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Abstract

In practice, many applications like traffic monitoring and smart grids rely on computing functions on privacy-
sensitive data. In order to protect privacy-sensitive data and still keep the ability to compute any arbitrary
function, multi-functional privacy-preserving data aggregation schemes have been created. These schemes,
however, can be abused by malicious users, leading to incorrect results. Existing literature mostly provides
aggregation schemes which are either multi-functional or support malicious user detection, but to the best
of our knowledge, there is only one scheme that provides both. This scheme requires each user to send a
number of ciphertexts linear in the size of the aggregation function’s domain. Furthermore, that scheme
is not collusion-resistant. In this thesis, we design a multi-functional privacy-preserving data aggregation
scheme with malicious user detection. In contrast to existing schemes in literature, the amount of messages is
independent of the size of the aggregation function’s domain, it does not rely on a trusted authority and it is
collusion-resistant as long as at least two users are honest-but-curious.
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Preface

In this report I describe the protocol that I have designed for my master thesis. This protocol allows a party
to aggregate private data without leaking any information of that private data. Any aggregation function is
supported to be computed and if any user is acting maliciously, that user is detected. The combination of
those characteristics and the resulting communication complexity results in a protocol which improves upon
the state-of-the-art in this field.

The protocol is the result of a period of nine months of research. The first three months, I read up on a
lot of privacy-preserving data aggregation schemes. At first, it was the challenge to understand the different
techniques that are used in such schemes. Later on, I started recognizing those techniques and recognized
patterns that are repeated in those schemes. The challenge became to search for differences with other
schemes and how those differences are caused. Sometimes the difference was as small as a slightly better
performance. During this reading period, I have encountered a lot of topics I found interesting to look into.
Near the end of the reading period, I read a paper which allowed a party to compute any arbitrary aggregation
function. The way this is achieved in that paper is very inefficient which made me interested to look into
other papers that support any arbitrary aggregation function. After reading those papers, I was motivated
to try to come up with a solution that improves upon them in terms of complexity. After the reading period,
a solution already came up quite quickly. After working out this solution it seemed to fit and it also had the
desired characteristics. However, there was something missing in my opinion. The users of the protocol were
assumed to be honest-but-curious. As an extra characteristic, I wanted to detect a user when it is behaving
maliciously. This has been the main part of the next period, the design period, of my thesis. During the design
period, I designed the protocol and analyzed the properties of the resulting properties. Once everything was
worked out, I started the next and last period of my thesis, the writing period. This period started with writing
a paper for the ARES conference which is unfortunately rejected. After the paper, I started writing this thesis.

In the first place I would like to thank Zekeriya Erkin for all the support he gave me during my thesis. I
am also thankful for all the technical and less technical insights he gave me. I really enjoyed having him as
my supervisor. I would also like to thank Felix W. Dekker for all the help during the designing period of my
protocol and especially during the writing period for all the feedback on my writings. I also thank Cynthia
Liem and Kaitai Liang for being a member of my thesis committee. Next, I thank all the other master students
and PhD’ers that are supervised by Zekeriya for all the technical and enjoyable less technical discussions. I
really had a great time working with all of you. Finally, I want to thank my family and girlfriend who supported
me in this period.

C. M. Koster
Delft, May 2021
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1
Introduction

Data plays a vital role in our society. Data about for example locations and speed of people are used to detect
whether there is a traffic jam. With this information, people are redirected to reach their destination faster.
Also, driving less in traffic jam decreases air pollution and decreases health risks for drivers [43]. Another
example that emphasizes the importance of data is found in flooding systems. A flooding system needs, among
others, data about the water level and certain aspects of the weather such as the direction and the strength of
the wind. With no or incorrect data, the consequences could be catastrophic such as the North Sea flood in
1953. In that time, there were no flooding systems which resulted in large parts of Zeeland, which is a province
in the Netherlands, being flooded [64].

One source of data is smart devices. Smart devices contain sensors which measure external aspects of their
environment such as a Fitbit for measuring the heart rate or a smart meter to measure the energy consumption.
A device is smart when it is connected with a set of other devices and networks [61]. The amount of smart
devices is increasing rapidly [37] and therefore the amount of data is also increasing. In 2020, the worldwide
data volume is already 59 zettabytes [36].

Data might be privacy-sensitive such as in the case of the location of a person. Location data allows a
person to be followed anywhere and information about his or her habits can be deduced. To preserve the data
privacy, encryption schemes can be used. An encryption schemes encrypts private data so that other users,
without the private key, cannot gain any knowledge about the private data. However, encryption schemes does
not allow a user, without the private key, to get the result of a function computed over the private data. In other
words, the utility is lost. An application is no longer able to use the encrypted data to detect for example a
traffic jam. On the other hand, not encrypting anything gives a perfect utility, since anything can be done with
the data, but the data privacy is not preserved. Therefore, there is a constant trade-off between utility and data
privacy. Privacy-preserving data aggregation schemes achieve both. Those schemes preserve the data privacy
and gives the utility provider the possibility to aggregate the private data.

1.1. Data aggregation
With data aggregation, any arbitrary function over a set of data is computed such as the sum, average or
principal component analysis. Data aggregation is useful in many applications for different types of users
like governments, companies and individuals. In this section we highlight examples of applications which
illustrates the usefulness of data aggregation.

We start with an example of data aggregation which shows the usefulness for a government. A government
has to make decisions all the time. A contemporary example of this is the COVID-19 pandemic. During the
pandemic, data aggregation is applied to get for example the number of infections in a week, the amount of
patients in the hospitals or intensive care departments and a so-called r-score which indicates how many
people a single person infects on average. The government is now able to take action upon the information
resulting from data aggregation. When the infections are increasing, for example, the government might
need to introduce stricter measures [45]. Without data aggregation, it is much harder to get same level of
information, such as the r-score, about the data. Data aggregation, therefore, helps a government to take
appropriate and substantiated actions on time and reduced the amount of infected persons and deaths [39].

Data aggregation also comprehends predictions that are made. A government may know that new measures
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2 1. Introduction

have to be taken, but it must also be known which measures to take. Since there are no past research results
about the consequences of a measure in a pandemic of this magnitude, the consequences need to be predicted.
With the help of predictions, a government was also able to estimate the capacity that was necessary in
hospitals and intensive-care departments [60]. The pro-active increasing of the capacities led to the fact that
everyone had the opportunity to be treated rightfully, which again saved many lives [53].

Next to a government, also companies benefit from data aggregation. This benefit is two-fold. The first
benefit for a company is to use data aggregation for its own purposes. An example of this is a supermarket. The
stock is a high risk for a supermarket since it can, for example, expire or get stolen. Therefore, a supermarket
wants to minimize the stock. On the other hand, a supermarket wants to have enough stock so that customers
are able to buy everything they want. With the help of the data of previous months or years, data aggregation is
used to predict which amount of which product a supermarket must buy for the next period in order to satisfy
the needs of every client and not to have too much stock. As a result, supermarkets decreased the amount of
food they had to throw away because it is expired [50].

Instead of using data aggregation for own purposes, a company can also use data aggregation as its core
business. Since data aggregation is so useful for a large variety of entities, companies earn their money with
data aggregation as their business. This results in a wider variety of data aggregation which offers new insights.
Google Maps, for example, computed that amount of cars on the road increased during a later stage of the
lockdown [2]. This new insight could again be used by the government to take new measures in order to
prevent the spread of the COVID-19 virus.

Individuals also benefit from data aggregation. The smart grid [26] is one such an example. In a smart
grid, the energy consumption in households is measured by smart meters. These smart meters send the data
to the utility center. With the knowledge of the energy consumption per household on a frequent basis, the
utility company better balances the provision of energy through the energy grid. The better balance prevents
blackouts like the Northeast blackout [5].

Finally, individuals also benefit from data aggregation in their daily lives. Popular examples are the traffic
jam notifications by Google Maps, an indication of how busy a supermarket is at which time or recommenda-
tions of restaurants or other places by TripAdvisor. All those examples are generated with data aggregation and
turned into information which users use to optimize their activities. This information helps individuals to
make decisions in one moment instead of going through lots of data.

1.2. Privacy
Data aggregation is valuable for everyone, for the government and business, but also for individuals. However,
not all data can be used as it is for data aggregation. Privacy-sensitive data cannot be used as plain text in an
aggregation protocol, since the party aggregating the data gains knowledge of the sensitive data. Many of the
examples in the previous section process such privacy-sensitive data.

The data concerning infections of COVID-19 or patients staying in the hospital or the intensive care,
for example, is privacy-sensitive. In general, data concerning any disease or other health related issues is
privacy-sensitive. A patient does not always want others to know its health information. Disclosure of health
data can lead to discrimination and infringements of fundamental rights [48]. An example of discrimination is
that the costs of a health insurance for people with a known underlying disease will be higher in comparison
to people where no disease is known, even though the people with no known disease might have the same
underlying disease.

Smart grids also processes privacy-sensitive data. If the energy consumption is known for short consecutive
periods, the aggregator is able to derive, among others, the presence of inhabitants, the presence of a visitor,
the applications that are turned on and even customers’ religions [70].

Another example processing privacy-sensitive data is Google Maps. Google Maps, as discussed above,
notifies users of traffic jams. In order for Google Maps to be aware of a traffic jam, it has to keep track of users.
Where many users are driving slowly a traffic jam has emerged. However, this tracking data is privacy-sensitive.
With this tracking data, someone is able to get information about the whereabouts of any user. For example,
where someone works, where someone lives or when someone is not at home.

Privacy-sensitive data includes different categories of data [44]. The first category is the personal data.
Personal data includes all information that is directly related to an individual, such as address, license plate of
a car and a name. The second category is special personal data. Data in this category is extra sensitive to affect
the individual. Examples are race, sexual orientation, religion, criminal record and more [1]. Not all this data
does directly link to an individual, but with the combination of other data it might be linkable. Finally, besides
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the data of a natural person, privacy-sensitive data also includes sensitive data of legal persons [44].
Therefore, when storing and processing privacy-sensitive data, extra care has to be taken to preserve the

privacy. The storage and processing of sensitive data is regulated with legislation which is done in multiple
jurisdictions. The European Union, for example, regulates it with the General Data Protection Regulation
(GDPR) [1], which is in effect since 2018. The GDPR also affects citizens and companies outside the European
Union. The regulation states, among others, that there has to be a legal ground in order to store and process
sensitive data. Examples of such legal ground are the explicit consent of the data subject, the person to who
the data relates, and the urgency for national security. When a processor, the entity who processes the data,
has this legal ground, it is still subject to limitations imposed on them by the GDPR. For example, the processor
may only process the sensitive information for the purpose for which the data was acquired. Also, the data
must be removed from the storage as soon as possible.

1.3. Privacy by design
Legislation alone is not enough to enforce the privacy of sensitive data. If a company legally stores the sensitive
data, it is still susceptible to internal and external attacks. It is even possible that the company is acquired by
an adversarial company. Therefore, the GDPR also states that organisational and technical measures should be
taken as much as possible, taking into account the costs of implementation and the context and scope of the
processing. These measures should already be determined while designing the process or application and not
only during processing. Now the core goal of the process or application becomes to prevent privacy violations
while maintaining the other functionality. This methodology is called privacy by design.

Privacy by design can make use of Privacy-Enhancing Technologies (PETs) [56]. There are numerous PETs
designed in the past. Cha et al. [14] give an overview of a subset of those PETs with each their objective. One
type of PETs are the anonymity-related PETs [68], which can have multiple guarantees. The first guarantee is
pseudonymity, which guarantees that the identity of a user is not revealed. However, it can still be tracked. The
second guarantee is anonymity, which guarantees that the identity is not revealed and cannot be tracked. An
anonymity related PET can also guarantee the unobservability, which guarantees that one is unable to derive
whether an application is used by a given user. Another guarantee is the unlinkability which guarantees that
two steps in a process cannot be linked to the same user. Finally, the last possible guarantee discussed in [68]
is deniability. Deniability gives users the possibility to deny a claim about them which someone else on its turn
is unable to verify. Other types of PETs focus less on the identity, but more on the data itself. There are PETs
which focus on the guarantee of confidentiality such as the AES [20] and Paillier [51] encryption schemes. Or a
PET can provide a guarantee for the authenticity of the data for example with a signature.

A subset of PETs focus on providing extra functionality while keeping the guarantee of confidentiality.
One example is searchable encryption. Searchable encryption allows someone to search within a database
of encrypted items for a specific item. Searchable encryption has numerous characteristics such as the level
of expressiveness of the search queries and the level of confidentiality [13]. Access control is another PET
providing confidentiality and still providing utility. In these type of PETs, only parties with the right set of
attributes are able to decrypt the data. Other parties are only able to see the encrypted data [47]. The previous
two types of PETs, searchable encryption and access control, require a central database for the encrypted
data. There are scenarios in which such a central place is not available or not wanted. Still users may want to
compute a function while keeping the confidentiality of their data. A category of PETs guaranteeing this is
multiparty computation [19]. In multiparty computation schemes, the users compute the result of any public
function jointly while preserving the data privacy.

The type of PETs that is of interest for us is the privacy-preserving data aggregation. In such PETs, users
send their data encrypted according to the specifics of the protocol. The encrypted data is sent to a party who
is called the aggregator. The aggregator performs computations to compute any arbitrary function on the
incoming data such as the sum, the minimum, the maximum or any polynomial function. Without gaining any
knowledge of the data of individual users, the aggregator gains the result of a function it wants to be performed
on the data. Such PETs guarantee the confidentiality of the data, but also allow the aggregator to compute
functions on the data.

1.4. Existing solutions
A wide range of privacy-preserving data aggregation schemes exist. The schemes vary in functionality and
trust assumptions. The scheme in [41] assumes the aggregator is trusted. The scheme gives the aggregator the
possibility to decrypt every value of every user so that it aggregates on plain text data. Giving the aggregator
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this power is not desirable in every scenario. The sensitive information is still available. Whether the aggregator
is really trusted does not matter. It is possible that an adversary finds its way to this sensitive data. Another
subset of aggregation schemes make use of a trusted authority. A trusted authority can be used for setting
up the system. The trusted authority provides every party with its own secret key as done by Shi et al. [57].
In [54], the trusted authority gets all encrypted data, decrypts them and relays the aggregated result encrypted
under a different key to the party who wants the result. Here, the trusted authority is actually acting like the
aggregator which is fully trusted. A trusted authority is useful since trusted computations can be outsourced to
it. However, a trusted authority might not be realistic to have in practice. As said before, even when a party is
fully trusted, there is still a potential threat from external adversaries.

Another problem many aggregation schemes have in common is that they only allow the protocol to
compute the sum. The support of computing the sum indirectly also includes other functions, such as average,
to be computed since it additionally requires the knowledge of the amount of users which is equal to the
amount of incoming messages. However, the aggregator might want to compute other functions such as
minimum, maximum or another arbitrary function. The computations of these functions are for example not
possible in the schemes from Shi et al. [57], Lu et al. [42], Erkin and Tsudik [25] and Guan et al. [34].

There are privacy-preserving data aggregation schemes which support the computation of any arbitrary
function. This kind of schemes are called multi-functional. However, existing multi-functional privacy-
preserving data schemes have major drawbacks. The schemes presented by Gong et al. [32] and Zhang
et al. [72] do not scale well in the number of users and the input range. The message size of a user grows linearly
with the amount of users and the size of the data. The schemes presented by Wang et al. [66, 67] produce
approximate results which might not be desirable in every application.

The schemes presented by Shi et al. [58] and Han et al. [35] also support arbitrary functions where the
message size for each user is independent on the amount of users and the results are exact. However, in order
to compute the histogram, which on its turn allows the computation of any arbitrary function, the protocol
requires interaction. The users have to respond for every range of values if it is in that range. So the amount of
messages grows linearly with the amount of possible values resulting in a higher bandwidth usage.

Zhang et al. [71] also present a scheme which supports any arbitrary function to be computed and does not
have any of the above problems. However, also this scheme has its own drawbacks. First of all, the decryption
requires the aggregator to compute the discrete log which is an inefficient operation. Above all, with the
protocol described to compute functions like minimum and maximum, the exact value of any user can be
retrieved which results in a loss of data privacy.

Besides all the mentioned drawbacks of the previous schemes, none of them assumes that a user of the
system is malicious. For example, in the scheme of Shi et al. [58], a user is able to maliciously change its value
every round of interaction which results in a wrong result. Next to a wrong result, malicious behaviour may
also result in no results at all. Having wrong or no results can have serious consequences. For example in the
case of the smart grid, energy can be allocated to the wrong part of the energy grid resulting in a blackout. To
the best of our knowledge, there is only one scheme which both supports multi-functionality and malicious
user detection. This scheme is presented by Viejo et al. [65]. This scheme has two main drawbacks. The first
drawback is that the scheme is not collusion-resistant. The aggregator retrieves the data of an individual user
when it colludes with any node between the user and the aggregator. The second drawback concerns the
bandwidth usage. Every user needs to send a ciphertext for every possible value a user is able to send.

1.5. Research goal
In this thesis we aim to design a privacy-preserving data aggregation scheme which must satisfy multiple
criteria. The first criterion is multi-functionality. The scheme must support the computation of any arbitrary
function. In literature, the majority of schemes does not satisfy this criterion. The schemes that are multi-
functional, suffer other drawbacks such as communication which is linear to the product of the amount of
values and users or a loss of data privacy. In order to achieve this criterion, our scheme must not rely on
a trusted authority which is allowed to aggregate the plaintext data. Such a trusted authority might not be
realistic in all applications.

The second criterion, our privacy-preserving data aggregation scheme has to satisfy is the ability to detect
malicious users. All but one multi-functional privacy-preserving data aggregation schemes assume users to be
honest-but-curious. In real-world applications this might not always be the case. The scheme that supports
malicious user detection, however, is not collusion-resistant. Also, this scheme requires communication which
is linear to the product of the amount of values and users.
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The third criterion is that our privacy-preserving data aggregation scheme is collusion-resistant. This
criterion is the most important criteria to improve upon the state-of-the-art. To the best of our knowledge
there is no multi-functional privacy-preserving data aggregation scheme with malicious user detection which
also is collusion-resistant.

All these criteria lead to the following research question.

How to design a privacy-preserving data aggregation scheme which is multi-functional, collusion-
resistant and able to detect malicious users without relying on a trusted authority?

Due to the fact that comparable privacy-preserving data aggregation schemes have a communication
complexity which is at least linear to the product of the amount of values and users, the goal for our scheme is
to improve on that. The term of the amount of users is inevitable since every user at least has to send its data.
Therefore in this thesis we aim to remove the term for the amount of values or replace it with a smaller term.

1.6. Contributions
In this thesis we propose three protocols. The first protocol is an encoding scheme. The encoding scheme
maps the value of a user to a coefficient. The coefficients are constructed in such a way, that the amount of
users which have sent a certain coefficient is deduced from the sum of all the coefficients sent by the users. A
coefficient is then mapped back to a value so that it is known which amount of users have sent a specific value.
Any privacy-preserving data aggregation scheme which uses an additive homomorphic encryption scheme is
turned into a multi-functional scheme with the usage of this encoding scheme.

The second protocol uses the encoding scheme to create a privacy-preserving data aggregation scheme
which is multi-functional. In this protocol we assume the users to be honest-but-curious and we focus to
improve on the computation and communication complexity of the state-of-the-art. Compared to comparable
privacy-preserving data aggregation schemes our scheme improves with respect to the communication and
computation complexity.

