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Chapter 1

Introduction

A reservoir represents a natural accumulation of hydrocarbons captive within lithological
structures. The hydrocarbons are formed by decomposition of the organic matter that
accumulates from the deposition of marine microorganisms and vegetation in ancient
sea basins. The transformation in buried sediments of organic matter to oil and gas
takes millions of years depending on the condition of temperature and pressure in the
subsurface. At the surface condition, the hydrocarbons can be found in gaseous state
(natural gas), liquid state (oil) or even solid state (natural bitumen).

1.1 Petroleum Systems

An efficient recovery of the hydrocarbons trapped within a reservoir requires a prior def-
inition of a conceptual model that enables spatial visualization of the reservoir. Initially,
the conceptual model is built based on geological information collected during the reser-
voir exploration phase.
The first geologic information refers to the external geometry of the reservoir which
is defined by lithological barriers that block the hydrocarbons displacement. Usually,
these barriers consist of a low permeable or even impermeable rocks (seals, cap rocks)
that stop the hydrocarbons movement. The buoyancy force produced by the difference in
density between water and hydrocarbons generates the hydrocarbon migration. Within
a reservoir, the hydrocarbon migration can propagate in two directions: the primary mi-
gration e.g. the movement within rock source (the rock formed after sedimentation of
the organic matter) and the secondary migration e.g. the hydrocarbon movement from
the rock source towards the reservoir permeable rock. When migration stops, a hydro-
carbon accumulation forms, only where hydrocarbons encounter a trap. The trap is a
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2 CHAPTER 1. INTRODUCTION

tectonic or lithologic arrangement that blocks the hydrocarbon migration, keeping them
in equilibrium (Figure 1.1).
The second geologic information is the internal reservoir lithological architecture. The
architecture includes the geometry and the topology of the rock types present in the
reservoir. A petroleum reservoir is composed of various rock types whose spatial distri-
bution obeys stratigraphic and diagenetic principles. The diagenesis refers the sediment
modification occurring after deposition, whilst stratigraphy is the geological study of the
form, geographic distribution, chronological succession, classification, and correlation
of rocks ∗.
The spatial distribution of the lithological formations has two components: one is the lat-
eral distribution and the other is the vertical stacking of the geological deposits. These
two components are interconnected, being the results of the evolution through time of
the depositional system.

Figure 1.1: Types of hydrocarbon traps †

The oil recovery starts by drilling wells that perturb the equilibrium of the pres-
sure system in the subsurface. The petroleum reservoir is a hydrodynamic unit, so any
change in its pressure in time influences the entire pressure system. Consequently, when
a pressure modification occurs, the hydrocarbons migrate towards areas that allow their
release. The high pressure difference between surface and subsurface generates a flow
that transports the hydrocarbons towards the surface. This is the primary phase of oil re-
covery, during which the hydrocarbon production reaches about 20%− 30% of the total
reserves. With time, the pressure equilibrium is reestablished and the oil recovery grad-
ually diminishes. Therefore, the oil companies proceed to a new stage named secondary

∗Reservoir Engineering and Petrophysics-Petroleum Engineering Handbook, Vol V
†Image courtesy of Encylopaedia Britannica, in accordance with section 1.Terms of Use for Everyone

subsection Use of Content of the terms at http://corporate.britannica.com/termsofuse.html, accessed on 28
February 2014.



1.2. DATA ASSIMILATION IN RESERVOIR ENGINEERING 3

recovery. During this phase the pressure system is stressed by injection of water or gas
in some of the drilled wells (the injection wells). This injection generates hydrocarbon
displacement and, consequently, their recovery through the other wells (the production
wells). This procedure increases the amount of recovered hydrocarbons, but still not
enough, half of the reserves being still trapped in the formation. After a while, the in-
jected water reaches the production wells, which decreases the amount of hydrocarbons
recovered. When the water injection is no longer economically profitable (the amount
of hydrocarbons does not cover the costs with water injection), the oil companies have
two options: either close the production, or pass to a further phase named tertiary oil re-
covery or enhanced oil recovery (EOR). During this phase, complex chemicals or steam
are injected in order to change the properties of the fluids and the rocks for an easy flow
of the hydrocarbons.
The hydrocarbon displacement, during exploitation, generates a flow which follows
trajectories that depend on the spatial distribution of the petrophysical properties (e.g.
porosity, permeability, water saturation, relative permeability) of the lithological struc-
tures present in reservoir. The spatial distribution of the petrophysical properties is re-
lated to the spatial distribution of the rock bodies that form the reservoir geology, dif-
ferent rock types, usually have different petrophysical properties. Only locally, certain
lithological units may have comparable petrophysical properties. For example, crevasse
splays may have, locally, comparable petrophysical properties with channel belts. These
rock bodies, distinguished by petrophysical properties and mineralogy are called facies.
Consequently, any production optimization plan or field development plan must take
into account the reservoir geology. A better description of the reservoir geological ar-
chitecture improves the geological simulation model, which is the foundation of the
decision-making process.

1.2 Data assimilation in reservoir engineering

Even though the geological simulation model is well calibrated to generate geologically
plausible realizations, theirs predictions (e.g. the simulated production outcome) are not
necessary, close to the real production data. A field development plan, as part of the
decision-making process, is based on plausible geological realizations whose simulated
measurements predicts "well enough" the reality. These predictions are obtained cou-
pling the geological model with a numerical model that simulates the reservoir behavior
under established conditions (given geology, wells positions, well controls etc.). Under
given well controls, the predictions depend on the initial state of the dynamical variables
(pressures and saturations), petrophysical parameters (permeability, porosity, relative
permeability, etc.) and properties of the fluids and/or gas present in reservoir (viscosity,
density). A reservoir is located thousands of meters underground and its measurements
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are sparse and either contains little spatial information or does not contain spatial in-
formation at all. This causes a high uncertainty during simulation using the geological
model. Consequently, the initial conditions of the numerical model lie in a sea of un-
certainty, which makes it almost impossible to compute estimation of future production
close to reality. In order to obtain plausible geological realizations with high predictive
capacity, a solution would be to use the data assimilation techniques. Data assimilation
is a methodology that incorporates measurements into the mathematical model of the
system. The purpose of this methodology is to calibrate the state of the system such that
the model can simulate observations in the closest proximity of the measurements. In
data assimilation, the period of time when the measurements are used for calibration is
called the assimilation period. When the methodology is used for the dynamical variable
estimation, we name the data assimilation procedure state estimation; when the method-
ology is used for the calibration of model parameters (static variables), we call it inverse
modeling procedure (or parameter estimation).
In reservoir engineering the data assimilation is called history matching (HM) and it
has been traditionally used to calibrate the model parameters, such that the simulated
production response closely reproduces reservoir past behaviour. Initially, within the
history matching framework, the model parameters were adjusted manually and, con-
sequently the methodology was named manually history matching. In this case, the
model parameters considered were the petrophysical properties of the rock types present
in the reservoir. Nowadays, for the parameter calibration, complex procedures that in-
volve developing of automatic routines are used and the methodology is named Assisted
History Matching (AHM).
In the last two decades, many AHM algorithms were proposed (Aanonsen et al 2009,
Oliver and Chen 2011, Oliver et al. 2008). Depending on the mathematical procedures
used, one may distinguish two directions: gradient based and gradient free methodolo-
gies. The gradient based methodology defines an analytical function that is to be opti-
mized. The simplest way to introduce a parameter calibration within a such procedure is
achieved through a function that describes the square of the Euclidian distance between
the simulated measurements and the reservoir observations (Oliver et al 2008). How-
ever, the measurements are contaminated with errors, so the pure euclidian distance is
traditionally replaced with a weighted regularized least-square function. The minimiza-
tion involves the use of gradients. Various types of algorithms were proposed to solve
the minimization problem (basically, the gradient calculus), either involving the adjoints
(Chen et al.(1974), Zhang and Reynolds (2002)) or approximations of the gradients using
Newton-like methods (Oliver et al. 2008). The gradient free methodologies can be cate-
gorized according to Sarma et al. (2007) in stochastic algorithms (gradual deformation
method Roggero and Hu (1998), Hu and Ravalec (2004), Gao et al. (2007), probability
conditioning method Hoffman and Caers (2006)), streamline based techniques (Vasco
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and Datta-Gupta (1997), (1999)) and Kalman filter approaches. In Chapter 3 we offer a
detailed description of the Kalman filter methodology, together with an overview of the
ensemble based methods introduced in the Kalman filtering framework.

Irrespective of the assisted history matching algorithm used, the result of the estima-
tion process must satisfy a few requirements:

• To predict the future behaviour of the reservoir in existing and new wells with
increased confidence.

• To maintain geological acceptability.

• To incorporate (condition on) all quantifiable information (seismic, gravity, well
logs etc.)

In addition, when possible, the AHM method must offer an uncertainty quantification.
The preservation of the geological plausibility during the AHM process is still a

challenge and it is the main goal of this work. The geology is very complex, and its ac-
ceptance preservation, when optimization procedures are performed, has been obtained
only in few particular cases for synthetic reservoirs, and under particular assumptions
regarding the geology simulation. A general AHM method, that is capable to preserve
the geology requirements (geometry and topology) when applied, does not yet exist.

1.3 Geologically consistent data assimilation

One of the main problems still associated with the use of data assimilation methods
for history matching of reservoir models is the lack of geological realism in updates.
The assumption is that reservoir models which are geologically plausible and match
all available data are better (i.e. give better predictions) than models which are not
geologically realistic or do not match all data. In the normal workflow, the changes
to the properties of reservoir models (like porosity and permeability) introduced by the
history matching process are usually not consistent with geological knowledge about the
reservoir, so that the optimal reservoir model is not achieved. Roughly speaking, there
are three possible ways to solve these problems.

1. First, the parameters of the models used to generate the geological models are
adjusted instead of the properties themselves. An example is the probability per-
turbation method (Hoffman and Caers, 2004) where the settings of the geolog-
ical model used for generating realizations are estimated. Another example is
a method implemented by Hu et al. 2012 where the parameters incorporated
in the multi-point geological simulation model are calibrated within ensemble
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based AHM process. These methods can guarantee realistic geology, but gen-
erally achieve a worse fit to the production data.

2. The second option is to estimate the properties while retaining the relevant geo-
logical input, for example by retaining multi-point statistics. More fundamental
geological input, like the topological ordering of facies or layers, may still be lost
in such an approach. Examples for the second approach are the Gaussian mix-
ture models (Dovera and Della Rossa, 2011) for retaining multi-point statistics,
discrete cosine transform (DCT, Jafarpour and McLaughlin 2007) for preserving
patterns similar to image processing, wavelets (Jafarpour 2010) or Kernel PCA
(Caers 2004, Sarma et al 2008, Sarma and Chen 2009) based on a projection of
the log-permeability (the property of interest) into a high dimensional space based
on kernel functions.

3. The third option is an intermediate solution in which the distribution of the facies
is estimated explicitly, using appropriate parameterizations of the facies fields.
Also here arises a question whether geological acceptability is preserved. Ex-
amples for the third approach are the truncated pluri-Gaussian method (Liu and
Oliver, 2005), the level set method (David Moreno 2009), the gradual deformation
method (Hu et al. 1998, 2004), parameterizations using distance fields (Lorentzen
et al 2012) or using level-set type functions (Chang et al 2010).

Although the first method is intuitively appealing, some major problems are associ-
ated with it. The main problem is the strong non-linearity and lack of sensitivity between
the parameters of the models generating the geological instances and the production data.
This means that an approach where the geological model parameters are adjusted based
on a mismatch between model predictions and observations are difficult to apply.
An important question for the second method is what should be preserved in the assim-
ilation step. It is not straightforward which parameters are important in describing ge-
ology and, more specifically, the geological features important for reservoir simulation.
The third method has the disadvantage that the production data can be rather insensi-
tive to boundaries between facies, which are thus hard to estimate. The question also
arises whether the properties of the facies need to be estimated jointly with the facies
distribution. Finally, it may not always be possible to describe the reservoir using a fa-
cies distribution, especially in the case of gradual transitions between facies or complex
fine-scale distributions of the facies.
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1.4 Research objectives

The goal of this project is to investigate methods currently being used in the third cate-
gory and identify the most promising one. One of these methods should be further devel-
oped and tested on a geologically realistic reservoir model. The question which method
preserves the prior geological information in the best way, depends on two parts: how
the geology is better described and how well the chosen parameters are calibrated by
the data assimilation method. The first part is case dependent. Therefore, two different
geological simulation models are used for the construction of the internal geometry and
topology of the reservoir. For both geological simulation models, appropriate parame-
terizations should be found such that the AHM method chosen to provide geologically
plausible updates.

1. The first geological simulation model is based on two point statistics and is de-
fined in the context of plurigaussian simulation, either by a truncation scheme or
by a pure simulation using spatially correlated Gaussian variables. In this case the
parametrization is made straightforward by the Gaussian fields themselves. We
aim to introduce appropriate settings of the geological model so that the simu-
lated facies instances are geologically plausible and conditioned to all available
measurements.

2. The second geological simulation model is based on multi-point geostatistical sim-
ulation (MPS). Here, complex curvilinear structures (as channels) can be success-
fully generated from conceptual geological models (training images). The MPS
model has the advantage to generate facies instances with increased geological
acceptability, but for their direct estimation a suitable parametrization is needed.
Consequently, we aim to introduce a new parametrization of the facies fields cou-
pled with an appropriate AHM method to drive the estimation process towards the
requirements presented.

Besides the estimation purpose, by using ensemble based methods for data assimilation,
we aim to offer an uncertainty quantification of the facies distribution. This is crucial
when reservoir optimization production plans are investigated taking into account the
geological uncertainties. The estimation of uncertainties in the structural model (the
boundaries between layers, faults, external reservoir geometry) and the introduction of
these uncertainties as updatable parameters in the AHM method are not addressed in this
project.



8 CHAPTER 1. INTRODUCTION

1.5 Thesis outline

The thesis is organized as follows:

• In Chapter 2 we describe the geological simulation models used in this project. We
present also the mathematical instruments required for defining the methodology
of each geological simulation model.

• Chapter 3 is dedicated to the data assimilation methodology. We describe the
ensemble based methods used for history matching.

• In Chapter 4 we present the probabilistic parametrization of the facies fields.
Based on this parametrization, we build a geological simulation model which
is further coupled with the ensemble Kalman filter (EnKF) as data assimilation
method. We place this geological simulation model in the large family of pluri-
gaussian simulation models. We provide an estimator of the reference facies field
together with its associated uncertainty quantification. This chapter is based on
Sebacher et al. 2013.

• In Chapter 5 we describe a geological simulation model by means of which the
plurigaussian simulation is conditioned to facies probability maps. The name of
the model is the Adaptive Plurigaussian Simulation (APS). We couple the geo-
logical simulation model with EnKF, as history matching method, for the geology
uncertainty quantification. This chapter is based on an article submitted to Com-
putational Geosciences.

• Chapter 6 is dedicated to channelized reservoirs. In this chapter we define a new
parametrization of the facies fields, in the context of MPS geological simulation
model, which is coupled with the EnKF and the iterative adaptive Gaussian mix-
ture (IAGM). We perform the experiments on two reservoir models with different
complexity. This chapter is based on the article submitted to Computational Geo-
sciences.

• In Chapter 7 we present the performance of the APS model in the case of a real
field application for a reservoir located in the North Sea. This chapter is based on
an article presented at the 76th EAGE Conference and Exhibition 2014 (Hanea et
al. 2014).

• In Chapter 8 we present the conclusions of this study and some recommendations
regarding a possible continuation of this work.



Chapter 2

Geological Simulation Models

2.1 Truncated plurigaussian simulation (TPS)

The main ingredient for the plurigaussian truncation methodology consists of the Gaus-
sian random field. Consequently, before presenting the (geological) simulation model,
we will first give an introduction to random field theory with a focus on a particular
shape e.g. the Gaussian random field. The second ingredient of the simulation model
is the truncation scheme (map). This is introduced in the second subsection, where the
simulation model is presented together with some illustrative examples.

2.1.1 The Gaussian random fields

Definition: Let (Ω, F, P ) be a probability space and T ⊆ Rd (d ≥ 1, integer), a param-
eter set. A random field is a function Y : T × Ω → Rm, such that Yt = Y (t, ·) (e.g.
Yt(ω) = Y (t, ω), for ω ∈ Ω) is a Rm-valued random variable on (Ω, F, P ), for every
t ∈ T .
In the following, we develop the theory for the particular casem = 1, which corresponds
to real valued random fields. Consequently, for T ⊆ Rd we can define a random field Y
as a function such that Yt are random variables for any t ∈ T . The dimension d of the
real space which includes T gives the dimension of the random field. A one-dimensional
random field is usually called a stochastic process. The random fields in two or three
dimensions are often encountered in earth sciences, such hydrology or geology, where
spatial correlations of the values of some parameters are needed. Additionally, random
fields are often used in meteorology to model space-time dependent variables.

Let be Y a real valued random field with parameter set T ⊆ Rd (d ≥ 1). Usually,
this random field is written as {Yt, t ∈ T}. For any choice of the positive integer k and

9
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of the finite set of parameters {t1, t2, . . . , tk} from T , we define the function,
Ft1,t2,...,tk : R

k → [0, 1], where R = R ∪ {−∞,∞}

Ft1,t2,...,tk (x1, x2, . . . , xk) = P (Yt1 ≤ x1, Yt2 ≤ x2, . . . , Ytk ≤ xk) (2.1)

such that, Ft1,...,tk(x1, . . . ,−∞, . . . , xk) = 0 and Ft1,...,tk(∞, . . . ,∞) = 1

We call these functions the finite-dimensional (cumulative) distribution functions (f.d.d.
functions) of the random field Y . These functions have two important properties, sym-
metry and compatibility.

1. Symmetry: For any permutation σ of the set {1, 2, . . . , k}, and for any elements
ti ∈ T, i ∈ 1, k we have

Ft1,t2,...,tk = Ftσ(1),tσ(2),...,tσ(k) (2.2)

2. Compatibility: For any k − 1 elements ti ∈ T, i ∈ 1, k − 1 and for any real
numbers xi, i ∈ 1, k − 1 we have

Ft1,t2,...,tk−1(x1, x2, . . . , xk−1) = Ft1,t2,...,tk−1,tk (x1, x2, . . . , xk−1,∞) (2.3)

These properties hold because the values of the f.d.d. functions are probabilities cal-
culated for the same events of the probability space (Ω, F, P ). Related with these two
properties is the Kolmogorov theorem which emphasise the importance of the f.d.d.
functions in the context of the existence of the random fields.
Kolmogorov existence theorem∗

If a system of probability measures denoted Ft1,t2,...,tk (ti ∈ T ⊆ Rd) satisfies the
symmetry conditions and the compatibility conditions, there exists a probability space
(Ω, F, P ) and a random field defined on it, having Ft1,t2,...,tk as its finite-dimensional
distribution functions.
This theorem gives the necessary and sufficient conditions for the random fields exis-
tence. Based on this theorem, we will introduce Gaussian random fields. Before that,
we introduce the first two moments associated with the random fields.

1. The expectation (mean) function: m : T → R

m(t) =

∫
R

x dFt(x) = E(Yt) (2.4)

∗Abrahamsen P., A review of Gaussian Random Fields and Correlation Functions, 1997
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2. The covariance function: C : T 2 → R

C(t1, t2) = Cov(Yt1 , Yt2) = E((Yt1 −m(t1))(Yt2 −m(t2)))

=

∫∫
R2

xy dFt1,t2(x, y)−m(t1)m(t2) (2.5)

For the random fields characterized by continuous variables, the f.d.d. functions can be
defined by the probability density functions (pdf ). These functions can be calculated as
partial derivatives of the f.d.d functions.

pt1,...,tk (xt1 , . . . , xtk ) =
∂kFt1,...,tk (x1, . . . , xk)

∂x1 . . . ∂xk
(2.6)

We can write the mean function and the covariance function with respect to the probabil-
ity density functions. m(t) =

∫
R x pt(x) dx and C(t1, t2) =

∫∫
R2 xy pt1,t2(x, y) dx dy.

In addition, if we denote by σ(t) =
√
C(t, t) we can define the (auto) correlation

function:

ρ(t1, t2) =
C(t1, t2)

σ(t1)σ(t2)
(2.7)

Note that the definition of the correlation function is correct, since C(t, t) > 0.
Random fields properties
We have defined the random fields with no restrictions for the parameter space T. How-
ever T ⊆ Rd, and Rd has a structure of an Euclidian space. When T borrows properties
from Rd (the linear structure or the Euclidian structure) we can describe special classes
of random fields. These classes are defined through properties that the f.d.d. or mean
and covariance functions may have. These properties refer to the invariance of f.d.d.
functions to some transformations of the space T.

• Stationarity (Homogeneity)
Definition: A random field Y is said to be strictly stationary (or homogeneous)
if its finite-dimensional distributions are invariant under a space translation of the
linear space T .
That is, if we consider the translation φτ : T → T , φτ (t) = t + τ then the
stationarity property can be written as

Ft1,t2,...,tk (x1, x2, . . . , xk) = Fφτ (t1),φτ (t2),...,φτ (tk)(x1, x2, . . . , xk) (2.8)

Consequently, for stationary random fields the mean function is constant on the
space T (m(t) = m for every t ∈ T ), whereas the covariance function can be
defined one-dimensional as C(t1, t2) = C(τ), where τ = t2 − t1. This holds
because
m(t) =

∫
R x dFt(x) =

∫
R x dF0+t(x) =

∫
R x dF0(x) = m(0) and∫∫

R2 xy dFt1,t2(x, y) =
∫∫

R2 xy dF0+t1,(t2−t1)+t1(x, y) =
∫∫

R2 xy dF0,t2−t1(x, y)
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In addition, the correlation function can be written as

ρ(t1, t2) =
C(t2 − t1)

σ(t1)σ(t2)
=
C(t2 − t1)

σ(0)2
= ρ(t2 − t1) (2.9)

hence, C(t1, t2) = C(t2 − t1) = σ(0)2ρ(t2 − t1)

When only the mean function and the covariance function are invariant to any
space translation the random field Y is called weakly stationary.

• Isotropy
For the definition of the isotropy, besides the linear characterization of the space
parameter T ⊆ Rd we consider the Euclidian structure of the space Rd. This
means that we can calculate the Euclidian distance between any two point t1 and
t2 from T , using the formula:

d(t1, t2) =

√√√√ d∑
j=1

(tj1 − t
j
2)2

Definition: A stationary random field Y is said to be isotropic if its covariance
function depends only on the euclidian distance. That is,C(t1, t2) = C(d(t1, t2)).
One can observe that the isotropic random fields are invariant to the translations
and rotations of the parameter space T , and therefore to its isometries.

• Anisotropy
Let us consider a positive semi-definite symmetric matrix B ∈ Md(R). Then the
function ‖ · ‖B: Rd → Rd, ‖ t ‖B=

√
tTB t is a norm in the euclidian space Rd,

named B-norm.
Definition: A stationary random field Y is said to be anisotropic if its covariance
function depends on the distance defined based on the B-norm.
That is, C(t1, t2) = C(‖ t2 − t1 ‖B) .
We extend the anisotropy property for the bi-dimensional case (d=2). Using an
orthogonal transformation of the space R2 the semi-positive defined matrix B can
be adjusted to its diagonal form. That is, B = ΛT B̃Λ where B̃ = diag(a, b) is
the diagonal form of the matrix B. Because of the semi-positive definiteness of
the symmetric matrix B, a and b are non-negative real numbers. The directions of
the two eigenvectors of the matrix B give the principal and secondary anisotropy
directions. The principal direction is given by the eigenvector that corresponds to
the higher eigenvalue, whereas the secondary direction is given by the eigenvector
that correspond to the lower eigenvalue. One can notice that the two eigenvectors
are orthogonal to each other due the symmetry of the matrix B.
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Gaussian random fields
Definition: A Gaussian random field is a random field for which finite-dimensional

distributions Ft1,t2,...,tk are multivariate Gaussian distributions for any choice of the
number k and the parameters t1, t2, . . . , tk from the space T.
If the f.d.d. functions are consistently defined (satisfying the conditions of the probabil-
ity measure), the Kolmogorov’s hypotheses are fulfilled and, consequently the definition
of the Gaussian random field is correct. A cumulative distribution function of a mul-
tivariate Gaussian variables is defined by its probability density function (pdf ). In the
multivariate Gaussian case the pdf is written as:

pt1,t2,...,tk(x1, x2, . . . , xk) =
1√

2π | Σt1,t2,...,tk |
e−

1
2

(x−m)TΣ−1
t1,t2,...,tk

(x−m) (2.10)

where, x = (x1, x2, . . . , xk) ∈ R and m = (m(t1),m(t2), . . . ,m(tk), m(ti) = E(Yti)

are the expectations. The components of the matrix Σ give the covariances of the
marginal variables, e.g. Σt1,t2,...,tk(i, j) = Cov(Yti , Ytj ), for every ti, tj ∈ T . Re-
ciprocally, a function pt1,t2,...,tk : Rk → R could be a probability density function of a
multivariate Gaussian random variable if and only if the matrix Σt1,t2,...,tk is symmetric
and positive definite.

Consequently, the existence of the Gaussian fields is related to the consistent def-
inition of the matrices Σt1,t2,...,tk , for any choice of the elements t1, t2, . . . , tk from
T . Since the components of matrices Σt1,t2,...,tk are the covariances Cov(Yti , Ytj ),
the Gaussian random fields are well defined by two functions m : T → R and C :

T × T → R. If the function m has no restrictions the function C must be symmetric
(C(t1, t2) = C(t2, t1)) and all the square matrices Σt1,t2,...,tk of which components are
defined as Σt1,t2,...,tk(i, j) = Cov(Xti , Xtj ) must be positive definite. The positive def-
initeness of the matrices Σ introduces a property for the function C called, as well, the
positive definiteness. Consequently, a function C : T × T → R is said to be positive
defined, if for every positive integer k and for every real numbers αi (1 ≤ i ≤ k) and
elements t1, t2, . . . , tk from T , we have

k∑
i,j=1

αiαjC(ti, tj) > 0 (2.11)

We will say that, the function C gives the covariance model of the Gaussian random
field. To prove that a function is positive defined is a tedious process that involves the
use of the Fourier transform (see Christoakos 1984,1992) and is not discussed in this in-
troductory section. However, the finite sum or product of acceptable covariance models
is an acceptable covariance model (satisfies the positive definiteness property, Chris-
toakos 1992).
In the following, we present some of the underlying covariance models that are used
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for defining stationary Gaussian random fields (isotropic or anisotropic). We will use
these models in the next section where the truncated plurigaussian simulation model is
presented.

Examples of covariance models:

(1) Spherical model: C(τ) =

{
σ2

0(1− 3
2( τh) + 1

2( τh)3) if 0 ≤ τ < h

0 if τ ≥ h

(2) Exponential model: C(τ) = σ2
0e
− 3τ
h , for τ ≥ 0

(3) Gaussian model: C(τ) = σ2
0e
− 3τ2

h2 , for τ ≥ 0

In geosciences, the term variogram model is commonly used instead of covariance
model. The variogram of a random field Y is defined as γ(t1, t2) = 1

2V ar(Yt1 − Yt2).
For a stationary random field one may write γ(t1, t2) = 1

2E((Yt1 − Yt2)2) and it can be
shown that γ(t1, t2) = C(0)−C(t2−t1), whereC(t1, t2) = C(t1−t2) is the covariance
model. Consequently, for a stationary random field the variogram depends on the differ-
ence t2 − t1, γ(t1, t2) = γ(t2 − t1) like the covariance does, and γ(τ) = C(0)− C(τ)

(Kelkar and Perez 2002). The variogram behaves complementary to the covariance. For
example, when we use decreasing covariance models (like the ones presented above) for
increasing lag-distance τ the variogram increases from zero towards σ2

0 . The parame-
ter h that occurs in the definition of the covariance models presented before is named
"the range" of the covariance model (or variogram model). From the covariance model
perspective, when the distance τ exceeds value h the covariance is zero (for spherical
model) or almost zero (for the other models).

The plurigaussian truncation model uses Gaussian fields defined on discrete param-
eter sets. To generate samples (values) of the Gaussian random fields, when the set
of parameters is finite, one may use, for instance the sequential Gaussian simulation
method (Kelkar and Perez 2002) or the moving averages method (Oliver 1995). For
that, we have to set up the geostatistical properties of the Gaussian field e.g. the mean
function, the variance function, the covariance (variogram) model type, the correlation
direction, and the directional correlation ranges. In the Figure 2.1 we present three sam-
ples of stationary Gaussian random fields defined on the finite set {1, 2, . . . , 100}2. The
mean model is equal to 0 and the variance model is equal to 1. The Gaussian random
fields were chosen to have the isotropic property with a range of 20. The variogram mod-
els used in this example were the spherical (sub-figure (a)), exponential (sub-figure (b))
and Gaussian(sub-figure (b)). The samples were carried out using the sequential Gaus-
sian simulation method implemented in S-GeMS (The Stanford Geostatistical Modeling
Software).
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(a) Spherical variogram model (b) Exponential variogram model (c) Gaussian variogram model

Figure 2.1: The Gaussian random fields samples

2.1.2 The truncated plurigaussian simulation model (TPS)

The truncated plurigaussian simulation model is a methodology that has been proposed
to simulate the lithological architecture of the subsurface. Initially, it has been developed
for the simulation of the facies distributions in petroleum reservoirs. The idea was to
relate the spatial correlation of one or more Gaussian fields, defined on the reservoir
domain, to the spatial distribution of the facies types. The facies simulation is carried
out through a projection from a continuous space (defined by the space of the Gaussian
fields values) into a discrete space (the facies fields space). The projection is defined by
a truncation map of the Gaussian fields values. The truncation map is a decomposition of
the Euclidian space Rn (n is the number of the Gaussian fields used in the model) in sub-
domains each having assigned a facies type. Depending on the number of the Gaussian
fields involved, the method is called the truncated Gaussian simulation (TGS), for a
single Gaussian field and, respectively, truncated plurigaussian simulation (TPS) when
more than two Gaussian fields are involved in the simulation. The truncated Gaussian
simulation method have been used first by Matheron et al. 1987 for simulating facies
fields for which the topology exhibits a sequential ordering of the facies types. The
truncated plurigaussian simulation model was introduced later, in 1994 by Galli et al.
(1994) and Le Loc’h (1994) as a generalization of the first model.

