
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Interfacing with an
open-hardware vector
network analyser
EE3L11: Bachelor Graduation Project
M.J.A. Langenberg and S.P.N. Schaap

Interfacing with an
open-hardware
vector network

analyser
by

M.J.A. Langenberg and S.P.N. Schaap

in partial fulfillment of the requirements for the degree of

Bachelor of Science

in Electrical Engineering

defended on Friday June 21, 2024 at 09:30 a.m.

Students: M.J.A. Langenberg 5557313
S.P.N. Schaap 5597781

Project supervisor: Prof.dr. G. Steele TU Delft
EEMCS supervisor: Dr.ir. N. Haider TU Delft
Thesis committee: Prof.dr. G. Steele TU Delft

Dr.ir. N. Haider TU Delft
Dr.ir. J.S.S.M. Wong TU Delft

Cover: Red Pitaya STEMlab 125-14, SynthHD V2 by Windfreak Tech-
nologies LLC, Mini-Circuits ZFRSC-42-S+ splitter and Mini-
Circuits ZEM-4300MH+ Mixer connected by coaxial cables

Style: TU Delft Report Style, with modifications by D. Zwaneveld and
M.J.A. Langenberg

Preface

The last two months have been dedicated to working on the bachelor thesis you have in front of you.
This project, conceived by Gary Steele, has involved tremendous effort to present a working prototype
and to prove the concept.

We would like to extend our heartfelt thanks to Gary Steele, Nadia Haider, and Stephan Wong for
their invaluable support and guidance, which were instrumental in making this project a success in our
eyes. We are proud of how far we have come and how much we have learned over this period.

Additionally, we want to thank Ruben Dirkzwager, Anne Hinrichs, Maarten Oudijk and Samet Öztürk
for their excellent teamwork and collaboration throughout this project.

M.J.A. Langenberg and S.P.N. Schaap
Delft, June 2024

i

Abstract

For microwave qubit readout in research applications, a Vector Network Analyser has been designed.
The objective of this project was to design and build a modular, extensible VNA, containing open hard-
ware and implemented in open-source software.

This thesis discusses the Python implementation of an interface between the digital signal processing
step, taking place inside an FPGA, and the output of data to the user, being in graphical form and as
systematical data structure to be stored on a PC. The interface is split up into a server, responsible for
communicating with the FPGA on the same chip, and a client, which receives the measurement data
from the server via the Transmission Control Protocol and controls the radio frequency signal genera-
tors that serve as stimulus for the device under test and as local oscillator for downconversion.

An overview of VNAs and their application in this project is given in the first chapter. The programme
of requirements and implementation overview are discussed next, followed by detailed explanations
of the Python implementation of the server and client software. The achieved results satisfy the re-
quirements for throughput, extensibility and data transfer overhead time. The thesis concludes with
recommendations for future developments and extensions to this project.

ii

Contents

Nomenclature v

1 Introduction2 1
1.1 VNA, a general overview . 1
1.2 Application in quantum research . 3
1.3 Existing solutions . 4
1.4 Functional requirements . 5
1.5 Materials . 5
1.6 Problem definition . 6

2 Specific requirements 7
2.1 Functional requirements . 7
2.2 Objectives . 8

3 Program structures 9
3.1 Server-side program . 9
3.2 Client-side program . 10

4 PS/PL interface 12
4.1 Before communication . 12
4.2 DMA: continuous data streaming . 12

4.2.1 Averaging . 12
4.2.2 Python implementation . 13
4.2.3 Throughput . 13

4.3 MMIO: configuration . 14
4.4 Software testing . 15

5 TCP 16
5.1 Data transmission protocol . 16
5.2 Communication protocol . 16
5.3 Python implementation . 17
5.4 Throughput . 18

6 Generator communication 20
6.1 SCPI . 20
6.2 VISA . 22
6.3 Physical connection . 22
6.4 Windfreak SynthHD . 22

7 GUI 24
7.1 PySide . 24
7.2 Jupyter . 24

7.2.1 Implementation . 24

8 Conclusion & discussion 26
8.1 Conclusions about the Python software . 26
8.2 Recommendations . 26

References 28

A Source code 30
A.1 Server-side program . 30

2This chapter is shared between the three theses written by the three subteams of the project.

iii

Contents iv

A.1.1 Data processing module . 30
A.1.2 TCP server module . 34
A.1.3 Communication and PS/PL protocol module . 38
A.1.4 Helper module . 39
A.1.5 Main server script . 40
A.1.6 Mocked PYNQ module . 40
A.1.7 Tests for data processing module . 42
A.1.8 Tests for TCP server module . 43

A.2 Client-side program . 44
A.2.1 Application programming interface . 44
A.2.2 Plotting module (for testing) . 50
A.2.3 TCP client module . 52
A.2.4 AnaPico APUASYN generator module . 54
A.2.5 Hittite HMC_T2100 generator module . 57
A.2.6 Jupyter GUI . 59
A.2.7 Windfreak SynthHD generator module . 63
A.2.8 Windfreak SynthHD API . 67
A.2.9 Old PySide windowed application . 77
A.2.10 Old PySide graphs . 79
A.2.11 Old PySide windowed application . 80

Nomenclature

Abbreviations
abbreviation definition / description

ADC Analog-to-Digital Converter
API Application Programming Interface
DMA Direct Memory Access
DRAM Dynamic Random Access Memory, stores data used by SoC
DSP Digital Signal Processing
DuT Device under Test
EMW Electromagnetic Wave
FPGA Field Programmable Gate Array
GPIO General Purpose Input/Output
GUI Graphical User Interface
hwh hardware handoff, file extension
IF Intermediate Frequency (EMW)
ipynb interactive Python (Jupyter) notebook, file extension
IQ In-phase and Quadrature-phase components of a sinusoid
IVI Interchangeable Virtual Instruments (foundation)
LAN Local Area Network
LO Local Oscillator
MMIO Memory-Mapped Input/Output
NI-VISA National Instruments VISA
PL Programmable Logic, using FPGA technology
PS Processing System
-Py- Python prefix or suffix
REF Reference signal, not going through the DuT
RF Radio Frequency (EMW)
SCPI Standard Commands for Programmable Instruments
SDR Software-Defined Radio
SMA SubMiniature version A, type of connector for coaxial cables
SoC System on Chip, combination of PL and PS
SQUID Superconducting Quantum Interference Device
TCP Transmission Control Protocol
ui user interface (also used as file extension)
USB Universal Serial Bus
VISA Virtual Instrument Software Architecture
VNA Vector Network Analyser
VSA Vector Signal Analyser

v

Contents vi

Units
unit symbol meaning

b bit
B byte
°C degrees Celsius
dB decibel
dBc decibel, used for power ratio to carrier signal
dBm decibel, compared to 1 milliwatt
Hz hertz (s−1)
s second
V volt

1
Introduction1

1.1. VNA, a general overview
A Vector Network Analyser (VNA) is a device that sends an electromagnetic wave (EMW) at a known
frequency and amplitude through a Device under Test (DuT) or network, and records the reflected and
transmitted waves [1]. The recorded waves are compared to the transmitted wave to derive a vector
output, giving the change in amplitude and phase caused by the DuT.

Figure 1.1: S-parameters [2]

The reflected EMW, transmitted EMW and the EMW that is sent by the VNA, which from now on can
be referred to as the reference signal, can be represented using two sinusoidal waves: an in-phase
cosine (I) and a sine, shifted by 90 degrees compared to I, referred to as the quadrature wave (Q).
These waves are combined to form a complex mathematical IQ representation: 𝐼 + j𝑄.

The change caused by a DuT in its reflection and transmission of the reference signal are quantified by
scattering parameters, or S-parameters, which are a form of network parameters. For a two-port DuT,
the S-parameters can be put inside a 2×2-matrix [3], shown in figure 1.1. These parameters contain
information about both the phase and amplitude change caused by the DuT, in a complex form. They
are obtained by complex division of the reflected or transmitted signal by the reference signal, such as
in equation (1.1).

𝑆21 =
𝑏2
𝑎1
= 𝐼trans + j𝑄trans

𝐼ref + j𝑄ref
(1.1)

For this project, this 𝑆21 transmission parameter is of interest, which relates the transmitted signal (𝑏2
in figure 1.1) to the reference signal (𝑎1).
VNAs have two main procedures to test a DuT. The first procedure is called frequency sweep, where
an EMW is sent with a constant power and a frequency changing over a short time span in predefined

1This chapter is shared between the three theses written by the three subteams of the project.

1

1.1. VNA, a general overview 2

steps. This procedure is used to determine the frequency dependence of the reflection and transmis-
sion parameters of the DuT. The second procedure is a power sweep, where an EMW is sent with
constant frequency and a power changing over a short time span. This procedure is used to determine
the power transfer of the DuT at different input powers. For this project, only the frequency sweep is of
interest, and implementation of power sweeping is left to future projects.

Figure 1.2: Block diagram of a simple VNA, [4]

The internal working of a general simple VNA is shown in figure 1.2. An RF stimulus coming from
port 1 is provided to a DuT, which is connected between port 1 and port 2 (not shown in the figure).
The stimulus is passed through a bridge (directional coupler), which splits the EMW in forward- and
backward-going waves, which takes this signal as reference (Ref). This reference signal is demodu-
lated into a lower frequency IF signal (intermediate frequency) using a mixer and a local oscillator (LO).
The intermediate frequency is determined by the difference in frequency of the LO and the incoming
signal. The reflected EMW coming from the DuT will be split off as the “Inc”-signal by the bridge at
port 1, and the transmitted wave as the “Inc”-signal at port 2. They then go through the same process
as the reference signal, to obtain two more IF signals. The same process can also be done with a
RF stimulus coming from port 2, producing another reference, transmission and reflection IF signal,
to study the effects of the DuT in two directions by finding other S-parameters. It must be noted that
some of the functionality of the general VNA of figure 1.2 are omitted in the VNA of this project, as will
become clear from the functional requirements in section 1.4.

All IF signals are then digitised in analog-to-digital converters (ADCs) and processed in the Digital
Signal Processing unit (DSP). In the DSP unit, the four S-parameters are calculated by doing complex
divisions such as the one in equation (1.1). After that, the data can be retrieved via a data bus such as
USB, or be immediately shown on a screen.

1.2. Application in quantum research 3

1.2. Application in quantum research
A Transmon qubit is a type of superconducting charge qubit. It consists of a superconducting quantum
interference device (SQUID), a non-linear inductive element made of two superconductors separated
by a thin insulating barrier, and a shunting capacitor 𝐶t. The SQUID consists of two Josephson junctions
in a loop. The Josephson junctions provide the non-linear inductance necessary to create quantised
energy levels with nonuniform spacing (also known as anharmonicity). Anharmonicity is the key to con-
fining the dynamics of multi-level quantum system (such as a Transmon) to within a two-level subspace
when it is driven.

Being able to confine the dynamics within a two-level subspace is important, because it simplifies
the system to a manageable quantum bit, or qubit, which is the fundamental unit of information in
quantum computing. This confinement allows for clear distinction between the two states, |0⟩ and |1⟩,
necessary for reliable quantum operations and algorithms. It also reduces the likelihood of leakage into
higher energy states, which can lead to errors and decoherence, thus improving the overall stability and
performance of quantum circuits. The primary role of the shunting capacitor is to increase the charging
energy relative to the Josephson energy, which mitigates the effects of charge noise and enhances the
robustness of the qubit.

Figure 1.3: Transmon qubit coupled to a resonator [5]

Figure 1.3 shows the lumped element model of the Transmon qubit coupled to a resonator. The res-
onator is implemented as a waveguide (here modelled as a single inductance 𝐿r and capacitance 𝐶r).
The resonator is the mechanism by which the qubit is read out, so it is also called the readout resonator.

The key to the microwave readout is sending a calibrated microwave pulse towards the resonator.
This pulse is typically set at or near the resonator’s base frequency 𝜔r, but the qubit-state-dependent
frequency shift (either to 𝜔r−𝜒 or to 𝜔r+𝜒) affects how this pulse interacts with the resonator. Reading
out a qubit in practice is done by the use of a Vector Network Analyser. Qubit measurement can be
performed by taking the superconducting qubit circuit as the device under test (DuT) and measuring
its 𝑆21 parameter. This parameter helps to determine changes in the microwave signal due to the
qubit-state-dependent frequency shift, thereby enabling the measurement of the qubit state.

In figure 1.4, an actual picture of the Transmon qubit can be seen, together with the readout resonator
and what a successful readout looks like. In figure 1.5, a more schematic representation of the readout
procedure is shown.

1.3. Existing solutions 4

Figure 1.4: Left: image of a real Transmon qubit and the attached readout resonator;
right: amplitude of transmitted signal through the qubit as a function of applied frequency [5]

Figure 1.5: Readout of a Transmon qubit [5]

1.3. Existing solutions
Commercial VNAs from companies like Keysight and Tektronix are often quite expensive, having price
tags of several tens of thousands of euros [6]. This is in large part due to their accuracy combined with
a large frequency range which extends into multiple gigahertz, which requires expensive components.
Extensibility is provided with equally expensive options, but the devices offer limited flexibility since
users are limited to the offerings of the company for that specific model.

Cheaper options are available too, in the price range of a hundred to several hundreds of euros, but
these options provide a narrower frequency range and lower accuracy [7]. Being sold in a single pack-
age, these options also do not offer much extensibility without having to study the (often open-source)
documentation thoroughly.

In the field of quantum computing, VNAs are sold as quantum controllers [8][9]. These systems offer
most of the flexibility that is required for qubit research, but have prices in the range of hundred thou-

1.4. Functional requirements 5

sands of euros. This is the case because of their very high accuracy and very large frequency range.

To offer much higher flexibility than the mentioned VNAs, and low to moderate prices, there have been
projects on VNAs using SDR (Software-Defined Radio) technology, which recreates (expensive) ana-
logue EMW components in software [10]. This can be done using for example a field programmable
gate array (FPGA) to obtain even higher flexibility and processing speed. A hobbyist’s attempt to cre-
ate a VNA using SDR technology on an FPGA is well-documented on the internet [11]. There has also
been a paper on an FPGA-based alternative for a VNA used for imaging in industry in the range of
200 GHz [12]. Recently, there has also been an effort to create a VNA or quantum controller using SDR
technology on an FPGA [13].

1.4. Functional requirements
The requirements for the VNA of this project select the basic VNA functionality which is most useful for
the application of interfacing with qubits. Omitting other functions of a commercial VNA is what makes
it possible to offer a cheaper and more modular system. The system can be made using off-the-shelf
RF components, an FPGA and a RF signal generator. Both the hardware design for the FPGA and
the interfacing software are made open-source, to make the VNA available and customisable in the
research sector. To make the interaction with the VNA understandable for the researchers, Python
code is used for the user interface and API. The qualitative requirements of the entire VNA are shown
below:

1. The system must have the ability to measure the 𝑆21 (transmission) parameter.
2. The system must be modular, so the system should work with most RF generators without any

adjustments.
3. The system must be designed in such a way that it is usable by students and researchers without

experience in electrical engineering.

The absolute calibration of the device is not important. It will only be used for relative measurements,
because the 𝑆21 parameter is just a ratio between input RF signals (through-DuT or reference) and the
output RF signal of the VNA.

Besides these qualitative, there are also quantitative requirements for the system:

1. The operating frequency range must be at least 4−8 GHz.
2. Integration time per measurement point:

• upper limit: up to 1 second per point (1 Hz IF bandwidth).
• lower limit: down to 1 millisecond per point (1 kHz IF bandwidth).

3. Transfer overhead time to transmit the data from the FPGA to the client must be less than 10 %
of the total measurement time.

4. Spurs of the signal going to the device under test must be less than 40 dBc.
Then there are some optional objectives, or should-have features, that the project should aim to achieve:

1. The system should be responsive for a human user by having a time under 100 ms between a
user input/output event and a physical event happening.

2. As much open-source software as possible should be used for the project.

The specific functional requirements for the current subteam will be covered in next chapter.

1.5. Materials
A Red Pitaya STEMlab 125-14 board was used for the FPGA section, which is described as a signal
acquisition and generation platform. This device contains a Xilinx Zynq 7010 System on Chip (SoC)
and several connectors, such as an ethernet port, USB port, GPIO pins and four RF SMA connectors (2
input; 2 output). The SoC contains both programmable logic (PL), which uses the technology of a field

1.6. Problem definition 6

programmable gate array (FPGA), and a processing system (PS), which contains an ARM dual-core
processor.

For the RF section, SMA coaxial cables, RF mixers and power splitters from Mini-Circuits have been
used, as well as the following RF signal generators:

• A SynthHD (V2) 10MHz - 15GHz Dual Channel Microwave Generator byWindfreak Technologies,
LLC. With its two output channels, it produced both the RF stimulus signal and the RF LO signal,
in one package with a single API. This generator degraded to an extent which made in unusable
for the VNA, which is why it was replaced halfway the project by the following two RF generators:

• An HMC-T2100 10 MHz - 20 GHz synthesized signal generator by Hittite Microwave Corporation
(now from Analog Devices, Inc.), which was used for the stimulus signal.

• An APUASYN20 8 kHz - 20 GHz Ultra-Agile Signal Source by AnaPico AG, which was used as
LO.

1.6. Problem definition
To achieve the functional requirements, several engineering problems had to be solved. For this, three
teams or subgroups of two students each have been formed: the RF team, the FPGA team and the
software team. The RF team had to downconvert the RF signals going to the DuT and REF to IF,
which then could be digitised by the ADC on the Red Pitaya and used as digital input for the FPGA
team. Generators, mixers and power splitters had to be chosen which would work best to achieve the
requirements. Moreover, the behaviour of these components had to be measured and documented as
well as the entire power budget throughout the system. The signals that were digitised at the input of
the Red Pitaya had to be converted into IQ signals by the FPGA team. Averaging was done on the
FPGA to achieve the IF bandwidth requirements. Another engineering problem for the FPGA team,
together with the software team, was the communication between the PL and the PS. Data from the PL
had to be sent to the software team while control instructions from the software team had to be read by
the PL. The software team also had to create an interface between the user and the VNA. An API and
a graphical user interface (GUI) were developed for this interaction, which were part of a client program
written in Python. This client also had to communicate with a Python server program running on the
PS of the Red Pitaya’s SoC. A schematic of the entire arrangement is shown in figure 1.6.

Figure 1.6: Simplified structure of input/output scheme of each team in the project

2
Specific requirements

This thesis covers the interfacing of the users with the VNA. This is done using software, consisting of
a client program running on a PC, and a server-side program running on the ARM processor, from now
referred to as processing system (PS), of the Red Pitaya. The programme of requirements covered in
this chapter applies to these two programs.

2.1. Functional requirements
The qualitative requirements of the software, which are must-have features and must-meet constraints,
are as follows:

1. The client must be able to control the RF generator(s).
2. The server must be able to transfer data from the programmable logic (PL) to the client.
3. The client must be capable of distinguishing and using only data from the PL that is obtained with

all components in steady state.
4. The client must be able to send the following acquisition configuration parameters to the pro-

grammable logic (PL): time per measurement point and RF generator dead time1.
5. The client-side program must use Python as programming language, as its intended users in

the research group are familiar with it, which makes it understandable and extensible with new
functionality.