The last protocol proposed in this thesis is a privacy-preserving data aggregation scheme which satisfies all
criteria that are stated in the research goal in Section 1.5. This scheme is multi-functional, collusion-resistant
and it supports malicious user detection. The multi-functionality is due to the usage of the encoding scheme.
The second protocol, which assumed honest-but-curious users, is modified and extended with non-interactive
zero-knowledge proofs so that it supports the detection of malicious users. The manner how all the coefficients
of the encoding scheme are encrypted results in the fact that this last protocol is collusion-resistant. To the
best of our knowledge, we are the first ones who propose a privacy-preserving aggregation scheme which is
multi-functional, collusion-resistant and supports malicious user detection.

Besides fulfilling the criteria that are stated in the research goal, the last protocol also improves upon the
state-of-the-art with respect to the computation and communication complexity. Instead of depending on the
amount of values, our protocol depends on the group size. The advantage of the group size is that it is more
flexible. The amount of values is often fixed in a certain application. The group size can be set depending on
the requirements. Finally, both privacy-preserving data aggregation schemes do not rely on a trusted authority
as required by the research goal.

In summary, our contributions are as follows.

• To the best of our knowledge we propose the first multi-functional privacy-preserving aggregation
scheme which is collusion-resistant, supports malicious user detection and does not rely on a trusted
authority.

• We propose two privacy-preserving data aggregation schemes, with different user assumptions, which
improve upon the state-of-the-art with regard to the computation complexity and communication
complexity.

• We propose an encoding scheme which is used to turn any privacy-preserving data aggregation scheme,
which uses an additive homomorphic encryption scheme, into a multi-functional scheme.

1.7. Outline
We proceed in Chapter 2 with the discussion of the preliminary knowledge needed to understand the remainder
of this thesis. Chapter 3 continues with the discussion of the related work. Next, Chapter 4 presents an encoding
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scheme which is used in the privacy-preserving data aggregation scheme. Chapter 5 discusses the first multi-
functional privacy-preserving data aggregation scheme. It, however, assumes users to be honest-but-curious
and serves as an intermediate step towards the protocol discussed in Chapter 6 which supports malicious user
detection. Finally, we conclude this thesis in Chapter 7.



2
Preliminaries

The subjects that are discussed in this chapter are superincreasing sequences, secret sharing, homomorphic
encryption, the Boneh-Boyen signature scheme and zero-knowledge proofs..

2.1. Superincreasing sequence
A superincreasing sequence is a sequence of real numbers {α0,α1, . . . ,αm} for which holds that each number is
higher than the sum of the previous numbers in the sequence. This is formalized in the equation

αi >
i−1∑
j=0

α j−1. (2.1)

Another condition that should hold for a sequence to be superincreasing, isα0 > 0. Since the first number is
now positive, all the other numbers of a superincreasing sequence also have to be positive due to Equation 2.1.

Given a random subset of distinct elements b = {b0,b1, . . . ,bn} ⊆ {α0,α1, . . . ,αm}, the sum function f (b) =∑n
i=0 bi for such a set b is a bijective function. In other words, for every possible subset, f produces a unique

outcome. Due to the fact that f is bijective, it is possible to compute the inverse of f , i.e. given f (b), the sum of
the subset elements, we are able to compute which elements are included in the subset. Starting at the largest
element, one checks whether an element fits in the sum. If it does fit it is part of the sum and, in order to check
the smaller elements, the current element is subtracted from the sum. If it does not fit it is not part of the sum.
Formally, f −1(b) is computed as described in Algorithm 1, where ui is 1 when element αi is included in b and
0 otherwise.

Algorithm 1: Inverse sum of superincreasing sequence

Data: f (b), [α0, α1, . . ., αm]
Result: [u0, u1, . . ., um]
Xm = f (b);
for i ← m to 0 do

Xi−1 = Xi mod αi ;

ui = Xi−Xi−1
αi

;

2.2. Secret sharing
There are scenarios where there is no party who is trusted to retrieve secret data on its own. That single party
can easily turn malicious without any interference. Multiple parties together, however, are less likely to be
corrupt at the same time. The secret data must be shared between the parties in such a way that only all
parties together or a subset of parties is able to retrieve the secret. Note that a subset has a size bigger than
1. Otherwise sharing the secret is not needed in the first place. In order to behave maliciously, all parties, or
the defined subset of parties, must collaborate which takes more effort for an adversary to accomplish. Any

7
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amount of users less than required should not gain any information about the secret. A well-known example
is about nuclear codes. A president on his/her own should not be able to retrieve the code to activate the
nuclear weapons since all responsibility lies with the president. Instead, the nuclear code is retrieved when,
for example, the president, vice-president and minister of defense collaborate. Now, if the president wants to
retrieve the code with no good reason, it has to convince the others first.

There are multiple ways of achieving the sharing of a secret. The most naive way is by dividing the secret
among n different parties. This way leaks information. A party receiving its share knows that the secret is at
least bigger than its share. This reduces the brute-force space for an adversary significantly.

Another way is (t ,n)-Shamir’s secret sharing [55]. With (t ,n)-Shamir’s secret sharing, at least t out of n
users are needed in order to recover the secret which is embedded in a polynomial. This polynomial has a
degree of t −1. A polynomial with degree t −1 can be reconstructed from t distinct points of that polynomial.
Any amount of points less than t is not sufficient to reconstruct the polynomial, since there is an infinite
amount of polynomials with degree t −1 that go through these points.

To construct secret shares, the party which has the possession of the secret, creates the polynomial of
degree t −1. Therefore, the polynomial is of the format

f (x) =
t−1∑
i=0

ai · xi . (2.2)

The coefficients ai are chosen randomly. Except for a0, this coefficient is set to the secret S. With this
polynomial, shares of the secret are distributed to all n users. Each user i gets a random point of the polynomial
(xi , f (xi )), where every user gets a distinct point. Note that the point (0, f (0)) is not assigned to a user since
f (0) = S.

When all users retrieved their shares, t out of n users are able to recover the secret. The t users share
their points of the polynomial. With the help of the Lagrange interpolation, as described in [69], the users
reconstruct the polynomial f . Now the value f (0) is computed by the users to retrieve the secret S.

The last secret sharing scheme we discuss, which is commonly used, is additive secret sharing. Where
Shamir’s secret sharing is (t ,n)-secret sharing, additive secret sharing is (n,n)-secret sharing. In other words,
with additive secret sharing, all users have to collaborate in order to retrieve the secret. Every user i gets a
random share si from the party who possesses the secret. These shares are random numbers. Except for user
0, who gets s0 = S −∑n−1

i=1 si . When all users collaborate to retrieve the secret, the users sum all their shares
resulting in

n−1∑
i=0

si = S −
n−1∑
i=1

si +
n−1∑
i=1

si = S. (2.3)

2.3. Homomorphic encryption
With a homomorphic cryptosystem, performing an operation on elements of the group of ciphertext messages
corresponds to performing an operation on elements of the group of plaintext messages followed by an
encryption. Specifically, this equals to

E(m1)∗E(m2) = E(m1 +m2), (2.4)

where E is the encryption function. Note that the operations ∗ and + can be any operation. A cryptosystem is
homomorphic with respect to the operations * and + if Equation (2.4) holds for any message m1 and m2.

One example of such a homomorphic cryptosystem is the Paillier cryptosystem [51]. We make use of this
cryptosystem in our protocol discussed in Chapter 6. The Paillier cryptosystem is additively homomorphic
and consists out of three phases, namely key generation, encryption and decryption.

The key generation is performed by the party who must be able to decrypt the ciphertexts. That party
randomly chooses two large prime numbers p and q of the same size. Then, n = pq is computed. The
generating party also chooses a random g ∈ Z∗

n2 . The values n and g form the public key. The private key

contains two values, namely λ= lcm(p −1, q −1) and µ= L(gλ mod n2)−1 mod n. There are a few things to
explain here. First, lcm(x, y) computes the least common multiple of x and y . The value λ is private since
other users do not know p and q and they cannot derive them from n, because factorization is assumed to be
hard. Second, the function L is defined as L(x) = x−1

n . Finally, in order to compute µ, the modular inverse of

L(gλ mod n2) is computed modulo n. It is possible that this inverse does not exist. In this case, a new value is
chosen for g after which λ and µ are computed again. The process continues until the modular inverse exists.
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Once the keys are generated, a party encrypts a message m ∈Zn as

c = g m ·nr mod n2, (2.5)

where r is a random number from Z∗
n . The random number has to be fresh for every ciphertext.

The last phase of decryption, is executed by the party who has the private keys. A ciphertext c is decrypted
as

m = L(cλ mod n2) ·µ mod n. (2.6)

The Paillier cryptosystem is additively homomorphic. When a scheme is additive homomorphic the
operations in Equation (2.4) are multiplication and addition respectively. The Paillier cryptosystem is additive
homomorphic since

E(m1) ·E(m2) = g m1 · r n
1 · g m2 · r n

2 = g m1+m2 · (r1 · r2)n = E(m1 +m2) (2.7)

holds for any message m1 and m2.
The Paillier cryptosystem also allows the multiplication with a scalar by computing

E(m)e = (g m · r n)e = g me · r ne , (2.8)

where e is some scalar. The result is still decryptable since r ne can be rewritten to (r e )n where r e ∈Z∗
n which is

on its own a new random number.
In order to characterize the security of a cryptosystem, we use the terminology introduced by Smart [62]. A

security game consists out of two parties, an adversary and a challenger. As the names suggest, the goal of
the adversary is to win the security game and the challenger gives the adversary a challenge which need to be
solved to win the game. When the best option for an adversary is to guess the output, the cryptosystem used in
the game is said to be secure to this security game.

First, there is a difference between the one-way (OW) and the indistinguishability (IND) security games. An
OW security game requires an adversary to return the secret message of a ciphertext chosen by the challenger.
With an IND security game, the adversary sends two messages as challenge to an oracle. The oracle responds
with the encryption of one of the messages. The task of an adversary in an IND security game is to return which
of the two messages is encrypted. When a cryptosystem is IND secure, it is also semantic secure as proven in
[62]. Semantic security means that an adversary with polynomial bounded computing power cannot learn any
information from a ciphertext.

Both OW and IND security games have multiple levels of security. The lowest level of security is the passive
attack (PASS). This level is the same as we described for the security games in the previous paragraph. The next
level is the chosen-plaintext attack (CPA). Now, the adversary has to possibility to use an encryption oracle.
This encryption oracle returns the ciphertext of any plaintext message of the adversary’s choice. Any plaintext
messages used for the challenge is not allowed to be encrypted by this oracle. Another level of security is CCA1.
A security game in this level adds a decryption oracle. This oracle returns the plaintext message of a ciphertext
of choice. In a CCA1 security game, the decryption oracle is only allowed to be executed before the challenge
ciphertext is known. The last level is CCA2. This level has the same oracles as CCA1. Now, the decryption
oracle is also allowed to be queried after the challenge ciphertext is known. Again, the challenge ciphertexts
are not allowed to be decrypted by the decryption oracle.

Due to the malleability, the Paillier cryptosystem is not CCA2 secure. It is CPA and CCA1 secure for both
the OW and IND security games assuming that the decisional composite residuosity assumption holds [4].
This assumption states it is hard to distinguish a random number from r n mod n2, where n is known and r is
unknown.

2.4. Boneh-Boyen signature scheme
Another useful technique are signature schemes. Signature schemes are designed to prove the authenticity
of a message. In other words, a signature schemes proves that a message belongs to the user it is supposed
to come from. A signature scheme creates a signature which a user sends together with the ciphertext. The
receiver verifies the signature. When the verification is successful, the ciphertext is sent by the correct user.

One signature scheme which we use in the protocol described in Chapter 6, is the Boneh-Boyen signature
scheme [10] which nicely fits with the zero-knowledge proof in the verification part of our protocol described
in Chapter 6. The signature scheme contains three phases, namely key generation, signing and verification.
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In the key generation, two groups G1 and G2 are chosen. Both groups have a length of some prime number
p. Next, a generator g1 and g2 for each group respectively are chosen. Now, the private key is any random
element x ∈Z∗

p . The public key is formed by g1, g2 and v = g x
2 .

The party who has the private key signs a message m ∈Z∗
p as

σ= g
1

x+m
1 . (2.9)

In the rare case of x +m = 0, the signature σ is set to 1.
Finally the receiving party receives a ciphertext and a signature. First the ciphertext is decrypted according

to the cryptosystem that is used. The decryption results in a message m′. With the public key of the signature
scheme, the message m′ is correct when the equation

e(σ, v · g m′
2 ) = e(g1, g2) (2.10)

holds. In the rare case that σ= v · g m′
2 = 1, the signature is also valid. In all other cases, the signature is not

valid and the received message is not sent by the correct user.
For signature schemes, it is important to be unforgeable. There are two types of unforgeability [62]. The

first type is selective unforgeability. With a signature scheme of this type, an adversary does not have any
advantage over guessing a valid signature of a challenge message. The second, and stronger, type is existential
unforgeability. With a signature scheme of this type, an adversary does not have any advantage, over guessing,
of producing a valid signature for any message the adversary chooses. The resources of the adversary can be
extended in both types of unforgeability with a signing oracle. This is called the chosen message attack (CMA).
The signing oracle computes the signature of any message of the adversary’s choice. However, this message
may not be equal to the challenge message or the message the adversary is going to output. Lastly, there are
two types of CMA, namely the weak and the strong one. In the weak variant, the adversary is only able to call
the signing oracle before the public key of the signature scheme is published. In the strong variant, on the
other hand, the adversary is also allowed to call the signing oracle after the public key is published.

The signature scheme of Boneh-Boyen is existential unforgeable under a weak CMA assuming that the
q-Strong Diffie-Hellman problem (q-SDH) assumption holds [10]. The q-SDH assumption states that it is hard

to produce a pair (y, g
1

x+y ), for any y , given (g , g x , g x2
, . . . , g xq

), where g is a generator of group G.

2.5. Zero-knowledge proof systems
In this section, we first briefly introduce the topic of zero-knowledge proofs. After that we consider a specific
proof which is used to prove plaintext equality.

2.5.1. A brief introduction to zero-knowledge proofs
A zero-knowledge proof is used by two parties, namely a prover and a verifier [31]. The prover needs to prove a
certain statement about its private data to the verifier. However, the verifier may not gain any knowledge about
the private data the user has except that the statements holds. Therefore, the proof has to be zero-knowledge.
One way to create a zero-knowledge proof is to use a sigma protocol. A sigma protocol requires the prover to
send a commitment to the verifier which replies with a challenge. The prover then sends a response which
has incorporated the challenge. With the response, the verifier verifies whether the statement to be proven
holds. The challenge is incorporated to prevent that a commitment and response are reused without having
the correct data.

A zero-knowledge proof based on a sigma protocol can also be made non-interactive [15] with the help of
the Fiat-Shamir heuristic [27]. A non-interactive proof does not require the verifier to send a challenge to the
prover. Instead, the prover sends the commitment, the response and the output of a hash function all in once
to the verifier. This hash function is computed over the input of the public parameters, the statement that
needs to be proven and the commitment. The hash function replaces the challenge and prevents a prover to
reuse a commitment and response without having the correct data.

In order to analyze the security of a zero-knowledge proof, three properties have to be proven.

1. Completeness ensures that a proof of a prover, with the knowledge of the data that satisfies the statement,
is always correctly verified by the verifier.

2. Soundness ensures that a proof of a prover, with no knowledge of the data that satisfies the statement, is
never correctly verified.
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3. Zero-knowledge ensures that the zero-knowledge proof does not leak any information about the private
data of the prover.

2.5.2. A non-interactive zero-knowledge proof of plaintext equality
As a part of the malicious user detection we use a non-interactive zero-knowledge proof in order to prove the
plaintext equality of two ciphertexts that is presented by [22]. Assume we have two users i and j with Paillier
public keys pki = (ni , gi ) and pk j = (n j , g j ) respectively. One user generates two ciphertexts

ci = g m
i r ni

i mod n2
i c j = g m′

j r
n j

j mod n2
j , (2.11)

where ri ,r j ∈Z∗
ni
∩Z∗

n j
. Now, we want to prove that m is equal to m′ without leaking any information about the

message. The non-interactive zero-knowledge proof for this is given in Algorithm 2, where ` is the maximum
amount of bits needed for either ni or n j and H is a secure cryptographic hash function.

The prover encrypts a random plaintext with the keys of both users. This random plaintext together with
the hash of the resulting ciphertexts are used to mask the secret message. The prover finally computes two
values vi and v j which are needed for the verifier to verify the plaintext equality. The prover outputs the
masked secret message, the two ciphertexts of the random plaintext, vi and v j . The verifier, on its turn,
computes the hash of the two public ciphertexts of the random plaintext. With this hash and the other public
information, the verifier is able to verify the plaintext equality.

The completeness property holds since

ui Ei (m)e = gρi sni
i · g m·e

i r ni ·e
i

= giρ+m ·e · sni
i r ni ·e

i

= g z
i · vni

i .

By replacing the subscripts with j , the other check performed by the verifier is also proven to be correct. The
completeness proof and the proofs of the two other properties, soundness and zero-knowledge, are given by
Baudron et al. [6].

Algorithm 2: Non-interactive proof of plaintext equality

Prover:
Input: {m,ri ,r j , gi , g j ,ni ,n j , H }
Choose a random ρ ∈ [0,2`), si ∈Z∗

ni
and s j ∈Z∗

n j

Compute ui = gρi sni
i mod n2

i and u j = gρj s
n j

j mod n2
j

Compute e = H(ui ,u j )
Compute z = ρ+m ·e
Compute vi = si r e

i mod ni and v j = s j r e
j mod n j

Output: {z,ui ,u j , vi , v j }

Verifier:
Input: {Ei (m),E j (m′), gi , g j ,ni ,n j , H ,ui ,u j , vi , v j }
Compute e = H(ui ,u j )

Verify that g z
i vni

i mod n2
i = ui Ei (m)e mod n2

i and g z
j v

n j

j mod n2
j = u j E j (m′)e mod n2

j





3
Related Work

The aim of this chapter is to explain the literature that relates to our research about privacy-preserving
data aggregation schemes and the support of multi-functionality and malicious user detection. Section 3.1
discusses some state-of-the-art privacy-preserving data aggregation schemes. The second part focuses on
privacy-preserving data aggregation schemes providing the support of a certain level of multi-functionality
with each their advantages and disadvantages. The different levels of multi-functionality are described in more
detail in the corresponding subsection. The last part discusses privacy-preserving data aggregation schemes
which add the assumption of malicious user behaviour and how those schemes detect which user is acting
maliciously.

During the discussions in this chapter, we assume the following network layout. There are u users or smart
devices whose private data is aggregated by a party called the aggregator. The aggregator should never learn
anything about the private data of an individual user. In some schemes, the aggregator is treated as the owner
of the aggregated result. In those schemes, the aggregator is able to retrieve the aggregated result. In other
schemes, the aggregator forwards the result of its operation to a control center. The control center is on its
turn able to retrieve the aggregated result without gaining any knowledge about the data of individual users.
Depending on the context, the owner of the aggregated result can share the aggregated result with others.
Some schemes require an additional party, namely a trusted authority. The trusted party is used to perform
trusted computations.

3.1. Privacy-preserving data aggregation
We start with some state-of-the-art privacy-preserving schemes which do not support the computation of
any arbitrary function. Instead, they only support the computation of the sum. In addition, they assume all
users to be honest-but-curious. Aspects of those schemes are used by many other privacy-preserving data
aggregation schemes and therefore are important to take into account when designing a privacy-preserving
data aggregation scheme.

