i | yi = 1} and E = {(u, v) |
u ∈ L, v ∈ R, T S(u)

L ∩ T S(v)
L �= ∅}. By removing the minimum vertex cover C

from G, we are left with the largest graph G′ = (L \ C,R \ C, ∅) for which no
edges remain. Since none of the remaining vertices (representing samples) share
an edge we are able to set ∀t ∈ T S(i)

L ,∀i ∈ (L′ ∪ R′) : ct = yi, so all remaining
samples get correctly robustly classified. Since C is of minimum cardinality the
induced relabeling maximizes the adversarial accuracy. 	


Where a naive relabeling algorithm would take exponential time to enumerate
all 2|TL| labelings, the above relabeling procedure runs in polynomial time in
terms of the dataset size (n×m matrix) and the number of leaves |TL|. When
building the graph G the runtime is dominated by computing the edges which
takes O(nm|TL| + n2|TL|) time. This is because we first build a mapping for
each sample i to their reachable leaves T S

L (i) in O(nm|TL|) time, then compute
samples that reach any same leaf in O(n2|TL|) time. Given the bipartite graph
G we use the Hopcroft-Karp algorithm [11] to compute a maximum matching
in O(n2.5) time and convert this in linear time into a minimum vertex cover
using Kőnig’s theorem. Combining all steps, robust relabeling runs in worst-case
O(nm|TL| + n2|TL| + n2.5) time.

Fig. 3. Runtime of robust relabeling and relabeling criterion trees on samples of the
Wine dataset. While decision tree relabeling runs in within seconds, relabeling ensem-
bles takes more time due to the number of trees and increase in tree size. The runtime
for relabeling criterion trees quickly increases with the number of samples.
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3.1 Robust Relabeling as Splitting Criterion

While the robust relabeling procedure described before provides an intuitive use
case as a post-processing step for decision tree learners, we can also use the
procedure to select splits during learning. In greedy decision tree learning the
learner finds a locally optimal split, partitions the samples into a left and right set
(including perturbed samples) and continues this process recursively. While this
approach finds an optimal split for the top decision node, the detrimental effect
of choosing splits greedily increases with the depth of the tree. We will try to
reduce the impact of greedily perturbing samples by using the robust relabeling
procedure. To do this we can consider all samples each time we score a split
and use the cardinality of the maximum matching M as a splitting criterion. By
choosing splits that minimize this criterion we are then directly optimizing the
adversarial accuracy of the decision tree. The pseudo-code for this algorithm is
given in the appendix. We will refer to this method as relabeling criterion trees.

3.2 Runtime Comparison

We compare the runtimes of robust relabeling and relabeling criterion trees on
different sample sizes of the Wine dataset in Fig. 3. Robust relabeling decision
trees runs in a matter of seconds since the number of trees is small. In tree
ensembles where there are 100 trees to relabel and many more leaves the run-
time quickly increases. We find that relabeling criterion trees take more than an
hour to train on 2000 samples, training on larger sample sizes quickly becomes
infeasible.

In this work all experiments ran without parallelism on a laptop with 16 GB
of RAM and a 2 GHz Quad-Core Intel Core i5 CPU. All results in this paper
took approximately a day to compute, this is including robustness verification
with combinatorial optimization solvers. Particularly robust relabeling criterion
trees and robustness verification of tree ensembles for the wine dataset require
much runtime. Without robust relabeling criterion trees and wine robustness
verification the runtime is approximately 2 h.

4 Improving Robustness

To investigate the effect of robust relabeling on adversarial robustness, we com-
pare performance on 10 datasets with a fixed perturbation radius for each
dataset. We used datasets from the UCI Machine Learning Repository [8]
retrieved through OpenML [19]. All datasets, their properties and perturbation
radii ε are listed in Table 1. We pre-process each dataset by scaling the fea-
tures to the range [0, 1]. This way, we can interpret ε as representing a fraction
of each feature’s range. We compare robust relabeling to regular decision trees
and ensembles trained with Scikit-learn [16], robust decision trees trained with
GROOT [22] and adversarial pruning [25]. All adversarial accuracy scores were
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Table 1. Summary of datasets used. Features are scaled to [0, 1] so the l∞ perturbation
radius ε represents a fraction of each feature’s range.

