
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Two boundary value
control algorithms
For the heat equation on the finite domain
using the unified transform method

SC52135: S&C MSc Thesis
Thijs van Wijk

Two boundary value
control algorithms
For the heat equation on the finite domain

using the unified transform method

by

Thijs van Wijk
Student Name Student Number

Thijs van Wijk 4351509

Instructor: Dr.-Ing. S. Wahls
Project Duration: August, 2022 - July, 2023
Faculty: Faculty of Systems and Control, Delft University of Technology, Delft

Cover: (Modified version of) ”Idealized physical setting for heat conduc-
tion in a rod with homogeneous boundary conditions.” [2]

Style: TU Delft Report Style, with modifications by Daan Zwaneveld

Abstract

In this work we investigate two boundary-value control algorithms for the heat equation on the finite
interval. The algorithms we discuss here are based on the unified transform method (UTM), a method
invented by A. S. Fokas to solve boundary value problems of partial differential equations. We first in-
spect the boundary-value control algorithm presented in Kalimeris et al. [10]. This algorithm is originally
constructed to find the Neumann boundary value on the right side for nullcontrol of the heat equation. In
this work the algorithm has been expanded to allow arbitrary control objective, with either the Dirichlet
or Neumann boundary values from both sides. Other improvements have also been made.

Furthermore, a second algorithm is constructed, which aims for a lower computational cost than
the first algorithm. This second algorithm uses the same principles as the algorithm used in [10], but
stems from another part of the derivation of the UTM. Both algorithms were tested with various control
objectives, and show promising results.

i

Contents

Summary i

1 Introduction 1

2 The unified transform method for the heat equation on the finite domain 3
2.1 Derivation of the general solution . 3
2.2 Derivation of the Neumann problem of the heat equation 7
2.3 Derivation of the Dirichlet solution . 10

3 Improved version of the Kalimeris et al boundary value control algorithm 12
3.1 The Kalimeris et al algorithm . 12
3.2 Additions to the algorithm . 14

3.2.1 Arbitrary reference function and initial conditions 15
3.2.2 Control from both sides . 15
3.2.3 Method of solving for gamma . 16
3.2.4 Expansion of basis for Dirichlet control . 16

3.3 Final algorithm . 18

4 Boundary value control algorithm in the complex plane 20
4.1 Derivation of the second algorithm . 20

4.1.1 Derivation of F̂ γ = Ĝ . 21
4.1.2 Solving method for γ . 22

4.2 Final k-plane algorithm . 23

5 Methodology and results 24
5.1 Methodology for both algorithms . 24

5.1.1 Kalimeris algorithm xm placement . 25
5.1.2 k-Plane algorithm km placement . 26

5.2 Case 1: Elevated constant value . 26
5.2.1 Smaller xedge and solving without weights . 29

5.3 Case 2: A curved ramp . 30
5.4 Case 3: Sine wave with increasing frequency . 30

5.4.1 Increasing N and M . 32

6 Conclusion 36

References 37

A Matlab code 38

ii

1
Introduction

Partial differential equations (PDEs) form the basis of a large number of physical relations. It is therefore
not uncommon that engineers (who are known for occasionally dealing with physics) encounter such
a PDE. PDEs that only involve derivatives of one variable (commonly known as ordinary differential
equations (ODEs)) are often solved easily enough, but when we move onto PDEs involving derivatives
of two variables, things start to get more complex. When the PDE is simple enough, there will still
be some methods to solve it. Think about separation of variables, or a Fourier/Laplace type transform.
These commonmethods are often highly specialized for the PDE and its initial/boundary conditions, and
they will break down with an increase in either the order of the PDE or the complexity of the boundary
values. For most engineers, the solutions of these more complex PDEs will be to turn to any type of
numerical solver.

Usually this works out fine, when the problem that needs solving just needs a solution from the given
initial condition and boundary values. Sometimes, however, a problem requires a specific solution of
a PDE, and we need to find the boundary values that give rise to that specific solution. To solve a
control problem like this, we would normally find any math used to calculate the solution, and start
working backwards, but this is impossible to do for any numerical solver. Reverse-engineering the
Fourier/Laplace type transform methods could work, but this would only be possible for the handful of
PDEs of low enough complexity.

This is where the the unified transform method (UTM) comes in. The UTM is a relatively new way
to provide solutions to boundary value problems (BVPs) to a wide array of partial differential equations
(PDEs). Invented by Athanassios S. Fokas, it uses the local relation1 to describe the problem locally,
then extrapolates this to the full domain to incorporate the boundary values. For the most basic case,
linear evolution equations, the solution found by the UTM is a combination of two or more complex
contour integrals. This integral representation, opposed to a solution based on infinite series often
found by other methods, is generally advantageous for numerical computation [5] [4]. Besides the
numerical advantages, the integral representation also clearly illustrates the relation between the known
and unknown values.

Recently, Kalimeris et al. [10] used this relation between the known and unknown values in the UTM
to construct an algorithm which approximates the Neumann boundary values needed for nullcontrol2
of the heat equation. For this algorithm the boundary values (also called the input in analogy to control
system engineering) is approximated into N basis functions. The solution given by the UTM is then
evaluated at M points. A system of linear equations is then constructed which can be solved for the
(approximated) boundary values. The results found in [10] are highly accurate and it it shown that any
error in the results decreases exponentially with increased computational effort. But there are also
some drawbacks in the algorithm as it is presented, primarily on the small range of functions it can be
used for.

In this work, several additions to the Kalimeris et Al. algorithm will be proposed. These additions
aim to contain the control input and expand the range of initial and final conditions that the algorithm

1Italicized terms will be defined later.
2controlling the system to zero

1

2

can work with. The algorithm is also generalized to work with boundary conditions on both sides,
and the option for control with Dirichlet boundary values is added. Besides mere additions, a second
algorithm will also be proposed. This second algorithm takes inspiration from [10] and is also based
on the methods of the UTM, but is based in the complex plane instead of the real line. This algorithm
is developed with computational efficiency in mind, with the hope that it can be as accurate as the
Kalimeris et Al. algorithm.

We will start in Chapter 2 with the derivation of the solution of the heat equation using the UTM. In
Chapter 3 we will discuss the Kalimeris et al. algorithm and propose our additions. The second algo-
rithm will be proposed in Chapter 4. In Chapter 5 tests will be performed to compare the effectiveness
of the algorithms. Finally we will conclude our findings in Chapter 6. The code used for this work can
be found in the Appendix.

Finally we note that in this work we will not address controllability. Instead we will approach any
control problem with the practical assumption that the set of reachable states is at least dense in L23.
This means that if the desired state should be unreachable, there should be a reachable state that is
close enough to this desired state.

3The set of square-integrable functions.

2
The unified transform method for the

heat equation on the finite domain

In this chapter the basic principles of the UTM will be demonstrated for the heat equation on the finite
domain,

qt(x, t) = qxx(x, t), (x, t) ∈ Ω, (2.1a)
Ω ={0 ≤ x ≤ L, 0 ≤ t ≤ T}. (2.1b)

Here we also defined Ω, the domain of q in x and t. The domain is illustrated in figure 2.1, along with
g0(t) and g1(t), h0(t) and h1(t), q0(x), and qT (x), which are shorthand terms for the boundary values
and the initial and final conditions that we use for convenience:

q0(x) := q(x, 0), qT (x) := q(x, T) x ∈ (0, L),

g0(t) := q(0, t), g1(t) := qx(0, t), t ∈ (0, T),

h0(t) := q(L, t), h1(t) := qx(L, t), t ∈ (0, T).

It is assumed all of these terms are sufficiently smooth.
Normally not all of the boundary values are given. If g0(t) and h0(t) are given, one speaks of the

Dirichlet problem. These boundary values are also known as the Dirichlet boundary values. When g1(t)
and h1(t), the Neumann boundary values, are given, one speaks of the Neumann problem.

We start with the derivation of the general solution is Section 2.1, which we will use to derive the
Neumann solution in Section 2.2, and the Dirichlet solution in Section 2.3.

We note again that the UTM can be applied to a large class of linear evolution PDEs, but the full
derivation of this would be overly complex in a work where only the heat equation is used. The interested
reader can find the derivation for the arbitrary linear evolution PDE in either [3], [16], or Chapters 1 and
2 of [6], ordered from more accessible to more in depth.

2.1. Derivation of the general solution
Our derivation will start with the so called local relation [6]:

(e−ikx+w(k)tq)t − (e−ikx+w(k)t(qx + ikq))x = 0, k ∈ C, (2.2)

where k is some complex variable. The local relation describes how q(x, t) acts locally, describing an
equilibrium between some ratio of the partial derivatives in the x and t directions. It can be derived from
the fact that (2.1) admits the one parameter family of solutions eikx−k2t and from the adjoint of (2.1), in
Chapter 9 of [6].

The next step is to integrate (2.2) over the entire domain of both x and t. The equation is now in
such a form that allows us to use Green’s Theorem on it. This theorem relates double integrals of
expression in the form of (2.2) to a contour integral around the domain of integration:

3

2.1. Derivation of the general solution 4

Figure 2.1: The domain of q(x, t)

Green’s Theorem 1 ([14]). Let P : (x, y) → R and Q : (x, y) → R have continuous partial derivatives
on an open region D ⊆ R2, and C is a positively oriented, piecewise-smooth, simple closed curve
which is the boundary of D, then:∫

C

P (x, y)dx+Q(x, y)dy =

∫∫
D

(
∂Q(x, y)

∂x
− ∂P (x, y)

∂y
)dxdy

This will be used to transform the equation from a local one, to one relating the boundaries of the
domain with each other (under certain transforms):∫∫

Ω

[
(e−ikx+k2tq(x, t))t − (e−ikx+k2t(qx(x, t) + ikq(x, t)))x

]
dtdx

=

∮
∂Ω

[
e−ikx+k2tq(x, t)dx+ (e−ikx+k2t(qx(x, t) + ikq(x, t)))dt

]
=

∫ L

0

e−ikxq(x, 0)dx+

∫ T

0

e−ikL+k2t(qx(L, t) + ikq(L, t))dt

−
∫ L

0

e−ikx+k2T q(x, T)dx−
∫ T

0

ek
2t(qx(0, t) + ikq(0, t))dt

=q̂0(k) + e−ikL[h̃1(k
2) + ikh̃0(k

2)]− ek
2T q̂T (k)− [g̃1(k

2) + ikg̃0(k
2)].

Green’s Theorem

separate boundary

employ transform notation

When writing the contour integral as separate integrals in the ’separate boundary’ step, we use the fact
that either dx or dt is zero on those parts of the boundaries, so they can be removed from the integral.
In the ’employ transform notation’ step we have used both the Fourier transform and the T-transform:

Definition. The Fourier transform of a function f(x) : [0, L] → R is defined as

f̂(k) :=

∫ L

0

e−ikxf(x)dx, k ∈ C,

where f̂ : C → C is the Fourier transform of f(x).

Definition. the T-transform or time transform of a function f(t) : [0, T] → R is defined as

f̃(k2) :=

∫ T

0

ek
2tf(t)dt, k ∈ C,

with f̃(k2) : C → C.

2.1. Derivation of the general solution 5

(a) Domains D and E and the contours ∂D± (b) Visual representation of the contour deformation to ∂D+

Figure 2.2: Complex domain integration contours

This pair of transforms are the characteristic transforms of the heat equation. The hat ˆ symbol
denotes the Fourier transform of a function and the tilde ˜ symbol denotes T-transform of a function.

We slightly rewrite the last obtained result to get the global relation (GR), an equation which holds
all (transformed) boundaries of our domain,

q̂0(k)− g̃(k) + e−ikLh̃(k) = ek
2T q̂T (k), k ∈ C, (2.3)

where

g̃(k) := ikg̃0(k
2) + g̃1(k

2),

h̃(k) := ikh̃0(k
2) + h̃1(k

2).
(2.4)

From the GR, (2.3), we divide by ek
2T and apply the inverse Fourier transform to find a solution

q(x, T) =
1

2π

∫ ∞

−∞
eikx−k2T q̂0(k)dk − 1

2π

∫ ∞

−∞
eikx−k2T g̃(k)dk

+
1

2π

∫ ∞

−∞
e−ik(L−x)−k2T h̃(k)dk.

While this is a solution for q(x, T) there are still a few more steps left in the UTM. That’s because the
found solution still contains all 4 boundary value terms, while normally only 2 are given. This is why the
last step of the UTM is to cancel out two of these unknown boundary values (as performed in section
2.2 for the Neumann case). To prepare for this, we will deform the contours of integration of the latter
two integrals (the ones involving g̃(k) and h̃(k).

We define the domains D+, D−, E+, and E−, which partition the complex k plane:

D+ = {k ∈ C, Re k2 < 0, Im k > 0}, (2.5a)
D− = {k ∈ C, Re k2 < 0, Im k < 0}, (2.5b)
E+ = {k ∈ C, Re k2 > 0, Im k > 0}, (2.5c)
E− = {k ∈ C, Re k2 > 0, Im k < 0}. (2.5d)

We also define ∂D+ and ∂D− as the boundaries of D+ and D−, respectively, in a counterclockwise
direction. These can all be seen if figure 2.2a.

We also introduce Cauchy’s integral theorem and Jordan’s lemma, which are the final parts needed
for the contour deformation:

2.1. Derivation of the general solution 6

Cauchy’s integral Theorem 2 ([1]). If a function f(z) : C → C is analytic at all points interior to and
on a simple closed contour C, then ∫

C

f(z)dz = 0.

Definition. A function f(z) : C → C is analytic in an open set S if it has a derivative everywhere in that
set. It is analytic in a point if it is analytic in some neighborhood around that point. [1]

Jordan’s Lemma 3 ([1]). Suppose that

1. a function f(z) : C → C is analytic at all points in the upper half plane Im z ≥ 0 that are exterior
to a circle |z| = R0;

2. CR denotes a bigger semicircle z = Reiθ where 0 ≤ θ ≤ π and R > R0

3. for all points z on CR, there is a positive constant MR such that

|f(z)| ≤ MR and lim
R→∞

MR = 0.

Then, for every positive constant a:

lim
R→∞

∫
CR

f(z)eiazdz = 0.

With all necessary thing defined, we now start with the contour deformation. We will first look
at the integral

∫∞
−∞ eikx−k2T g̃(k)dk. Specifically, we will look at a part of this integral first, namely a

part distance R away from the origin,
∫ R

−R
eikx−k2T g̃(k)dk. This integral is equal to a circular arc CR

from −R to D+, a part of ∂D+ (from |R| to |R|), a mirrored circular arc back to the real line, and two
counterclockwise contours around E+ up to R, all with the same integrand. This is visualized in figure
2.2b, where we can see that all contours besides the one on the real line do indeed cancel out. As we
let R → ∞, we find:∫ ∞

−∞
eikx−w(k)tg̃(k)dk =

(∑∮
E+

+
∑

lim
R→∞

∫
CR

+

∫
∂D+

)
eikx−w(k)tg̃(k)dk. (2.6)

The integrand eikx−k2T g̃(k) in domain is analytic in E+, meaning we can use Cauchy’s integral
theorem to show that the contour integrals around E+ in (2.6) are zero. The integrand is also bounded
on E+, as g̃(k) is also bounded due to the finite domain of the transform, and T > 0 and x ≥ 0, so the
exponential is bounded for Rek2 ≥ 0 and Imk ≥ 0, or on E+. Furthermore, the integrand decays to
zero as |k| → ∞, which can be shown via integration by parts, [6]. This means we can use Jordan’s
lemma to show that the circular contours CR are also zero. We’re left with:∫ ∞

−∞
eikx−w(k)tg̃(k)dk =

∫
∂D+

eikx−w(k)tg̃(k)dk. (2.7)

The same can be done with the third integral in (2.1), but now on E− (as L − x ≥ 0, so this is
bounded for Imk ≤ 0). In this calculation an extra minus sign arises from the way we define ∂D−. With
both contour deformation found, we get

q(x, T) =
1

2π

∫ ∞

−∞
eikx−k2T q̂0(k)dk − 1

2π

∫
∂D+

eikx−k2T g̃(k)dk

− 1

2π

∫
∂D−

e−ik(L−x)−k2T h̃(k)dk.