Shi et al. The first scheme we discuss is from Shi et al. [57]. A trusted authority chooses a public random
generator g of a cyclic group Gwith prime order p. The scheme makes use of additive secret sharing with the
secret equal to zero as discussed in Section 2.2. The trusted authority initializes the system by giving each user
i a secret share si ∈Zp . The aggregator gets s0 as its secret share for which holds that s0 +∑u−1

i=0 si = 0.
Each user i encrypts their message mi by computing

ci = g mi ·H(t )si , (3.1)

where H is a hash function and t is the current time point. After receiving all the ciphertexts from the users,
the aggregator aggregates the ciphertexts as

c = H(t )s0
u−1∏
i=0

ci = g
∑u−1

i=0 mi . (3.2)

The sum of all the data is retrieved by computing the discrete log of c with base g .
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The scheme also considers differential attacks, for example when the data of users is constant over time
and a new user joins, the difference of the sum before and after the new user joined is the data of that new
user. To deal with differential attacks, and therefore providing differential privacy [23], this scheme states
that each user adds a random number as noise to its data. The random number is picked from a certain
distribution which is described in the paper. Such a distribution has to make a trade-off between maximizing
the differential privacy and minimizing the error of the aggregate. Finally, the sum of the data and the random
number is encrypted and sent to the aggregator which decrypts the noisy sum.

This scheme, however, is not fault-tolerant since all secret shares has to be summed in order to result
in zero. If one secret share is missing, summing the remaining secret shares results in a random number.
Now, the aggregate message cannot be retrieved. Therefore, Chan et al. [16] present an extension to make the
aggregation scheme fault-tolerant. The users are now organized in a tree structure. When one user is faulty,
other branches of the tree can still be used for computing the aggregate. However, with only the knowledge of
s0, the aggregator is not able to decrypt the aggregate of the remaining users. The trusted authority therefore
provides the aggregator with keys which can decrypt subsets of the tree. So the aggregator aggregates the
ciphertexts of a subset of users of which it has a decryption key and is still able to retrieve the aggregate of the
remaining users.

Garcia and Jacobs The privacy-preserving data aggregation scheme discussed by Garcia and Jacobs [29]
removes the reliance on the trusted authority. Every user i splits its message xi into random shares. One share
xi j for every other user j such that

xi =
u−1∑
j=0

xi j . (3.3)

User i sends share xi j to the aggregator encrypted under the public key of user j and keeps share xi i to itself.
After receiving all the shares, the aggregator relays the shares to the right users. Every user i then decrypts the
shares and sum all the shares together resulting in

u−1∑
j=0

x j i . (3.4)

This sum is sent to the aggregator without any encryption. The aggregator, finally, sums the responses of all
users to retrieve the sum of the original data, i.e.

u−1∑
i=0

u−1∑
j=0

x j i =
u−1∑
i=0

u−1∑
j=0

xi j =
u−1∑
i=0

xi . (3.5)

The work of Finster and Baumgart [28] does in essence the same as Garcia and Jacobs. Users in this protocol
also create shares of the data and send them to other users. However, other steps are taken in order to make
the scheme more robust. One such step is to split all the users in sub groups such that if one group fails, the
others can continue with the protocol. Also the communication complexity is decreased since users only send
shares to other users in the same group instead of all other users.

Erkin and Tsudik The scheme discussed by Erkin and Tsudik [25] also makes use of additive secret sharing.
First the aggregator sets up the Paillier cryptosystem [51] with (n, g ) as public parameters. Every user i secretly
sends a random number ri j to every other user j . Now, each user i encrypts its message mi as

ci = g mi ·H(p)
n+∑u−1

j=0, j 6=i ri j −
∑u−1

j=0, j 6=i r j i , (3.6)

where H is a secure hash function and p is the time point.
The aggregator then computes

u−1∏
i=0

ci = g
∑u−1

i=0 mi ·H(p)
∑u−1

i=0 n . (3.7)

Since the random shares cancel each other out, the result is decryptable following the Paillier cryptosystem.
In the paper, Erkin and Tsudik focus on the context of a smart grid. The protocol just described computes

the spatial consumption, so the consumption of a set of users. Additionally, they also discuss a protocol to
compute temporal and spatio-temporal. The temporal protocol computes the consumption of one user over a
longer period. The spatio-temporal protocol combines the spatial and temporal protocol.
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Kursawe et al. The last scheme with additive secret sharing we discuss in this section is from Kursawe
et al. [40]. This scheme selects a subset P of the set of all users which are made leaders. Each user i then
chooses a random number ri j for each leader j . The random numbers are each encrypted under the public
key of the corresponding leader and are sent to the aggregator. The aggregator relays the encrypted random
numbers to the correct leader. A leader j computes its key r j such that r j +∑

i 6∈P ri j = 0. Every other user i
computes their key ri such that ri =∑

j∈P ri j .
A user i , which is either a leader or a non-leader, with message mi adds its key ri which forms the ciphertext,

i.e. ci = mi + ri . Since the sum of the keys of all leaders cancel out the sum of the keys of all other users, the
aggregator sums all the ciphertexts which results in the sum of the data. As for all other schemes discussed so
far, this scheme is not fault-tolerant since the share of every user must be included in order for the randomness
to be removed.

Efthymiou and Kalogridis The last scheme of this section is completely different from the schemes discussed
so far. Efthymiou and Kalogridis [24] do not focus on encrypting the data, but on making the data anonymous.
In this scheme, a trusted authority creates anonymous certificates for all users. Those users first authenticate
themselves to that trusted authority with their personal certificates. Once the users receive their anonymous
certificates, they send data in combination with the anonymous certificate. The aggregator verifies these
anonymous certificates without gaining any knowledge which user has sent it.

There are more schemes which have elaborated on this concept of anonymization, such as [9, 38, 46, 52].
Some remove the reliance on the trusted authority and others improve the efficiency of the authentication
protocol.

3.2. Multi-functional privacy-preserving data aggregation
In this section we discuss the privacy-preserving data aggregation schemes which put their focus on providing
a certain level of multi-functionality. The different levels of multi-functionality are additive aggregation, non-
additive aggregation and arbitrary aggregation. The definition of each level is discussed in the corresponding
subsection. The levels are discussed in order of increasing functionality.

3.2.1. Additive aggregation
The first level of multi-functionality we discuss is the additive aggregation. Additive aggregation only takes
functions into account which rely on any form of addition. The addition is possibly done over weighted input.
Examples of additive aggregation are the sum, the average and the variance. Additive aggregation does not
give the support for any arbitrary function, but it does give more support than a privacy-preserving data
aggregation scheme which only supports the summation.

Note that privacy-preserving data aggregation schemes, which only support the summation in literature
like the ones discussed in Section 3.1, can be modified so that they also support other functions which are part
of the additive aggregation level. In order to achieve this, users can encrypt a different value. Users can for
example encrypt the square of their private data. Together with the sum of the original values, the sum of these
squares is needed in order to compute the variance. Instead, in this section we discuss privacy-preserving data
aggregation schemes which put their focus on providing additive multi-functionality and have the advantage
that a user does not have to encrypt the result of a function, that can vary every round, performed on its value.
Instead, a user sends the encryption of the value itself. Now, a user performs the same operation every round
instead of depending on the function the aggregator or the control center wants to compute which on its turn
requires an extra message to be sent to all the users to indicate which function needs to be computed.

Every privacy-preserving data aggregation scheme in this subsection has a different set of computations
the aggregator has to perform for every function the aggregator or the control center wants to compute. For
example, when the aggregator wants the average, it performs a different set of computations in comparison to
computing the variance. This subsection, therefore, does not explain all the computations for every possible
function in detail. Instead, we explain the detailed computations of one function which all the schemes have in
common, namely the variance. We did not choose for the average, because the computations of this function
resembles with the schemes with no multi-functionality.

Chen et al. The first privacy-preserving data aggregation scheme with additive aggregation is called MuDA
by Chen et al. [18]. The trusted authority starts the protocol by setting up all the parameters. It creates a
bilinear map tuple (p, q,G,G1,ε) based on [12], the parameters for the Boneh-Goh-Nissim cryptosystem [11]
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(N ,G,G1,ε, g ,h) which is used for the encryption in the scheme and a secure cryptographic hash function
H : {0,1}∗ →G.

Once everything is initialized by the trusted authority, each user i sends the ciphertext of its message mi ,t

for period t . First, the user computes g t = H(t ). Then the user computes the ciphertext ci ,t as

ci ,t = g
mi ,t
t ·hri ,t , (3.8)

where ri ,t is picked randomly from Z∗
N . Once the encryption is completed, the user sends ci ,t to the aggregator.

The next steps of the protocol depend on the function the control center wants to compute. There are three
different functions considered in MuDA, namely average, variance and one-way ANOVA. For the variance, the
aggregator sends two encrypted messages to the control center. The first is the encryption of (

∑
i mi ,t )2 which

is retrieved by the computation

Ct ,1 = e(
u−1∏
i=0

ci ,t ,
u−1∏
i=0

ci ,t ), (3.9)

where e denotes a bilinear pairing. The second is the encryption of
∑

i m2
i ,t which is calculated as

Ct ,2 =
u−1∏
i=0

e(ci ,t ,ci ,t ). (3.10)

The control center, on its turn, decrypts both values as is done in the Boneh-Goh-Nissim cryptosystem with
its private key p. Raising Ct ,1 or Ct ,2 to the power p results in (e(g , g )p )m , where m is the underlying message
of the ciphertext. Computing the discrete log with a base of e(g , g )p gives the underlying message m. The
variance is then be calculated by

σ2 = (1/u) ·D(Ct ,2)− (1/u2) ·D(Ct ,1), (3.11)

where the function D means the decryption of a ciphertext. For the correctness of these operations and the
details of the other functions, we refer the reader to the original paper [18].

One disadvantage of MuDA is the reliance on a trusted authority which might not always be realistic in
practice. Another disadvantage is that the control center is able to decrypt ci ,t for any user i at round t . So
when the control center intercepts the ciphertext transmitted to the aggregator, the control center gains the
private information. The control center could also collude with the aggregator in order to gain possession of
the ciphertext.

Ge et al. Another additive aggregation scheme we discuss is called FGDA by Ge et al. [30]. FGDA supports the
average, variance and skewness functions and makes use of a trusted authority which bootstraps the system.
First, the trusted authority chooses a large prime number p and a secure hash function H which are set as
public parameters. Then, the trusted authority picks a random number xi as private key for every user i . The
control center gets x0 as its private key for which should hold that

x0

u−1∏
i=0

xi mod p4 = 1. (3.12)

Now, the users are able to send a ciphertext of their data. First, each user i computes

hi = xH(t )
i mod p4, (3.13)

where t is the time point. Next, each user i with message mi computes its ciphertext as

ci = (1+mi ·p) ·hi mod p4. (3.14)

Each user sends its ciphertext to the aggregator which relays the product C of all received ciphertexts to the
control center.

The control center first computes
∑u−1

i=0 mi by computing

S1 =
(C · xH(t )

0 mod p2)−1

p
. (3.15)
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Next, the control center needs to compute
∑u−1

i=0 m2
i which is done by computing

S2 = S2
1 −2 · (C · xH(t )

0 mod p3)−1−p ·S1

p2 . (3.16)

Finally, the control center has the necessary data in order to compute the variance. Again, for the correctness
of these operations, we refer the reader to the original paper [30].

One disadvantage of FGDA is that it relies on a trusted authority which, again, may not be realistic in
practice. Another disadvantage is that it is not fault tolerant since xi of every user i must be included in C in
order to be decryptable.

3.2.2. Non-additive aggregation
All schemes of the previous subsection provide the support to compute a certain set of functions. However, in
practice, one might want to compute other functions like minimum or maximum. Therefore, this subsection
discusses some privacy-preserving data aggregation schemes which put their focus on the non-additive
aggregation. As the name suggests, the non-additive level of multi-functionality includes all functions which
do not belong to the additive aggregation discussed in the previous subsection. Examples of non-additive
aggregation are the minimum, maximum and median. One other important function is the computation of
histograms. If the bins of the histogram are set to exactly one value, every other arbitrary function can be
computed from there on. The privacy-preserving data aggregation schemes discussed in this subsection do
not focus on providing arbitrary functions. Therefore, they are discussed in this separate subsection within the
level of non-additive aggregation.

Shi et al. PriSense, the scheme discussed by Shi et al. [58], makes use of the additive secret sharing. Each
user i splits its message mi into different slices such that all the slices sum up to mi . User i sends to each other
user j a share mi , j and keeps mi ,i to itself. Every user i then computes the sum Mi of all the incoming shares
m j ,i and the share it kept to itself mi ,i . The result is sent to the aggregator. The aggregator retrieves the sum of
all data (i.e.

∑u−1
i=0 mi ) by computing the sum of all Mi .

In order to achieve non-additive aggregation, PriSense is based on count “queries”. Such a query sends a
particular range to each user. The users then respond with an encrypted 1 if its value is in the range and an
encrypted 0 otherwise. In other words, the message mi of any user i is set to 0 or 1 depending on the requested
range.

The paper discusses multiple non-additive functions, namely minimum, maximum, median, percentile
and histogram. The first functions are the minimum and maximum. Since the protocol for those functions is
intuitively the same, we only discuss the maximum function. Assume that the range of possible values goes
from min to max. Now, mid is set to be the element which divides the entire range in two halves. First, the
control center sends a count query for the range [mid,max]. The users respond with an encrypted 1 or 0 as
explained before. The control center is able to get sum of those values. If the sum is at least 1, the maximum
value is in the half from mid to max. Now we set min to mid and mid to be the element that divides the range
between the new min and max into two halves. Otherwise, if the sum of the responses is 0, the maximum value
is in the range [min,mid]. Now we set max to mid and mid to be the element that divides the range between
min and the new max. The process continues until the range that is left is of size one. The resulting value is
the maximum value.

For the median, it is necessary to think of max as a power of two. So assume that max is equal to 2m . If the
amount of users is not known, a count query is made for the entire range. First, the case of an uneven amount
of users is considered. The position of the median, in an ordered list of elements, is equal to the amount of
users plus one divided by two. The control center sends a count query for the range [min,2m−1]. If the sum of
the responses is larger than the position of the median, it means that the median is lower. In this case, the
next count query is for the range [min,2m−2], If, on the other hand, the sum of the responses is lower than
the position of the median, the median must be higher. The new range is [min,2m−12m−2] in this case. The
process continues until the sum of responses is exactly the position of the median. Now, the exact value for the
median has to be found. We know that the highest value that falls in the resulting range is the median of the
entire range, since the resulting range contains all positions up to and including the position of median. So
performing the maximum protocol on this resulting range gives the median.

When the amount of users is even, the middle two elements have to be found. Instead of seeking for the
value at the position equal to the amount of users plus one divided by two, we want to find the value at the
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position equal to half the amount of users and at the position equal to half the amount of users plus one. The
protocol described for the uneven case can be reused for these positions. Running the protocol with the two
positions results in two values. The average of both values is the median in the case of an even amount of
users.

The protocol for the median can be modified in such a way that it is also applicable for any percentile.
Instead of using the position of half the amount of users as a condition, σ times the amount of users is used,
where σ is the percentile which is divided by 100.

The last non-additive function discussed is the histogram. For a histogram you want to know the counts of
each bin of the histogram. Therefore, computing a histogram is as simple as sending a count query for every
such sub-range.

As for the additive aggregation part of PriSense, the non-additive aggregation is not fault-tolerant since
each response relies on shares that are sent to other users. For the computation of any arbitrary function, the
bins of the histogram need to be set to one. This, however, requires the aggregator to send a count query to
every user for every value. Each user, therefore, also responds to a count query for every value. Above all, the
response of a user is an encryption which shares the private data, so 0 or 1, with every other user in the same
group. So, also this process is done for every value for every user.

Zhang et al. The scheme in [71] has two versions to aggregate data. One version is the same as the PriSense
scheme which shares slices of the data to other users. The second relies on a shared secret ki between each
user i and the control center. Every round the control center sends a request to the users for sending their data.
This request contains a random nonce r . Each user i with message mi now sends

ci = H1(ki ||r )+mi , (3.17)

where H1 is a secure hash function. The aggregator sums all ciphertexts and relays it to the control center. The
control center then computes the sum

∑u−1
i=0 mi by computing

u−1∑
i=0

mi =
u−1∑
i=0

ci −
u−1∑
i=0

H1(ki ||r ). (3.18)

In order to achieve non-additive aggregation, this protocol uses the same structure with count queries
as discussed with PriSense. The inefficiency of the communication complexity and the fault-intolerance of
PriSense can be traded for giving the control center the ability to decrypt any individual ciphertext. Still, the
aggregator sends a count query to every user for every value, but now the encryption of the response is more
efficient.

Han et al. The scheme PPM-HDA from Han et al. [35] also makes use of the same count queries for non-
additive functions. However, the implementation of the count queries is different. PPM-HDA makes use of a
prefix membership verification in order to test whether a user has data in a specific range. First, the trusted
authority initializes the system by creating a bilinear map tuple (p, q,G,G1,ε) based on [12], the parameters for
the Boneh-Goh-Nissim cryptosystem [11] (N ,G,G1,ε, g ,h) which is used for the encryption in the scheme and
a secure cryptographic hash function H : {0,1}∗ →G.

After initialization, a user computes the prefix family F of its value, for example F (12) = F (1100) =
{1100,110∗,11∗∗,1∗∗∗,∗∗∗∗}. Then, the user applies prefix numericalization Γ. Prefix numericaliza-
tion has as input a prefix of the form b1b2 . . .bk ∗ . . .∗ and outputs b1b2 . . .bk followed by a 1 and every ∗ is
replaced by 0, for example, Γ(F (12)) = {11001,11010,11100,11000,10000}. Each user i with message mi then
sends the ciphertext

ci = gΓ(F (mi ))hH(t )·ri (3.19)

to the aggregator, where t is the time point and ri is a random number picked by the user from ZN .
Upon receiving a ciphertext ci from a user, the aggregator gets (g p )Γ(F (mi )) by computing cp

i . Assume that
the aggregator wants to check that the value is in the range [mi n,max], the aggregator first computes the
minimum set of prefixes R of that range, for example R([9,14]) = {1001,101∗,110∗,1110}. Now, the aggregator
computes (g p )Γ(R([min,max])). If the message mi is a member of the range [mi n,max], the intersection of
(g p )Γ(F (mi )) and (g p )Γ(R([min,max)) must not be empty. So, if the intersection is empty the comparison returns 0
and otherwise 1. When the aggregator does the comparison for all users, it sums up the outcomes which is
the result of the count query. When the aggregator performs the same set of count queries as explained for
PriSense, it is able to compute the non-additive functions such as minimum, median and histogram.
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The advantage of PPM-HDA with respect to the previous schemes is that it requires less communication.
Users send their data once and the aggregator performs all the count queries itself. However, the PPM-HDA
relies on a trusted authority which may not be realistic in practice. Above all, the aggregator is able to determine
the private data of a user in a binary search fashion. The aggregator divides the entire data range in two halves
and checks if the value is in the lowest half. If it is, the aggregator divides the lowest half in two halves.
Otherwise the highest half is divided in two halves. This process continues until the resulting range is of size
one which is the private value.

3.2.3. Arbitrary aggregation
After explaining some schemes that focus on providing additive and/or non-additive aggregation, this subsec-
tion discusses the privacy-preserving data aggregation schemes that are on the level of arbitrary aggregation.
The schemes on the arbitrary aggregation level support and focus on the calculation of every arbitrary function.