Dataset ε Samples Features Majority class

Banknote-authentication .05 1,372 4 .56

Breast-cancer-diagnostic .05 569 30 .63

Breast-cancer .1 683 9 .65

Connectionist-bench-sonar .05 208 60 .53

Ionosphere .05 351 34 .64

Parkinsons .05 195 22 .75

Pima-Indians-diabetes .01 768 8 .65

Qsar-biodegradation .05 1,055 41 .66

Spectf-heart .005 349 44 .73

Wine .025 6,497 11 .63

computed with optimal adversarial attacks using the GROOT toolbox2. For sin-
gle trees, computing optimal adversarial attacks is done by enumerating all the
leaves and for tree ensembles by solving the Mixed-Integer Linear Programming
formulation by Kantchelian et al. [14] using GUROBI 9.1 [10].

4.1 Decision Trees

Decision trees have the desirable property that they are interpretable when con-
strained to be small enough. What exactly is the number of leaves that allow
a decision tree to be interpretable is not well defined. In this work, we decide
to train single trees up to a depth of 5 which enforces a maximum number of
leaves of 25 = 32. In Table 2 we compare the performance of regular, robust
GROOT [22] trees and relabeling criterion trees defined in Sect. 3.1. We score
the regular and GROOT trees before and after relabeling but we skip this step
for relabeling criterion trees as this does not affect the learned tree.

Robust relabeling improves the performance of regular and GROOT trees
significantly on most datasets and never reduces the mean adversarial accuracy.
Relabeling criterion trees and relabeled GROOT trees performed similarly on
average but relabeled GROOT trees run orders of magnitude faster.

4.2 Decision Tree Ensembles

For tasks that do not require model interpretability, it is a popular choice to
ensemble multiple decision trees to create stronger models. We experiment with
the robust relabeling of random forests, GROOT random forests and gradient
boosting ensembles, all limited to 100 decision trees. For the gradient boost-
ing ensembles we limit the trees to a depth of 5 to prevent overfitting. This
2 https://github.com/tudelft-cda-lab/GROOT.

https://openml.org/search?type=data&status=active&id=1462
https://openml.org/search?type=data&status=active&id=1510
https://openml.org/search?type=data&status=active&id=15
https://openml.org/search?type=data&status=active&id=40
https://openml.org/search?type=data&status=active&id=59
https://openml.org/search?type=data&status=active&id=1488
https://openml.org/search?type=data&status=active&id=42608
https://openml.org/search?type=data&status=active&id=1494
https://openml.org/search?type=data&status=active&id=337
https://openml.org/search?type=data&status=active&id=287
https://github.com/tudelft-cda-lab/GROOT
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Table 2. Mean adversarial accuracy scores of decision trees of depth 5 on 5-fold
cross validation. GROOT trees with robust relabeling and relabeling criterion trees
score best against adversarial attacks. However, GROOT with relabeling runs orders
of magnitude faster.