6. The software should be developed in the time span of at most 280 hours (7 full working weeks),
since the project is worth 10 European Credits, each of which is equivalent to 28 study hours.

The software also has these quantitative requirements to achieve, which are must-meet constraints as
well:

1. The transfer of data from the PL to the client should not limit the measurement rate. Because
of that, the throughput through the server-side program and the receiving part of the client-side
program should at least be large enough to handle 1000 measurement points per second.

2. The total overhead in transfer time from the Red Pitaya’s memory (DRAM) to the client-side data
storage should be less than 10 %. In other words, when a series of measurement points of
1000 ms is transferred, the VNA should not have to wait for more than 100 ms to start a new
measurement.

1These are defined in table 4.1

7

2.2. Objectives 8

2.2. Objectives
The software developed in this project has the following objectives, which are should-have features.
Although these objectives are optional and less strict than the requirements, they are still important
for creating intuitive software programs for the users, and the project should therefore aim to achieve
them.

1. The server and client should use and be developed as open-source software.
2. The total time from the trace (a series of IQ-measurement points) being ready to collect from the

Red Pitaya’s memory (DRAM) to it being transferred to the client should be less than 100 ms to
make the VNA responsive enough for a human user.

3. There should be functions for for saving data and metadata in a .h5 file, which is a systematic
format known by the intended users.

4. An interactive Jupyter notebook GUI should be created, which displays the data that the client
receives from the server in a plot and allows users to set parameters for a measurement. This
removes the necessity of manually creating programming code for quick first tests.

3
Program structures

This chapter covers the general layout of the server-side and client-side programs. Both programs were
written in Python code, which is a programming language that is used on a regular basis by the intended
users. This makes it easy for the researchers to extend the programs for their specific purposes. This is
especially important for the client-side program, because it allows for attaching different RF generators,
adding measurement configurations or collecting the measurement data in specific formats.

3.1. Server-side program
The problem that the server-side Python program has to solve, is to get the accumulated raw data from
the programmable logic to the client. As mentioned in chapter 2, the requirement on the total transfer
time is to have an transfer overhead of less than 10 percent. To make the transfer time as low as
possible, it was chosen to build a data pipeline in the server-side program. The objective to make the
VNA responsive for the user, in which the total data transfer should take less than 100 milliseconds, is
also met by using a pipeline. This is the case since the data is not sent all at once to the client, but in
parts with a certain number of measurement points, which makes the latency per measurement point
smaller. Therefore, when the pipeline is optimised, the total data transfer time only depends on the last
part of data being transferred from server to client.

In figure 3.1, an overview of the implementation is shown. The raw data comes from the programmable
logic and ends at the client. It is required for the throughput through the server-side program to be at
least a thousand measurement points per second. To achieve this, Direct Memory Access (DMA) is
used for the first stage of the pipeline. DMA is specifically designed for fast and continuous data stream-

Queue
(threaded)

Programmable
Logic (PL)

Python
client

PS/PL
configuration

interface

DMA DRAM
of SoC

DMA
TCP

configurationMMIO

Python program on Processing System (PS)

TCP
server

Figure 3.1: Overview of the server-side Python program with its in- and outputs;
stream of acquired data indicated by green arrows

9

3.2. Client-side program 10

ing [14]. The programmable logic sends each measurement point of raw data to the main memory
(DRAM) of the SoC. A worker thread of the Python server continuously fetches data from the memory
and stores it into a queue, which is a first-in-first-out data structure built into Python.

The next stage of the pipeline is to transfer the data from the queue over the network to the client. This
happens via the Transmission Control Protocol (TCP). The requirement on a throughput of at least a
thousand points per second also holds for the communication between server and client. Therefore, it
was chosen to optimise the amount of measurement points sent at once via the network. This topic is
elaborated upon in chapter 5.

Next to the data stream, which flows from programmable logic to client, there is need for communication
in the opposite direction. This concerns the parameters used inside the programmable logic, which are
needed to properly configure how data is acquired. These are sent by the client via TCP to the server.
The PS/PL configuration interface, explained in chapter 4, translates them into 32-bit values, such that
the programmable logic can understand them. These values are stored in registers for Memory-Mapped
Input/Output (MMIO). The MMIO interface was chosen because it is independent of the data stream
via DMA and simplifies the configuration of the programmable logic. It is not suitable for continuous
streaming at high rates, but commonly used where performance is not critical [15].

Generator
client

program

TCP client
program

Core
program with

VNA API

GUI
iPyWidgets

(user control)
Bokeh (live

plotting)

VISA
(Instrument

API)

TCP
Server

(Meta)data

- External modules
- Project code
- Not part of client

Generator
client

program X2

Data Explorer
.h5 files

TCP

USBSCPI

Sweep
commands

PL configurations

Trace data

Generator
settings

Gen 1

Gen 2

Figure 3.2: Overview of the client-side Python program

3.2. Client-side program
Figure 3.2 shows in a schematic way the different modules that form the full client-side Python program.
The core program takes care of:

1. Sending the configuration commands for controlling the server-side program.
2. Sending sweep commands to the RF generators in the correct order.
3. Arranging the data for availability in the GUI and for systematic storage into external files.
4. Implementing an Application Programming Interface (API), which is a manageable list of VNA

functions which can directly be called from external (Python) programs.

The core program is mainly important for doing all these tasks in the correct order, such that the user
only has to give measurement commands via the API, in a manner which is done on conventional
VNAs. Such a command would be for example to execute a frequency sweep from 4 GHz to 8 GHz,
with frequency steps of 1 MHz, a time step of 10 ms and a constant power of 0 dBm. This command is

3.2. Client-side program 11

sent using the sweep_acquire_2_generators function as seen in section A.2.1, with the corresponding
parameters. After this command has been received, the program starts with execution in the following
order:

1. Opening the connections to the server and to the generators using Python’s “with”-statements.
2. Sending the required settings for the generators with hardware_freq_sweep functions (from the

RF generator client programs).
3. Requesting the useful settings back with read_status functions (generator client programs) to

save them later in the metadata file.
4. Sending the settings for the PL using the functions send_tpp, send_dead_time, send_trigger_length

and send_trigger_config (TCP client program).
5. Turning on the generators using perform_sweep functions (generator client programs).
6. Requesting data from the PL using start_acquisition (TCP client program).
7. Putting data received via TCP into a Python queue that will temporarily store the entire measure-

ment in memory using the function receive_data.
8. Automatically closing the connection to both server and generators after exiting the “with”-blocks.
9. Calculating and arranging the data using the function construct_output_data (discussed below).

10. Saving the data using the function save_data (discussed below).

The construct_output_data function first calculates the 𝑆21 values for every frequency, by doing the
complex division from chapter 1, repeated in equation (3.1). The function then stores the real part,
imaginary part, magnitude (in dB) and phase of 𝑆21 in a matrix. This matrix also contains the frequency
steps and the real part, imaginary part, magnitude and phase of both the reference signal and DuT
signal.

𝑆21 =
𝑏2
𝑎1
= 𝐼trans + j𝑄trans

𝐼ref + j𝑄ref
(3.1)

The save_data function takes this matrix with information and only saves the frequency steps, the mag-
nitude of 𝑆21 in dB and the phase of 𝑆21. The option to save the other data is left to the end user. This
saving is done using the DataExplorer Python package [16], which has been made by members of
the research group. This package takes care of generating a time-tagged folder containing the Python
code used by the end-user and saving the data as “Xarray” [17] in .h5 data format. The save_data
function then manually adds the metadata in the same folder, also as “Xarrays” in .h5 data format.

The TCP client program takes care of communication with the server-side program using the Trans-
mission Control Protocol over ethernet. This communication consists of sending the configurations for
the PL, and receiving measurement data which have been processed by the server-side program. The
TCP data throughput, discussed in chapter 5, has been optimised to achieve the requirement from
section 2.1.

The RF generator client program takes care of translating a command, such as “do a sweep with cer-
tain parameters”, into the right order of commands [18] for the specific generator, and sending it using
the VISA API [19]. It also collects generator status information using the same procedure. There is
a generator client program for each of the two generators that are used in the VNA. The working and
implementation of SCPI and VISA in our code are discussed in chapter 6.

The GUI is implemented in the interactive Python notebook format (.ipynb). It provides a ready-to-use
interface to the VNA, so no code has to be written to perform basic frequency sweeps. It does this
by interacting with the API of the client’s core. The controlling of the VNA is done using buttons and
interactive text-boxes created using the iPyWidgets library [20]. Showing the trace as the data is com-
ing in is implemented using the Bokeh plotting library [21]. A more detailed description of the GUI is
discussed in chapter 7.

4
PS/PL interface

The Python server-side program running on the processing system needs to be able to communicate
with the programmable logic. This communication is performed with a set of Python functions that use
the PYNQ library, which is written for platforms like the AMD Xilinx Zynq 7010 System on Chip on the
Red Pitaya used in this project (containing both the PS and PL). PYNQ provides the ability to control
and communicate with the PL [22] in different ways. This chapter explains how communication via
DMA and MMIO registers is implemented, and discusses the performance of the resulting server-side
program in relation to the requirements.

4.1. Before communication
The PL has to be configured before the Python server is able to communicate with it. With PYNQ,
this can be done by loading a hardware library, also called overlay. An overlay consists of a .bit file
and a .hwh file, produced by the hardware designers in the FPGA subteam. The .bit file contains the
information on how the hardware should be configured, and the .hwh file contains metadata about the
cells, for example which interfaces (DMA, MMIO) are connected to which hardware blocks. PYNQ has
a class Overlay, which, when initialised with the location of a .bit file, loads the overlay onto the PL.

4.2. DMA: continuous data streaming
Direct Memory Access [14] is a fast method for continuously transferring data from the programmable
logic via the memory of the SoC to the processing system. In this project, it is used for the raw acquired
data from the PL, which must be able to flow at least at a rate of one measurement point per millisecond,
as per the requirement in section 2.1. DMA allows communication in both directions, but since the PL
does not need large amounts of data at high rates, only the direction from PL to PS is implemented.

4.2.1. Averaging
The user running the client-side Python program expects data in the form of four values at each mea-
surement point (frequency): 𝐼trans, 𝑄trans, 𝐼ref and 𝑄ref, with which the parameter 𝑆21 can be calculated
(see equation (3.1)).

The PL provides for each 𝐼 and 𝑄 value the sum accumulated during the measurement point, and a
counter value representing the amount of additions the PL did to arrive at that sum. Hence, the raw
acquired data has to be converted to the wanted format somewhere in the data pipeline. It was de-
cided to split this conversion into two parts: averaging the 𝐼 and 𝑄 values inside the Python server,
and performing the complex division to get 𝑆21 inside the Python client. The reason for not performing
all calculations inside the server was to give the users of the VNA the option to save the four 𝐼 and 𝑄
values for DuT and reference separately, together with the 𝑆21 values. Averaging was performed inside
the Python server since it depends on the data format provided by the PL, of which the client has no
knowledge.

12

4.2. DMA: continuous data streaming 13

The raw data for a single 𝐼 or 𝑄 value consists of two signed integers and one unsigned integer. The
two signed integers have to be added together to get the sum 𝑎, and then divided by the unsigned
integer (counter, 𝑐) to get an average for that 𝐼 or 𝑄 value, as shown in equation (4.1) (which holds for
all mentioned 𝐼 and 𝑄 values).

𝐼 = 𝜑𝑎
𝑐 (V) (4.1)

The constant scalar 𝜑 is used to convert the units to volts. It depends on the maximum input of the
analog-to-digital converter (ADC) of the incoming signal, being 1 V, and the amount of bits of precision
the ADC has to represent this maximum input, being 13 (the sign bit is excluded because it does not
add precision). Due to the digital demodulation and filtering (for details, refer to the thesis of the FPGA
subteam), a factor of 1/2 is applied to the value of 𝑎 and the precision is doubled to 26 bits. The
maximum input signal of 𝐼max = 1 V gives the average

𝑎
𝑐 = (

1
2) (2

26) = 225

and therefore,
𝜑 = 𝑐𝐼max

𝑎 = 2−25 (V)

4.2.2. Python implementation
In the Python server-side program, a worker thread can be enabled to continuously perform DMA data
transfers. Each data transfer concerns 4 ⋅ 3 ⋅ 32 = 384 bits, being three 32-bit integers for each of 𝐼trans,
𝑄trans, 𝐼ref and 𝑄ref. A data transfer involves calling two PYNQ methods: dma.recvchannel.transfer,
which lets the PL know it can write data to an address in DRAM specified by a given allocated buffer,
and dma.recvchannel.wait, which waits until the PL has finished writing the data. When a transfer is
completed, the data is averaged by applying equation (4.1) four times: to calculate 𝐼trans, 𝑄trans, 𝐼ref and
𝑄ref. These four values are stored inside a Python queue, which is a built-in data structure suitable for
multithreading [23]. The TCP server, discussed in chapter 5, running in the main thread, can retrieve
data from this queue when the client requests it.

4.2.3. Throughput
A time per point of one millisecond is the lowest data acquisition period for this project. For this value,
the requirement stated in section 2.1 is that the throughput of the data transfer from PL to PS should
be at least 1000 points per second. To verify whether the DMA method and the Python implementation
are fast enough to achieve this data transfer rate, an experiment has been performed. All entries were
removed from the Python queue, the time per point was configured and the worker thread was started.
A timer measured how long it took to fetch and average 15000 data points, which can be used to
estimate the throughput. This experiment has been repeated for different values for the time per point,
and repeated when averaging the four values was skipped.

In figure 4.1, the results of the experiment are shown. For values of the time per point below one
millisecond, the effect of including the averaging is visible. Without averaging, the maximum theoretical
throughput of continuous DMA transfers (shortest time per point) is

384 b
2872.3 μs = 668.5 kb s

−1 = 1741 transfers per second

At a time per point of 1 ms or longer, the overhead due to averaging is negligible, since the bars have
almost the same height. This justifies the choice to directly perform averaging after DMA transfers
before storing data in the queue. The implementation is capable of averaging the values fast enough
before the next DMA transfer is completed, and with this, the requirement for the throughput of 1000
points per second from PL to PS is met.

4.3. MMIO: configuration 14

1 500 750 1000 2000 5000
time per point (s)

0

1000

2000

3000

4000

5000

tra
ns

fe
r t

im
e

(
s)

DMA transfer time for different PL configurations
averaging included
without averaging

Figure 4.1: Average transfer time via DMA for different values of the time per measurement point;
each average based on 15000 transfers; averaging is applying equation (4.1) four times.

4.3. MMIO: configuration
Sending configuration parameters to the PL is done usingMemory-Mapped Input/Output registers. This
is a simple method suitable for communication in which high data rates are not required. The config-
uration parameters, all listed in table 4.1, need to be known by the PL before starting a series of
measurement points. The PS/PL configuration interface consists of functions inside the Python class
PLInterface (found in section A.1.1). These functions need to translate the parameters to the correct
binary values and write them to the MMIO registers, which are PYNQ objects with corresponding meth-
ods to read and write data.

The parameters time per point, generator dead time and trigger pulse length can be controlled with a
precision of one microsecond. The PL does not count in microseconds but in clock cycles, which is why
the input values in microseconds need to be multiplied by the PL clock frequency of 125 MHz. These
multiplications are defined in the class PLConfig (found in section A.1.3) and can be customised for
each parameter.

Table 4.1: Configuration parameters needed by the programmable logic

parameter description
time per point clock cycles per measurement point during which the PL

digitises, demodulates and accumulates
generator clock cycles representing switching time at start of each measurement point
dead time when the frequency is not stable and the PL does not yet accumulate

triggers pulse pulse length in clock cycles for the two digital output signals used
length as triggers for the RF generators

triggers settings for the two output triggers: active-high or active-low pulse,
configuration pulse on each point and/or pulse only at the start of the measurement

data acquisition control bit to enable or disable the continuous data acquisition
status inside the PL and transferring the data via DMA

4.4. Software testing 15

The reason for including an option in the trigger configuration to give a pulse on each point was specifi-
cally included for the SynthHD generator [24], with the reasoning that this would provide better synchro-
nisation. However, not every RF generator supports such an option, as is the case with the HMC-T2100
[25]. The description on how this changed the code will be discussed in section 6.4.

The configuration parameter which controls the PL’s outputs for the two digital trigger signals is special,
since it contains three parts inside oneMMIO register: bits 28-31 for the trigger configuration of trigger 0,
bits 24-27 for the trigger configuration of trigger 1, and bits 0-23 (least significant) for the pulse length,
which applies to both trigger outputs. Control logic has been written in the function change_config
(found in section A.1.2) to write the correct values to the MMIO register. Each sequence of bits can
be written independently and leaving the others unchanged. The other MMIO registers, which each
contain only one parameter, need to be completely overwritten when this one parameter changes.

Adding another parameter for the number of measurement points that the PL takes before pausing
itself has been considered. However, this has not been implemented, since it makes the programmable
logic less flexible, as an additional digital counter is required and an option to take an infinite amount
of measurement points. Instead, when a measurement is finished, the Python client detects that the
correct number of points have been transmitted and sends a signal – details are in chapter 5 – to stop
the acquisition.

4.4. Software testing
For software projects like this, automated testing of written code is an useful tool to verify that modi-
fications do not cause issues. Especially for the server-side Python program, which uses the PYNQ
library that only works on platforms like the AMD Xilinx Zynq 7010 SoC to be able to interface with the
PL, tests are important. Debugging a multithreaded program becomes increasingly more difficult with
additions to the code. Python testing involves writing small test functions that run (part of) the source
code and check using “assert” statements whether the source code has executed correctly and does
not generate exceptions, also in edge cases.

Pytest [26] is a tool that performs testing of Python test functions written by the user. It can be run
with a single command “pytest”, gives detailed feedback when exceptions occur and allows manual
debugging. In combination with mocking, a technique commonly used by software engineers to modify
the functionality of parts of the source code, the server-side Python program, including DMA, MMIO
and TCP transfers, has been tested. The code can be found in section A.1.7 and A.1.8. On platforms
which do not have access to programmable logic, like the computers of the developers, mocking has
been implemented to simulate parts of the PYNQ libary. Custom versions of the used PYNQ classes
and methods have been written by the developers, for example the function dma.recvchannel.transfer
that simulates a DMA transfer. Instead of accessing the PL, this function sets the allocated buffer to a
known test value. When the test functions are executed by pytest, the mocked functions (see section
A.1.6) are called instead of the functions from the actual PYNQ library.

5
TCP

This chapter explains how the Python server-side program and a module inside the Python client-side
program communicate with each other, and discusses the data throughput of the connection.

5.1. Data transmission protocol
The Transmission Control Protocol (TCP) is a basic protocol for communication between two devices
via a network connection [27]. It is protocol at a lower level than for example the HyperText Transfer
Protocol (HTTP), which means TCP has less overhead and can therefore be optimised for a specific
application. TCP guarantees that the packets sent over the network will arrive in the same order as they
were sent. Similar network protocols, for example UDP (User DatagramProtocol), do not guarantee this.
For sending large amounts of data via TCP, the need to label each data point is therefore redundant,
just as checking if all packets actually have arrived. Because of this, implementing a TCP client-server
model in Python is straightforward, meaning more time can be invested into other aspects of the project,
reflecting the time constraint from section 2.1.