(2.8)

This the general solution to the heat equation. Since it contains all the boundary values in g̃(k) and
h̃(k), it can’t be used for any specific problem yet. In the following sections the Neumann, and the
Dirichlet problem will be derived.

2.2. Derivation of the Neumann problem of the heat equation 7

2.2. Derivation of the Neumann problem of the heat equation
In this section we derive the solution of the Neumann problem of the heat equation on the finite interval.
The derivation will start from both the general solution (2.8) and the global relation (2.3) of the heat
equation on the finite interval. From there we follow the last steps of the UTM to come to the final
solution.

The first step is isolating and removing the unknown boundary values from (2.8). For the Neumann
problem, these are g̃0(k

2) and h̃0(k
2) (which are contained in g̃(k) and h̃(k) (2.4)). To do this we create

system of equations by using the transformation k → −k on the global relation. The variables we want
to isolate are functions of k2 and thus invariant to this transformation:

q̂0(−k) + ikg̃0(k
2)− g̃1(k

2)− ikeikLh̃0(k
2) + eikLh̃1(k

2) = ek
2T q̂T (−k), k ∈ C, (2.9)

The GR, (2.3), and the GR with the transformation k → −k (2.9) now form a system of two equations
from which we separate g̃0(k

2) and h̃0(k
2) from the rest of the terms:[

−1 e−ikL

1 −eikL

] [
ikg̃0(k

2)

ikh̃0(k
2)

]
=

[
−q̂0(k) + g̃1(k

2)− e−ikLh̃1(k
2) + ek

2T q̂T (k)

−q̂0(−k) + g̃1(k
2)− eikLh̃1(k

2) + ek
2T q̂T (−k)

]
=:

[
N0(k)
N0(−k)

]
,

where we introduce the encompassing function N0(k) for the ease of notation. From here we take the
inverse of the leftmost matrix and find[

ikg̃0(k
2)

ikh̃0(k
2)

]
=

1

eikL − e−ikL

[
−eikL −e−ikL

−1 −1

] [
N0(k)
N0(−k)

]
=

1

eikL − e−ikL

[
−eikLN0(k)− e−ikLN0(−k)

−N0(k)−N0(−k)

]
.

We note that when k = n2π, for integer n, the determinant of the system is zero. This will be dealt with
accordingly when it comes up. We plug these values into g̃(k) and h̃(k), we find

g̃(k) = ikg̃0(k
2) + g̃1(k

2)

= g̃1(k
2) +

−eikLN0(k)− e−ikLN0(−k)

eikL − e−ikL

= �����eikLg̃1(k
2)− e−ikLg̃1(k

2)

eikL − e−ikL
− −eikLq̂0(k) +�����eikLg̃1(k

2)− h̃1(k
2) + eikL+k2T q̂T (k)

eikL − e−ikL

− −e−ikLq̂0(−k) + e−ikLg̃1(k
2)− h̃1(k

2) + e−ikL+k2T q̂T (−k)

eikL − e−ikL

=
−e−ikL2g̃1(k

2) + 2h̃1(k
2) + eikLq̂0(k)− eikL+k2T q̂T (k) + e−ikLq̂0(−k)− e−ikL+k2T q̂T (−k)

eikL − e−ikL
,(2.10)

and

h̃(k) = ikh̃0(k
2) + h̃1(k

2)

= h̃1(k
2) +

−N0(k)−N0(−k)

eikL − e−ikL

=
eikLh̃1(k

2)�������
−e−ikLh̃1(k

2)

eikL − e−ikL
− −q̂0(k) + g̃1(k

2)(((((((−e−ikLh̃1(k
2) + ek

2T q̂T (k)

eikL − e−ikL

− −q̂0(−k) + g̃1(k
2)− eikLh̃1(k

2) + ek
2T q̂T (−k)

eikL − e−ikL

=
−2g̃1(k

2) + 2eikLh̃1(k
2) + q̂0(k)− ek

2T q̂T (k) + q̂0(−k)− ek
2T q̂T (−k)

eikL − e−ikL
. (2.11)

Now that we have found expressions for g̃(k) and h̃(k) without the unknown boundary values we
can substitute them into the general solution (2.8). This, however, brings a the new problem that our

2.2. Derivation of the Neumann problem of the heat equation 8

solution q(x, T) now depends on its own Fourier transform:

q(x, T) =
1

2π

∫ ∞

−∞
eikx−k2T q̂0(k)dk · · · (2.12)

− 1

2π

∫
∂D+

eikx−k2T

eikL − e−ikL

[
−e−ikL2g̃1(k

2) + 2h̃1(k
2) + eikLq̂0(k) + e−ikLq̂0(−k)− ek

2T (eikLq̂T (k) + e−ikLq̂T (−k))
]
dk

− 1

2π

∫
∂D−

eikx−k2T

eikL − e−ikL

[
−e−ikL2g̃1(k

2) + 2h̃1(k
2) + e−ikLq̂0(k) + e−ikLq̂0(−k)− e−ikL+k2T (q̂T (k) + q̂T (−k))

]
dk.

In the following part, we will specifically look at the parts of the integrals that contain the terms q̂T (k)
and q̂T (−k):

1

2π

∫
∂D+

eik(x+L)q̂T (k) + eik(x−L)q̂T (−k)

eikL − e−ikL
dk +

1

2π

∫
∂D−

eik(x−L)(q̂T (k) + q̂T (−k))

eikL − e−ikL
dk (2.13)

The expression above contains poles at k = 0. Were it not for these poles, we could argue that the
total value of these integrals is zero (the full argument of this will follow later). To do this we first need
to find the contribution of these poles, for which we ave to go over some complex analysis theory first.

Cauchy’s integral theorem states that any contour integral of a function around a region in where that
function is fully analytic, is zero, where the function also has to be analytic on the contour. A theorem
related to this is Cauchy’s residue theorem [8], which states that a contour integral of a function around
a region where the function is analytic except on a number of poles1 is equal to 2iπ times the sum of
residues of those poles (where the function still has to be analytic on the contour). The residue of a pole
of a function is therefore defined by the constant value2 obtained by performing a contour integration
around it, divided by 2πi. But despite being defined as such, there are other ways to calculate a residue,
for example, for a function f(z) = h(z)

k(z) : C → C with a simple pole at z0, we can find it residue as [8]

res{f(z); z = z0} =
h(z)

dk(z)/dz
. (2.14)

However, our problem is that we’re integrating over, and not around, a pole. This is where the inden-
tation lemma comes in [13]. As integrating over a pole is mathematically ambiguous, it instead deforms
the contour of integration to a tiny circular arc around the pole, and then calculates the contribution of
that arc. Functionally it works the same as Cauchy’s residue theorem, but instead of multiplying the
residue with 2iπ we multiply with i times the arc that the contour makes over the pole:

Indentation Lemma 4 ([13]). Let f(z) : C → C have a simple pole at z0 with a residue res{f(z); z = z0}.
Then

lim
ϵ→0

∫
ce

f(z)dz = i(β − α)res{f(z); z = z0},

where ce denotes the circular arc θ → z0 + ϵeiθ, α ≤ θ ≤ β around the pole.

Thus, to calculate the contribution of the integrals in (2.13), we deform the contours involving ∂D+

and ∂D− to exclude a tiny circular arc from the origin. We will call these contours ∂D+
c and ∂D−

c ,
respectively. They can be seen in figure 2.3. We define ∂D±

c as ∂D+
c := limϵ→0 ∂D

+\{ϵeiθ} for π
4 ≤

θ ≤ 3π
4 and D−

c := limϵ→0 ∂D
−\{ϵeiθ} for 5π

4 ≤ θ ≤ 7π
4 .

We start the residue calculation with the ∂D− integral from (2.13). We use the fact that eikx−k2T h̃(k)
is analytic in the full k plane, this means the pole at k = 0 was introduced by removing the unknown
boundary values in (2.11). This also means its ’residue’ at k = 0 is Res{e−ik(L−x)−k2T h̃(k), k = 0} = 03.

1The theorem also extends to other types of (isolated) singularities, not just poles. As these are not needed for this explanation
they will be ignored for simplicity.

2Or a value independent of the integration variable in the case of multiple variables
3Technically, this is not a residue as there is no pole. What we mean by residue here is the value we would find if we apply a

contour integral of this function around this point (divided by 2iπ).

2.2. Derivation of the Neumann problem of the heat equation 9

Figure 2.3: Contours ∂D±
c . Similar to contours ∂D± in figure 2.2a, but with an indentation around k = 0.

Now we plug in the expression for h̃(k) found in (2.11) to find

Res{e
−ik(L−x)[q̂T (k) + q̂T (−k)]

eikL − e−ikL
, k = 0} = Res{e

−ik(L−x)−k2T [−2g̃1(k
2) + 2eikLh̃1(k

2) + q̂0(k) + q̂0(−k)]

eikL − e−ikL
, k = 0}

=
g̃1(0)− h̃1(0)− q̂0(0)

iL
, (2.15)

where we used the method of calculating residues for simple poles in (2.14). We do the same with the
∂D+ we find that is has a similar residue:

Res{e
ik(x+L)q̂T (k) + eik(x−L)q̂T (−k)

eikL − e−ikL
, k = 0}

=Res{e
ikx−k2T [−2e−ikLg̃1(k

2) + 2h̃1(k
2) + eikLq̂0(k) + e−ikLq̂0(−k)]

eikL − e−ikL
, k = 0} =

−g̃1(0) + h̃1(0) + q̂0(0)

iL
.

Then, the indentation lemma tells us that the contribution of the pole to the integral over ∂D− in
(2.13) is the found residue times i times the angle of the circular arc over the pole, which is π

2 . The total
contribution of both integrals is

1

2π
2i
π

2

−g̃1(0) + h̃1(0) + q̂0(0)

iL
=

g̃1(0)− h̃1(0)− q̂0(0)

2L
,

where the factor 1
2π is the constant before the integrals (2.13), and the minus sign arises from the

clockwise direction of the contours. We can now write (2.13) as

g̃1(0)− h̃1(0)− q̂0(0)

2L
+

1

2π

∫
∂D+

c

eik(x+L)q̂T (k) + eik(x−L)q̂T (−k)

eikL − e−ikL
dk+

1

2π

∫
∂D−

c

eik(x−L)(q̂T (k) + q̂T (−k))

eikL − e−ikL
dk,

where we see that the integrands are bounded and analytic on D±
c (the regions D± excluding the

regions around the pole), and decay to zero as k → ∞, thus we can use Cauchy’s integral theorem

2.3. Derivation of the Dirichlet solution 10

with Jordan’s lemma to see that any other contribution of these terms is zero. We find:

q(x, T) =
g̃1(0)− h̃1(0)− q̂0(0)

2L
+

1

2π

∫ ∞

−∞
eikx−k2T q̂0(k)dk

− 1

2π

∫
∂D+

eikx−k2T

eikL − e−ikL

[
−e−ikL2g̃1(k

2) + 2h̃1(k
2) + eikLq̂0(k) + e−ikLq̂0(−k)

]
dk

− 1

2π

∫
∂D−

eikx−k2T

eikL − e−ikL

[
−e−ikL2g̃1(k

2) + 2h̃1(k
2) + e−ikLq̂0(k) + e−ikLq̂0(−k)

]
dk.

(2.16)

This equation only has known quantities on its right hand side, and is therefore a valid solution to our
problem.

Alternatively, instead of only deforming the parts of the integral with q̂t(±k), we can deform the full
integrals of (2.8) before cancelling out the unknown boundary values. Since we know g̃ and h̃ are
analytic, there will be no constant contribution from any poles. Afterwards we use g̃ and h̃ from (2.10)
and (2.11), respectively, and then set the parts of the integrals containing q̂T (±k) to zero.

This alternative formulation is

q(x, T) =
1

2π

∫ ∞

−∞
eikx−k2T q̂0(k)dk

− 1

2π

∫
∂D+

c

eikx−k2T

eikL − e−ikL

[
−e−ikL2g̃1(k

2) + 2h̃1(k
2) + eikLq̂0(k) + e−ikLq̂0(−k)

]
dk

− 1

2π

∫
∂D−

c

eikx−k2T

eikL − e−ikL

[
−e−ikL2g̃1(k

2) + 2h̃1(k
2) + e−ikLq̂0(k) + e−ikLq̂0(−k)

]
dk.

(2.17)

2.3. Derivation of the Dirichlet solution
We start the derivation of the Dirichlet solution from the system of equations formed by both version of
the GR, the normal one (2.3) and the one with the k → −k transformation (2.9). Once again we isolate
the unknown boundary values to eliminate them later. For the Dirichlet problem, these are g̃1(k

2) and
h̃1(k

2):[
−1 e−ikL

−1 e−ikL

] [
g̃1(k

2)

h̃1(k
2)

]
=

[
−q̂0(k) + ikg̃0(k

2)− ike−ikLh̃0(k
2) + ek

2T q̂T (k)

−q̂0(−k)− ikg̃0(k
2) + ikeikLh̃0(k

2) + ek
2T q̂T (−k)

]
=:

[
N1(k)
N1(−k)

]
,

where we define the encompassing function N1(k) for ease of notation. To solve for g̃1(k2) and h̃1(k
2)

we take the inverse of the leftmost matrix:[
g̃1(k

2)

h̃1(k
2)

]
=

1

e−ikL − eikL

[
eikL −e−ikL

1 −1

] [
N1(k)
N1(−k)

]
=

1

e−ikL − eikL

[
eikLN1(k)− e−ikLN1(−k)

N1(k)−N1(−k)

]
.

These values are then plugged into g̃(k) and h̃(k) in (2.4)

g̃(k) = ikg̃0(k
2) + g̃1(k

2)

= ikg̃0(k
2) +

eikLN1(k)− e−ikLN1(−k)

e−ikL − eikL

=
ike−ikLg̃0(k

2)−������
ikeikLg̃0(k

2)

e−ikL − eikL
+

−eikLq̂0(k) +������
ikeikLg̃0(k

2)− ikh̃0(k
2) + eikL+k2T q̂T (k)

e−ikL − eikL

− −e−ikLq̂0(−k)− ike−ikLg̃0(k
2) + ikh̃0(k

2) + e−ikL+k2T q̂T (−k)

e−ikL − eikL

g̃(k) =
2ike−ikLg̃0(k

2)− 2ikh̃0(k
2)− eikLq̂0(k) + eikL+k2T q̂T (k) + e−ikLq̂0(−k)− e−ikL+k2T q̂T (−k)

e−ikL − eikL
,(2.18)

2.3. Derivation of the Dirichlet solution 11

and

h̃(k) = ikh̃0(k
2) + h̃1(k

2)

= ikh̃0(k
2) +

N1(k)−N1(−k)

e−ikL − eikL

= �������
ike−ikLh̃0(k

2)− ikeikLh̃0(k
2)

e−ikL − eikL
+

−q̂0(k) + ikg̃0(k
2)−(((((((

ike−ikLh̃0(k
2) + ek

2T q̂T (k)

e−ikL − eikL

− −q̂0(−k)− ikg̃0(k
2) + ikeikLh̃0(k

2) + ek
2T q̂T (−k)

e−ikL − eikL

h̃(k) =
2ikg̃0(k

2)− 2ikeikLh̃0(k
2)− q̂0(k) + ek

2T q̂T (k) + q̂0(−k)− ek
2T q̂T (−k)

e−ikL − eikL
. (2.19)

Finally we substitute g̃(k) and h̃(k) into the general solution (2.8):

q(x, T) =
1

2π

∫ ∞

−∞
eikx−k2T q̂0(k)dk · · ·

− 1

2π

∫
∂D+

eikx−k2T

e−ikL − eikL

[
2ike−ikLg̃0(k

2)− 2ikh̃0(k
2)− eikLq̂0(k) + eikL+k2T q̂T (k) + e−ikLq̂0(−k)− e−ikL+k2T q̂T (−k)

]
dk

− 1

2π

∫
∂D−

e−ik(L−x)−k2T

e−ikL − eikL

[
2ikg̃0(k

2)− 2ikeikLh̃0(k
2)− q̂0(k) + ek

2T q̂T (k) + q̂0(−k)− ek
2T q̂T (−k)

]
dk.