Dataset Tree Tree relabeled GROOT GROOT
relabeled

Relabeling
criterion

Banknote .734 ± .077 .823 ± .035 .794 ± .049 .824 ± .038 .811 ± .049

Breast-cancer .874 ± .013 .903 ± .025 .912 ± .035 .922 ± .012 .925 ± .013

Breast-cancer-d .617 ± .158 .810 ± .026 .835 ± .013 .847 ± .014 .851 ± .038

Sonar .482 ± .140 .573 ± .073 .601 ± .048 .606 ± .048 .582 ± .070

Ionosphere .689 ± .071 .792 ± .045 .892 ± .030 .889 ± .028 .895 ± .028

Parkinsons .513 ± .139 .759 ± .126 .749 ± .071 .790 ± .058 .795 ± .075

Diabetes .708 ± .009 .712 ± .025 .677 ± .053 .712 ± .025 .710 ± .032

Qsar-bio .292 ± .060 .661 ± .004 .704 ± .029 .736 ± .050 .686 ± .014

Spectf-heart .840 ± .041 .840 ± .041 .831 ± .044 .831 ± .044 .768 ± .016

Wine .526 ± .027 .610 ± .047 .618 ± .043 .618 ± .052 Timeout

is not required for random forests where one purposefully ensembles low bias,
high variance models [2], i.e., unconstrained decision trees. We did not compare
to random forests trained with the robust relabeling criterion as this was com-
putationally infeasible. The adversarial accuracy scores before and after robust
relabeling are presented in Table 3. On the Wine dataset we only used 100 test
samples to limit the runtime.

Robust relabeling increases the mean adversarial accuracy over 5-fold cross-
validation on all datasets and models. On average, the GROOT random forests
with robust relabeling performed best. Clearly, the combination of robust splits
and robust labeling is better than regular splits and robust labeling. Additionally
we find that relabeled GROOT forests (Table 3) outperform relabeled GROOT
trees (Table 2) on many datasets. This is in contrast with the original GROOT
paper [22]. In that paper, large values were used for ε that did not allow for the
models to achieve significant improvements over predicting the majority class.

4.3 Adversarial Pruning

Adversarial pruning [25] is a technique that implicitly prunes models by remov-
ing samples from the training dataset that are not well separated (D \ C). This
intuitively makes models more robust as the models then explicitly ignore sam-
ples that will make the models more susceptible to adversarial attacks. Using
decision tree learning algorithms as-is on this dataset (D \ C), without taking
robustness into account, still provides models that suffer from adversarial exam-
ples. In Table 4 we compare the adversarial robustness of models trained with
adversarial pruning and robust relabeling. We notice that on many datasets,
adversarial pruning only removes a small number of samples which results in
models that are similar to the fragile models produced by regular decision tree
learning algorithms.
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Table 3. Mean adversarial accuracy scores of decision tree ensembles on 5-fold cross
validation. GROOT trees with robust relabeling score best against adversarial attacks,
relabeled regular trees perform on average similarly to robust GROOT trees that did
not use relabeling.

Dataset Boosting Forest GROOT

forest

Boosting

relabeled

Forest

relabeled

GROOT

forest rel

Banknote .786 ± .072 .846 ± .032 .851 ± .037 .822 ± .052 .849 ± .039 .862 ± .039

Breast-cancer .873 ± .027 .908 ± .020 .946 ± .017 .937 ± .020 .930 ± .011 .952 ± .017

Breast-cancer-d .606 ± .070 .745 ± .035 .805 ± .025 .821 ± .019 .842 ± .022 .847 ± .021

Sonar .438 ± .089 .389 ± .051 .510 ± .069 .616 ± .076 .582 ± .034 .577 ± .048

Ionosphere .635 ± .163 .812 ± .037 .903 ± .018 .815 ± .010 .872 ± .017 .912 ± .021

Parkinsons .492 ± .177 .508 ± .170 .728 ± .092 .759 ± .126 .749 ± .021 .826 ± .066

Diabetes .596 ± .043 .668 ± .049 .703 ± .052 .697 ± .032 .729 ± .036 .730 ± .047

Qsar-bio .078 ± .025 .173 ± .015 .648 ± .046 .663 ± .002 .663 ± .002 .781 ± .026

Spectf-heart .863 ± .034 .891 ± .028 .888 ± .023 .877 ± .037 .897 ± .025 .894 ± .029

Wine .202 ± .044 .184 ± .050 .384 ± .051 .494 ± .081 .482 ± .090 .606 ± .038

4.4 Accuracy Robustness Trade-Off

Since we optimize robustness by enforcing samples to be correctly classified in
a region around each sample, there can be a cost in regular accuracy. In Table 5
we compare the accuracy of regular models with and without robust relabeling.
We find that indeed robust relabeling reduces regular accuracy in approximately
two out of three cases that we tested. However, there are also instances where
accuracy actually improves, such as in the case of gradient boosting on the breast
cancer datasets. We expect that robustification has a helpful regularization effect
in these situations.