5.2. Communication protocol
The pipeline inside the Python server-side program from figure 3.1 shows that the TCP server governs
the communication between the PS and the Python client. In order to have functional communication,
both server and client need to obey a set of rules. This set of rules, or communication protocol, has
been written with the objectives of extensibility and regularity. For the purpose of regularity, a basic
agreement is that a client always initiates a connection with the server, upon which the server performs
a task based on the client’s command and always responds to the client. The tasks are split into config-
uration changes and requests, and are shown together with server responses in table 5.1. The server
sends configuration changes to the programmable logic, and responds to requests with data from the
queue.

The configuration changes are sent with a value to the server via TCP. For example, “p5000” is a
command to set the time per point to 5000 μs, during which the PL accumulates before the data is
transferred via DMA. The server will respond with the “OK” message if a configuration change was
successfully handled. The Python methods for sending commands for configuration changes can be
found in the class TCPClient in section A.2.3. The method in the server that handles the configuration
changes is change_config, found in section A.1.2. A special implementation was required to implement
the commands “r1” (to enable the data acquisition) and “r0” (to pause the data acquisition). When one
of these commands is sent, the server needs to start or pause DMA data transfers. Starting a DMA
transfer is simple, but correctly pausing is more difficult, since the programmable logic does not sup-
port aborting a currently running transfer. If this is accidentally done, no more DMA transfers can be
performed until the PL overlay is completely reloaded, which is to be avoided since it deletes all data
inside. Hence, the current DMA transfer first had to be completed before being able to pause. What

16

5.3. Python implementation 17

Table 5.1: Communication protocol used between client and server;
configuration commands require a numerical value behind the letter

configuration description
commands

p Sets time per measurement point (μs) during which the PL accumulates.
g Sets generator dead time (μs): length of period at start of each

measurement point during which the PL does not yet accumulate.
r Enables/disables continuous data acquisition and transferring via DMA in PL.
t Sets (primary & secondary) trigger output pulse length (μs)
c Primary trigger output configuration (active-high or active-low,

trigger per point and/or trigger per frequency sweep)
o Secondary trigger output configuration (active-high or active-low,

trigger per point and/or trigger per frequency sweep)
requests description

d Request data from the server queue.
q Request the size of the server queue.
T Request the SoC temperature (°C) of the server1.

server description
responses

* OK: server performed the task successfully.
? Server received an unknown command

or an error occured during execution of a task.

made it harder was the fact that DMA transfers are continuously being performed by a worker thread,
as described in section 4.2.2. The problem that arose, concerned the signalling between the main
thread and worker thread. If a signal is sent to the worker thread, telling it to pause after completing the
current DMA transfer, the time before the worker thread actually received this signal is unknown to the
main thread. This can cause disruptions if a new DMA transfer is started during this time. A solution
was to let the worker thread reply with a different signal that it had indeed completed the DMA transfer,
so the main thread could continue responding to the client via TCP. Although this signalling takes more
time, the requirement on the data throughput does not apply when sending configurations to the PL,
since these configurations are only sent at the start and end of a measurement.

When a client performs a request, for example a data request, “d”, it only sends the letter via TCP.
The server will respond with data from the queue. The code, found in section A.1.2, has been written
in such a way that it is extensible. All commands are defined in the file protocol.py (found in section
A.1.3), and new commands can be added to the class TCPCommandProtocol, while new functionality
can be added by creating methods in the class TCPDataServer in tcp_server.py.

5.3. Python implementation
The Python class TCPDataServer contains an implementation of a TCP server, based on [28]. This
server listens to a Python socket object, accepting the connection from any client on the network. To
avoid complexity, the server is not able to communicate with multiple clients simultaneously. For this
project, connecting to multiple clients is not required, since only one measurement can be performed at
once, hence the acquired data only needs to be sent to one client. As mentioned, the server performs
a task based on the client’s command, and then sends a response. For tasks that are performed the
most often, like requesting measurement data, the implementation should be time-efficient. This task
consists therefore only of fetching the averaged data from the queue, encoding the values in bytes and
sending them over the network to the client. The data is encoded to reduce the size of the TCP packet.
Each measurement point, consisting of four double-precision (64-bit) floating point Python objects, are
converted into one sequence of 256 bits (256 b) or equivalently 32 bytes (32 B) using the UTF-8 en-
coding. This is done using the built-in struct.pack function, for which the code can be found in section
A.1.4. To reduce the amount of TCP packets with data the server needs to send to the client, each

5.4. Throughput 18

TCP packet consists of at most 45 measurement points. This optimal value has been experimentally
determined in section 5.4. The client has to decode the sequence of bytes before performing floating-
point operations on it and saving it.

The server is implemented with enough exception handling, such that it will keep running when a client
sends an unexpected command or when the connection fails. During a connection, the TCP client
is able to send multiple commands one after another. The client implemented in this project uses
the following order of operations for successful data transfer: it connects to the TCP server using its
hostname and port and transmits all necessary configuration parameters for the PL, which are set by
the user. The next command it sends is “r1” to start data acquisition, which will enable the PL and
start filling the server’s data queue. During the next phase, the client sends data requests (“d”) until
it has received enough data points for the current measurement. The server has no knowledge of
this number, and therefore, the client will send the stop acquisition command “r0” when it is ready, to
disable the PL and data transfer via DMA. The PL gives an output trigger to the generators and knows
the dead time specified with the configuration command “g”. Therefore, the PL will only collect data
while all components are in steady state. Although this data is propagating through the pipeline and
therefore received at a later moment in time by the client, the client still receives the correct data, and
therefore fulfills functional requirement 3 from section 2.1. The data still left in the pipeline after the
client has sent its stop acquisition command, is discarded when starting a new measurement.

5.4. Throughput
One of the requirements described in section 2.1 is that the client must receive new measurement data
(if available) with a throughput of at least a thousand points per second. TCP defines a default size
for sending small packets via the network. If the data size is larger, the packet is split up into multiple
packets. This introduces a decrease in the transmission efficiency of information. The throughput
therefore depends on the amount of measurement points sent in one packet. An experiment has been
performed to estimate this throughput. A total of ten thousand points, each of 32 B long, was stored
inside the server-side data queue and transferred to the client. This has been repeated for different
amounts of points per packet. The average time needed for sending one point and the average time
needed for sending one packet has been plotted in figure 5.1.

The green curve in this figure clearly shows the inverse proportional relationship between the number
of points per packet and the transfer time. The requirement for the TCP throughput was to be able
to handle one thousand measurement points per second. Even when sending only one point (32 B)
in each packet, which is where the green and blue curve in the figure intersect, the theoretical data
throughput is approximately

32 ⋅ 8 b
91 μs = 2.8 Mb s−1 = 11 thousand points per second

This number only considers the throughput from server to client, assuming the client only receives data.
In this project, the client asks for every data packet, which limits the throughput. When sending multiple
points per packet, this effect becomes negligible since the amount of bytes sent from server to client
becomes much larger than the one byte (the command “d”) the client sends to the server. The blue
curve shows that for an increasing number of points per packet, the average transfer time slowly rises.
This is an effect of pipelining in the network: TCP allows a so-called window of multiple packets to be
sent in succession without the first packet having arrived at the destination.

After the boundary of 45 points per packet, which amounts to 45 ⋅ 32 = 1440 B (a common value for
TCP), the data becomes too large to fit in one TCP packet. With more points, the data is internally
split up before being sent, and recombined upon being received. Sending packets which are almost
empty decreases the transportation efficiency and is therefore to be avoided. An objective mentioned
in section 2.2 is that the client should receive data, if available, at least every 100 milliseconds. For the
smallest time per point, where new data is available every millisecond, the amount of points per packet

1The temperature of the SoC will be saved in the metadata attached to a measurement.

5.4. Throughput 19

0 20 40 60 80 100
number of points per packet

0

20

40

60

80

100

120

140

160

180

tim
e

(
s)

Average transmission time via TCP
transmission time per point
transmission time per packet

Figure 5.1: Average transmission time via TCP for different amounts of points (32 B) per packet;
server and client connected via FritzBox 4020 router; each average based on sending 104 points

is 100 at maximum. It was chosen, for optimum transmission efficiency and to reach this objective, to
set the maximum amount of points per packet to 45. The corresponding data throughput is given in
equation (5.1).

32 ⋅ 8 b
2.57746 μs = 99.32 Mb s

−1 = 388 thousand points per second (5.1)

This value is certainly limited by the used router (Fritzbox 4020), which allows data rates up to 100Mb s−1
via ethernet. It also does not take into account the overhead due to storing data into the server queue,
since in this experiment, the queue was filled before transmitting any data over the network.

Using 45 measurement points per packet satisfies the requirement of a throughput of one thousand
points per second. The maximum of 45 points per packet does not apply at higher times per point. If
only one point is available after 50 milliseconds, it will be sent to the client directly. For a time per point
higher than 100 milliseconds, the objective of at most 100 milliseconds between received data point is
not achievable, since the data is not available at this rate. In this case, the data is sent to the client as
soon it is available in the server queue.

The final functional requirement from section 2.1 states that the total transfer time overhead from DRAM
to client should be less than 10%. Because the data is pipelined inside the Python server, the overhead
is approximately equal to the transfer time of the last packet that is sent to the client. This transfer time,
assuming 45 points per packet, is 116 μs. The requirement is therefore satisfied for any measurement
that takes longer than 1.16 ms. This applies to almost all useful measurements, since the time per point
is at minimum 1 ms.

6
Generator communication

The client-side program communicates with the RF generators using commands written in “Standard
Commands for Programmable Instruments” (SCPI) language [18], and communicates it via the “Virtual
Instrument Software Architecture” (VISA) API [19]. Both are maintained by the Interchangeable Virtual
Instruments (IVI) foundation. This chapter describes in short what these standards are, and goes into
detail about how these are implemented in the client-side Python program.

6.1. SCPI
SCPI is a standardised set of syntax and commands used for instructing any kind of programmable
test or measurement instrument. It uses keywords which are grouped in several levels of subsystems,
which leads to a command being expressed in a hierarchical representation. The AnaPico APUASYN
has, for example, a reference oscillator (ROSCillator) subsystem, which contains an external oscilla-
tor (EXTernal) subsystem, which has an expected frequency (FREQuency) command [29]. The total
command for changing a setting (configuration command) of this SCPI-compatible device is then:

ROSC:EXT:FREQ 10MHz

The capitalised abbreviations can be used, or the full keywords can be written, and all commands are
not case-sensitive. In this command, a setting is given after a whitespace (in this case a value in MHz).
SCPI also supports reading settings of the connected device (a query command). This is done by
including a question mark, such as:

ROSC:EXT:FREQ?

The configuration and query commands have the same syntax for every instrument, and if those instru-
ment have the same parameters to be set, the commands for those parameters are the same. The last
group of commands are the mandated commands, which have to be available for all SCPI-conforming
instruments according to IEEE 488.2 [30], which is a standard for instrument communication that acts
as a precursor of the SCPI [18] standard. These commands have configuration and query formats, but
are never in a subsystem. They also always start with an asterisk. One of the commands used in the
generator client programs is:

*IDN?

This command is used to obtain the name of the generator with which is being communicated. In this
project, it is included when saving the settings of generators in metadata files.

The choice of using SCPI was made because this happened to be the protocol that the two RF gener-
ators that were used in the final prototype are equipped with [25][29]. Besides this, a large advantage
of SCPI is that it is the industry standard, so most RF generators use it for communication with a client
[31]. This means that the generator client programs can easily be adjusted to work with other SCPI-
compatible RF generators, which contributes to the extensibility of the VNA. This interchangeability of

20

6.1. SCPI 21

the commands was used by reusing a large part of the commands for the HMC-T2100 in the generator
client program of the APUASYN.

For the implementation in Python, the commands were written as strings, with the PyVISA package
taking care of getting the commands to the generators (also see next section). The code in sections
A.2.5 and A.2.4 show this method, with “.write” functions from PyVISA taking care of sending the con-
figuration commands and “.query” functions sending the query commands and returning the requested
values. For performing the frequency sweep as described for the core program in section 3.2, the
commands for the generators have been grouped in three functions, which have the same name in the
code in sections A.2.5 and A.2.4. These functions should be implemented for each new generator that
is attached to the system, and may slightly differ in the commands they use.

The first function is hardware_freq_sweep, which sends all necessary settings for a frequency sweep,
without turning the generator output on yet. Between the code for both generators, some commands
were shared, like:

POW:AMPL {power}DBM

This command was used to set the output power for each generator, with {power} being replaced by a
Python string with the required numeric value. A remarkable difference was the fact that the APUASYN,
in contrast to the HMC-T2100, did not seem to accept the command to set the size of each step in the
frequency sweep:

FREQ:STEP {freqstep}MHz

Thus, the number of steps in the sweep was calculated in the code of section A.2.4 with the help of the
required step size, and was then sent using the following command:

SWE:POIN {points}

This command, on its turn, does not exist for the HMC-T2100. The APUASYN also required additional
settings for turning on the external reference clock, which the HMC-T2100 detected automatically after
being connected to such a clock signal. One such command was shown at the start of this section, the
other is:

ROSC:SOUR EXT

This command explicitly tells the APUASYN to use the external reference clock instead of the internal
clock.

The second function is perform_sweep, which is a separate function to turn on the generator output.
This was made a separate function to give more control on the moment to turn both generators on, so
that this could happen as close in time as possible. Two commands take care of this:

OUTP 1 and INIT:IMM

For the APUASYN, one command for setting the sweep type had to be sent after the last 2 commands
to work:

FREQ:MODE SWE

The reason why this command did not work before the OUTP and INIT:IMM commands is not clear.

The third function is read_status, which takes care of generating a dictionary with all the settings of
the generators. The number of queries made by this function is larger for the APUASYN, because this
generator has more settings than the HMC-T2100. One such extra query is:

ROSC:LOCK?

This query gives assurance that the RF output is generated with a clock locked to the indicated reference
clock, which in the case of this project is the external clock. With the HMC-T2100, there was no way
to know this using a query.

6.2. VISA 22

6.2. VISA
VISA is an API that provides an universal method to communicate with instruments over different inter-
faces and bus systems, such as USB, PXI, GPIB and ethernet [19]. Each instrument that is attached
to a program using VISA is classified as a “resource” [32]. The API offers an option to open the re-
quired resource, which establishes a connection. The API then offers the functions to interact with the
resource, such as writing or querying. After all communication has been done, the resource can also
be closed with a function. Besides this basic functionality which is used in this project, VISA also offers
many specific functions that are used for locking, getting streams of data from instruments, specifying
the format of data from a large list of options, changing bus settings, and so on [19].

The use of VISA in the client-side program is done with the help of two Python packages. PyVISA-
Py [33] is the implementation of the VISA specification in Python [34]. The other package, PyVISA,
provides access to the commands of PyVISA-Py and other VISA libraries, such as NI-VISA [32]. This
means that PyVISA can be configured to use the VISA library that is required by the user. It are only
the commands of PyVISA that are directly called from the code written for this project. Using PyVISA, a
resource manager object is created every time the generator client program is started. This object has
a list of all resources. These resources contain in principle all devices that are connected using one of
the protocols that are supported by VISA, so a small loop was made to find the name corresponding to
the RF generator. The rest of the steps as described above, such as opening a resource and writing
to it, are done with single Python functions.

The choice for VISA was made because it removes the need to make separate programs for commu-
nication with specific protocols, which makes it easier for the user to choose the protocols and busses
that best fit the application. The implementation in Python also requires just a few lines of code, which
makes it easier to understand and adjust the code to the needs of the user, and requires less time to
test and debug. The choice for using PyVISA-Py specifically was made because it is open-source and
free.

6.3. Physical connection
For the AnaPico as well as the Hittite, both ethernet and USB were available [35][36] for the commu-
nication. The Hittite also has the GPIB-bus available, but this port was not used because it was less
familiar.

For USB, the AnaPico uses the USB Test and Measurement Class (USBTMC) [37] protocol over its
USB-bus. This protocol is specifically made to make the USB-bus work with VISA without additional
configurations [38]. Devices with USBTMC use the USB INSTR resource class, which is supported
by the PyVISA-Py implementation of VISA [33]. For making USB work with PyVISA-Py, the PyUSB
Python module has to be downloaded [39], which in its turn relies on an USB driver library such as the
open-source libusb written in C [40]. The Hittite actually uses a non-USB serial communication protocol
over the USB interface.

For ethernet, the AnaPico supports several Local Area Network (LAN) interface protocols: TCP sockets,
Telnet and VXI-11, while the Hittite only supports the former two [25]. However, to enable communi-
cation via ethernet, first a connection via USB has to be made anyway, to write and query the DHCP
or static IP settings of the device. Because of this, USB was chosen over ethernet for communication
during this project. Furthermore, the limited amount of working hours for the project, as stated in the
requirements in section 2.1, let to this decision.

6.4. Windfreak SynthHD
As mentioned before, the SynthHD was used before using the Hittite and AnaPico. For this generator,
a generator client program was also written (see section A.2.7), that works with the project code as is
shown in 3.2, but does not use SCPI and VISA. The two SynthHDs available during the project both
started malfunctioning after a lot of time was already spent on getting these generators to correctly per-
form a frequency sweep. The code created for the communication with this generator will be discussed

6.4. Windfreak SynthHD 23

in short below. It makes use of Python code written by Windfreak Technologies, which provides an API,
shown in section A.2.8.

Instead of using VISA, the SynthHD client program makes a direct connection with USB. It does this
by using the PySerial module [41], which has been implemented in the Python code behind the API.
Although this could have been implemented using VISA, it was not needed yet by that point. It would
not have been possible to use SCPI for the SynthHD in that case, because the SynthHD uses serial
communication with a communication protocol defined by Windfreak Technologies itself [24]. This
protocol differs fromSCPI by using single characters instead of 3- or 4-character commands with colons,
and by not using any subsystem hierarchy. Like SCPI, it uses a question mark for queries and a value
given after a whitespace if applicable. This protocol was fully implemented in the API program provided
by Windfreak Technologies, so in practice, commands for interaction with the SynthHD were set by
calling the functions seen in A.2.8 with the required parameters in the code of section A.2.7.

The generator client program of the SynthHD had the option for triggering the frequency sweep for
every step implemented, as can be seen in the function triggered_diff_freq_sweep in section A.2.7,
where the setting for trig_function is set to 3 to enable step triggering. This option was also available
on the APUASYN [29], but not on the HMC-T2100 [25]. After the SynthHD generator was no longer
used, it was decided to not implement this option in the other generator client programs, because it
would require extra effort to get the generators to sweep synchronously when one of them would use
this “step triggering”, and the “full sweep trigger” worked anyway.

7
GUI

One of the objectives of the project was to create a Graphical User Interface (GUI). This chapter de-
scribes in short the choices that have been made for this, and the implementation of it in Python.