In the Dirichlet case the q̂T (±k) terms do not result in an extra contribution. This is because at
k = 0 the numerator of the latter two integrands is also equal to zero, and thus k = 0 is not a pole
but a removable singularity. That is, there should be analytic functions identical to our integrands at all
other points in k which do not share this singularity. This means that the terms involving q̂T (±k) can
be considered analytic on the full regions D+ and D−, and they go to zero as k → ∞, so we can use
Cauchy’s integral theorem with Jordan’s lemma show the contour integrals of these terms is zero.

With these terms removed, we find the solution to the Dirichlet problem

q(x, T) =
1

2π

∫ ∞

−∞
eikx−k2T q̂0(k)dk

− 1

2π

∫
∂D+

eikx−k2T

e−ikL − eikL

[
2ike−ikLg̃0(k

2)− 2ikh̃0(k
2)− eikLq̂0(k) + e−ikLq̂0(−k)

]
dk

− 1

2π

∫
∂D−

e−ik(L−x)−k2T

e−ikL − eikL

[
2ikg̃0(k

2)− 2ikeikLh̃0(k
2)− q̂0(k) + q̂0(−k)

]
dk. (2.20)

3
Improved version of the Kalimeris et
al boundary value control algorithm

In their paper [10], Kalimeris et al. transform the classical boundary value problem to a control problem.
In doing this, the question moves from ”What will my final condition qT (x) be with these boundary
values?” to ”What boundary values do I need to reach a desired qT (x)?”. With this in mind, we will start
referring to the boundary values as (control) inputs which lead to the output of the system, qT (x). We
will also refer to the desired function of qT (x) as the reference function.

Kalimeris et al. [10] propose a new algorithm to numerically compute the control inputs. The al-
gorithm approximates the input(s) as a sum of a set of basis functions. Then it considers the solution
of the UTM in a number of points in x, given the initial condition q0(x). The contributions of each of
the basis functions at each point in x can be calculated individually and they scale linearly with some
constant. These contributions are then put in a matrix equation where they are compared to the desired
output, this equation is then solved for the input(s).

We will describe the algorithm from Kalimeris et al. in Section 3.1. In Section 3.2 we will go over
the proposed improvements. We will wrap up improvements in Section 3.3 and summarize our version
of the algorithm.

3.1. The Kalimeris et al algorithm
Wewill start this section with the derivation of the algorithm from the solution of the heat equation, which
was derived in the previous Chapter.

The examples in [10] were performed on the Neumann problem of the heat equation on the finite
domain (2.1) with the reference function q(x, T) = 0, and with the assumption that g1(t) = 0. Any initial
conditions were chosen such that q̂0(0) = 0, and the input h1(t) was ’restricted’ such that h̃1(0) = 01.
This removes the effect of the constant contribution in (2.16). The solution (2.16) at time T then reduces
to

q(x, T) = 0 =
1

2π

∫ ∞

−∞
eikx−k2T q̂0(k)dk

− 1

2π

∫
∂D+

eikx−k2T

eikL − e−ikL

[
2h̃1(k

2) + eikLq̂0(k) + e−ikLq̂0(−k)
]
dk (3.1)

− 1

2π

∫
∂D−

eikx−k2T

eikL − e−ikL

[
2h̃1(k

2) + e−ikLq̂0(k) + e−ikLq̂0(−k)
]
dk.

Kalimeris et al. also provide an additional way to simplify the computation of the integrals over
∂D+ and ∂D−. Namely, to deform the contours ∂D+ and ∂D− to C+ and C−, respectively, as shown

1In [10] this restriction is mentioned but it seems it is actually restricted is by choosing a q0(x) such that q̂0(0) = 0. If the
algorithm works then this is indeed a restriction, as if we examine the GR (2.3) at k = 0 we find q̂0(0)− g̃1(0) + h̃1(0) = q̂T (0).
Including the other assumptions this means h̃1(0) should indeed be zero.

12

3.1. The Kalimeris et al algorithm 13

in figure 3.1. The new contours are similar to ∂D+ and ∂D+ but they only form an angle of π
8 with

the real axis. These angles should provide the integrals better exponential decay and thus improve
computation.

Figure 3.1: Integration contours C± compared to the contours ∂D±.

(3.1) is then organised in such a way that all input-related integrals are on one side, and all other
integrals (involving the initial condition and the wanted finals condition) are on the other side:

1

π

∫
C+

eikx + e−ikx

eikL − e−ikL
e−k2T h̃1(k

2)dk =
1

2π

∫ ∞

−∞
eikx−k2T q̂0(k)dk−

1

2π

∫
C+

eikx−k2T

eikL − e−ikL

[
eikLq̂0(k) + e−ikLq̂0(−k)

]
dk (3.2)

− 1

2π

∫
C−

eikx−k2T

eikL − e−ikL

[
e−ikLq̂0(k) + e−ikLq̂0(−k)

]
dk

Here we combined the integrals involving h̃1(k
2) into the same integral using the transformation k → −k

for the integral on ∂D− (which would now be C−).
The input is then approximated as a (as of yet unknown) linear combination of the first N basis

functions of a basis. For the right Neumann boundary this would be

h1(t) ≈
N∑

n=1

αnϕn(t), (3.3)

where ϕn is the nth basis function. The function basis chosen by Kalimeris [10] is the sine function
basis.

ϕn(t) = sin
(
πn

t

T

)
, t ∈ [0, T], (3.4)

The T-transforms of these can be calculated algebraically, which will save some computation time later:∫ T

0

ek
2sϕn(s)ds = ϕ̃n(k

2) =
−πnT (−1)nek

2T + πnT

k4T 2 + π2n2
. (3.5)

The αn of each function basis can be taken out of both the T-transform integral and the integral on

3.2. Additions to the algorithm 14

C+ in (3.2):

N∑
n=1

αn

π

∫
C+

eikx + e−ikx

eikL − e−ikL
e−k2T ϕ̃n(k

2)dk ≈ 1

2π

∫ ∞

−∞
eikx−k2T q̂0(k)dk−

1

2π

∫
C+

eikx−k2T

eikL − e−ikL

[
eikLq̂0(k) + e−ikLq̂0(−k)

]
dk (3.6)

− 1

2π

∫
C−

eikx−k2T

eikL − e−ikL

[
e−ikLq̂0(k) + e−ikLq̂0(−k)

]
dk.

This equation is valid for all x ∈ [0, L]. This will be exploited by evaluating it in M points in x. We
will call these points sampling nodes, and they are denoted as {xm}Mm=1 with xm ∈ [0, L]. Evaluating
(3.6) at these M nodes creates a system of M equations. The right hand side of these equations will
be organised in a vector (with length M) that we will call Q. The elements of Q are given as

Qm =
1

2π

∫ ∞

−∞
eikxm−k2T q̂0(k)dk − 1

2π

∫
C+

eikxm−k2T

eikL − e−ikL

[
eikLq̂0(k) + e−ikLq̂0(−k)

]
dk

− 1

2π

∫
C−

eikxm−k2T

eikL − e−ikL

[
e−ikLq̂0(k) + e−ikLq̂0(−k)

]
dk m = 1, 2, ..,M.

(3.7)

Next we introduce vector α which contains all αn terms and factor this out of the left hand side of
the system of equations. We denote the resulting matrix as Fh. We are left with the following system
of equations:

Fhα = Q, (3.8)

where Fh is a M ×N matrix with elements

Fh;n,m =
1

π

∫
C+

eikxm + e−ikxm

eikL − e−ikL
e−k2T ϕ̃n(k

2)dk, n = 1, 2, .., N, m = 1, 2, ..,M, (3.9)

and α a N length vector:
a = (a1, a2, · · · aN), n = 1, 2, .., N. (3.10)

From here we proceed with the algorithm. For a fixed L, T , and a given q0(x), one should choose
the number of basis functions N , the number of sampling nodes M , and the distribution of sampling
nodes:

• Compute the values of matrices Fh and Q. These are found in (3.9) and (3.7), respectively.
• Solve for α using α = F−1Q.
• Use α in (3.3) to find the boundary values.

In [10], the algorithm is shown to work well under the chosen conditions mentioned earlier. The
control inputs that are obtained from the algorithm are relatively small and the error, already in the
range of 10−11, is shown to decrease exponentially with an increasing N . However, it must be said
that these results were found under quite specific conditions; Only nullcontrol2 was performed, and
only with initial conditions q0(x) that were chosen so that they would naturally decay to qT (x) anyway3.
Besides this, we found that the robustness of the algorithm under small computational errors could be
improved vastly. These issues, along with some other points of improvement, will be touched upon in
the next section.

3.2. Additions to the algorithm
The following areas where the algorithm can be improved have been identified:

• Increased freedom of choice in the initial conditions and reference function.
• Implementation of control from both sides.

2Control with the intention of steering the system towards zero.
3q̂0(0) =

∫ L
0 ei0xq0(x)dx = 0 means the average of q0(x) is 0 so naturally this will tend to q(x, T) → 0 for T >> 0.

3.2. Additions to the algorithm 15

• A more robust method of solving for α.
• Expansion to the Dirichlet problem.

Besides these, the choice of integration contours could also be further optimized. There is a number
of contours of integration available in the literature [4], [5]. Compared to these, the contours C± are
quite simple. However, they are far easier to implement and thus the choice has been made to continue
to use C+ and C− going forward.

3.2.1. Arbitrary reference function and initial conditions
In Kalimeris et al, [10], initial conditions with q̂0(0) = 0 were chosen as they remove the impact of the
constant contribution found in (2.16). Thus, to allow an arbitrary use of initial conditions we have to
address this contribution. This is done simply by slightly indenting the contours of integration around
k = 0 as described in Section 2.2 for the alternative solution of the Neumann problem (2.17). The new
integration contours will be C+

c and C−
c , which are similar to C+ and C−, but instead of passing through

k = 0 they will go around it in a tiny circular (counterclockwise) arc.

We extend the method to use any control reference qT (x) (not just null-control) simply by adding
the term −qT (xm) toQ. The caveat here is that onlyM nodes from the reference function are sampled,
so any information not specifically on these points is lost. This loss of information could lead to less
accurate final result, as the final state can still deviate from the reference function at other points. We
see two options to improve tracking performance without making fundamental changes to the algorithm.

1. Increase the number of sample nodes M . This should increase tracking performance. However,
each added point in M not only means one extra integral to compute in Q, but also N extra
integrals that need to be computed in F . This means that unless the extra precision is really
needed, this is not seen as a desired option.

2. Improve the placement of the sampling nodes {xm}Mm=1. Strategic placement of the nodes should
improve the tracking performance of the algorithm. For instance, placing {xm}Mm=1 on both the
minima and maxima of a sinusoidal qT should convey nearly all the important characteristics of
the function to the algorithm, which should improve tracking of the reference function. We note
that the viability of this approach will probably be heavily dependant on the reference function at
hand. We will further elaborate on the exact placements of these points in chapter 5.

With these changes, (3.9) and (3.7) now become

Fh;n,m =
1

π

∫
C+

c

eikxm + e−ikxm

eikL − e−ikL
e−k2T ϕ̃n(k

2)dk, n = 1, 2, .., N, m = 1, 2, ..,M, (3.11)

Qm = −q(xm, T) +
1

2π

∫ ∞

−∞
eikxm−k2T q̂0(k)dk − 1

2π

∫
C+

c

eikxm−k2T

eikL − e−ikL

[
eikLq̂0(k) + e−ikLq̂0(−k)

]
dk

− 1

2π

∫
C−

c

eikxm−k2T

eikL − e−ikL

[
e−ikLq̂0(k) + e−ikLq̂0(−k)

]
dk m = 1, 2, ..,M.

(3.12)

3.2.2. Control from both sides
We achieve control from both sides by performing the derivation of the algorithm again, but without
setting g1(t) = 0. Instead we use

g1(t) =

N∑
n=1

βnϕn(t). (3.13)

At the point where we would factor out vector α and the matrix Fh, we now factor out vector γ = (β, α)T

out of matrix F = (Fg, Fh). Here, β and Fg fulfill the same purpose as α and Fh, but for the boundary
value g1(t); Fg and Fh are both M ×N matrices, and α and β are N length vectors. Each element of
Fg is given by

Fg;n,m = − 1

π

∫
C+

c

eik(L−xm) + e−ik(L−xm)

eikL − e−ikL
e−k2T ϕ̃n(k

2)dk, n = 1, 2, .., N, m = 0, 1, ..,M. (3.14)

3.2. Additions to the algorithm 16

Instead of solving (3.8), we now solve
Fγ = Q, (3.15)

and the boundary values h1(t) and g1(t) can be found by (3.3) and by (3.13), respectively.

3.2.3. Method of solving for gamma
The final step of the algorithm involves solving for the vector γ (or α, in the case of control from just
the right side). In [10] this is done by simply done by the inverse of F , with F−1Q = γ. This will be
problematic when when the matrix F near-singular, which we have found to often be the case for the
numerical examples in this work. A near-singular F means that a small perturbation in a part of Fh

(of say a discretization or rounding error) will lead to a much larger change in F−1 and thereby, in γ.
This could lead to values found for γ that are orders of magnitude greater than needed for the problem
at hand. While in theory this might still lead to a well-controlled system (up to the small perturbation),
temperature input values of 106 will be less nice in practise.

Therefore, in addition to minimizing the (squared) error at the sampling nodes

min
γ

∥Fγ −Q∥22, (3.16)

we also want to implement some measure to keep the boundary values relatively small. For this we
introduce a weight on the input in our optimization process in the form γTWγ, where W is a 2N × 2N
weighting matrix.

To actually add the weights to the optimization problem we start writing out (3.16):

min
γ

∥F · γ −Q∥22 = min
γ

(F · γ −Q)T (F · γ −Q)

= min
γ

γTFTFγ − γTFTQ−QTFγ +QTQ = min
γ

γTFTFγ − 2γTFTQ+QTQ,

where we see we can simply add our weights to the first term. The term QTQ is independent of γ, and
can therefore be removed.

min
γ

γT (FTF +W)γ − 2γTFTQ (3.17)

This is a standard quadratic programming problem, which has the solution γ = (FTF +W)−1FTQ
[12]. Should it be wanted, this form also allows constraints to be put on γ, such as upper and lower
bounds.

HowW should be chosen (and possibly tuned) will depend on its purpose. If one would want to limit
rapidly changing boundary values one might put a higher weighting term on parts of γ that correspond
to a higher N . In our case we just want to limit the total control output,

∫ T

0
[|g1(t)|2 + |h1(t)|2]dt. Since

our basis functions are orthogonal∫ T

0

sin
(
πn

t

T

)
sin

(
πm

t

T

)
dt = 0 ∀n ̸= m,

and the total output of each basis function is identical∫ T

0

sin
(
πn

t

T

)2

dt = T/2 ∀n,

our choice of W will be a diagonal matrix with identical weighting terms w.

3.2.4. Expansion of basis for Dirichlet control
To implement the control algorithm for the Dirichlet problem, we start with its solution of the UTM on
the finite domain (2.20). From there we continue in the same way as we did for the Neumann case;
Organize the solution into input and non-input related terms, define the input(s) as a linear combination
of basis functions, and write it as a matrix equation. But before going further with this, there is another
problem to look into, which concerns the control of the points qT (0) and qT (L).

3.2. Additions to the algorithm 17

(a) Visualisation of the Gibbs phenomenon. Signal ϕ0(t) is transformed
and transformed back and is deformed on the edge of its domain.