The truncated Gaussian simulation method has two ingredients:

• The Gaussian random field defined on a region of interest. The region of interest
in reservoir engineering is the reservoir domain, but with a discrete structure (grid
cells). Consequently, the parameter space T , on which the Gaussian field is de-
fined is a discrete set. However, throughout this study we refer at Gaussian fields
defined on the reservoir domain.

• A truncation map defined on the real axis. The truncation map is defined by some
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thresholds that divide the real axis into intervals, each having assigned a facies
type.

If we consider the reservoir domain D, in two or three dimensions, and a number of k
facies types that occur in the domain, then the regions occupied by the facies type j in
the domain D could be described as:

Fj = {u ∈ D|sj−1 ≤ Y (u) < sj} (2.12)

where Y is a sample of the Gaussian field, Y (u) is the value of of the Gaussian field
at the location u ∈ D, and {sj , j = 0, k} are the thresholds that define the truncation
map. We use the convention s0 = −∞ and sk = ∞. The choice of the thresholds
that define the one-dimensional truncation map is based on the best knowledge about the
proportions of the facies types. If we consider propj as being the proportion of the facies
type j, (j = 1, k) then we have the relation between the proportions and the thresholds

propj =

∫ sj

sj−1

pdf(x)dx = cdf(sj)− cdf(sj−1) (2.13)

where pdf and cdf represents the probability density function and, respectively, the cu-
mulative distribution function of the normal distribution used for definition of the (sta-
tionary) Gaussian field. Using these equations, we find the thresholds as functions of
proportions

sj = cdf−1(

j∑
i=1

propi) (2.14)

In practice, the facies proportions are estimated using data collected at the reservoir
exploration phase. However, the indicator facies proportions has two components. One
is the global indicator facies proportions and represents the proportion of each facies
type in entire reservoir domain. Based on the values of this indicator one may define
the thresholds described by the equations 2.14. The second meaning refers to a kind of
spatial distribution of this indicator. The studies related with the lateral distribution of
the geological deposits may conclude that in different regions of the reservoir domain
the facies types may have different proportions. This means that we deal with spatial
non-stationarity in facies proportions. In this case the values of the thresholds vary with
the location in the domain (Galli et al 1997).
In Figure 2.2 we present three examples of facies fields obtained after truncation of the
Gaussian fields presented in the Figure 2.1. For that, we have defined two thresholds
s1 = −0.4 and s2 = 0.8 on the real axis and assign to each interval, a facies type. The
blue facies type is assigned for the Gaussian field values less than -0.4, the green facies
type for the values between -0.4 and 0.8 and the red facies type for the values greater
than 0.8.
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(a) Spherical variogram model (b) Exponential variogram model (c) Gaussian variogram model

Figure 2.2: The facies distributions in truncated Gaussian scheme

(a) The first gaussian random field (b) The second Gaussian random field

(c) The truncation map (d) The facies field

Figure 2.3: The truncated plurigaussian scheme

One can observe that using a single Gaussian field with an one-dimensional trun-
cation map, the simulation results are restrictive regarding the facies topology. In our
example, we refer to the constraint that the red facies type has no contact with the blue
facies type. When the stratigraphic studies indicate the possibility of the contact among
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many facies types or there is no clear transition among the facies types, the facies sim-
ulations with truncated Gaussian model are not reliable. In order to enlarge the facies
simulation space, the methodology has been extended, to work with many Gaussian
fields and with a truncation map defined in a multi-dimensional space. This is called the
truncated plurigaussian simulation (TPS) method. For a easy understanding, we present
the methodology for the case when two Gaussian random fields are involved in trunca-
tion.

In this case, the plurigaussian simulation technique has two ingredients: two Gaus-
sian random fields defined on the reservoir domain and a truncation map designed in a
bi-dimensional real space. The truncation map is defined by a partition of real plane in
regions, each having assigned a facies type. This division of the plane could be done
by intersection of various curves types. For an easy implementation of the model, the
curves were chosen as horizontal and vertical lines (Galli 1994).
In Figure 2.3 we give an example of truncated plurigaussian methodology. For that, we
sample from two uncorrelated stationary Gaussian random fields, denoted Y1 and Y2,
defined on a rectangular domain of 100*100 grid cells. We set the Gaussian variogram
type for both random fields. The first Gaussian field is isotropic with the correlation
range of 20 grid cells (Figure 2.3, top left), whilst the second is anisotropic with princi-
pal direction of 120◦, long correlation range of 30 grid cells and short correlation range
of 10 grid cells (Figure 2.3, top right). We simulate the distribution of three facies types,
any two of them possibly having contact. For that, we design the truncation map on
the bi-dimensional real plane Y1OY2 by intersection of two lines, one horizontal and the
other vertical. These lines divide the plane in four regions. We assign a facies type for
each region, but having three facies types, two regions will have the same assignment.
Consequently, we can consider that the plane partition contains only three regions each
having assigned a facies type. The truncation map is presented at the bottom left of the
Figure 2.3. The assignment of the facies type, at a certain cell u of the domain, is carried
out representing the point (Y1(u), Y2(u)) in the cartesian system Y1OY2. At this loca-
tion, we assign the facies type of the zone where the point (Y1(u), Y2(u)) belongs. This
projection from a continuous space into a discrete space is also called the "rock type
rule". In our example, "the rock type rule" works as follows. At the grid cells u where
Y2(u) > 0.5 we assign the blue facies type, where Y2(u) ≤ 0.5 and Y1(u) < 0.8 we
assign the green facies type and where Y2(u) ≤ 0.5 and Y1(u) ≥ 0.8 we assign the red
facies type. The facies map obtained with this procedure is presented at the bottom right
of the Figure 2.3. One can observe that, there is contact among all facies types, request
that could not be fulfilled with the truncated Gaussian procedure. The existence or not of
the contact among the facies types is solved in the truncated plurigaussian procedure by
the truncation map. Two facies types have contact if theirs regions from the truncation
map are neighbors.
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If in the truncated Gaussian case the truncation map is defined by the choice of the
thresholds, in the plurigaussian case the truncation map is uniquely defined by the pa-
rameters of the curves that describe it. For the rectangular truncation map used in the
example, these parameters consist of two values: one situated on the horizontal axis (α)
and the other on the vertical axis (β). They are calculated, like in the first case, based
on the best knowledge about the facies proportions. The difference is that, now, two
Gaussian random fields are involved; therefore the problem related with the correlation
between them occurs. If we denote by Dj the region from the truncation map assigned
to the facies type j, and by propj the proportion of the same facies type, then we have
the relation:

propj =

∫∫
Dj

pdf(Z1,Z2)(z1, z2)dz1dz2 (2.15)

where pdf(Z1,Z2) is the probability density function of the multivariate Gaussian variable
(Z1, Z2). The marginal variables Z1 and Z2 are Gaussian variables with the distribution
defined by the mean function and variance function of the Gaussian fields Y1 and Y2. The
multivariate Gaussian variable (Z1, Z2) expresses the correlation between the Gaussian
fields Y1 and Y2. Finding the parameters of the truncation map requires to solve the
system of equations given by the relations 2.15 (Armstrong et al 2011).

However, the most complex procedure, when one wants to apply the TPS, is to es-
tablish the geostatistical properties of the Gaussian fields and to design the truncation
map such that the simulations reflect as better as possible the reality. This means that
the facies simulations are geologically acceptable. The geological acceptance refers
to obtaining of realistic topology (the relative position among the facies) and geome-
try (shape, dimension, number of the facies). When the geostatistical properties of the
Gaussian fields are set, a realistic topology of the facies simulation is achieved with a
reliable choice of the truncation map (Lantuejoul 2002). The geometry of the facies is
a property controlled by the geostatistical properties of the Gaussian fields. For a given
truncation map, the correlation directions (which give the isotropy or anisotropy) and
the directional correlation ranges of the Gaussian fields can be estimated knowing the
mathematical relation between the indicator variogram of the facies types and the vari-
ogram of the Gaussian fields (Le Loc’h and Galli 1997, Armstrong et al. 2011). A much
simpler approach is presented by Chang and Zhang (2014). Here the authors proposed a
trial and error procedure for the estimation of the geostatistical properties of the Gaus-
sian fields.
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2.2 Multiple-point geostatistical simulation (MPS)

The goal of any geological (geostatistical) simulation model is to provide instances of
facies maps (reservoir models) that are able to reflect the best knowledge about the sub-
surface geology. When the information gathered indicates the existence of geo-bodies
with defined geometrical shapes (such curvilinear or elliptical structures), the use of geo-
logical models based on two-points statistics (variogram) (such TPS) is not suitable. The
reason resides on what a variogram represents. The variogram is a statistical instrument
that measures the dissimilarity between the same (or different) variable(s) values at two
spatial locations. Consequently, a variogram model is limited in capturing geological
features with defined shapes, it can capture trends but not concepts. For instance, cannot
capture with a simple mathematical formula the geometry of curvilinear features (e.g.
channels), although can establish a high correlation in its propagation direction. For that
reason, the TPS model provides various textures of the facies maps, but it cannot keeps
a fixed geometry of facies shapes.

To be able to model features with defined shapes, a solution is to use the multiple-
point geostatistical simulation models (MPS, Guardiano and Srivastava 1993, Journel
1993). The multi-point geostatistical simulation models are geostatistical methodolo-
gies that takes into account correlations between many spatial locations at the same
time. These correlations are inferred from conceptual models e.g. training images. De-
pending on the variable that has to be modeled, the training image can be discrete (or
categorial, for facies distributions) or continuous (for variables with continuous values
such as porosity or permeability).

2.2.1 The (discrete) training image

A (discrete) training image is a conceptual image (in two or three dimensions) designed
to reproduce the topology, geometry and the connectivity of the lithological units (facies)
from the subsurface e.g. the geological heterogeneity. A training image has a powerful
visual impact, reflecting a prior geological model, which design is carried out based on
geological interpretation from all available sources (outcrops, sample data, stratigraphic
studies etc.), but without conditioning on any hard or soft data. A training image can
be viewed as library of geometrical patterns that we believe it could be present in the
subsurface. A pattern is a geometrical configuration, extracted from the training image,
identifying a possible structure of the spatial continuity. These patterns are incorporated
in the training image and reciprocally the training image is an assemblage of the patterns.

In the traditional MPS methodology, not any image that describe a type of geological
heterogeneity could be a training image. To be used as training image, a conceptual
image must satisfy some requirements.



2.2. MULTIPLE-POINT GEOSTATISTICAL SIMULATION (MPS) 21

1. Stationarity
This property refers to the stationarity of the geometrical patterns that compose
the training image. The goal of the MPS method is to generate facies maps with
patterns borrowed from the training image. In the traditional MPS methodology,
the simulation is carried out based on sampling from the empirical multivariate
conditional probability density function (cpdf ) of the geometrical templates (multi
point statistics) calculated from the training image. Consequently, reliable facies
maps are obtained when consistent cpdf are inferred from the training image. The
consistency of the cpdf is ensured by the repeatability of the geometrical patterns
within training image, coupled with stationarity in the geometry of the patterns
(e.g. size and geometry of the elliptical shapes or width when refer to channels).

2. The size of the training image
The size of the training image should be correlated with the size of the largest
pattern that one would simulate within a given reservoir domain. For instance,
when channels have to be simulated, the dimension of the training image should
be at least twice larger than the dimension of the reservoir domain, in the direction
of the channels continuity (Caers and Zhang 2004).

In addition, the number of the categorial variables from the training images should be
restricted to maximum five. This is because the numbers of the geometrical templates
increases exponentially with the number of categories present in the training image and
a high number of categories may causes a huge computational effort in calculation and
storage of the cpdf.

In Figure 2.4, we present three conceptual images showing three types of possible

(a) Conceptual image 1 (b) Conceptual image 2 (c) Conceptual image 3

Figure 2.4: Three possible candidates for a training image. Figure after Caers and Zhang
2004.
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geological heterogeneities; the fluvial type (Image 1), the deltaic type (Image 2) and
a conceptual image defined by elliptical shapes (Image 3). From these three images,
only the first image fulfills the stationarity request and could be used as training image
(for traditional MPS methodologies). One can observe that the deltaic image lacks the
stationarity with respect to the width and anisotropy direction of the local patterns. The
conceptual image with elliptical shapes does not keeps the stationarity in the dimension
of the local patterns in space; its patterns are stationary regarding only the shape.

However, in the recent research on the MPS, the concept "training image" has been
relaxed. New MPS methodologies have been developed to fit to training images that are
not constraint to size and stationarity. Hu et al 2014 uses as training image an existent
reservoir, and a new MPS algorithm is developed to simulate facies maps from "non-
stationary" training images. The "non-stationary" training image can be built using any
type of reservoir modeling approach. A non-stationary MPS methodology have been
developed by Honarkhah and Caers (2012), for creating multiple-point geostatistical
models, based on a distance-based modeling and simulation of patterns. The authors
uses a deltaic training image (like Image 2) to present the methodology.

2.2.2 The simulation models

Two of the most commonly used MPS methodologies to simulate categories e.g. facies
distributions are the SNESIM (single normal equation simulation, Strebelle 2002) and
FILTERSIM (filter-based simulation, Zhang et al 2006,).

The SNESIM algorithm is an enhancement of the pioneered MPS algorithm pro-
posed by Guardiano and Srivastava in 1993. It consists of two procedures. The first
calculates, from the training image, the cpdf of the geometrical templates found within
a user-defined window search. The second is a procedure that sequentially simulates
a facies type at each grid cell of the reservoir domain. The simulation is based on a
sample from the cpdf of a geometrical template found in the window centered at that
location. The template is formed taking into account hard data (facies observations), if
available, and the values at the previous simulated cells from the window. The grid cell
of the domain are visited only once, based on a random path apriori given. The novelty
introduced by Strebelle consists on a procedure for the calculation and the storage of
the cpdf of the geometrical templates. In the original methodology, the training image
had to be scanned each time when simulated at unsampled grid cell, which requires an
extremely high CPU demanding. The SNESIM calculates the cpdf within a dynamical
data structure called "search three", by which the training image has to be scanned only
once. The dimension of the "search three" depends on the dimension of the window that
scan the training image at the beginning of simulation.
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In the later years the SNESIM procedure has been enhanced, with procedures that
enable the conditioning of the facies simulation not only on the training image and the
hard data, but also on probability maps coming from seismic interpretations. This has
been done incorporating a probabilistic model named "tau model" in the simulation of
a facies type at unsampled locations (Journel 2002, Krishnan et al. 2005). In addition,
various procedures have been incorporated, by which non-stationary facies fields (with
non-stationary geometrical patterns) can be generated started from training images with
stationary characteristics (Strebelle and Zhang 2005). However, the SNESIM is limited
regarding to the number of the facies types and is suitable only for discrete training im-
ages.

The MPS algorithm FILTERSIM has been proposed to overcome these issues. The
FILTERSIM algorithm is less memory demanding with reasonable CPU cost and can
handle with both discrete and continuous training images (Zhang et al 2006). FILTER-
SIM utilizes a set of filters to classify training (geometrical) patterns in a small real space
of which dimension is given by the number of the filters used (called the filter space). A
filter is a set of weights associated with all the cells of a geometrical template. A tem-
plate is a local moving window used to scan the training image providing the training
patterns. For a given training pattern each filter gives a score, and consequently each
pattern is associated with a point in a filter space. By adequate partitioning of the filter
space, the patterns are grouped in classes. An average of each class is called prototype
for the patterns. The simulation with the FILTERSIM algorithm is performed in a se-
quential manner, using a random path to visit each cell. During simulation, the prototype
closest to the conditioning data event (which comprises all the informed cells from the
template with the center in the visited cell) is determined and a pattern randomly sampled
from that prototype is pasted onto the simulation cell. As SNESIM, the FILTERSIM can
be conditioned on probability maps inferred from seismic interpretations.

Another MPS algorithm is introduced by Arpat and Caers 2004. This methodology
does not uses a grid-cell based simulation (as SNESIM) of the categorial variables, but
a simulation based on patterns. For that reason the MPS methodology has been named
pattern-based simulation. First, a database of patterns is extracted from a training image.
Secondly, the simulation is carried out by pasting at each visited location along a random
path a pattern that is compatible with the available local data and any previously simu-
lated patterns. At each step, the reliable pattern is chosen by using a distance function
that measure the similarity between patterns.



Chapter 3

Ensemble methods

3.1 Data assimilation basics

Data assimilation is a novel methodology for estimating variables representing certain
state of nature. Estimation of a quantity of interest via data assimilation involves com-
bining measurements with the underlying dynamical principles governing the system
under observation. Different problems require knowledge of the distribution and evolu-
tion in space and time of the characteristics of the systems involved in each of them. The
functions of space and time (state variables or model states) are the ones which char-
acterize the state of the system under observation. A dynamical model to describe the
nature consists of a set of coupled nonlinear equations for each state variable of interest.
The discrete model for an evolution of dynamical system from time tk−1 to time tk can
be described by the equation of the form:

x(tk) =M(x(tk−1), θ) (3.1)

where x(tk) ∈ Rnm denotes the vector of dynamical variables at time tk and θ denotes
the vector of poorly known parameters. Usually, the dynamic operatorM : Rnm+nθ →
Rnm is nonlinear and deterministic (nm and nθ are the dimensions of the spaces where
the variables takes values). So, we are working under the assumption of a perfect model.
At each time step tk, the relationship between measured data dobs(tk) and state variables
x(tk) can be described by a nonlinear operator Hk : Rnm+nθ → Rn

dobs . If we assume
that observations are imperfect the simulated measurements are described by

dobs(tk) = Hk(x(tk), θ) + v(tk) (3.2)

where v(tk) is the observation error with v(tk) ∼ N (0,R(tk)). The most important
properties of the system appear in the model equations as parameters (static variables).

24
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In theory parameters of the system can be estimated directly from measurements. In
practice, direct measuring the parameters of a complex system is difficult because of
sampling, technical and resource requirements. Data assimilation however provides a
powerful methodology for parameter estimation.
Given a dynamical model with initial and boundary conditions and a set of measure-
ments that can be related to the model state, the state estimation problem is defined
as finding the estimate of the model state that fits the best (under a certain criterion)
the model equations, the initial and boundary conditions, and the observed data. The
parameter estimation problem is different from the state estimation problem. Tradition-
ally, in parameter estimation we want to improve estimates of a set of poorly known
model parameters leading to a better model solution that is close to the measurements.
Thus, in this case we assume that all errors in the model equations are associated with
uncertainties in the selected model parameters. The model initial conditions, boundary
conditions, and the model structure are all considered to be known. Hence, for any set of
model parameters the corresponding solution is found from a single forward integration
of the model. One way to solve both problems is to define a cost function that measures
the distance between the model prediction and the observations plus a term measuring
the deviation of the parameter values from a prior estimate of the parameter values. The
relative weight between these two terms is determined by the prior error statistics for the
measurements and the prior parameter estimate.

J(x) =
1

2

∑
k

[dobs(tk)−Hk(x(tk))]TR(tk)−1[dobs(tk)−Hk(x(tk))]

+
1

2
[xp(t0)− x(t0)]TC−1

0 [xp(t0)− x(t0)]

(3.3)

These estimation problems are hard to solve due to nonlinear dynamics of the system as
well as the observational model and due to the presence of multiple local minima in the
cost function.
The schemes for solving the state and parameter estimation have different backgrounds.
They often belong to either control theory or estimation theory. The control theory
uses variational assimilation approaches to perform a global time and space adjustment
of the model solution to all observations. The goal is to minimize the cost function
(3.3) penalizing the time-space misfits between the observed data and predicted data,
with the model equations and their parameters as constraints (Talagrand and Courtier
1987). Results depend on the a priori control weights and penalties added to the cost
function. The dynamical model can be either considered as a strong (perfect model) or
weak constraint (in the presence of model error). The variational data assimilation is a
constrained minimization problem, which is solved iteratively with a gradient-based op-
timization method. First, the problem is reformulated as an unconstrained minimization
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problem by adding the model equations and constraints to the objective function. The
gradients are then obtained using a so-called adjoint method that allows us to calculate
all the sensitivities by only two simulations: one backward using the adjoint and one
forward in time.
The estimation theory uses a statistical approach to estimate the state of a system by
combining all available reliable knowledge about the system including measurements
and models. This falls in the Bayesian estimation territory, where we find the Kalman
filter approach (Kalman [1960]) as a simplification for the case of linear systems. For
linear models the Kalman Filter is the sequential, unbiased, minimum error variance es-
timate based on a linear combination of all past measurements and dynamics. Kalman
filtering is formulated as sequential estimation procedure, i.e. such that the data are
assimilated whenever they become available. The end results will be

• xa(tk) is the optimal estimate of xt(tk) using dobs(t1) . . . dobs(tk)

• Ca(tk) is the covariance matrix of the estimation error,

where the superscript "a" denotes the analyzed state and covariance. These two are
obtained by following the classical Kalman filter equations

• The first step, initialization, is specification of an initial distribution for the true
state

xt(t0) ∼ N (xf (t0),Cf (t0)) (3.4)

• The second step, forecast step, is to specify the error between the true state xt(tk+1)

and the model forecast M(tk)x
t(tk) which should be described in terms of Gaus-

sian distribution

xt(tk+1) = M(tk)xt(tk) + η(tk) (3.5)

where η(tk) ∼ N (0,Q(tk)) and M represents the Tangent Linear Model (TLM)
ofM.
Giving the stochastic model 3.5 and the initial condition 3.4, the Kalman filter is
able to compute the true state at every time in the future

xf (tk+1) = E[xt(tk+1)] =

= M(tk)xf (tk)

Cf (tk+1) = E[(xt(tk+1)− xf (tk+1))(xt(tk+1)− xf (tk+1))>] =

= M(tk)Cf (tk)M(tk)> + Q(tk) (3.6)
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• The third step is the analysis step.

xa(tk) = xf (tk) + K(tk)(dobs(tk)−H(tk)xf (tk)) (3.7)

Ca(tk) = E[(xt(tk)− xa(tk))(xt(tk)− xa(tk))>] =

= (I−K(tk)H(tk))Cf (tk)(I−K(tk)H(tk))>

+ K(tk)R(tk)K(tk)> (3.8)

where the choice for K is the minimal-variance gain and H represents the Tangent
Linear Model (TLM) ofH

K(tk) = Cf (tk)H(tk)>[H(tk)Cf (tk)H(tk)> + R(tk)]−1 (3.9)

It can be shown that for linear systems, and assuming Gaussian measurement and
model noise, this sequential approach results in exactly the same answers as the varia-
tional method. That means that xa = min

x
J(x) (see eq. 3.3) is the same as the Best

Linear Unbiased Estimator (BLUE) from eq.3.7 calculated in the update step of the
Kalman filter equations.

3.2 Ensemble methods for nonlinear filtering problems

The classical Kalman filter technique is optimal in case of linear models and Gaussian
noise. In reality, the models describing complex physical phenomena tend not to be
linear. Therefore, ensemble Kalman Filter (EnKF, Evensen 1997) was introduced and
became one of the most promising History Matching methodology. This is a Monte
Carlo technique where the probability density of the state is represented by an ensem-
ble of possible realizations that are simultaneously propagated in time by the non-linear
model and updated sequentially when observations become available. One of the issues
that temper with the quality of the EnKF is the finite number of ensemble members.
In the literature (Evensen 1997, 2003, 2006, Aanonsen et al. 2009) a unified opinion
was formed, agreeing that 100 ensemble members are sufficiently enough to keep the
EnKF computationally feasible, without sacrificing the quality of the updates. There-
fore, EnKF represent a solution for bypassing the need for a linear model in the Kalman
filter framework. However, it cannot overcome the constraint on Gaussian distribution
for the errors. Regardless of the distribution of the prior uncertainties, EnKF has the
tendency to provide approximations to the posterior that are too close to a Gaussian dis-
tribution.
Particle filters (PF) represent a solution for the non-Gaussian assumptions on the errors
statistics. It belongs to the same ensemble based approaches. In comparison with the
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EnKF, where the ensemble members are equally probable (equal weights), in case of PF
there is a weight associated with each ensemble member (Doucet 2001). The sum of
these weights is one. Even if the philosophy in the back of the PF is the same as in the
EnKF approach (the ensemble is updated using the Bayes’ rule), the update step differs.
In case of PF’s the weights are the ones updated by the observations sequentially. It is
mathematically proven that the particle filter is the only data assimilation scheme that
produces a sample from the exact posterior distribution. Nevertheless, there is a limi-
tation of this methodology related with the computational time needed when applied to
large-scale application. Moreover, for a high dimensional state vector, this methodology
suffers from phenomenon known in literature as the curse of dimensionality, i.e. as the
dimension of the system increases the largest of the sample weights converges to one
in probability (Bengtsson 2008). The consequence is called filter degeneracy, where the
posterior distribution is represented by a single point in the state space.
A logical step is to combine the strengths of the two above-mentioned approaches: the
computationally feasibility of the EnKF with the sampling procedure of the PF. The
result is a hybrid filter, which uses the Kalman filter update step and the weighted cor-
rection. Examples of these kinds of filters are EnKF-SIS (Mandel 2009) and Gaussian
mixture filters (Bengtsson 2003, Hoteit 2008a). In the later ones, a mixture density (Sil-
verman 1986) approximates the prior distribution where each ensemble member forms
the center of a Gaussian density function (a kernel). The mixture densities together
with the weights are propagated by the dynamical model and updated accordingly us-
ing the Bayes’ rule. Therefore, the mixture filters in their basic form, are also prone
to weight degeneration. Hoteit 2008b showed that the EnKF can be reformulated as a
mixture filter, by using Gaussian kernels and forcing the weights to be uniform. The
latter requirement can be made more flexible. Following this idea, Stordal et al. 2012
introduced a tuning parameter α ∈ [0, 1] such that when α = 0 one obtains the EnKF
equally distributed weights, and α = 1 one obtains the weights of the Gaussian mixture
filter. Hence, taking α to be small the weight degeneracy problem is reduced, but taking
α > 0 EnKF approximation of the posterior is improved. Consequently, we obtain a
better preservation of the non-Gaussian features of the marginal distributions. The pro-
posed approach is adaptive, in the sense that an optimal α is sought at each assimilation
step resulting in an adaptive Gaussian mixture filter (AGM).
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3.2.1 The nonlinear filtering problem

The nonlinear filtering problem consist of estimating sequentially in time the state, xt,
of a nonlinear dynamical system conditioned on some noisy measurements taken on the
state. For the simplicity of our notations in this section we will denote x(tk) by xt,
x(tk−1) by xt−1, dobs(tk) by dobst . Let us consider the following nonlinear problem:

xt =Mt(xt−1) + ηt,

dobst = Htxt + vt,
(3.10)

We consider the model error ηt known, given by its probability density function, the
initial distribution given by its probability density function p(x0) and the measurement
error which is assumed GaussianN (0,Rt). The solution of the filtering problem is given
by determining the posterior density p(xt|dobs1:t ). That is, the conditional distribution of
the state xt given the observations dobs1:t , where dobs1:t = (dobs1 , ..., dobst ). At each moment
of time t, the state of the system is defined by two conditional probability density func-
tions: the prior density p(xt|dobs1:t−1) and the posterior density p(xt|dobs1:t ). At the initial
moment, where no measurements are available, the probability density function p(x0) is
considered the posterior. Given the posterior density at time t − 1, the prior density at
time t can be calculated using the Chapman-Kolmogorov equation (Jazwinsky 1970)

p(xt|dobs1:t−1) =

∫
p(xt|xt−1)p(xt−1|dobs1:t−1)dxt−1. (3.11)

When a new observation dobst occurs, the posterior density is calculates using the Bayes
inversion scheme:

p(xt|dobs1:t ) =
p(dobst |xt)p(xt|dobs1:t−1)

p(dobst |dobs1:t−1)
, (3.12)

where the term p(dobst |dobs1:t−1) can be calculated using the relation:

p(dobst |dobs1:t−1) =

∫
p(dobst |xt)p(xt|dobs1:t−1)dxt.

However, the probability density functions p(xt|dobs1:t ) (eq.3.12) cannot be computed an-
alytically. Consequently, we need to find approximate solutions for these probability
density functions. A simple approach is the use of a Monte Carlo methodology, where
the prior and posterior densities are approximated with a random sample. Having to
approximate two types of densities (the prior densities and the posterior densities), we
use different notations for samples. We denote by the set of particles {xit}Ni=1 a sam-
ple approximating the prior density (3.11) and by the set of particles {x̂it}Ni=1 a sample
approximating the posterior density (3.12).
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3.2.2 The ensemble Kalman filter

The ensemble Kalman filter EnKF (Evensen 1994) is a sequential Monte Carlo method-
ology introduced in the Kalman filter framework that aims to provide approximate solu-
tions to the nonlinear filtering problem.
For a given a sample, {x̂it−1}Ni=1, from the posterior density p(xt−1|dobs1:t−1), a sample
from the prior density p(xt|dobs1:t−1) is obtained in the EnKF methodology by sampling
from the forward density p(xt|x̂it−1) using eq. (3.10), for each i ∈ {1 . . . N}.

xit =Mt(x̂
i
t−1) + ηit, i = 1, . . . , N. (3.13)

where ηit, for i ∈ {1, . . . , N} is a sample from N (0, Qt).
If the density p(xt|dobs1:t−1) is Gaussian with mean µt and covariance matrix Ct, it follows
that all the densities from equation 3.12 are Gaussian. First, the observation operator has
Gaussian error, therefore the density
p(dobst |xt) = pvt(d

obs
t −H(t)xt) (Jazwinsky 1970) is Gaussian. Secondly, the normal-

izing term can be written as:

dobst |dobs1:t−1 = H(t)xt|dobs1:t−1 + vt (3.14)

being Gaussian.
Consequently, the mean µ̂t and covariance matrix Ĉt of the conditional variable

xt|dobs1:t are given by the standard Kalman filter update,

µ̂t = µt + Kt(d
obs
t −Htµt),

Ĉt = (I−KtHt)Ct,

Kt = CtH
T
t (HtCtH

T
t + Rt)

−1.