7.1. PySide
For showing the GUI, the choice was made between two methods. The first method was showing a
separate window on the local client, with a GUI made using Qt and its Python implementation PySide.
PySide comes with a designer application, in which a .ui file can be edited in a graphical environment.
But after the .ui file is converted into a Python file, it is quite extensive and requires the knowledge of
the PySide functions to be able to edit it. A start was made on this method, with a GUI showing buttons
(found in section A.2.10) and a GUI showing a live updating plot (found in section A.2.11). Debugging
and editing the code of these converted files was difficult and not flexible, hence it was decided to
abandon this method for the GUI.

7.2. Jupyter
The second method was locally hosting a Jupyter Python notebook, and showing the GUI in the output
window. This option was chosen in the end because it offers more flexibility in customising the GUI
and because the intended users are already familiar with Jupyter notebooks and several packages
and libraries that are used in combination with it. Below, the choices for setting the VNA command and
showing the data are motivated.

7.2.1. Implementation
For setting the VNA commands, widgets with buttons and text boxes were chosen over a command
line interface, because it gives a better overview of the settings when doing quick measurements, or
demonstrating the VNA. The widgets come from the iPyWidgets package, also known as just “Jupyter
Widgets” [20]. Again, this choice was also motivated by the familiarity of the end users with iPyWidgets.

Each of the widgets is implemented as an object of the corresponding widget class, as can be seen
in the code of section A.2.6 under the notebook header “Initiate widgets”. They are then grouped and
showed using iPython.display. Updates of the values of the widgets are handled by the function inter-
active_output, which then calls a custom update function. When the button for turning on the VNA is
pressed, the function sweep_acquire from the code of section A.2.1 is called.

For showing the live plot, the Bokeh plotting library was chosen [21]. This choice was made because
Bokeh has been used in the past by the intended users in the research group, who favour Bokeh for its
responsiveness. This responsiveness is also favourable for the GUI of the VNA, to remain below the
100 ms delay between the trace data generation and showing it in a plot. The knowledge on how to

24

7.2. Jupyter 25

use Bokeh already being available with the users also means that the GUI is easily extensible, which
gives an advantage over most other plotting libraries.

An object for the plot frame is created with the function plt.figure, which is seen under the header “Run
GUI” in section A.2.6. This object can then be modified with plot settings, and by adding the plots them-
selves. For generating the plots, the function line is used. The values of this plot are then adjusted
using the .data_source.data attribute. This is done in the update_plot function, which is running an
infinite loop in a separate thread when the frequency sweep has started. This way, the data of the plots
is continuously updated and shown to the user while new measurement data is flowing into the core
program via the TCP client.

An example of the Graphical User Interface is shown in figure 7.1, which is a screenshot of part of
the Jupyter notebook. The live plot shows that the measurement points for frequencies up to 6.3 GHz
have been received, while the higher frequencies are still to be measured. The RF inputs of the Red
Pitaya were terminated with a passive load (instead of being fed with an IF signal from the generators),
meaning the digital downconversion should return a magnitude close to zero for all frequencies. The
phase of any phasor with magnitude close to zero is undefined, therefore the blue phase curve in the
figure shows some jumps. The entire system, with the RF generators, splitters and mixers connected
could not be tested due to time constraints and issues with triggering both generators simultaneously.

Figure 7.1: Graphical User Interface consisting of iPyWidgets buttons and input fields and Bokeh live plot,
showing the magnitude and phase of the 𝑆21 parameter

8
Conclusion & discussion

8.1. Conclusions about the Python software
Two Python programs have been written by the software team to make it possible for users to interface
with the VNA. The main task of the server-side program, which will be running on the processing system
inside the Xilinx Zynq 7010 System on Chip, is to fetch data from the programmable logic using DMA
and transmit it over the network to the client, relying on the speed and simplicity of the Transmission
Control Protocol. The requirements for the server in terms of throughput and overhead have been met,
as experiments have shown. The open-source code has been written in a way that is extensible and
understandable for the intended users.

The client-side Python program controls the RF generators with SCPI, which makes them perform
a frequency sweep with configurable settings. The generators are triggered from outputs of the pro-
grammable logic. The client sends to the programmable logic how long the generators have unstable
output during switching, which is called the dead time. This way, the programmable logic ensures that
data is collected only with all components in steady state, which means the client receives the correct
data. The client also sends other measurement parameters like time per point and trigger configuration
to the server, which are forwarded to the programmable logic via MMIO registers. The client receives
the acquired measurement data in the form of 𝐼 and 𝑄 values, giving complex representations of the
electromagnetic waves going into and out of the device under test. With this data, the 𝑆21 parameter
is calculated for every frequency. The client saves the measurement data together with metadata in
a systematic format that is known by the intended users. The objectives of implementing a Graphical
User Interface and being responsive enough also have been achieved.

8.2. Recommendations
The following considerations can be made to improve and extend the work in the future.

• The VNA can be extended with power sweep functionality. The Python client needs to control
the generators to perform triggered power sweeps at a fixed frequency. The metadata saved
by the client then has to change from frequency to power. However, the configuration to the
programmable logic does not need to be altered, as the currently used parameters (table 4.1)
are sufficient. The PL does not need additional knowledge to be able to acquire data for a power
sweep, since the calculation of the 𝐼 and 𝑄 values will stay the same. The RF subteam has
to ensure the power level at the input of the analog-to-digital converters is constant during the
sweep, for example using a programmable attenuator.

26

8.2. Recommendations 27

• The generators have a specific dead time during which they give unstable output. The current
minimum value for the time per measurement point is one millisecond. Bringing this value closer
to the dead time could be implemented, provided that the DMA data transfers can have a higher
throughput, which can be realised with larger data buffers. The current TCP throughput is high
enough for a time per point of 3 microseconds, as given in equation (5.1).

• The system could be modified to get vector signal analyser (VSA) capabilities. This type of device
measures an EM spectrum as absolute value, so without sending any signals itself with a (RF)
generator, to compare it with. It then shows the absolute amplitude and phase relative to an LO
over a certain frequency spectrum. For the software to be ready for this, it would be important to
implement IQ data streaming with high enough throughput to show the entire required spectrum
within a certain refresh rate, to have a live view of the frequencies of signals coming in.

References

[1] What is a Vector Network Analyzer and How Does it Work? [Online]. Available: https://www.
tek.com/en/documents/primer/what-vector-network-analyzer-and-how-does-it-work.

[2] L. Zhong, R. Yu, and X. Hong, “ Review of carbon-based electromagnetic shielding materials: film,
composite, foam, textile,” Textile Research Journal, vol. 91, p. 004 051 752 096828, Oct. 2020.
DOI: 10.1177/0040517520968282.

[3] F. Caspers, “ RF engineering basic concepts: S-parameters,” CERN, Tech. Rep., 2013.
[4] What Can You Do With a VNA? 2023. [Online]. Available: https://coppermountaintech.com/

what-can-you-do-with-a-vna/.
[5] L. Dicarlo, Introduction to circuit QED, 2023.
[6] Keysight. “Product page: P9372A Keysight Streamline USB Vector Network Analyzer, 9 GHz.”

(2024), [Online]. Available: https://www.keysight.com/us/en/product/P9372A/keysight-
streamline-usb-vector-network-analyzer-9-ghz.html.

[7] “About NanoVNA.” (), [Online]. Available: https://nanovna.com.
[8] “SHFQA+ 8.5 GHz Quantum Analyzer.” (), [Online]. Available: https://www.zhinst.com/europ

e/en/products/shfqa-quantum-analyzer.
[9] “OPX+: Ultra-Fast Quantum Controller.” (), [Online]. Available: https://www.quantum-machines.

co/products/opx/#.
[10] A. Raza, A. Jabbar, D. A. Sehrai, H. Atiq, and R. Ramzan, “SDR Based VNA for Characterization

of RF Sensors and Circuits,” in 2021 1st International Conference on Microwave, Antennas &
Circuits (ICMAC), 2021, pp. 1–4. DOI: 10.1109/ICMAC54080.2021.9678273.

[11] H. Forstén, “Improved homemade VNA,” Tech. Rep., 2017. [Online]. Available: https://hforst
en.com/improved-homemade-vna.html.

[12] J. Mower and Y. Kuga, “A FPGA-BasedReplacement for a Network Analyzer in an Instrumentation-
Based 200 GHz Radar,” High Frequency Electronics, pp. 30–40, Sep. 2013.

[13] Y. Xu, G. Huang, N. Fruitwala, et al.,QubiC 2.0: An Extensible Open-SourceQubit Control System
Capable of Mid-Circuit Measurement and Feed-Forward, 2023. arXiv: 2309.10333 [quant-ph].

[14] DMA — PYNQ: Python productivity for Zynq (Pynq), version 3.0.0. [Online]. Available: https:
//pynq.readthedocs.io/en/v3.0.0/pynq_libraries/dma.html.

[15] MMIO — PYNQ: Python productivity for Zynq (Pynq), version 3.0.0. [Online]. Available: https:
//pynq.readthedocs.io/en/v3.0.0/pynq_libraries/mmio.html.

[16] F. Schmidt and G. Steele. “Data Explorer,” Steele Lab, Kavli Institute of Nanoscience. (2024),
[Online]. Available: https://gitlab.tudelft.nl/steelelab/data-explorer.

[17] Xarray documentation, version v2024.06.0. [Online]. Available: https://docs.xarray.dev/en/
stable/.

[18] SCPI Specification, IVI Foundation, May 1999. [Online]. Available: https://www.ivifoundation.
org/specifications/default.html.

[19] VPP-4.3: The VISA Library, version 7.2.1, IVI Foundation, Jan. 2024. [Online]. Available: https:
//www.ivifoundation.org/specifications/default.html.

[20] Jupyter Widgets Documentation, version 8.1.3. [Online]. Available: https://ipywidgets.readt
hedocs.io/en/stable/.

[21] Bokeh Documentation, version 3.4.1. [Online]. Available: https://docs.bokeh.org/en/latest
/.

28

https://www.tek.com/en/documents/primer/what-vector-network-analyzer-and-how-does-it-work
https://www.tek.com/en/documents/primer/what-vector-network-analyzer-and-how-does-it-work
https://doi.org/10.1177/0040517520968282
https://coppermountaintech.com/what-can-you-do-with-a-vna/
https://coppermountaintech.com/what-can-you-do-with-a-vna/
https://www.keysight.com/us/en/product/P9372A/keysight-streamline-usb-vector-network-analyzer-9-ghz.html
https://www.keysight.com/us/en/product/P9372A/keysight-streamline-usb-vector-network-analyzer-9-ghz.html
https://nanovna.com
https://www.zhinst.com/europe/en/products/shfqa-quantum-analyzer
https://www.zhinst.com/europe/en/products/shfqa-quantum-analyzer
https://www.quantum-machines.co/products/opx/#
https://www.quantum-machines.co/products/opx/#
https://doi.org/10.1109/ICMAC54080.2021.9678273
https://hforsten.com/improved-homemade-vna.html
https://hforsten.com/improved-homemade-vna.html
https://arxiv.org/abs/2309.10333
https://pynq.readthedocs.io/en/v3.0.0/pynq_libraries/dma.html
https://pynq.readthedocs.io/en/v3.0.0/pynq_libraries/dma.html
https://pynq.readthedocs.io/en/v3.0.0/pynq_libraries/mmio.html
https://pynq.readthedocs.io/en/v3.0.0/pynq_libraries/mmio.html
https://gitlab.tudelft.nl/steelelab/data-explorer
https://docs.xarray.dev/en/stable/
https://docs.xarray.dev/en/stable/
https://www.ivifoundation.org/specifications/default.html
https://www.ivifoundation.org/specifications/default.html
https://www.ivifoundation.org/specifications/default.html
https://www.ivifoundation.org/specifications/default.html
https://ipywidgets.readthedocs.io/en/stable/
https://ipywidgets.readthedocs.io/en/stable/
https://docs.bokeh.org/en/latest/
https://docs.bokeh.org/en/latest/

References 29

[22] PYNQ Overlays — Python productivity for Zynq (Pynq), version 3.0.0. [Online]. Available: https:
//pynq.readthedocs.io/en/v3.0.0/pynq_overlays.html.

[23] queue — A synchronized queue class, 2024. [Online]. Available: https://docs.python.org/3.
11/library/queue.html.

[24] Windfreak Technologies SynthHD Programming Interface, version v1.0b. [Online]. Available: ht
tps://windfreaktech.com/product/microwave-signal-generator-synthhd/.

[25] Programmer’s Manual; Installation, Operation & Maintenance Guide for HMC-T2100 & HMC-
T2100B, version 04.0811, Hittite Microwave Corporation.

[26] Get Started — pytest documentation, 2023. [Online]. Available: https://www.pytest.org/en/
7.4.x/getting-started.html.

[27] “Transmission Control Protocol,” Wikipedia. (2024), [Online]. Available: https://en.wikipedia.
org/wiki/Transmission_Control_Protocol.

[28] N. Jennings. “Socket Programming in Python (Guide),” Real Python tutorial team. (2018), [Online].
Available: https://realpython.com/python-sockets/#echo-client-and-server.

[29] Programmer’s Manual V2.24 Signal Source Models, AnaPico AG. [Online]. Available: https:
//www.anapico.com/products/frequency-synthesizers/single-output-frequency-synth
esizers/apuasyn20-up-to-20-ghz/.

[30] [Online]. Available: https://standards.ieee.org/ieee/488.2/718/.
[31] Following the SCPI Learning Process and Using the Tool, Keysight Technologies. [Online]. Avail-

able: https://www.keysight.com/us/en/assets/9921-01868/miscellaneous/FollowtheSCP
ILearningProcessandUsingtheTool.pdf.

[32] NI-VISA Overview, National Instruments Corp. [Online]. Available: https://www.ni.com/en/
support/documentation/supplemental/06/ni-visa-overview.html.

[33] PyVISA-py: Pure Python backend for PyVISA, version 0.7.2. [Online]. Available: https://pyvisa.
readthedocs.io/projects/pyvisa-py/en/latest/.

[34] PyVISA: Control your instruments with Python, version 1.14.1. [Online]. Available: https://
pyvisa.readthedocs.io/en/latest/.

[35] User manual; Installation, Operation & Maintenance Guide for HMC-T2100 & HMC-T2100B, ver-
sion 04.0710, Analog Devices, inc. [Online]. Available: https://www.analog.com/media/en/
technical-documentation/user-guides/hmc-t2100_user_manual_125790.pdf.

[36] User’s Manual V3.07 Signal Source Models, AnaPico AG. [Online]. Available: https://www.an
apico.com/products/frequency-synthesizers/single-output-frequency-synthesizers/
apuasyn20-up-to-20-ghz/.

[37] Universal Serial Bus Test and Measurement Class Specification (USBTMC), version 1.00, USB
Implementers Forum, Inc., 2003. [Online]. Available: https://www.usb.org/document-library/
test-measurement-class-specification.

[38] NI-VISA User Manual, National Instruments Corp., 2024. [Online]. Available: https://www.ni.
com/docs/en-US/bundle/ni-visa/page/user-manual-welcome.html.

[39] PyUSB – Easy USB access for Python, 2024. [Online]. Available: https://github.com/pyusb/
pyusb/blob/master/README.rst.

[40] libusb-1.0 API Reference, 2024. [Online]. Available: https://libusb.sourceforge.io/api-
1.0/.

[41] pySerial 3.0 documentation, 2015. [Online]. Available: https://pythonhosted.org/pyserial/
index.html.

https://pynq.readthedocs.io/en/v3.0.0/pynq_overlays.html
https://pynq.readthedocs.io/en/v3.0.0/pynq_overlays.html
https://docs.python.org/3.11/library/queue.html
https://docs.python.org/3.11/library/queue.html
https://windfreaktech.com/product/microwave-signal-generator-synthhd/
https://windfreaktech.com/product/microwave-signal-generator-synthhd/
https://www.pytest.org/en/7.4.x/getting-started.html
https://www.pytest.org/en/7.4.x/getting-started.html
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://realpython.com/python-sockets/#echo-client-and-server
https://www.anapico.com/products/frequency-synthesizers/single-output-frequency-synthesizers/apuasyn20-up-to-20-ghz/
https://www.anapico.com/products/frequency-synthesizers/single-output-frequency-synthesizers/apuasyn20-up-to-20-ghz/
https://www.anapico.com/products/frequency-synthesizers/single-output-frequency-synthesizers/apuasyn20-up-to-20-ghz/
https://standards.ieee.org/ieee/488.2/718/
https://www.keysight.com/us/en/assets/9921-01868/miscellaneous/FollowtheSCPILearningProcessandUsingtheTool.pdf
https://www.keysight.com/us/en/assets/9921-01868/miscellaneous/FollowtheSCPILearningProcessandUsingtheTool.pdf
https://www.ni.com/en/support/documentation/supplemental/06/ni-visa-overview.html
https://www.ni.com/en/support/documentation/supplemental/06/ni-visa-overview.html
https://pyvisa.readthedocs.io/projects/pyvisa-py/en/latest/
https://pyvisa.readthedocs.io/projects/pyvisa-py/en/latest/
https://pyvisa.readthedocs.io/en/latest/
https://pyvisa.readthedocs.io/en/latest/
https://www.analog.com/media/en/technical-documentation/user-guides/hmc-t2100_user_manual_125790.pdf
https://www.analog.com/media/en/technical-documentation/user-guides/hmc-t2100_user_manual_125790.pdf
https://www.anapico.com/products/frequency-synthesizers/single-output-frequency-synthesizers/apuasyn20-up-to-20-ghz/
https://www.anapico.com/products/frequency-synthesizers/single-output-frequency-synthesizers/apuasyn20-up-to-20-ghz/
https://www.anapico.com/products/frequency-synthesizers/single-output-frequency-synthesizers/apuasyn20-up-to-20-ghz/
https://www.usb.org/document-library/test-measurement-class-specification
https://www.usb.org/document-library/test-measurement-class-specification
https://www.ni.com/docs/en-US/bundle/ni-visa/page/user-manual-welcome.html
https://www.ni.com/docs/en-US/bundle/ni-visa/page/user-manual-welcome.html
https://github.com/pyusb/pyusb/blob/master/README.rst
https://github.com/pyusb/pyusb/blob/master/README.rst
https://libusb.sourceforge.io/api-1.0/
https://libusb.sourceforge.io/api-1.0/
https://pythonhosted.org/pyserial/index.html
https://pythonhosted.org/pyserial/index.html

A
Source code

This appendix contains all code that has been written by the software team to define the behaviour of
the server-side and client-side Python programs1. The open-source repository of the project will be
located at https://gitlab.tudelft.nl/steelelab/bep-steelelab-vna-2024.