Chen et al. The first scheme we discuss is called RCDA by Chen et al. [17]. In RCDA, every user gets its own
“bucket”of bits. Every bucket has the size of the amount of bits l needed for the maximum value that is possible.
The position of a user’s bucket determines the amount of zeros it should append. A user at position i appends
i · l zeros. So, for example, the maximum value fits in 4 bits. The user with a bucket at position 0 just uses its
value as message. The user with a bucket at position 1 appends its value with 4 zeros. The next appends 8 zeros,
etc. The position a user gets is based on it ID. The exact details of assigning an ID is not explained in the paper.

The appended message is then encrypted under a scheme which satisfies the additive homomorphic
property. We do not go into detail of the encryption scheme since any encryption scheme can be used as long
as it has the additive homomorphic property. Now the aggregator computes the product of all the ciphertexts
and relays it to the control center. The control centers then decrypts it. The data points are easily retrieved
since they are in fixed buckets. So bits 0 to l −1 is a value, bits l to 2l −1 is a value etc. From these values, any
arbitrary function can be computed. Note that the message of the users is still private, since it is not known
which value belongs to which user.

The disadvantage of this scheme is the needed amount of communication. In the worst case, a user sends l
bits for every user. Another disadvantage is the unknown generation of an ID for a user.

Zhang et al. The scheme discussed in [72] does approximately the same as RCDA. Instead of using the ID
for the order, it uses a private sequence number. The paper states two options for determining the sequence
number. One is by communication between users, but it is not said how. The other option is by letting a
trusted authority determine these sequence numbers. Another difference is that next to appending zeros for
the buckets that come after it, this scheme also prepends zeros for the buckets that come before it. So every
user sends l ·u bits, where l is the amount of bits needed for the maximum value.

Gong et al. Also the scheme from Gong et al. [32] behaves in the same way. Every user appends and prepends
the correct amount of zeroes. The difference is that this protocol picks private sequence numbers without
reliance on a trusted authority. Every user i shares a random seed ri , j for a pseudo random number generator
with every other user j . The seeds are shared through a Diffie-Hellman key exchange [21]. Every round t , a
random number ri , j ,t is retrieved from seed ri , j . Additionally, the function Hi (t ) is defined as

Hi (t ) =
u−1∑

k=0,k 6=i
ri ,k,t −

u−1∑
k=0,k 6=i

rk,i ,t . (3.20)

The aggregator then sends a list of subintervals of the possible range of values a user can choose. Each user
i picks a random number si and creates a vector Vi , where each subinterval is represented. A subinterval gets
value 0 in the vector when si is no member of it. The subinterval which contains si gets value 1. The vector is
encrypted by adding the value Hi ( j ) to the value at every index j . The result is then sent to the aggregator.

The aggregator on its turn adds the vectors of all users together. Since the output of all H functions cancel
out, the aggregator retrieves a vector of counts per subinterval. When a subinterval contains more than 1 user,
it is split into subintervals again. For this new set of subintervals, the previous steps are repeated. This process
continues until every subinterval only contains one user. At the end, the aggregator sends an ordered list of the
subintervals with count 1 to the users. Each user now determines its private sequence number by getting the
index of the subinterval its value is part of. Note that it is possible, with a very small probability, that two or
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more users have picked the same value si . In this case the protocol is restarted and every user i picks a new
value si .

When every user knows its private sequence number, the data is aggregated. Again a vector is created with
n entries. Every entry gets the value Hi ( j + t) for user i at index j and round t . At the position in the vector
that equals the private sequence number of a user, the data of that user is added. The resulting vector is sent
to the aggregator which retrieves all values by summing all vectors. Since the private sequence numbers are
private, the aggregator does not know which user has which value.

Also this scheme requires each user to send a message for every other user. In addition, this scheme is also
not fault-tolerant since the output of Hi ( j ) for every i needs to be included.

Bell et al. Another way of computing arbitrary functions is presented by Bell et al. [7]. For their scheme, they
use invertible Bloom lookup tables [33]. In an invertible Bloom lookup table, users insert a key value pair. The
value is set to the message they want to send. The key is an arbitrary string. The arbitrary string has to be big
enough such that the probability of a collision with other users is minimal. The tables that are created locally
are added together by the aggregator which results in a table which contains a union of all the elements. From
this resulting table, the control center recovers the values of every user which can be used for the computation
of any arbitrary function. Note that the control center does not know which user has sent which value. The
recovery process is also a probabilistic one. So there are cases, with a very low probability, depending on the
parameters, that the retrieval gives incorrect results. The messages that need to be sent by every user have a
size of 2u · dlog2(|P |)+ log2(m)+ log2(u)e, where m is the maximum value and P the maximum key used for
inserting the value.

Wang et al., 2015 A different approach is described by Wang et al. [66]. The data in this scheme is sent in
plain text. However, enough noise is added so that the exact value cannot be retrieved. The noise is picked
in such a way that when the noised values are aggregated in a histogram, the noise cancels out as much as
possible. But still, there is always noise left. So the result is not exact which might not be practical in every
application. This idea is also known as differential privacy.

The scheme implements the noise generation with a bit flipping matrix. Every possible value has a
corresponding bit value in a vector. The bit value corresponding to the value of the user has a probability
greater than 0.5 to be 1. All the other values have a probability smaller than 0.5 to be 1. Each choice of
probability is a trade-off between accuracy and privacy. When the chance is high that only the correct value
is set to 1, the privacy is lost. When the chance is high that there are a lot of values set to 1, it impossible to
retrieve the correct value.

The vectors of all the users are combined by the control center in such a way that they try to minimize the
noise and turn it in a histogram. The histogram can then be used to compute any arbitrary function. However,
since the histogram is noisy, so is the outcome of any function.

Wang et al., 2016 In a later work by Wang et al. [67], the concept is extended to weighted histograms which
means that every bucket of the histogram has a specific weight attached to it. The focus here is to reserve more
privacy guarantees for the high weighted values in comparison to the low weighted values. However, attention
must be paid that the result does not leak information whether someones value is a high- or low weighted
value.

In short, the algorithm they describe is as follows. If the value of a user is a high weighted one, it sets the bit
value of a random high weighted value to 1. The real value has a different probability than the other values.
There is also a probability that none of those items is set to 1. Next, each low weighted item has a probability
to be set to 1. When the value of the user is a low weighted one, it also sets the bit value of a random high
weighted value to 1. Now every value has the same probability, but again it is possible to set none of these
items to 1. Then it sets the bit value corresponding to the real value to 1 with a certain probability and all the
other low weight values with a different probability. For the characteristics and the proofs of this scheme we
refer the reader to the paper [67]. Also this scheme does not produce exact results.

Viejo et al. Also the scheme discussed in Viejo et al. [65], supports the computation of any arbitrary function.
The control center initializes the system by setting up the parameters (x, g ,h,k, p,e) of the Okamoto-Uchiyama
cryptosystem [49]. Those parameters are kept secret by the control center. The control center also creates a
public one-way hash function H . Besides that, every user i shares a secret key Ki with the control center and
receives wi = g h I Di from the control center.
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At the start of a new round of aggregation, the control sends a random number v and an array I of random
ciphertexts to each user. An element I [s] contains gαs hδs , where αs and δs are random. Each user i now
computes Ii [s] = I [s]ai = gαs ·ai hδs ·ai for every element s, where ai = H(v ||Ki ). For the element m, the user
wants to send, it computes

Ii [m] = Ii [m] ·wi = gαs ·ai+1hδs ·ai+I Di . (3.21)

The user finally sends the array Ii to the aggregator.
The aggregator computes per element the product of all received arrays, i.e. γs = ∏u−1

i=0 Ii [s] for every s,
which is relayed to the control center. By decrypting γi according to the Okamoto-Uchiyama cryptosystem,
the control center receives αs ·∑u−1

i=0 ai +∑
i∈S 1, where S is the set of users that have value s. The control center

knows each ai and therefore computes
∑

i∈S 1 which is the amount of users that have sent this value s. If this
amount of users is computed for every element, any arbitrary function can be computed over the data of the
users.

This scheme requires every user to send a ciphertext for every possible. Above all, the control center is able
to decrypt an individual ciphertext which is retrieved by either intercepting the ciphertext in transmission to
the aggregator or by colluding with the aggregator.

Bianchi et al. The last scheme we discuss in this section is a scheme from Bianchi et al. [8]. This scheme is
not focused on the multi-functionality, but on packing different signals together in one encryption and how to
unpack them also in their encrypted form. This scheme can also be used in the context of multi-functional
privacy-preserving data aggregation which makes it interesting for us. The scheme uses super-increasing
sequences. Coefficients are created which satisfy the conditions of a super-increasing sequence. However,
there is one difference. It should hold for a coefficient αi that

αi >
i−1∑
j=0

α j ·∆d , (3.22)

where ∆d is the maximum signal a user can send. Each user gets one such coefficient and multiplies its data
with that coefficient. This encoding is then encrypted. The ciphertexts of multiple users can be added together
due to the additive homomorphic property which the encryption scheme must satisfy.

In this paper, there are scenarios where you want to unpack the values again, but without decrypting it
since each user has its own coefficient. When the aggregated ciphertext is decrypted, the value of each user
can be retrieved. The operations needed for this, which are stated as follows, are translated to the ciphertext
domain. First the summed values are taken modulo the highest coefficient. Take the difference of the value
before and after the modulo operation and divide by the highest coefficient. The result is the value of the user
with the highest coefficient, but since these operations are done in the ciphertext domain this value is also
encrypted. The process is repeated for the second highest coefficient with as input the resulting aggregate that
is left after the modulo operation of the highest coefficient. The entire process is repeated for all coefficients
from high to low.

3.3. Malicious user privacy-preserving data aggregation
Users of a privacy-preserving data aggregation scheme can behave maliciously. In this section, we discuss the
schemes which assume that a user can be malicious and which detects those malicious users.

Viejo et al. The first scheme with malicious user detection that we discuss is a scheme of Viejo et al. [65]. We
already discussed this scheme in the previous section since it also provides the support for the computation of
any arbitrary function.

There are three checks for the control center to perform to check whether a user is behaving maliciously.
First, every user i included its ID in the element m of array Ii which corresponds to the user its value. Multiply-
ing the ciphertexts of all elements, therefore gives a result in the following format

g mh
∑

i∈M I Di , (3.23)

for some m where M is the set of all user that have value m. The control center computes whether all ID’s
have been included in some element. If not, a user is behaving maliciously. Another check the control center
performs is to check the count of each element. The counts per element should not exceed the amount of
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users participating in the system. The last check is to sum up those counts per element which should add up
to the amount of users.

With these three checks, the control center moves down the tree of users to detect which user, or users, is
behaving maliciously and possibly remove that user, or users. The aggregator in this scheme actually consists
out of a set of intermediary nodes. All users are leafs of a tree and the control center is the root. In between
the users and the control center are all intermediary nodes. Those nodes aggregate the ciphertexts of their
children and relay it to their parent. With the malicious user check, the control center checks per sub-tree
whether the aggregate is valid until it reaches the leaves and detects the malicious user.

Again, the main disadvantage of this scheme is that control center is able to decrypt an individual ciphertext.
With the malicious user detection, the control center has the autonomy to check the individual ciphertexts
and therefore does not need to collude with an intermediary node or to intercept a ciphertext.

Sun et al. Another scheme which supports malicious user detection is APED [63]. In this scheme, users are
organised in pairs. For each pair of two users i and j , the trusted authority generates a private key ki for user
i and k j for user j . The trusted authority then sends to the control center a key ki j for each pair such that
ki +k j +ki j = 0 mod p, where p is a random large prime number. The control center computes K which is
the sum of ki j of every pair.

In first instance, the control center tries to decrypt the aggregate of all users using the key K . When this is
successfully, there is no malicious user. Otherwise, there is, and the control center has to find this malicious
user(s). The control center decrypts the aggregate of every pair with the corresponding key ki j . In this way, the
control center finds the pairs which contains at least one malicious user. The next round a different pairing
is applied. By intersecting the malicious pairs, the malicious users are found. Note that it is assumed the a
malicious user behaves maliciously every round.

Shi et al. With a different encryption scheme, for efficiency reasons, the scheme described in [59] has the
same error detection protocol as APED [63]. One difference is that APED is described to work on pairs where
the scheme of Shi et al. is described in such a way that it can be extended to bigger groups.

Dimitriou and Awad Where the previous schemes detect malicious users after checking the aggregate, the
scheme discussed in [22] checks every individual ciphertext beforehand without losing privacy. In this scheme
every user i secretly sends a random number ri j to every other user j . During the encryption of message mi of
user i , the outgoing random numbers are added and the incoming random shares are subtracted, i.e.

ci = mi +
u−1∑

j=0, j 6=i
ri j −

u−1∑
j=0, j 6=i

r j i . (3.24)

When the aggregator sums all the ciphertexts, the random numbers cancel each other out and the sum of the
messages remain.

However, when a user maliciously sends the wrong random numbers, the result cannot be retrieved
anymore. To prevent this, some checks are added in the protocol. Each user i now publishes a ciphertext of
its message encrypted under its own public key, i.e. Ei (mi ) . Every user i sends Ei (ri j ) and E j (ri j ) for every
other user j to the aggregator. With the help of a non-interactive zero knowledge proof of plaintext equality as
described in 2.5, the aggregator verifies that both ciphertexts have the same plaintext. The aggregator relays
E j (ri j ) to user j who decrypts it to get ri j . Once user i received the random shares from all the other users it
computes

Ei (ci ) = Ei (m)
Ei (ri j )

Ei (r j i )
, (3.25)

where every encryption used is the ciphertext that is published beforehand so that the aggregator can compute
Ei (ci ) in exactly the same way. Each user i also encrypts ci under the public key of the aggregator, i.e. E A(ci ),
where A is the aggregator. Both Ei (ci ) and E A(ci ) are sent to the aggregator together with a proof of plaintext
equality. The aggregator checks whether the version of Ei (ci ) which the user sent is the same as the version the
aggregator computed. Again with the help of the proof of plaintext equality, the aggregator checks whether ci

is the same in both ciphertexts. Finally, the aggregator decrypts E A(ci ) with which, the aggregator computes
the aggregate as before.
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With all those checks, a malicious user is forced to follow the protocol, otherwise it is detected by one of the
checks. However, a disadvantage of this scheme is that is does not support the computation of any arbitrary
function.





4
Encoding for Multi-Functionality

In this chapter, we describe two encoding schemes for providing the multi-functionality. Note that these
encoding schemes are not privacy-preserving on their own. They are used in the privacy-preserving data
aggregation schemes presented in Chapters 5 and 6. The first encoding scheme has maximum certainty which
means that the output after decoding is always correct. However, the range of values that are supported in this
encoding scheme are limited. The second encoding scheme therefore extends the range at the cost of having
some probability that the output after decoding is incorrect.

4.1. Encoding scheme with maximum certainty
The concept of a super increasing sequence is used for the encoding scheme to give the aggregation scheme its
multi-functionality. In a nutshell, each user sends a coefficient corresponding to their value to the aggregator.
The amount of users sending a particular coefficient can be retrieved from the sum of all those coefficients. This
results in a histogram of the values, giving the aggregator the opportunity to perform any arbitrary function. In
this section we give a detailed overview of the encoding scheme with maximum certainty. Also, we provide a
proof of the correctness of the encoding scheme and show what range of values it supports.

4.1.1. Initialization
As was said above, the users send a coefficient corresponding to their values. Those coefficients, however,
cannot be any random values. If the coefficients are chosen incorrectly, the aggregate does not have a unique
solution and the sum of coefficients cannot be decoded. For determining the coefficients, we use the idea
behind the super increasing sequences. Modifications are made to fit it in our context of an aggregation
scheme. The coefficients have to satisfy three conditions. The first condition is related to the lowest coefficient.
The definition of a super increasing sequence states that every number must be positive. Therefore also every
coefficient must be positive which leads to condition 1:

α0 > 0, (4.1)

where the character α is used for coefficients and the subscript 0 indicates that it is the first and lowest
coefficient.

It is possible that every user sends the same coefficient, since every user can have the same value. The
coefficients must take this into account by providing enough space between consecutive coefficients such that
the histogram can be uniquely determined. In our protocol, the users can only send one coefficient. So there is
no need to keep space for the possibility of each user sending multiple the same coefficients. Providing the
space between consecutive coefficients results in condition 2:

αi >αi−1 ·u, (4.2)

where u is the total amount of users participating in the protocol. The second condition relates to Equation 2.1
of the super-increasing sequence which reserved space for any combination of previous numbers.

Finally, we deal with the message space. With only the previous conditions, coefficients can be created
up to infinity. However, it has to fit in a message which is going to be sent to the aggregator, i.e the highest
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coefficient has to have enough space to be sent by all users. Condition 3 is defined as

n >αm ·u, (4.3)

where n is the size of the message space and the subscript m indicates the total amount of possible values
minus one, since we start counting at zero, and therefore also the amount of coefficients that can be sent by
the users minus one.

The aggregator provides a list of all possible values V = {v0, v1, . . . , vm} and a list of all possible coefficients
A = {α0,α1, . . . ,αm} to every user, such that coefficient αi corresponds to value vi for every i .

4.1.2. Encoding
After setting up all the coefficients, the users send the coefficient corresponding to their value. Each value
therefore is mapped to a coefficient. A value can be anything like a string, a character or a number. Upfront, it
has to be known what the possible values are. In the case of numbers the possible values can be a range. This
range can be either continuous, where every number in the range is possible, or non-continuous, where not
every number in the range is possible. All the possible values are received from the aggregator in list V . The
correct coefficient from A is found at the same index as the value in V .

When a user’s value is mapped to a coefficient, it sends its coefficient to the aggregator which sums up all
the coefficients received resulting in Xm .

4.1.3. Decoding
Finally, we can decode the computed sum of the coefficients Xm and receive the histogram of the values of all
users. Note that the summation now seems useless since you can map the coefficients received from the users
individually to a value and add it to the histogram. However, when making the protocol privacy-preserving,
the coefficient send by a user is not known to the aggregator. The only things the aggregator knows are the sum
of the coefficients that are sent and which coefficients are possible for a user to send.

It is useful to see Xm not just as one number but in the following representation:

Xm = u0 ·α0 +u1 ·α1 + . . .+um ·αm , (4.4)

where ui means the number of users that have sent coefficient αi . The first thing the aggregator calculates is
um . It first checks how many times αm fits in Xm . The result is um . The product of αm and um is subtracted
from Xm resulting in Xm−1. With Xm−1, the aggregator can repeat the process for retrieving um−1. The whole
algorithm is formally summarized in Algorithm 3. Note that X−1 is defined to be 0 when a valid encoding is
used.

Algorithm 3: Decoding

Data: Xm

Result: [u0, u1, . . ., um]
for i ← m to 0 do

Xi−1 = Xi mod αi ;

ui = Xi−Xi−1
αi

;

The resulting histogram of coefficients now are mapped to the histogram of values by mapping the
coefficients back to the corresponding values. The mapping is done in the same was as done in Subsection 4.1.2,
but in the reversed way. So a coefficient at index i in list A maps to the value at index i in list V .

Finally, with the histogram of values, the aggregator can perform any arbitrary function on the data such as
sum, minimum, maximum and any polynomial function.