(3.15)

Using the relation 3.13 an ensemble {xit|i ∈ {1, . . . , N}} of samples from the prior
density p(xt|dobs1:t−1) is obtained. The mean calculated from this ensemble is an estimator
for µt and is given by the following formula:

µt ≈ xt =
1

N

N∑
i=1

xit, (3.16)

If {x̂it}Ni=1 are samples from the posterior density p(xt|dobs1:t ), then

µ̂t ≈
1

N

N∑
i=1

x̂it (3.17)

Combining eq. 3.15 and eq. 3.16, we obtain:

µ̂t = µt + Kt(d
obs
t −Htµt) ≈

1

N

N∑
i=1

(xit + Kt(d
obs
t −Htx

i
t)) (3.18)

If we replace the covariance Ct with the empirical covariance matrix Ct (calculated
from the ensemble {xit|i ∈ {1, . . . , N}}) in the calculus of the Kalman gain Kt (eq.
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3.15), from the equations 3.17 and 3.18 we find the update of the particle i from the
original form of the EnKF ( Evensen 2007).

x̂it = xit + Kt(d
obs
t −Htx

i
t), i = 1, . . . , N. (3.19)

In the same time, considering the stochastic nature of the observation operator, we
can modify the relation 3.18 by introducing an additive noise in the relation:

µ̂t = µt + Kt(d
obs
t −Htµt) ≈

1

N

N∑
i=1

(xit + Kt(d
obs
t −Htx

i
t + εit)) (3.20)

where εit, for i ∈ {1, . . . , N} is a sample from N(0,Rt). The relation 3.20 stands
because

∑N
i=1 ε

i
t ≈ 0. From the equations 3.17 and 3.20 we find the update of the

particle i form the EnKF with correction introduced by Burgers et al (1998).

x̂it = xit + Kt(d
obs
t −Htx

i
t + εit), i = 1, . . . , N. (3.21)

This small modification increases the variability within ensemble, and is used now in the
EnKF methodology.

For a general linear system (linearity for both operators M and H) with Gaussian
statistics, at the limit (when the number of the ensemble members goes to infinite),
the particles from the analyzed state are samples from the true posterior distribution
p(xt|dobs1:t ) (Evensen 2007). For a general nonlinear system, the updated ensemble mem-
bers will not represent a sample from the true posterior distribution even in the limit of
an infinite number of ensemble members. However, despite all non-linearities, the EnKF
is able to capture aspects from the posterior distribution.

3.2.3 The EnKF methodology for state and parameter estimation

In practice, the relation between the dynamical variables and the observations are far
from being linear. Moreover, the system may depends on some uncertain parameters
(usually denoted by θ). Consequently, let us consider the dynamical system described
by

xt =M(xt−1, θ) + ηt, (3.22)

where ηt ∼ N (0, Qt). In reservoir engineering the model is considered perfect, so the
term ηt vanishes. We further consider a nonlinear relation between the observed data
and the dynamical variables and parameters:

dobst = Ht(xt, θ) + vt, (3.23)

where vt ∼ N (0,Rt). To be able to apply the EnKF methodology, first we need to set a
linear observation operator for the observed data. For that, a trick is made by augmenting
the state the dynamical variables with the parameters and the simulated data (dsim). Here
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simulated data is the response of the observation operator given the dynamical variables
and the parameters: dsimt = Hk(xt, θ). Consequently, the augmented state variable
denoted by Xt is defined as:

Xt =

 xt
θ

dsimt

 ∈ Rnm+nθ+nd (3.24)

For this "new" variable, the stochastic dynamical model can be written as

Xt =M(Xt−1) + ηt =

 M(xt−1, θ)

θ

Ht(xt, θ)

+

 ηt
0

0

 (3.25)

The relation between the state variable and the measurements becomes linear

dobst = HtXt + vt =
[

0 0 I
]
Xt + vt =

[
0 0 I

] M(xt−1, θ) + ηt
θ

Ht(xt, θ)

+ vt (3.26)

The methodology can be summarized as follows:

• Initialization
At the initial phase we generate N independent samples, denoted θi0, from the
prior distribution of the parameters and N independent samples, denoted xi0, from
the initial distribution of the dynamical variable (i ∈ {1, . . . , N}). These samples
generate the initial ensemble {X1, X2, . . . , XN}. For a consistent description we
define θ0 = θa and x0 = xa

• Forecast step
Each particle (ensemble member) is updated by the stochastic dynamical model
towards the next assimilation step using eq. 3.25. For that, we generate N inde-
pendent samples, denoted ηit from the Gaussian distribution N (0, Qt), and each
ensemble member is changed according to

Xf,i
t =

 xf,it
θf,it

dsim,f,it

 =

 M(xa,it−1, θ
a,i
t−1) + ηit

θa,i−1
t−1

Ht(xf,it , θa,it−1)

 (3.27)

One may observe that at this stage the parameter values are not changed by the
forward model.

• Update (analysis) step
Each ensemble member is modified, due the assimilation of the observed data
according to the Kalman equations. The observed data is perturbed with noise
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sampled from the Gaussian distribution N (0,Rt). This extra perturbation is nec-
essary to avoid the ensemble collapse (Burgers et al 1998).

Xa,i
t = Xf,i

t + Kt(d
obs
t −HtX

f,i
t + εit), i = 1, . . . , N. (3.28)

In the Kalman gain Kt = Cf
tH

T
t (HtC

f
tH

T
t +Rt)

−1, the covariance matrix of the
forecasted state, Cf

t, is calculated directly, using the particles from the forecasted
ensemble. For that, all the ensemble members are augmented within a matrix,
with nm + nθ + nd rows and N columns, denoted X:

Xf
t =

[
Xf,1
t Xf,2

t . . . Xf,N
t

]
(3.29)

Then, the covariance matrix of the forecasted state can be calculated as

Cf
t =

(Xf
t −Xt

f
11,N )(Xf

t −Xt
f
11,N )T

N − 1
(3.30)

where, Xt
f

= 1
N

∑N
i=1X

f,i
t and 11,N is a row matrix with N columns with each

element equal to 1.

3.2.4 The adaptive Gaussian mixture (AGM) and its iterative variant
(IAGM)

The quality of the updated ensemble obtained after the use of the EnKF methodology
depends on the type of initial distribution of the dynamical variables and the prior distri-
bution of the parameters. Referring to quality, we mean how good the updated ensemble
captures the posterior distribution. In the same time, the non-linearity strongly affects
this quality, especially when the prior is non-Gaussian (Zafary and Reynolds 2007).
One ensemble based method that has shown promise on nonlinear models is the adap-
tive Gaussian mixture filter (AGM, Stordal et al. 2011).
The AGM replaces the Gaussian assumption of the prior distribution p(xt|dobs1:t−1) with
the assumption that this distribution is described by a Gaussian mixture of type:

p(xt|dobs1:t−1) ∼
N∑
i=1

wit−1N (xt − xit,Ct) (3.31)

The weights {wi|i ∈ {1, . . . , N}} are positive and sum to 1. The model carry the
initial ensemble towards the first assimilation time, when the Gaussian mixture is de-
fined by equal weights of 1

N , where N is the number of the ensemble members. The
AGM introduces a tuning parameter, denoted h ∈ [0, 1], by which the covariance matrix
from the Gaussian mixture (3.31) is defined as Ct = h2Ct. The matrix Ct1 is the em-
pirical covariance matrix calculated from the ensemble {x1

t1 , . . . , x
N
t1}. Following the

same approach as in the EnKF case, if we assume the Gaussian mixture distribution for
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p(xt|dobs1:t−1), taking into account the Gaussian nature of the measurement error, it comes
out that the posterior p(xt|dobs1:t ) has a Gaussian mixture distribution of type:

p(xt|dobs1:t ) ∼
N∑
i=1

witN (xt − x̂it, Ĉt) (3.32)

where the particles are updated according to:

x̂it = xit + Kt(d
obs
t −Htx

i
t + εit),

Kt = CtH
T
t (HtCtH

T
t + Rt)

−1,

Ĉt = (I−KtHt)Ct.

(3.33)

The weights are updated according to

wit = wt−1Φ(dobst −Htx
i
t,HtCtH

T
t + Rt),

wit =
wit∑N
i=1 ŵ

i
t

,
(3.34)

Here, the function Φ(x − µ,C) represents multivariate Gaussian density with mean µ
and covariance matrix C. To avoid filter degeneracy that occurs in high dimension and
complex systems a weight interpolation is introduced

ŵit = αtw
i
t + (1− αt)N−1, αt ∈ [0, 1],

αt = N−1(

N∑
i=1

(wit)
2)−1.

(3.35)

The implementation of AGM is very simple especially if EnKF is already imple-
mented. Let us consider the state and parameter estimation problem of the model defined
by eq. 3.22 and eq. 3.23. We denote the ensemble of parameter fields by {θi}Ni=1. Like
in the EnKF methodology, we define an augmented state vector denoted Xt defined as:

Xt =

 xt
θ

dsimt

 ∈ Rnm+nθ+nd (3.36)

The linear measurement operator is defined by the eq. 3.26. As in the EnKF, we denote
by Cf

t the sample covariance matrix of {Xf,i
t }Ni=1, but calculated with respect to the

weights. That is, for its calculation we use eq. 3.30, but with the mean calculated with
respect to the weights:

Xt
f

=

N∑
i=1

wit−1X
f,i
t (3.37)

Initially, the weights are considered having uniform values of 1/N and afterwards they
are updated using eq 3.35. The Initialization and the Forecast step are the same as for
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the EnKF. At each assimilation time, the augmented state vector is updated in the AGM
(and IAGM) for each i = 1, . . . , N as

Xa,i
t = Xf,i

t + Cf
tH

T
t (HtC

f
tH

T
t + h−2Rt)

−1
(
yt −HtX

f,i
t + εit

)
, (3.38)

where εit is a sample from the Gaussian measurement error distribution N (0,R). We
notice that the eq. 3.38 can be written as

Xa,i
t = Xf,i

t + (h2Cf
t )HT

t (Ht(h
2Cf

t )HT
t + Rt)

−1
(
yt −HtX

f,i
t + εit

)
, (3.39)

which is exact the first relation from eq. 3.33. Note that the only difference with a stan-
dard EnKF update is the scaling h−2 of the measurement error covariance matrix R. In
other words the linear update is dampened where the dampening factor h ∈ [0, 1] is the
bandwidth of the Gaussian mixture (see Stordal et al 2011).

To further improve the AGM on nonlinear models an iterative version, namely the
iterative adaptive Gaussian mixture (IAGM) was introduced in Stordal et al 2012. The
new approach IAGM runs AGM iteratively, with a tuning parameter h ∈ [0, 1]. At the
end of an assimilation period, performed with the AGM, an new ensemble is generated
by sampling from the Gaussian mixture defined by the samples at the end of previous
iteration (analyzed state). That is, the sampling is performed from

N∑
i=1

wij−1N (X −Xa,i
j−1, h

2Ca
j−1) (3.40)

Consequently, the sampling has the form:

Xi
j = Xi,a

j−1 +
h√
N − 1

(Xa −Xa
11,N )ξi, i = 1, . . . , N. (3.41)

where ξi is multivariate Gaussian with zero mean and covariance matrix IN . To be
completely rigorous, the ratio between the old and new prior for each ensemble member
should then be evaluated, in order to correct the weights assigned to each ensemble
member. However, this would require the estimation of the prior in addition to evaluation
of weights in high dimensions. With the weight reduction leading to almost uniform
weights due to the dimension, the work is a lot more than the gain. Consequently, we
are using uniform weights after resampling. With the new initial ensemble the AGM is
then performed. In most applications only a few iterations, typically two or three, are
required.



Chapter 4

A probabilistic parametrization for
geological uncertainty estimation
using the Ensemble Kalman Filter
(EnKF)

4.1 Introduction

The term facies was introduced in 1837 by the Swiss geologist Amanz Gressly and signi-
fies a body of rock with specified characteristics, which formed under certain condition
of sedimentation. The facies types are distinguished either by the petrophysical proper-
ties (permeability, porosity, grain size, mineralogy): lithofacies, or by the fossil content:
biofacies.
The estimation of the (litho)facies distribution into a reservoir domain has two goals;
one is related with the high predictive capacity of flow measurements of a reservoirs that
are geologically realistic and the other one is related with the need of accurate properties
to predict the consequences of changing conditions in the reservoir lifetime (e.g. the re-
sponse to enhance recovery). The first step in the assessment of the geologic continuities
in the subsurface is to define a geological model to simulate plausible facies distributions
that are consistent with the prior knowledge about subsurface geology (numbers of facies
type that occur, facies proportion, core information, type of patterns etc). The geologi-

This chapter is full reference of the article published in Computational Geosciences, Volume 17, Issue
5, pp 813-832, 2013
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cal model can be constructed using various methods such as an object-based simulation
technique (Deutsch and Journel 1998, Deutsch and Wang 1996) or a pixel-based simu-
lation technique such as Multiple-Point Geostatistique (Guardiano and Srivastava 1993,
Strebelle 2002, Caers and Zang 2004). Another approach is the parametrization of the
facies maps with some uncertain variables (parameters), through which we are able to
adjust them such that these will honor the underlying knowledge of subsurface geology.
These parameters can be calibrated (hence, also the maps) using additional informa-
tion about flow measurements within a process named in reservoir engineering, history
matching (HM). A comprehensive description about HM methods is given by Oliver et
al. (2008).
One of the most promising HM method is the Ensemble Kalman Filter (EnKF) (Evensen
1997, 2003, 2006, Aanonsen et al. 2009) which is a Monte Carlo technique introduced
in the Kalman filtering framework where the probability density of the state is repre-
sented by an ensemble of possible realizations that are simultaneously updated. For the
estimation of the spatial distribution of the facies using EnKF as HM method, various
approaches were proposed, depending on the particularity of geological characterization
(number of the occurring facies, type of transition between facies types).
Jafarpour and Khodabakhshi (2011) have used for the geological model simulation a
Multi-point Geostatistical tool (snesim, Strebelle 2002, 2003) through which the initial
ensemble is simulated from a training image. Then the EnKF is performed to update
the log-permeability field and after that, a probability map is constructed for each facies
type, based on a function defined in the log-permeability space that converts the mean
log-permeability field to a probability map. At each assimilation time step a new en-
semble is generated, using SNESIM, conditioning the training image to the probability
map previously defined. For the case with three facies types, the study uses a training
image in which the facies types with lowest and highest permeability do not have direct
contact.
Lorentzen et al. (2011) proposed for the facies maps simulation a geological simulation
model based on distances to facies boundaries defined with level set functions (Osher
and Fedkiw (2003)). For each facies type a signed distance function is defined as the
minimum euclidian distance from each grid cell to boundaries of that facies type. The
sign is positive if the grid cell is in the facies type domain, is negative if the grid cell
is outside and is zero if the grid is on the boundary of that facies type. After the EnKF
update of the distances, the values obtained are no longer distances. An extra procedure
is performed in order to transform these updated values to distances and, after that, the
updated facies maps are constructed based on a maximization criterion applied to the
transformed values.
Another application of the level set method applied for geometry with 3 facies is pre-
sented in the work of Chang et al. (2010), but here, the values of the level set functions
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in some predefined nodes are treated as random variables with known distribution and
updated in the EnKF process. Then, using a interpolation procedure the level set func-
tion values are calculated in every grid cell. For the case with 3 facies types, two level
set functions are used and the facies maps are constructed based on sign combination of
those function values.
In our study, for the simulation of the facies maps we use a truncation plurigaussian
method. This method was introduced by Galli et al. (1994) and further developed by Le
Loc’h (1994) and Le Loc’h and Galli (1997). This method is a projection from a contin-
uous space (the space determined by the Gaussian random fields (GRF)) into a discrete
space (the facies maps space) through a map designed in the GRF space and defined by
intersection of some thresholds (values for one GRF, curves for two GRF, surfaces for
three GRF, etc.). In the paper of Le Loc’h et al. (1994), two Gaussian random fields
were truncated using a rectangular map. They showed various resulting maps changing
the geostatistical characteristics of the GRF (variogram type, isotropy, anisotropy, range
correlation, principal direction, etc).
Xu et al (2006) propose a "flexible true plurigaussian code for facies simulation", intro-
ducing a binary dynamic contact relation matrix (DCM), with which the authors define
the contact relations among facies types. For a bi-dimensional GRF space (bi-Gaussian
truncation) they have used rectangular truncation maps with different number of facies
types occurring. For three-Gaussian truncation scheme, the maps were constructed based
on intersection of some orthogonal planes defined by the partition of each Gaussian field.
In the truncation plurigaussian context, Liu and Oliver (2005) have used for the facies
simulation model a truncation map (in a bi-Gaussian space), constructed using three
lines, whose intersections separate the space in seven regions, each having a facies type
assigned. In order to adjust the facies boundaries to the correct position they introduced
the simulation model into a HM process using two methods. One method is a gradient-
based method (with some transformations of the map for consistent computation of the
sensitivities) and the other is the EnKF. The parameters that define the truncation lines
could not by estimated in the HM process and the threshold lines were calibrated in an
trial-error procedure. Also, the authors showed, in a 2005 article, that, for the facies
estimations, the EnKF produce better results than the gradient-based method.
Agbalaka and Oliver (2008) have used the same simulation model, to generate facies
maps for a 3D reservoir having three horizontal layers, vertically uncorrelated. They in-
troduced the geological model in the EnKF process, together with a localization scheme,
defined with the fifth-order compact function of Gaspari and Cohn (1999). The authors
used an internal loop in the EnKF process in order to reposition each facies map of the
ensemble to the correct facies type in the measurement locations. The reason for doing
that is related to the fact that, after the assimilation of the production data, some of the
simulated facies maps do not preserve the facies observations at the well locations. This
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enforcement on facies constraints affects only a smaller state vector extracted from the
initial one, state which contains only the variables that define the geological simulation
model.
Zhao et al. (2008) integrate the truncated plurigaussian simulation model, introduced
by Liu and Oliver, into an iterative EnKF process, assimilating besides production data,
seismic data, for a 3D reservoir model having three layers vertically uncorrelated. For
each layer the authors used different assignment of the facies type in the regions of the
truncation map and different geostatistical properties for the Gaussian fields.
Agbalaka and Oliver (2009) applied EnKF to facies fields with uncertain petrophysical
properties that exhibit non-stationarity in facies proportions. They truncated a single
Gaussian field using two thresholds calculated with respect to three predefined facies
proportion maps. This model is suitable for fields that contain three facies types that
exhibit transition from a facies with smallest permeability to facies with highest perme-
ability. This transition is made through another facies type with medium permeability.
In our paper we investigate the reservoirs having a geology defined by three facies types
that occur, with the property that, each two could have a contact. We present a new
approach of the truncated plurigaussian method for facies simulations, in the sense that,
we define a truncation map which is not introduced ad-hoc, but which appears from the
internal construction of the model. This means that, it is not the map which generates
the model, but the model generates the map. We use a bi-Gaussian scheme in which
the truncation map depends on two parameters that have the ability to control the facies
proportions in the model. The change of the truncation parameters does not affect the
geometry of the map, nor the assignment of each facies type in the demarcated areas of
the map. This bijection between the map parameters and the map geometry enables their
introduction in the state vector. The placement of the map parameters in the state ensures
a better quantification of the uncertainty and has as a result, a better estimation of the
facies distribution in the domain. For the Gaussian fields we use different geostatistical
properties, in order to generate complex geologic instances for the facies distribution
maps. The projection from a continuous space (the space where the Gaussian fields take
values) into a discrete space (or categorial space, the facies maps space) is done through
an intermediary space (space with probabilities). We need this intermediary space be-
cause we introduce a new observation operator of the facies types at the well locations.
If prior to this work, the observation operator of the facies was a binary function (in the
terms yes (0) or no (1)) that express the affiliation of the pairs of GRF’s to predefined
areas of the map, in this study the observation operator measures the probability of oc-
currence for each facies type in the grids with wells. Therefore, the Gaussian fields are
not constrained directly to the map (as in the previous studies), but to the observations
which are defined in probabilistic terms. The shape of the truncation map depends on
the shape of the truncation function used for the projection of each Gaussian field into
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a probabilities field. The function used is piece-wise linearly symmetric with compact
support. Also, at the end of the assimilation period we are able to construct a field, as
a result of the estimation process, that is an estimator for the truth field (the estimated
field). The method is tested using a 2-D reservoir case.
In the next sections we present the description of the geological simulation model, the
EnKF implementation for the facies update and three examples where we test the model.
For the examples presented, we used different geostatistical properties for the Gaussian
fields and different types of uncertainty in parameters and in the construction of the
Gaussian fields.

4.2 The Method Description

4.2.1 The "probabilities fields"

In this study our reservoir has a rectangular domain and there is an initial prior knowl-
edge about the characteristics of the subsurface form different sources (i.e. seismic data,
geologist interpretation and core analysis). This information relates with the existence
of three different types of facies in the reservoir, namely facies type 1, facies type 2,
and facies type 3, having the property, that could be a contact between any two. In ev-
ery well (production or injection) we are certain (perfect observations) about the type of
facies present there, so, we can use that information for the whole grid where the well
is situated. Let be (i, j) an arbitrary grid block of our reservoir domain where facies
type 1 occurs. If we consider Ai,jk the event in which in the grid (i, j) the facies type k
occurs, then, in terms of probabilities we have P (Ai,j1 ) = 1, P (Ai,j2 ) = 0, P (Ai,j3 ) = 0

(i.e. the probability that facies type 1 occurs in the grid (i, j) is 1 and the probabilities
that the facies type 2 and type 3 occur in the grid (i, j) are 0). Hence, every facies type
generates a field defined on the reservoir domain whose values in grids cells are 0 or 1
depending on whether the facies type occurs or not in those locations. The regions oc-
cupied by these fields in the reservoir domain represent the true position of each facies
type. These fields have binary values (discrete fields) and, in order to estimate them, we
will use a new object named "probabilities field". We define a probabilities field as a
random field with values in the interval [0,1] having spatial correlations. The reason of
using the probabilities fields is related with the fact that, knowing the facies type in the
grids cells where wells are located (and, of course, the probabilities in those grids), when
we moving away from the wells, the information from the wells dissipates with a cer-
tain correlation and become more and more uncertain with the distance from the wells
increase. The values of the probabilities fields in a certain grid could be interpreted
as confidence levels in the occurrence of the facies types in that grid. In our geological
model having three facies types, we need to define three probabilities fields, one for each
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facies type. A value of 1 in a grid of one probabilities field means that certainly in this
grid the associated facies type occurs, and, consequently, the value of 0 indicates that the
facies type does not occurs in the specified location. We choose to model the probabil-
ities fields using projection in [0,1] of Gaussian random fields defined on the reservoir
domain, through a projection function. In this way the spatial correlation between the
elements of the Gaussian fields are transferred to the elements of the probabilities field.
Because in every grid the sum of the probabilities is 1 we will start in this study only
with two Gaussian fields corresponding for two facies types, denoted y1 and y2 (with yi,jk
having normal distribution) of which projection generates two probabilities fields. The
probabilities field associated to the third facies type is defined based on the knowledge
of the other two using the fundamental rule of probability. In Figure 4.1 (left) we present
a binary field that defines the shapes of a facies type in the reservoir domain (colored in
red) and in Figure 4.1 (right) a probabilities field which can be an estimator of that field.

Figure 4.1: The binary field defined by a facies type (left) and the associated probabilities
field (right)

The function used for the projection described above is ϕm : R→ [0, 1]

ϕm (t) =

{
−|t|
m

+ 1 if t ∈ [−m,m]

0 if |t|> m
, (4.1)

where m is a parameter, which we have named truncation parameter (see Figure 4.2).
Hence, a probabilities field α is defined as α = ϕm (y) (with the convention that
α = ϕm (y) means αi,j = ϕm

(
yi,j
)

in every grid cell (i, j)) where y is a Gaussian
field defined on the reservoir domain. In the grids where we have observations about the
occurrence of a facies type, the associated Gaussian field will be generated with value 0,
such that, his projection (the associated probabilities field) has value 1. This is consis-
tent with the probability of the facies occurrence in observed grids. Using the function
decreasing on the intervals [0,m] and [-m,0] the probabilities field will have in the sur-
rounding grids of the observed grids, values that becomes smaller with the increasing
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Figure 4.2: The projection function

distance to the observed grid. In addition, the function piece-wise monotony ensures the
transfer of the correlation from the Gaussian fields to the probabilities fields. Knowing
that, in some areas of the reservoir, a certain facies type does not occurs, we have used
a threshold value, denoted m, over which the absolute values of the associated Gaussian
field should pass, so that the associated probabilities field to have value 0.

4.2.2 Geological simulation model (Assigning the facies on the grid)

We start with two GRF’s y1 and y2 defined on the entire reservoir domain and α1 and
α2 the associated probabilities fields, corresponding to the facies types 1 and 2, where
αk = ϕmk (yk)k=1,2. The parameter mk represent the truncation parameter for the
random field yk. In order to appoint the probabilities field for the third facies we can use
the following rule in each grid cell:

αi,j3 =


1−

(
αi,j1 + αi,j2

)
if 0 ≤ αi,j1 + αi,j2 ≤ 1

0 if αi,j1 + αi,j2 > 1

(4.2)

Thus, we have defined three probabilities fields corresponding to each facies type. At a
certain location (i, j) we assign facies of type k ∈ {1, 2, 3} if

αi,jk = max{αi,jl , l = 1, 3}, (4.3)

with the convention that if αi,j1 = αi,j2 ≥ αi,j3 we assign facies type 1 and if αi,j2 =

αi,j3 > αi,j1 we assign facies type 2. The assignment of a facies type to a grid cells
is for the facies type with the highest confidence level of occurrence in that grid. This
maximization criterion has the role to draw in each probabilities field the location of
the associated facies type, working for each probabilities field as a threshold. Also, it
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generates in the bi-dimensional spaces of the probabilities fields and respectively of the
Gaussian fields, two different maps that help to place this geological simulation model
in the context of the general truncated plurigaussian simulation method. If we repre-
sent the point

(
αi,j1 , αi,j2

)
in the cartesian system α10α2, presented in Figure 4.3 (left

side), we can assign the facies type to the grid (i, j) based on the place where the point(
αi,j1 , αi,j2

)
falls in that two dimensional space. The same maximization criterion gen-

erates in the space (y1 y2) a truncation map for the Gaussian random fields, which is
presented at the right side of the Figure 4.3. This means that, we assign a facies type in
a grid (i,j), depending on which zone of the map, the point

(
yi,j1 , yi,j2

)
belongs. These

two maps are equivalent (but in different spaces). The truncation map of the Gaussian
fields are uniquely defined by the parameters m1 and m2, each combination generating
a different scheme with the same geometry and with the same assignment of the facies
types in the map zones. The assignments of the facies types in areas of the truncation
map is a result of the maximization criterion applied to the triplet of probabilities fields;
either, if we refer to the truncation map of the probabilities or to the truncation map of
the Gaussian fields. In the approach of Le Loc’h and Galli (1997) the truncation map

Figure 4.3: Truncation map for probabilities fields (left) and Truncation map for Gaus-
sian random fields (right)

was formed with rectangular shapes (the lines used for intersecting have equations of
type y1 = a, y2 = b) and Liu and Oliver (2005) truncation map was build with three
intersecting lines having equation of type y2 = tan(θ− π

2 ) · (y1− r
cos(θ)), (the threshold

line is perpendicular to the line passing through the origin with the slope θ and intersects
the line at a distance r). The truncation map used in this study (Figure 4.3, right) is
defined intersecting the curves with equations |y1|m1

= |y2|
m2

(red lines), |y1|m1
+ 2 · |y2|m2

= 2

(blue lines), |y2|m2
+ 2 · |y1|m1

= 2 (green lines), |y1|= m1
2 , |y2|= m2

2 (black lines).
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4.2.3 Truncation parameters

One of the challenges in the truncated plurigaussian method is the choice of the trunca-
tion map. In this study the truncation map is uniquely defined by two parameters (named
truncation parameters). These parameters that initial occur in the definition of the pro-
jection function, have an important role in the simulation process due to their property
to control the facies proportions. In the appendix of this chapter we emphasise the re-
lation between the truncation parameters and the expected facies proportions. Also, the
truncation parameters are variable that introduce uncertainty in the model, together with
the geostatistical parameters of the Gaussian fields (the isotropy/anisotropy, the range
correlations) and the Gaussian fields themselves. In order to quantify the influence of
the truncation parameters in the estimation process, in one of the cases, we will intro-
duce these parameters in the state vector and perform a comparison with the experiment
where, we consider that the uncertainty in the model is introduced only by the Gaussian
fields.

4.3 Ensemble Kalman filter implementation for facies up-
date

In this section, we present the customized implementation of the EnKF in related with
our case study.