(b) Effects of the Gibbs phenomenon on the UTM. Comparison between
the UTM and Matlab’s PDEPE with g0(t) = h0(t) = q0(x) = 1.

Figure 3.2: Gibbs phenomenon effects. The results shown in these figures were computed using the values in table 5.1 in
Chapter 5.

So far we have been using sums of sine waves in (3.3) and (3.13) to approximate our inputs. Each of
these sine waves, and therefore also their sum, has a value of zero at x = 0 and x = L for t = T . From
this one can immediately see that it is impossible to correctly represent any nonzero point qT (0) or qT (L)
when using the same basis for Dirichlet control (as by definition qT (0) = g0(T) and qT (L) = h0(T)). With
this in mind, we are forced to extend the basis to

ϕn(t) =

sin
(
πn

t

T

)
, n = 1, 2, .., N, t ∈ [0, T],

1, n = 0, t ∈ [0, T],
(3.18)

We approximate the boundary values by

g0(t) =

N∑
n=0

βnϕn(t), h0(t) =

N∑
n=0

αnϕn(t). (3.19)

Finally we note that the T-transform of ϕ0(t) can also be computed in advance:∫ T

0

ek
2sϕ0(s)ds = ϕ̃0(k

2) =
ek

2T − 1

k2
.

Unfortunately this solution brings other problems with it, as the sharp cutoff of ϕ0(t) causes some
artifacts one its edges once transformed during numerical calculation (the sharp cutoff here would be
the drop-off from 1 to 0 for t /∈ [0, T]). These edge artifacts are caused by the Gibbs phenomenon, an
effect that occurs when a Fourier-type transform is performed with a finite summation [11](in our case
this is the truncation and discretization of the integrals over ∂D±). The effects can be seen in figure
3.2a.

In figure 3.2a the signal ϕ0(t) and its transformed version (T-transform and back) are plotted near
the edge of the signal at T . Along with some other artifacts near T , one can see that at t = T the
transformed ϕ0 has only half the value of the original ϕ0. This creates significant problems, particularly
in the Dirichlet problem. We can see this in figure 3.2b, where we compare the UTM’s and Matlabs
PDEPE solutions for the Dirichlet problemwith g0(t) = h0(t) = q0(x) = 1. The solution found by PDEPE
is qT (x) = 1 (by common sense, this is also what the solution should be), but the solution found by
the (discrete implementation of) UTM is influenced by the artifacts created by the Gibbs phenomenon,
which leave the values on the edges about half of what they should be.

To avoid most problems caused by these artifacts we simply obtain the values of α0 and β0 by setting
them to qT (L) and qT (0), respectively. This is possible since we already know our desired qT (x) and

3.3. Final algorithm 18

because by definition qT (0) = g0(T) and qT (L) = h0(T) (and because all other basis functions have
a value of 0 at x = 0, L). Since these values are known, they will be separated from the rest of the
integrals concerning the boundary equation and moved to the right side of the equation we’re solving,
(3.15), and moved into vector Q. With this, the elements of F and Q for the Dirichlet case are

Fg;n,m =
1

π

∫
C+

eik(xm−L) − e−ik(xm−L)

e−ikL − eikL
ike−k2T ϕ̃n(k

2)dk, n = 1, 2, .., N, m = 1, 2, ..,M, (3.20)

Fh;n,m =
1

π

∫
C+

eikxm − e−ikxm

e−ikL − eikL
ike−k2T ϕ̃n(k

2)dk, n = 1, 2, .., N, m = 1, 2, ..,M, (3.21)

and

Qm = −q(xm, T) +
1

2π

∫ ∞

−∞
eikxm−k2T q̂0(k)dk − 1

2π

∫
C+

eikxm−k2T

e−ikL − eikL
[
e−ikLq̂0(−k)− eikLq̂0(k)

]
dk

− 1

2π

∫
C−

eikxm−k2T

e−ikL − eikL
[
e−ikLq̂0(−k)− e−ikLq̂0(k)

]
dk − β0

π

∫
C+

eik(xm−L) − e−ik(xm−L)

e−ikL − eikL
ike−k2T ϕ̃0(k

2)dk

−α0

π

∫
C+

eikxm − e−ikxm

e−ikL − eikL
ike−k2T ϕ̃0(k

2)dk, m = 1, 2, ..,M.

(3.22)

Additionally we add the requirement that any integration node xm may not be placed too close to the
edges of the domain of x ∈ [0, L]. The artifacts caused by the Gibbs phenomenon are still present in
the last two integrals of Q, and an xm that is placed to close to either 0 or Lmight lead to an error in the
corresponding element of Q, which will consequently affect the entire solving process. The limitation of
not being able to place nodes close to the edges is balanced by exactly knowing the values of α0 and
β0, which effectively serve as two sampling nodes that don’t need to be included in the solving process.

For the Neumann case we apply the same expansion of basis and addition to the vectorQ. As we’re
dealing with the derivative (in x) of q(x, t) and not the function value, the inclusion of ϕ0 isn’t as needed
as it is in the Dirichlet case, but it is still useful in more accurately representing certain functions.

The functions g1(t) and f1(t) will be approximated by

g1(t) =

N∑
n=0

βnϕn(t), h1(t) =

N∑
n=0

αnϕn(t), (3.23)

and the elements of Q will be

Qm = −q(xm, T) +
1

2π

∫ ∞

−∞
eikxm−k2T q̂0(k)dk − 1

2π

∫
C+

c

eikxm−k2T

eikL − e−ikL

[
eikLq̂0(k) + e−ikLq̂0(−k)

]
dk

− 1

2π

∫
C−

c

eikxm−k2T

eikL − e−ikL

[
e−ikLq̂0(k) + e−ikLq̂0(−k)

]
dk +

β0

π

∫
C+

c

eik(L−xm) + e−ik(L−xm)

eikL − e−ikL
e−k2T ϕ̃0(k

2)dk

−α0

π

∫
C+

c

eikxm + e−ikxm

eikL − e−ikL
e−k2T ϕ̃0(k

2)dk m = 1, 2, ..,M,

(3.24)

where we find α0 and β0 from our desired qT (x) as α0 = d
dxqT (L) and β0 = d

dxqT (0). The Fg and Fh

matrices will remain the same.
We also note that the unwanted artifacts created by the Gibbs phenomenon are less defined in the

Neumann case (as only the derivative, and not the function value will be deformed). This means we
can be more relaxed on the limitation of not placing tracking nodes xm too close to the edges, though
we should still be careful.

3.3. Final algorithm
With all the changes in place we now present the final algorithm. It can be used both for the Dirichlet and
for the Neumann problem. For any fixed L, T , a given q0(x) and a desired qT (x)

4, one should choose
4Technically, we don’t need the entire function qT (x) as the algorithm only requires qT (xm), qT (0), and qT (L). In theory this

could be done with a set of data points, too

3.3. Final algorithm 19

the amount of basis functions N , the amount of sampling nodes M , the distribution of the sampling
nodes {xm}Mm=0, and a 2N × 2N weighting matrix W . These sampling nodes should all be placed a
’safe’ distance away from the edges of the domain of x.

• Evaluate q(x, T) to find α0 and β0.
• Compute matrices F = [Fg, Fh] and Q. For the Dirichlet problem, the elements of these matrices
are given by (3.20), (3.21), and (3.22) respectively. For the Neumann problem the elements are
given by (3.14), (3.11) and (3.24), respectively.

• Solve the optimization problem (3.17) to find γ = [β;α].
• Combine γ with α0 and β0 to find the boundary values from (3.23) for the Neumann problem or
from (3.19) for the Dirichlet problem.

4
Boundary value control algorithm in

the complex plane

One of the main drawbacks of the augmented Kalimeris et al. algorithm described in Section 3.3 is
the relatively high computational cost per function evaluation point, N + 1 integrals that need to be
computed per xm (or 2N +1 when controlling both boundary values). In this chapter we will try to solve
the same problem, but without the need to compute all these integrals. To do this, we have to go back
quite deep into the derivation of the UTM, to the point before we apply the inverse Fourier transform to
the GR:

q̂0(k)− ikg̃0(k
2)− g̃1(k

2) + ike−ikLh̃0(k
2) + e−ikLh̃1(k

2) = ek
2T q̂T (k), k ∈ C. (4.1)

This equation, like any solution to the heat equation, (2.17) or (2.20), relates functions we want to
know, the boundary values, to functions we know or can specify, the initial condition and q(x, T). Thus,
theoretically, we should be able to apply the same approach as in the previous chapter: Evaluate this
function atM points and approximate the boundary values as sums ofN basis functions, then write this
as a matrix equation and solve it for the boundary values. The big benefit of carrying out this process
on the GR (as opposed to carrying it out on the full solution (2.16)), is that setting up the matrix equation
does not involve the computation of any integrals (beside the Fourier transforms of the initial data), so
we should be able to increase both N and M by quite a bit while keeping the overall computation time
low.

There are, however, some difficulties:

• Since the GR still contains all available boundary values (and not only the Dirichlet/Neumann
ones), we need to solve for all the boundary values instead of solving for just two of them. This
will not make the problem any more complex, but it will increase the scale of the problem.

• Instead of approximating a function on [0, L] ∈ R, we are approximating a function on the entire
C plane.

• The functions we find for the boundary values are found in the complex plane, and any errors in
them may be enhanced when they are transformed back into the real domain.

These are some valid concerns and it remains to be seen if the lower computational cost per point
evaluation can make up for it.

We will derive the algorithm is Section 4.1. In the derivation we will also discuss the optimal ver-
sion(s) of the GR and the solving method for the boundary values. A final summary of the algorithm
will be given in Section 4.2.

4.1. Derivation of the second algorithm
As stated earlier, somewhere in the derivation of this algorithm we plan to evaluate some version of
the GR at M nodes {km}Mm=1. Before doing any other parts of the derivation, we will examine the GR

20

4.1. Derivation of the second algorithm 21

to gain some insight on the optimal placement of these nodes.

We start by observing that although the GR (4.1) is valid on the whole k-plane, there are some
regions where it’s unbounded as k → ∞. Any evaluating of the GR in these regions will be orders
of magnitude larger than any evaluations in bounded regions, and will massively outweigh them in an
error-based solver. For this reason we will constrain ourselves to regions in which any exponentials
are non-increasing, and the integral transforms are bounded for k → ∞. For (4.1) this is the region
D−, as defined in (2.5a), for both exponentials e−ikL and ek

2T are bounded there.
Next we will point out the focus of the GR. We notice that as we increase the magnitude of k, that

some terms decay faster than others. If we consider the terms −g̃1(k
2) and eikLh̃1(k

2) in (4.1) on the
contour ∂D− (a contour on which all exponentials are bounded), we can see that eikLh̃1(k

2) decays
e|k|L/

√
2 times faster than g̃1(k

2) as we let |k| → ∞ (if we assume equal h̃1(k
2) and g̃1(k

2)). This means
that when we use the least squares solving approach later, any errors in h̃1(k

2) will be less accounted
for. We would say the emphasis of this GR is on g̃1(k

2), as its coefficients decay less as k → ∞. We
want the algorithm to evaluate any errors in h̃(k) and h̃(k) evenly, and for this we will use the following
two equations

e−k2T
[
−ikg̃0(k

2)− g̃1(k
2) + ike−ikLh̃0(k

2) + e−ikLh̃1(k
2)
]
= q̂T (k)− e−k2T q̂0(k), k ∈ E−,

(4.2a)

e−k2T
[
−ikeikLg̃0(k

2)− eikLg̃1(k
2) + ikh̃0(k

2) + h̃1(k
2)
]
= eikLq̂T (k)− e−k2T+ikLq̂0(k), k ∈ E+.

(4.2b)

The regions in which everything is bounded is region E− for (4.2a) and region E+ for (4.2b) (these
regions were introduced in (2.5a)). In those respective regions both equations emphasize q̂T (k) over
q̂0(k). The first equation emphasizes g̃0 and g̃1 more while in (4.2b) emphasizes h̃0 and h̃1 more. For
our {km}Mm=0 selection, if we want to emphasize both q̂T (k) and all the boundary values, we need to
select nodes for both equation in their respective bounded regions.

4.1.1. Derivation of F̂ γ = Ĝ
We will perform our derivation on (4.2a). The derivation will be the same as for (4.2b), so when we’re
done we can simply multiply results by eikL to find its equivalent solution. We start with isolating the
boundary values from the other terms of (4.2a) and approximating the boundary values as a linear
combination of basis functions:

e−k2T
[
−ikg̃0(k

2)− g̃1(k
2) + ike−ikLh̃0(k

2) + e−ikLh̃1(k
2)
]
= q̂T (k)− e−k2T q̂0(k), k ∈ E−. (4.3)

g0(t) =

N∑
n=0

β0;nϕn(t), g1(t) =

N∑
n=0

β1;nϕn(t), (4.4a)

h0(t) =

N∑
n=0

α0;nϕn(t), h1(t) =

N∑
n=0

α1;nϕn(t), (4.4b)

with

ϕn(t) =

sin
(
πn

t

T

)
, n = 1, 2, .., N, t ∈ [0, T],

1, n = 0, t ∈ [0, T],
(4.5)

As described in Section 3.2.4, we can directly obtain coefficients β0;0, β1;0, α0;0, and α1;0 from our
qT . As the coefficients for them are now known, we split off the ϕ0 bases from the summations and

4.1. Derivation of the second algorithm 22

move them to the right side of the equation:

e−k2T

[
−ik

N∑
n=1

β0;nϕ̃n(k
2)−

N∑
n=1

β1;nϕ̃n(k
2) + ike−ikL

N∑
n=1

α0;nϕ̃n(k
2) + e−ikL

N∑
n=1

α1;nϕ̃n(k
2)

]
=

e−k2T
(
ikβ0;0 + β1;0 − ike−ikLα0;0 − e−ikLα1;0

)
ϕ̃0(k

2) + q̂T (k)− e−k2T q̂0(k), k ∈ E−.

(4.6)

We want to evaluate this equation at M points in k ∈ E−, which will be our nodes {km}Mm=1. This
will create a system of M equations. Next we factor out all α and β terms from the left hand side of
system of equations, creating the matrix equation

F̂−γ = Q̂−, (4.7)

where F̂− is a M × 4N matrix, γ is a 4N length vector, and Q̂− is a M length vector. As this matrix
equation is in the complex plane, a ĥat symbol is added to both F̂− and Q̂− to distinguish them from
their counterparts in the Kalimeris et al. algorithm. The matrix F̂− is given by

F̂− =


−ik1e

−k2
1T Φ̃(k21) −e−k2

1T Φ̃(k21) ik1e
−k2

1T−ik1LΦ̃(k21) e−k2
1T−ik1LΦ̃(k21)

−ik2e
−k2

2T Φ̃(k22) −e−k2
2T Φ̃(k22) ik2e

−k2
2T−ik2LΦ̃(k22) e−k2

2T−ik2LΦ̃(k22)
...

...
...

...
−ikMe−k2

MT Φ̃(k2M) −e−k2
MT Φ̃(k2M) ikMe−k2

MT−ikMLΦ̃(k2M) e−k2
MT−ikMLΦ̃(k2M)

 , (4.8)

where Φ̃(k2m) is a 1×N vector given by

Φ̃(k2m) =
[
ϕ̃1(k

2
m) ϕ̃2(k

2
m) · · · ϕ̃n(k

2
m)

]
The elements of the vector Q̂− are

Q̂−;m = e−k2
mT

(
ikmβ0;0 + β1;0 − ikme−ikmLα0;0 − e−ikmLα1;0

)
ϕ̃0(k

2
m)+ q̂T (km)−e−k2

mT q̂0(km). (4.9)

Finally, γ is given as

γ =
[
β0;1 β0;2 . . . β0;n β1;1 β1;2 . . . β1;n α0;1 α0;2 . . . α0;n α1;1 α1;2 . . . α1;n

]T
.