4.1.4. Correctness

In order to prove the correctness, we have to prove that
X j −X j−1

α j
= u j holds for any j . The correctness of the

encoding scheme with maximum certainty follows from

Xm = u0 ·α0 +u1 ·α1 + . . .+um ·αm . (4.5)
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Since users may only send one coefficient, we have
∑ j

i=0 ui ≤ u for any j and therefore

u0 ·α0 +u1 ·α1 + . . .+um−1 ·αm−1 ≤ u ·αm−1. (4.6)

By definition, this is strictly smaller than αm . Therefore

Xm−1 = Xm mod αm = u0 ·α0 +u1 ·α1 + . . .+um−1 ·αm−1, (4.7)

Xm −Xm−1

αm
= um ·αm

αm
= um . (4.8)

With the same reasoning we can prove
X j −X j−1

α j
= u j for any j ∈ [0,1, . . . ,m −1].

4.1.5. Space complexity
As already said, the coefficients have to fit within the message space according to condition three defined by
Equation 4.3. The question of this subsection is how many coefficients, and therefore values, can be used in
this encoding scheme. For retrieving the amount of coefficients that fit in the message space, the conditions of
the coefficients are combined. First we can rewrite condition one defined in Equation 4.1 as

α0 ≥ 1. (4.9)

Using condition two defined in Equation 4.2, we get

α1 ≥α0 ·u +1 ≥ u +1 (4.10)

and
α2 ≥α1 ·u +1 ≥ (u +1) ·u +1 = u2 +u +1. (4.11)

This continues until αm

αm ≥αm−1 ·u +1 =
m−1∑
i=0

ui . (4.12)

Finally we can use condition three as

n ≥αm ·u +1 =
m∑

i=0
ui . (4.13)

These calculations show that the amount of values possible in the protocol depends on the number of users in
the protocol. The more users, the less values are possible and vice versa. The dependence between the amount
of users and values is illustrated in Figure 4.1. For this figure we used a message space of 2048 bits since that is
the standard for a modest security level for the Paillier cryptosystem which we use in the privacy-preserving
data aggregation scheme presented in Chapter 5

Figure 4.1 also shows that the amount of possible values decreases more slowly when the amount of users
gets higher. Even with 10 million users, each user is still able to choose a value from a set of 88 values.

In some applications, the amount of values supported by the encoding scheme for a message size of 2048
bits is not enough. One option is to extend the message size. The other option is discussed in Section 4.2. In
order to analyze this first option of extending the message size, we compute the dependence between the
message size and the amount of values used in the encoding scheme and the amount of users participating
in the protocol. In Equation 4.13 we stated an upper bound for the coefficients expressed in the amount of
values and users. This equation can be interpreted in such a way that the message size should be at least as big
as log2(

∑m
i=0 ui ), where the log operation is needed to transform the message size to bits. In other words, the

message size in bits is O(log2(um)).

4.2. Encoding scheme with extended range
The aim of this section is to present an encoding scheme which extends the range of possible values compared
to the encoding scheme with maximum certainty, without increasing the size of the messages that are sent by
the users.

The problem with the encoding scheme with maximum certainty is that every coefficient has to have
enough space such that all users can send it in the same round. This was formulated as condition two in
Equation (4.2) in Section 4.1. Most of the space is never used since it might be unlikely that all users have the
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Figure 4.1: This figure illustrates the relation between the amount of users participating in the protocol and the amount of values that fit in
a message space of 2048 bits for the encoding scheme with maximum certainty.

same value. Also, some values are sent more often than others. If the probability distribution of the values is
known beforehand, it is possible to determine how likely it is that a certain amount of users send a certain
coefficient. With the help of these probabilities, you can decrease the space of a coefficient from all users to
an amount which is smaller, but still gives you a certain probability that it is big enough. This section goes
through two probability distributions to illustrate the details, namely a uniform distribution and a normal
distribution. After those details, some key points are summarized to take into account when dealing with any
arbitrary distribution. We conclude this section by providing a proof of correctness and a comparison of the
supported range of values.

4.2.1. Uniform distribution
In a uniform distribution every coefficient has the same probability to be used by a user. Therefore the
probability for a coefficient αx to be used by a user is set to

px = 1/m. (4.14)

The probability for exactly i users using coefficient αx is therefore

pi ,x =
(

n

i

)
·p i

x · (1−px )n−i . (4.15)

If the amount of users expected for a coefficient is set to a specific value i , it is needed to compute the
probability that i users is not enough. This probability comes down to the probability that at least i +1 users
use this coefficient,

p ′
i+1,x =

n∑
j=i+1

p j ,x . (4.16)

The goal is to find a value i which is as small as possible, but for which p ′
i+1,x is smaller than a pre-determined

threshold T . Let Ux denote the value i which achieves this for coefficient αx . It means the amount of users
that are taken into account for that coefficient.

When rewriting the conditions for the coefficients for this encoding scheme, the u in the second condition
in Section 4.1, however, cannot be replaced by the Ux value of the corresponding coefficient. In the encoding
scheme with maximum certainty, it was not possible that multiple coefficients were sent by all u users. At most
one coefficient could be sent by u users. Now, it is possible that multiple coefficients are sent by the amount of
users Ux that are taken into account for those coefficients. So instead of taking only the previous coefficient
into account, now all previous coefficients are taken into account. The renewed version of condition two is
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now stated as,

αi >
i−1∑
j=0

α j ·U j . (4.17)

The same also holds for the third condition which states that

n >
m−1∑
i=0

αi ·Ui . (4.18)

After determining the coefficients, the encoding and decoding is executed as discussed in Section 4.1.

4.2.2. Normal distribution
In a normal distribution, not every coefficient has the same probability as was the case with a uniform
distribution. The normal distribution therefore requires some extra attention when defining the values px .

First of all, the normal distribution is continuous and the coefficients are discrete. Therefore, when
computing the probability of a coefficient, a range on the continuous spectrum is assigned to that coefficient.
A coefficient αx gets the range from x −0.5 to x +0.5. The probability of coefficient αx occurring is equal to the
area under the curve within that range which can be calculated by

P (X ≤ x +0.5)−P (X ≤ x −0.5), (4.19)

where X is a random variable representing the coefficient chosen by a user. However, these probabilities
are not same for every normal distribution. It differs due to different standard deviations. To incorporate a
standard deviation σ, there are so called z-scores. The z-scores for a coefficient αx are:

z1 = (x −0.5)/σ, z2 = (x +0.5)/σ. (4.20)

These z-scores are incorporated into Equation 4.19, resulting in

px = P (X ≤ z2)−P (X ≤ z1). (4.21)

These probabilities over z-scores are the same for every normal distribution and can be looked up in a z-score
table. The result is the probability we are looking for, namely px .

The computation of values pi ,x and p ′
i ,x are the same as for the uniform distribution. However, when

determining the value of Ux , special attention has to be paid to coefficients that are far from the mean of
the normal distribution. At some point the probability that at least 1 user uses a coefficient is lower than
the threshold. According to the protocol, Ux is set to zero. This comes down to no coefficient at all for that
value. Since we want to extend the range, ignoring coefficients does not contribute. Users do not have the
possibility to send any of those coefficients and therefore the range is not be extended. Therefore, Ux of those
coefficients are set to be one. Now every user has the opportunity to send this coefficient and therefore the
range is extended. Note that the probability for those coefficients to have too less space is much smaller than
the pre-determined threshold.

When the value Ux is determined for every coefficient αx , the coefficients are determined with the same
conditions as for the uniform distribution. With the correct coefficients, the encoding and decoding is again
executed as discussed in Section 4.1.

4.2.3. Arbitrary distribution
The last two subsections explained the encoding scheme with extended range using two frequently occurring
distributions. However, you could use any distribution. You can assign random probabilities to each coefficient
under the condition that they all have to sum up to one. From these probabilities you can again compute the
Ux values, so for how many users you reserve space for coefficient αx . Finally, when knowing the Ux values,
you can compute the coefficients with the conditions stated for the uniform distribution and execute the
encoding and decoding as described in Section 4.1.

There is one key thing to take into account which is also discussed in the case of the normal distribution.
All coefficients αx should at least have a Ux value of 1, otherwise the users do not have the possibility to use
the coefficient and the range is not extended.
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4.2.4. Correctness
The decoding for the encoding scheme with extended range is equal to the decoding of the encoding scheme

with maximum certainty. Therefore, in order to proof the correctness we again have to prove that
X j −X j−1

α j
= u j

holds for any j . The correctness of the encoding scheme with extended range follows from

Xm = u0 ·α0 +u1 ·α1 + . . .+um ·αm . (4.22)

Since u j ≤U j holds with probability 1−T , for any j , we have

u0 ·α0 +u1 ·α1 + . . .+um−1 ·αm−1 ≤U0 ·α0 +U1 ·α1 + . . .+Um−1 ·αm−1

By definition, this is strictly smaller than αm . Therefore

Xm−1 = Xm mod αm = u0 ·α0 +u1 ·α1 + . . .+um−1 ·αm−1, (4.23)

Xm −Xm−1

αm
= um ·αm

αm
= um . (4.24)

Again, with the same reasoning we can prove
X j −X j−1

α j
= u j for any j ∈ [0,1, . . . ,m − 1]. Note that with a

probability of at most T the encoding scheme with extended range does not produce correct results.

4.2.5. Space complexity
If we choose every coefficient to be the smallest as possible, as we did for the encoding scheme with maximum
certainty, we get

αi =
i−1∑
j=0

α j ·U j +1, (4.25)

for every i , for the encoding scheme with extended range. Now, the maximum amount of coefficients is the
biggest m for which holds that

22048 ≥
m∑

j=0
α j ·U j . (4.26)

Again we use a message space of 2048 bits since it is the standard for a modest level of security for the Paillier
cryptosystem which we use in Chapter 5.

Figure 4.2 shows the causation between the amount of coefficients and the amount of users for both
encoding schemes. For the encoding scheme with extended range, different probability distributions and
different thresholds T are used.

From Figure 4.2 we derive that the encoding scheme with extended range indeed extends the range of
values a user can send. We also see that a normal distribution with a low standard deviation accepts a larger
range than a uniform distribution or a normal distribution with a high standard deviation.

When the threshold T is increased, coefficients can be lower, since the probability to exceed the expected
amount of users is allowed to be higher. Therefore, the amount of coefficients also increases. If, on the other
hand, T decreases, the amount of coefficients also decreases. This dependence on T is illustrated in the graph.
We also see that the difference in the amount of coefficients between different thresholds become smaller
when the standard deviation decreases.

4.3. Computation complexity
The computation complexity of both encoding schemes are summarized in Table 4.1. The initialization of both
encoding schemes, performed by the aggregator, is only executed once and computes the coefficients. In the
encoding scheme with maximum certainty this requires O(m) additions and multiplications. Every coefficient
is computed as αi−1 ·u +1.

For the encoding scheme with extended range, the expected amount of users Ux needs to be computed
for every coefficient αx . In order to find this amount, the minimal amount of users should be found such
that Equation 4.16 is smaller than T which relies on Equation 4.15. Once we computed a probability pi ,x for
some i , it can be reused later on for the same coefficient αx . Therefore we compute Equation 4.15 at most
O(u) times for every coefficient. One computation of Equation 4.15 requires O(u) multiplications and O(1)
exponentiations, subtractions and divisions. Therefore, for all coefficients, Equation 4.16 requires O(m ·u2)
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Figure 4.2: This figure illustrates how many coefficients are supported in a 2048 bit message for a certain amount of users participating in
the protocol. The encoding scheme with maximum certainty corresponds to a threshold T of 0%. For the encoding scheme with extended
range, we took a uniform distribution and several normal distributions as examples, each with different thresholds T . Note that the mean
of the normal distributions does not matter in our context.

Table 4.1: Computation complexity of the encoding scheme with maximum certainty and with extended range, where m is the amount of
values and u the amount of users.

Initialization
Encoding with maximum certainty Encoding with extended range Decoding

Addition O(m) O(m ·u) -
Multiplication O(m) O(m +u2) -
Subtraction - O(m ·u) O(m)
Exponentiation - O(m ·u) -
Division - O(u) O(m)
Modulo - - O(m)

multiplications, O(m ·u) exponentiations, subtractions, divisions and additions. Since
(n

i

)
for some i is the

same for every coefficient, it only needs to be computed once. This results in a final computation complexity
of O(m +u2) multiplications, O(u) divisions and O(m ·u) subtractions, exponentiations and additions.

After initialization, the user performs encodes some value vi resulting in the corresponding coefficient αi .
The aggregator decodes the sum of received coefficients as described in Algorithm 3. This decoding requires
O(m) subtractions, divisions and modulos.





5
Multi-Functional Privacy-Preserving Data

Aggregation

In this chapter we present a privacy-preserving data aggregation scheme which includes the encoding scheme
of Chapter 4 resulting in a multi-functional privacy-preserving data aggregation scheme. In this scheme, we
assume that the integrity and the authenticity of any message is preserved during transmission. Also, we
assume both the aggregator and the users to be honest-but-curious, i.e. both the aggregator and the users
follow the protocol. The assumption for an aggregator to be honest-but-curious is realistic since in the real-
world, the reputation of the aggregator is at stake. Also, when the aggregator behaves maliciously and if it is
detected, the aggregator has to pay a fine according to the GDPR [1]. Existing literature, such as [25, 57], also
assume an honest-but-curious aggregator.

The protocol discussed in this chapter consists out of three phases, namely initialization, encryption and
decryption. After the explanation of those phases, we analyze the protocol in terms of security, computation
complexity and communication complexity.

5.1. Initialization
The initialization is only performed once and is executed by the users, except for the initialization that is needed
for an encoding scheme presented in Chapter 4. Each user i generates an asymmetric key pair consisting
out of a public key pki and a secret key ski . Such a key pair can, for example, be generated with the Paillier
cryptosystem discussed in Section 2.3. The users send their public key to the aggregator who relays it to the
other users. All users now have a public key of all other users.

In order to give the encryption in the next phase its randomness, we use the protocol as described by Erkin
and Tsudik [25]. Their protocol uses additive secret sharing with 0 as the secret as discussed in Section 2.2. All
users have access to a pseudo random number generator. A pseudo random number generator produces a
sequence of random numbers based on an initial value, a seed. Two sequences of random numbers are the
same when the seed of both sequences is the same. In our protocol, the pseudo random number generator
produces random numbers that have at least the same amount of bits as the maximum coefficient αm plus
some extra bits determined by a security parameter.

Every user chooses a random seed for every other user. We denote the random seed that some user i has
chosen for some other user j as ri , j . Since the random seed may only be known to users i and j , it is encrypted
with the public key of user j . The resulting ciphertext is sent directly to user j who decrypts it and retrieves
ri , j . The ciphertext does not have to go via the aggregator since we assume the users to be honest-but-curious.
Now each user i shares two random seeds with every other user j , namely ri , j and r j ,i .

The users can be divide into groups of size k in order to reduce the bandwidth usage. Now, users only share
a random seed with all other users in the same group. These groups can be created by the aggregator or by
the users themselves. The aggregator can, for example, randomly divide the users into groups. The users are
notified by the aggregator with a list of other users in the same group. Another set-up can be that users share
a group with the users that are closest them in order to prevent a long transmission. Such a group can, for
example, be all the users in the same neighborhood. Other methods and how this is done exactly is out of the
scope of this thesis.
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5.2. Encryption
The encryption phase is executed every round. With all the random seeds being shared among all users, the
users create their secret shares. A secret share for any user i for round t is computed as

si ,t =
u−1∑

j=0, j 6=i
ri , j ,t −

u−1∑
j=0, j 6=i

r j ,i ,t , (5.1)

where ri , j ,t is the element at index t of the random number sequence generated by the pseudo random number
generator with random seed ri , j .

These shares are valid shares for additive secret sharing with the secret equal to 0 since all shares are
random and since

u−1∑
i=0

si ,t =
u−1∑
i=0

(
u−1∑

j=0, j 6=i
ri , j ,t −

u−1∑
j=0, j 6=i

r j ,i ,t

)
=

u−1∑
i=0

u−1∑
j=0, j 6=i

ri , j ,t −
u−1∑
i=0

u−1∑
j=0, j 6=i

r j ,i ,t = 0, (5.2)

i.e. all shares summed up equal to 0. When the users are split in groups the secret shares only consist out of
random numbers shared with users in the same group. All shares of the users in the same group sum in this
case to 0.

Once some user i has chosen a coefficientαi ,t for round t , that user encrypts that coefficient. The ciphertext
for some user i for round t is computed as

ci ,t =αi ,t + si ,t . (5.3)

The ciphertext ci ,t is sent to the aggregator.

5.3. Decryption
The aggregator is not able to decrypt the ciphertext of an individual user, but it can compute the sum of
all coefficients which is needed for decoding as discussed in Chapter 4. In order to retrieve this sum, the
aggregator sums all the ciphertexts, i.e.

u−1∑
i=0

ci ,t =
u−1∑
i=0

αi ,t +
u−1∑
i=0

si ,t =
u−1∑
i=0

αi ,t . (5.4)

Now the aggregator decodes the sum to retrieve the amount of user that have sent a certain coefficient, and
therefore the corresponding value. With these amounts, the aggregator can compute any arbitrary function.

5.4. Security
In order to analyze the security of the multi-functional privacy-preserving data aggregation scheme, we view
the protocol in three different perspectives, namely the perspective of any amount of users,the aggregator and
any amount of users colluding with the aggregator.

Any amount of users less than u −1, or in the case of groups k −1, only have the possession of random
numbers that are needed for their own secret share. With at least two honest users i and j , the secret share
of an honest user contains two random numbers ri , j ,t and r j ,i ,t which are not known to the colluding users.
Therefore, the secret share of an honest user is completely random. When, however, u −1, or in the case of
groups k−1 users collude, they know the secret share of the one remaining honest user. The users are assumed
to be honest-but-curious and therefore are assumed to not intercept any messages. These colluding users
therefore cannot use the secret share to decrypt the ciphertext. The result of the data aggregation is also only
known to the aggregator which can also not be used by the colluding users to derive the value of the honest
user.

The aggregator does not know any random seed or random number. Also the aggregator is assumed to
be honest-but-curious and therefore does not intercept the ciphertexts containing the random seeds. The
aggregator, therefore, cannot derive any information about the random seeds and the secret shares. The only
information the aggregator can get is the sum of all coefficients by summing all received encrypted coefficients.
From this information, the aggregator cannot derive which user has sent which value.

When u −1 users collude with the aggregator, those colluding parties can derive the secret share and
therefore the coefficient of the one remaining honest user from the result which is retrieved by the aggregator.
When the users are split in groups of size k, k −1 users in the same group have to collude with the aggregator
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Table 5.1: Computation complexity comparison of the aggregator of our own scheme and that of others.

Aggregator
Initialization Every round
[32] [58] Ours [32] [58] Ours

Exponentiation O(1) - O(m ·u) - - -
Addition O(u2) - O(m ·u) O(u2) O(m ·u) O(u)
Multiplication - - O(m +u2) - - -
Modular inverse O(1) - O(1) - - -
Subtraction O(1) - O(m ·u) - - O(m)
Division - - O(u) - - O(m)
Modulo O(1) - O(1) - - O(m)

Table 5.2: Computation complexity comparison of a user of our own scheme and that of others, where k means the group size in which
users share a random seed, m means the amount of possible values and u means the amount of users participating in the protocol.