4.3.1 State vector

The state vector for the jth ensemble member at the kth assimilation step is:

xkj =
[
yT1 y

T
2 m

T
1 m

T
2 dTsim

]T
j
, (4.4)

where y1and y2 represents the two Gaussian random fields, m1, m2 are the truncation
parameters of the random fields, and dsim are the simulated observations. The latter
ones are a combination of simulated production data (oil and water rates, bottom hole
pressure) and simulated facies observations fsim = [αw1 αw2 ]. So, the state vector from
equation 4.4 becomes:

xkj =
[
yT1 y

T
2 m

T
1 m

T
2 BHPT qTw qTo α

w,T
1 αw,T2

]T
j

(4.5)

In this study, the EnKF is performed without dynamical variables in state vector. There-
fore, after each assimilation time, we have chosen to rerun the simulator from time zero,
even though this technique will increase the computational cost. For the small models
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of the examples presented, this procedure is not a time consuming, but, for large scale
models, the computational cost should be considered.

4.3.2 Measurements

The measurements available for the HM process are the observed production data and
facies data at the well locations. Contrary to the numerical character of the production
data, the facies observations are of categorial type. Therefore, to be able to handle them
in the numerical scheme of the history matching algorithm, we need to associate them
with numerical values. When at a certain grid we know that a facies type occurs then the
probability of occurrence of this facies type is one and probability of occurrence of the
other two types of facies is zero. Therefore we might use the following assumptions: If
at the well location we observe

• facies 1 then {
αi,j1 = 1

αi,j2 = 0

• facies 2 then {
αi,j1 = 0

αi,j2 = 1

• facies 3 then {
αi,j1 = 0

αi,j2 = 0

4.3.3 The EnKF implementation

1. Initialization

The uncertainty in the initial ensemble is given by the choice of the two Gaus-
sian random fields and by the choice of the truncation parameters (if we include
the truncation parameters in the state vector). Initially, we generate an ensemble
of pairs of Gaussian fields y1 and y2 with sequential Gaussian simulation method,
specifying the geostatistical properties (isotropy or anisotropy, principal directions
and the range correlation). Throughout this study the number of the ensemble
members set to 120. The Gaussian fields are generated with constraints given by
the types of facies found in the grids where the wells are situated. If, in a grid
with a well located, we have observation about the existence of facies type 1, then
the value in this grid for y1 is 0 (y1 is generated with value 0 in this grid such
that the probability of occurrence is 1) and, of course, if we have observation
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about the existence of facies type 2, then we generate y2 with value 0 in this grid.
The truncation parameters are generated with normal distribution and with a mean
determined such that we keep accounted for prior knowledge about facies propor-
tions. After the generation of the random Gaussian fields ensemble we perform
an iterative process to constrain the GRF pairs to the other facies observations (y1

to observations of the facies type 2 and type 3 and y2 to observation of the facies
type 1 and type 3). This iterative process is made with the EnKF method, defining
the state vector

x =
[
yT1 yT2 αT1 α

T
1

]T
(4.6)

and the measurement are facies observations at grids where wells are situated.
This iterative process stops when α1 and α2 in the grid with observation of facies
type 3 have reached the values such that α1 +α2 < 0.1 (resulting that α3 > 0.9 in
that grid), α1 in grid with observation of facies 2 has property α1 < 0.05 (α3 = 0

there, by definition) and α2 in the grid with observation of facies 1 has property
α2 < 0.05 (as well α3 = 0 there, by definition). The stopping criterion is chosen
in this way because, using two Gaussian fields to model three probabilities fields,
we need to ensure similar initial conditions for all facies types. Although, the
facies observations are perfect observations (0 variance) we use the value 0.01 for
standard deviations of facies observations measurement error. We do that, because
we need that the term

(
H Cx H

> + Cobs
)−1, from the expression of Kalman gain

to exist, and, the valueCobs = 0.0001·I to not have great importance in the inverse
(Agbalaka and Oliver 2008). However, it is possible that, for some initial y1 and
y2, the iterative EnKF procedure described above to not lead to an initial ensemble
with the prescribed constraints and actually the iterative process get stuck (either
the value of α1 + α2 does not descend below 0.1 or αi for i = 1, 2 does not
descent below 0.05) and is not able to stop. Then, we try the procedure with other
two random fields, until we find the initial ensemble with correct (prescribed)
constraints of the facies observations. As a measure of the spread of the Gaussian
fields, we calculate, for both fields, the mean variance and we will watch their
evolutions in the history matching process.

σ2
y =

1

ng (ne − 1)

ne∑
j=1

ng∑
i=1

(
yji − yi

)2
(4.7)

where ng is the number of the grids, ne is the number of the ensemble members
and yi is the mean value of the random field y in the grid i

yi =
1

ne

ne∑
j=1

yji (4.8)
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The mean variance is an important indicator because the quality of the forecast
error covariance matrix is directly connected to spreading of the random fields
(Agbalaka and Oliver 2008). Also, the mean variance of the Gaussian fields is a
measure of the variability existing in the ensemble at a certain moment. If one of
the mean variances is very close to zero then, we can state that the ensemble has
collapsed. It is well known that the ensemble collapse is one of the main issue
of the EnKF, and, in order to overcome that, we might use either a localization
scheme, or an inflation of the forecast covariance matrix. This is not the case here,
where, at the end of the assimilation period, the mean variance of each Gaussian
field is greater than 0.08, value that from our experience ensures enough variabil-
ity in the final updated ensemble.

2. Forecast step/Model update

The forecasted state vector at time k + 1:

xk+1,f
j =

[
yk+1,T
1 yk+1,T

2 mk+1,T
1 mk+1,T

2 BHPk+1,Tqk+1,T
w qk+1,T

o (αw1 )k+1,T (αw2 )k+1,T
]T,f
j

,

(4.9)

where 
y1
y2
m1

m2


k+1,f

j

=


y1
y2
m1

m2


k,a

j

(4.10)

[
p

s

]k+1,f

j

= M

[ p

s

]k
0

,

[
y1
y2

]k,a
j

 (4.11)

 BHP

qw
qo


k+1,f

j

= gpred

[ p

s

]k+1,f

j

,

[
y1
y2

]k+1,f

j

 (4.12)

[
αw1
αw2

]k+1,f

j

=

[
αw2
αw2

]k,a
j

, (4.13)

where gpred is the prediction operator for the production data. Hence, there are
no changes from time k to k + 1 for the values of the Gaussian random fields
(eq. 4.10). But, their values have an impact in the changes of the pressures and
saturations at time k + 1 which generates changes in the forecast in production
data (eq. 4.12). The Gaussian random fields are changed in the update step of the
EnKF when the production data is assimilated.
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3. Update step/Measurement update

During the assimilation of production data the updated state vector is calculated
as follows:

xk+1,a
j = xk+1,f

j + Cf

xk+1H>k+1

(
Hk+1Cf

xk+1H>k+1 + Cprod

obs,k+1

)−1

[
dprodobsj ,k+1

−Hk+1xk+1,f
j

]
, (4.14)

where H represents observation operator for the production data, Cprod

obs represents
the error covariance matrix for the production data, Cxf represents the forecasted
error covariance of the ensemble, and dprodobsj

are the observed production data. In
order assimilate the facies data we separate part of the state vector as in:

x̃k+1
j =

[
yT1 y

T
2 m

T
1 m

T
2 α

w,T
1 αw,T2

]T,k+1

j
, (4.15)

If, after the assimilation of the facies data, some of the ensemble members violate
the position of the facies type 3 in the grids where we have observations about their
existence, we perform an iterative enforcement on facies observations (because the
random fields y1 and y2 are generated with value 0 in grids where facies type 1
and type 2 respectively occur, during the HM process the position of the facies
type 1 and type 2 are not violated). The iterative process will stop when the value
of α3 in the grids where we have observation about existence of the facies type 3
is greater than α1 and α2 in those grids. In the iterative process explained above
the uncertainty for the facies observations is represented by the error covariance
matrix of 0.0001I.

4. The estimated field

One of the targets of this study is to find a field of facies distribution which is
an estimator for the "truth" field (or reference field). In the previous studies using
truncated plurigaussian method for facies simulations, an estimator of the truth
field could not be directly presented, because the posterior mean of the random
fields could not generate a plausible geological model. In this study, for each
facies type, we calculate the mean of probabilities fields (named estimated prob-
abilities field), that will be an estimator of the associated binary field (generated
by the facies type). Using these three estimated probabilities fields we define the
estimated field with the maximization criterion, meaning that the assignment of a
facies type in a grid is made for the facies type with the highest value of probabil-
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ity in that grid. For k = 1 or k = 2 we have first two estimated probabilities fields
as

αi,jk =
1

ne

ne∑
l=1

ϕmk,l

(
yi,jk,l

)
(4.16)

For the mean of the probability of occurrence of the facies type 3 we use the
relation

αi,j3 =


1−

(
αi,j1 + αi,j2

)
if 0 ≤ αi,j1 + αi,j2 ≤ 1

0 if αi,j1 + αi,j2 > 1

(4.17)

Consequently, in the estimated field we assign the facies type k in the grid (i, i) if

αi,jk = max{αi,jl , l = 1, 3}, (4.18)

Also, we will use the same rule as in the main procedure, regarding the cases when
the probabilities are equals in the grids.

4.3.4 Indicators for the quality of the estimations

The first comparison between updated fields and reference field or between different esti-
mated fields of the same reference field is made by visualizing the facies maps. But this
visualization is not sufficient, therefore, we define some quantitative indicators which
can show the quality of the estimation.
(1) Root Mean Square Error (RMS) calculated for permeability:

RMS(k) =

√√√√ 1

ng

ng∑
i=1

(krefi − kesti)
2 (4.19)

where ng is the number of grid blocks krefi and kesti represent the values of perme-
ability for reference field and estimated field for grid block i.
(2) Percentage of grid fit between the estimated field and the reference field:

Percentage =
1

ng

ng∑
i=1

mi × 100 (4.20)

where mi = 1 if in the grid i the estimated field and the reference field has the same
facies type and mi = 0 if we have a misfit between the facies type existing in estimated
field and facies type existing in reference field.
(3) Root Mean Square Error (RMS) of the Water Rates (WR) prediction for the next 100
days (10 time steps), calculated for the estimated field and for the mean of the updated
ensemble members and, respectively for Total Rates Production (TR) of the estimated
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field and mean of the updated ensemble in the assimilation period . We denote with X
the reference variable (respectively WR and TR).

RMS(Xmeanupdate) =

√√√√ 1

4ng

t1∑
j=t0

(
Xref,j −Xj

)2
(4.21)

RMS(Xestimate) =

√√√√ 1

4ng

t1∑
j=t0

(Xref,j −Xest,j)2 (4.22)

whereXref,j is the value obtained by the "truth" field at the time j,Xest,j is the value ob-
tained by the estimated field at the time j,Xj = 1

ne

∑ne
i=1Xi is the mean of the reference

variable obtained by the updated ensemble at time j and ne is the number of ensemble
members. These quantities are calculated for every producer, and for this reason, we
have a factor 4 at denominator.

4.4 Reservoir description

The simulation model is a 5-spot water flooding 2D-reservoir, black oil model with
50×50×1 active grid blocks. The dimension of each grid block was set at 30×30×20

ft and there is one injector situated at the center of the reservoir domain and there are
4 producers situated at the corners. The coordinates of the well positions are presented
in Table 4.1. For all the examples presented we use the facies observations presented in
Table 4.1. The values of the permeability and porosity corresponding to each facies type
are presented in Table 4.2.
Water injection starts from the first day and continue thereafter a period of 201 days of

Table 4.1: The position of the wells in the reservoir domain and the facies observations

Injector Producer 1 Producer 2 Producer 3 Producer 4
x coordinate 25 5 5 45 45
y coordinate 25 5 45 5 45

Facies observation Type 2 Type 1 Type 3 Type 1 Type 2

production. We assimilate data starting from first day until day 201 from 10 to 10 days
which means that we have 21 assimilation steps. All the producers work under constant
BHP value of 1500 pound per square inch (psi), the injector operates at 4500 stock tank
barrels per day (STB/D) and constrained by a maximum 5000 psi for BHP. The mea-
surement error for the production data is considered Gaussian with 0 mean and standard
deviations respectively

√
5 STB/D for WR and OR at the producers and 3 psi for BHP at

the injector. These values will be used for generation of the noise, which is added to the
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Table 4.2: The petrophysical properties of each facies type

Facies type Permeability Porosity
Type 1 174 md 0.18
Type 2 732 md 0.25
Type 3 80 md 0.14

observations of the production data in the analyzed step of the EnKF process. The ob-
servations of the production data are obtained through forward integration of one model
defined as reference (or "truth"), considered known in every example presented.

4.5 Cases presented

We test the model presented, using Gaussian random fields generated with different
geostatistical properties (isotropic or anisotropic fields) and different levels for the un-
certainty that we add in construction of the truncation parameter ensemble. In the first
case we perform two experiments, one with uncertain truncation parameters and the
other without uncertain truncation parameters. When we don’t add uncertainty for the
truncation parameters, actually we use for the truncation of the Gaussian fields the same
truncation map for all the ensemble members. This case is made in order to reveal the
influence of the truncation parameters in the estimates.
The second case contains one experiment, where the fields are generated with anisotropic
characteristics and in the third case we introduce uncertainty in the range correlation with
which the Gaussian fields are generated. In all the experiments we assume that, based on
the prior information, we have an initial knowledge about the geostatistical properties of
the Gaussian fields and the mean of the truncation parameters.
Case1. In this case the reference field was build using two Gaussian fields with isotropic
characteristics having the range correlation 17 grid blocks. We project these two random
fields using a truncation map constructed with values

√
2 for both thresholds generating

the "truth" distribution of the facies type in the reservoir domain. The initial ensem-
ble of Gaussian fields y1 and y2 was generated with the same isotropic characteristics
and range correlation. This case contains two experiments. For the first experiment we
constrain the ensemble of Gaussian fields to facies observations using value 1.5 for all
truncation parameters, in the second experiment we generate an ensemble of thresholds
with Gaussian distribution having mean 1.5 and standard deviation 0.2.
Case2. In the second case presented, the reference field was build using two Gaussian
fields with anisotropic characteristics with long range correlation 16 grid blocks, short
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range correlation 8 grid blocks and principal direction having angle 30◦ with X-axis and
for the truncation we use value

√
2 for both thresholds. The initial ensemble of Gaussian

fields y1 and y2 was generated with the same anisotropic characteristics, range correla-
tions and directions. In this example we constrain the ensemble of Gaussian fields to
facies measurements using an ensemble of truncation parameters having normal distri-
bution with

√
2 mean and 0.2 standard deviation.

Case3. In the third case we introduce uncertainty in the range correlation with which
we generate the Gaussian fields. As reference field we use the field presented in the
first case. The initial ensemble of Gaussian fields is composed from three batches, each
one having 40 members and generated isotropic with range correlation 16, 18 and re-
spectively 20 grid blocks. This ensemble was constrained to facies observation with an
ensemble of truncation parameters generated with mean 1.5 and standard deviation 0.1.

4.5.1 Case 1: Simulation model generated using isotropic random fields

The reference field used for this case is presented in Figure 4.4 where blue color repre-
sent facies type 1, green color represent facies type 2 and red color represent facies type
3. The black dots show the positions of the wells. The field has at the well location the
facies observations presented in Table 4.1. Each facies type generates a binary field de-
fined on the reservoir domain of which representation is shown in the first line of Figure
4.5.

Figure 4.4: Reference field for example 1

This case contains two experiments. In the beginning, we generate two families of
Gaussian fields which will be constrained to facies observations using different ensem-
bles of truncation parameters. For the first experiment we use value 1.5 for all truncation
parameters and for the second experiment we use an ensemble of truncation parameters
generated with normal distribution, having mean 1.5 and standard deviation 0.2. This
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Figure 4.5: The true positions of the facies types in the reservoir domain (line 1), The
initial fields with standard deviation for truncation parameters 0 (line 2), The initial
fields with standard deviation for truncation parameters 0.2 (line 3), The estimated fields
with standard deviation for truncation parameters 0 (line 4), The estimated fields with
standard deviation for truncation parameters 0 (line 5)
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means that in the first experiment we do not introduce uncertainty in the truncation pa-
rameters. The choice of 1.5 as the mean value for the truncation parameters is made
taking into account the prior knowledge of the facies proportions of the reference field.
We obtain two initial ensembles of Gaussian fields that are derived from the same en-
semble of GRF which means that these two ensembles contain similar information (as
we see from the initial mean probabilities fields presented in Figures 4.5 (lines 2 and 3)).
In Figure 4.5, lines 2 and 3, we presents, for the experiments, the initial fields (which
contains initial mean fields for the probabilities of occurrence of the facies type and the
initial "mean" field) and in lines 4 and 5 the results obtained after the assisted HM per-
forming. The results presented are the estimated probabilities fields for all the facies
types and the estimated field. From these pictures we can observe that, for the initial
probabilities fields of facies type 1 and type 2 the region with probabilities greater than
0 are diffusive distributed in the reservoir domain, whereas in the estimated probabilities
fields are more clearly shaped. If in the initial fields the shapes are contoured with the
values near to 0.4 in the estimated fields the shapes are contoured by the values near to
0.7. The variability in the initial ensemble of random fields can be observed in the dif-
fusive distribution of the shapes of the facies type 1 and type 2 in the initial maps. Also,
in the initial mean field (and also in the initial ensemble of facies maps) the facies type
3 have the smallest proportion because of two causes; first, only in the well 2 we have
observation about occurrence of that facies type and second, because of the construction
of the simulated model, where probability of occurrence of the facies type 3 is appointed
based on fundamental rule of probabilities. After the assimilation period, the facies pro-
portion in the estimated field is close to the true facies proportions ("truth" field has the
facies proportions 0.36:0.24:0.40 and in the estimated field has the facies proportions
0.34:0.24:0.41). With a visual inspection of the estimated fields (Figure 4.5 lines 4 and 5
last pictures) we can conclude that these fields are good estimators for the reference field
but for a better quantification of the estimation we will compare the indicators presented
previously. In Table 4.3 we present the values for the indicators calculated for the esti-
mated fields. We can easily observe that indicators of the estimated field resulting from
HM process with uncertainty in the truncation parameters have better values than the in-
dicators of the estimated field obtained without uncertainty in the truncation parameters.
Knowing that the true facies proportions is 0.36:0.24:0.40, from the Table 4.3 we can
observe that in the both cases the variability of the initial ensemble incorporates this true
value. However, only the updated ensemble for the case with variability in the truncation
parameters preserves this property. We have repeated the experiments for several initial
ensembles and the conclusion is that, the updated fields of the experiment where we
take into account the uncertainty in the truncation parameters, has a higher percentage
of grid fitting and a better quantification of the facies proportions then the other updated
fields. Concerning the RMS calculated for the rates, either for the ensembles, or for the
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estimated fields, these values are very close to each other. This happens because, given
two initial ensembles derived from the same ensemble of Gaussian fields, one generated
using an ensemble of truncated parameters and one generated with constant value for
truncation parameters, the reduction in variability, after the assimilation of production
data and facies (hard) data, is similar, toward to the values of the truth. We can con-
clude that, for a better description of the facies types distribution in the field we should
introduce uncertainty in the truncation parameters.

Table 4.3: Qualitative indicators calculated for the experiments

Sdm = 0 Sdm = 0.2

Percentage of the grid fit 64.20% 72.16%
RMS(permeability)(md) 135.48 115.82

RMS(WR mean update)(STB/D) 0.52 1.19
RMS(WR estimate)(STB/D) 1.47 1.14

RMS(TR mean update)(STB/D) 4.36 3.46
RMS(TR estimate)(STB/D) 5.92 3.96

Facies proportions initial state 0.25:0.42:0.34 0.27:0.39:0.34
Standard deviation initial state (facies prop) 0.08:0.11:0.11 0.08:0.11:0.11
Max proportions initial state (facies prop) 0.47:0.68:0.70 0.45:0.64:0.64
Min proportions initial state (facies prop) 0.07:0.06:0.10 0.09:0.07:0.08

Facies proportions updated state 0.28:0.29:0.43 0.32:0.26:0.42
Standard deviation updated state (facies prop) 0.03:0.02:0.02 0.03:0.02:0.02
Max proportions updated state (facies prop) 0.34:0.32:0.48 0.40:0.32:0.49
Min proportions updated state (facies prop) 0.22:0.26:0.38 0.21:0.22:0.37

For the model with truncation parameters generated with standard deviation 0.2 we
present the WR for all producers, for updated ensemble (Figure 4.6 line 2) and for initial
ensemble (Figure 4.6 line 1) in the assimilation period. From these two pictures we can
observe the initial variability (Figure 4.6 line 1) and the reduction in variability due the
data assimilation procedure (Figure 4.6 line 2). In the line 3 of Figure 4.6 we present
the evolution of WR for a period of 301 days, where the vertical blue line delimits the
assimilation period (201 days) to the prediction period (100 days) for WR of the esti-
mate field, reference field and mean of the ensemble. For the producers 1, 3 and 4 the
prediction is very good, only for the producer 2 the water rate prediction of the estimated
field and the mean of the ensemble exhibits some distance to the water rate measured at
that producer in the reference field, in the interval 201-301 days. The reason for that the
WR prediction at the producer 2 is not as good as in the rest producers is because the
water cut at this well appears later (at assimilation time 14) whereas at the rest wells the
water occurs earlier (around assimilation time 10).
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Figure 4.6: WR in initial state (line 1), WR in update state (line 2) and WR prediction
for the next 100 days for estimated field and mean of the ensemble (line 3)

The evolution of the variability of random fields in the assimilation period is represented

Figure 4.7: Mean variance of the random fields

by the mean variance calculated at every time step and, its distribution over the assimila-
tion period (Figure 4.7). The reduction in the variability of both random fields is sharp at
the initial assimilation times (when important data are assimilated) and when the water
occurs at the producers (time step 10, when new relevant information is introduced in the
process) After that, the decrease in variability is made with an approximately constant
slope. From the updated ensemble of facies maps we can calculate based on a simple
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Figure 4.8: Sum of the estimated probabilities

Figure 4.9: probabilities maps from estimation and from the facies maps ensemble

counting three probability maps associated with each facies type. The probabilities fields
resulting from the estimated process are consistent with the probability maps calculated
from the updated ensemble as can be seen from Figure 4.9. The differences between
these maps are caused in principal because the probabilities fields derived from estima-
tion (bottom of Figure 4.9) arise from a continuous medium, whereas the probability
fields defined by the ensemble of facies maps (top of Figure 4.9) come from a discrete
medium (is the result of a counting). The inverse modeling of the facies field with EnKF
allows us the estimation of the state parameters, but the estimators are not perfect which
means that, if between the true values of parameters exist some connectivity relations,
these relations are not necessarily fulfilled by the estimators. In our case in every grid
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cell the sum of the probabilities is 1 (actually two probabilities are 0 and one probabil-
ity is 1) but it is possible that for the estimators of the probabilities, the sum it may be
greater than 1 (Figure 4.8).

4.5.2 Case 2: Simulation model generated using anisotropic random
fields

The directions of the facies type propagation in the reservoir domain, are related with
the isotropy or anisotropy of the Gaussian fields. When the prior information suggests
the propagation of the facies in certain direction, we model the facies maps (in the ini-
tial ensemble) with the aid of Gaussian fields generated anisotropically, with principal
direction given by the propagation direction of the facies. The experiment performed in
this case is addressed to the facies fields that exhibit a given orientation in the domain.
We have used the same setup for the reservoir description as in the first case. The ref-
erence field is presented in the last picture of the first line of Figure 4.10, where facies
type 1 has blue color, facies type 2 has green color and facies type 3 has red color. The
petrophysical properties of every facies type are the same as in the previous experiments.
The results for the estimated field and estimated probabilities fields after a period of 21
assimilation time steps are presented in the Figure 4.10 (line 3), whereas the true posi-
tion of the facies types in the reference field are presented in Figure 4.10 (line 1). From
these pictures, we can observe that the positions of the facies types over the reservoir
domain are pretty good estimated, although the estimated probabilities fields for facies
type 1 and 2 exhibits some features that are not present in reference field. The facies
proportion in the initial mean field was 0.50:0.44:0.06 (this smaller proportion for facies
type 3 can be seen from Figure 4.10 (line 2)) totally inconsistent with true facies pro-
portions 0.305:0.271:0.417. However, the facies proportion calculated from the initial
ensemble is 0.38:0.38:0.24 with a spread quantify in standard deviation of 0.1:0.1:0.12
which contains the true facies proportions. After the assimilation period the calculated
facies proportions for the estimated field are 0.359:0.278:0.363 close to the true facies
proportions and close to the facies proportions calculated from the updated ensemble,
0.32:0.29:0.4 (with a standard deviation of 0.045:0.025:0.035). The reduction in vari-
ability follows a similar scenario as in the experiments carried out with isotropic fields
(as we can see with a visual inspection of the Figures 4.6 and 4.11). The variability
existing in the initial ensemble can be inferred either from the initial maps presented in
Figure 4.10 (line2), or from the water rates spread presented in Figure 4.11 (line 1). The
facies fields that exhibit this type of propagation in the domain are very hard to be esti-
mates because by modeling the Gaussian fields with anisotropic characteristics, having
a very small short correlation range reported to the domain length, we introduce in the
model many degrees of freedom.
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Figure 4.10: The binary fields defined by each facies type and the reference field (line1
), The initial mean probabilities fields and the initial mean field (line 2), The estimated
probabilities fields and the estimated field (line 3)

Figure 4.11: Water Rates in initial state (line 1), Water rates in updated state (line 2) add
Water rates prediction in updated state for the reference field, mean of the ensemble and
the estimated field
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4.5.3 Case 3: Uncertainty in the geostatistical properties of the Gaus-
sian fields

An important issue in the plurigaussian simulation is the choice of the geostatistical
properties (variogram parameters) used for generating of the Gaussian fields (Jafarpour
et al. (2011)). The shape of the facies continuity and the numbers of the bodies depend
on the variogram parameters of the Gaussian fields but, it is not straightforward to estab-
lish a connection formula. The choice of the correlation range (or any other geostatistical
property) shall be made taking into account the prior knowledge about geology descrip-
tion (facies proportions, the propagation of the facies areas in the reservoir domain, the
numbers and the volume of bodies etc). This prior information about geology is often
uncertain. Different geostastical properties of the Gaussian fields provide, after trunca-
tion, facies fields with similar characteristics. Therefore, in this experiment we want to
explore the case in which we do not use a single value for the geostatistical properties of
prior fields generation. For that, we generate three batches of isotropic Gaussian fields,
each one having 40 members constructed with different levels for correlation range of
16, 18 and respectively 20 grid blocks. We have used these values because the maps
resulting from truncation present similar topological characteristics.

Table 4.4: Qualitative indicators calculated for the experiments

Case 1 (Sdm = 0.2) Case 2 (21 ts) Case 3 (22 ts)

Percentage of the grid fit 72.16% 70.76% 71.12%
RMS(permeability)(md) 115.82 120.2 117.25

RMS(WR mean update)(STB/D) 1.19 1.87 1.36
RMS(WR estimate)(STB/D) 1.14 1.89 1.54

RMS(TR mean update)(STB/D) 3.46 2.2 2.20
RMS(TR estimate)(STB/D) 3.96 3.22 3.49

This ensemble is constrained to facies observations using an ensemble of truncation
parameters generated with a normal distribution having the mean 1.5 and the standard
deviation 0.1. The reference field used in this example is the field presented in first
case study (Figure 4.12, line 1). The results are shown in Figure 4.12 line 3, where the
estimated probabilities fields and the estimated field are presented. The water rates evo-
lution for the initial ensemble and the updated ensemble, in the assimilation period has
the same characteristics as the ones from the first case presented (Figure 4.13). Because
the water occurs later at the producer 2 (Figure 4.13, time step 16 and more consistent
17) the prediction of the water rate in this producer is not the best. Therefore we intro-
duce one more assimilation time step in order to reduce the WR variance in this producer.
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Figure 4.12: The binary fields defined by each facies type and the reference field (line
1), The initial mean probabilities fields and the initial mean field (line 2), The estimated
probabilities fields and the estimated field (line 3)

As we can see from the Table 4.4 there is an improvement related with the percentage of
grid fit (from 70.76 to 71.12) and for RMS calculated for permeability (from 120.2 md
to 117.25 md). After several experiments with the same setup we have found that we
could not see an improvement in the estimation, neither for the grid fitting, nor for the
RMS. The percentage of grid fitting for the estimated field is situated around 68% for
the both cases (the ensembles where all the Gaussian fields are generated with the same
geostatistical characteristics and the ensembles generates as in the case 3).

4.6 Appendix: The facies proportion impact

The truncation parameters are variables that define the bounding lines in the truncation
map and the volumes of the map zones. As a result, they have the ability to control the
facies proportions in the reservoir domain.