The same derivation is done for (4.2b), with a new set of M nodes. These nodes are only placed
in E+. This results in the matrix equation

F̂+γ = Q̂+. (4.10)

Here F̂+ and Q̂+ are the same sizes as F̂− and Q̂−, respectively, and they are related by

F̂+ = eikLF̂−, Q̂+ = eikLQ̂−. (4.11)

Finally, we combine the two matrix equations. The resulting matrix equation is derived from both
equations (4.2a) and (4.2b), thus balancing the emphasis between the sets of boundary conditions
from both sides.

F̂ γ = Q̂ =

[
F̂−
F̂+

]
γ =

[
Q̂−
Q̂+

]
. (4.12)

4.1.2. Solving method for γ
We wish to solve for γ in the same way as we do for the Kalimeris et al. algorithm, by writing the least
squared error problem as a quadratic programming problem and adding weights. However, since we
are dealing with complex valued vectors and matrices in Q̂ and F̂ , we will need to take some extra
steps. We start by minimizing the squared error

min
γ

∥F̂ γ − Q̂∥22, (4.13)

4.2. Final k-plane algorithm 23

Here we notice that since γ is real, we can write this as

min
γ

∥F̂ γ − Q̂∥22 =min
γ

∥Re{F̂}γ − Re{Q̂}+ iIm{F̂}γ − iIm{Q̂}∥22

=min
γ

∣∣∣∣∣∣∣∣[Re{F̂}
Im{F̂}

]
γ −

[
Re{Q̂}
Im{Q̂}

]∣∣∣∣∣∣∣∣2
2

.

The problem is now written in a form where all the matrices involved only contain real values. Writing
this problem out and adding a 4N × 4N weight matrix Ŵ , we find the following quadratic programming
problem which we can solve to find γ.

min
γ

γT

([
Re{F̂} Im{F̂}

]T [
Re{F̂}
Im{F̂}

]
+ Ŵ

)
γ − 2γT

[
Re{F̂} Im{F̂}

]T [
Re{Q̂}
Im{Q̂}

]
(4.14)

This can then be solved as any noncomplex valued quadratic programming problem.

4.2. Final k-plane algorithm
Wewill now describe the finished k-plane algorithm. It is usable for both the Dirichlet, and the Neumann
problem. For a fixed L and T , a given q0(x), and a desired qT (x), one should choose the number of
basis functions usedN , (half) the number of sampling nodesM , and a weighting matrixW . One should
also choose distributions of {km}Mm=1 in both the regions E− and E+ (any distribution chosen in one
region can simply be mirrored). From there:

• Evaluate q(x, T) to find β0;0, β1;0, α0;0, and α1;0.
• Compute matrices F̂−, Q̂−, F̂+, and Q̂+. These are given by (4.8), (4.9), and (4.11), respectively.
• Solve the optimization problem given by (4.14) to find γ.
• Use the appropriate values from γ combined with the corresponding β0;0 and α0;0, or β1;0 and
α1;0 to find the boundary values for the problem at hand, Dirichlet or Neumann. These are found
using (4.4a)

5
Methodology and results

This Chapter is dedicated to the the testing and comparison of the two algorithms. This will be done
by evaluating them in three different cases, each of which with a different desired qT (x) to test the
operational range of the algorithms. The testing of the algorithms will be done for both Neumann and
Dirichlet problems. If needed, the weight and the model parameters N and M , or N̂ and M̂ , will be
tuned. Once the boundary values are found, we will use them to calculate the solution to the UTM
and to Matlabs PDEPE solver [7], which we will denote these solutions as qT,utm(x) and qT,pdepe(x),
respectively. For verification we will only use the solution found by Matlab’s PDEPE solver. We will
use the the mean squared error (MSE) between qT,pdepe(x) and our reference function qT as our main
verification metric. It will be calculated as

MSE(qT (x), qT (x)) :=
∫ L

0
[qT (x)− qT,pdepe(x)]dx

L
. (5.1)

We’ll exclude the solution found by the UTM in our verification process as this solution suffers from
significant artifacts from the Gibbs phenomenon, which will heavily impact any verification method. Be-
sides this it is generally good practise to have a separated verification method; Verification of a method
based on the UTM with the UTM might get some biased results. For the sake of completeness the
solution found by the UTM will still be displayed in figures. This way we can still visually confirm the
UTM still performs well were it not for these Gibbs phenomenon artifacts. Finally we will touch on the
control input, which will be measured by its L2 norm, and the computation time.

5.1. Methodology for both algorithms
The computations required for the algorithm and the verification thereof were implemented in Matlab.
Any continuous variables were discretized (with uniform step sizes). The step sizes for this can be seen
in table 5.1. Any integral with k going to ±∞ will be truncated at |k| = Kcutoff, which can also be seen
in the table. The circular arc in used in contours C+

c and C−
c was approximated with radius kstep, and

with c points along its arc, where c can also be found in the table. Note that all of these values are not
optimized for speed, but were instead chosen small/big enough so that the code runs smoothly while
still keeping the computation time practical.

Name Value Description
xstep 0.005 step size in x
tstep 0.005 step size in t
kstep 0.01 step size in k
Kcutoff 100 magnitude of the cutoff point of integrals of k going to ∞
c 31 number of points used to approximate the circular arc in the con-

tours C+
c and C−

c

w 10−7 weight used in weighting matrix W

24

5.1. Methodology for both algorithms 25

Name Value Description

xedge 0.15 distance from 0, L we can’t pick xm in.
K̂cutoff 40 The maximum value used for picking km.

Table 5.1: Table of used values

In all of these tests, we will use T = 0.5 and L = 1. When using the Kalimeris algorithm, we will not
pick any xm closer than xedge to the edges x = 0, x = L. This is done to avoid the effects of the earlier
mentioned Gibbs phenomenon. This phenomenon heavily depends on Kcutoff, and for its current value
empirical testing has established that there should not be any artifacts for xedge = 0.15 for the Dirichlet
problem. This value could be made smaller for the Neumann problem, but it was kept the same for
simplicity.

5.1.1. Kalimeris algorithm xm placement
For the Kalimeris algorithm, we propose three possible options for the placement of sampling nodes
{xm}M1 . The first is simply the uniform distribution, with the points are spread equidistant over the
available domain [xedge, L−xedge]. For our second option we turn to [10], where Kalimeris et al. reported
a lower error when using a distribution of {xm}M1 which was denser near their control input, h1(t). We
plan to use the same for our situation; A {xm}M1 distribution which is denser near the edges and more
sparse in the middle of the x domain (while still conforming to our xedge limitations). We will use the
following formula for our distribution:

xm =
L

2
+

L− 2xedge
2

cos
(
2k − 1

2K
π

)
, k = 1, 2, ..,K, (5.2)

which is is the formula for Chebyshev nodes on [xedge, L − xedge] [15]. The distribution of Chebyshev
nodes for M = 10 can be seen in figure 5.1. Chebyshev nodes are normally used to minimize error for
polynomial interpolation, and it will be tested if the property of error minimisation holds for our algorithm.

Figure 5.1: Chebyshev nodes for M = 10 on the [xedge, L− xedge] interval. The nodes are placed equidistant on a semicircle
and then projected on the real line. Modified version of [9]

The third option of xm placement will to just pick the location of the nodes ourselves. For this option
the placement will rely on qT , and it will allow us to accommodate any irregularities in the reference
function. We also note that in theory xm placement would be open to tuning. If, after applying the
algorithm, we find that in certain regions of x the found solution vastly differs from the reference function,
we could easily relocate the nodes closer to those regions (or even add extra nodes).

5.2. Case 1: Elevated constant value 26

5.1.2. k-Plane algorithm km placement
For the placement of the {km}2Mm=1 in the k-plane algorithm we have a lot more options. The only
requirement we have is that the first M nodes, for (??), are placed in E− and that the other M nodes,
for (4.10), are placed in E+.

For simplicity we limited the placement to the contours C− and C+ (which is permitted as they are
fully within E− and E+, respectively). For k ∈ C−, all terms in (4.2a) experience exponential decay.
The same is true for all terms in (4.2b) for k ∈ C+. For this reason we have chosen to implement a
bound for the absolute value of our nodes K̂cutoff , which can be seen in table 5.1. Also because of
this exponential decay, and because Fourier transforms tend to be concentrated around k = 0, it was
opted to use distributions for {km}2M1 which are denser near k = 0, and more sparse as |k| grows.

To achieve this we altered the equation for Chebyshev nodes, shifting parts of the equation such
that the dense parts of the distribution fall at k = 0. For simplicity, this distribution is made with Imk = 0,
and it will be projected onto C− and C+ later. For M nodes, we find

km =


−K̂cutoff + K̂cutoff sin

(
π
2

m−1
M−1

2

)
, m = 1, 2, . . . , M−1

2 ,

0, m = M+1
2 ,

K̂cutoff − K̂cutoff cos
(

π
2

m−M+1
2

M−1
2

)
, m = M+1

2 + 1, M+1
2 + 2, . . . ,M,

(5.3)

where we add the restriction that M must be odd as we want to have a node at k = 0. This distribution
can also be seen in figure 5.2. By changing the appropriate complex arguments, this distribution is then
projected onto both C− and C+. The two distributions created by this are then used in their respective
(??) and (4.10) for the k-plane algorithm.

Figure 5.2: The concept of Chebyshev nodes used for a distribution more dense near k = 0. A more modified version of [9]

5.2. Case 1: Elevated constant value
The first scenario we will look at will be controlling q(x, t) to an constant value of q(x, T) = qT (x) = 1.
This will be done from the initial condition q0(x) = −0.3 sin(πx/L). For Case 1 the algorithms will only
be used to find the Dirichlet boundary values.

We start with the Kalimeris et al. algorithm. We pick N = 9, M = 8, and, seeing as qT has no
distinguishing factors, pick the evenly spaced {xm}M1 = 0.05 + 0.1m. We choose the weight w = 10−7

for our weighting matrix. We find β0 = qT (0) = 1 and α0 = qT (L) = 1 and use these to compute our F
and G matrices . Then, we solve the optimization problem (3.17). We find

β =
[
0.0147 −0.0106 0.0031 0.0033 −0.0067 0.0075 −0.0050 −5.5296× 10−4 0.0098

]T
,

α =
[
0.0147 −0.0106 0.0031 0.0033 −0.0067 0.0075 −0.0050 −5.5296× 10−4 0.0098

]T
.

5.2. Case 1: Elevated constant value 27

(a) TODO (b) TODO2

Figure 5.3: Boundary values and solutions found with the Kalimeris algorithm with uniformly distributed xm

We notice that α and β are the same, which makes sense, as our problem is symmetric in x. We use
these along with β0 and α0 with (3.19) to find our boundary values g0(t) and h0(t), which can be seen
in figure 5.3a. These boundary values were used to calculate both qT,utm(x) and qT,pdepe(x). They can
be seen compared to the original qT (x) in figure 5.3b.

In figure 5.3b we can see that the PDEPE solution matches qT nicely, and that the UTM solution
is indeed heavily affected by the effects of the Gibbs phenomenon. Comparing the PDEPE solution to
desired qT , we find a mean squared error of MSE(qT , qT,pdepe(x)) = 2.4471× 10−6.

We perform the Kalimeris et al. algorithm again using the Chebyshev nodes for {xm}Mm=1 (5.2). We
keep the same N , M , and w. Again we find β0 = 1 and α0 = 1 which are used to compute the F and
G matrices and solving the quadratic programming, we find

β =
[
0.0132 −0.0096 0.0032 0.0020 −0.0045 0.0050 −0.0032 1.6740× 10−5 0.0047

]T
,

α =
[
0.0132 −0.0096 0.0032 0.0020 −0.0045 0.0050 −0.0032 1.6740× 10−5 0.0047

]T
.

We add back the found β0 and α0 to compute our boundary values and the UTM and PDEPE so-
lutions. These can be seen in figure 5.4. Comparing figures 5.3b and 5.4b we see that both solutions
are close enough to qT to see any notable difference. The means squared error of the PDEPE solution
compared to the desired qT is MSE(qT , qT,pdepe(x)) = 1.5637 × 10−6 which is smaller than the MSE
found with an uniform xm distribution, but the difference is not particularly significant.

Next we apply the k-plane algorithm. This algorithm does not involve the computation of as many
integrals, so we can pick higher values for N and M while keeping computation time low. We choose
N = 9 and M = 51. We find β0;0 = 1, β1;0 = 0, α0;0 = 1, and α1;0 = 0. We use the procedure outlined
in subsection 5.1.2 to find our nodes {km}2M1 , which we use to compute F̂ and Ĝ. We split these up
into their real and imaginary parts, and use these to solve the quadratic programming problem outlined
in Section 4.1.2. We find

β0 =
[
−0.2546 −0.3875 −0.1740 −0.1593 −0.2330 −0.2586 −0.2922 −0.1163 0.0094

]T
,

β1 =
[
−1.7242 −0.4674 −0.2697 −0.4845 −0.0450 −0.3402 −0.1558 −0.1118 −0.2284

]T
,

α0 =
[
−0.2546 −0.3875 −0.1740 −0.1593 −0.2330 −0.2586 −0.2922 −0.1163 0.0094

]T
,

α1 =
[
1.7242 0.4674 0.2697 0.4845 0.0450 0.3402 0.1558 0.1118 0.2284

]T
.

We use the values associated with the Dirichlet problem, β0 and α0, and use these to compute the UTM
and the PDEPE solution. These solutions, along with the boundary values used to compute them, can
be seen in figure 5.5. Comparing the PDEPE solution to the desired qT , we find a MSE of 1.9995×10−6,
which is comparable to the other algorithm.

redTODO remove the xk nodes in this image All the results for case 1 are summarised in table 5.2

5.2. Case 1: Elevated constant value 28

(a) boundary values found using the Kalimeris et al. algorithm (b) Solutions to the BVP found using the Kalimeris et al. algorithm

Figure 5.4: Results found from the Kalimeris algorithm using Chebyshev nodes

(a) Boundary values found using the k-plane algorithm. (b) Solutions found using the k-plane algorithm.

Figure 5.5: Results found using the k-plane algorithm.

5.2. Case 1: Elevated constant value 29

Kalimeris uniform xm Kalimeris Chebyshev xm k-plane algorithm

MSE 2.4471×10−6 1.5637×10−6 1.9995×10−6

Computation time 3.30s 3.38s 1.60s

Table 5.2: Summary of the results for case 1. For the Kalemeris et al. algorithm N = 9, M = 8 is used. For the k-plane
algorithm we used N = 9, M = 51

5.2.1. Smaller xedge and solving without weights
Now that the first tests are performed and it is shown that the algorithms work, we feel its needed to
show why some of the improvements made in Chapter 3 were needed. To do this, we will perform the
Kalimeris et al. algorithm two more times, both times removing an improvement that we made.

First we will run the algorithm again with N = 9 and M = 8 (the same values as used earlier) with
the uniform distribution for {xm}Mm=1, but we will lower the value of xedge to 0.05. The solutions found
with the obtained boundary values from the algorithm can be seen in figure 5.6.

Figure 5.6: Case 1 using the Kalimeris et al. algorithm with the uniform distribution with xedge = 0.05

We can see in the image that the results are worse than in the case with the bigger xedge. The
UTM solution is matched quite well ate both the first and the last node, but the algorithm computes the
incorrect values in the matrix F at these nodes, which distorts the whole solution.

The second change we undo is the solving method for γ. For this we will again use the same N , M
and the uniform distribution, and we will reinstate xedge = 0.15. We now run the algorithm again, but
we find γ by using the peudoinverse of F : γ = (FTF)−1FTG (in [10] the regular inverse was used, as
they chose N = M for a square F). Note that by solving this way there are no weights present. The
found boundary values and the solutions computed with these can be seen in figure 5.7.