User
Initialization Every round
[32] [58] Ours [32] [58] Ours

Exponentiation O(k) O(1) O(k) - O(m ·k) -
Addition O(k2) - - O(k2) O(m ·k) O(k)
Multiplication - - - - O(m ·k) -
Modular inverse - - - - O(m ·k) -
Subtraction O(k) - - O(k) - O(k)
Division - - - - - -
Modulo O(k) O(1) O(k) - - -

in order to derive information about the remaining honest user in that group. Any amount of colluding users
smaller than u−1, or k −1, is not enough to derive any information of the honest users. The colluding users do
not know all random numbers contained in the secret share of an honest user. The secret share is completely
random in the perspective of those colluding users. Therefore, unless u −1, or k −1 users collude with the
aggregator, the colluding users cannot derive which user has sent which value.

5.5. Computation complexity
In this analysis, we use the key that is shared between two users and produced by a Diffie-Hellman key
exchange [21] as a random seed. We use this technique since Gong et al. [32] also make use of this technique
which makes our scheme more comparable to theirs.

The initialization is only executed once. Each user performs a Diffie-Hellman key exchange with every
other user in the same group which requires O(k) exponentiations and modulo operations. After the key
exchange, all users have their random seeds which are used in the remainder of the protocol. In addition, the
encoding scheme needs to be initialized by the aggregator.

During encryption a user computes its secret share which requires O(k) additions and subtractions.
Computing the ciphertext only requires 1 addition. During decryption, the aggregator must sum all ciphertext
resulting in O(u) additions. Finally the decoding algorithm is executed as discussed in Chapter 4.

Tables 5.1 and 5.2 compare the computation complexity with that of other comparable multi-functional
privacy-preserving data aggregation schemes. Other schemes are not included since they have a characteristic
which makes them incomparable. Examples of such characteristics are the reliance on a trusted authority and
approximate results instead of exact ones.

The scheme of Gong et al. [32] requires an interactive protocol during initialization in order to determine
the private sequence number of a user. Due to this protocol, the initialization for a user is more expensive in
comparison to the initialization for a user in our scheme. For the aggregator, the initialization of our scheme
is more expensive. This is due to the fact that the aggregator creates the coefficients during initialization.
During a round the computation complexity of both schemes are not significantly different. There is one
important thing to notice which contributes to an extra factor of k for a user during a round in the scheme
of [32]. The scheme of [32] requires each user to send a ciphertext for every other user in the same group.
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Figure 5.1: This figure illustrates the relation between the amount of users participating in the protocol and the time it takes to execute the
initialization. The time is taken in seconds and is the average of 10 experiments. Different lines in the graph represent different group
sizes.

Not every ciphertext can include the same secret share since this would leak the private data. That scheme,
therefore, requires a different secret share to be computed for every ciphertext which results in an extra factor
of k. Our scheme, on the other hand, requires a user to send only one message and therefore does not have
this problem.

For PriSense presented by Shi et al. [58] we assume the use of the ElGamal cryptosystem. Their paper
states that any public cryptosystem can be used for sharing the shares. We assume the ElGamal cryptosystem
since it is a public cryptosystem which resembles the most with the Diffie-Hellman key exchange used in the
other schemes. PriSense requires each user to send shares of their data of a round to every other user in the
same group. This results in the fact that the costs for creating randomness for encryption are taken every
round instead of during initialization as is the case with our scheme. Additionally, in order to retrieve the
multi-functionality, this process is repeated for every possible value which results in an extra factor of m for
both the aggregator and the user. The initialization for as well the aggregator and the users of the PriSense
scheme barely requires any computation.

On overall, the computation complexity of our scheme, compared to PriSense, is better considering every
round. This is due to the fact that our scheme does not require to repeat the process of aggregating data
for every possible value. During initialization, PriSense performs better since the initialization is moved to
be performed in every round. Compared to [32], our scheme performs similar with some small differences.
With respect to the computation complexity, our protocol does not significantly outperforms all comparable
state-of-the-art multi-functional privacy-preserving data aggregation schemes.

5.6. Experimental run-time
In this section we discuss the results of the experiments we performed to measure the run-time. First we
measured the run-time of the initialization and second the run-time of a round after initialization. All
experiments are executed with an Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz processor and with 16GB RAM
memory on Windows 10 Home. The experiments are implemented in Java 14 with built-in functions and are
executed 10 times of which the average is taken.

Figure 5.1 illustrates the dependence of the run-time of the initialization on the amount of users. During
the experiments we used the encoding scheme with maximum certainty to initialise the coefficients. Different
lines in the graph represent different group sizes. Note that the group size is not allowed to be higher than the
amount of user participating in the protocol. Therefore, not all lines start at the same x-coordinate.

The graph shows that the run-time is linear with respect to both the amount of users and the group size.
Additional experiments showed that the amount of values used in the protocol does not influence the run-time
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Figure 5.2: This figure illustrates the relation between the amount of users participating in the protocol and the time it takes to execute a
round of our protocol after initialization. The time is taken in microseconds and is the average of 10 experiments. Different lines in the
graph represent different group sizes.

Table 5.3: Communication complexity comparison of our own scheme and that of others, where b means the amount of bits needed for
the largest message.

Initialization Every round
[32] [58] Ours [32] [58] Ours
O(u ·k ·b) O(u ·b) O(u ·k ·b) O(u ·k ·b) O(m ·u ·k ·b) O(u ·b)

of the initialization. This is due to the fact that the amount of values is limited because of the encoding scheme.
Figure 5.2 illustrates the dependence of the run-time of a round after initialization on the amount of users.

Different lines in the graph represent different group sizes. Note that the group size is not allowed to be higher
than the amount of users participating in the protocol. Therefore not all lines start at the same x-coordinate.
Also, the run-time does not depend on the choice of encoding scheme since the computational difference of
both encoding schemes is during initialization. In a round after initialization, both encoding schemes perform
exactly the same.

The graph shows that the run-time grows linearly with the amount of users and the group size. Due to the
fact that the run-time for a smaller amount of users is only a few microseconds, those results have a relatively
higher standard deviation. The results of such fast execution are influenced more by background processes on
a computer. Additional experiments showed that the amount of values used in the protocol does not influence
the run-time of a round after initialization. This is due to the fact that the amount of values is limited because
of the encoding scheme.

5.7. Communication complexity
During initialization, every user sends a message with a random seed to every other user in the group resulting
in O(u ·k ·b) bits. With b we denote the maximum amount of bits needed for the message space. In a round,
every user sends its message resulting in O(u ·b) bits in total.

Figure 5.3 summarizes the communication in our protocol. We assume that lists V and A are already
pre-loaded on the device of the user beforehand.

Table 5.3 presents the comparison of the communication complexity with other scheme. PriSense shares
its data every round with all other users in the same group for every possible value resulting in an extra factor
of m ·k. During initialization, the users only have to publish their public key which requires a factor k less
than our scheme. The scheme of Gong et al. [32] has an extra factor k in a round since every user must send a
message for every other user in the same group. During initialization, our scheme performs similar to [32].
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Initialization pki

wait for all users

{pk j | j ∈Gi }

{E j (ri , j ) | j ∈Gi }

wait for all users

{Ei (r j ,i ) | j ∈Gi }

Round t ci ,t

Round t +1 ci ,t+1

etc. ...

User i Aggregator

Figure 5.3: An overview of the communication in our protocol where we denote Gi as the set of all other users that are in the same group
as user i .

We assume that all schemes use the same level of security and therefore the same amount of bits for the
encryption.

On overall, the communication complexity of our scheme is a factor k better than [32] and a factor m ·k
better than [58]. That means that our protocol requires significant less bandwidth than comparable state-
of-the-art multi-functional privacy-preserving aggregation schemes. This improvement comes from the fact
that in our scheme each user only sends one message per round. In addition, the size of such a message is
independent of any other variable.



6
Multi-Functional Privacy-Preserving Data

Aggregation with Malicious User Detection

Chapter 5 presented a multi-functional privacy-preserving data aggregation scheme which relies on the
assumption that users are honest-but-curious. However, this assumption may not always be realistic. Whether
this assumption is realistic, depends on the application. In an application where only certified users participate,
the assumption is more realistic in comparison to an application where every random user can participate.
Therefore, we present a multi-functional privacy-preserving data aggregation scheme in this chapter which
assumes that only the aggregator is honest-but-curious. The protocol assumes there are y adaptive and
malicious users while the other u − y users are honest-but-curious, where u is again the total amount of
users participating in the protocol. The goal of the protocol is to detect the malicious users in order to take
appropriate action upon them. The protocol consists out of four phases. The protocol starts with a one-time
initialization. Next, the submission which is executed every round. After that, the ciphertext of every user
needs to be verified during the verification phase. Last, when all users are verified, the aggregator decrypts the
result.

6.1. Initialization
First, the aggregator performs the key generation of the Paillier cryptosystem which is explained in Section 2.3.
The aggregator keeps the secret key skA = (λA ,µA) secret and publishes the public key pkA = (nA , g A) in
addition with hA and H to all the users. The value hA is chosen randomly from Z∗

nA
and H is a secure

cryptographic hash function with as input {0,1}∗ and as output a value fromZnA . The aggregator also performs
the initialization of an encoding scheme presented in Chapter 4 which gives a list of values V and a list of
coefficients A. The list of coefficients is updated later during initialization in order to accommodate the
signatures as we discuss in a bit. The upper limit n of the coefficients defined in Equation 4.3 is hereby set to
nA since the aggregate message must be in ZnA .

Also each user i performs the key generation of the Paillier cryptosystem which gives them a public key
pki = (gi ,ni ) and a secret key ski = (λi ,µi ). Each user sends its public key to the aggregator who relays it to all
other users. In this way, all users have the public key of every other user. Note that the aggregator is assumed
to be honest-but-curious and therefore can be trusted to relay the correct public keys to all the users.

As a part of the malicious user detection, the aggregator creates a signature for each coefficient of the
encoding scheme. For these signatures, we use the Boneh-Boyen signature scheme [10]. We make one
modification in the signature scheme in order to combine the signatures with the Paillier cryptosystem that we
use for encryption. Instead for the signature scheme to operate in a group of order p, our protocol requires it
to operate in a group of order n2

A , where nA is the same as the nA in the public key generated by the aggregator.
We also only need one group G1 since we only have to create signatures. The verification of the signatures is
done with a zero-knowledge proof which does not require the usage of the public key.

Next, the aggregator creates a generator gS for the groupG1 of order n2
A and a random integer x ∈ZnA which

is the secret key of the signature scheme. The aggregator now computes the signature for each coefficient αi as

σi = g
1

x+αi
S mod n2

A . (6.1)

39
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Computing 1
x+αi

is equal to computing the modular inverse of x +αi modulo nA . However this modular
inverse does not exist when x +αi is not coprime to nA . If the modular inverse does not exist, the coefficient
αi is incremented with steps of one until the modular inverse does exist. When x +αi has a modular inverse,
all subsequent coefficients are updated accordingly to satisfy the conditions stated in Chapter 4. The list of
coefficients A is changed in order to contain the updated coefficients.

The lists of all values V , updated coefficients A and signatures σ are distributed to all users, where coef-
ficient αi again corresponds to value vi for every i and where signature σi corresponds to coefficient αi for
every i .

6.2. Submission
As we did in the protocol for honest-but-curious users in Chapter 5, the users share a random number. However,
since we deal with malicious users, we have to make sure that each user includes the correct random shares
in the eventual ciphertext. Therefore, the users share a random number for every encryption instead of one
random seed during the initialization.

Each user i chooses a random number for every other user j in round t . This random number is denoted
by ri , j ,t . Again, note that we can split the users in groups to decrease the amount of communication. Now,
each user only chooses a random number for every other user in the same group. User i then sends Ei (ri , j ,t )
and E j (ri , j ,t ) to the aggregator, where Ek (m) is the Paillier encryption of a message m under the public key of
user k.

In order to check that both, Ei (ri , j ,t ) and E j (ri , j ,t ), for some users i and j , contain the same random
number, an additional non-interactive zero knowledge proof is sent by user i . We use the non-interactive zero
knowledge proof of plaintext equality described by Dimitriou and Awad [22] as we discussed in Section 2.5.

Once the aggregator has verified that Ei (ri , j ,t ) and E j (ri , j ,t ) contain the same random numbers, it stores
both ciphertexts, which are needed for the verification discussed in the next section, and relays E j (ri , j ,t ) to
user j who decrypts it. When the verification of the plaintext equality fails, user i is marked as malicious and
corresponding action can be taken, such as removal or inspection.

When every user has sent and received random shares from all other users and the aggregator verified the
plaintext equality of every share, each user i creates its secret share si ,t for round t . In contrast to the protocol
with honest-but-curious users, in this protocol we use additive secret sharing with the secret equal to u ·nA .
The secret share of a user i is computed as

si ,t = nA +
u−1∑

j=0, j 6=i
ri , j ,t −

u−1∑
j=0, j 6=i

r j ,i ,t . (6.2)

The summation of all secret shares for some round t return u ·nA since

u−1∑
i=0

si =
u−1∑
i=0

nA +
u−1∑
i=0

u−1∑
j=0, j 6=i

ri , j ,t −
u−1∑
i=0

u−1∑
j=0, j 6=i

r j ,i ,t =
u−1∑
i=0

nA = u ·nA . (6.3)

Each user i now encrypts its coefficient αi ,t as

ci ,t = g
αi ,t
A ·h

si ,t
A mod n2

A (6.4)

and sends it to the aggregator. Each user i also sends Ei (nA) and E A(nA) together with a proof of plaintext
equality to the aggregator which is needed in the verification phase discussed next.

6.3. Verification
There are three ways a malicious user can behave in order for the aggregator to be unable to retrieve any
result or correct results. The first way is that some user initially sends random numbers to other users so that
they include them in their secret share, but that the malicious user does not send its encrypted coefficient.
Therefore, that secret share is not included and the aggregate of the other ciphertexts is not decryptable
anymore. This malicious behaviour is easy to detect since the aggregator can check who has sent random
numbers and who did not send a ciphertext.

Another way a malicious user can behave maliciously is by sending a coefficient which is not in the list
of valid coefficients A or by sending more than one coefficient. As a consequence, the aggregator is not able
to retrieve correct results. Therefore, the aggregator checks whether αi ,t for some user i at round t is a valid
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coefficient. In order to verify this, we need another non-interactive zero knowledge proof. The proof we use is
based on the proof presented by Arfaoui et al. [3]. There are, however, some changes. The groups we work
with are different since we combine it with the Paillier cryptosystem. We also do not need the aggregator
to send a challenge since we want it non-interactive which brings some changes along with it. The values
that are outputted by the prover differs. Also the hash function is computed over a different set over values.
The modified proof is described in Algorithm 4, where we denote the signature corresponding to coefficient
αi ,t as σi ,t . In this proof the values of s1, s2 and s3 mask the real coefficient, secret share and the value for
` respectively. This last value, `, is used to randomize the signature so that the aggregator cannot link the
signature back to the coefficient. The values D and D1 are used in order for the verifier to check that the used
signature corresponds to the coefficient that is included in s1. The ciphertext ci ,t and the value ci ,t ,1 are then
used to check whether the coefficient in s1 is the same as the coefficient used in the ciphertext.

Algorithm 4: Non-interactive proof of set membership

Prover (user i ):
Input: {ci ,t ,αi ,t ,σi ,t , si ,t , g A , gS ,hA ,nA , H ,

∑u−1
j=0 ri , j ,t }

Choose random `,`′,α′ ∈ZnA

Compute s′ =∑u−1
j=0 ri , j ,t

Compute B =σ`i ,t mod n2
A

Compute B1 = B−1 mod n2
A

Compute D = B
αi ,t
1 g`S mod n2

A

Compute ci ,t ,1 = gα
′

A hs′
A mod n2

A

Compute D1 = Bα′
1 g`

′
S mod n2

A
Compute h = H(ci ,t ,B ,D)
Compute s1 =α′+h ·αi ,t mod nA

Compute s2 = s′+h · si ,t

Compute s3 = `′+h ·` mod nA

Output: {B ,D,ci ,t ,1,D1, s1, s2, s3}

Verifier (aggregator):
Input: {ci ,t ,B ,D,ci ,t ,1,D1, s1, s2, s3, g A , gS ,hA ,nA , x, H }
Compute D ′ = B x

Compute h = H(ci ,t ,B ,D ′)
Compute c ′i ,t ,1 = g s1

A hs2
A c−h

i ,t mod n2
A

Compute D ′
1 = B s1

1 g s3
S D ′−h mod n2

A
Verify that D = D ′,ci ,t ,1 = c ′i ,t ,1 and D1 = D ′

1

If the verification fails, that user is marked as malicious and corresponding action can be taken. Otherwise,
the user has encrypted a valid coefficient.

There is one way left for a malicious user to act maliciously. A malicious user can include a wrong secret
share which causes the aggregate ciphertext to not be decryptable. In Algorithm 4, there is already a check
that the secret share included in s2 must be equal to the secret share in the ciphertext. So if we verify that s2

contains the correct secret share, it is verified that the ciphertext does.
The aggregator already has knowledge of Ei (ri , j ,t ) and Ei (ri , j ,t ) for every user i and j . Each user i also sent

Ei (nA) and E A(nA) to the aggregator. The aggregator verifies whether the plaintext of both ciphertexts is equal
and whether the plaintext is equal to nA by decrypting E A(nA). Now, the aggregator has enough knowledge to
gain the encrypted secret share si ,t for each user i by computing

Ei (si ,t ) = Ei (nA) ·
∏u−1

j=0, j 6=i Ei (ri , j ,t )∏u−1
j=0, j 6=i Ei (r j ,i ,t )

. (6.5)

Now, the aggregator also computes the encryption of s2 as

Ei (s2) =
u−1∏

j=0, j 6=i
Ei (ri , j ,t ) ·Ei (si ,t )h . (6.6)
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User i creates Ei (s2) in the same way as the aggregator, with the public ciphertexts of nA and the random
numbers. In this way, Ei (s2) computed by user i and the aggregator are exactly the same, including the
randomness. User i also computes E A(s2) which is the normal encryption again with the public key of the
aggregator. The user sends both Ei (s2) and E A(s2) to aggregator together with a proof of plaintext equality
according to Algorithm 2.

Finally, the aggregator performs three checks. The first check is whether the plaintext of Ei (s2) and E A(s2)
is equal. The second check is whether Ei (s2) received by the user is equal to the one the aggregator computed.
The final check is whether the plaintext is equal to s2 which is checked by decrypting E A(s2). Again, if one
of these checks fails, it means that the user is maliciously sending the wrong secret share and is marked as
malicious. Note that a user can also use a value different than g A and hA , however, this will cause the proof of
Algorithm 4 to fail and is, therefore, also detected.

6.4. Decryption
When all users are verified to behave according to the protocol, the aggregator aggregates the ciphertexts and
decrypts the sum of the coefficients. The aggregator aggregates the ciphertexts by computing

ct =
u−1∏
i=0

ci ,t =
u−1∏
i=0

g
αi ,t
A ·h

si ,t
A = g

∑u−1
i=0 αi ,t

A ·h
∑u−1

i=0 si ,t

A = g
∑u−1

i=0 αi ,t

A · (hu
A)nA . (6.7)

In order to decrypt a ciphertext with the Paillier cryptosystem, the ciphertext must be in the form g m
A r nA , where

m ∈ Zn and r ∈ Z∗
n . The aggregate ciphertext ci has this form if we set m = ∑u−1

i=0 αi ,t and r = hu
A . Therefore

the aggregator can decrypt ci with its secret key and obtains
∑u−1

i=0 αi ,t . This sum of coefficients is decoded
according to the encoding schemes presented in Chapter 4 resulting in a histogram of values and the ability to
compute any arbitrary function.