In Figure 4.14 are five different domains generated with the same random fields but
with different values for the truncation parameters. From this figure we can observe
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Figure 4.13: WR in initial state (line 1), WR in updated state (line 2) and WR prediction
for the next 100 days (line 3)

Figure 4.14: Facies maps generated with different truncation parameters

that, for both values of truncation parameters of 3.5 the proportion of the facies type 3
(red shade) is very small in comparison with the proportions of the facies type 1 (green)
and type 2 (blue). Decreasing values of m1 and m2, facies type 1 and facies type 2 are
eroded by the facies type 3. For example, if we assign for both parameters the value
0.8, the regions represented by the facies type 3 have the higher proportion. From the
construction of the map, an increase for m1 generates an increase of proportion of the
facies type 1 together with a decrease in the proportion of the facies type 3 and type
2. The influence of the parameter m1 in the proportion of the facies type 2 is smaller
than the influence in the proportion of facies type 3. A similar approach is valid for
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parameter m2. For a given pair of Gaussian fields, we can define a pair of truncation
parameters such that the associated facies map has established facies proportion. This
pair of truncation parameters is defined based on an estimation procedure, using, as well,
the ensemble Kalman filter method. For that, we define the state vector as:

x =
[
mT

1 m
T
2 prop

T
1 prop

T
2 prop

T
3

]T
, (4.23)

where, m1 and m2 signify the parameters and prop1, prop2, prop3 are the simulated
measurements which, in this case, represent the simulated facies proportions for each
facies type. We start the procedure with an initial ensemble of truncation parameters,
generated with normal distribution, having a prior mean that can be chosen such that the
associated facies proportions are close to the established facies proportions (with a trial
error procedure), and a standard deviation of 0.2. Also, we can define a general prior
mean of 1.5 for both truncation parameters and a standard deviation of 0.4. These values
ensure us enough variability in the initial ensemble, such that, the EnKF procedure to
converge. In this case the observations are perfect (being represented by the given facies
proportions). However, for the Kalman gain to exist, we set for the measurement errors
a small value, of 0.01 for standard deviation. We apply the EnKF procedure iterative,
with the stopping criterion set up such that the difference between the observations and
measurements are in absolute value less than 0.01 for all the ensemble members. The
ensemble mean for the both parameters are the required estimators. However, various
pairs of Gaussian fields, having similar geostatistical properties, could generate, after
truncation with the same scheme (a truncation map built with the same values for the
parameters), facies maps with different facies proportions. Considering an ensemble of
Gaussian fields pairs (in our case 120 realizations), we can determine (from the ensem-
ble), the proportion mean for each facies type. These values constitute estimators for the
expected facies proportions of each facies type for a given truncation map (in our case,
for a given combination of the parameters m1 and m2) and for given geostatistical prop-
erties of the Gaussian fields. Depending on the generation of Gaussian fields ensemble,
unconditioned or conditioned to facies observations, the associated expected facies pro-
portions have different values. For example, considering a map defined by parameters,
both having the value 1.5, and Gaussian fields generated isotropic with range correlation
of 17 gb, we obtain the expected facies proportion 0.35:0.35:0.30 for unconditional gen-
erated GRF, 0.37:0.38:0.24 for conditional generated GRF (to observation of facies type
1 and 2) and 0.25:0.42:0.33 for conditional generated GRF (to all facies observations).
Together with these mean values, the ensemble of facies maps, generates a spread of the
facies proportions values quantified in standard deviation as, 0.11:0.11:0.11 for the un-
conditional generated GRF’s and conditioned to observations of the first two facies types
and respectively 0.08:0.11:0.11 for the GRF’s constrained to all observations. Also, the
extreme values for each facies proportions are 0.45:0.64:0.64 for the maximum values
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and respectively 0.09:0.06:0.08 for the minimum values. In this study we do not use the
facies proportions as measurements, even though we could have some prior knowledge
about these (together with an uncertainty bandwidth). The choice for the prior values of
truncation parameters is made, such that the spread of the facies proportions (calculated
from the ensemble) to contains the expected facies proportions given by the geologist.
This means that the choice of the prior values for the truncation parameters (and from
here for the truncation map) could be made in various ways, as long we have enough
variability in the initial ensemble which incorporates the prior knowledge.



Chapter 5

An adaptive plurigaussian
simulation (APS) model for
geological uncertainty
quantification using the EnKF

5.1 Introduction

For the implementation of any assisted history matching (AHM) model in the area of
reservoir engineering, one of the most important topics to address is the reservoir geol-
ogy. When referring to geological description we have in mind facies distribution, faults
position or top/base surfaces of the geological layers. Usually the initial knowledge
about the geology is very uncertain, which is very attractive for stochastic AHM mod-
els. In this study we are interested in the facies distribution and try to reduce its initial
uncertainty using additional information given by the production data when available.
In order to quantify the geological uncertainty, firstly, we have to define the geological
simulation model. Using this model, we generate possible facies realizations (distribu-
tions) on the reservoir domain. These facies instances must be consistent with the prior
knowledge about the reservoir geology (the number of the facies types, the possible tran-
sition between facies types, the direction of the facies, the geometry of the facies, etc.).
Secondly, for the estimation purposes and for uncertainty propagation and hence, quan-
tification, we use as history matching (HM) method the ensemble Kalman filter (EnKF).

This chapter is full reference of an article submitted to Computational Geosciences
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The EnKF is part of the large family of Monte Carlo techniques. The representation of
the uncertainty in the EnKF framework is carried out through an ensemble of possible
realizations. All the statistical measures (mean, covariances) that occur in the Kalman
filter are estimated from the ensemble. This ensemble of realizations is assumed to be
samples from the distribution of the true state. Thereby, the updated ensemble quantifies
the uncertainty of the reference parameters.
The geological simulation model used in this article is based on a plurigaussian simula-
tion technique. The plurigaussian truncation scheme consists of a generation of the fa-
cies distribution using a projection from the multi-dimensional (usually bi-dimensional)
space of Gaussian random fields (defined on the reservoir domain) to the discrete space
(the facies fields space) through a truncation map. The truncation map is defined in the
multi-dimensional space of the Gaussian random fields (GRF) and, is either user defined
based on prior knowledge (Liu and Oliver 2005) or is defined through an internal con-
struction of the model (Sebacher et al. 2013). The truncation plurigaussian simulation
(TPS) method is a natural generalization of the Gaussian truncation method where a sin-
gle Gaussian field was truncated using some thresholds defined on the real axis. The TPS
method was first introduced by Galli et al. (1994) and further developed by Le Loc’h
et al. (1994) and Le Loc’h and Galli (1997). In the paper of Le Loc’h et al. (1994),
two Gaussian random fields were truncated using a truncation map, defined on the bi-
dimensional real space, designed by intersection of some vertical and horizontal lines
which give a rectangular geometry for the map. Each zone delimited by the truncation
lines has assigned a facies type. Using different geostatistical properties of the Gaus-
sian fields, different instances of facies distributions were generated, corresponding to
different characteristics of the facies types. In the article of Le Loc’h and Galli (1997),
the authors investigate the relation between the variogram of the Gaussian fields and the
indicator variogram of the facies for the stationarity case, together with presenting the
conditional simulation technique for the non-stationary case. Important prior informa-
tion is related to the possible contacts among different facies types an issue characterized
by Xu et al. through a binary dynamic contact relation matrix in the context of pluri-
gaussian simulation model.
The coupling of the truncated plurigaussian simulation method with a HM method was
made first by Liu and Oliver (2005) when the facies boundaries were automatically ad-
justed when new measurements were available. The authors have used as HM algorithms
the EnKF (as non-gradient based method) and the randomized maximum likelihood (as
gradient based method) and they did a comparison between them; the conclusion was
that the EnKF gave better results. For the facies simulation model, the truncation map
used was built with three lines, whose intersections in the bi-dimensional real space gen-
erate seven regions, each having a facies type assigned. The measurements used in the
HM were the production data and the facies observations at the well locations. The same
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truncation map with EnKF as HM method was used by Agbalaka and Oliver(2008) in
a 3D synthetic model, with 3 facies types (each two could be in contact), and using in
addition, a distance-based localization scheme for the forecast covariance matrix. Be-
cause, after each production data assimilation, some of the facies fields generated with
TPS, are not fulfilling the correct facies observation, an extra iterative procedure is per-
formed to correct this misfit. For the facies observations operator a proxy function was
used, where the image is defined by two values (0 if the facies type is correct observed
and 1 if the facies type is not). Zhao et al. (2008) integrate the truncated plurigaussian
simulation model, introduced by Liu and Oliver, into an iterative EnKF process, assim-
ilating production data in addition to seismic data, for a 3D synthetic reservoir model
with three vertically uncorrelated layers. A bi-dimensional truncation scheme defined
by two ellipses was used for channels modeling in a plurigaussian context. Agbalaka
and Oliver (2009) applied EnKF to facies fields that exhibit non-stationarity in facies
proportions whilst simultaneously updating the petrophysical properties of the facies.
They truncated a single Gaussian field using two thresholds calculated with respect to
three predefined facies proportion maps, a model that generates facies fields where the
transition between the facies types is unidirectional (two facies types are not in con-
tact). A probabilistic operator for the facies observation has been used by Sebacher et
al (2013), where the geological simulation model was introduced in the TPS context
through the internal construction of the model. The authors defined a new object, named
"the probabilities fields", with which the binary fields of each facies type were estimated.
The probabilities fields were defined as projection of some Gaussian fields in [0,1] in-
terval with a projection function, the function which plays the role of the observation
operator of the facies occurrence. The truncation map that arises from the model is de-
fined by a maximization criterion applied to the probabilities fields. The parameters that
define the truncation map were introduced in the state vector and estimated. In addition,
the probability maps (for each facies type) calculated from the updated ensemble are
consistent with the mean of the probabilities fields.
This article starts from the assumption that the initial probability fields of each facies
type can be a priori designed by a group of experts in the early phase of the reservoir
exploration, using various data, such as core information, seismic data, well logs data,
outcrops information, etc. Supplementary with the probability fields, we require extra
information, e.g. the possible contact among the facies type, the expected facies propor-
tions (global), the geometry of the facies, the relative position among the facies type. All
this information is part of the expert knowledge of the reservoir and is used to construct
a geological simulation model which is coupled with the EnKF, obtaining sequentially,
updates for the probability fields. The AHM model offers an update of the probability
maps (provided by an initial complex study of the reservoir) for the facies types every
time when new information becomes available.
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The main idea of our approach is to generate an ensemble of facies fields, geologically
plausible, where the probability maps of the facies types are consistent with the prob-
ability maps offered by the experts. The generation of the initial ensemble is realized
through a geological simulation model defined in the plurigaussian context, but not us-
ing of a truncation map in the multi-Gaussian space. Here we define adaptive simulation
maps in a domains of measure 1 situated in multi-dimensional real spaces ([0,1] interval
for one dimensional real space, [0, 1]2 for bi-dimensional real space, etc.). The simula-
tion in this domain is carried out using objects defined by the projection of the Gaussian
fields with the normal cumulative distribution function. The cumulative distribution
function (cdf ) links the Gaussian variables to the uniform variables (the probability in-
tegral transform Casella and Berger (2002)). The maps are adaptive in the sense that
they are built in correlation with the probability maps provided by the experts using a
layout that yields continuous modifications for neighbor grids. Because the initial prob-
ability maps incorporate the facies observations at the well locations (in probabilistic
terms) the simulations always provide the correct facies types at the observation points.
Therefore, throughout the assimilation period, the facies observations are kept for all en-
semble members, without an extra procedure for repositioning (as in the previous stud-
ies, Liu and Oliver 2005, Agbalaka and Oliver 2008, Sebacher et al. 2013). When the
data assimilation process starts, the initial ensemble contains facies distributions, with a
large bandwidth for facies proportions. To ensure that the EnKF update will drive the
ensemble towards a correct path, we introduce facies proportions as measurements, at
each assimilation time step. The Gaussian fields are initially generated without any con-
straints (like in other plurigaussian approaches where the Gaussian fields were generated
constrained to facies observations), being completely unconstrained and independents.
The novelty consists on in how the expert knowledge is directly used as valuable prior
information and is kept throughout assimilation period, using a simulation model that is
able to create a link between the mathematical theory and real world.
The model is tested using a 2-D synthetic reservoir case. In the next sections we present
the description of the geological simulation model, the EnKF implementation for the
facies update and two examples where we test the model. The first example contains the
case of reservoirs with three facies types each two could be in contact and the second ex-
ample is for the case where four facies types generate a more complex geology because
two of them are not in contact.
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5.2 The geological simulation model.

5.2.1 The Motivation

Let us assume that we have a prior description of the subsurface geology in a certain
reservoir, from different sources (seismic surveillance, core interpretations, outcrops,
etc.). This prior knowledge includes for example, the number of the facies types that
occurs and the possible contact (transition) between the facies types. This prior infor-
mation is the result of reservoir exploration and is gathered by the experts (geologists,
geophysicists, etc.) at the initial stage of deposit geology description. Several methods
have been proposed to estimate probability maps for the facies occurrence by combin-
ing seismic data, well logs facies analysis, statistical rock physics (Avseth et. al 2001,
Massonnat 1999, Sebastian Ng et. al 2008). However, these probability maps are not
conditioned to the reservoir production outcome. Once the reservoir starts to produce
and new information becomes available, an update of the probability maps is needed. To
obtain an update of the probability maps, a solution is to couple a geological simulation
model with an ensemble based AHM method. The geological simulation model should
be able to generate an ensemble of facies maps conditioned to all prior information pro-
vided. In our case, the prior information refers to the prior probability maps, the possible
contacts among facies types, the geometrical and the topological properties of the facies
(the relative position among facies). In other words, we need to generate an ensemble of
facies distribution, geologically plausible, of which probability maps are consistent with
the probability maps provided by the experts. The challenge is to define the geological
simulation model in a plurigaussian simulation context, that can conditions the topolog-
ical prior knowledge to facies probability maps derived from expert knowledge. The
benefit of the plurigaussian simulation model is the parameterization of the facies maps
that is straightforward with the Gaussian fields. In addition, the geological acceptability
is easily preserved in updates when proper AHM methods are used.

5.2.2 The adaptive plurigaussian simulation model (APS)

To be able to give a clear and precise description of the method, we present a case where
three facies types occur in a reservoir domain. The approach will be applied in Section
5.4.2 for cases with three and four facies types.

The facies simulation map

In Figure 5.1, an example is shown with three possible probability maps, provided by
the experts. In each map, we have value 1 at the well locations where the associated
facies type occurs and value 0 at the well locations where the associated facies type



70 CHAPTER 5. THE ADAPTIVE PLURIGAUSSIAN SIMULATION

does not occurs (the facies observations at the wells location are incorporated in the
maps). Another important piece of information is related with the transition (contact)
between any two facies type (if there is contact or not). Suppose that any two facies
types might intersect each other, in the domain. We denote by pi the probability field

Figure 5.1: The probability map of each facies type provided by the experts

associated to facies type i (where i = 1, 2, 3), of which mapping is presented in Figure
5.1. For each grid cell j, we consider the discrete random variable, denoted "facies type"
that express the distribution of the facies types at that location. The distribution of the
random variable can be described with the equation

facies typej ∼ pj1 · δ(facies type1) + pj2 · δ(facies type2) + pj3 · δ(facies type3) (5.1)

where δ is the Dirac function and pj1, pj2, pj3 are the probabilities collected at the grid
cell j from the probability maps provided by the experts. To sample from this discrete
distribution we have to take a few steps:

1. Consider a domain A of measure 1, in a multidimensional real space X.

2. Split the domain in n subdomains of which measures are given by the probabilities,
assigning a facies type to each subdomain.

3. Generate an element from a uniform distribution with support on A.

4. Assign the object depending on the subdivision of A where the generated element
belongs to.

For instance, we can consider the domain A as [0, 1] interval in the uni-dimensional real
metric space or the [0, 1]2 square in the real bi-dimensional metric space and, so on. The
choice of the multidimensional real space should be done considering the topological
properties of the facies types (the contact among facies type). In our particular case,
knowing that each facies type can intersects any other facies type in the field we decide
to work in the bi-dimensional real space, choosing the square [0, 1]2 as the domain of
measure (area) 1. Then, for each grid cell of the domain, we create a decomposition
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of the square [0, 1]2 such that each subdomain is in contact with all other subdomains
(Figure 5.2). In this quadratic domain, the total area is 1 and the area of each subdomain
is equal to the associated probability found in the maps provided by the experts. We
call this decomposition the facies simulation map. Consequently, each grid cell has his
own simulation map because its form depends on the facies types probabilities (eq. 5.1).
However, we need to design a parameterization of the simulation map layout, in order to
obtain continuous modifications when simulate facies types for neighboring grids. The

Figure 5.2: The facies simulation map layout

parameterization of the simulation map refers to the parameterization of the curves that
delimitate the subdomains. In our specific case these are the parameters of the vertical
and horizontal lines that separate the subdomains (Figure 5.2). As consequence of the
parameterization, at the well locations, the map consists of a single square of surface 1,
occupied by the facies type observed there. In addition, there might be some regions
of the reservoir domain where only two facies types occur (in terms of probabilities,
only two probabilities are greater than zero). In this case, the map contains only two
rectangular regions, each with an area equal to the associated probability of the facies
type that occupies that region.

The spatial correlated fields from [0,1] interval (the uniform random fields)

In each grid cell j, we need to simulate a facies type, conditioned to the probabilities
given by the experts. Hence, we need to simulate from the distribution defined by eq.5.1.
For that, having designed a simulation map, we generate two independent random num-
bers αj1, αj2 from [0,1] interval; we represent the point (αj1, α

j
2) in the simulation map

and, depending on which subdomain the point belongs to, we assign in the grid cell the
corresponding facies type. To extend this approach to the reservoir domain and keep a
well/realistic defined shape zones the fields α1, α2 must have spatial correlation. Con-
sequently, we need to define spatial correlated fields, defined on the reservoir domain,
with values in [0, 1] interval. These spatially correlated fields can be modeled by piece-
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wise projection into [0,1] of any continuous distributed, spatial correlated random fields
defined on the reservoir domain. The condition to be satisfied is that in each grid cell, at
the initial ensemble simulation, the distribution of the variable "facies type" calculated
from the ensemble, has to be consistent with the given distribution (eq.5.1). This con-
dition is fulfilled if each component of the spatial correlated field (from [0,1] interval)
is drawn from an uniform distribution with support on [0,1] interval. Consequently, we
call these spatial correlated fields uniform random fields. In order to define these spatial
correlated fields we use the probability integral transform (Casella and Berger (2002)
[5]). The probability integral transform states that if X is a continuous random variable
with the cumulative distribution function FX , then the random variable FX(X) has an
uniform distribution on [0, 1]. The cumulative distribution function links any continuous
random variable with the uniformly distributed random variable on [0, 1]. Therefore, we
can define the spatial correlated fields (having values in [0, 1]) as piece-wise projection
of any spatial correlated fields (defined on the reservoir domain), of which distribution
is continuous, through their cumulative distribution function. We choose to model these
fields as piece-wise Gaussian fields projection because of two important reasons:

1. The generation of the Gaussian random fields can be done easily using any geo-
statistical tool.

2. The HM method used in this study (the EnKF) works well under the Gaussian
assumption of the model parameters.

In this study we use two properties of the cumulative distribution function (cdf ). The first
property is to transfer the geostatistical properties of the Gaussian fields to the spatial
correlated fields from the [0, 1] interval; the second property is the consequence the
probability integral transform. The projection with cdf ensures that, at the initial step
of facies fields generation the probability map of each facies type is consistent with the
originals.

The geological simulation model (the APS)

The geological simulation model defined in the plurigaussian context that samples from
prior facies probability maps can be summarise as follows:

1. Design the layout and the parameterization of the facies simulation map.

2. Generate samples of two independent and unconditioned Gaussian random fields
defined on the reservoir domain, denoted y1 and y2.

3. Calculate the spatial correlated fields (uniform random fields) α1 = cdf(y1) and
α2 = cdf(y2) projecting component-wise the Gaussian fields in [0, 1] using the
cdf of the normal distribution used for the Gaussian fields generation.
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4. Define a facies type in each grid cell j of the reservoir domain.

• Design the facies simulation map associated to grid cell j using the parametriza-
tion of the simulation map.

• Assign the facies type associated to the subdomain, in which the realization
(αj1, α

j
2) falls in the simulation map.

We call this geological simulation model the adaptive plurigaussian simulation model
(APS). The simulation scheme is adaptive in the sense that each grid cell has his own
simulation map, depending on the pair of probabilities. At the well locations the sim-
ulation will provide each time the same facies type observed there, because the [0, 1]2

square is completely occupied by a single facies type. However, the main result of the
simulation model is that, if we generate an ensemble of unconditioned and independent
pairs of Gaussian fields, the facies probability maps calculated from the ensemble are
consistent with the maps provided by the experts. This can be observed with a visual
inspection of the Figure 5.3. At the top of this figure are presented the prior probability
maps of the facies occurrence that comes from expert knowledge (the same maps with
the ones presented in Figure 5.1) and at the bottom of the figure the probability maps
calculated from an ensemble of 120 facies fields realizations generated with the APS
model. This result is the consequence of the lemma presented in the Appendix of the

Figure 5.3: The probability map of each facies type provided by the experts (top) and
the probability maps calculated from an ensemble of realizations (bottom)

paper coupled with the Monte Carlo approach of sampling from Gaussian distributions.
The APS model can be generalized to as many facies type we want, to any types of
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contact between facies types. For that, all we have to do is to define a reliable decom-
position (parameterization) of the [0, 1]2 square. If the connectivity is very complex we
may carry out the decomposition to higher dimension, using the domain [0, 1]3 and three
Gaussian fields for facies maps simulation.

5.2.3 The impact of the facies simulation map

The geological acceptability of the simulated facies distributions is achieved by a reli-
able choice of the geostatistical properties of the Gaussian fields and of the simulation
map layout. Usually, in the plurigaussian simulation model, the geostatistical properties
of the Gaussian fields used for facies simulation are set based on the prior topological
characteristics available for the facies types. We refer here at the geometry of the facies
type, the number of the facies (rock bodies) that occurs in domain and the orientation of
the facies.
In the following, we present an example where, small changes of the simulation map
layout, yield different topological characteristics for the simulated facies maps, when
preserved the geostatistical properties of the Gaussian fields unchanged. The contact
among facies types can be handled by a reliable definition of the decomposition of the
unitary domain. However, the relative position among facies types cannot be handled
with any decomposition. Figure 5.4 shows four possible realizations of the facies distri-
butions for reservoirs characterized by the existence of three different rock types, where
any two could be in contact with each other. The green facies type is characterized by
long anisotropy of which angle with the horizontal direction is obtuse. In contrast, the
red facies type is characterized by a large amount of small bodies within the reservoir
domain. The blue facies type is the geological environment in which the other two fa-
cies types are propagated. These geological realizations were generated using the same
values of two Gaussian random fields, the first is anisotropic with long range correlation
of 50 grid cells, short range correlation of 5 grid cells and with the principal direction
of 120◦ with the horizontal. The second Gaussian random field was generated isotropic
with a small range correlation of 5 grid cells. The parameterization and the layout of the
facies simulation maps are presented at the bottom part of Figure 5.4. We have applied
the adaptive plurigaussian simulation model, using uniform probability maps of 0.4 for
the facies type 1 (blue) and type 2 (green) and respectively 0.2 for the facies type 3 (red).
Even though there are small differences among the simulation map layouts, the facies re-
alizations provided exhibit different topological properties. We refer here at the relative
position of the red facies type with respect to the all facies types. In the first simulation,
bodies of the red facies type can be inside both the green and blue facies types. In the
second example, we may find bodies of the red facies type within the blue facies type,
whereas the green facies type intersects the red facies type only on its border. In the third
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Figure 5.4: Example of four different simulation maps and theirs respective simulations

simulation, the deposits of red facies type are encountered mainly between the borders of
the other two facies types, eroding the blue facies type. In the fourth simulation, the rel-
ative position of the red facies type with respect to the other facies types exhibits similar
characteristics, remaining mainly on the edges of the borders. In this formation, the red
facies type has eroded both other facies types. Responsible for these simulations is the
layout of the simulation map, the way in which the subdomain assigned to the red facies
type has been defined in the [0, 1] square. Consequently, the design of the facies sim-
ulation map and the choice of the geostatistical properties of the Gaussian fields must
be carried out by a group of experts, involving multidisciplinary disciplines (geology,
mathematics, reservoir engineering, etc.) in such way that the simulation results reflects
as close as possible reality.

5.3 Ensemble Kalman Filter (EnKF) implementation

Concerning the EnKF implementation, we define the state vector as:

x =
[
y>1 y>2 d>sim

]>
j
, (5.2)

where y1 and y2 are the Gaussian random fields used for the facies distribution simula-
tion; dsim are the simulated observations represented by the simulated production data
e.g. the oil production rates (OR), the water production rates (WR) and the bottom hole
pressures (BHP) together with the facies proportions (for some experiments). Conse-
quently, the state vector for the ensemble member j at the kth assimilation step can be
defined as:

xkj =
[
y>1 y>2 BHP> WR> OR> facies_prop>

]k,>
j

(5.3)

We define the statistical measure facies_prop for the ensemble member j, augmenting
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the facies proportions calculated for each facies type i according to

facies_propi
j =

1

ng

ng∑
k=1

Indi(k) (5.4)

the summation being performed for all grid cells (ng grid cells), where the indicator
function that express the belonging of the grid cell k to the facies type i is calculated as

Indi(k) =

{
1 if k ∈ facies type i

0 if k /∈ facies type i
(5.5)

The state vector does not contain the petrophysical properties (permeability, porosity) of
the facies type because we keep these values constant throughout assimilation period.
We assume that the uncertainty in the system is due the poorly knowledge of the facies
distribution in the field. The dynamical variables (the pressure and the saturation) are
not updated together with the parameters because after each assimilation time we have
chosen to rerun the simulator from time zero, even though this technique will increase
the computational cost. This avoids the unphysical values of the dynamical parameters
(e.g. negative pressures and saturations or saturations greater than 1) in the EnKF update
and the inconsistency between the dynamical variables and the statical variables e.g.
the permeability, porosity (the updated dynamical variables could not by an acceptable
numerical solution of the partial differential equations describing the multi-phase flow,
given the statical parameters). For small models used in our study this procedure is
not very time consuming, but for large-scale models, the computational cost should be
considered.

5.3.1 The Work Flow

• Initialization
The uncertainty of the initial ensemble is given by the choice of the model pa-
rameters, which in our case are the Gaussian fields y1 and y2. Initially, we gener-
ate an ensemble of independent and unconditioned (stationary) pairs of Gaussian
fields y1 and y2 (we have used the sequential Gaussian simulation technique im-
plemented in S-GeMS [17]). In this study, the stationary Gaussian fields were
generated with zero mean function, Gaussian covariance type and with each com-
ponent having standard normal distribution. Then, using the adaptive plurigaus-
sian simulation (APS) model, we generate the initial ensemble of facies maps. In
this study, we have used 120 ensemble members in all the examples presented.
The independence and the unconstraint properties of the Gaussian fields ensures
generation of an ensemble of facies maps that represent accurately the prior un-
certainty in the facies distribution (Figure 5.3).
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• Forecast step/Model update
We populate each facies map with proper petrophysical properties (permeability,
porosity, etc.). In this study we have chosen to keep constant these values within
each facies not taking into account the heterogeneity within each facies. For each
ensemble member we apply the forward model from time zero until the next as-
similation time. The forecasted state vector at time k + 1 can be written as:

xk+1,f
j =

[
yf,>1 yf,>2 BHPf,>WRf,> ORf,> facies_propf,>

]k+1,>

j
,

where

[
y1
y2

]k+1,f

j

=

[
y1
y2

]k,a
j

(5.6)

[
p

s

]k+1,f

j

= M

[ p

s

]k
0

,

[
y1
y2

]k,a
j

 (5.7)

 BHP
WR
OR


k+1,f

j

= gpred

[ p

s

]k+1,f

j

,

[
y1
y2

]k+1,f

j

 (5.8)

[
facies_prop

]k+1,f

j
=

[
facies_prop

]k,a
j

(5.9)

where gpred is the prediction operator for the production data. Hence, there are
no changes from time k to k + 1 for the values of the Gaussian random fields
(eq. 5.6), because the forward model equations does not influence the Gaussian
fields values. However, their values have an impact in the changes of the pres-
sures and saturations at time k + 1 based on the model (eq. 5.7) which generates
changes in the forecast of the production data (eq. 5.8). This happens because the
Gaussian fields values influence the spatial distribution of the permeability and
porosity that generates modification of the dynamical variables (eq. 5.7) and of
the production data (oil and water rates and pressures at the bottom of wells, eq.
5.8). The Gaussian fields values are adapted in the update step of the EnKF when
the measurements are assimilated. The predicted values for the facies proportions
will not changed, because the facies maps are not adapted during the forecast step
(eq. 5.9).

• Update step/Measurement update
At each assimilation time k+1, k ∈ {0, . . . , ni−1} (ni is the number of the assim-
ilation time steps) we assimilate the data (production data and facies proportions)
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using the Kalman filter equations. Each ensemble member is modified according
to:

xk+1,a
j = xk+1,f

j + Cfxk+1H>k+1

(
Hk+1C

f

xk+1H>k+1 + Cobs,k+1

)−1

[
dobsj ,k+1

−Hk+1xk+1,f
j

]
, (5.10)

where H represents observation operator for the observed data, Cobs represents
the error covariance matrix for the observed data, Cxf represents the forecasted er-
ror covariance of the ensemble, and dobsj are the observed data (production data
and facies proportions) of the ensemble member j

• The updated facies maps
The update of the state vector using the measurements, implies modification of
the Gaussian fields values (according to eq. 5.10). This update of the Gaussian
fields values will change the facies maps. The updated facies maps are obtained by
simulation from the probability maps given by the experts, but using the updated
values of the Gaussian fields (conditioned to measurements). This means that we
preserve the simulation maps designed at the beginning throughout assimilation
process.
Consequently, at this step, for each ensemble member i, at each grid cell j we
assign the facies type depending on where the updated realization
(cdf((ya1)ji , cdf((ya2)ji ) belongs in the simulation map designed for the grid cell
j (cdf is the cumulative distribution function of the normal distribution used for
generation of the Gaussian fields before any data assimilation is performed i.e. the
cdf of the standard normal variables).