5 Regularizing Decision Trees

Robust relabeling regularizes decision trees and tree ensembles by changing the
leaf labels to maximize adversarial robustness. To understand the regularization
effect we first visualize models before and after robust relabeling on toy datasets.
Additionally, we contrast the regularization effect of robust relabeling with Cost
Complexity Pruning. We show that while both methods can improve test accu-
racy, robust relabeling favors robustness while Cost Complexity Pruning favors
regular accuracy.

5.1 Toy Datasets

To understand the effects of robust relabeling we generate three two-dimensional
datasets and visualize the decision regions before and after relabeling. In Fig. 4
we train decision trees, random forests and gradient boosting with 5% label noise
and adversarial attacks within an l∞ radius of ε = 0.05. All features are scaled
to the range [0, 1] therefore ε represents 5% of each feature’s range. The boosted
and single decision trees were limited to a depth of 5.
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Fig. 4. Decision regions of tree models before and after robust relabeling. Robust rela-
beling effectively removes fragile regions resulting in visually simpler models.
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Table 4. Comparison of adversarial accuracy scores for adversarial pruning [25]
and robust relabeling (ours). Adversarial pruning does not take into account that the
learner can select non-robust splits where relabeling effectively removes such splits thus
producing more robust models.

Dataset Decision tree Gradient boosting Random forest

Pruning Relabeling Pruning Relabeling Pruning Relabeling

Banknote .718 ± .060 .823 ± .035 .809 ± .053 .822 ± .052 .855 ± .032 .849 ± .039

Breast-cancer .867 ± .016 .903 ± .025 .868 ± .031 .937 ± .020 .906 ± .016 .930 ± .011

Breast-cancer-d .617 ± .158 .810 ± .026 .619 ± .081 .821 ± .019 .749 ± .035 .842 ± .022

Sonar .482 ± .140 .573 ± .073 .438 ± .089 .616 ± .076 .389 ± .051 .582 ± .034

Ionosphere .689 ± .071 .792 ± .045 .635 ± .163 .815 ± .010 .812 ± .037 .872 ± .017

Parkinsons .513 ± .139 .759 ± .126 .492 ± .177 .759 ± .126 .508 ± .170 .749 ± .021

Diabetes .708 ± .009 .712 ± .025 .596 ± .043 .697 ± .032 .668 ± .049 .729 ± .036

Qsar-bio. .262 ± .052 .661 ± .004 .149 ± .024 .663 ± .002 .183 ± .010 .663 ± .002

Spectf-heart .840 ± .041 .840 ± .041 .863 ± .034 .877 ± .037 .891 ± .028 .897 ± .025

Wine .562 ± .030 .610 ± .047 .212 ± .094 .494 ± .081 .240 ± .047 .482 ± .090

In all types of models we see that there are small regions with a wrong
prediction in areas where the model predicts the correct label. For instance, in
the normal decision tree trained on ‘moons’, we see a slim orange leaf in the
region that is otherwise predicted as blue. This severely reduces the robustness
of the model against adversarial attacks since nearby samples can be perturbed
into those regions. Robust relabeling effectively removes these leaves from the
models to improve adversarial robustness. Although the effect of regularization of
decision trees is hard to quantify, we intuitively see that the relabeled models are
more consistent in their predictions. We expect this property to also improve the
explainability of the models by methods such as counterfactual explanations [21].