6.5. Security
In order to prove the security of the protocol, we prove that various subsets of parties cannot gain any
information about the private data of honest users which are outside that subset. The subsets of parties we
discuss are 1. Any amount of users 2. The aggregator 3. Multiple users colluding with the aggregator. When we
discuss any amount of users, we also prove, under certain assumptions, that a user cannot act maliciously
without being detected by the aggregator. Finally, we also prove the correctness of the protocol where necessary.

6.5.1. Users
In this subsection we prove three theorems regarding any amount of users. The first one concerns honest users
which may not be marked as malicious during the verification phase. The second one concerns the privacy of
the private data of other users and the last one concerns the detection when a user acts maliciously. The first
theorem we prove is stated in Theorem 1.

Theorem 1. Honest users pass the verification phase without being marked as malicious.

The proof of this theorem is based on two checks which are performed during verification. The first one is
the set membership verification of the coefficient that is included in the ciphertext. The second one is the
verification of the secret share used in the ciphertext. When both checks pass, a user is not marked as malicious.
The correctness of the first check is stated in Lemma 2. This check only contains the zero-knowledge proof and
therefore, proving the completeness property of this proof is sufficient.

Lemma 2. A user with a correct coefficient in its ciphertext passes the verification of the set membership proof
and is not marked as malicious.

Proof. In order to proof this we prove the completeness property of the zero-knowledge proof of set member-
ship which means that every user with a correct coefficient has to pass the verification procedure. We prove
three equalities in order to prove the completeness property, namely D = D ′, ci ,t ,1 = c ′i ,t ,1 and D1 = D ′

1.

First, the equation D = D ′ is proved by

D = Bαi
1 g`S = B−αi g`S =σ−αi ·l

i g`S

= g
−αi ·`
αi +x

S g`S = g
`− αi ·`

αi +x

S = g
x·`
αi +x

S

=σx·`
i = B x = D ′.
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Next, the equation ci ,t ,1 = c ′i ,t ,1 follows from

c ′i ,t ,1 = g s1
A hs2

A c−h
i ,t

= gα
′+h·αi

A h
s′+h·si ,t
A g−h·αi

A h
−h·si ,t
A

= gα
′

A hs′
A = ci ,t ,1.

Finally, the last equation D1 = D ′
1 follows from

D ′
1 = B s1

1 g s3
S D ′−h =σ−`·s1

i g s3
S σ

−h·x·`
i

=σ−`·α′−`·h·αi
i g`

′+h·`
S σ−h·x·`

i

= g
−`·α′−`·h·αi

αi +x

S g`
′+h·`

S g
−h·x·`
αi +x

S

= g
−`·α′−`·h·αi

αi +x

S g
αi ·`′+αi ·h·`+x·`′+x·h·`

αi +x

S g
−h·x·`
αi +x

S

= g
−`·α′+x·`′+αi ·`′

αi +x

S = g
−`·α′
αi +x

S g`
′

S = Bα′
1 g`

′
S = D1.

Therefore, the zero-knowledge proof satisfies the completeness property and consequently a user which acts
honestly passes the verification of the zero-knowledge proof of set membership.

The other check which is performed in the verification phase concerns the verification of the secret share
which leads to Lemma 3

Lemma 3. A user which includes the correct secret share in its ciphertext passes the verification of the secret
share and is not marked as malicious.

Proof. The part of this check starts when the users share a random number with other users. An honest user
sends a random number encrypted two times under two different keys, its own and that of the recipient.
The user also includes a proof of plaintext equality which the aggregator verifies. This proof satisfies the
completeness property as proven in [6]. The same holds for the plaintext equality of nA encrypted two times
under two different keys, the user its own key and that of the aggregator.

Now, a user i and the aggregator have the same ciphertexts of all the random numbers Ei (ri , j ,t ) and Ei (r j ,i ,t

for every j and both have the same ciphertext Ei (nA). Both can now compute the same ciphertext of the secret
share of user i since

Ei (nA) ·
∏u−1

j=0, j 6=i Ei (ri , j ,t )∏u−1
j=0, j 6=i Ei (r j ,i ,t )

= Ei (nA) ·
Ei (

∑u−1
j=0, j 6=i ri , j ,t )

Ei (
∑u−1

j=0, j 6=i r j ,t ,t )
= Ei (nA +

u−1∑
j=0, j 6=i

ri , j ,t −
u−1∑

j=0, j 6=i
r j ,i ,t ) = Ei (si ,t ). (6.8)

From the zero-knowledge proof for the set membership, the aggregator knows the values of s2 and h. With
this information, the verification of the secret share can be finished. Both user i and the aggregator compute
the same ciphertext of s2 since

u−1∏
j=0, j 6=i

Ei (ri , j ,t ) ·Ei (si ,t )h = Ei (s′+h · si ,t ) = Ei (s2). (6.9)

The user also honestly computes E A(s2) and a proof of plaintext equality. Again, due to the completeness
property, the plaintext equality is verified. The aggregator decrypts E A(s2) which results in the correct s2 as
used in the zero-knowledge proof of set membership and finishes the check of a secret share. Therefore, an
honest user passes the secret share verification.

Both checks that are performed in the verification phase do not mark an honest user as malicious and
therefore, Theorem 1 is also proved to hold.

The next theorem we prove concerns the privacy of private data of other honest users and is stated in
Theorem 4.

Theorem 4. With at least two honest users, any amount of colluding users with polynomial bounded computing
power cannot gain any information about the private data of an honest user except for the distribution of the
data of all honest users assuming that the decisional composite residuosity assumption holds.
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There are three types of messages that are sent in the network, namely ciphertexts, proof of set membership
and proof of plaintext equality. For each of these types we prove that they leak no information which is done in
the following two lemmas. The fact that the proof of plaintext equality does not leak any information is already
proved in [6].

Lemma 5. Any number of colluding users of at most u−2, or in the case of groups k−2, with polynomial bounded
computing power cannot gain any information from a ciphertext assuming that the decisional composite
residuosity assumption holds.

Proof. There are two types of Paillier ciphertexts that we user in our protocol. The first type are the default
ciphertexts which are computed as described by the Paillier cryptosystem. As discussed in Section 2.3,
the Paillier cryptosystem is semantic secure under CCA1 and CPA assuming that the decisional composite
residuosity assumption holds. This means that a user with polynomial bounded computing power cannot gain
any information from theses ciphertexts

The other type of ciphertexts are the encrypted coefficients of users. Despite the modification we made
for this encryption, the semantic security is still ensured. The Paillier cryptosystem uses a random number
r ∈Z∗

nA
and raises that to the power nA . We replace this r with hA which is also in Z∗

nA
. To give the cipher its

randomness we raise hA to the power of a secret share. In the eyes of the colluding users, the secret share of
an honest user is completely random. An honest user i shares random numbers ri , j and r j ,i with at least one
other honest user j . These random numbers are not known to the colluding users since they are encrypted
according to the Paillier cryptosystem and, as discussed before, do not leak any information. The secret share
of an honest user is therefore random since it contains unknown random numbers. The encrypted message of
an honest user is, therefore, uniformly distributed to the ciphertext space in the eyes of the colluding users.
Since the message in our protocol is encrypted in the same way as in the Paillier cryptosystem and the source
of randomness in our protocol corresponds to the source of randomness in the Paillier cryptosystem, this type
of ciphertext also falls under the semantic security of the Paillier cryptosystem.

Therefore, any number of colluding users of at most u −2, or in the case of groups k −2, with polynomial
bounded computing power cannot gain any information from a ciphertext assuming that the decisional
composite residuosity assumption holds.

Lemma 6. The zero-knowledge proof of set membership does not leak any information.

Proof. In order to proof this, we proof the zero knowledge property of the zero-knowledge proof which means
that the zero-knowledge proof does not leak any information. In order to prove this zero knowledge property,
we replace the proof of the user, also the prover, V with a simulated proof S. The simulated proof is generated
without any knowledge of the secret α j of the user. The zero-knowledge proof has the zero knowledge property
if S and V are indistinguishable.

The simulated proof, where we ignore the subscript t , can be constructed as follows

1. Choose a random coefficient αi with its corresponding signature Ai .

2. Choose a random `, s1, s2, s3 ∈Zn .

3. Choose a random ci ∈Z∗
n2 .

4. Compute B = A`i , B1 = B−1 and D = Bαi
1 g`S .

5. Compute h = H(ci ,B ,D)

6. Compute ci ,1 = g s1
A hs2

A c−h
i and D1 = B s1

1 g s3
S D−h .

7. Send S = {ci ,B ,D,ci ,1,D1, s1, s2, s3}.

The simulated proof S is indistinguishable from the proof V of a user in the eyes of the aggregator. In both
proofs s1, s2 and s3 are random in Zn and in both proofs ci ,B ,D,ci ,1 and D1 are random in Z∗

n2 .
The verification of this simulated proof also succeeds. The value D , in S, is equal to B x computed by the

aggregator according to the same reasoning as discussed in the proof of Lemma 2. Also, ci ,1 and D1 of S are
equal to, respectively, c ′i ,1 and D ′

1 computed by the aggregator according to their definitions. Therefore, the
zero-knowledge proof does not leak information.



6.5. Security 45

Now we have proven that every type of message that is sent in the network does not leak any information to
any number of colluding users of at most u −2, or k −2 when working with groups, with polynomial bounded
computing power assuming that the decisional composite residuosity assumption holds. The last thing to
prove is that any combination of messages of these types do not leak information. The proofs combined
of multiple users do not leak any information since the randomness is independent of each other. The
randomness in a ciphertext of a coefficient is dependent on the randomness used by other users. When all
ciphertexts of a group of users are multiplied, the secret shares and therefore the randomness cancels out. The
result is gαt

A · (hu
A)nA , where αt is the sum of coefficients in that group of users at round t . The term (hu

A)nA

can be removed since this is public knowledge. When the colluding users are able to compute αt from gαt
A ,

Algorithm 3 can be used to compute the histogram of coefficients. However, there is no link from the a specific
coefficient to a specific user. Therefore the colluding users cannot gain any information about the private data
of an honest user except for the distribution of the data of all honest users which proves Theorem 4.

The final theorem which we prove in this section concerns the detection of a malicious user which is stated
in Theorem 7.

Theorem 7. A user acting maliciously is detected assuming that the q-SDH assumption holds.

There are multiple ways a user can act maliciously. The first is that a user can share random numbers, so
that other users include those random numbers in their secret share, without sending any ciphertext during
the submission phase. Now, the secret shares do not cancel out and the result is undecryptable. The aggregator
can detect this user since it knows which users sent random numbers to other users and did not send an
encrypted coefficient.

There are two other ways a user can act maliciously, namely using a wrong coefficient which results in
wrong results and using a wrong secret share which results in an undecryptable result. The detection of these
two action are proved in the following two lemmas. Note that a user can also use wrong public parameters
during encryption, but if a user does this, the zero-knowledge proof of set membership fails and the user is
detected.

Lemma 8. The zero-knowledge proof of set membership always detects a wrong coefficient assuming that the
q-SDH assumption holds.

Proof. For this lemma we prove the soundness property of the zero-knowledge proof which means that a
user with a wrong coefficient cannot pass the verification. Suppose a user has a wrong coefficient αx in its
ciphertext ci ,t = gαx

A h
si ,t
A . Due to the check of the verifier that ci ,t ,1 must be equal to c ′i ,t ,1, s1 must include this

wrong coefficient αx as well. If s1 would contain a valid coefficient αv , this check fails since

c ′i ,t ,1 = g s1
A hs2

A c−h
i ,t

= gα
′+h·αv

A h
s′+h·si ,t
A g−h·αx

A h
−h·si ,t
A

= gα
′+h·αv−h·αx

A hs′
A 6= ci ,t ,1.

The other check of the verifier, that D ′
1 must be equal to D1, requires the coefficient in s1 to be equal to the

coefficient in the provided signature. Otherwise this check fails since

D ′
1 = B s1

1 g s3
S D ′−h =σ−`·s1

i g s3
S σ

−h·x·`
i

=σ−`·α′−`·h·αx
i g`

′+h·`
S σ−h·x·`

i

= g
−`·α′−`·h·αx

αv +x

S g`
′+h·`

S g
−h·x·`
αv +x

S

= g
−`·α′−`·h·αx

αv +x

S g
αv ·`′+αv ·h·`+x·`′+x·h·`

αv +x

S g
−h·x·`
αv +x

S

= g
−`·α′−`·h·αx+x·`′+αv ·`′+αv ·h·`

αi +x

S 6= D1,

where, again, αx is an invalid coefficient and αv is a valid coefficient. Since the coefficient in s1 must be equal
to αx , this check forces the prover to provide a valid signature for a wrong coefficient αx . Since Boneh-Boyen
signatures are unforgeable based on the hardness of the q-SDH problem, the prover cannot pass this check.
Therefore, every user with a wrong coefficient is detected by this zero-knowledge proof assuming that the
q-SDH assumption holds.



46 6. Multi-Functional Privacy-Preserving Data Aggregation with Malicious User Detection

Lemma 9. A user which uses the wrong secret share in its ciphertext is detected by the aggregator.

Proof. The secret share in the ciphertext must be equal to the secret share in s2 from the zero-knowledge proof
of set membership. The aggregator knows the encryption under the public key of user i of all random numbers
and other relevant values for user i . The user therefore has to send the correct Ei (s2). A different ciphertext is
detected by the aggregator. Due to the proof of plaintext equality, which satisfies the soundness property as
proved by [6], the user must send the correct E A(s2). Therefore, s2 and, as a consequence, the ciphertext of the
coefficient must contain the correct secret share.

Therefore, any possible action a malicious user can do is detected assuming that the q-SDH assumption
holds which proves Theorem 7.

6.5.2. The aggregator
We prove two theorems regarding the aggregator. The first theorem concerns the correct retrieval of the sum of
the coefficients of all users. The second theorem concerns the information that the aggregator learns about
the private data of a user. Note that the aggregator is assumed to be honest-but-curious and therefore we do
not have to prove that any malicious action is detected as we did with the users.

Theorem 10. The aggregator is able to correctly retrieve the sum of the coefficients of all users, assuming that all
users passed the verification phase.

Proof. In order to decrypt a ciphertext, according to the Paillier cryptosystem, a ciphertext must have the form
g m

A · r nA . If the product is taken over all coefficient ciphertexts of all users, the secret shares cancel out and the
result is gαt

A · (hu
A)nA , where αt is the sum of all the coefficients at round t . If we replace αt with m and hu

A with
r , we see that this is in the correct form for the aggregator to decrypt. The aggregator is now able to retrieve the
sum of the coefficients of all users correctly.

Theorem 11. The aggregator with polynomial bounded computation power does not learn any information
of the private data of a user except for the distribution of the data of all users assuming that the decisional
composite residuosity assumption holds.

Proof. As we have proven in Lemma 6, the zero-knowledge proof of the set membership does not leak any
information neither to a user nor to the aggregator. The same holds for the zero-knowledge proof of the
plaintext equality which is proven by [6]. In the remainder of the verification of a secret share the aggregator
only receives ciphertexts which are encrypted as defined by the Paillier cryptosystem. These ciphertexts,
therefore, does not leak information to a party with polynomial bounded computation power assuming
that the decisional composite residuosity assumption holds. The only ciphertexts in this process which the
aggregator is able to decrypt are E A(nA) and E A(s2) which both are public information anyway.

We are left with proving that the aggregator does not learn any information from the encrypted coefficients.
According to the Paillier cryptosystem, a ciphertext must have the form g m

A · r nA to be decrypted. An encrypted
coefficient cannot be rewritten in this form without having the knowledge of either the coefficient or the secret
share. The aggregator does not know any random number that is part of a secret share and therefore the secret
share is completely random as is the coefficient. Therefore, the aggregator cannot decrypt the ciphertext. The
ciphertext is uniformly distributed in the ciphertext space and consequently, the aggregator cannot gain any
knowledge about the underlying coefficient.

The aggregator can decrypt the product of all ciphertexts as proved in Theorem 10 which results in the
distribution of the coefficients of all users. The aggregator is not able to link a value in the distribution to a
specific user. Therefore, the aggregator with polynomial bound computing power cannot gain any information
except for the distribution of the coefficients of all users assuming that the decisional composite residuosity
assumption holds.

6.5.3. Colluding users and aggregator
As a last part we prove that, when there are at least two honest users, all other colluding users and aggregator
cannot gain any information from the honest users.

Theorem 12. Assuming there are at least two honest users, a set of colluding users which are colluding with the
aggregator cannot gain any information of the private data of an honest user, except for the distribution of the
data of all honest users assuming that the decisional composite residuosity assumption holds.
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Proof. When there are two honest users i and j , those users share two random numbers ri , j and r j ,i which are
unknown to the other users and the aggregator. During transmission, the random numbers are encrypted with
Paillier. These ciphertexts do not leak any information assuming that the decisional composite residuosity
assumption holds. The secret share of an honest user therefore contains two random numbers which are
completely random to the colluding users and the aggregator. Therefore, the secret share is random and
so is the ciphertext ci ,t of an honest user i at round t which is based on the secret share. The data for the
zero-knowledge proofs of both the set membership and the plaintext equality also do not leak any information
as proved in Lemma 6 and [6] respectively.

The colluding users and aggregator can only compute that product of all ciphertexts which the aggregator
is able to decrypt. When the colluding users share their private data, the distribution of the values of the honest
users retrieved. Therefore colluding users which are colluding with the aggregator cannot gain any information
of the private data of an honest user when there are at least two honest users except for the distribution of the
data of all honest users assuming that the decisional composite residuosity assumption holds.

6.6. Complexity
In this section, we first discuss the computation complexity followed by a discussion about the experimental
run-time. Finally, the communication complexity of our protocol is discussed.

6.6.1. Computation complexity
Table 6.1 gives an overview of the computation complexity of our protocol and of Viejo et al. [65]. We only
compare our protocol to that of Viejo et al., because this is, to the best of our knowledge, the only protocol
providing both multi-functionality and malicious user detection. The comparison to other schemes therefore
does not provide any useful insights. We can see that the computation complexity of the aggregator of Viejo
et al. depends on the amount of malicious users y since they check which user is malicious after receiving an
invalid aggregate. The aggregator has to go through a different path in the tree of nodes for every malicious
user. The length of such a path is logd (u), where d is the amount of children of each node in the tree and u is
the total amount of users. For each node on this path, the ciphertext of every possible value must be verified.

Our scheme, on the other hand, detects malicious users already as part of the submission which removes
the reliance on the amount of malicious users y . The most computational expensive task of the verification of
our scheme is the computation of Ei (s2) for every user i . The computation of one such value relies on O(k)
random numbers. For all users this results in O(u ·k) operations. Additionally, every random number shared
between two users must be verified resulting in a total of O(u ·k) proof verifications.

During initialization, which is only executed once, the computational complexity of our protocol largely
depends on the initialization of the encoding scheme. In Table 6.1, the encoding scheme with extended range is
used. Note that the encoding scheme with maximum certainty is more efficient. When it is impossible to create
a signature of a coefficient due to the lack of a modular inverse, all subsequent coefficients have to be updated.
However, when the existence of a modular inverse is checked before creating the subsequent coefficients,
only the current coefficient is updated. During creation of the subsequent coefficients, the updated current
coefficient is taken into account.