In 5.7 we can see that the UTM solution matches the desired function quite well. The PDEPE
solution, however, is not as nice. We found that this disparity between solutions generally happens
when the boundary values get very large. With no weight to keep the boundary values low, they will
start to affect the PDEPE solution. Besides this, boundary values of the size seen in figure 5.7a would
be unusable in any real life application.

5.3. Case 2: A curved ramp 30

(a) Boundary values found using the pseudoinverse (b) Solutions found using the pseudoinverse

Figure 5.7: Results found for case 1 using the Kalimeris algorithm with the pseudoinverse.

5.3. Case 2: A curved ramp
The next case we look at is a slightly more complicated qT (x) in the form of an upwards curving ramp,
qT (x) = −0.3+ 1.8x+ x.2. This will be done for the initial condition q0(x) = 0. For this case we will use
Neumann boundary values with both algorithms. With the Kalimeris algorithm we again used N = 9
andM = 8, and we used the uniform and the Chebyshev distributions for the distribution of xm. For the
k-plane algorithm we again used N = 9 and M = 51. We used a weight w = 10−7 for both algorithms.

The algorithms were used following the same steps as in the previous section. To find the values
for α0 and β0 we used the approximations β0 =

qT (xstep)−qT (0)
xstep

and α0 =
qT (L)−qT (L−xstep)

xstep
(since we

know qT (x), we could just have taken the derivative, but the code used was set up to use data from
an unknown function too). For the Kalimeris algortihm, α0 = 3.795 and β0 = 1.805 were found. For the
k-plane algorithm we found β0;0 = −0.3, β1;0 = 1.805, α0;0 = 0.5, and α1;0 = 3.795. For verification we
also used the same method as in the previous section. The MSE between desired qT and the PDEPE
solutions can be seen in table 5.3, along with the computation times. The UTM and PDEPE solutions
of the boundary values found using the Kalimeris algorithm with the Chebyshev distribution (the case
with the worst MSE) can be seen in figure 5.8

Kalimeris uniform xm Kalimeris Chebyshev xm k-plane algorithm

MSE 1.1133×10−4 1.1245×10−4 7.3594×10−6

Computation time 3.28s 3.26s 1.55s

Table 5.3: Summary of the results for case 2.

5.4. Case 3: Sine wave with increasing frequency
For the third case we’ll look at the more interesting qT function of qT (x) = 0.3 sin(4πx1.5). This is the
first qT (x) with distinguishable features (in the form of local minima and maxima), and we will use it
to test the third xm distribution of Section 5.1.1 for the Kalimeris algorithm. This will be done using
Dirichlet boundary values and with the initial condition q0(x) = 0.

We start by placing nodes on the minima and maxima of qT (x). Nodes will also be placed on the
points where qT (x) crosses 0. We note that β0 = α0 = 0, which means there will be no artifacts related
to the Gibbs-phenomenon. This means the limitation of not placing nodes xedge away from the edges
of the domain can be lifted. We find

xm =
[
0.2500 0.3969 0.5200 0.6300 0.7310 0.8255 0.9148

]
,

from which we see M = 7 (even though we removed the xedge limitation, we do not place nodes on
x = 0 or x = L as the only influence on those points is from β0 and α0, which we already know). We

5.4. Case 3: Sine wave with increasing frequency 31

Figure 5.8: Solutions found using the Kalimeris et al. algorithm for case 2 with the Chebyshev distribution for xm

again use N = 9, and use a lower weight of w = 10−8, as the control input required to make a sine
wave is quite large. The boundary values obtained by the algorithm were were used to compute the
UTM and the PDEPE solution, which can be seen compared to the desired qT in figure 5.9.

In figure 5.9 we see that while the PDEPE and UTM solutions match qT quite well at the nodes, the
replication of the full function qT (x) isn’t very successful, with a MSE of MSE = 59.251 between the
PDEPE solution qT,pdepe(x) and the desired qT (x). The main disparity between the functions is located
on the left half of the functions, where the distribution of xm is the most sparse. In an attempt to improve
our results, we add another node at x = 0.1, near the maximum of the disparity:

xm =
[
0.1250 0.2500 0.3969 0.5200 0.6300 0.7310 0.8255 0.9148

]
,

which makesM = 8. We run the algorithm again to find the new boundary values. The solutions found
by these can be seen in figure 5.10.

The results found with the new distribution are better, but still not great. To start off we would like
to point out that the magnitude of the boundary values found for this problem is several times greater
than those found in previous cases. This can be seen in the values for β and α,

β =
[
−78.0529 −26.9641 102.8977 −100.4811 24.4558 69.6216 −130.4581 84.0064 131.4533

]T
,

α =
[
−124.8690 37.6073 56.9298 −98.6030 67.7567 2.4081 −75.7427 81.4727 48.9420

]T
.

These are really high values when compared to desired qT (x), which has an amplitude of 0.3. With
these high values we can start seeing the effects of weight w, as our solver is starting to prioritize
lowering control input over reaching the desired state. This is the case in figure 5.10, where we can
see that, even at the locations of the nodes, the values of the goal function and the solutions of the
UTM are not the same.

We also see that the UTM solution, qT,utm(x), and the PDEPE solution, qT,pdepe(x), are less close
than they were in the previous results. It is currently not known what causes this difference between the
two solutions, but in testing it was found that this tends to happen as the magnitudes of the boundary
values increase.

The uniform and the Chebyshev distributions were also tested. For both of these distributions a
xedge = 0.1 was used. The other parameters N = 9, M = 8, and w = 10−8 were kept the same.

5.4. Case 3: Sine wave with increasing frequency 32

Figure 5.9: Solutions found with the Kalimeris et al. algorithm for the first iteration of the custom node distribution.

Solutions found from the obtained boundary values can be seen in figure 5.11. The MSE of these solu-
tions can be found in table 5.4. The performance using these distributions is slightly worse, especially
around x = 0.95.

Finally we will also apply the k-plane algorithm. Seeing the difficulties the Kalimeris algorithm had
in finding the correct boundary values, we decide to immediately choose higher values for N and M .
We choose N = 40 and M = 71. To accommodate the higher frequency sine wave that come with
N = 40, we decided to lower the time step to tstep = 0.0005s. (this is mostly for the visual representation
of the boundary values. Lowering the time step did very little for the found MSE.) The same weight of
w = 10−8 will be used. The solutions obtained from the found boundary values can be seen in figure
REF. The MSE between the desired function and the PDEPE solution can be found in table 5.4.

Interestingly, both the MSE and the combined L2 norm found by this application of the k-plane
algorithm are lower than those found using the Kalimeris algorithm. It is highly likely this is because of
the (much) higher N used in the algorithms, instead of it being because of some . TODO..

Looking at figure REF, where the boundary values obtained from the k-plane algorithm are plotted,
we can see that they are indeed heavily influenced by the higher frequency sine waves.

Kalimeris custom Kalimeris uniform xm Kalimeris Chebyshev xm k-plane algorithm

MSE 0.5786 0.6060 0.7841 0.2679
Computation time 3.29s 3.35s 3.09s 1.97s

Table 5.4: Summary of the results for case 3.

5.4.1. Increasing N and M
In this subsection we we will investigate the effects when we increase parameters N and M , mostly
done for the Kalimeris algorithm . This will be done using the same desired function qT (x) and using
the uniform distribution for xm. The results will again be measured using the MSE between the desired
function qT and the PDEPE solution computed with the found boundary values. The combined L2 norm
of both inputs, g0(t) and h0(t), were also noted. These MSE and L2 values can be seen for a varying
N and M in tables 5.5 and 5.6, respectively. A weight of w = 10−7 will be used. This higher weight

5.4. Case 3: Sine wave with increasing frequency 33

Figure 5.10: Solutions found for case 3 using the Kalimeris algorithm with the altered custom node distribution

keeps the boundary values lower which we hope should reduce the discrepancy between the UTM and
PDEPE solutions, ensuring consistency between the different MSE values. Since α0 = β0 = 0 we do
not use any requirement for xedge, our uniform distribution will therefore be placed between 0 and L
(excluding the points 0 and L): xm = (m+ 1)L/(M + 2) for m = 1, 2, ..,M .

N\M 8 9 10 12 14 16
5 0.7586 0.7292 0.7591 0.7218 0.7153 0.7321
7 0.6908 0.6356 0.6129 0.5967 0.5856 0.5809
9 0.7120 0.6265 0.5897 0.5632 0.5541 0.5530
12 0.7382 0.5788 0.5077 0.5338 0.5761 0.6494
15 0.5047 0.3487 0.3467 0.3732 0.3322 0.1592
20 0.2864 0.1853 0.1327 0.0901 0.0684 0.0595

Table 5.5: MSE between the PDEPE solution and desired function for different N , M .

N\M 8 9 10 12 14 16
5 19.4299 18.9661 18.6859 18.4183 18.3360 18.3336
7 9.8954 10.1105 10.2644 10.5831 10.9452 11.3239
9 8.0617 7.5491 7.3090 7.2854 7.5559 7.9452
12 5.1962 7.0312 8.7581 11.4767 13.4788 15.0472
15 7.1637 8.8337 9.8259 10.9168 11.5190 11.9213
20 4.0252 4.6081 5.3395 6.7890 7.9322 8.8243

Table 5.6: L2 norm for increasing N and M .

We can see in table 5.5 that as we increase N or M , the MSE generally goes down1. This is as
expected, as increasing M will convey more information to the algorithm, and increasing N gives the

1there is an outlier for the case N = 12, M = 16. Upon inspection it was found that there is quite a separation between the
UTM and PDEPE solutions here. The MSE between the UTM solution and the desired qT was found at 0.3202.

5.4. Case 3: Sine wave with increasing frequency 34

(a) Solutions found for case 3 using the Kalimeris algorithm with the
uniform node distribution

(b) Solutions found for case 3 using the Kalimeris algorithm with the
Chebyshev node distribution

Figure 5.11

(a) Boundary values found using the k-plane algorithm for case 3 (b) solutions found using the k-plane algorithm for case 3

Figure 5.12

5.4. Case 3: Sine wave with increasing frequency 35

algorithm a greater range for determining the inputs. What is less expected, is the amount of reduction
in L2 norm with and increasing N . It seems that, with an increase in the amount of available basis
function, the algorithm is able to find more precise boundary values with less total output. What is also
interesting is that it seems that using a higher N is more important than a higher M , particularly for
desired states which less natural for the heat equation to reach.

Using the Kalimeris algorithm with N = 20, M = 16, a MSE of 0.0595 was obtained. The time
needed to compute the boundary values for this was 4.718 seconds. We quickly try to see if we can
find the same accuracy using the k-plane algorithm. We choose tstep = 0.0005s (this is needed for a
really high N), a low weight of w = 10−11, as it was found that the control output using the k-plane
algorithm was not a problem, and N = 100 and K = 271. The boundary values for these parameters
were found in 1.931 seconds. After verification we found a MSE between qT,pdepe(x) and qT (x) of
MSE = 0.0501 with a total L2 norm of only 0.1276.

6
Conclusion

There were two main goals we tried to reach in this work. The first was to improve Kalimeris algorithm
so that it is usable in more general condition. This has been achieved. The algorithm now works for
arbitrary initial conditions and desired end states, for both the Neumann and Dirichlet problems. Next
to that a weight has been added to limit control output. This upgraded algorithm is shown to work well
for various qT , and we see a reduction in the error as we increase the computational effect.

The second goal was to construct a competing algorithm with a similar accuracy but a lower compu-
tational cost. This has also been achieved. In all testing done the k-plane algorithm showed comparable
or better results, coupled with a lower computation time.

That is not to say that this is always the better algorithm. When the wrong parameters are chosen
(a too small N or weight w that is too high), the results produced by the k-plane algorithm can be quite
a lot worse than any results the Kalimeris algorithm will give. This is because in the worst case, the
Kalimeris algorithm will try to fit the desired solution at the nodes on the real line. We compare the
Kalimeris algorithm to having training wheels on a bike: Without them you can go faster, but if you fall
it will be quite a bit worse.

Regarding future work, we think there is quite a bit of optimisation to perform on the k-plane al-
gorithm, particularly in choosing the nodes in the complex plane. While it is usable now (with some
amount of verification in the process), the algorithm as given here is mainly more as a proof on concept.
Because of the similarities in the solving method for γ, it might also be possible to construct a hybrid
between the the algorithms, with nodes both on the complex plane and on the real line. This would be
interesting to work out, as each type of node will probably have to be weighed differently.

The same algorithms can also be implemented for other PDEs. This should be relatively easy to
do for linear evolution PDEs in particular, as they follow the same framework in the UTM. Besides
these, we have the option to implement these techniques in Lax-integrable PDEs. These can also
be solved using the UTM but currently still have the issue that the cancellation of boundary values is
a nonlinear problem. The implementation of the k-plane algorithm in particular, which solves for all
boundary values, could be promising.

Alternatively, there should be plenty of options for control methods using the UTM that are not
founded using this type of solving algorithm. Due to the simplicity of the UTM, it should even be possible
to directly compute the boundary values for any desired state qT , although we already foresee it might
be difficult to put any sort of bound of the boundary values found this way.

36

References

[1] Ruel V. Brown JamesWard Churchill.Complex variables and Applications. 9. McGraw-Hill Higher
Education, 2014.

[2] W.T.T Commonski. Idealized physical setting for heat conduction in a rod with homogeneous
boundary conditions. [Online; accessed July 27, 2023], This work is licensed under the Creative
Commons Attribution 3.0 International License. This can be found in http://creativecommons.
org/licenses/by/3.0/. 2007. URL: https://en.wikipedia.org/wiki/Heat_equation#
/media/File:Temp_Rod_homobc.svg.

[3] Bernard Deconinck, Thomas Trogdon, and Vishal Vasan. “TheMethod of Fokas for Solving Linear
Partial Differential Equations”. In: SIAM Rev. 56 (2014), pp. 159–186.

[4] Bernard Deconinck, Thomas Trogdon, and Xin Yang. “The numerical unified transform method
for initial-boundary value problems on the half-line”. In: arXiv preprint arXiv:2006.06024 (2020).

[5] A. S Flyer N & Fokas. “A hybrid analytical–numerical method for solving evolution partial differ-
ential equations. I. The half-line”. In: vol. 464. Apr. 2008, pp. 1823–1849. DOI: 10.1098/rspa.
2008.0041.

[6] Athanassios S. Fokas. A Unified Approach To Boundary Value Problems. Society for Industrial
and Applied Mathematics, 2008.

[7] TheMathWorks Inc.MATLABVersion: 9.10.0.1649659 (R2021a) Update 1. Natick, Massachusetts,
United States, 2022. URL: https://www.mathworks.com.

[8] Michael J. Hoffman Jerrold E. Marsden. Basic Complex Analysis. Third Edition. W. H. Freeman,
1998.

[9] S. G. Johnson.Chebyshev Nodes. [Online; accessed June 25, 2023], This work is licensed under
the Creative Commons Attribution 4.0 International License. This can be found in http://cre
ativecommons.org/licenses/by/4.0/. 2017. URL: https://en.wikipedia.org/wiki/
Chebyshev_nodes#/media/File:Chebyshev-nodes-by-projection.svg.

[10] K. Kalimeris, T. Özsarl, and N. Dikaios. “Numerical Computation of Neumann controls for the
Heat Equation on a Finite Interval”. In: IEEE Transactions on Automatic Control (2023), pp. 1–13.
DOI: 10.1109/TAC.2023.3263753.

[11] Alan V. Oppenheim, Alan S. Willsky, and S. Hamid Nawab. Signals Systems (2nd Ed.) USA:
Prentice-Hall, Inc., 1996. ISBN: 0138147574.

[12] B. de Schutter. Optimization: Linear Programming. Delft Center for Systems and Control, TU
Delft. 2020.

[13] R. J. Smith. The Indentation Lemma. https://tartarus.org/gareth/maths/Complex_Method
s/rjs/indentation.pdf.