A.1. Server-side program
A.1.1. Data processing module

1 """Classes and functions for fetching and storing acquired data from programmable logic (PL)
"""

2

3 from queue import Full, Queue
4 from time import sleep
5

6 from pynq import MMIO, Overlay, allocate
7

8 import helpers
9 from protocol import PLConfig

10

11

12 class PLInterface(PLConfig):
13 """Functions related to the interface between the processing subsystem (PS) and

programmable logic (PL)."""
14

15 class DMANotAllowed(Exception):
16 """Special exception raised when data transfer via DMA will hang due to PL being in

reset"""
17

18 DEBUG = True
19 """Whether to print debugging information"""
20

21 def __init__(self):
22 self.ol = Overlay(PLInterface.OVERLAY_PATH)
23 self.mmios = {key: MMIO(value) for key, value in PLInterface.MMIO_DICT.items()}
24 self.dma_channel = self.ol.dma.recvchannel
25 self.dma_output_buffer = allocate(shape=(PLConfig.DMA_DATA_SIZE,), dtype=PLInterface

.DMA_DTYPE)
26 self._enabled = False
27 self.dma_status = 2 # default: after DMA transfer
28

29 @property
30 def enable(self):
31 """Checks whether the programmable logic is enabled."""
32 return self._enabled
33

34 @enable.setter
35 def enable(self, value):

1In some Python files, the term OpenVQA is used, which refers to the product name Open Vector Qubit Analyser.

30

https://gitlab.tudelft.nl/steelelab/bep-steelelab-vna-2024

A.1. Server-side program 31

36 """Enables the programmable logic data acquisition.
37 Only change this if previous DMA requests are properly closed!
38 """
39 if not isinstance(value, bool) or (self._enabled and value):
40 return
41 if not value:
42 self.disable()
43 return
44 mmio_general = self.mmios[PLInterface.MMIO_GENERAL]
45

46 # Read current bits of general MMIO and write reset bit.
47 current = mmio_general.read(0)
48 mmio_general.write(0, current | PLInterface.PL_RUNNING_BIT)
49

50 # First do a DMA request of 16 words to get rid of misformed packet.
51 if PLInterface.DEBUG: helpers.printd("Starting␣first␣DMA␣data␣request...")
52 temp_buffer = allocate(shape=(16,), dtype=PLInterface.DMA_DTYPE)
53 self.dma_channel.transfer(temp_buffer)
54 self.dma_channel.wait()
55 del temp_buffer
56 self._enabled = True
57 if PLInterface.DEBUG: helpers.printd("Started␣programmable␣logic␣data␣acquisition.")
58

59 def disable(self):
60 """Puts the programmable logic in reset."""
61 if not self._enabled:
62 return
63 self._enabled = False
64 mmio_general = self.mmios[PLInterface.MMIO_GENERAL]
65

66 # Read current bits of general MMIO and write reset bit.
67 current = mmio_general.read(0)
68 mmio_general.write(0, current & ~PLInterface.PL_RUNNING_BIT)
69 if PLInterface.DEBUG: helpers.printd("Stopped␣programmable␣logic␣data␣acquisition.")
70

71 def get_data(self):
72 """Returns processed data retrieved from PL using DMA."""
73 return self.preprocess_raw_dma_data(self.raw_dma_data_request())
74

75 def raw_dma_data_request(self):
76 """Reads data from a direct memory access channel."""
77 if not self.enable:
78 raise PLInterface.DMANotAllowed("PL␣not␣enabled;␣cannot␣transfer␣data␣via␣DMA.")
79 try:
80 # No timeout available in `wait`; use dma_channel.stop() outside thread to stop.
81 self.dma_status = 0
82 self.dma_channel.transfer(self.dma_output_buffer)
83 self.dma_status = 1
84 self.dma_channel.wait()
85 self.dma_status = 2
86 except RuntimeError as err:
87 # This occurs when the programmable logic just started after reset and did not

yet configure the DMA channel.
88 raise PLInterface.DMANotAllowed from err
89 return self.dma_output_buffer
90

91 def preprocess_raw_dma_data(self, buffer):
92 """Divides integer I and Q values by sample count. Buffer is an array containing a

multiple of three
93 elements: I value, Q value, count. The I and Q values are divided by count
94 and multiplied by a conversion factor to get the unit of volts.
95 """
96 volts = [
97 (
98 helpers.uint64_to_signed_int(
99 int(buffer[i]) # to Python integer(first entry: unsigned 32-bit integer

100 + (int(buffer[i + 1]) << 32) # adding second unsigned integer shifted
left 32 bits)

101) / buffer[i + 2] # dividing by third entry (count)
102 * PLInterface.RAW_TO_VOLTS # scaling to units of volts
103) for i in range(0, len(buffer), 3) # i = 0, 3, 6, 9

A.1. Server-side program 32

104]
105 return volts
106

107 @staticmethod
108 def _get_mmio_idx(cmd):
109 """Retrieves the index of the MMIO that is used for a given configuration command."""
110 mmio_idx = PLInterface.TCP_MMIO_DICT.get(cmd)
111 if mmio_idx is None:
112 raise KeyError(f"Cannot␣write␣using␣MMIO;␣command␣{cmd}␣does␣not␣exist␣in␣

TCP_MMIO_DICT␣in␣the␣protocol!")
113 return mmio_idx
114

115 def write_mmio(self, cmd, value):
116 """Finds the MMIO corresponding to the given command to write the value to."""
117 idx = PLInterface._get_mmio_idx(cmd)
118 mmio = self.mmios[idx]
119 mmio.write(offset=0, data=value)
120

121 def read_mmio(self, cmd):
122 """Finds the MMIO corresponding to the given command and reads its value."""
123 idx = PLInterface._get_mmio_idx(cmd)
124 mmio = self.mmios[idx]
125 return mmio.read(offset=0)
126

127 def get_mmio_status(self):
128 """Returns dictionary with hexadecimal addresses and corresponding current binary

contents of all MMIO registers."""
129 return {f"0x{m.base_addr:08x}": f"0b{m.read():>032b}" for m in self.mmios.values()}
130

131 def verify_mmio(self):
132 """Checks using assert statements that the current MMIO configuration does not cause

problems in the PL,
133 such as invalid counter values leading to DMA transfers becoming impossible to

perform.
134 """
135 dead_time = self.mmios[PLConfig.MMIO_DEAD_TIME].read()
136 trigger_length = self.mmios[PLConfig.MMIO_TRIG].read() & ((1 << 24) - 1) # lowest 24

bits of register
137 tpp = self.mmios[PLConfig.MMIO_TPP].read()
138 assert tpp > 0, f"time␣per␣point␣{tpp}␣should␣be␣greater␣than␣zero"
139 assert dead_time > 0, f"generator␣dead␣time␣{dead_time}␣should␣be␣greater␣than␣zero"
140 assert tpp > dead_time, f"time␣per␣point␣{tpp}␣should␣be␣longer␣than␣generator␣dead␣

time␣{dead_time}"
141 assert tpp > trigger_length, f"time␣per␣point␣{tpp}␣should␣be␣longer␣than␣trigger␣

pulse␣length␣{trigger_length}"
142

143 @property
144 def dma_status(self):
145 """For debugging purposes. Status code 0: when a transfer is about to start; 1: when

waiting
146 for the data to become available; 2: when a transfer has been completed.
147 """
148 return self._dma_status
149

150 @dma_status.setter
151 def dma_status(self, value):
152 if helpers.VERBOSE: helpers.printd(f"[DMA]␣status␣{value}.")
153 self._dma_status = value
154

155

156 class DataQueue(Queue):
157 """First-in first-out structure storing acquired data"""
158

159 MAXSIZE_BITS = 16
160 """Maximum size of the queue is 2 ** BITSIZE - 1"""
161

162 QUEUE_TIMEOUT = 50E-3
163 """Timeout in seconds for waiting while getting from and putting data into the queue"""
164

165 DEBUG = True
166 """Whether to print debugging information"""

A.1. Server-side program 33

167

168 def __init__(self):
169 super().__init__(2 ** DataQueue.MAXSIZE_BITS - 1)
170 self.is_fetching = False
171 self.is_waiting = True
172 self.fetching_paused = True # signal to other threads
173

174 @property
175 def is_fetching(self):
176 """Keeps sending requests to get data via DMA."""
177 return self._is_fetching
178

179 @is_fetching.setter
180 def is_fetching(self, value):
181 if not isinstance(value, bool):
182 raise TypeError(f"Cannot␣set␣property␣`is_fetching`␣with␣type␣{type(value)}!")
183 if helpers.VERBOSE: helpers.printd(f"[DMA]␣{'not␣'␣if␣not␣value␣else␣''}fetching␣into

␣queue.")
184 self._is_fetching = value
185

186 def flush(self):
187 """Removes all items in the queue."""
188 with self.mutex:
189 self.queue.clear()
190 if not self.empty():
191 raise RuntimeError(f"Emptying␣queue␣failed;␣size␣is␣{self.queue.qsize()}␣>␣0.")
192 if DataQueue.DEBUG: helpers.printd("Queue␣is␣now␣empty.")
193

194 def keep_fetching(self, fetch_func, overwrite_when_full=True):
195 """Fetch via a provided function and store in the queue,
196 as long as `self.is_fetching` and `self.is_waiting` are True.
197 By default, overwrites the oldest data when full, else does nothing.
198 """
199 i = 0 # debug counter
200

201 # Loop to keep fetching from the queue.
202 while True:
203 # If not waiting nor fetching, return.
204 while not self.is_fetching and self.is_waiting:
205 sleep(0.0005)
206 if not self.is_waiting:
207 return # Keep `fetching_paused` True.
208 self.fetching_paused = False
209

210 if DataQueue.DEBUG and i % 1000 == 0:
211 self.check()
212

213 # Execute fetch function.
214 try:
215 new = fetch_func()
216 except PLInterface.DMANotAllowed:
217 if helpers.VERBOSE: helpers.printd("[DMA]␣thread␣tried␣to␣fetch␣while␣DMA␣

channel␣not␣ready.")
218 else:
219 # Store result in the queue.
220 i += 1
221 try:
222 self.put(new, timeout=DataQueue.QUEUE_TIMEOUT)
223 except Full:
224 if overwrite_when_full:
225 self.get_nowait()
226 self.put(new)
227 if DataQueue.DEBUG: helpers.printd("Queue␣is␣full;␣overwritten␣oldest

␣data␣item!")
228

229 # If still fetching, continue immediately.
230 if self.is_fetching:
231 continue
232

233 # Wait for new signal to start fetching.
234 helpers.printd("Fetching␣data␣via␣DMA␣to␣queue␣paused.")

A.1. Server-side program 34

235 self.fetching_paused = True # signal for other threads
236

237 def check(self):
238 """Gives debugging warnings if queue is almost empty or almost full."""
239 if not DataQueue.DEBUG:
240 return
241 size, maxsize = self.qsize(), self.maxsize
242 if 0 < size < 0.03 * maxsize:
243 helpers.printd(f"Data␣queue␣is␣almost␣empty:␣{size}␣of␣{maxsize}.")
244 if 0.95 * maxsize < size < maxsize:
245 helpers.printd(f"Data␣queue␣is␣almost␣full:␣{size}␣of␣{maxsize}.")

A.1.2. TCP server module
1 """Simple TCP server that runs on the processing system (PS) to receive configuration and

send acquired data"""
2

3 from queue import Empty
4 import socket
5 from threading import Thread
6 from time import sleep
7

8 from data_processing import DataQueue, PLInterface
9 import helpers

10 from protocol import TCPCommandProtocol
11

12

13 class TCPDataServer(TCPCommandProtocol):
14 """Simple host:port socket server based on https://realpython.com/python-sockets"""
15

16 class ServerStop(Exception):
17 """Graceful stop for the TCP server"""
18

19 BUFSIZE = 16
20 """Receiving buffer size"""
21

22 DEBUG = True
23 """Whether to print debugging information"""
24

25 USE_QUEUE = True
26 """Whether to store the acquired and preprocessed data in a Python queue"""
27

28 TCP_CONFIG_CMDS = {
29 TCPCommandProtocol.DEAD_TIME, TCPCommandProtocol.TPP, TCPCommandProtocol.TRIG_LEN,

TCPCommandProtocol.TRIG_0_CONF,
30 TCPCommandProtocol.TRIG_1_CONF
31 }
32 """All configuration commands used in client-server communication"""
33

34 TCP_REQUEST_CMDS = {TCPCommandProtocol.DATA, TCPCommandProtocol.CPU_TEMP,
TCPCommandProtocol.QUEUE_SIZE}

35 """All commands a client can use to request data from the TCP server"""
36

37 def __init__(self, host, port):
38 self.host, self.port = host, port
39 if TCPDataServer.DEBUG: helpers.printd(f"Configuring␣programmable␣logic␣{PLInterface.

OVERLAY_PATH}...")
40 self.pl_interface = PLInterface()
41

42 # Create a queue as data buffer.
43 self.queue = DataQueue()
44 if TCPDataServer.USE_QUEUE:
45 if TCPDataServer.DEBUG: helpers.printd("Starting␣data␣fetch␣thread...")
46 self.fetch_thread = Thread(
47 target=self.queue.keep_fetching, args=(self.pl_interface.get_data,), name="

vna_fetch_dma"
48)
49 self.fetch_thread.start()
50

51 def get_data(self):
52 """Reads the I and Q data (points) from the data queue,

A.1. Server-side program 35

53 groups it into larger packets and converts to bytes.
54 """
55 if not self.pl_interface.enable:
56 raise RuntimeError("Cannot␣get␣new␣data␣as␣PL␣not␣enabled.")
57 data_packet = []
58

59 # Loop for creating larger packets from individual data/point requests.
60 while True:
61

62 # This gets data from the queue.
63 if TCPDataServer.USE_QUEUE:
64 try:
65 data = self.queue.get(timeout=DataQueue.QUEUE_TIMEOUT)
66 except Empty:
67 # Behaviour when timeout occured: send immediately if at least one packet

retrieved from queue.
68 if len(data_packet) > 0:
69 if helpers.VERBOSE:
70 helpers.printd(f"[TCP]␣queue␣timeout␣occured;␣sending␣{len(

data_packet)␣//␣4}␣point(s)␣now.")
71 break
72 if helpers.VERBOSE: # Else, keep waiting for data.
73 helpers.printd("[TCP]␣queue␣timeout␣occured;␣still␣got␣no␣data␣to␣

send.")
74 continue
75

76 # This gets data directly from memory (DMA between PL and memory).
77 else:
78 data = self.pl_interface.get_data()
79

80 # Send the data if the maximum amount of points per packet has been reached.
81 data_packet.extend(data)
82 if len(data_packet) // len(data) == TCPDataServer.POINTS_PER_PACKET:
83 break
84

85 # Convert 64-bit floats to bytes.
86 if len(data_packet) == 0:
87 raise RuntimeError("No␣data␣could␣be␣acquired.")
88 return helpers.floats64_to_bytes(data_packet)
89

90 def change_config(self, config):
91 """Changes hardware configuration for programmable logic with provided dictionary."""
92 for cmd, value in config.items():
93 # Determine scalar to multiply value with.
94 scalar = PLInterface.MMIO_VALUE_SCALING_DICT.get(cmd, 1)
95 try:
96 scalar_int = int(scalar)
97 except ValueError as err:
98 raise TypeError(f"Cannot␣convert␣{scalar}␣from␣MMIO_VALUE_SCALING_DICT␣in␣

protocol␣to␣integer!") from err
99 value *= scalar_int

100

101 # Special case: trigger configurations: keep certain contents of register.
102 if cmd in {TCPCommandProtocol.TRIG_0_CONF, TCPCommandProtocol.TRIG_1_CONF}:
103 current = self.pl_interface.read_mmio(cmd)
104 # Discard (set to zero) the current bits; then OR with the scaled value.
105 value_to_write = (current & ~(0b1111 * scalar_int)) | value
106 else: # Overwrite complete 32-bit register.
107 value_to_write = value
108

109 # Write new value.
110 self.pl_interface.write_mmio(cmd, value_to_write)
111 if TCPDataServer.DEBUG:
112 helpers.printd(f"Config␣{cmd}␣changed␣to␣{value␣//␣scalar}.")
113 if helpers.VERBOSE:
114 helpers.printd(f"[TCP]␣written␣config␣value␣was␣{value_to_write:032b}.")
115

116 def control_on_off(self, data):
117 """Turns on or off the programmable logic and stops or starts fetching data into the

queue via DMA.
118 Argument `data` should be '0' or '1'.

A.1. Server-side program 36

119 """
120 if data not in {"0", "1"}:
121 raise ValueError(f"Unknown␣value:␣{data}␣is␣not␣'0'␣or␣'1'.")
122 enable_pl = data == "1"
123

124 # Check that when enabling, current configuration does not cause infinite (especially
DMA).

125 if enable_pl:
126 self.pl_interface.verify_mmio()
127

128 # Pause DMA transfers, empty the queue, enable programmable logic and queue fetching.
The order is important!

129 self.pause_dma()
130 if enable_pl:
131 self.queue.flush()
132 try:
133 if helpers.VERBOSE: helpers.printd("Current␣MMIO␣contents:", self.pl_interface.

get_mmio_status())
134 self.pl_interface.enable = enable_pl
135 self.queue.is_fetching = enable_pl
136 except (RuntimeError, PLInterface.DMANotAllowed) as err:
137 raise PLInterface.DMANotAllowed(
138 f"PL␣enabling␣failed;␣DMA␣not␣gracefully␣stopped?␣DMA␣status␣=␣{self.

pl_interface.dma_status}"
139) from err
140

141 return TCPDataServer.RESPONSE_OK if enable_pl == self.pl_interface.enable else
TCPDataServer.RESPONSE_ERR

142

143 def pause_dma(self):
144 """Pauses DMA thread after current transfer has been completed.
145 Waits for thread to return special `fetching_paused` signal.
146 """
147 if self.queue.is_fetching or not self.queue.fetching_paused:
148 self.queue.is_fetching = False # Send pause fetching signal.
149 while self.pl_interface.dma_status != 2 or not self.queue.fetching_paused:
150 pass # Wait until thread replies with fetching paused signal and DMA status

stays at 2.
151

152 def determine_response(self, data):
153 """Logic for the server's response based on received decoded data"""
154 if data == TCPDataServer.DATA:
155 return self.get_data()
156 if data[0] == TCPDataServer.RUN_PL: # control reset
157 return self.control_on_off(data[1:])
158 if data == TCPDataServer.QUEUE_SIZE: # server DMA buffer queue size
159 return self.queue.qsize().to_bytes(length=DataQueue.MAXSIZE_BITS // 8, byteorder=

"big")
160 if data == TCPDataServer.CPU_TEMP: # server cpu temperature
161 return helpers.floats64_to_bytes((helpers.cpu_temp(),))
162 if data == TCPDataServer.STOP_SERVER:
163 self.stop()
164 if len(data) > 1:
165 if data[0] not in TCPDataServer.TCP_CONFIG_CMDS:
166 raise ValueError(f"Unknown␣config␣{data[0]}.")
167 self.change_config({data[0]: int(data[1:])})
168 return TCPDataServer.RESPONSE_OK
169 return TCPDataServer.RESPONSE_ERR
170

171 def serve_one_client(self):
172 """Sends acquired data to one client."""
173 with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as self.sock:
174 try:
175 self.sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
176 self.sock.bind((self.host, self.port))
177 self.sock.listen(1)
178 except OSError as err:
179 helpers.printd(f"Cannot␣start␣server:␣{str(err)}")
180 return self.stop()
181 if TCPDataServer.DEBUG:
182 helpers.printd(f"Started␣TCP␣data␣server␣on␣{self.host}:{self.port}.")