At the end of the assimilation period, we have obtained an ensemble of facies maps
from which we calculate the updated probability map for each facies type. In addition,
we have the uncertainty quantification for the geology description provided by the up-
dated ensemble of the facies maps. The initial ensemble of the Gaussian fields pairs
has initially a high variability (the Gaussian fields are generated unconditioned and in-
dependent) which decrease with the assimilation of the production data and facies data
(in this case the facies proportions). The variability of the Gaussian field ensemble can
be quantified using an indicator that measures its mean variance:

σ2
Y =

1

ng (ne − 1)

ne∑
j=1

ng∑
i=1

(
Y ji − Yi

)2
(5.11)
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where, ng is the number of the grids, ne is the number of the ensemble members and Yi
is the mean value of the random field Y in the grid i

Yi =
1

ne

ne∑
j=1

Y ji (5.12)

We calculate the mean variance, independently for both Gaussian fields y1 and y2, plot-
ting theirs evolution during the assimilation period. The evolution of this indicator pro-
vides information about the convergence or collapse of the ensemble (Agbalaka and
Oliver 2008, Sebacher et al 2013).

5.4 Case studies

In this section, we present two applications of the adaptive plurigaussian simulation
method. In the first example we consider a reservoir where three facies types occur, any
two of them could be in contact with the others. Schematically, we may represent these
characteristics as F1 ⇔ F2, F2 ⇔ F3 and F3 ⇔ F1. In the second example, we present
a case where in the reservoir four facies types occur, while two of the facies types do not
have contact. For both cases presented, we consider the geostatistical properties of the
Gaussian fields and the layout of the facies simulation map known. The reference fields
and the prior probability maps of the facies occurrence are generated with the geological
simulation model presented in Sebacher et al. 2013 .

5.4.1 The model with three facies types

We consider a model with three facies types with the distribution presented in the pre-
vious sections. We perform two experiments. In first experiment, we consider as mea-
surements only the pressure at the injector and the oil and water rates at the producers.
In the second experiment, we introduce as measurement the facies proportions. The ex-
perts have knowledge about these values, together with a uncertainty bandwidth which
are translated into stochastic elements as measurement errors for facies proportions.
The simulation model is a 5-spot water flooding 2D-reservoir, black oil model with
50× 50× 1 active grid cells. The dimension of each grid cell was set at 30× 30× 20 ft
and there is one injector situated at the center of the reservoir domain and there are four
producers situated at the corners. The coordinates of the wells positions are presented
in Table 5.1 and the facies observations are presented in Table 5.1. The values of the
permeability and porosity corresponding to each facies type are shown in Table 5.2.

Water injection starts from the first day and continue thereafter a period of 201 days
of production. We assimilate data starting from first day until day 201, with 10-day in-
terval, having 21 assimilation steps. All the producers work under constant BHP value
of 1500 pound per square inch (psi), the injector operates at 4500 stock tank barrels per
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Table 5.1: The position of the wells in the reservoir domain and the facies observations

Injector Producer 1 Producer 2 Producer 3 Producer 4
x coordinate 25 5 5 45 45
y coordinate 25 5 45 5 45

Facies observation Type 2 Type 1 Type 3 Type 1 Type 2

Figure 5.5: The reference field

Table 5.2: The petrophysical properties of each facies type

Facies type Permeability Porosity
Type 1 174 md 0.18
Type 2 372 md 0.25
Type 3 80 md 0.14

day (STB/D) and constrained by a maximum 5000 psi for BHP. The measurement error
for the production data is considered Gaussian with 0 mean and standard deviations re-
spectively 10 STB/D for WR and OR at the producers and 30 psi for BHP at the injector.
These values will be used for the generation of the noise, which is added to the observa-
tions of the production data in the analyzed step of the EnKF process. The observations
of the production data are obtained through forward integration of one model defined as
reference field (or "truth field"). The reference field is presented in Figure 5.5, where,
the blue colour is associated with facies type 1, the green colour is associated with fa-
cies type 2 and the red with the facies type 3. The probability maps provided by the
experts are presented in the top of Figure 5.3 and the probability maps calculated from
the ensemble in the bottom of Figure 5.3. For the facies maps simulation, we have used
isotropic Gaussian fields with Gaussian variogram type with the correlation range of 17
grid cells (one third of domain length). The layout of the facies simulation map used is
the one presented in Figure 5.2. When EnKF is applied, we expect that the reduction of
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Figure 5.6: The probability maps for the case without facies proportions as measure-
ments (bottom) and with facies proportions as measurements (top)

the variability due to the data assimilations results in an updated ensemble which spread
to contains the "truth". In case of the facies distribution estimation two things are needed
in the updated ensemble. One is that the updated fields reproduce the major features of
the truth and the other is related to an improved predictability of the models. If the lat-
ter is easily fulfilled, the more difficult part is the reproduction of the facies geometry.
Here an important role is played by the facies proportions specially when, the experts,
based on preliminary studies, have some knowledge. Therefore, we perform an experi-
ment where the facies proportions are used as measurement at each assimilation point,
with an associated error, also given by the experts. In this study the facies proportions
used as observations are set up as 0.25:0.30:0.45 with a measurement error following a
normal distribution with mean 0 and 0.05 standard deviation. Although, we have used
this information as measurement, we do not have observed a severe reduction in uncer-
tainty comparing with the other case. This means that, this observation has the role of
guiding the ensemble to some predefined values (of which the experts have knowledge).
In Figure 5.7 is shown the evolution of the mean variance of the Gaussian fields in the
assimilation period for both experiments (at the right side, for the experiment where fa-
cies proportions are not introduced in state vector as measurements). We observe that,
the impact of facies proportions is not severe, the influence is more significant for the
first Gaussian field, but the final values are comparable. The updated facies probability
maps for the case where the facies proportions are not included as measurements are
in Figure 5.6 (top line) and the updated facies probability maps with facies proportions
used as measurements at the bottom line of the same figure. In this example, one may
observe that, the averages fields capture the main features of the reference field the only
difference consists on the facies proportions existing in the updated ensembles.
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Figure 5.7: The evolution of mean variance of Gaussian felds in both experiments

Table 5.3: Facies proportions in the ensembles

No proportions in state Proportions in state

Reference field 0.26:0.30:0.44 0.26:0.30:0.44
Facies proportions initial state 0.365:0.344:0.291 0.365:0.344:0.291
Standard deviation initial state 0.17:0.16:0.18 0.17:0.16:0.16
Max proportions initial state 0.81:0.82:0.78 0.81:0.82:0.78
Min proportions initial state 0.02:0.03:0.02 0.02:0.03:0.02

Facies proportions updated state 0.195:0.34:0.465 0.246:0.306:0.447
Standard deviation updated state 0.08:0.04:0.06 0.022:0.024:0.02
Max proportions updated state 0.52:0.42:0.55 0.31:0.35:0.52
Min proportions updated state 0.08:0.22:0.22 0.18:0.26:0.38

Knowing that the true facies proportions are 0.254:0.30:0.446, in the Table 5.3 the
expected facies proportions calculated from the ensemble together with theirs standard
deviations, minimum values and maximum values are shown. We observe from this
table, that the spread of the initial ensemble is high enough to contain the facies propor-
tions values of the "truth" field. As expected, when EnKF is applied without facies pro-
portions as measurement, the spread of the updated ensemble is higher than the spread
of the other experiment. It can be seen from Table 5.3, that the spread contains the fa-
cies proportions of the "truth", but the expected facies proportions calculated from the
updated ensemble is not that close to the truth. In the other experiment, where facies
proportions are used as measurements, the expected facies proportions are much closer
to the truth and the spread around the mean is within the bounds that the experts pro-
vide us. For the experiment with facies proportions used as measurements, the updated
production rates are presented in Figure 5.8). From this figure it can be seen a good
data match for both oil and water rates in all wells. At the top of Figure 5.9 we present
the first four members of the facies maps in the initial ensemble and, at the bottom part,
the same members in the updated ensemble (for the experiment with facies proportions
used as observations). It can be seen by a visual comparison with the truth (Figure 5.5)
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Figure 5.8: The updated rates at the producers (the case with facies proportions used as
observations)

that the updated ensemble members capture its major features, preserving the topology.
Even though we have used 21 assimilation time steps where, besides the production data
the facies data have been assimilated, the ensemble does not collapsed. This can be seen
by examining the evolution of the mean variance in the assimilation period where, is
observed an asymptotic behavior to a value close to 0.5 (Figure 5.7).

Figure 5.9: First four ensemble members in initial and updated ensemble (the case with
facies proportions used as observations)
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5.4.2 The model with four facies types

In this example, we consider a reservoir where four facies types occur, but of which
two are not in direct contact with each other. This means that between them always is
interposed another facies type. We denote the facies type F1, F2, F3 and F4 and the
possible contacts are F1 ⇔ F2, F2 ⇔ F3, F1 ⇔ F4, F2 ⇔ F4, F3 ⇔ F4 (F1 and
F3 are not in contact). The petrophysical properties of each facies type are presented
in Table 5.4. The simulation model is an 8-spot water flooding 2D-reservoir, black oil

Table 5.4: The petrophysical properties of each facies type

Facies type Permeability Porosity
Type 1 2 md 0.1
Type 2 10 md 0.2
Type 3 50 md 0.2
Type 4 250 md 0.3

model with 100 × 50 × 1 active grid cells. The dimension of each grid cell was set at
30× 30× 20 ft. and there are two injectors situated at the center of the reservoir domain
and there are six producers, four situated at the corners and two situated between the
other four. The reference field used in this experiment is presented in Figure 5.10, where
blue shade represents facies type 1, light blue shade represents facies type 2, yellow
shade represents facies type 3 and red shade represents facies type 4. The light blue dots
represent the positions of the producers and the light red dots represent the positions
of the injectors. The coordinates of the wells positions and the facies observations are
presented in Table 5.5.

Figure 5.10: The reference field

Water injection starts from the first day and continues throughout 231 days of pro-
duction. We assimilate data starting from first the day until day 231, with a 20-day inter-
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Table 5.5: The position of the wells in the reservoir domain and the facies observations

Inj 1 Inj 2 Prod 1 Prod 2 Prod 3 Prod 4 Prod 5 Prod 6

x coordinate 25 75 5 50 95 5 50 95
y coordinate 25 25 5 5 5 45 45 45

Facies observation Type 2 Type 4 Type 1 Type 2 Type 3 Type 1 Type 4 Type 3

val and with 12 assimilation steps. All the producers work under constant BHP value of
2500 pound per square inch (psi), the injector operates at 4500 stock tank barrels per day
(STB/D) and constrained by a maximum 100000 psi for BHP. The measurement error
for the production data is considered Gaussian with 0 mean and standard deviations re-
spectively 10 STB/D for WR and OR at the producers and 70 psi for BHP at the injector.
From the exploration process the experts provide us four probability maps, associated
with each facies type, maps that show the possible position of each facies type in the
field (top of Figure 5.11). The expected facies proportions used as measurements were
set at 0.35:0.25:0.25:0.25 whilst, the true facies proportions are 0.34:0.24:0.22:0.20.

Figure 5.11: The probability maps provided by the experts (top) and The probability
maps in initial ensemble (bottom)

In order to apply the adaptive simulation model, for each grid cell, we construct a de-
composition of the [0, 1]2 square, like in Figure 5.12, where the area of each zone will
is equals with the probability found in the maps provided by the experts. The Figure
5.12 shows also the parametrization of the simulation map, e.g. the parameters of the
vertical and horizontal lines (two on 0α1 axis and one onOα2 axis). This decomposition
of the [0, 1]2 square ensures that the sub-domains associated to facies type 1 and facies
type 3 are not in contact. We simulate the initial ensemble of facies fields (conditioned
to the probability maps) generating an ensemble of 120 unconditioned and independent
pairs of Gaussian fields. For this example we have used anisotropic Gaussian fields with
Gaussian variogram type, having a long range correlation of 35 grid cells, a short range
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Figure 5.12: The layout and the parametrization of the simulation map for the case with
four facies types

correlation of 17 grid cells and with the principal direction of 0◦. The probability maps
of each facies type calculated from the initial ensemble are shown in the bottom part of
Figure 5.11 and it can be seen that this is a good reproduction of the maps provided by
the experts (the top part of Figure 5.11). After 12 assimilation time steps, the probability
maps of each facies type calculated from updated ensemble (Figure 5.13, middle part),
emphasize much better the real position of the facies types in reservoir domain (Figure
5.13, top part). The mean of the facies proportions calculated from the updated ensemble
is 0.33:0.23:0.21:0.23, close to the real facies proportions 0.34:0.24:0.22:0.22. We have
performed the experiment without assimilating the facies proportion as measurements
and the results look worse. In the bottom part of Figure 5.13 the updated probability
maps of the facies types in this experiment are shown. As we can see the facies types 2,
3, and 4 are not correctly estimated having the facies proportions mean in the updated
ensemble of 0.41:0.17:0.11:0.31 far away from the true facies proportions.

In Figure 5.14 are presented the water rates forecast for 360 days in the initial ensem-
ble (top) and in the updated ensemble for both experiments performed e.g. with facies
proportions used as measurements (middle part) and without (bottom). The blue verti-
cal line is the threshold that delimitates the assimilation period to the prediction period
of 120 days. It can be seen the reduction in variability together with the improvement
in prediction for all producers for both experiments. If we consider only the reduction
in variability coupled with the production data match and prediction we cannot rank
the quality among the experiments. Without conditioning to facies proportions, we ob-
tain very good forecast with topologically plausible facies maps realizations but without
realistic realizations regarding the statistical measure. If we look at the results of the
experiment where the ensemble was conditioned to facies proportions we have obtained
good data match, good predictions, plausible topologically realizations (Figure 5.15) of
which facies maps are in concordance with the prior knowledge about the global facies
proportions. Therefore, conditioning the ensemble to this statistical measure guides the
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Figure 5.13: The real position of the facies types in field (top), the probability maps
in updated ensemble with facies proportions used as measurements (middle) and the
probability maps in updated ensemble without facies proportions used as measurements
(bottom)

ensemble towards a correct path, providing in the same time good predictions and data
match.
Regarding the Gaussian fields spread we can observe the same asymptotic behavior for
the mean variance of the Gaussian fields as in the first case presented. In addition, the
final variability of the Gaussian fields is comparable in both experiments performed (Fig-
ure 5.16), the ensemble collapse being avoided.

In the Figure 5.15, we show four members of the initial ensemble (top) and in the up-
dated ensemble (bottom; the experiment with facies proportions used as measurements).
As expected, comparing with a visual inspection this figure with the reference field (Fig-
ure 5.10), the important patterns of the reference field can be visualized in all updated
members. In addition, the topological request (the lack of contact among yellow facies
type and the dark blue facies type) is fulfilled in the updates.
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Figure 5.14: The Water rates forecast in initial ensemble (top), in updated ensemble
conditioned to facies proportions (middle) and in updated ensemble unconditioned to
facies proportions (bottom), for 360 days

Figure 5.15: Four ensemble members in initial and updated ensemble
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Figure 5.16: The evolution of mean variance of Gaussian fields in both experiments

5.5 Appendix: The probability integral transform

The probability integral transformation links any continuous distribution with the uni-
form distribution with support on [0, 1] interval. The result of this transformation is given
by the following theorem.
Theorem (Probability integral transform)
Let X be a random variable with continuous distribution of which cumulative distri-
bution function is FX(X) and define the random variable Y , Y = FX(X). Then the
random variable Y is uniformly distributed on [0, 1].
The proof of this theorem can be found in Casella and Berger (2002). An application of
this theorem is the following Lemma which helps in the implementation of the model
presented before.
Lemma: Let D a sub-domain of the square [0, 1]2, and two independent random vari-
ables z1 ∼ N(0; 1), z2 ∼ N(0; 1). Then P ((cdf(z1), cdf(z2)) ∈ D) = area(D).
Proof: Let’s consider an arbitrary sub-domain, denoted D, of the unitary square (Figure
5.17) and the function ϕ : R2 → (0, 1)2, ϕ(z1, z2) = (cdf(z1), cdf(z2)). This function
is bijective, differentiable with partial derivatives continuous and with his inverse having
the same properties (a C1 difeo-morphism). We denote D

′
= ϕ−1(D) and we might

write that (α1, α2) ∈ D ⇔ ϕ−1(α1, α2) = (cdf−1(α1), cdf−1(α2) ∈ D′).
Then,

area(D) =

∫∫
D

dα1dα2 (5.13)

In this double integral we perform a change of variables according to α1 = cdf(z1) and
α2 = cdf(z2). We get

∫∫
D

dα1dα2 =

∫∫
D
′
|Det(J(z1,z2)(α1, α2))|dz1dz2 (5.14)
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Figure 5.17: The relation between the domain in the unitary square and the domain from
bi-dimensional real space

, where, J is the Jacobian for ϕ, the function of the variables change. On the other hand,

J(z1,z2)(α1, α2) =

(
∂cdf(α1)
∂z1

∂cdf(α1)
∂z2

∂cdf(α2)
∂z1

∂cdf(α2)
∂z2

)
=

 1√
2π
e−

z21
2 0
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2π
e−

z22
2

 (5.15)

Therefore, ∫∫
D

dα1dα2 =
1

2π

∫∫
D
′
e−

z21
2
−
z22
2 dz1dz2 = P ((z1, z2) ∈ D

′
) (5.16)

The last equality stands because of the independence of the Gaussian variables z1 and
z2. Thanks to the bijection of the function ϕ we have

P ((z1, z2) ∈ D
′
) = P ((cdf(z1), cdf(z2)) ∈ D) (5.17)

and consequently,

P ((cdf(z1), cdf(z2)) = area(D). (5.18)



Chapter 6

Bridging multiple point
geostatistics and truncated
Gaussian fields for improved
estimation of channelized
reservoirs with ensemble methods

6.1 Introduction

An important key in reservoirs engineering is the development of reliable reservoir mod-
els with high predictive capacity of production behavior in existing and potentially new
drilled wells. The reservoir predictability is the starting point for guiding the production
plan to an optimum. In order to achieve this, the geological description plays a crucial
role. The initial description of the subsurface fields, such as permeability and porosity,
could be carried out using geostatistical tools in specialized modules, defining thus, the
simulation model and its uncertainty. When referred to a geological description of the
reservoir, one may think of a description of the spatial distribution of the petrophysical
properties (permeability and/or porosity) or more natural, a description of the spatial
distribution of the geological deposits formations (facies). Prior information is related
to the types of the facies that are collected in the initial stage of subsurface description.
Based on this prior information, a reliable geological simulation model is chosen in order

This chapter is full reference of an article submitted to Computational Geosciences
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to generate realistic reservoir instances. The geological simulation model can be defined
either using object based simulation technique (Deutsch and Journel, 1998; Deutsch and
Wang, 1996) or grid based simulation techniques such as the multi-point geostatistics
(MPS)(Guardiano and Srivastava, 1993; Strebelle, 2002; Caers and Zhang, 2004) and
also, the truncated pluri-Gaussian methods (TPS) (Galli et al., 1994) Irrespective of the
geological simulation model used, the poor knowledge of geology leads to an initial
reservoir model whose parameters are uncertain. This prior uncertainty is usually so
large that the predictive capacity is limited. To improve the predictive capacity, the prior
uncertainty is reduced in a process named in reservoir engineering as history matching
(HM), either manual or assisted. Comprehensive description of some assisted history
matching methods can be found in Oliver et al. (2008). This paper addresses the case
where the subsurface is characterized by the presence of two facies types, of which one
inhabits channelized geometry. This type of spatial distribution is hardly obtained using
TPS simulation techniques, especially because of the TPS restriction of applicability to
variogram models. More appropriate is the use of MPS simulation methods such as the
single normal equation simulation method (SNESIM, Strebelle (2002)). These geosta-
tistical tools enable generations of more complex and natural instances of facies distri-
butions, relying on a general conceptual structural model (a training image) of which
construction incorporates the prior knowledge of the subsurface geometry and topol-
ogy. By combining ideas from permeability updates in an MPS setting (Jafarpour and
Khodabakhshi, 2011) with a Gaussian parameterization of the marginal facies probabili-
ties, we define a TPS method where the truncation map is estimated from samples using
MPS and a training image. This allows for non-Gaussian dependence structures and we
avoid pre-specification of a variogram/covariance function and truncation map. One of
the most commonly used assisted HM methods is the ensemble Kalman filter (Evensen,
1994. 2003; Aanonsen et al., 2009) especially for its ease of implementation and its
design to work with an ensemble of models instead of a single model. However, since
the direct use of the facies types petrophysical properties (permeability and/or porosity)
as model parameters does not conducts the EnKF process to geological realistic updates
due to the Gaussian nature of the method, a (re)parameterization of the facies field is
needed. In Sarma et al. (2008) a parameterization of the log-permeability fields (defined
by the facies field), with kernel principal component analysis (PCA) methodology, car-
ried out in a high-dimensional space was proposed. The link between the input space
(the space where the K-L expansion were performed) and the feature space is realized
through a nonlinear function where an inner product is defined by a kernel function. The
authors used a polynomial kernel of order two or three. In Sarma et al. (2009) the EnKF
is applied in the high-dimensional feature space, in which the log-permeability fields
were carried with mapping functions, whose kernels are of polynomial type. For the
updates, a back transform defined via a pre-image problem has to be solved. The results
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showed improvement in preserving of the high order statistical moments of the updates;
this could be seen in the random field continuity. However, because the parameterization
involved the permeability fields the updates are not facies fields. Therefore, the posterior
uncertainty refer to the log-permeability distribution uncertainty, not facies distribution
uncertainty. Another unsolved issue with the kernel EnKF method is it’s tendency for
all the ensemble members to collapse onto a single model. A different approach in
quantification of the permeability distribution uncertainty is presented in Jafarpour et
al. (2007). The authors proposed a parameterization of the log-permeability, pressure
and saturation fields using the Fourier discrete cosine transform (DCT) and coupled the
reservoir model with EnKF for history matching. The results showed an improvement
in the random field connectivity compared with the HM process applied directly to log-
permeability fields. The facies distribution uncertainty quantification could be achieved
with the parametrization of the facies fields using level set methods as in Lorentzen et
al. (2009) were a level set function is used to assign a signed distance to the channel
border, the positive sign being reserved for the grid cells inside of the channel, whereas,
the other grid cells have negative distance values. Then, the EnKF is used for updating
of the distance fields, generated after comparing it with the zero field. In the context
of the MPS simulation models, Hu et al. (2013) proposed the parametrization of a uni-
form random field used for the simulation of a certain facies types at grid cells, based on
the conditional probability distributions extracted from the training image. The Gaus-
sian transformation of such uniform field is further updated with the EnKF, the results
showed an improved uncertainty quantification of the facies distribution. Other facies
parameterizations which involve the domain transformation have been proposed, such
as, the discrete wavelet transform (Jafarpour, 2011) or the gradual deformation (Rog-
gero and Hu, 1998). The choice of the MPS as geological simulation model is based on
the information collected at the initial stage of reservoir description. However, if impor-
tant data are revealed, such as core information (hard data) or information from seismic
surveillance (soft data), this information can easily be incorporated in the MPS model us-
ing probabilistic models (Journel, 2002; Krishnan et al., 2005). The challenge, however,
is how to incorporate dynamical production data. In Caers and Hoffman (2006) a model
(the probability perturbation method, PPM) that links the dynamical (flow) measure-
ments with the MPS geological simulation model is developed. The sampling from the
prior model (represented by the training image) rely on a the "tau" probabilistic model
(Journel, 2002), by perturbing a so called pre-posterior probability (the probability of
occurrence of a facies type given the "dynamical" data). The pre-posterior perturbation
is carried out with a convex relation that depends on a sub-unitary parameter estimation
which involves an optimization procedure of the square misfit between the measurements
and the response. The process is iterative because multiple random seeds should be used
in order for the simulations to match the data. An ensemble based method that links
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the dynamical data with the MPS simulation model was develop in Jafarpour and Khod-
abakhshi (2011). The authors propose a probability conditioning method (PCM) for
facies simulation in the context of EnKF as HM method. The initial ensemble of facies
realization are drawn from the training image conditioned on a uniform probability map
and equal weights. At each assimilation point, the log-permeability fields are updated
using the available measurements, with the EnKF, and, from the mean log-permeability
field, updated probability maps for each facies type are inferred. Piece-wise linear func-
tions have been used to project the mean log-permeability field to the probability field.
Then, another initial ensemble is drawn from the prior model, using the tau model for
conditioning the training image on the updated facies probability maps. This procedure
will continue until the end of the assimilation period. The final ensemble has a realistic
geometry structure (being drawn from training image) with a reduced data mismatch.
However, the piece-wise linear assumption between the log-permeability and facies oc-
currence probability has an empirical component and the variability and the randomness
introduced by the MPS model does not ensures a good data match in the updates. At the
same time, the model is highly dependent on the permeability estimation from EnKF,
so if there is not enough information in the data to detect facies from the updated log-
permeability field , the procedure may fail. In other words it relies on the EnKF’s ability
to detect features in the continuous permeability field, which may not be the case if
measurements in the reservoir domain is sparse, as is typical for real fields. This is in
contrast to most of the proposed methodology discussed here, were the number of wells
is large compared to the reservoir size. We present a new parametrization of the facies
fields, in the context of MPS geological simulation model, which is further coupled with
the iterative adaptive Gaussian mixture (Stordal and Lorentzen, 2014) for uncertainty
quantification of the channelized reservoirs. The parameterization bridges ideas from
MPS and TPS. The standard TPS parameterization ensures that the updated fields are
facies fields, however, since the field is jointly Gaussian it is not trivial to characterize
channel type facies structures via a covariance function (or variogram) in combination
with a user defined truncation map. The MPS approach has the advantage of simulating
channel type random fields, however, they are discrete-valued and it is not trivial to con-
nect this with ensemble based inversion. We therefor suggest a combination of the two
parameterizations. By estimating marginal facies probabilities from a sample from MPS
in combination with a training image, we parameterize the marginal probability field
with a (marginally) Gaussian random field where the truncation map is defined such that
the integral for a facies type in a given grid cell in the Gaussian domain coincides with
marginal grid cell facies probability estimated from the ensemble. This automatically
gives us a truncation map in the Gaussian space that honors the channel structures since
the dependence structure is inherited from the training image. Thus we can update the
continuous-valued random field using any ensemble based history matching technique
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and change the facies type in each grid cell according to the truncation map. This en-
sures us that the updated ensemble members are always facies fields. However, since
all ensemble based methods are only approximating the Bayesian solution, the updated
fields are not from the correct posterior distribution for these nonlinear problems. Typi-
cally, after an update, the non Gaussian prior is violated in the sense that the facies fields
have discontinuous channels. We address this problem in two ways, first instead of us-
ing the EnKF we apply the recently published iterative adaptive Gaussian mixture filter.
For non Gaussian models, this method is asymptotically better than any EnKF approach
since the bias can be controlled. Secondly, it has a resampling step between iterations.
The resampling allows us to combine this resampling step with the resampling using
the updated probability fields estimated from the updated ensemble and the MPS as in
Jafarpour and Khodabakhshi (2011), to better preserve channels. In addition this allows
us to resample ensemble members using MPS after all data is assimilated in contrast to
the EnKF approach where resampling is performed after each assimilation step. After
resampling, a new iteration with AGM (Stordal et al., 2011) is then performed using
the resampled ensemble as initial ensemble. After two or three iterations, the updated
ensemble of facies maps remains geologically realistic, even without resampling, hence
after the final iteration, we are left with ensemble members that have continuous channel
structures and match the data. Placed in the context of the already existing parameter-
ization we might also consider it as being a level set type, but the thresholds used for
facies delimitation have a spatial distribution. This spatial distribution is given by the
initial ensemble of realizations drawn from the training image. In Section 6.2 we intro-
duced and described in details the new parameterization of the facies field. In Section
6.3 the history matching algorithm used (IAGM) is summarized and its advantages over
more traditional techniques are presented. This is followed by simulation studies in Sec-
tion 6.4 where we performed two experiments with synthetic 2D reservoirs of varying
size. The first is a channelized reservoir model with 50*50 grid cells and the second has
100*100 grid cells. For the first experiment, a comparison with EnKF was performed in
order to emphasize the benefits of the iterative method. Secondly, IAGM is also applied
to update the permeability directly and then compute a probability map (Jafarpour and
Khodabakhshi, 2011). This is to show that improvements are due to the combination of
IAGM and the new parameterization and not IAGM alone. The second experiment with
the reservoir model having 10000 grid cells, only the IAGM with the new parameteriza-
tion is shown as the conclusion is the same as for the experiment.
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6.2 Parameterization and truncation in the Gaussian space

A parametrization of the elements of a given set Y could be defined as a surjective func-
tion φ : X → Y , where X is a metric space. In our case Y is represented by the space of
facies maps. Usually, if n is the dimension of the reservoir domain, X ⊆ Rn×k, where k
is a positive integer number. When a HM method is applied, the values in the X -space
are changed and, using the function φ, a new facies distribution is provided. The rea-
son for using φ is to ensure that the updated ensemble members are facies realizations.
When the facies fields are directly populated with petrophysical properties (permeability,
porosity, etc.) the updated values does not easily back transform to facies realizations
when ensemble methods such as EnKF or AGM are applied. Therefore a parametriza-
tion of the facies field is needed. One possibility is to truncate the permeability fields,
however, this would requires a user specified truncation map. Further, when working di-
rectly with permeability fields, the updated fields are no longer facies fields hence there
is an intrinsic need for truncation after the update which may violate the quality of the
data match. Truncated (pluri) Gaussian fields also requires a user defined truncation
map, however, given this map, the updated fields are guaranteed to be facies fields. The
TPS method however is not capable of handling channel structures.

Here we introduce a truncated marginal Gaussian parameterization for channelized
reservoirs with two facies types, although extension to more facies types is almost
straight forward. The only problem with multiple facies is that the truncation map,
estimated from the ensemble, is not unique. However, the facies proportions are directly
estimated from an initial sample and the dependence structure is inherited from the train-
ing image and do not requires specification. In other words, the new parameterization
consists of continuous valued random fields that are marginally Gaussian and where the
joint distribution depends on the MPS tool used to generate initial facies models. The
geological simulation model used is in this work is SNESIM, where a training image
is used to generate initial ensembles of facies fields. In the following we present a pa-
rameterization of the facies field in a Gaussian space and the transformation function
(truncation rule) φ that transforms elements in the Gaussian space to elements in the
space of facies fields.