[14] James Stewart. Calculus : early transcendentals. Brooks/Cole, Cengage Learning, 2012.
[15] Cornelis Vuik et al. Numerical Methods for Ordinary Differential Equations. English. This work is

licensed under a Creative Commons Attribution 4.0 International License (CC BY). Netherlands:
TU Delft Open, 2015. DOI: 10.5074/t.2023.001.

[16] T. van Wijk. “Literature Review”. In: [unpublished manuscript] ().

37

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://en.wikipedia.org/wiki/Heat_equation#/media/File:Temp_Rod_homobc.svg
https://en.wikipedia.org/wiki/Heat_equation#/media/File:Temp_Rod_homobc.svg
https://doi.org/10.1098/rspa.2008.0041
https://doi.org/10.1098/rspa.2008.0041
https://www.mathworks.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/Chebyshev_nodes#/media/File:Chebyshev-nodes-by-projection.svg
https://en.wikipedia.org/wiki/Chebyshev_nodes#/media/File:Chebyshev-nodes-by-projection.svg
https://doi.org/10.1109/TAC.2023.3263753
https://tartarus.org/gareth/maths/Complex_Methods/rjs/indentation.pdf
https://tartarus.org/gareth/maths/Complex_Methods/rjs/indentation.pdf
https://doi.org/10.5074/t.2023.001

A
Matlab code

In this appendix the code used in Matlab is given. There are two differences in notation between the
code and the rest of the work namely M is K in the code (changed as k is used as the complex
parameter) and the Matrix Q is G in the code.

The main file:

1 % Matlab file written for the Masters Thesis of Thijs van Wijk at the TU
2 % Delft DCSC.
3 % This file includes both the augmented Kalimeris algorithm and the k-

Plane
4 % algorithm , along with both methods of verification.
5 clear %tic
6
7 %Load problem specifications: (allows for easy switching between cases)
8 Case1 % Should have: q0_func, qT_func, Controlpoint , Controltype
9

10 % Defining constants:
11 stepx = 0.005;
12 xvals = 0:stepx:L;
13 tstep = 0.0005; %Make extra small, creates windowing issues otherwise
14 tvals = 0:tstep:T;
15 weight = 10^-7;
16 Algorithm = '1'; %Pick first or second algorithm , 1= Kalimeris , 2= k-

plane one
17
18 % Use values for functions q. Alternatively one could use data points.
19 q0 = q0_func(xvals);
20 qT_goal = qT_func(xvals); % plot(xvals, qT_goal)
21
22 %define algorithm parameters , phi_0 is not included in N
23 N=9;
24 K=9; %This is M in the report. I noticed I already use k for the

complex variable
25
26 % The following part of code dictates what kind of x_m distribution is

used
27 switch controltype
28 case 'Neumann'
29 x_edge = 0.15; %Don't pick anything on/too close to the edge.

These depends on tstep and Kcutoff (also on xstep as these are
indices for x)

38

39

30 case 'Dirichlet' %Should be checked for afterwards
31 x_edge = 0.15; % the Dirichlet one is bigger as effect is more

pronounced there
32 end
33 xk = linspace(x_edge,L-x_edge,K);
34 %xk_dummy = linspace(0,L,K+2); xk = xk_dummy(2:end-1);
35 for k=1:K
36 %xk(k) = 0.5*(L) + 0.5*(L-2*x_edge)*cos(pi*(2*k-1)/(2*K)); %formula

for Chebyshev nodes on interval [N-edge, length(xvals)-n_edge]
37
38 %xk(k) = (1/8*k)^(2/3);
39 end
40 %xk = [0.1, xk]; K=K+1;
41
42 %xk_indices = [1+n_edge, sort([index,index2]), length(xvals)-n_edge];
43 %xk = xvals(indices);
44 %K = length(xk_indices);
45
46 % More defining , includes complex contours:
47 kstep = 0.01;
48 Kcutoff = 100; %cutoff point in complex plane %Upping this gives very

little difference
49 c = 31; %number of points used to calculate circle around pole, should be

>~20
50 kvals = -Kcutoff:kstep:Kcutoff;
51 Cplus = [(Kcutoff:-kstep:2*kstep).*exp(1i*pi*7/8),kstep*exp(i*linspace(7*

pi/8,pi/8,c)),(2*kstep:kstep:Kcutoff).*exp(1i*pi*1/8)]; %Note that we'
re going around 0 here

52 Cmin = [(Kcutoff:-kstep:2*kstep).*exp(-1i*pi*1/8),kstep*exp(i*linspace(-1*
pi/8,-pi*7/8,c)),(2*kstep:kstep:Kcutoff).*exp(-1i*pi*7/8)];%Note that
we're going around 0 here

53 %% Computing F and G
54
55 %precomputing a_0 for g1 and h1 using the derivative , also taking a_0 for

g0,h0
56 a0_g1 = (qT_func(stepx)-qT_func(0))/stepx; a0_h1 = (qT_func(L)-qT_func(L

-stepx))/stepx;
57 a0_g0 = qT_func(0); a0_h0 = qT_func(L);
58
59 % Calculating the Fourier transform of the initial data:
60 for j=1:length(kvals)
61 hat_q0(j) = trapz(xvals,exp(-1i*kvals(j).*xvals).*q0);
62 end
63 %plot(real(dD_plus),real(hat_q0))
64
65 % Calculating \hat{q}_0(+-k) on C+ and C-
66 for j=1:length(Cplus)
67 hat_q0_Cp(j) = trapz(xvals,exp(-1i*Cplus(j).*xvals).*q0);
68 hat_q0_Cm(j) = trapz(xvals,exp(-1i*Cmin(j).*xvals).*q0);
69 end
70 Bn0 = (1-exp(-Cplus.^2*T))./(Cplus.^2); %Precalculated integral of

tilde_phi_0*e^(-k^2T)
71
72 %Calculating parts of F
73 switch Algorithm
74 case '1'

40

75 for n = 1:N
76 Bn(n,:) = ((-1)^n*1-exp((-T)*Cplus.^2)) .* pi*n*(-T)./(Cplus.^4 .*(-

T)^2 + pi^2*n^2.*ones(1,length(Cplus)));
77 for k = 1:length(xk)
78 switch controltype
79 case 'Neumann'
80 switch controlpoint
81 case 'left'
82 F1(k,n) = real(trapz(Cplus,cos(Cplus.*(L-xk(k))).*1i.*

Bn(n,:)./(sin(Cplus.*L))))/pi;
83 case 'right'
84 F2(k,n) = real(-trapz(Cplus,cos(Cplus.*xk(k)).*1i.*Bn(

n,:)./(sin(Cplus.*L))))/pi;
85 case 'both'
86 F1(k,n) = real(trapz(Cplus,cos(Cplus.*(L-xk(k))).*1i.*

Bn(n,:)./(sin(Cplus.*L))))/pi;
87 F2(k,n) = real(-trapz(Cplus,cos(Cplus.*xk(k)).*1i.*Bn(

n,:)./(sin(Cplus.*L))))/pi;
88 end
89 case 'Dirichlet'
90 switch controlpoint
91 case 'left'
92 F1(k,n) = real(trapz(Cplus,sin(Cplus.*(L-xk(k))).*1i.*

Cplus.*Bn(n,:)./(sin(Cplus.*L))))/pi;
93 case 'right'
94 F2(k,n) = real(trapz(Cplus,sin(Cplus.*xk(k)).*1i.*

Cplus.*Bn(n,:)./(sin(Cplus.*L))))/pi;
95 case 'both'
96 F1(k,n) = real(trapz(Cplus,sin(Cplus.*(L-xk(k))).*1i.*

Cplus.*Bn(n,:)./(sin(Cplus.*L))))/pi;
97 F2(k,n) = real(trapz(Cplus,sin(Cplus.*xk(k)).*1i.*

Cplus.*Bn(n,:)./(sin(Cplus.*L))))/pi;
98 end
99 end

100 end
101 end
102
103 switch controlpoint %take appropriate matrix
104 case 'left'
105 F = F1;
106 case 'right'
107 F = F2;
108 case 'both'
109 F = [F1,F2];
110 end
111
112 %G calculation
113 for k=1:length(xk) %In calculating G (Q in the text) we're calculating

each integral individually as it's easier to validate this way
114 Int_real(k,1) = trapz(kvals,exp(1i*kvals.*xk(k)-kvals.^2*T).*hat_q0)

/2/pi;
115
116 switch controltype
117 case 'Neumann'
118 Int_plus(k,1) = -trapz(Cplus,exp(1i*Cplus.*xk(k)-Cplus.^2*T)

./(exp(i.*Cplus.*L)-exp(-i.*Cplus.*L)).* (exp(1i.*Cplus.*

41

L).*hat_q0_Cp + exp(-i.*Cplus.*L).*hat_q0_Cm))/2/pi;
119 Int_min(k,1) = -trapz(Cmin ,exp(1i*Cmin.*xk(k)-Cmin.^2*T)

./(exp(i.*Cmin.*L) -exp(-i.*Cmin.*L)).* (exp(-i.*Cmin.*L
).*hat_q0_Cm + exp(-i.*Cmin.*L).*hat_q0_Cp))/2/pi;

120 Int_phi0g(k,1) = -a0_g1*real(trapz(Cplus,cos(Cplus.*(L-xk(k)))
.*1i.*Bn0./(sin(Cplus.*L))))/pi;

121 Int_phi0h(k,1) = a0_h1*real(trapz(Cplus,cos(Cplus.*xk(k)).*1i
.*Bn0./(sin(Cplus.*L))))/pi;

122 case 'Dirichlet'
123 Int_plus(k,1) = -trapz(Cplus,exp(1i*Cplus.*xk(k)-Cplus.^2*T)

./(exp(-i.*Cplus.*L)-exp(i.*Cplus.*L)).* (-exp(i.*Cplus.*
L).*hat_q0_Cp + exp(-i.*Cplus.*L).*hat_q0_Cm))/2/pi;

124 Int_min(k,1) = -trapz(Cmin ,exp(1i*Cmin.*xk(k)-Cmin.^2*T)
./(exp(-i.*Cmin.*L) -exp(i.*Cmin.*L)).* (-exp(-i.*Cmin.*
L).*hat_q0_Cm + exp(-i.*Cmin.*L).*hat_q0_Cp))/2/pi;

125 Int_phi0g(k,1) = -a0_g0*trapz(Cplus,sin(Cplus.*(L-xk(k))).*1i
.*Cplus.*Bn0./(sin(Cplus.*L)))/pi;

126 Int_phi0h(k,1) = -a0_h0*trapz(Cplus,sin(Cplus.*xk(k)).*1i.*
Cplus.*Bn0./(sin(Cplus.*L)))/pi;

127 end
128 qT_term(k,1) = qT_func(xk(k));
129 end
130
131 G = real(Int_real + Int_plus + Int_min - qT_term + Int_phi0g + Int_phi0h)

;
132 end
133 %% Algorithm 2
134 switch Algorithm
135 case '2'
136
137 %Setting k-plane parameters:
138 N_hat = 10;
139 K_hat = 71;
140 Kcutoff2 = 40; %in absolute terms
141
142 %Precomputed integrals for each Bn:
143 for n = 1:N_hat
144 Bn(n,:) = ((-1)^n*1-exp((-T)*Cplus.^2)) .* pi*n*(-T)./(Cplus.^4 .*(-

T)^2 + pi^2*n^2.*ones(1,length(Cplus)));
145 end
146
147 for k=1:K_hat
148 dummy_hat(k) = 0.5*(80)*cos(pi*(2*k-1)/(2*K_hat)); %formula for Chebyshev

nodes on interval [N-edge, length(xvals)-n_edge]
149 end
150 Cmin_k = [(dummy_hat((K_hat+3)/2:end)+40).*exp(1i*pi*15/8),0,(dummy_hat

(1:(K_hat -1)/2)-40).*exp(1i*pi*1/8)]; %"adding" the 2 here
151 Cplus_k = [(dummy_hat((K_hat+3)/2:end)+40).*exp(1i*pi*7/8),0, -(

dummy_hat(1:(K_hat -1)/2)-40).*exp(1i*pi*1/8)]; %very beun code here but
it works

152
153 for j=1:length(Cmin_k) %calculating \hat{q}_0(+-k) on C-_k
154 hat_q0_Cm_k(j) = trapz(xvals,exp(-1i*Cmin_k(j).*xvals).*q0);
155 hat_qT_Cm_k(j) = trapz(xvals,exp(-1i*Cmin_k(j).*xvals).*qT_goal);
156
157 hat_q0_Cp_k(j) = trapz(xvals,exp(-1i*Cplus_k(j).*xvals).*q0);

42

158 hat_qT_Cp_k(j) = trapz(xvals,exp(-1i*Cplus_k(j).*xvals).*qT_goal);
159 end
160
161 % Precomputed integral for phi_0=1:
162 Bn0_k = (1-exp(-Cplus_k.^2*T))./(Cplus_k.^2); Bn0_k((end+1)/2)=T; %remove

removable pole at k=0
163 for n = 1:N_hat
164 Bn_m = -((-1)^n-exp(-T*Cmin_k.^2)).* pi*n*T./(Cmin_k.^4*(T)^2 + pi

^2*n^2);
165 Bn_p = -((-1)^n-exp(-T*Cplus_k.^2)).* pi*n*T./(Cplus_k.^4*(T)^2 + pi

^2*n^2);
166
167 %Calculating all the parts of F:
168 F_hat_g0(:,n) = -1i.*Cmin_k.'.*Bn_m.';
169 F_hat_g1(:,n) = -Bn_m.';
170 F_hat_h0(:,n) = (1i.*Cmin_k.*exp(-1i.*Cmin_k.*L).*Bn_m).';
171 F_hat_h1(:,n) = exp(-1i.*Cmin_k.*L).'.*Bn_m.';
172
173 F_hat_p_g0(:,n) = -1i.*Cplus_k.'.*Bn_p.'.*exp(1i.*Cplus_k.*L).';
174 F_hat_p_g1(:,n) = -Bn_p.'.*exp(1i.*Cplus_k.*L).';
175 F_hat_p_h0(:,n) = (1i.*Cplus_k.*Bn_p).';
176 F_hat_p_h1(:,n) = Bn_p.';
177 end
178
179 % Combining all the parts of the matrix:
180 F_hat_m = [F_hat_g0 , F_hat_g1 , F_hat_h0 , F_hat_h1];
181 F_hat_p = [F_hat_p_g0 , F_hat_p_g1 , F_hat_p_h0 , F_hat_p_h1];
182 G_hat_m = (hat_qT_Cm_k - exp(-Cmin_k.^2*T).*hat_q0_Cm_k).' -(-i*Cmin_k.*

Bn0_k*a0_g0 - Bn0_k*a0_g1 + i*Cmin_k.*exp(-1i.*Cmin_k.*L).*Bn0_k*a0_h0
+ exp(-1i.*Cmin_k.*L).*Bn0_k*a0_h1).' ;

183 G_hat_p = (exp(1i.*Cplus_k.*L).*hat_qT_Cp_k - exp(-Cmin_k.^2*T+1i.*Cplus_k
.*L).*hat_q0_Cp_k).' -(-i*Cplus_k.*exp(1i.*Cplus_k.*L).*Bn0_k*a0_g0 -
exp(1i.*Cplus_k.*L).*Bn0_k*a0_g1 + i*Cplus_k.*Bn0_k*a0_h0 + Bn0_k*a0_h1
).' ;

184 %plot(real(Cmin_k),real(G_hat_m)); hold on;plot(real(Cmin_k),real(G_hat_p)
);

185 %plot(real(Cmin_k),imag(hat_qT_Cm_k)); hold on;plot(real(Cmin_k),imag(exp
(1i.*Cplus_k.*L).*hat_qT_Cp_k));

186 F_hat = [F_hat_m;F_hat_p];G_hat = [G_hat_m;G_hat_p]; clear F_hat_g0
F_hat_g1 F_hat_h0 F_hat_h1 F_hat_p_g0 F_hat_p_g1 F_hat_p_h0 F_hat_p_h1;