5.2 Comparison with Cost Complexity Pruning

Cost Complexity Pruning is a method that reduces the size of decision trees to
improve their generalization capabilities. This method iteratively merges leaves
that have a lower increase in predictive performance than some user-defined
threshold α. In Fig. 5 we compare the effects of Cost Complexity Pruning and
robust relabeling on the Diabetes dataset. Here, we trained decision trees without
size constraints and varied the hyperparameters α and ε then measured accuracy
before and after adversarial attacks.

While the effectiveness of cost complexity pruning and robust relabeling
varies between datasets we find that generally both methods can increase test
accuracy compared to the baseline model. However, cost complexity pruning
achieved better accuracy scores on average while robust relabeling achieved bet-
ter adversarial accuracy scores. Clearly, there is a difference between regular-
ization for generalization and adversarial robustness. Such a trade-off between
accuracy and robustness has been widely described in the literature [18,27].
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Table 5. Comparison of regular accuracy scores before and after applying robust
relabeling. Since robustness is generally at odds with accuracy robust relabeling loses
out on accuracy in about 2 out of 3 cases. However, in some cases robustness actually
improves accuracy as a type of regularization.

Dataset Decision tree Gradient boosting Random forest

Before After Before After Before After

Banknote .967 ± .022 .948 ± .036 .991 ± .007 .941 ± .038 .994 ± .005 .956 ± .020

Breast-cancer .969 ± .014 .958 ± .019 .962 ± .008 .965 ± .009 .968 ± .008 .969 ± .003

Breast-cancer-d .930 ± .034 .912 ± .032 .917 ± .036 .931 ± .024 .954 ± .017 .947 ± .028

Sonar .740 ± .058 .716 ± .054 .731 ± .044 .740 ± .046 .803 ± .031 .755 ± .054

Ionosphere .883 ± .034 .857 ± .047 .906 ± .041 .863 ± .022 .926 ± .026 .932 ± .033

Parkinsons .872 ± .065 .851 ± .071 .867 ± .071 .851 ± .071 .913 ± .082 .759 ± .014

Diabetes .737 ± .026 .738 ± .034 .742 ± .026 .719 ± .028 .769 ± .039 .768 ± .040

Qsar-bio .819 ± .042 .661 ± .004 .872 ± .023 .663 ± .002 .868 ± .023 .663 ± .002

Spectf-heart .840 ± .041 .840 ± .041 .871 ± .028 .880 ± .033 .897 ± .025 .897 ± .025

Wine .696 ± .048 .686 ± .047 .774 ± .024 .494 ± .081 .786 ± .019 .498 ± .080

Fig. 5. Test scores on the Diabetes dataset when varying the hyperparameters of cost
complexity pruning and robust relabeling. Both improve upon unpruned trees (α =
ε = 0) but cost complexity pruning performs better at regular accuracy while robust
relabeling enhances adversarial accuracy.

6 Conclusions

In this work, we studied relabeling as a method to improve the adversarial
robustness of decision trees and their ensembles. As training optimal robust
decision trees is expensive and training heuristic robust trees inexact, we pro-
pose a polynomial-time post-learning algorithm to overcome these problems:
robust relabeling. Our results show that robust relabeling significantly improves
the robustness of regular and robust tree models. Robustly relabeling models
trained with the state-of-the-art robust tree heuristic GROOT further improved
the performance. While we can also use the robust relabeling method during the
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tree learning procedure this took up to hours of runtime and produced decision
trees that were approximately as robust as relabeled GROOT trees.

We expect robust relabeling in combination with methods such as GROOT to
become important for training models that get deployed in adversarial contexts
such as fraud or malware detection. The result that finding an optimal robust
labeling can be done in polynomial time can help to further improve meth-
ods for optimal robust decision tree learning. In future work, we will explore
the regularity effects of robust models for instance for improved counterfactual
explanations.
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