A.1. Server-side program 37

183

184 # Wait until client accepts connection.
185 while True:
186 server_waits_for_client = True
187 self.pause_dma() # First close the currently running DMA transfer.
188 self.pl_interface.enable = False # Then disable data acquisition.
189 try:
190 if helpers.VERBOSE: helpers.printd("[TCP]␣waiting␣for␣client.")
191 conn, addr = self.sock.accept() # blocking
192 client = f"{addr[0]}:{addr[1]}"
193 except KeyboardInterrupt:
194 if TCPDataServer.DEBUG:
195 helpers.printd("Keyboard␣interrupt;␣stopping␣TCP␣server...")
196 return self.stop(quiet=True)
197 with conn:
198 if TCPDataServer.DEBUG: helpers.printd(f"{client}␣connected␣to␣the␣TCP␣

server.")
199

200 # Loop until client disconnects.
201 received_data = b""
202 while True:
203 try:
204 received_data = conn.recv(TCPDataServer.BUFSIZE)
205 except (ConnectionResetError , BrokenPipeError) as err:
206 if TCPDataServer.DEBUG:
207 helpers.printd(f"{client}␣caused␣exception:␣{err}")
208 continue
209 if not received_data:
210 if server_waits_for_client:
211 sleep(0.1)
212 continue
213 if TCPDataServer.DEBUG: helpers.printd(f"{client}␣disconnected.")
214 break
215

216 # Start processing commands when client sends them.
217 server_waits_for_client = False
218 try:
219 response = self.determine_response(received_data.decode())
220 except Exception as err:
221 if isinstance(err, TCPDataServer.ServerStop):
222 return
223 response = TCPDataServer.RESPONSE_ERR
224 if TCPDataServer.DEBUG:
225 helpers.printd(
226 f"Exception␣occured␣when␣processing␣command␣{

received_data.decode()}:␣"
227 f"{type(err).__name__}:␣{'␣'.join(err.args)}"
228)
229

230 # Respond to the client.
231 try:
232 conn.sendall(response)
233 except (ConnectionResetError , BrokenPipeError):
234 if TCPDataServer.DEBUG:
235 helpers.printd(f"{client}␣reset␣the␣connection.")
236 except TCPDataServer.ServerStop:
237 return # End the loop if server stop requested.
238

239 def stop(self, quiet=False):
240 """Closes the TCP server, stops the threads that were started and raises the

ServerStop exception."""
241 if not hasattr(self, "sock"):
242 return
243 if TCPDataServer.DEBUG: helpers.printd("Stopping␣TCP␣server...")
244 self.sock.close()
245 if TCPDataServer.USE_QUEUE:
246 if TCPDataServer.DEBUG: helpers.printd("Stopping␣data␣fetch␣thread...")
247 self.queue.is_waiting = False # No longer accept new client connections.
248 self.pause_dma() # No longer fetch via DMA.
249 self.pl_interface.dma_channel.stop() # Stop DMA channel if currently waiting.
250 self.fetch_thread.join(timeout=5)

A.1. Server-side program 38

251 if not quiet:
252 raise TCPDataServer.ServerStop

A.1.3. Communication and PS/PL protocol module
1 """Definitions for proper communication and programmable logic (PL) configuration parameters

"""
2

3 from os.path import join, dirname
4

5 from numpy import uint32
6

7

8 class TCPCommandProtocol:
9 """Defines the commands used for communication between Python TCP client

10 and Python TCP server.
11 """
12

13 TCP_PORT = 2024
14 """Port on which the Python TCP server listens for clients"""
15

16 DEAD_TIME = "g"
17 """Generator dead time in microseconds"""
18

19 TPP = "p"
20 """Time per point in microseconds for averaging inside the PL"""
21

22 RUN_PL = "r"
23 """Enable data acquisition in programmable logic"""
24

25 TRIG_LEN = "t"
26 """Trigger pulse length in microseconds"""
27

28 TRIG_0_CONF = "c"
29 """Trigger output 0 configuration; expecting an integer below 8"""
30

31 TRIG_1_CONF = "o"
32 """Trigger output 1 configuration; expecting an integer below 8"""
33

34 DATA = "d"
35 """Request IQ data in volts"""
36

37 CPU_TEMP = "T"
38 """Request server cpu temperature in degrees Celsius"""
39

40 QUEUE_SIZE = "q"
41 """Request server data queue size"""
42

43 RESPONSE_OK = b"*"
44 """Server understood client's command"""
45

46 RESPONSE_ERR = b"?"
47 """Server did not understand client's command or an internal error occured"""
48

49 STOP_SERVER = "!"
50 """Command to stop the TCP server remotely"""
51

52 POINTS_PER_PACKET = 45
53 """Number of IQ measurements (points) per TCP transfer; for optimal throughput and

response time / interactivity"""
54

55

56 class PLConfig:
57 """Defines programmable logic configuration parameters"""
58

59 OVERLAY_PATH = join(dirname(dirname(dirname(__file__))), "pl", "vna_v1_7.bit")
60 """Path to .bit file to be used as overlay on programmable logic; .hwh file should also

be in this directory"""
61

62 MMIO_DEAD_TIME = 0
63 """MMIO used for configuring generator dead time"""

A.1. Server-side program 39

64

65 MMIO_TPP = 1
66 """MMIO used for configuring time per point"""
67

68 MMIO_TRIG = 2
69 """MMIO used for configuring trigger output"""
70

71 MMIO_GENERAL = 3
72 """MMIO used for general programmable logic configuration"""
73

74 MMIO_DICT = {MMIO_TRIG: 0x41200000, MMIO_GENERAL: 0x41200008, MMIO_DEAD_TIME: 0x42000000,
MMIO_TPP: 0x42000008}

75 """All used memory-mapped input and output interfaces"""
76

77 TCP_MMIO_DICT = {
78 TCPCommandProtocol.TPP: MMIO_TPP,
79 TCPCommandProtocol.DEAD_TIME: MMIO_DEAD_TIME,
80 TCPCommandProtocol.RUN_PL: MMIO_GENERAL,
81 TCPCommandProtocol.TRIG_LEN: MMIO_TRIG,
82 TCPCommandProtocol.TRIG_0_CONF: MMIO_TRIG,
83 TCPCommandProtocol.TRIG_1_CONF: MMIO_TRIG
84 }
85 """Translation dictionary between TCP commands and memory-mapped programmable logic

interfaces"""
86

87 MMIO_VALUE_SCALING_DICT = {
88 TCPCommandProtocol.TPP: 125, # clock frequency 125 MHz
89 TCPCommandProtocol.DEAD_TIME: 125, # clock frequency 125 MHz
90 TCPCommandProtocol.TRIG_LEN: 125, # clock frequency 125 MHz
91 TCPCommandProtocol.TRIG_0_CONF: 16777216, # equivalent to x left shift 24
92 TCPCommandProtocol.TRIG_1_CONF: 268435456 # equivalent to x left shift 28
93 }
94 """Scaling of values before writing to programmable logic memory"""
95

96 RAW_TO_VOLTS = 2 ** -25
97 """Conversion of raw DMA output to volts"""
98

99 DMA_DATA_SIZE = 12
100 """Length (in nrs. of DMA_DTYPE) of data packet received via DMA"""
101

102 DMA_DTYPE = uint32
103 """Data type coming from DMA"""
104

105 PL_RUNNING_BIT = 0x1
106 """Active-high bit to set programmable logic running"""

A.1.4. Helper module
1 """Helper functions related to debugging the server"""
2

3 from datetime import datetime
4 import os
5 from struct import pack
6 from subprocess import run
7

8 VERBOSE = False
9 """Whether to spam your console with messages"""

10

11

12 def printd(*args, **kwargs):
13 """Prints date and time in front of message."""
14 out = datetime.now().strftime("%Y-%m-%d␣%H:%M:%S.%f")
15 if "flush" not in kwargs:
16 print(out, *args, flush=True, **kwargs)
17 else:
18 print(out, *args, **kwargs)
19

20

21 def cpu_temp():
22 """Returns cpu temperature of PYNQ server."""
23 path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sh", "cpu_temp.sh")

A.1. Server-side program 40

24 if not os.path.isfile(path):
25 raise FileNotFoundError(f"Script␣'{path}'␣does␣not␣exist.")
26 process = run(f"{path}␣-F", shell=True, capture_output=True, check=False)
27 return float(process.stdout.decode())
28

29

30 def floats64_to_bytes(values):
31 """Converts iterable of 64-bit Python floats to bytes object. Source:
32 https://stackoverflow.com/questions/9940859/fastest-way-to-pack-a-list-of-floats-into-

bytes-in-python.
33 """
34 return pack(f"{len(values)}d", *values)
35

36

37 def uint64_to_signed_int(unsigned):
38 """Converts 64-bit unsigned integer to signed integer. By Bit Twiddling Hacks; see
39 https://stackoverflow.com/questions/1375897/how-to-get-the-signed-integer-value-of-a-long

-in-python.
40 """
41 unsigned &= (1 << 64) - 1 # Keep only the lowest 64 bits.
42 return (unsigned ^ 0x8000000000000000) - 0x8000000000000000 # Swap and shift down.

A.1.5. Main server script
1 #!/usr/local/share/pynq-venv/bin/python3
2 """Main server script"""
3

4 from helpers import printd
5 from sys import argv
6

7 if len(argv) == 0:
8 MOCK_PYNQ = False
9 elif argv[1] == "-M":

10 MOCK_PYNQ = True
11 else:
12 raise ValueError(f"Program␣argument␣{argv[1]}␣not␣understood.␣Options␣are:\n\t-M\tmock␣'

pynq'␣library")
13

14 if MOCK_PYNQ: # mocking the pynq library
15 printd("Mocking␣'pynq'␣library...")
16 from os import getcwd
17 from sys import path
18 path.insert(0, getcwd())
19 from tests.server import mocked_pynq
20 mocked_pynq.mock_pynq_module(mocked_pynq)
21

22 from tcp_server import TCPDataServer
23

24

25 def main():
26 printd("Started␣main␣server␣script.")
27 tds = TCPDataServer(host="", port=2024)
28 tds.serve_one_client()
29 printd("Stopped␣main␣server␣script.")
30

31

32 if __name__ == "__main__":
33 main()

A.1.6. Mocked PYNQ module
1 """Part of a mocked version of the pynq libary for testing on systems that do not have it

installed"""
2

3 import os
4 import sys
5 from types import ModuleType
6 from typing import Any
7

8 from numpy import array, empty, ndarray, uint32, zeros
9

A.1. Server-side program 41

10 from project.server import helpers, protocol
11

12

13 def mock_pynq_module(mocked_module: ModuleType) -> None:
14 # Add directory to path to be able to find 'helpers.py'.
15 sys.path.insert(0, os.path.dirname(helpers.__file__))
16

17 # Reassign pynq module to the given mocked module.
18 sys.modules["pynq"] = mocked_module
19

20

21 def allocate(shape: Any, dtype: str = "u4", **kwargs) -> Any:
22 """Mocked version of pynq.allocate."""
23 helpers.printd(f"[TEST]␣MockedPynq:␣allocated␣array␣of␣shape␣{shape}.")
24 ALLOCATED_BUFFER = zeros(shape, dtype)
25 return ALLOCATED_BUFFER
26

27

28 ALLOCATED_BUFFER = empty(protocol.PLConfig.DMA_DATA_SIZE, dtype=protocol.PLConfig.DMA_DTYPE)
29 """Returned upon calling `pynq.allocate`"""
30

31

32 class Overlay:
33 """Mocked version of pynq.Overlay"""
34

35 PL_ENABLED = False
36 """Programmable login in reset by default"""
37

38 def __init__(self, bitfile_name, *args) -> None:
39 helpers.printd(f"[TEST]␣MockedPynq:␣loaded␣overlay␣{bitfile_name};␣PL␣{'not␣'␣if␣

Overlay.PL_ENABLED␣else␣''}enabled.")
40

41 class dma:
42 """Mocked dma class"""
43

44 class recvchannel:
45 """Mocked recvchannel class"""
46

47 BUFFER = array((
48 4289555807, 4294967295, 14383, 1139606, 0, 14383, 4291721347, 4294967295,

14383, 4292855430, 4294967295, 14383
49),
50 dtype=protocol.PLConfig.DMA_DTYPE)
51 """Example buffer from programmable logic"""
52

53 def transfer(buffer: ndarray[uint32]) -> None:
54 """Simulates that the PL writes data into the allocated buffer."""
55 new = Overlay.dma.recvchannel.BUFFER
56 if new.shape == buffer.shape:
57 buffer += new
58 helpers.printd("[TEST]␣MockedPynq:␣started␣DMA␣transfer.")
59

60 @staticmethod
61 def wait() -> None:
62 """When testing, wait returns immediately unless an error occured."""
63 if not Overlay.PL_ENABLED:
64 raise RuntimeError("[TEST]␣MockedPynq:␣DMA␣transfer␣wait␣will␣hang␣since␣

PL␣still␣in␣reset.")
65

66 @staticmethod
67 def stop() -> None:
68 """Stops the current DMA transfer"""
69 helpers.printd("[TEST]␣MockedPynq:␣stopped␣DMA␣transfer.")
70

71

72 class MMIO:
73 """Mocked version of pynq.MMIO"""
74

75 def __init__(self, base_addr: int, length: int = 4, device: None = None, **kwargs):
76 self.base_addr = base_addr
77 self.content = 0x0

A.1. Server-side program 42

78 helpers.printd(f"[TEST]␣MockedPynq:␣MMIO␣object␣initialised␣at␣address␣0x{base_addr:8
x}.")

79

80 def write(self, offset: int, data: int | bytes):
81 helpers.printd(f"[TEST]␣MockedPynq:␣writing␣{data}␣to␣MMIO␣address␣0x{self.base_addr

:8x}.")
82 if isinstance(data, bytes):
83 data = int.from_bytes(data)
84 self.content = data
85 if self.base_addr == protocol.PLConfig.MMIO_DICT[protocol.PLConfig.MMIO_GENERAL] and

data == 1:
86 Overlay.PL_ENABLED = True
87

88 def read(self, offset: int = 0, length: int = 4, word_order="little") -> int:
89 helpers.printd(f"[TEST]␣MockedPynq:␣reading␣value␣from␣MMIO␣address␣0x{self.base_addr

:8x}.")
90 return self.content

A.1.7. Tests for data processing module
1 """Tests data processing classes and functions, also on systems that do not have `pynq`

installed"""
2

3 from threading import Thread
4 from time import sleep
5

6 from pytest import fail, raises
7

8 from tests.server import mocked_pynq
9

10 # Apply the mocked pynq module before importing the classes to be tested.
11 mocked_pynq.mock_pynq_module(mocked_pynq)
12 from project.server.data_processing import DataQueue, PLInterface
13

14

15 def test_dma_hang() -> None:
16 # Create PL interface and do not enable acquisition but try a DMA request.
17 pl_i = PLInterface()
18 assert not pl_i.enable, "PL␣incorrectly␣enabled␣by␣default"
19 with raises(PLInterface.DMANotAllowed):
20 pl_i.get_data()
21 fail("PL␣not␣enabled;␣wait␣for␣DMA␣transfer␣should␣hang.")
22

23

24 def test_dma_get_data() -> None:
25 # Create PL interface and start mocked acquisition.
26 pl_i = PLInterface()
27 assert pl_i.dma_status == 2, "DMA␣status␣should␣be␣2␣since␣no␣transfer␣running"
28 pl_i.enable = True
29 assert pl_i.enable, "PL␣enable␣failed"
30

31 # Request data via Direct Memory Access.
32 raw_data = pl_i.raw_dma_data_request()
33 assert len(raw_data) == pl_i.DMA_DATA_SIZE, "raw␣data␣length␣incorrect"
34 data = pl_i.preprocess_raw_dma_data(raw_data)
35 for el in data:
36 assert isinstance(el, float), "data␣element␣should␣be␣float"
37 assert pl_i.dma_status == 2, "DMA␣status␣should␣be␣2␣again␣after␣transfer␣finished"
38

39

40 def test_mmio() -> None:
41 # Test writing and reading memory-mapped input/output registers.
42 pl_i = PLInterface()
43 test_data = 0b10001001
44 for cmd in PLInterface.TCP_MMIO_DICT:
45 idx = PLInterface._get_mmio_idx(cmd)
46 mmio_register = pl_i.mmios[idx]
47 mmio_register.write(offset=0, data=test_data)
48 assert list(pl_i.get_mmio_status().values()
49) == ([f"0b{test_data:032b}"] * 4), "written␣content␣not␣available␣to␣read␣in

␣MMIO␣register(s)"

A.1. Server-side program 43

50

51

52 def test_queue() -> None:
53 # Create small data queue.
54 DataQueue.MAXSIZE_BITS = 3
55 dq = DataQueue()
56 assert dq.fetching_paused, "new␣data␣queue␣should␣be␣paused"
57

58 # Fetch test data in thread and read it.
59 test_data_func = lambda: (-1., -.5, .5, 1)
60 thr = Thread(target=dq.keep_fetching, args=(test_data_func,))
61 thr.start()
62 dq.is_fetching = True
63 assert dq.get(timeout=15) == test_data_func(), "queue␣is␣not␣filled␣with␣test␣data"
64

65 # Send signal to thread and wait for response pause signal.
66 dq.is_fetching = False
67 for _ in range(1500):
68 sleep(0.01)
69 if dq.fetching_paused:
70 break
71 else:
72 assert dq.fetching_paused, "pause␣signal␣still␣not␣received␣15␣seconds␣after␣`

is_fetching`␣set␣to␣False"
73

74 # Send stop signal and check if thread ended.
75 dq.is_waiting = False
76 thr.join(timeout=15)
77 assert not thr.is_alive(), "thread␣should␣exit␣after␣setting␣attribute␣`is_waiting`␣to␣

False"

A.1.8. Tests for TCP server module
1 """Tests for the TCP server"""
2

3 from threading import Thread
4 from types import TracebackType
5 from typing import Type
6

7 # Apply the mocked pynq module before importing the classes to be tested.
8 from tests.server import mocked_pynq
9 mocked_pynq.mock_pynq_module(mocked_pynq)

10

11 from project.client.connection.tcp_client import TCPClient
12 from project.server.tcp_server import TCPDataServer
13

14

15 class TCPClient(TCPClient):
16 """Modification of TCPClient class for testing purposes"""
17

18 def __exit__(
19 self, exc_type: Type[BaseException] | None, exc_val: BaseException | None, exc_tb:

TracebackType | None
20) -> None:
21 """Stops server when exiting a `with` block."""
22 try:
23 self._stop_server(True)
24 except ConnectionAbortedError:
25 pass # socket already closed
26 super().__exit__(exc_type, exc_val, exc_tb)
27

28

29 def test_tcp_commands() -> None:
30 dead_time = 100 # microseconds
31 tpp = 1000 # microseconds
32 trig_length = 10 # microseconds
33 tds = TCPDataServer(host="localhost", port=2024)
34 thr = Thread(target=tds.serve_one_client, name="test_tcp_data_server")
35

36 # Start local test server and connect with client.
37 thr.start()

A.2. Client-side program 44

38 with TCPClient(host="localhost", port=2024) as tc:
39 # Send config parameters.
40 tc.send_dead_time(dead_time)
41 tc.send_tpp(tpp)
42 tc.send_trigger_length(trig_length)
43 trig_length_clock_cyles = trig_length * tds.pl_interface.MMIO_VALUE_SCALING_DICT[tds.