The modular inverse modulo n = p · q does not exist only when αi + x is not coprime to n. When this
occurs, there are three possibilities, namely αi +x is not coprime to p, q or both. In the latter case, (αi +1)+x
is coprime to n and therefore has a modular inverse modulo n. If, on the other hand, αi + x is not coprime
to p, but it is to q , (αi +1)+ x is coprime to p. However, it is possible that (αi +1)+ x is not coprime to q
anymore. Therefore, αi +1 is incremented again with one. Assuming that p is not equal to 2, (αi +2)+ x is
coprime to both p and q and therefore also to n. The same reasoning holds when αi +x is not coprime to q .
Every coefficient, therefore, is incremented at most two times, which does not increment the computation
complexity with an order of magnitude.

The initialization for the users in the scheme of Viejo et al. require no computation, where our scheme
only requires some constant number of operations in order to initialize the Paillier cryptosystem. During a
round, the computation complexity of the users of the scheme of Viejo et al. depends on m, where our scheme
depends on k. The advantage of depending on k is the freedom of choosing such value, where m is fixed in
most applications. The value k can be decreased resulting in better complexity, but less users need to collude
in order to gain knowledge of an honest user. Vice versa the same holds.
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Table 6.1: Computation complexity of our own scheme with the encoding scheme with extended range and the scheme of Viejo et al. [65],
where d means the degree of the tree used in [65], y means the amount of malicious users and k the group size in which users share
random numbers.

Aggregator User
Initialization Every round Initialization Every round
[65] Ours [65] Ours [65] Ours [65] Own

Exponentiation O(u) O(u ·m) O(m + ym · l ogd (u)) O(uk) - O(1) O(m) O(k)
Addition - O(u ·m) O(m +u + yd · l ogd (u)) - - - - O(k)
Multiplication O(u) O(u2 +m) O(um + ydm · logd (u)) O(uk) - O(1) O(1) O(k)
Modular inverse - O(m) - O(u) - O(1) - O(1)
Subtraction O(1) O(u ·m) O(m + ym · l ogd (u)) O(m) - O(1) - O(1)
Division - O(u) O(m + ym · l ogd (u)) O(u +m) - O(1) - -
Modulo O(1) O(m) O(m + ym · l ogd (u)) O(uk +m) - O(1) - O(k)
Hash - - O(u) O(uk) - - O(m) O(k)
Equality - - O(m + ym · l ogd (u)) O(u) - - - -
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Figure 6.1: This figure illustrates the relation between the amount of users participating in the protocol and the time it takes to execute the
initialization of our protocol based on the encoding scheme with maximum certainty. The time is taken in seconds and is the average of
10 experiments. Different lines in the graph represent different amounts of values.

6.6.2. Experimental run-time
We performed two types of experiments to measure the run-time of our protocol. The first type of experiments
are used to measure the run-time of the initialization and the second type of experiments are used to measure
the run-time of a round after initialization. All experiments are executed with an Intel(R) Core(TM) i7-
8750H CPU @ 2.20GHz processor and with 16GB RAM memory on Windows 10 Home. The experiments are
implemented in Java 14 with built-in functions and are executed 10 times of which the average is taken.

Figure 6.1 illustrates the results of the first type of experiments, namely the run-time of the initialization of
our protocol. During these experiments, we used the encoding scheme with maximum certainty for initializing
the coefficients. The graph also plots different lines for different amounts of values.

The graph shows us that the run-time grows linearly with an increase of the amount of users participating
in the protocol. The amount of values that are used does not make a significant difference. The difference
between 5 and 160 values is between 4 and 5 seconds. Additional experiments showed that a possible group
size does not affect the run-time of the initialization.

Figure 6.2 illustrates the results of the second type of experiments. The graph shows the dependence of
the amount of users participating in the protocol on the run-time of a round after the initialization. In those
experiments, it does not matter which encoding scheme is used. The only computational difference between
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Figure 6.2: This figure illustrates the relation between the amount of users participating in the protocol and the time it takes to execute a
round of our protocol after initialization. The time is taken in seconds and is the average of 10 experiments. Different lines in the graph
represent different group sizes.

the encoding schemes is during the initialization. The experiments are done for different group sizes. Note that
the group size is not allowed to be higher than the amount of users participating in the protocol. Therefore,
not all lines start at the same x-coordinate.

The graph shows us that, also in a round after initialization, the run-time grows linearly with the amount of
users participating in the protocol. The run-time also grows linearly with the group size. It is important to
note that in these experiments, the computations of the users are performed in sequential order. In practice,
when every user has a separate device, computations are performed in parallel which decreases the run-time.
Additional experiments showed that the amount of values used in the protocol does not influence the run-time
of a round after initialization. This is due to the fact that the amount of values is limited because of the
encoding scheme.

6.6.3. Communication complexity

For the communication complexity, we use b as the amount of bits needed for n. We assume that the users are
split in groups of size k. A Paillier ciphertext is 2b bits. Every user sends 2 ciphertexts with a random number
for a round for every other user in the same group. The aggregator relays one of these ciphertexts. In total,
this are 3(k −1)u ciphertexts of 2b bits. The zero-knowledge proof of plain text equality requires a user i to
additionally send four messages of 2b bits, and one message of b bits, for every other user in the same group.
In total, this results in 15u ·b · (k −1) bits.

For the zero knowledge proof of the set membership, each user sends h, s1, s2 and s3 which are b bits and B
which is 2b bits. Also, in order to verify the secret shares, each user i sends Ei (nA), E A(nA), Ei (s2), E A(s2) and
two proof of plaintext equality resulting in 12u messages of 2b bits and 2u messages of b bits.

In total, including the 2b bits ciphertexts ci ,t for each user i at round t , each round of aggregation requires
2b · (15u +7(k −1)u)+b · (6u + (k −1)u) = bu · (21+15k) =O(buk) bits.

During initialization, every user receives lists of m values, m coefficients and m signatures. Each signature
is 2b bits, each coefficient must be smaller than n and therefore requires at most b bits and the values depend
on the application. We assume these lists to be pre-loaded in the devices of the users. Additionally, every user
sends its public key during initialization to the aggregator which sends it to all other users.

All communication is summarized in Figure 6.3.
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Initialization pki

wait for all users

{pk j | j ∈Gi }, pkA , gS ,hA , H

Round t {Ei (ri , j ,t ),E j (ri , j ,t ) | j ∈Gi }

{EQEi (ri , j ,t ),E j (ri , j ,t ) | j ∈Gi }

wait for all users

{Ei (r j ,i ,t ) | j ∈Gi }

ci ,t ,SMci ,t

Ei (nA),E A(nA),Ei (s2),E A(s2)

EQEi (nA ),E A (nA ),EQEi (s2),E A (s2)

Round t +1 {Ei (ri , j ,t+1),E j (ri , j ,t+1) | j ∈Gi }

etc. ...

User i Aggregator

Figure 6.3: An overview of the communication in our protocol where we denote Gi as the set of all other users that are in the same group
as user i . We also denote the proof of plaintext equality between two ciphertexts ci and c j as EQci ,c j and the proof of set membership of

ciphertext c as SMc .
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6.7. Comparison
We compare our protocol with the scheme presented by Viejo et al. [65]. This scheme is chosen since it supports
both the computation of any arbitrary function and malicious user detection. Other schemes, to the best of
our knowledge, only support one of these which makes comparison impractical.

As we have already seen during the computation complexity analysis, the scheme of Viejo et al. differs
from our scheme since it detects malicious users after aggregating instead of before. The aggregator of the
scheme of Viejo et al. therefore has to perform extra computations dependent on the amount of malicious
users. Additionally, where the computation complexity of a user of Viejo et al. depends on m which is in most
applications fixed, our scheme depends on k which can be chosen and adapted to the context. However, when
k cannot be set smaller than m due to security reasons, the scheme of Viejo et al. is more efficient with regard
to the computation complexity. The same holds for the communication complexity. Our scheme requires
O(buk) bits, where the scheme of Viejo et al. requires O(l og2(u) ·um) bits.

The main difference is with regard to the security. The aggregator in the scheme of Viejo et al. is able to
decrypt the message of an individual user. Therefore, the aggregator is able to see what value the user has sent
if it intercepts the message sent by a user. Our protocol makes sure that only the combination of all ciphertexts
of a group is decryptable by the aggregator.

Secondly, the scheme of Viejo et al. requires all users to be in a tree structure where the leafs are users. This
setup requires O(u) extra nodes to function as intermediary nodes. Furthermore, these nodes can collude
with the aggregator to relay the ciphertext of a user which the aggregator can decrypt. Our protocol does not
rely on intermediary nodes and is therefore not susceptible to collusion between intermediary nodes and the
aggregator.

Above all, the malicious user detection phase of Viejo et al. requires the aggregator to check the branches
of the tree with a malformed ciphertext up to the leaves, which gives the aggregator the access to individual
ciphertexts and therefore autonomy to decrypt such an individual ciphertext.
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Data is used in many applications to make things easier for their users. Applications may improve the life
of individuals or even save lives. Despite the advantages of data, it can also be misused, since data can
be privacy-sensitive. When the privacy of this data is not guaranteed, the consequences can be enormous.
Privacy-enhancing technologies are designed to both preserve the privacy of privacy-sensitive data and to
give the applications their utility. One of those privacy-enhancing technologies is privacy-preserving data
aggregation which preserves the data privacy while giving an application the opportunity to aggregate the
privacy-sensitive data.

Every application has different circumstances it must operate in. An application might, for example, have a
different computation it wants to perform on the private data in comparison to other applications. A desired
characteristic of a privacy-preserving data aggregation scheme is, therefore, multi-functionality. Applications
may run in an environment where the users are assumed honest-but-curious. Other applications, on the other
hand, do not run in such an environment. It is therefore desired for a privacy-preserving data aggregation
scheme to allow an application to use an honest-but-curious version, or a malicious user version where every
message of each user is verified to be correct. Our research question is whether it is possible to design a
privacy-preserving data aggregation scheme which is multi-functional, collusion-resistant and is able to detect
malicious users without relying on a trusted authority. We presented and analyzed three protocols where one
of those protocols satisfies the criteria of the research question. This chapter discusses our results, future work
and concludes with concluding remarks.

7.1. Discussion
In this thesis we presented three protocols. We discuss each protocol separately. We start with the discussion
of the encoding scheme followed by the two privacy-preserving data aggregation schemes.

7.1.1. Encoding scheme
The first protocol we presented is the encoding scheme. The encoding has two versions, one which maximizes
the certainty of a correct result and one which extends the supported range of values. The encoding scheme
with maximum certainty guarantees that every valid encoding is decoded correctly. However, it only supports a
limited amount of values which might be impractical for certain applications. This amount of values depends
on the message size and the amount of users that are participating in the protocol. The encoding scheme with
extended range partially mitigates this problem by, as the name suggests, extending the range. In order to use
this scheme, the probability distribution of all coefficients to be sent by a user must be known.

Both encoding schemes allow any data type to be used as values such as strings, intervals and numbers.
Also, the encoding schemes are very flexible. They are both compatible with any privacy-preserving data
aggregation scheme, which uses an additive homomorphic encryption scheme, to make it multi-functional.

When the probability distribution is not known beforehand and the amount of values supported by the
encoding scheme is not enough, there are three possible solutions with which the encoding scheme can still
be used. The first solution is by giving up on the exactness of the encoding scheme and use intervals as values.
Now users send a coefficient corresponding to the interval their value is part of. The approximation error of
the result depends on the size of the intervals. Note that intervals do not have to have the same size. Intervals
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of values which are chosen less often may, for example, be bigger than intervals of values which are chosen
more often.

Another solution is approximating the probability distribution with the help of a few rounds of the encoding
scheme with maximum certainty with intervals as values instead of single values as in the previous solution.
From the frequencies of users that have sent a certain interval, a probability distribution is approximated. This
process may be extended to extra rounds of sub-intervals for a more detailed probability distribution. The risk
with this solution is that the probability distribution is approximated and therefore it is more likely to happen
that an unexpected amount of users send a specific value causing the decoding process to return incorrect
results.

The last solution requires extra communication. The encoding scheme with maximum certainty is used
multiple rounds where it encodes a different range of values in every round. In each round, a coefficient
corresponds to a single values to preserve the exactness. The number of rounds therefore depend on the
amount of values supported by the scheme and the amount of values the application requires to be supported.
When a user has a value which is not in the range of a certain round, it sends the value zero as coefficient. The
combination of all rounds result in an exact result for the entire range of values.

Therefore, despite the limitations of the encoding schemes, there are solutions so that the encoding
schemes are still useful. In combination with the flexibility of privacy-preserving data aggregation schemes
it can be used in and the support of different data types, the encoding schemes are suited for numerous
real-world applications.

7.1.2. Multi-functional privacy-preserving data aggregation scheme
The first multi-functional privacy-preserving data aggregation scheme we presented assumed users to be
honest-but-curious. Due to this user assumption, the simplest encryption scheme could be used as long
as it is additive homomorphic in order to use the encoding scheme and as long as the privacy of the data is
preserved. For this reason, the encryption and decryption only requires additions and subtractions. Except
for the initialization, the computation complexity of our scheme is therefore better compared to comparable
schemes. Also the communication complexity of our scheme is better compared to the state-of-the-art.

The second multi-functional privacy-preserving data aggregation scheme we presented removed the
assumption of honest-but-curious users. The removal of this assumption required to include malicious user
detection. Due to this extra requirement, the simple encryption and decryption used in the scheme with
honest-but-curious users is not enough anymore. In this malicious user version, we have to check whether
the coefficient of a user is a valid one without knowing the coefficient. Since there is only a limited set of
coefficients, not every commitment scheme or zero-knowledge proof is suitable. Brute-forcing all possible
coefficients is an efficient attack due to the limited size of the set. Therefore, checking whether the coefficient is
correct is seen as a set membership verification. With this type of verification we check whether the coefficient
is in the set of valid coefficients without leaking any information of the coefficient. The zero-knowledge proof
we use for this purpose relies on the Paillier cryptosystem which is therefore used as an cryptosystem in this
protocol. The same holds for the Boneh-Boyen signature scheme which is used to create a signature for every
coefficient.

The scheme with malicious users improves upon the state-of-the-art with respect to communication and
computation complexity. The main difference in the complexity is two-fold. The computation complexity of
the aggregator in our protocol does not depend on the amount of malicious users because our protocol verifies
a ciphertext during submission. State-of-the-art verifies ciphertexts after retrieving an incorrect aggregate
which results in a computation complexity dependent on the amount of malicious users. Concerning the
computation complexity for users and the communication complexity, state-of-the-art relies on the amount of
values which is in most application fixed. Our scheme, on the other hand, relies on the amount of users in a
group which is more flexible. The amount of users in a group can be set depending on the requirements of the
application.

In both privacy-preserving data aggregation schemes, we split the users in groups of size k. However, atten-
tion should be paid when determining the value of k. It might seem logical to set k very low. The computation
complexity for the aggregator would become linear in the amount of users and the communication would
become linear in the amount of users and the amount of bits of a message. However, having a low value for
k also has its consequences. As we have seen during the security analysis, the only way in order to retrieve
the private value of an honest user is for k −1 users of the same group to collude. Also, the distribution of
the honest users can be retrieved. For a small amount of honest users, an adversary knows that the value
of an honest user is one of the little amount of values. Therefore, it is wanted to have as many honest users
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as possible. Setting a k at a value which is too small results in the fact that it is easier for an adversary to
compromise enough users. Therefore, depending on the application, a balance has to be found between the
security and the computation- and communication complexity of the protocol.

In addition, both privacy-preserving data aggregation schemes do not rely on a trusted authority which is a
requirement of the research goal.

7.2. Future work
Although our protocol is able to be used in a real-world application, applications might require characteristics
that our protocol cannot provide. Inherent to the encoding scheme, which is used by our protocol, only a
limited amount of values for a user to choose from is supported. Applications might need a bigger range of
values. Besides that, our protocol is not fault-tolerant. When a user is faulty due to any problem such as power
shortage or a lost network connection, the aggregator is not able to retrieve any data of other users in the same
group as the faulty user. Our protocol, therefore, may need adjustments. Adjustments we see viable for future
work are as follows.

• Fault-tolerance - Our protocol does not allow any node to be faulty. Users might encounter problems
such as power shortage or a lost network connection. If such a faulty user did not share random numbers
with other users, the protocol executes correctly, since the secret shares of the remaining users cancel
each other. However, if a faulty user did share random numbers with other users and became faulty after
that, the protocol executes incorrectly. The random numbers contained in the secret share of the faulty
user are needed to cancel the secret shares of the remaining users. Only one faulty user, therefore, leads
to an incorrect result.

This problem is partially mitigated by splitting the users in groups. If one user is faulty, the result of the
group containing the faulty user cannot be retrieved. The results of all the other groups are still retrieved
correctly. The problem is only solved partially, because the results of non-faulty users in a faulty group
are still lost. The smaller the group size the more data is retrieved from non-faulty users. However, as
discussed in the previous section, decreasing the group size is not without consequences.

An adjustment to make our protocol fault-tolerant must result in a protocol which supports any user to
be faulty while having the possibility to retrieve the data of all other non-faulty users.

• Less communication and computation complexity - A decrease in communication and computation
complexity without affecting the other properties of the protocol is always a beneficial adjustment.
This can be achieved in any way. One way, in which we see potential, are homomorphic seeds. In our
protocol every user must compute and send a ciphertext of a random number for every other user
in the same group which dominates the complexity analysis for as well the communication as the
computation. The protocol without malicious users in Chapter 5 circumvented the communication and
computations by sending a random seed of a pseudo random number generator during the initialization
of the protocol. Each user computed the shared random numbers on its own without needing any
encryption or communication.

In our protocol with malicious users in Chapter 6, the users can no longer simply share a random
seed with other users. Due to the fact that a malicious user might include the wrong secret share in its
ciphertext, the aggregator has to verify the secret share of every user in every round. In order to do this,
the aggregator must possess the encryption of each random number shared between users. If users send
a seed during the initialization, the aggregator must be able to compute the encryption of the random
number of each round from that encrypted seed. This is, to the best of our knowledge, an open problem.
If it is solved and applied to our protocol the communication and computation complexity could be
reduced with a factor k.

• Correlation - In our protocol a user is able to send one value out of a list of values which is aggregated
by the aggregator. Each value a user sends is treated separately. The aggregator is not able to retrieve the
correlation between two or more different values a user might have, such as the correlation between the
temperature and the location of a user.

The correlation can also be used to extend the range of values which the protocol supports. A user
could, for example, send a message for every digit. The aggregator, then, correlates all digits to form the
resulting value without gaining the ability to link the value to any user.
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7.3. Concluding remarks
Existing literature about privacy-preserving data aggregation schemes either focuses on the support of multi-
functionality, the support of malicious user detection or neither of them. There is one exception which is not
collusion-resistant. Their complexity also depends on the amount of values a user can have and the amount
of malicious users. Our privacy-preserving data aggregation scheme also supports both multi-functionality
and malicious user detection. In addition, our scheme is collusion-resistant. The complexity of our scheme
depends on the group size instead of the amount of values a user can have and it does not depend on the
amount of malicious users. The advantage of the group size over the amount of values is that the group size
can be adapted easily to the context. The number of values, on the other hand, is most often fixed and cannot
be changed. Due to the characteristics of our protocol, it brings the deployment of privacy-preserving data
aggregation schemes in the real-world one step closer. With our protocol, applications no longer have to
choose between multi-functionality, malicious user detection, collusion-resistancy and the privacy of the
private data. They are all combined in one protocol.
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