Let us consider an initial ensemble of facies fields (channelized fields) generated
using the prior knowledge of the reservoir subsurface characterization. We denote the
number of the ensemble members by ne. From the ensemble, we estimate, in each grid
cell, the marginal probability of the channel type facies. For grid cell i the estimate is
given by the proportion of the ensemble that has channel in gird cell i. Then, if pi is the
estimated probability of the channel occurrence, the distribution of the random variable,
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named "facies type", can be written as

faciestypei ∼ pi · δ(channel) + (1− pi) · δ(nonchannel) (6.1)

(where δ is the Dirac function). For this random variable we calculate the cumula-
tive distribution function and define the threshold in the Gaussian space as αi ∈ R, as
αi = Φ−1(pi), where Φ : R → (0, 1), is the standard Gaussian cumulative distribution

function, Φ(x) = 1√
2π

∫ x
−∞ e

−u
2

2 du.

Figure 6.1: Gaussian representation of the discrete random variable "facies type"

This ensures that the marginal facies probabilities are the same in the Gaussian space
as in the prior defined via the training image and MPS. That is, for a random variable
X ∼ N(x|0, 1) we have the properties P (X ≤ αi) = pi and P (X > αi) = 1 − pi.
This means that the real axis is split in two regions (intervals), (−∞, αi] and (αi,∞),
corresponding to channel facies type and respectively to non-channel facies type (Figure
6.1).
The parametrization is then performed in the metric space Rn, where n is the dimension
of the reservoir domain. For each ensemble member (facies map) we define the variable
θ on the reservoir domain such that in each grid cell i we have:

θi =

{
E(X|X ≤ αi) if i ∈ channel
E(X|X > αi) if i ∈ nonchannel (6.2)

Given that grid cell i is inside the channel, we assign the conditional mean value of
the standard Gaussian variable in grid cell i and vice versa. Alternatively, we could
assign a value drawn from the conditional Gaussian distribution, however this is not
straight forward since we do not explicitly know the dependence structure between grid
cells. For extensions to three facies types we can split the plane in R2 into regions such
that the area of each region corresponds to the marginal probability of each facies type.
However, this truncation will not be unique.
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Consequently, the function φ may be defined as
φ : Rn → {K1,K0}n, where,

φ(θ) =

{
K1 if θi ≤ αi
K0 if θi > αi

(6.3)

for any grid cell i. In this definition, K1 and K0 are represent the permeability value
for each facies type in FM, the set of facies maps defined on the reservoir domain where
the subindex 1 represents the channel and 0 the non-channel facies type. The function φ
can, in the same manner, easily be extended to other petrophysical variables such as e.g.
porosity. By construction we see that E(θ) ≡ 0 since, in grid cell i, we have

E (θi) = piE(X|X ≤ αi) + (1− pi)E(X|X > αi)

= pi(Φ(αi))
−1

∫ αi

−∞
x

1√
2π

exp

(
−1

2
x2
)
dx

= +(1− pi)(1− Φ(αi))
−1

∫ −∞
αi

x
1√
2π

exp

(
−1

2
x2
)
dx

=

∫ ∞
−∞

x
1√
2π

exp

(
−1

2
x2
)
dx = 0,

where we have used that Φ(αi) = pi.

Figure 6.2: The pdf of the Gaussian variables

As a consequence the marginal prior mean of the parameter field with mean 0 in
each grid cell (Figure 6.3, last picture). These conditional means have also a physical
interpretation, as the gravity centers of the associated intervals of each facies type with
respect to the density of the standard Gaussian variable (Figure 6.2). For an initial en-
semble conditioned to hard data (facies observations at the well locations) for a given
number of grid cells, these grid cells has θ values 0 with threshold values α = −∞ or
α =∞ depending on the type of the observation (nonchannel and respectively channel).
If, in the probability map, we have value 0.5 for the channel occurrence then α = 0 and
θch = −θnch (θch and θnch are the gravity centers of the interval assigned to the channel
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facies type and non-channel facies type respectively). Hence, this parameterization is
a normalization of the discrete variable "facies type" and could be seen as a level set
parametrization, but with the thresholds having a spatial distribution.

In Figure 6.3 are presented a probability occurrence map for the channels (left), cal-

Figure 6.3: The probability map of the channel occurrence (left) and the thresholds map
(middle) and the prior mean of the parameter field (right)

culated from an ensemble, and the associated thresholds field (middle) as consequence
of the above methodology. Concerning the spatial distribution of the parameter field,

Figure 6.4: An arbitrary facies field (left) and the associated parameter field (right)

in Figure 6.4 we present an example of a channelized reservoir, which is part of an en-
semble of facies fields (left) and the associated spatial distribution of the parameter field
(right), calculated using the presented method.

6.3 Iterative Adaptive Gaussian Mixture Filter

An ideal way to estimate channels and in general facies in a reservoir model would be
to apply an importance sampling approach. This method can work directly on the dis-
crete facies field using samples from the training image and the likelihood function. One
might also apply an MCMC approach but then the prior distribution has to be evaluated
if it is not symmetric. Since we are using a training image, the prior has to be esti-
mated from the samples using e.g. a transiogram which is cumbersome, suffers from
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randomness and hence requires a lot of samples to achieve high precision. The impor-
tance sampling, although ideal for this discrete-continuous type of problems, cannot be
applied to reservoirs as the number of parameters to estimate is simply too large. The
number of samples required would simply be too large for practical purposes. From the
authors experience 10.000 samples is not sufficient even for moderate sized reservoirs.

Since we have parameterized the field of discrete random variables with a field of
continuous random variables (that is a random variable that has a density function and
not a mass function) we can apply filters defined for continuous random variables. Sev-
eral approaches to facies estimation that use the EnKF together with a parametrization
and/or transformation of variables are available in the literature as discussed in the in-
troduction. However, the nonlinear nature of this problem which causes severe bias with
the EnKF, in addition to the fact that EnKF under estimates uncertainty in facies models
we argue that the IAGM is a better suited method for this kind of problem. Alternatively,
other iterative methods such as ES-MDA or EnRML might also be suitable. However
we choose the IAGM since it has superior asymptotic properties, hence the results will
continue to improve if we increase the sample size which is in contrast to e.g. EnKF
which has a fixed asymptotic bias.

The IAGM was introduced as an iterative version of the adaptive Gaussian mix-
ture filter (Stordal et al., 2011) to further improve the AGM on nonlinear models. The
implementation of IAGM is very simple especially if EnKF or AGM is already imple-
mented. We denote the ensemble of parameter fields by {θi}Ni=1. Further we denote by
Gt = Ht ◦ φ, the composition of transformation of parameters to facies fields and the
measurement operator. We augment our state vector with these variables. Hence

Zi
t = [θTi Gt(θi)T ]T , i = 1, . . . , N, (6.4)

such that we can construct, for each assimilation time t, a binary matrix Ht with the
relation Yt = HtZ + ε. That is the measurement is a linear function of our augmented
state vector with additive Gaussian white noise. As in the EnKF we denote by Ct the
sample covariance matrix of {Zit}Ni=1. At each assimilation time, the augmented state
vector is updated in the AGM (and IAGM) for each i = 1, . . . , N as

Ẑi
t = Zi

t + CtH
T
t (HtCtH

T
t + h−2R)−1

(
yt −HtZ

i
t + εit

)
, (6.5)

where εit is a sample from the Gaussian measurement error distribution N(0, R). Note
that the only difference with a standard EnKF update is the scaling h−2 of the measure-
ment error covariance matrix R. In other words the linear update is dampened where the
dampening factor h ∈ [0, 1] is the bandwidth of the Gaussian mixture (see Stordal et al.
(2011)). In addition to a reduced linear update, importance weights are derived from the
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Gaussian mixture and updated sequentially as

W i
t ∝ W i

t−1N(yt −HtZ
i
t , h
−2HCHT +R). (6.6)

To avoid filter degeneracy that occurs in high dimension and complex systems a weight
interpolation is introduced

WŴ i
t = αtW

i
t + (1− αt)N−1, αt ∈ [0, 1], (6.7)

where

αt = N−1(
N∑
i=1

(W i
t )

2)−1. (6.8)

For details of the AGM we refer to Stordal et al. (2011).
A resampling and reweighting step in the algorithm before rerunning AGM is dis-

cussed in Stordal and Lorentzen (2014). Here we propose to resample from the training
image with a new probability field obtained from the weighted mean of the ensemble
members after the previous iteration. That is, after one assimilation cycle, a new proba-
bility map is constructed on a cell by cell basis as

pi =

ne∑
j=1

wj1(celli ∈ channel)

and used in SNESIM . This is equivalent to resampling marginal facies variables from the
empirical distribution obtained with AGM (resampling) with the constraint that the de-
pendence structure is given by the training image. To be completely rigorous we should
then evaluate the ratio between the old and new prior for each ensemble member, how-
ever this would requires the estimation of the prior in addition to evaluation of weights
in high dimensions. With the weight reduction leading to almost uniform weights due to
the dimension, there would be more work than gain, and we instead make the assumption
of uniform weights after resampling from the training image with the new probability
field. The resampling and reweighting is a topic for future research. In most applications
a few iterations are required, typically two or three. This is in agreement with the results
we present below.

6.3.1 The State Vector

Concerning the HM methods implementation, the state vector for the ith ensemble mem-
ber at the tth assimilation step will be:

Xi
t =

[
paramT

i Gt(parami)
T
]T
, i = 1, . . . , N (6.9)

where Gt(parami) are the simulated observations represented by the simulated produc-
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tion data (oil and water rates, bottom hole pressures). The field param is the generic
notation either for the permeability field or the parameter field θ presented above. The
dynamical variables (the pressure and the saturation) are not updated together with the
parameters because, after each assimilation time, we have chosen to rerun the simulator
from time zero, even though this technique will increase the computational cost. For the
small models of the examples presented, this procedure is not a time consuming, but, for
large scale models, the computational cost should be considered. However it is possible
to run the IAGM as a smoother, that is update all data at ones (Stordal et al. 2012).

6.3.2 The Resampling

After an iteration of IAGM we are able to calculate, from the weighted ensemble of
facies fields, a probability map of the channel facies type occurrence. In order to re-
construct the channels geometry of the facies fields, we perform a resampling from the
training image using the same SNESIM algorithm. The SNESIM has incorporated the
tau model (Journel 2002 [15], Krishnan et al. 2005 [11]) which enables integration of
the probabilities coming from soft data and training image. Usually, the probability
maps used as soft data are coming from seismic interpretations, but here, we have used
as soft data the probability maps calculated after an iteration of IAGM. If we consider,
at a particular location i, A(i) being event which consist of the occurrence of a certain
facies type and P (A(i)|B(i)) and P (A(i)|C(i)) the conditional probabilities coming
from the training image and weighted probability map respectively, then, the conditional
probability P (A(i) | B(i), C(i)) is calculated as:

P (A(i) | B(i), C(i)) =
1

1 + x(i)
, (6.10)

where "the distance" x(i) is calculated as

x(i)

x0(i)
=

(
x1(i)

x0(i)

)τ1 (x2(i)

x0(i)

)τ2
,where τ1, τ2 ∈ R, (6.11)

and the "distances" x0(i), x1(i), x2(i) are calculated as follows

x0(i) =
1− P (A(i))

P (A(i))
, x1(i) =

1− P (A(i)|B(i))

P (A(i)|B(i))
, x2(i) =

1− P (A(i)|C(i))

P (A(i)|C(i))
(6.12)

P(A(i)) is the probability with which the facies type occurs at the location i and is the
target marginal probability of that facies type. In this study the weights τ1 and τ2 used
are both equal to 1, which correspond to the equal importance assigned to the training
image and weighted probability map respectively.
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6.4 Applications

In this section we present two applications of the presented methodology; one which
involves a small reservoir with 50*50 grid cells, having 3 injectors and 3 producers,
and the other a reservoir with 100*100 grid cells with 4 injectors and 9 producers. The
reference fields and the initial ensembles used are sampled from the same training im-
age (Strebelle 2002) with 250*250 grid cells (Figure 6.5) using the SNESIM algorithm
(Strebelle 2002) implemented in SGeMS.

Figure 6.5: The Training Image (top) and the reference fields used for the experiments
(bottom)

Throughout this study the red shades represents the channel facies type (typically
sand, highly permeable) and the blue shade represents the non-channel facies type (typ-
ically shale with low permeability). In all the simulations, the petrophysical properties
of each facies type are considered known and kept constant, not taking into account the
heterogeneity within each facies. Hence, the uncertainty in the model is generated by
the channels distribution in the reservoir domain.
The initial ensembles of facies fields were generated without conditioning the training
image to facies observations (hard data). Only for the resampling, in the IAGM steps,
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the initial ensembles were generated conditioning the training image to the previous es-
timated probability map. The number of iterations in the experiments was established
taking into account the properties of the updated ensemble. This should fulfill two re-
quirements; good data match and predictions, and the updated ensemble members should
not be in conflict with our prior believes, that is, the ensemble should have continuous
channel structures. With that in mind, we terminate the assimilation process when the
ensemble members are matching the data satisfactory at the same time as they have
continuous channels. The latter can be achieved by resampling from the training im-
age using a probability map projected from the mean permeability field (Jafarpour and
Khodabakhshi, 2011), however the quality of the data match is then decreased. Since
our parameterization is guarantees that our updated ensemble members are facies fields,
we do not need to perform resampling after the final iteration. This gives our method an
advantage over previous work.
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6.4.1 Channelized reservoir with 2500 grid cells

In this example we present the case of a small channelized 2D reservoir, with 50 grid
cells in each direction of which dimension was set at 30 × 30 × 20 ft. We design the
reservoir with a 6-spot water flooding black oil model, having three injection wells at the
left side and three production wells at the right side. The reservoir is initially filled with
oil at a constant uniform saturation of 0.8 (which generates a connate water saturation
of 0.2) and with a uniform pressure of 5000 psi in every grid cell. The producers works
under constant bottom hole pressure (BHP) value of 1500 psi and the injectors operate
at 2500 stock tank barrels per day (STB/D) constrained by a maximum 100000 psi for
BHP. The measurement errors of the production data are assumed Gaussian with 0 mean
and standard deviations of 30 STB/D for water rates (WR) and oil rates (OR) at the
producers, and 80 psi for BHP at the injectors, respectively. These values are used when
generating the reference measurements, and also when adding noise to the production
data in the analyzed step of the HM processes. Water injection starts from the first
day and continues for a period of 191 days. We assimilate data starting from the first
day until day 191, with a 20-day interval, resulting in 10 assimilation steps. For each
experiment the measurements were obtained through forward simulation of the synthetic
model presented as the "reference" in which the channels geometry is defined by two
non-intersected narrow bands which propagate longitudinally (Figure 6.5, bottom left).
The permeability values were set at 500 mD and 50 mD for the channel facies type and
for the non-channel facies type, respectively, while the porosity of both facies types is
considered 0.2.
In this subsection we perform the following experiments:

• EnKF with log-permeability estimation.

• EnKF with the parameter field.

• IAGM with h=0.25 two iterations and with the parameter field.

In the top of Figure 6.6 the true position of the channels in the field is presented and in
the following pictures we present the prior mean and posterior mean of all the results of
the experiments. In Figure 6.6(b) the prior mean and posterior mean refer to the mean
log-permeability, whereas for all the rest we refer to the mean probability map of the
channels occurrence.
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(a) The reference

(b) EnKF with log-permeability

(c) EnKF with parametrization

(d) IAGM h=0.25 with parametrization iteration 1

(e) IAGM h=0.25 with parametrization iteration 2

Figure 6.6: The probability maps of the channel occurrence in all the experiments
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In Figure 6.7 are the weights of the ensemble members after both iterations.

(a) Iteration 1 (b) Iteration 2

Figure 6.7: The AGM weights of the iterations

The initial ensemble used in the second iteration of the IAGM (Figure 6.6(e) left)
is calculated with SNESIM, conditioning the training image to the facies probabilities
map calculated with the weights presented in Figure 6.7(a). In Figure 6.8(a) we present
the first four ensemble members in the initial ensemble of the experiments and in Fig-
ure 6.8(b, c ,d) the same members in the updated ensembles.

In Figure 6.8(e) are the first four members in the initial ensemble obtained after the
resampling and on the position Figure 6.8(f) are the members in the updated ensemble
after the second iteration is performed. When EnKF is performed with log-permeability
in the state vector, not only ist structure not preserved (Figure 6.8(b)), but the estimate
of the channel positions are also poor (Figure 6.6(a)). The main reason is due to the
fact that EnKF has a tendency to increase the log-permeability values around the wells
drilled in the channels and decrease the log-permeability values in the wells drilled out-
side of the channels, especially when a small numbers of wells are used and the position
of the wells in the field is are not very informative (lack of connectivity). When, EnKF
and the first iteration of IAGM is applied with the parametrization proposed, the posi-
tion of the channels is better estimated (Figure 6.6(c) and (d)), but the structure in the
updates is unfortunately not preserved (Figure 6.8(c) and (e)). This is a direct result of
the updated limitation of the HM methods to the first two statistical moments. When
the resampling is carried out using the training image and the updated probability map,
the channel structure is regained, but the price of that is the loss of the data match (Fig-
ure 6.9(c)). To obtain data match and preserve channel structure in posterior ensemble,
we performed an iteration with this new initial ensemble using the small update offered
by AGM for a small tuning parameter (h=0.25). The result is an updated ensemble with
a good channel structure (Figure 6.8(f)), with a good estimation of the position of the
channels (Figure 6.6(e)) and with a good data match and prediction (Figure 6.9 (d)).
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(a) Initial ensemble

(b) Updated ensemble EnKF with log-permeability

(c) Updated ensemble EnKF with parametrization

(d) Updated ensemble IAGM with parametrization iteration 1

(e) Initial ensemble IAGM with parametrization iteration 2

(f) Updated ensemble IAGM with parametrization iteration 2

Figure 6.8: The first four ensemble members in all the experiments
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(a) Pressures and rates in initial ensemble iteration 1 (b) Pressures and rates in updated ensemble iteration 1

(c) Pressures and rates in initial ensemble iteration 2 (d) Pressures and rates in updated ensemble iteration 2

Figure 6.9: The production data in the AGM experiments

In Figure 6.9 we present the prediction for the next 100 days for pressures and pro-
duction rates for all the wells in initial and updated ensemble of the both iterations of
IAGM (the data assimilation period is delimited by the prediction period through a blue
line). When the initial ensemble is generated, the production response has a huge un-
certainty (Figure 6.9(a)) which decrease together with the production data assimilation
at the first iteration of IAGM (Figure 6.9(b)). The predictions are satisfactory; however,
since the channel structure is lost we perform the resampling. This introduces additional
variability in the ensemble (Figure 6.9(c)), and after the second iteration is performed
this is again reduced (Figure 6.9(d)) but preserving the channel structure (Figure 6.8(f)).
These two goals, data match with good prediction and channel structure in updates is
achieved in this case only after two iterations.

Updating log-perm with projection maps

Since the IAGM is applied to facies estimation for the first time here, we also want to
apply it to the permeability directly and construct probability maps by projections in
order to compare this method directly with our new parameterization. We have rerun the
above experiment with the same initial ensemble. After updating the log-permeability
field we use a projection function, see Fig 6.10, for each facies type with truncation at 50
and 500 mD together with a piecewise linear function to construct the probability map.
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The probability map (for the channel type facies) is first truncated at 0.1 and 0.9 and
then a second run is performed where the probability map goes from 0 to 1 (projection
function borrowed from Jafarpour and Khodabakhshi, 2011). If pmax and pmin denote
the upper and lower bound of the probability projection (for the channel type facies),
then, after updating the log permeability fields we set for any grid cell p = pmin if the
mean log permeability in the grid cell is less than 50 mD, p = pmax if the mean log
permeability is greater than 500mD. If the mean log permeability is in between, we use
linear functions so that the probability sums to one (Figure 6.10).

Figure 6.10: The two projection functions after Jafarpour and Khodabakhshi, 2011

To demonstrate the dilemma of this methodology, as discussed in the introduction,
we show the results after the second iteration both with and without resampling in order
to enhance the geology vs data match issue that occur. In Figure 6.11-6.13 we have
summarized the results of the first run in terms of the probability maps, the four first
ensemble members and the production response. There are at least two important find-
ings here. First, the method do not produce as good data match with two iterations as
the above parameterization. Secondly, as stated previously, we see from Figure 6.12 and
Figure 6.13 that we either obtain facies fields or a reasonable data match. We see some
improvement in the data match when the probability field is not truncated (to [0.1,0.9]),
however it is not of the same quality as the results of the previous section. In Figure 6.15-
6.16 we show the results of the second run where the probability map is not truncated.
The conclusions are the same for both experiments.
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(a) Initial mean log-perm (b) Mean log-perm after first iter-
ation

(c) Mean log-perm after first re-
sampling

(d) Mean log-perm after second it-
eration

(e) Mean log-perm second resam-
pling

Figure 6.11: Permeability fields, experiment 1

(a) After second update

(b) After second resampling

Figure 6.12: First four ensemble members, experiment 1
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(a) Production pressures and rates after second iter-
ation

(b) Production pressures and rates after second re-
sampling

Figure 6.13: Data match after second resampling, experiment 1

(a) Mean log-perm after first resampling (b) Mean log-perm after second update

(c) Mean log-perm after second resampling (d) Probability map after second update

Figure 6.14: Permeability fields, experiment 2
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(a) After second update

(b) After second resampling

Figure 6.15: First four ensemble members, experiment 2

(a) Production pressures and rates after second iteration (b) Production pressures and rates after second resampling

Figure 6.16: Data match after second resampling, experiment 2
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6.4.2 Channelized reservoir with 10000 grid cells

In the second example we present a channelized 2D synthetic reservoir with 100 grid
cells in the X and Y direction. The dimension of each grid cell is 30 × 30 × 20 ft.
The reservoir is a 13-spot water flooding black oil model, having four injection wells at
the center of reservoir domain and nine production wells surrounding the injection wells
(Figure 6.5 bottom, last picture). The reservoir is initially filled with oil at a constant
uniform saturation of 0.8 (which again generates a connate water saturation of 0.2) and
with a uniform pressure of 5000 psi in every grid cell. The producers works under
constant bottom hole pressure (BHP) with a value of 3000 psi and the injectors operate
at 3500 STB/D constrained by a maximum BHP of 100000 psi.

We assimilate data starting from first day until day 351, with 60-day interval, having
6 assimilation steps. For each experiment the measurements were obtained through
forward simulation of the synthetic model presented as the "reference" in which the
channels geometry is presented in the top of Figure 6.17. The measurement errors of
the production data are assumed Gaussian with 0 mean and standard deviations of 70
STB/D for water rates (WR) and oil rates (OR) at the producers, and 200 psi for BHP
at the injectors. These values are used to generate noisy observations from the reference
model in addition predicted observations of the production data used in the analysis step
of the HM processes. Water injection starts from the first day and continue thereafter a
period of 351 days of production. We assimilate data at a 60-day interval resulting in a
total of 6 assimilation steps. The permeability values were set at 9 mD and 1 mD for the
channel facies type and for the non-channel facies type, respectively, while the porosity
of both facies types is set to 0.2 and considered as known.

We only show the results from IAGM with the proposed parameterization for this
model as the findings are the same as in the previous example. The IAGM is run with
h = 0.25 for three iterations with the proposed Gaussian parameterization and resam-
pling between each iteration. In Figure 6.17 we present the reference field and the prob-
ability maps of channel occurrence for the initial (resampled) and updated ensemble in
each iteration. Comparing the reference field with the probability map of the initial en-
semble (before any data assimilation) we infer that there is very little information about
the channels in the initial ensemble, that is, the variance of the initial ensemble is large.
In Figure 6.17(c) we see the probability map after the first update which gives us an idea
of what geological information is contained in the production data. We can already see
that there are a few regions of the reservoir where our approximative Bayesian solution
is certain that there is a channel type facies. After three iterations we are able to identify
the two main channels however, the top left and bottom channel seems difficult to esti-
mate. This may be due to the fact that there is not enough information in the production
data to constrain the model. To be critical, the low channel probability in the bottom
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where there is a channel tells us that we have either found only a local region of the
posterior or that the bias from ensemble based methods is larger than expected. This
motivates us to explore the full posterior using more expensive techniques in the future.
Since the IAGM has a theoretical bias that decrease with ne, it would be interesting to
see how much the results improve if we increase the number of ensemble members. That
is, however, beyond the scope of this study.

Figure 6.18 and Figure 6.19 tell the same story as in the previous example. Assimila-
tion without resampling breaks up the channels in the first iteration whereas resampling
reconnects them but increase the data mismatch. After three iteration (in contrast to two
in the previous example) we are able to maintain the channel structure without resam-
pling and hence preserve the good data match and prediction from the assimilation.

We, also, performed the fourth iteration with the only purpose to observe the ensem-
ble behavior. The small differences between the root mean squared error (RMSE) values
of the updated ensembles defined as

RMSE2 = (nd)
−1

ne∑
i=1

nd∑
j=1

wi(Yj − Gj(xi))2,

where nd is the number of measurements, xi denotes ensemble member number i andwi
the corresponding likelihood weight. Table 6.1 indicates that convergence is achieved.

Table 6.1: RMSE for total production rates

Iteration 1 Iteration 2 Iteration 3 Iteration 4

RMSE in initial ensemble (STB/D) 827.58 183.58 150.49 147.97
RMSE in updated ensemble (STB/D) 158.75 104.05 101.67 98.94
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(a) The reference

(b) IAGM h=0.25 with parametrization iteration 1

(c) IAGM h=0.25 with parametrization iteration 2

(d) IAGM h=0.25 with parametrization iteration 3

Figure 6.17: The probability maps of the channel occurrence
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(a) Initial ensemble iteration 1

(b) Updated ensemble iteration 1

(c) Initial ensemble iteration 2

(d) Updated ensemble iteration 2

(e) Initial ensemble iteration 2

(f) Updated ensemble iteration 3

Figure 6.18: The first four ensemble members in all iterations
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(a) Production water rates in initial ensemble iteration 1 (b) Production water rates in updated ensemble iteration 1

(c) Production water rates in initial ensemble iteration 2 (d) Production water rates in updated ensemble iteration 2

(e) Production water rates in initial ensemble iteration 3 (f) Production water rates in updated ensemble iteration 3

Figure 6.19: The water production rates in the AGM experiments



Chapter 7

Realistic facies simulation with the
APS model for a North Sea field
case

7.1 Introduction

In reservoir characterization, modern reservoir modeling and history matching aim at
delivering integrated models with quantified uncertainty, constrained on all available
data. The "holy grail" of model updating/conditioning in the framework of Assisted His-
tory Matching(AHM) is to obtain models which: match the past data within the model
and measurements uncertainties; incorporate all types of information (different measure-
ments types) and preserve geological realism (consistent with the initial geo-model).
The Fast-Model-Update workflow (FMU) resolves all of the above mentioned require-
ments by handling reservoir models in the big-loop model updating framework and it
provides: a) a model chain, from depth conversion to simulation model, that is repeat-
able and updatable; b) an ensemble framework for representation and prediction of un-
certainty: c) ensemble methods for conditioning the model chain on dynamic data. The
major principle of the FMU workflow is an automation and integration of all the mod-
eling steps such that the whole model chain from depth conversion to simulation can be
run in batch.
In the implementation of any AHM process, one of the most important things to address
is the reservoir geological structure. When referring to geological structure we think of

This chapter is based on an article presented at 76th EAGE Conference and Exhibition, Amsterdam
June 16-19, 2014 where the coauthors are R.G. Hanea, T. Ek, J. Saetrom and D.B. Sollien
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faults position and top/base surfaces of the geological layers. The solution of integrating
structural uncertainties in the big loop approach was given by Seiler et al., 2010. The
natural transition from structural geological uncertainties towards the rock and fluid un-
certainties is represented by the facies distribution.
In this study we apply a facies modeling process that can be used in an integrated mod-
eling workflow (FMU). Therefore, we should ensure the flexibility, efficiency and ge-
ologically realism of the process. In our opinion from a range of possible options (e.g
multipoint geostastatitics, level set, object and process based methods) the "low hanging
fruit" methodology that fits our requirements is the plurigaussian concept (Sebacher et
al., 2013). By using this concept, we generate possible facies realizations (distributions)
in the reservoir domain.
These facies instances must be consistent with the prior knowledge about the reservoir
geology (the number of the facies types, the possible transition between facies types, the
direction of the facies, the geometry of the facies, etc.) and honor the hard data (well log
data) and the sand probability cubes (derived from seismic data). The solution applied
here is the adaptive plurigaussian simulation (APS) approach. The APS model con-
sists of generating facies distributions conditioned to prior facies probability occurrence
maps. It is still part of the boarder truncated plurigaussian simulation (TPS) technique,
using truncation maps, not in the multi-dimensional (usually bi-dimensional) space of
GRF, but in a multi-dimensional probability space.
In a broader view we are interested in quantifying and reducing the uncertainties in the
facies distributions in a multiple realizations world. Therefore, the proposed process
should be updateable/conditioned based on all the available data by an ensemble based
method/tool.
If until now the APS technology was applied with great success for synthetic cases rang-
ing different depositional environments (See Sebacher et al, 2013, 2014), this is the first
attempt when APS is implemented and applied for a real field case in the North Con-
tinental Shelf (NCS). Due to confidentiality issues we can not use the real name of the
field, so for simplicity we will name it "Loki" field. The novelty of this work consists
of realistic facies simulations for a real field case, consistent with the hard and soft data
as well as with the geological concept. This simulation process is repeatable and auto-
mated/assisted by being integrated in the FMU framework of the big loop conditioning
philosophy. We are proposing an integrated workflow for facies generation and esti-
mation using a simulation model that is able to create a link between the mathematical
theory and real world.
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7.2 The geological setup

We apply the pluri-gaussian facies modelling approach to the specific geological settings
of the Loki field, located in the North Sea, offshore mid-Norway. The field consists of
multiple westerly tilted blocks, bounded by faults of Devonian age generated during the
opening of the North Viking Graben (Fossen et al., 2000), and later reactivated during
Triassic and essentially Jurassic period. In term of sedimentology, the Loki field con-
sists of Triassic deposits of the typical "redbeds" fluvial sandstones of the Upper Lunde
and Statfjord Formations. The Statfjord Formation is strictly speaking of Rhaetian and
Early Jurassic age, but commonly attached to Triassic deposits as it consists of genet-
ically similar sediments, deposited in the same environment, with no major unconfor-
mity in the stratigraphic sequence. During the Triassic period, the climate evolved from
arid to semi-arid continental conditions (Dore, 1992; Van Der Zwan and Spaak, 1992).
The sedimentary structures consisted on terminal sections of alluvial fans (Tunbridge,
1984) with ephemeral braided streams terminating in sheetfloods, muddy flood plain or
ephemeral lake. Episodic water flooding and collapsing of channel banks resulted in the
deposition of crevasse splays along the margins of the channel systems. As a result of the
arid conditions, most of the sediments were trapped within the continental environment
(Collinson, 1986), hence the high accumulation of continental sediments observed in the
Triassic sediment record of the North Sea. In the Loki field, the two reservoir forma-
tions consist of sandy fluvial deposits interbedded with floodplain mudstones, for a total
thickness of 1000 m. A vertical progression in the style of fluvial bodies has been early
recognized and extensively studied for integration in the geological model in an attempt
to match production data. Depending on the relative sea level variations, channel style
varies from proximal high energy braided channels located at the foothill of alluvial fans,
to more distal sinuous fluvial channels in a floodplain environment. Fluvial channels are
migrating laterally, the extent of the lateral migration being dependent on the slope of
the depositional paleotopography and the velocity of the current: at the foothill of al-
luvial fans, braided channels are confined and the channel belts they form are limited
in term of width (approximately 1 to 2 km wide); in the floodplain, channel belts be-
come wider (approximately 5 to 10 km wide) as the system is closer to the seafront, with
channels becoming more sinuous and meandering. The variations in the style of fluvial
bodies are accompanied by variations of facies and net-to-gross, grain sizes and poros-
ity, grain sorting and permeability. Subsequently, the reservoir formations have been
subdivided in a number of reservoir units displaying similar characteristics in terms of
channel geometry to fit to the subsurface observations: orientation, sinuosity, dimensions
(width, depth), and proportions over floodplain mudstones. Channel belts are typically
modelled with stochastic modelling techniques, most commonly with object-based mod-
elling which insures that the continuity and geometry of channels are preserved in the
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reservoir model. In association with channels, crevasse splays are modelled stochasti-
cally along the banks of the channel belts as elliptical patches in the different reservoir
units, with user defined variograms constraining the dimensions, orientation and con-
nectivity of the patches. One of the key issues is that the facies modelling process is not
constrained by seismic data. As a result, the position of channels in any layer is not con-
strained, and only submitted to the modeler’s appreciation. Through history matching, a
more adequate position of the channels can be deduced after numerous realizations are
tested but many of the scenarios can match the production data.