TRIG_LEN]
44 tc.send_trigger_config(trig_nr=0, positive=True, sweep=True, step=False)
45

46 # Check that trigger config arrived in MMIO register.
47 bits = tds.pl_interface.read_mmio(tds.TRIG_0_CONF)
48 assert (# binary trig conf OR trig length in clock cycles
49 bits == (0b0010 << 24) | trig_length_clock_cyles
50), "trigger␣config␣not␣correctly␣written␣to␣MMIO␣register"
51 tc.send_trigger_config(trig_nr=0, positive=False, sweep=False, step=True)
52 bits = tds.pl_interface.read_mmio(tds.TRIG_0_CONF)
53 assert (# binary trig conf OR trig length in clock cycles
54 bits == (0b0101 << 24) | trig_length_clock_cyles
55), "trigger␣config␣not␣correctly␣updated␣in␣MMIO␣register"
56

57 # Check that dead time and time per point arrived in MMIO registers.
58 bits = tds.pl_interface.read_mmio(tds.DEAD_TIME)
59 assert (# binary clock cycles for dead time = time * clock frequency
60 bits == dead_time * tds.pl_interface.MMIO_VALUE_SCALING_DICT[tds.DEAD_TIME]
61), "dead␣time␣not␣correctly␣written␣to␣MMIO␣register"
62 bits = tds.pl_interface.read_mmio(tds.TPP)
63 assert (# binary clock cycles per point == time * clock frequency
64 bits == tpp * tds.pl_interface.MMIO_VALUE_SCALING_DICT[tds.TPP]
65), "time␣per␣point␣not␣correctly␣written␣to␣MMIO␣register"
66

67 # Test queue size.
68 qs = tc.get_queue_size()
69 assert isinstance(qs, int), "queue␣size␣request␣did␣not␣return␣integer"
70 assert qs == 0, "queue␣size␣is␣not␣zero␣before␣start␣data␣acquisition␣(invalid␣data␣in␣

queue)"
71 thr.join(timeout=15)
72 assert not thr.is_alive(), "server␣thread␣did␣not␣finish␣in␣15␣seconds␣after␣receiving␣

stop␣command"
73

74

75 def test_tcp_request_data() -> None:
76 tds = TCPDataServer(host="localhost", port=2024)
77 thr = Thread(target=tds.serve_one_client, name="test_tcp_data_server")
78

79 # Start local test server and connect with client.
80 thr.start()
81 with TCPClient(host="localhost", port=2024) as tc:
82 tc.send_tpp(2) # minimal settings for no error
83 tc.send_dead_time(1) # dead_time < tpp < 0
84 assert (# try data request
85 tc.send_receive(TCPClient.DATA) == TCPClient.RESPONSE_ERR
86), "acquisition␣not␣started␣should␣return␣error␣response"
87

88 # Start acquisition and request data again.
89 tc.start_acquisition()
90 data = tc.request_data()
91 assert len(data) > 0, "data␣should␣not␣be␣empty"
92 assert len(data) <= TCPDataServer.POINTS_PER_PACKET * 4, "data␣should␣not␣be␣longer␣than␣

4␣*␣points␣per␣packetwt"
93 assert isinstance(data[0], float), "data␣element␣should␣be␣float"
94 thr.join(timeout=15)
95 assert not thr.is_alive(), "server␣thread␣did␣not␣finish␣in␣15␣seconds␣after␣receiving␣

stop␣command"

A.2. Client-side program
A.2.1. Application programming interface

1 """Application Programming Interface for the OpenVQA project"""
2

3 from collections.abc import Callable

A.2. Client-side program 45

4 from datetime import datetime
5 import os
6 from queue import Queue
7 from time import strftime
8

9 import numpy as np
10 import pandas as pd
11 import xarray as xr
12

13 from project.client.application.dexplore.data_folder import DataFolder
14 from project.client.connection.tcp_client import TCPClient
15 from project.client.generator.base_controller import BaseSCPIGeneratorController
16

17

18 class OpenVQA:
19 """Core functions of the Open Vector Qubit Analyser"""
20

21 IP = "vna11"
22 """Red Pitaya's IP address or hostname"""
23

24 DEADTIME = 100
25 """Generator dead time in microseconds (consider setting this constant in a generator

controller class)"""
26

27 TRIGGER_PULSE_LENGTH = 10
28 """Trigger pulse length in microseconds (consider setting this constant in a generator

controller class)"""
29

30 IF = 7.8125
31 """Intermediate frequency in megahertz"""
32

33 SAVE_PATH: str = os.path.join("project", "client", "application", "data")
34 """Where to save the acquired (meta)data (.h5 files and script)"""
35

36 PATH_TO_NOTEBOOK: str | None = None
37 """Set this inside a Jupyter notebook to also save this."""
38

39 def __init__(
40 self, generator_a: BaseSCPIGeneratorController | None, generator_b:

BaseSCPIGeneratorController | None
41) -> None:
42 self.generator_a = generator_a
43 self.generator_b = generator_b
44

45 def sweep_acquire_2_generators(
46 self, trigger_per_step: bool, freq_low: float, freq_high: float, freqstep: float,

timestep: int
47) -> None:
48 """Creates the sweeps on the generator, communicates with the server, and saves the

data.
49

50 Args:
51 trigger_per_step (bool): should only be set to True for generators that support

this functionality
52 freq_low (float): lower frequency bound for sweep
53 freq_high (float): higher frequency bound for sweep
54 freqstep (float): frequency step size in the sweep
55 timestep (float): time to remain at each frequency step
56 """
57 if timestep < OpenVQA.DEADTIME:
58 raise ValueError(f"Timestep␣{timestep}␣should␣not␣be␣smaller␣than␣dead␣time␣{

OpenVQA.DEADTIME}.")
59 if timestep < OpenVQA.TRIGGER_PULSE_LENGTH:
60 raise ValueError(
61 f"Timestep␣{timestep}␣should␣not␣be␣smaller␣than␣trigger␣pulse␣length␣{

OpenVQA.TRIGGER_PULSE_LENGTH}."
62)
63 if self.generator_a is None or self.generator_b is None:
64 raise TypeError("Both␣generator␣A␣and␣B␣have␣to␣be␣not␣None.")
65

66 with self.generator_a: # connect with RF generator a

A.2. Client-side program 46

67 print(f"Connected␣with␣{self.generator_a.name()}.")
68 with self.generator_b: # connect with RF generator b
69 print(f"Connected␣with␣{self.generator_b.name()}.")
70 with TCPClient(host=OpenVQA.IP, port=TCPClient.TCP_PORT) as self.tcp: #

connect with the Red Pitaya via tcp
71 print(f"Connected␣with␣{OpenVQA.IP}:{TCPClient.TCP_PORT}␣via␣TCP.")
72 num_frequencies = int((freq_high - freq_low) / freqstep + 1)
73

74 #Prepare all settings of the RF generators
75 self.generator_a.hardware_freq_sweep(freq_low, freq_high, freqstep,

timestep, power=13) #for through-DuT
76 self.generator_b.hardware_freq_sweep(
77 freq_low + OpenVQA.IF, freq_high + OpenVQA.IF, freqstep, timestep,

power=13
78) #for LO
79

80 self.queue = Queue(maxsize=num_frequencies)
81

82 start_time = datetime.now().strftime("%Y-%m-%e␣%H:%M:%S.%f") #Time kept
for later referencing

83

84 #send configuration to PL
85 self.tcp.send_tpp(timestep) #time per point in us
86 self.tcp.send_dead_time(OpenVQA.DEADTIME) #settling time in us
87 self.tcp.send_trigger_length(OpenVQA.TRIGGER_PULSE_LENGTH) #trigger time

length in us
88 self.tcp.send_trigger_config(trig_nr=0, positive=True, sweep=True, step=

trigger_per_step)
89 self.tcp.send_trigger_config(trig_nr=1, positive=True, sweep=True, step=

trigger_per_step)
90

91 self.generator_a.perform_sweep() #start sweep on both generators
92 self.generator_b.perform_sweep()
93

94 self.tcp.start_acquisition() #start data acquisition on PL
95

96 data = np.zeros((num_frequencies, 4))
97

98 # Request data via TCP and puts in queue until all data has been
collected.

99 OpenVQA.receive_data(num_frequencies, self.tcp.request_data, self.queue,
data)

100 self.tcp.stop_acquisition()
101

102 # Save the generator settings and server temperature as metadata.
103 setting_a = self.generator_a.read_status()
104 setting_b = self.generator_b.read_status()
105 temperature = self.tcp.get_server_cpu_temp()
106

107 stop_time = datetime.now().strftime("%Y-%m-%d␣%H:%M:%S.%f")
108

109 print("Time␣between␣sending␣configs␣and␣having␣all␣data:\nStart␣time:␣", start_time,
"\nStop␣time:␣", stop_time)

110

111 frequency_axis = np.linspace(freq_low, freq_high, int(num_frequencies))
112

113 # Construct full data array: [:,0]: frequency, [:,1]: real s21,[:,2]: imaginairy s21,
[:,3]: magnitude s21,

114 # [:,4]: phase s21, 5: re DuT, 6: im DuT, 7: mag DuT, 8: ph DuT, 9: re Ref, 10: im
Ref, 11: mag Ref, 12: ph Ref

115 full_data = OpenVQA.construct_output_data(frequency_axis, data)
116 OpenVQA.save_data(
117 data=full_data,
118 gen1_setting=setting_a,
119 gen2_setting=setting_b,
120 temperature=temperature,
121 save_path=OpenVQA.SAVE_PATH,
122 path_to_notebook=OpenVQA.PATH_TO_NOTEBOOK
123)
124

125 def __enter__(self) -> "OpenVQA":

A.2. Client-side program 47

126 """Enters the `with` block; returns itself to the variable after the `as` keyword."""
127 return self
128

129 def __exit__(self, *args, **kwargs):
130 """Leaves the `with` block."""
131 print("OpenVQA␣exited.")
132

133 @staticmethod
134 def receive_data(num_measurements: int, request_data: Callable, queue: Queue, data: np.

ndarray) -> None:
135 """Asks and waits for data from tcp, then puts it in queue and repeats.
136 Args:
137 num_measurements (int): number of measurement points
138 request_data: (callable): function that waits for requests and waits for data

from tcp
139 queue (queue.Queue): queue object containing the data received via tcp (for GUI

thread)
140 data: numpy array also containing the data received via tcp
141 """
142 total_nr_points = 0
143 while num_measurements > 0:
144 try:
145 new = request_data() #waits for data via tcp
146 except RuntimeError:
147 continue
148 nr_points_received = len(new) // 4 #four entries in received data are from 1

point (Idut,Qdut,Iref,Qref)
149 if num_measurements < nr_points_received:
150 new = new[:4 * num_measurements] #cuts when more data is received from tcp

than needed
151 nr_points_received = len(new) // 4
152 num_measurements -= nr_points_received
153 queue.put(new) #puts data in queue, then continues
154

155 data[total_nr_points:total_nr_points +
156 nr_points_received] = np.array(new).reshape(nr_points_received, data.shape

[1])
157 total_nr_points += nr_points_received
158

159 @staticmethod
160 def construct_output_data(freq: np.ndarray, data: np.ndarray) -> np.ndarray:
161 """Performs the complex division to obtain S21. Also arranges the frequency, S21, ref

and dut data.
162 Args:
163 freq (np.ndarray(num_frequencies)): array with all frequency steps of the sweep
164 data (np.ndarray(num_frequencies ,4)): IQ data from the DuT [:, :2] and the Ref

[:, 2:4]
165 Returns:
166 np.ndarray(num_frequencies ,13): a numpy matrix containing all frequency, S-

parameters, REF and DuT values
167 """
168

169 s21 = (data[:, 0] + 1j * data[:, 1]) / (data[:, 2] + 1j * data[:, 3])
170 s21_re = np.real(s21)
171 s21_im = np.imag(s21)
172

173 magnitude = OpenVQA.get_magnitude(data)
174 s21_mag = 10 * np.log10(magnitude[:, 0] / magnitude[:, 1]) #the S21 in dB
175

176 phase = OpenVQA.get_phase(data)
177 s21_ph = np.mod(phase[:, 0] - phase[:, 1], 2 * np.pi) #phase in range ([0,2pi))
178

179 dut_re = data[:, 0]
180 dut_im = data[:, 1]
181 dut_mag = magnitude[:, 0]
182 dut_ph = phase[:, 0]
183

184 ref_re = data[:, 2]
185 ref_im = data[:, 3]
186 ref_mag = magnitude[:, 1]
187 ref_ph = phase[:, 1]

A.2. Client-side program 48

188

189 return (
190 np.vstack(
191 (freq, s21_re, s21_im, s21_mag, s21_ph, dut_re, dut_im, dut_mag, dut_ph,

ref_re, ref_im, ref_mag, ref_ph)
192).T
193)
194

195 @staticmethod
196 def get_magnitude(iq_values: np.ndarray) -> np.ndarray:
197 """Calculates magnitude data from the four I and Q values.
198 Args:
199 iq_values (np.ndarray(num_frequencies ,4)): matrix with IQ trace data (o_dut,

m_dut, i_ref, q_ref)
200 Returns:
201 np.ndarray: column 1: magnitude of IQ[:, 0:2] (DuT), column 2: magnitude

of IQ[:, 2:4] (Ref)
202 """
203 vertical = iq_values.reshape((iq_values.shape[0] * 2, iq_values.shape[1] // 2))
204 norm = np.linalg.norm(vertical, axis=1)
205 magnitude = norm.reshape(iq_values.shape[0], iq_values.shape[1] // 2)
206 return magnitude
207

208 @staticmethod
209 def get_phase(iq_values: np.ndarray) -> np.ndarray:
210 """Calculates phase data from the four I and Q values.
211 Args:
212 iq_values (np.ndarray(num_frequencies ,4)): matrix with IQ trace data (o_dut,

m_dut, i_ref, q_ref)
213 Returns:
214 np.ndarray: column 1: phase of IQ[:, 0:2] (DuT), column 2: phase of IQ[:, 2:4] (

Ref)
215 """
216 vertical = iq_values.reshape((iq_values.shape[0] * 2, iq_values.shape[1] // 2))
217 angle = np.angle(1j * vertical[:, 1] + vertical[:, 0])
218 phase = angle.reshape(iq_values.shape[0], iq_values.shape[1] // 2)
219 return phase
220

221 @staticmethod
222 def stlab_dataframe(full_data: np.ndarray):
223 """convert a data 2D array to a pandas DataFrame as used by Steele lab
224 Args:
225 full_data (np.ndarray(num_frequencies ,13)): a numpy matrix containing all

frequency,
226 S-parameters, REF and DuT values
227 Returns:
228 pd.DataFrame: pandas dataframe with only frequency, S21 amplitude and S21 phase
229 """
230 freq = full_data[:, 0]
231 s21_decibel = full_data[:, 3]
232 s21_phase = full_data[:, 4]
233 data = {"Frequency␣(Hz)": freq, "S21dB␣(dB)": s21_decibel, "S21␣phase": s21_phase}
234 return pd.DataFrame(data)
235

236 @staticmethod
237 def save_data(
238 data: np.ndarray,
239 gen1_setting: dict,
240 gen2_setting: dict,
241 temperature: float,
242 save_path: str,
243 path_to_notebook: str | None = None
244) -> None:
245 """Saves data and metadate in seperate timestamped folders, all in .h5 format.
246 Also stores the notebook file. General instructions of the DataFolder class:
247 https://gitlab.tudelft.nl/steelelab/data-explorer/-/blob/master/example_notebooks/

Data%20Folder%20Usage%20Examples.ipynb
248 Args:
249 data (np.ndarray(num_frequencies ,13)): [num_frequencies ,13] a numpy matrix

containing all frequency, S-parameters,
250 REF and DuT values

A.2. Client-side program 49

251 gen1_setting, gen2_setting (dict[str, str]): dictionaries with some of the
settings of the generators

252 save_path (str): the directory to save the metadata file to
253 path_to_notebook (str | None): option to manually give the path to a Jupyter

notebook that also will be saved next
254 as metadata
255 """
256 if len(os.listdir(save_path)) == 0: # Create a first dummy folder, else DataFolder

does not work.
257 os.mkdir(os.path.join(save_path, f"{strftime('%Y-%m-%e_%H.%M.%S')}_0000"))
258 dfol = DataFolder(save_path) #only works in a non-empty save_path folder
259

260 # Save the notebook file with the current settings.
261 if path_to_notebook is not None:
262 with open(path_to_notebook, "r", encoding="utf-8") as file:
263 script = file.read() # Read the ipynb notebook.
264 with open(os.path.join(dfol.folder_full_path, os.path.basename(path_to_notebook))

, "w", encoding="utf-8") as file:
265 file.write(script) # Save the ipynb notebook in the dexplore generated

folder.
266

267 dataset_name = "dataset_openvqa" # Change this to whatever you like.
268 stlab_data = OpenVQA.stlab_dataframe(data) # Convert our data 2D array to a pandas

DataFrame as used by Steele Lab.
269 dfol.create_1d_from_stlab_trace(dataset_name, stlab_data) # Create the dataset.
270

271 # Save metadata here with xarrays.
272 gen1_setting_x = xr.DataArray()
273 gen2_setting_x = xr.DataArray()
274 red_pitaya_temperature_x = xr.DataArray()
275

276 # Store generator data in x_array (_x).
277 gen1_setting_x["Generator_1"] = gen1_setting["idn"]
278 gen1_setting_x["Generator_1_power"] = gen1_setting["power"]
279 gen1_setting_x["Generator_1_start_frequency"] = gen1_setting["start_freq"]
280 gen1_setting_x["Generator_1_stop_frequency"] = gen1_setting["stop_freq"]
281 gen1_setting_x["Generator_1_step_frequency"] = gen1_setting["freqstep"]
282 gen1_setting_x["Generator_1_dwell_time"] = gen1_setting["dwell_time"]
283

284 gen2_setting_x["Generator_1"] = gen2_setting["idn"]
285 gen2_setting_x["Generator_1_power"] = gen2_setting["power"]
286 gen2_setting_x["Generator_1_start_frequency"] = gen2_setting["start_freq"]
287 gen2_setting_x["Generator_1_stop_frequency"] = gen2_setting["stop_freq"]
288 gen2_setting_x["Generator_1_step_frequency"] = gen2_setting["freqstep"]
289 gen2_setting_x["Generator_1_dwell_time"] = gen2_setting["dwell_time"]
290

291 red_pitaya_temperature_x["temperature"] = temperature
292

293 dfol.datasets["generator_1_settings"] = gen1_setting_x
294 dfol.datasets["generator_2_settings"] = gen2_setting_x
295 dfol.datasets["red_pitaya_temperature"] = red_pitaya_temperature_x
296 dfol.save_data()
297