%clean up workspace a bit
187 end
188
189 %% Calculating a with weights
190 %con_max = 10^2;
191 W = diag(weight*ones(2*N,1));
192
193 switch controlpoint
194 case 'both'
195 %con_A = [diag(ones(2*N,1));-1.*diag(ones(2*N,1))]; %Matrices are

twice as long with more inputs
196 %con_b = con_max.*ones(4*N,1);
197 W = diag(weight*ones(2*N,1));
198 otherwise
199 %con_A = [diag(ones(N,1));-1.*diag(ones(N,1))]; %ensuring the a,b

values are below a certain max

43

200 %con_b = con_max.*ones(2*N,1);
201 W = diag(weight*ones(N,1));
202 end
203 % con_Aeq = sum(phi_n.')*tstep;
204 % con_beq = -hat_q0_0;
205
206 %a = lsqlin(F,G,con_A,con_b); %lsqlin(F,G3,con_A,con_b,con_Aeq,con_beq);
207 switch Algorithm
208 case '1'
209 %quadprog problem:
210 H = F.'*F + W;
211 f = -G.'*F;
212 a = quadprog(H,f); %quadprog(H,f,con_A,con_b);
213 case '2'
214 W_hat = diag(weight*ones(4*N_hat ,1));
215 H_hat = [real(F_hat);imag(F_hat)].'*[real(F_hat);imag(F_hat)] + W_hat;
216 f_hat = -[real(G_hat);imag(G_hat)].'*[real(F_hat);imag(F_hat)];
217 a_hat = quadprog(H_hat,f_hat);
218 end
219 % plot(real(Cmin_k),real(F_hat(1:K_hat ,:)*a_hat)); hold on; plot(real(

Cmin_k),real(G_hat(1:K_hat)));
220 % figure
221 % plot(real(Cmin_k),real(F_hat(1+K_hat:end,:)*a_hat)); hold on; plot(real(

Cmin_k),real(G_hat(1+K_hat:end)));
222
223 %a = pinv(F)*G;
224 toc
225 %% Verification using the UTM
226
227 %Assigning k-plane vals for boundary values using earlier found Bn
228 switch Algorithm
229 case'1'
230 switch controltype
231 %Computing the transforms of the boundary values: (not actually
232 %transforming them)
233 case 'Dirichlet'
234 switch controlpoint
235 case 'left'
236 tilde_g0 = a.'*Bn + a0_g0*Bn0; tilde_h0 = zeros(size(

tilde_g0));
237 case 'right'
238 tilde_h0 = a.'*Bn + a0_h0*Bn0; tilde_g0 = zeros(size(

tilde_h0));
239 case 'both'
240 tilde_g0 = a(1:N).'*Bn + a0_g0*Bn0; tilde_h0 = a(N+1:end)

.'*Bn + a0_h0*Bn0;
241 end
242 case 'Neumann'
243 switch controlpoint
244 case 'left'
245 tilde_g1 = a.'*Bn + a0_g1*Bn0; tilde_h1 = zeros(size(

tilde_g1));
246 case 'right'
247 tilde_h1 = a.'*Bn + a0_h1*Bn0; tilde_g1 = zeros(size(

tilde_h1));
248 case 'both'

44

249 tilde_g1 = a(1:N).'*Bn + a0_g1*Bn0; tilde_h1 = a(N+1:end)
.'*Bn + a0_h1*Bn0;

250 end
251 end
252 case '2'
253 tilde_g0 = a_hat(1:N_hat).'*Bn + a0_g0*Bn0; tilde_h0 = a_hat(2*

N_hat+1:3*N_hat).'*Bn + a0_h0*Bn0; %calcs all vals, can't do 1-
sided control yet

254 tilde_g1 = a_hat(N_hat+1:2*N_hat).'*Bn + a0_g1*Bn0; tilde_h1 =
a_hat(3*N_hat+1:end).'*Bn + a0_h1*Bn0;

255 end
256
257 % Calculating each integral individually again:
258 % (We are using the hat_q0's found earlier)
259 for n=1:length(xvals)
260 Int_R(n) = trapz(kvals,exp(1i*kvals.*xvals(n)-kvals.^2*T).*hat_q0)/2/

pi;
261 switch controltype
262 case 'Neumann'
263 Int_dDp(n) = -trapz(Cplus ,exp(1i*Cplus.*xvals(n)-Cplus.^2*T)

./(exp(i.*Cplus.*L)-exp(-i.*Cplus.*L)) .*(exp(i.*Cplus.*L).*
hat_q0_Cp + exp(-i.*Cplus.*L).*hat_q0_Cm))/2/pi;

264 Int_dDm(n) = -trapz(Cmin ,exp(1i*Cmin.*xvals(n)-Cmin.^2*T)./(
exp(i.*Cmin.*L)-exp(-i.*Cmin.*L)) .*exp(-i.*Cmin.*L).*(
hat_q0_Cm + hat_q0_Cp))/2/pi;

265
266 Int_dDp_copy(n) = -trapz(Cplus,exp(1i*Cplus.*xvals(n))./(exp(i.*

Cplus.*L)-exp(-i.*Cplus.*L)) .*(-2.*exp(-i.*Cplus.*L).*tilde_g1
+ 2.*tilde_h1))/2/pi;

267 Int_dDm_copy(n) = -trapz(Cmin ,exp(1i*Cmin.*xvals(n))./(exp(i.*
Cmin.*L) -exp(-i.*Cmin.*L)) .*(-2.*exp(-i.*Cmin.*L).*tilde_g1
+ 2.*tilde_h1))/2/pi;

268
269 case 'Dirichlet'
270 Int_dDp(n) = -trapz(Cplus ,exp(1i*Cplus.*xvals(n)-Cplus.^2*T)

./(exp(-i.*Cplus.*L)-exp(i.*Cplus.*L)) .*(-exp(i.*Cplus.*L).*
hat_q0_Cp + exp(-i.*Cplus.*L).*hat_q0_Cm))/2/pi;

271 Int_dDm(n) = -trapz(Cmin ,exp(1i*Cmin.*xvals(n)-Cmin.^2*T)./(
exp(-i.*Cmin.*L)-exp(i.*Cmin.*L)) .*exp(-i.*Cmin.*L).*(-
hat_q0_Cm + hat_q0_Cp))/2/pi;

272
273 Int_dDp_copy(n) = -trapz(Cplus,exp(1i*Cplus.*xvals(n))./(exp(-i.*

Cplus.*L)-exp(i.*Cplus.*L)) .*(2.*exp(-i.*Cplus.*L).*i.*Cplus.*
tilde_g0 - 2.*i.*Cplus.*tilde_h0))/2/pi;

274 Int_dDm_copy(n) = -trapz(Cmin ,exp(1i*Cmin.*xvals(n)) ./(exp(-i.*
Cmin.*L) -exp(i.*Cmin.*L)) .*(2.*exp(-i.*Cmin.*L).*i.*Cmin.*
tilde_g0 - 2.*i.*Cmin.*tilde_h0))/2/pi;

275 end
276 end
277 qT = Int_R + Int_dDp + Int_dDp_copy + Int_dDm + Int_dDm_copy;
278
279 % figure
280 % plot(xvals,qT_goal); hold on; plot(xvals,qT);plot(xk,qT_func(xk),'o');

legend('qT','qT goal','xk data points ');
281 % title("control of the heat equation")
282

45

283 %% Verification using PDEPE
284 % Changing some variables to be compatible with the PDEPE functions (used

in
285 %the next part). This is faster than also implementing the upcoming part
286 %for the k-plane algorithm.
287 switch Algorithm
288 case '2'
289 N=N_hat;
290 switch controltype
291 case 'Neumann'
292 switch controlpoint
293 case 'left'
294 a = a_hat(N_hat+1:2*N);
295 case 'right'
296 a = a_hat(3*N+1:4*N);
297 case 'both'
298 a = [a_hat(N+1:2*N);a_hat(3*N+1:4*N)];
299 end
300 case 'Dirichlet'
301 switch controlpoint
302 case 'left'
303 a = a_hat(1:N);
304 case 'right'
305 a = a_hat(2*N+1:3*N);
306 case 'both'
307 a = [a_hat(1:N);a_hat(2*N+1:3*N)];
308 end
309 end
310 end
311
312 % Calling the correct boundary value function: (we're doing this as we

need
313 % to load extra variables into PDEPEs bc function)
314 switch controltype
315 case 'Neumann'
316 switch controlpoint
317 case 'left'
318 bc = @(xl,ul,xr,ur,t) bcNeu_g_func(xl,ul,xr,ur,t,N,T,a,

a0_g1); %needed to pass correct data into the boundary
condition (something simular can to done to use data as
initial condition)

319 case 'right'
320 bc = @(xl,ul,xr,ur,t) bcNeu_h_func(xl,ul,xr,ur,t,N,T,a,

a0_h1);
321 case 'both'
322 bc = @(xl,ul,xr,ur,t) bcNeu_both_func(xl,ul,xr,ur,t,N,T,a,

a0_g1,a0_h1);
323 end
324 case 'Dirichlet'
325 switch controlpoint
326 case 'left'
327 bc = @(xl,ul,xr,ur,t) bcDir_g_func(xl,ul,xr,ur,t,N,T,a,

a0_g0);
328 case 'right'
329 bc = @(xl,ul,xr,ur,t) bcDir_h_func(xl,ul,xr,ur,t,N,T,a,

a0_h0);

46

330 case 'both'
331 bc = @(xl,ul,xr,ur,t) bcDir_both_func(xl,ul,xr,ur,t,N,T,a,

a0_g0,a0_h0);
332 end
333 end
334
335 % PDEPE:
336 PDEPEsol = pdepe(0,@heatpde_func ,q0_func, bc,xvals ,tvals);
337
338 % Plotting:
339 figure
340 plot(xvals,PDEPEsol(end,:)); hold on; plot(xvals,qT); %plot(xvals,qT_goal)

;
341 plot(xvals,ones(size(qT))); plot(xk,qT_func(xk),'o');
342 xlabel('x'); legend('PDEPE solution','UTM solution', 'goal function','x_m

points'); axis([0 L 0.9 1.1]);
343 title("Case 3 k-plane verification"); %legend('PDEPE solution ','UTM

solution ', 'goal function ');
344 title("Case 1 Kalimeris uniform distribution pseudoinverse solving method

")
345
346 %% Plotting Boundary vals in time
347 for n = 1:N
348 phi_n(n,:) = sin(n*pi*(tvals)/(T));
349 end
350 g0_t = a(1:N).'*phi_n + a0_g0;
351 h0_t = a(N+1:2*N).'*phi_n + a0_h0;
352
353 %L2 norm:
354 L2 = (sqrt(sum(g0_t.^2))+sqrt(sum(h0_t.^2)))*tstep
355
356 figure
357 plot(tvals,g0_t); hold on; plot(tvals,h0_t); xlabel("t"); legend('g_0(t)'

, 'h_0(t)'); %title("Case 1 boundary values found by the k-plane
algorithm");

358 title("Case 1 boundary values using the pseudoinverse solving method");
359 %% getting the values for a in Latex
360 sympref("FloatingPointOutput",true);
361 % latex(sym(a(1:N).')) % latex(sym(xk))
362 % latex(sym(a(N+1:2*N).'))
363 %vaf= max(0, (1-norm(y-yhat)^2/norm(y)^2)*100);
364 MSE = immse(PDEPEsol(end,:),ones(size(qT)))*length(qT)/L %Matlabs MSE

takes the vector length instead of the x length
365 %sum((PDEPEsol(end,:)-ones(size(qT))).^2)

With the cases:

1 % Description: Case 1: Elevated constant value
2 % Should have: q0_func, qT_func, Controlpoint , Controltype
3
4 L = 1;
5 T = 0.5;
6 q0_func = @(x) -0.3*sin(pi*x/L);
7 qT_func = @(x) 1;
8
9 %xk = linspace(0.15,0.85,8);

10 controlpoint = 'both';

47

11 controltype = 'Dirichlet';

1 % Description: Case 2: Curved Ramp
2 % Should have: q0_func, qT_func, Controlpoint , Controltype
3
4 L = 1;
5 T = 0.5;
6 q0_func = @(x) 0;
7 qT_func = @(x) -0.3 + 1.8*x + 1*x.^2;
8
9 controlpoint = 'both';

10 controltype = 'Neumann';

1 % Description: Case 3: Sine wave
2 % Should have: q0_func, qT_func, Controlpoint , Controltype
3
4 L = 1;
5 T = 0.5;
6 q0_func = @(x) 0;
7 qT_func = @(x) 0.3*sin(pi*4*x.^1.5);
8 %xk = linspace(1/8,7/8,7);
9

10 controlpoint = 'both';
11 controltype = 'Dirichlet';

And the functions:

1 function [c,f,s] = heatpde_func(xvals,tvals,PDEPEsol ,DuDx) %the PDE
2 c = 1;
3 f = DuDx;
4 s = 0;
5 end
6
7 function [pl,ql,pr,qr] = bcDir_both_func(xl,ul,xr,ur,t,N, T, a,a0_g0,a0_h0

) %Dirichlet boundary condition
8 for n = 1:N %Creates the function basis
9 sinbase(n) = sin(n*pi*(t)/(T));

10 end
11 g0_tval = a(1:N)'*sinbase' + a0_g0*1; %and uses it on the found values

for a
12 h0_tval = a(N+1:end)'*sinbase' + a0_h0*1;
13
14 pl = ul-g0_tval; %And puts that into the PDE
15 ql = 0;
16
17 pr = ur-h0_tval;
18 qr = 0;
19 end
20 %Dirichlet boundary conditions for PDEPE solver. With g0(t) = g0_t, and h0

(t) = h0_t data.
21 %Needs bc = @(xl,ul,xr,ur,t) bcDir_both_func(xl,ul,xr,ur,t,N, T, a,a0_g0,

a0_h0); defined for the
22 %program to add the extra variable as a boundary condition (the h1_t data)
23
24
25 function [pl,ql,pr,qr] = bcNeu_both_func(xl,ul,xr,ur,t,N, T, a,a0_g1,a0_h1

) %Neumann boundary condition

48

26 for n = 1:N %Creates the function basis
27 sinbase(n) = sin(n*pi*(t)/(T));
28 end
29 g1_tval = a(1:N)'*sinbase' + a0_g1*1; %combines it with the found a
30 h1_tval = a(N+1:end)'*sinbase' + a0_h1*1;
31
32 pl = -g1_tval;
33 ql = 1;
34
35 pr = -h1_tval; %and uses that data for the boundary value
36 qr = 1;
37 end
38 %Neumann boundary conditions for PDEPE solver. With g1(t) = 0,
39 %and h1(t) = h1_t data.
40 %Needs bc = @(xl,ul,xr,ur,t) bcNeu_both_func(xl,ul,xr,ur,t,N, T, a,a0_g1,

a0_h1); defined for the
41 %program to add the extra variable as a boundary condition (the h1_t data)

	Summary
	Introduction
	The unified transform method for the heat equation on the finite domain
	Derivation of the general solution
	Derivation of the Neumann problem of the heat equation
	Derivation of the Dirichlet solution

	Improved version of the Kalimeris et al boundary value control algorithm
	The Kalimeris et al algorithm
	Additions to the algorithm
	Arbitrary reference function and initial conditions
	Control from both sides
	Method of solving for gamma
	Expansion of basis for Dirichlet control

	Final algorithm

	Boundary value control algorithm in the complex plane
	Derivation of the second algorithm
	Derivation of =
	Solving method for

	Final k-plane algorithm

	Methodology and results
	Methodology for both algorithms
	Kalimeris algorithm xm placement
	k-Plane algorithm km placement

	Case 1: Elevated constant value
	Smaller xedge and solving without weights

	Case 2: A curved ramp
	Case 3: Sine wave with increasing frequency
	Increasing N and M

	Conclusion
	References
	Matlab code