7.3 Integrated workflow

7.3.1 Fast modelling update (FMU) concept

For the facies modeling and estimation we use an integrated model workflow. The mod-
eling implementation is based on the Fast Model Update (FMU) work as presented by
Zachariassen et al. (2011) and Skjervheim et al. (2012). In the model workflow all the
model processes, from depth conversion to saturation modeling and model upscaling,
are organized in a consistent, repeatable and automatic workflow. Great care is taken
to ensure that changes in the data input, will result in a final reservoir model that is
consistent with the input. The data input used and the individual model building steps,
are the same as in a traditional model workflow. The real step change is that the model
workflow can be run in batch mode, without any human interactions. Some additional
scripting steps are included to make sure that the model workflow can be run in batch.

Figure 7.1: Integrated workflow
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7.3.2 Reservoir model building workflow

One of the main ingredients in a big-loop conditioning workflow is the implemented
model building workflow. This model building workflow consists of the following steps:

• Data preparation

• Structural modeling (horizons and faults)

• Gridding

• Well blocking

• Facies modeling

• Petrophysical modeling

• Upscaling

• Well modeling

• Export functions

These are all common modeling steps. But as mentioned above, each step has been
made able to handle and propagate uncertainty, from uncertainty in the structural frame-
work up till how this affects the well completion properties. The work presented here is
done using the Roxar RMS software. This tool allows for a flexible and robust model
building workflow. All the traditional steps are performed, but for some of them we use
some extra software tools and smart scripts to allow for representation of the uncertainty
in the input data. The facies modeling part of this workflow is of particular interest for
us, as it is here we implement the suggested adaptive plurigaussian simulation (APS)
method. The input to the facies modeling is the grid, the blocked well elements, infor-
mation from seismic data, and our prior knowledge of the geological concept.

7.4 Set-up of the field case and results

As mentioned in the introduction, the paper introduces a facies modeling process that
can be used in an integrated modeling workflow presented in the left side Figure 7.2.
We have a prior description of the subsurface geology for the reservoir, from different
sources (seismic surveillance, core interpretations, outcrops, etc.). This prior knowledge
is the result of reservoir exploration and is given by the experts (geologists, geophysi-
cists, etc.) in the initial stage of deposit geology description. This includes the number
of the facies types that occurs and the possible contact (transition) between the facies
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Figure 7.2: A visual representation of our integrated reservoir modeling workflow, with
a detailed presentation on the facies modeling workflow. (a) shows the facies probability
maps, (b) shows the random gaussian fields, (c) presents the truncation map and the
normal cumulative distribution function and (d) gives an example of a facies realization.

types. Based on all prior information collected (e.g. seismic, core analysis), an occur-
rence probability map can be created for each facies type (see Figure 7.2a). The proba-
bilities maps are constrained in each well on the observation of the facies type situated
in subsurface (hard data). In each map we have value "1" at the well locations where
the associated facies type occurs and value "0" at the well locations where the associated
facies type does not occur. These maps are representing the initial input for the facies
modeling process and they will not be changed throughout the whole process.

Moreover, these initial probabilities maps are honored and their geological properties
are kept throughout the generation and updating/conditioning process of the facies re-
alizations. This is ensured by the geological concept represented by the choice of two
GRF’s (Y1 and Y2 see Figure 7.2b). The two GRF’s are the control variables of our op-
timization process and will be updated by the available observations/measurements.
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For each grid cell of the domain, we create a bi-dimensional map, like in left side of
Figure 7.2c. We define this map as the simulation map. In this quadratic domain, the
total area is 1 and the area of the regions occupied by each facies type is equal with
the associated probabilities found in the maps provided by the experts. The distribution
of the regions in the square allows modeling the contact between any two facies type
and the topological characteristics of the facies types. At the well locations, the map
consists on a single square of surface 1, occupied by the facies type observed there.
Consequently, there might be some parts of the reservoir domain where only two facies
types occur (in terms of probabilities, only two probabilities are greater than zero). In
this case, the map contains only two rectangular regions, each with area equals with the
associated probability of the facies type that occupies the region.
Now, in each grid cell i, we need to simulate a facies type, conditioned to the probabil-
ities given by the experts. For that, we apply the APS model. We generate samples for
the Gaussian fields Y1 and Y2 and assign the facies type depending on where the point
(cdf(Y i

1 ), cdf(Y i
2 )) falls in the simulation map built for the grid cell i. We generate an

ensemble of 100 realizations conditioned to the probability maps provided by the experts
and the probability maps calculated from the ensemble is consistent with the originals
(Figure 7.3). In this manner we have defined an ensemble of facies maps realizations,
conditioned to the probability maps provided by the geologists. These realizations de-
pend only on the Gaussian fields used for simulations and are consistent with the facies
observations at the well locations.
After ensuring the above mentioned properties of the facies realization, another key is-
sues in a multiple realizations world is the variability of the prior ensemble ensemble,
which ensures that we are spanning the full uncertainty space (see Figure 7.4). Finally,
the applicability and the success of the implementation of APS methodology for a real
field case is shown by the fact that the facies realization obtained were more consistent
and closer with the geological concept and the hard and soft data than the ones obtain
previously for the same field using different methodologies (indicator kriging). In the
Figures 7.5, 7.6 and 7.7 realizations of facies maps obtained with the indicator krig-
ing (bottom left) and with the APS (bottom right) are shown. At the top of the figures
we present the realizations of the Gaussian fields that provide the facies maps with the
APS methodology. A valuable prior information is related to the relative position of
the crevasses (green) with respect to the floodplain (yellow) and the channel belt (red).
The crevasses are encountered mainly on the border of the channel belt. With a visual
inspection, one can observe that this restriction cannot be kept with the indicator krig-
ing methodology, whereas the APS methodology was able to provide facies maps with
plausible topology.
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Figure 7.3: The probability map of each facies type provided by the experts and the
probability maps calculated from the ensemble of 100 realizations

Figure 7.4: An example of 8 different members of the prior ensemble
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(a) 1a (b) 1b

(c) 1c (d) 1d

Figure 7.5: Gaussian fields for channel belt and the crevasse for layer 37 (1a and 1b);
Generated facies realizations with indicator kriging 1c and the APS methodology 1d
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(a) 1a (b) 1b

(c) 1c (d) 1d

Figure 7.6: Gaussian fields for channel belt and the crevasse for layer 85 (1a and 1b);
Generated facies realizations with indicator kriging 1c and the APS methodology 1d
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(a) 1a (b) 1b

(c) 1c (d) 1d

Figure 7.7: Gaussian fields for channel belt and the crevasse for layer 182 (1a and 1b);
Generated facies realizations with indicator kriging 1c and the APS methodology 1d



Chapter 8

Conclusions

This research focussed on new parameterizations of facies fields, which are coupled with
reliable AHM methods for geology estimation and uncertainty quantification. Two di-
rections have been used for facies fields generation: the plurigaussian simulation model
(TPS, Chapter 4, 5 and 7) and the multiple point geostatistical model (MPS, Chapter
6). For the TPS model, the parameterization is straightforward with the Gaussian fields
themselves, for the MPS model a parameterization is not easy to define. The parame-
terization proposed is carried out in a multidimensional Gaussian space by bridging the
TPS methodology with the MPS.

8.1 Conclusions

• In Chapter 4 we presented a new approach of the facies estimation problem with
EnKF, applied in the context of the truncated plurigaussian method. The trunca-
tion map that is used for generation of the facies maps arises from a probabilistic
approach of the facies type fields. Actually, each probability can be viewed as
a "distance" (to 0 or 1) that allows us to see how far we are to each facies type.
This "distance" does not expresses a remoteness from a border (such as in the
level set method) but shows the remoteness from two instances ("to be" which
is 1 and not "to be" which is 0). Starting with the assumption that the highest
"distance" to 0 gives us the facies type in a certain location, we have built a ge-
ological simulation model, which is further introduced in the EnKF context. The
model is tested for the case with three facies types occurring, with the property
that we could have transition between each two. The model is tested for different
geostatistical properties of the Gaussian fields and different levels of uncertainty
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introduced in generation of the model parameters. The novelty of the method has
three directions.

– The first one is related to the truncation map. In the previous studies, where
the truncation of two Gaussian fields has been made with a bidimensional
map, it was constructed in an empirical manner and including the assignment
of each facies types in the demarcated areas generated by the intersecting
lines of the map. The truncation map that appears in our study arises from the
internal construction of the model and also the assignment of the facies type
in each zone of the map. The map depends only on two parameters which, if
changed, perturb neither the geometry of the map, nor the assignment of the
facies types in the map zones. In addition, the parameters have the ability
to control the facies proportions. Consequently, the map parameters can
be introduced in the state vector for a better description of the uncertainty,
improving in the estimation process.

– The second is related to the observation operator of the facies type at the
well locations. In the previous studies the facies observation operator is a
proxy function which measures the affiliation of the pair of Gaussian fields
to a specific area, in terms of yes or no. In our study we use an operator
that measures the occurrence probability of each facies type. In this way we
have a multiple condition for the Gaussian fields, in the places where a facies
type occurs (the probability is 1) and in places where a facies type does not
occurs (the probability is 0). Consequently, our Gaussian field ensemble is
not conditioned to the map, but to the observations. From here arises the
third main difference.

– With the introduction of "the probabilities fields" in the context of the trun-
cation plurigaussian approach, we have tried to explain how the Gaussian
fields can be interpreted in the truncation simulation. In the past work the
Gaussian fields did not have a meaning, they were only useful for the facies
maps generation. With this new approach, we gave a meaning to the Gaus-
sian fields in the sense that their projection could be seen as probabilities. As
a consequence of the model (and hence, of the map), the probability maps
for each facies type calculated from the facies field ensemble are consistent
with the ensemble averages of each probabilities fields (Figure 4.9)

At the end of the assimilation period, as result of the parameters estimation, we are
able to offer a field, which we have named "estimated field", that is an estimator
of the truth field.
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• In the exploration phase a geological description of the subsurface is developed
by the geologists and geophysicists. One important feature is represented by the
facies probability maps obtained based on all available information (well logs,
seismic data etc.). In this study, we have introduced a methodology that relates
the work developed in the exploration phase with the data assimilation process, as
valuable prior information.
In Chapter 5, we have designed a geological simulation model in a plurigaussian
simulation context, which is able to sample facies maps from the prior proba-
bility maps of the facies types. We named the geological simulation model the
adaptive plurigaussian simulation (APS) model. The main differences with other
approaches involving Gaussian fields truncation/simulation resides in the way in
which the facies simulation/truncation maps are introduced and by the fact that
not only a single map is used. In our approach, we do not construct a truncation
map in the Gaussian space, but for each grid cell, we construct a map in a domain
of measure 1 of a metric space. We called this map the facies simulation map. The
map is based on the decomposition of the unitary domain in some zones assigned
to the facies types of which areas must be equal to the probabilities found in the
maps provided by the experts. The decomposition should be made in such a way
that the contact between the facies types and the topology of the facies field re-
flect the reality. Therefore, a layout and a parametrization of the simulation map
is needed. Consequently, the core information collected at the wells, being incor-
porated in the prior facies probability maps, will drive the simulation to always
provide the correct facies type. This means that, throughout all the assimilation
period, the facies types at the well location are not changed and satisfy the obser-
vations and is not necessary to include extra procedures to reposition the facies
types at the well locations, as in previous studies. To sample from the discrete
variable named "facies type", of which distribution is known, we connect the uni-
formly distributed variables with the Gaussian distributed variables through the
normal cumulative distribution function (cdf ) using the probability integral trans-
form. Based on the cdf projection we have created spatially correlated fields with
values in the [0,1] interval which at the starting point have uniform distribution.
For that, at initial ensemble generation the Gaussian fields are generated uncorre-
lated and unconstrained (stationary Gaussian random fields). This will ensure that
at each grid cell the facies type simulation will have the correct statistics at the
beginning of the data assimilation. At each grid cell, the facies simulation map
remains unchanged after each update being the object that relates the prior infor-
mation provided by the experts with the plurigaussian simulation methodology.
Basically, at the initial moment we simulate from the map with random variables
from uniform distribution on [0,1] and once the available measurements condition
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the model parameters, we sample from the same map with random variables with
values in [0,1] but not having the same uniform distribution. Keeping the simula-
tion map (for each grid cell) throughout assimilation process means two important
things related with the expert knowledge.

– Sampling from the same statistics at each moment but with variables (param-
eters) at the beginning unconditioned and then conditioned to measurements
(due the Bayesian inversion scheme)

– Keeping the topological request of the facies distribution.

An important novelty is the guiding direction that we constrain the EnKF to fol-
low, introducing the facies observations as measurements at each assimilation time
step. This extra constraint does not reduce the variability in the updated ensemble
drastically and only ensures that the ensemble goes in the right direction.

• In Chapter 6 we have presented a new parameterization of facies fields generated
using multi point statistics (MPS). Since the truncated (pluri) Gaussian method is
well suited for facies updating with ensemble methods, but struggles with chan-
nel structures (since the variogram has to be specified) we suggested estimating a
marginal facies probability field from an ensemble generated using MPS, which
is well suited for channel type reservoirs, and parameterize this probability field
with a truncated marginally Gaussian field preserving the facies probabilities. The
advantage is that the dependence structure is inherited from the training image
and do not have to be specified. Again we stress that prescribing an analytical
covariance function that generates channels in combination with a truncation map
is (probably) an impossible task. Since the result is a truncated Gaussian field it
is well suited for ensemble based methods and we are guaranteed that the updated
permeability fields are facies fields without specifying a truncation. In addition,
we combined the parameterization with the iterative adaptive Gaussian mixture
(IAGM) filter for ensemble based Bayesian inversion. There were two main rea-
sons for this. First, the IAGM is more suited for highly nonlinear problems then
the EnKF, secondly, the IAGM has a resampling step which allowed us to use the
already existing technique of resampling from the training image using updated
probability maps. However, since the IAGM can run assimilate all the data sev-
eral times, there is no need for resampling after each update step and we only have
to perform resampling after each iteration (typically 2-4). We performed exper-
iments on two channel type synthetic reservoirs and the conclusion drawn from
the experiments were the same. The combination of the parameterization and the
IAGM resulted in an advantage over existing methods in the sense that after a
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few iterations, the updated fields was able to keep the channel structure without
performing another resampling. Since the parameterization guarantees that the
updated fields are facies fields, the output of the algorithm was an ensemble of
channelized reservoir models that had low data mismatch and good predictive ca-
pabilities. If we had worked directly with log-permeability fields with we have to
make a compromise.

• In Chapter 7 we have presented a proof of concept for the APS methodology by
successfully implemented it and got very reliable results for a real field case in
the North Continental Shelf (NCS). We have obtained realistic facies simulations
for a real field case, consistent with the hard and soft data as well as with the
geological concept. This simulation process is repeatable and automated/assisted
by being integrated in the Fast Modeling Update (FMU) framework of the big
loop conditioning philosophy. We are proposing an integrated workflow for facies
generation and estimation using a simulation model that is able to create a link
between the mathematical theory and real world.
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Summary

An important key in reservoirs engineering is the development of reliable reservoir mod-
els with high predictive capacity of production behavior in the existing and new drilled
wells. The reservoir predictability is the starting point for guiding the production plan
to an optimum. In order to achieve this, the internal geological description of the reser-
voir plays a crucial role. When referring to the internal geological description of the
reservoir, one may think of a description of the spatial distribution of the petrophysical
properties (permeability and/or porosity) or more natural, on a description of the spatial
distribution of the geological deposit formations (facies). The prior modeling of the fa-
cies distribution is carried out using geostatistical tools in specialized modules, defining
thus, the geological simulation model and its uncertainty. The choice of the geological
simulation model for facies field simulation takes into account the geological particular-
ities of the reservoir. Irrespective of the geological simulation model used, the poorly
knowledge of geology leads to an initial reservoir model whose parameters are uncer-
tain. This prior uncertainty is usually so large that the predictive capacity is limited. To
improve the predictive capacity, the prior uncertainty is reduced in an Assisted History
Matching (AHM) process. To be able to couple the geological simulation model with
an AHM method, a parameterization of the facies fields is needed. The research ob-
jective of this thesis was to elaborate reliable parameterizations of the facies fields in a
such manner that, introduced in an AHM process, the updates to be able to: match the
past data within the model and measurement uncertainties; incorporate all types of infor-
mation (different measurement types) and preserve the geological realism (consistency
with the initial geomodel). The research was oriented in two directions, depending on
the geological simulation model used.

In the context of truncated plurigaussian simulation model (TPS) two methodologies
were elaborated. The first methodology is tailored for cases where probability maps of
the facies occurrence are not available, but only geometrical and topological informa-
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tion. In this case, we parameterized the binary field defined by each facies type with a
new object denoted "the probabilities field". The probabilities fields are defined by pro-
jection of Gaussian fields in [0,1] interval with a piece-wise linear projection function.
We have created a geological simulation model, placed in the broader TPS methodol-
ogy, with a truncation map not user defined but arising from the internal construction of
the model. The AHM method used in this case is the Ensemble Kalman filter, condi-
tioning the model parameters to production data (bottom hole pressures at the injectors
and oil and water rates at the producers) and hard data (facies observations at the well
locations). The conditioning on hard data was performed within an iterative process us-
ing a probabilistic operator of the facies occurrence. In addition, is the first time when
the parameters that define the truncation map are introduced in the estimation process,
showing improvement in the uncertainty quantification of the facies distribution.

The second methodology is reserved for the case where probability maps of the fa-
cies occurrence are available from a prior investigation carried out in the exploration
phase of geology description. We introduced a geological simulation model for simula-
tion of the facies fields so that the probability maps of the facies occurrence calculated
from an ensemble to be consistent with the given probability maps. The simulation is
realized at the grid cell level using uniform distributed variables, from a geometrical map
designed in an unitary domain. The map layout is chosen so that the simulated facies
fields obey to geometrical and topological requirements. The uniform variables used for
facies simulation are obtained by projection of Gaussian fields with the cumulative dis-
tribution function. We called the geological simulation model the adaptive plurigaussian
simulation model (APS). We coupled the APS model with the EnKF obtaining updates
for the facies probability maps together with an uncertainty quantification of the geol-
ogy. The model parameters (the Gaussian fields) are constrained to production data and
global facies proportions for a better quantification of uncertainty. The model was tested
on two synthetic models with different complexity and one real field, reporting promis-
ing results.

The second research direction refers to channelized reservoirs, modeled with a MPS
geological simulation models (SNESIM). We present a new parametrization of the facies
fields, which is further coupled with the iterative adaptive Gaussian mixture (IAGM) for
history matching. The parameterization bridges ideas from MPS and TPS. The standard
TPS parameterization ensures that the updated fields are facies fields, however, since the
field is jointly Gaussian it is not trivial to characterize channel type facies structures via
a covariance function (or variogram) in combination with a user defined truncation map.
The MPS approach has the advantage of simulating channel type random fields, how-
ever, they are discrete-valued and it is not trivial to connect this with ensemble based
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inversion. We therefore suggest a combination of the two parameterizations. By es-
timating marginal facies probabilities from a sample from MPS in combination with a
training image, we parameterize the marginal probability field with a (marginally) Gaus-
sian random field where the truncation map is defined such that the integral for a facies
type in a given grid cell in the Gaussian domain coincides with marginal grid cell facies
probability estimated from the ensemble. In addition, we combined the parameteriza-
tion the iterative adaptive Gaussian mixture filter for ensemble based Bayesian inversion.
There are two main reasons for this. First, the IAGM is more suited for highly nonlinear
problems then the EnKF, secondly, the IAGM has a resampling step which allowed us to
use the already existing technique of resampling from the training image using updated
probability maps.



Samenvatting

En belangrijke component in reservoir technologie is de ontwikkeling van betrouwbare
reservoir modellen met een hoog voorspellend vermogen van het productie gedrag in
bestaande en nieuw geboorde putten. De voorspelbaarheid van het reservoir is het uit-
gangspunt voor een optimaal productie plan. De geologische beschrijving van het reser-
voir speelt een cruciale rol om dit te bereiken. Bij een geologische beschrijving kan men
denken aan een omschrijving van de ruimtelijke verdeling van de petrofysische eigen-
schappen (permeabiliteit en/of porositeit) of meer gangbaar, een omschrijving van de
ruimtelijke verdeling van de geologische afzettingen (facies). Het voorafgaande mod-
elleren van de facies verdeling wordt gedaan in gespecialiseerde modellen met behulp
van geostatistische technieken, waardoor de onzekerheid van het geologisch simulatie
model zodoende hier wordt gedefinieerd. In de keuze van het geologisch simulatie
model voor simulatie van facies velden wordt rekening gehouden met de geologische
bijzonderheden. Een slechte kennis van de geologie leidt, ongeacht welk geologisch
model wordt gebruikt, tot een reservoir model waarvan de parameters onzeker zijn. Deze
voorafgaande onzekerheid is normaal gesproken zo groot dat het voorspellend vermogen
beperkt is. Om het voorspellend vermogen te verbeteren wordt de voorafgaande onzek-
erheid verminderd in een Assisted History Matching (AHM) proces. Daarvoor is een
parametrisering van facies velden noodzakelijk zodat het geologisch simulatie model
verbonden kan worden met een AHM methode. Het doel van dit proefschrift is om een
betrouwbare parametrisering van facies velden te ontwikkelen zodat de updates, gein-
troduceerd in het AHM proces, in staat zijn: de bestaande gegevens in het model en
de meet onzekerheden te matchen; alle soorten van informatie the verenigen (verschil-
lende type metingen) en geologisch realisme te behouden (in overeenstemming met het
oorspronkelijke geologisch model). Het onderzoek was georienteerd in twee richtingen,
afhankelijk van het gebruikte geologisch simulatie model.

Twee methoden werden ontwikkelend in de context van afgeknotte meervoudige
gaussische simulatie modellen (TPS). De eerste methodologie is gericht op gevallen
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waar geen waarschijnlijkheidskaarten van facies voorkomen beschikbaar zijn, maar alleen
geometrische en topologische informatie. In dit geval wordt het binaire veld
geparametriseerd en gedefinieerd door elk facies type met een nieuw object, aangeduid
als "het waarschijnlijkheidsveld". Deze waarschijnlijkheidsvelden werden gedefinieerd
door een projectie van de gaussiche velden in een [0,1] interval met stuksgewijze lineaire
projectie functie. Een geologisch simulatie model is gecreeerd, geplaatst in breed TPS
model, met een afgeknotte kaart niet gedefinieerd door de gebruiker, maar voortgekomen
uit de interne constructie van het model. De AHM methode gebruikt in dit geval is de
Ensemble Kalman filter (EnKF), waarin de parameters van het model worden gecon-
ditioneerd aan productie data (onderste put druk van de injectoren en de olie en water
snelheden van de producenten) en harde gegevens (facies waarnemingen in de put). De
conditionering op harde data werd uitgevoerd door een iteratief proces met behulp van
een waarschijnlijkheidsoperator van facies voorkomen. Het was ook de eerste keer dat
de parameters die de afgeknotte kaart definieren werden geintroduceerd in het schat-
tingsproces en verbetering vertoonden in de onzekerheid kwantificering van de facies
distributie.

De tweede methode is gericht op gevallen waar de waarschijnlijkheidskaarten van fa-
cies voorkomen, verkregen uit een voorafgaand geologisch onderzoek, beschikbaar zijn.
In deze methodiek werd een geologisch simulatie model geintroduceerd voor facies sim-
ulatie velden waar de waarschijnlijkheidskaarten van facies voorkomen berekent van een
ensemble in overeenstemming zijn met de voorafgaande waarschijnlijkheidskaarten. De
simulatie wordt gerealiseerd op grid cel niveau van een geometrische kaart ontworpen
in een unitair domein met behulp van uniform verdeelde variabelen. De lay-out van
de kaart is gekozen zodat de gesimuleerde facies velden voldoen aan de geometrische
en topologische voorwaarden. De uniforme variabelen gebruikt voor de facies simu-
latie werden verkregen door een projectie van gaussische velden met een cumulatieve
distributie functie. Wij noemen het geologische simulatie model het adaptieve meer-
voudige gaussische simulatie model (APS). Het APS-model wordt gekoppeld aan EnKF
verkregen actualisering voor de waarschijnlijkheidskaarten van facies voorkomen samen
met een onzekerheid kwantificering van de geologie. De model parameters (de gaus-
sische velden) werden geconditioneerd aan productie gegevens en globale facies ver-
houding voor een betere kwantificering van de onzekerheid. Het model werd getest op
twee synthetische modellen met verschillende complexiteit en een daadwerkelijk veld,
de uitkomsten toonde veelbelovende resultaten.

De tweede onderzoek richting concentreerde zich op gekanaliseerde reservoirs,
gemodelleerd met MPS geologische simulatie modellen. Wij presenteren een nieuwe
parametrisatie van facies velden die worden gekoppeld aan de iteratieve adaptieve gaus-
sische mix (IAGM) voor geschiedenis conditionering. De parametrisering overbrugt
ideeen van MPS en TPS. In de standaard TPS parametrisering zijn de facies velden de
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geactualiseerde velden, het veld is echter gedeeltelijk gaussisch waardoor het niet trivi-
aal is om gekanaliseerde facies structuren te karakteriseren door een covariante functie
(of variogram) in combinatie met een door de gebruiker gedefinieerde afgeknotte kaart.
De MPS benadering heeft het voordeel van willekeurige veld simulatie van een kanaal
type, ze hebben een discrete waarde en het is niet triviaal om deze te verbinden met een
ensemble gebaseerde inversie methode. Wij stellen daarom een combinatie van twee
parametrisaties voor. Door het schatten van de waarschijnlijkheid van marginale facies,
van een monster van MPS in combinatie met een trainingsafbeelding, parametriseren wij
de marginale waarschijnlijkheidsveld met een (marginale) willekeurig gaussisch veld
waar de afgeknotte kaart wordt gedefinieerd door de integraal van een facies type in
een bepaalde grid cel in het gaussische domein samenvalt met waarschijnlijkheid van de
marginale grid cel facies die geschat wordt op basis van de ensemble. Daarnaast hebben
wij de parametrisering van de iteratieve adaptieve gaussische mix filter gecombineerd
voor een ensemble gebaseerde Bayesian inversie. Hiervoor zijn twee belangrijke rede-
nen. Allereerst, de IAGM is meer geschikt dan EnKF voor zeer niet lineaire problemen,
ten tweede, de IAGM heeft een herbemonsteringsstap die het toelaat om een trainingsaf-
beelding te hermonsteren met behulp van geactualiseerde waarschijnlijkheidskaarten.
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