298 @staticmethod
299 def save_metadata(generator_setting, start_time: str, stop_time: str, save_path: str) ->

None:
300 """Alternative method for saving metadata
301 Args:
302 generator_setting (dict[str, str]): dictionary with some of the settings of the

generator
303 start_time (str): the approximate starting time of the sweep
304 stop_time (str): the approximate stopping time of the sweep
305 save_path (str): the path to save the metadata file to
306 """
307 content = []
308 # For data-exploreer plotting software
309 content.append(f"#␣{strftime('%Y_%m_%e_%H.%M.%S')}_OUR_VNA\n")
310 content.append("#␣Info␣for␣data␣explorer\n")
311 content.append("#␣Frequency␣sweep\n")
312 content.append(f"{generator_setting['sweep_freq_step']}\n")
313 content.append(f"{generator_setting['sweep_freq_low']}\n")

A.2. Client-side program 50

314 content.append(f"{generator_setting['sweep_freq_high']}\n")
315 content.append("frequency␣(Hz)\n")
316 # Measurement parameters
317 content.append("\n#␣Parameters\n")
318 content.append(f"generator:␣{generator_setting['model_type']}␣{generator_setting['

hw_version']}\n")
319 content.append(f"generator␣A␣power:␣{generator_setting['power']}\n")
320 content.append(f"sweep␣time␣step:␣{generator_setting['sweep_time_step']}\n")
321 content.append(f"time␣start:␣{start_time}\n")
322 content.append(f"time␣stop:␣{stop_time}\n")
323 # For spyview plotting software
324 content.append("\n#␣Column␣labels\n")
325 content.append("1\n")
326 content.append("Frequency␣(Hz)\n")
327 content.append("2\n")
328 content.append("S21␣Re␣()\n")
329 content.append("3\n")
330 content.append("S21␣Im␣()\n")
331 content.append("4\n")
332 content.append("S21␣magnitude␣(dB)\n")
333 content.append("5\n")
334 content.append("S21␣phase␣(rad)")
335 content.append("6\n")
336 content.append("Through-DuT␣Re␣()\n")
337 content.append("7\n")
338 content.append("Through-DuT␣Im␣()\n")
339 content.append("8\n")
340 content.append("Through-DuT␣magnitude␣(dB)\n")
341 content.append("9\n")
342 content.append("Through-DuT␣phase␣(rad)\n")
343 content.append("10\n")
344 content.append("Reference␣Re␣()\n")
345 content.append("11\n")
346 content.append("Reference␣Im␣()\n")
347 content.append("12\n")
348 content.append("Reference␣magnitude␣(dB)\n")
349 content.append("13\n")
350 content.append("Reference␣phase␣(rad)\n")
351

352 # Write to file.
353 with open(f"{save_path}/{strftime('%Y_%m_%e_%H.%M.%S')}_OUR_VNA.meta.txt", "w",

encoding="utf-8") as file:
354 file.writelines(content)

A.2.2. Plotting module (for testing)
1 """Plotting functions useful for visualisation during debugging; not currently in use"""
2

3 import glob
4 import os
5

6 import matplotlib.pyplot as plt
7 import numpy as np
8 import xarray as xr
9

10

11 def abs_magnitude_plot(frequency: np.ndarray, magnitude: np.ndarray, logarithmic: bool) ->
None:

12 """Plot the incoming DuT and Ref magnitudes"""
13 fig, ax1 = plt.subplots()
14

15 ax1.plot(frequency, magnitude[:, 0], label="DuT", color="purple", linestyle="-")
16 ax1.plot(frequency, magnitude[:, 1], label="Ref", color="green", linestyle="-")
17 ax1.set_yscale("log" if logarithmic else "linear")
18 ax1.xlabel("Frequency␣[GHz]")
19 ax1.ylabel("Magnitude␣[V]")
20

21 fig.legend()
22 fig.tight_layout()
23 #fig.savefig("project/ui/figures/abs_magnitude.png")
24 plt.show()

A.2. Client-side program 51

25

26

27 def abs_phase_plot(frequency: np.ndarray, phase: np.ndarray) -> None:
28 """Plot the incoming DuT and Ref phases"""
29 fig, ax1 = plt.subplots()
30

31 ax1.plot(frequency, phase[:, 0], label="DuT", color="purple", linestyle="-")
32 ax1.plot(frequency, phase[:, 1], label="Ref", color="green", linestyle="-")
33 ax1.xlabel("Frequency␣[GHz]")
34 ax1.ylabel("Phase␣[rad]")
35

36 fig.legend()
37 fig.tight_layout()
38 #fig.savefig("project/ui/figures/abs_phase.png")
39 plt.show()
40

41

42 def abs_mag_phase_plot(frequency: np.ndarray, magnitude: np.ndarray, phase: np.ndarray,
logarithmic: bool = False) -> None:

43 """Plot the incoming DuT and Ref magnitudes and phases seperately"""
44 fig, ax = plt.subplots(1, 2, figsize=(15, 4))
45

46 ax[0].plot(frequency, magnitude[:, 0], label="DuT", color="purple", linestyle="-")
47 ax[0].plot(frequency, magnitude[:, 1], label="Ref", color="green", linestyle="-")
48 ax[0].set_yscale("log" if logarithmic else "linear")
49 ax[0].set_xlabel("Frequency␣[GHz]")
50 ax[0].set_ylabel("Magnitude␣[V]")
51 ax[0].set_title("Magnitudes␣through␣DuT␣and␣Ref")
52 ax[0].legend()
53

54 ax[1].plot(frequency, phase[:, 0], label="DuT", color="purple", linestyle="-")
55 ax[1].plot(frequency, phase[:, 1], label="Ref", color="green", linestyle="-")
56 ax[1].set_xlabel("Frequency␣[GHz]")
57 ax[1].set_ylabel("Phase␣[rad]")
58 ax[1].set_title("Phases␣through␣DuT␣and␣Ref")
59 ax[1].legend()
60

61 fig.tight_layout()
62 #fig.savefig("project/ui/figures/abs_mag_phase.png")
63 plt.show()
64

65

66 def rel_mag_phase_plot(frequency: np.ndarray, magnitude: np.ndarray, phase: np.ndarray) ->
None:

67 """Plot the relative magnitude and phase in 1 figure"""
68 fig, ax1 = plt.subplots()
69 ax1.plot(frequency, magnitude, label="Magnitude", color="red", linestyle="-")
70 ax1.tick_params(axis="y", colors="red")
71 ax1.set_xlabel("Frequency␣[MHz]")
72 ax1.set_ylabel("Magnitude␣[dB]")
73

74 ax2 = ax1.twinx() #share x-axis
75 ax2.plot(frequency, phase, label="Phase", color="blue", linestyle="-")
76 ax2.tick_params(axis="y", colors="blue")
77 ax2.set_ylabel("Phase␣[rad]")
78

79 fig.legend()
80 fig.tight_layout()
81 #fig.savefig("project/ui/figures/rel_mag_phase.png")
82 plt.show()
83

84

85 def rel_mag_phase_plot2(frequency: np.ndarray, magnitude: np.ndarray, phase: np.ndarray,
logarithmic: bool) -> None:

86 """Plot the relative magnitude and phase seperately"""
87 fig, ax = plt.subplots(1, 2, figsize=(15, 4))
88

89 ax[0].plot(frequency, magnitude, label="DuT", color="red", linestyle="-")
90 ax[0].set_yscale("log" if logarithmic else "linear")
91 ax[0].set_xlabel("Frequency␣[GHz]")
92 ax[0].set_ylabel("Magnitude␣[V]")

A.2. Client-side program 52

93 ax[0].set_title("Magnitudes␣through␣DuT␣and␣Ref")
94 ax[0].legend()
95

96 ax[1].plot(frequency, phase, label="DuT", color="blue", linestyle="-")
97 ax[1].set_xlabel("Frequency␣[GHz]")
98 ax[1].set_ylabel("Phase␣[rad]")
99 ax[1].set_title("Phases␣through␣DuT␣and␣Ref")

100 ax[1].legend()
101

102 fig.tight_layout()
103 #plt.savefig("project/ui/figures/rel_mag_phase2.png")
104 plt.show()
105

106

107 if __name__ == "__main__":
108 folder = os.path.join(
109 "project", "client", "application", "data", "2024-05-30_11.03.54_0016___main__", ""
110) # don"t forget last ""
111 h5_files = glob.glob(folder + "*.h5")
112

113 data = xr.load_dataset(h5_files[1]) #[0] is generator settings, [1] is data
114 print("data:␣", data)
115 data_variables = list(data.data_vars)
116 #print("data_variables: ", data_variables)
117 s21_mag = data[data_variables[0]]
118 print("s21_mag:␣", s21_mag)
119 s21_ph = data[data_variables[1]]
120 #print("s21_ph: ", s21_ph)
121 dimensions = data[data_variables[0]].dims
122 #print("dimensions: ", dimensions)
123 frequencies = data[dimensions[0]]
124 #print("frequencies: ", frequencies)
125

126 rel_mag_phase_plot2(frequency=frequencies, magnitude=s21_mag, phase=s21_ph, logarithmic=
True)

A.2.3. TCP client module
1 """Basic TCP client for retrieving measurement data"""
2

3 import socket
4 from struct import unpack
5 from types import TracebackType
6 from typing import Type
7

8 from project.server.protocol import TCPCommandProtocol
9

10

11 class TCPClient(TCPCommandProtocol):
12 """Simple host:port socket client; use `with TCPClient(host, port) as c` for proper

disconnect!"""
13

14 BUFSIZE = TCPCommandProtocol.POINTS_PER_PACKET * 32
15 """Receiver buffer size in bytes = optimal packet size times the size of four (64-bits)

floats"""
16

17 DEBUG = True
18 """Whether to print debugging information"""
19

20 def __init__(self, host: str, port: int) -> None:
21 self.socket = socket.create_connection((host, port))
22 self._reset_trigger_config()
23

24 def __enter__(self) -> "TCPClient":
25 """Enters the `with` block."""
26 return self
27

28 def send_receive(self, data: str) -> bytes:
29 """Simplest form of useful communication.
30 Server expects a command from client and expects client to wait for response.
31 """

A.2. Client-side program 53

32 if len(data) == 0:
33 return b""
34 if len(data) > TCPClient.BUFSIZE:
35 raise ValueError(f"Data␣{data}␣is␣too␣long␣(>␣{TCPClient.BUFSIZE}).")
36 self.socket.sendall(data.encode("utf-8"))
37 return self.socket.recv(TCPClient.BUFSIZE)
38

39 def start_acquisition(self) -> None:
40 """Requests programmable logic to start acquisition."""
41 if self.send_receive(f"{TCPClient.RUN_PL}1") != TCPCommandProtocol.RESPONSE_OK:
42 raise RuntimeError("Could␣not␣start␣data␣acquisition␣on␣programmable␣logic.␣

Configuration␣possibly␣incorrect.")
43

44 def stop_acquisition(self) -> None:
45 """Requests programmable logic to stop acquisition."""
46 self.send_receive(f"{TCPClient.RUN_PL}0")
47

48 def request_data(self) -> tuple[float] | tuple[float, float, float, float]:
49 """Asks server for acquired data."""
50 out = self.send_receive(TCPClient.DATA)
51 # This should be 32 bytes or an integer multiple (in case of multiple samples).
52 if len(out) % 32 != 0:
53 raise RuntimeError(f"Received␣data␣not␣of␣correct␣length␣{len(out)}.")
54 return TCPClient.bytes_to_float64(out)
55

56 def send_tpp(self, time: int) -> None:
57 """Sends time per point in microseconds."""
58 if not isinstance(time, int):
59 raise TypeError(f"Time␣per␣point␣{time}␣should␣be␣an␣integer␣in␣microseconds.")
60 self.send_receive(f"{TCPClient.TPP}{time}")
61

62 def send_dead_time(self, time: int) -> None:
63 """Sends generator dead time in microseconds."""
64 if not isinstance(time, int):
65 raise TypeError(f"Dead␣per␣point␣{time}␣should␣be␣an␣integer␣in␣microseconds.")
66 self.send_receive(f"{TCPClient.DEAD_TIME}{time}")
67

68 def send_trigger_length(self, time: int) -> None:
69 """Sends trigger pulse length in microseconds."""
70 if not isinstance(time, int):
71 raise TypeError(f"Trigger␣pulse␣length␣{time}␣should␣be␣an␣integer␣in␣

microseconds.")
72 self.send_receive(f"{TCPClient.TRIG_LEN}{time}")
73

74 def _reset_trigger_config(self) -> None:
75 """Resets trigger configuration inside PL to default values."""
76 self.send_receive(f"{TCPClient.TRIG_0_CONF}0") # no trigger output
77 self.send_receive(f"{TCPClient.TRIG_1_CONF}0") # no trigger output
78

79 def send_trigger_config(self, trig_nr: int, positive: bool, sweep: bool = True, step:
bool = True) -> None:

80 """Configure an output trigger (either 0 or 1). `positive` controls the output
81 (True = active-high; False = active-low). `sweep` controls whether to trigger on the

first point only.
82 `step` controls whether to trigger on each point of the trace (where the frequency

should change).
83 """
84 if trig_nr not in {0, 1}:
85 raise ValueError(f"Cannot␣configure␣trigger␣number␣{trig_nr};␣only␣0␣or␣1␣are␣

allowed.")
86 char = TCPClient.TRIG_1_CONF if trig_nr else TCPClient.TRIG_0_CONF
87 bits = 0b0000
88 if not positive:
89 bits |= 0b0001
90 if sweep:
91 bits |= 0b0010
92 if step:
93 bits |= 0b0100
94 self.send_receive(f"{char}{bits}")
95

96 def get_queue_size(self) -> int:

A.2. Client-side program 54

97 """Queries DMA buffer queue size."""
98 return int.from_bytes(self.send_receive(TCPClient.QUEUE_SIZE), byteorder="big")
99

100 def get_server_cpu_temp(self) -> float:
101 """Queries server's cpu temperature."""
102 return TCPClient.bytes_to_float64(self.send_receive(TCPClient.CPU_TEMP))[0]
103

104 @staticmethod
105 def bytes_to_float64(by: bytes) -> tuple[float]:
106 """Converts bytes to 64-bit floating point number."""
107 return unpack(f"{len(by)␣//␣8}d", by)
108

109 def _stop_server(self, really: bool = False) -> bool:
110 """Stops TCP server. Be careful, you have to restart the server manually if stopped!
111 Only use this for debugging.
112 """
113 if really:
114 # Server should return empty byte string only if it shut down itself correctly.
115 return self.send_receive(TCPClient.STOP_SERVER) == b""
116 return False
117

118 def __exit__(
119 self, exc_type: Type[BaseException] | None, exc_val: BaseException | None, exc_tb:

TracebackType | None
120) -> None:
121 """Leaves the `with` block."""
122 if TCPClient.DEBUG:
123 print("TCP␣client␣exiting.")
124 if exc_type is not None:
125 print(f"Exception␣occured:␣{type(exc_val).__name__}:␣{'␣'.join(exc_val.args)}

")
126 self.socket.close()

A.2.4. AnaPico APUASYN generator module
1 """Module for controlling generator(s) from AnaPico"""
2

3 import sys
4 from time import sleep
5 from types import TracebackType
6 from typing import Type
7

8 import pyvisa
9

10 try:
11 from project.client.generator.hittite import HMCT2100Controller
12 except ModuleNotFoundError:
13 from hittite import HMCT2100Controller
14

15

16 class APUASYN20Controller(HMCT2100Controller):
17 """Programmer manual: https://www.anapico.com/download/pm_signal-generators/?wpdmdl=6829&

refresh=665ecb7bc31c21717488507"""
18

19 DEADTIME = 500 # deadtime in us, minimum setting according to manual for stable
behaviour

20

21 def __init__(self):
22 ###select correct visa address###
23 s = sys.platform
24 if s.startswith("win"):
25 # Windows
26 rm = pyvisa.ResourceManager() # no @py here for windows!
27 lr = rm.list_resources() #find the visa addresses
28 usbs = [ss for ss in lr if "USB0" in ss] #pick the usb address
29 elif s.startswith("darwin"):
30 # macOS
31 rm = pyvisa.ResourceManager("@py") # @py does work in macOS!
32 lr = rm.list_resources() #find the visa addresses
33 usbs = [ss for ss in lr if "USB0" in ss] #pick the usb address
34 else:

A.2. Client-side program 55

35 raise EnvironmentError(f"Platform␣'{s}'␣not␣supported␣to␣control␣APUASYN20.")
36 try:
37 visa_address = usbs[0]
38 except IndexError as err:
39 raise IndexError("AnaPico␣USB␣connection␣not␣found!") from err
40

41 ###Open the connection###
42 try:
43 self.gen = rm.open_resource(visa_address)
44 except pyvisa.errors.Error as err:
45 print(str(err), rm.list_resources())
46 self.gen = rm.open_resource(rm.list_resources()[2])
47

48 self.init()
49

50 def __enter__(self) -> "APUASYN20Controller":
51 return self
52

53 def query(self, parameter: str) -> float | str:
54 """Request data string via SCPI"""
55 query = self.gen.query(parameter).strip()
56 try:
57 queryfloat = float(query) # Type-casting the string to `float`.
58 if queryfloat > 1e6: # Pico returns in Hz, here make MHz representation.
59 queryfloat /= 1e6 # This means that freqstep can be in Hz or MHz!!!
60 return f"{format(queryfloat,␣'.4f')}e6" #limit decimal places
61 return str(format(queryfloat, '.4f')) #limit decimal places
62 except ValueError:
63 return query
64

65 def read_status(self) -> dict[str, str | float]:
66 """Reads status and settings from device."""
67 out = super().read_status() #Inherit from hittite read_status
68

69 out["point_count"] = self.query("SWE:POIN?") #No option for Hittite
70 out["sweep_delay"] = self.query("SWE:DEL?") #Dead time
71 #out["freq_mode"] = self.query("FREQ:MODE?") #Frequency mode: FIXed or CW or SWEep

or LIST or CHIRp
72 #out["trig_source"] = self.query("TRIG:SOUR?") #Trigger source: IMMediate or BUS or

EXTernal or SYNChronous
73 out["trig_type"] = self.query("TRIG:TYPE?") #Trigger type: NORMal or POINt (no

option for Hittite)
74 out["locked"] = self.query("ROSC:LOCK?") #Checks if generator is locked to exteral

reference
75 out["ext_freq"] = self.query("ROSC:EXT:FREQ?")
76 return out
77

78 def hardware_freq_sweep(self, start_freq: float, stop_freq: float, freqstep: float,
timestep: float, power: float):

79 """Sends configuration for hardware frequency sweep with external sweep trigger.
80 Frequencies in megahertz; time step in microseconds; power in dBm.
81 """
82 dwell_time = timestep - APUASYN20Controller.DEADTIME # Subtract dead time of 250

microseconds.
83 points = int((stop_freq - start_freq) / freqstep + 1)
84

85 self.gen.write(f"POW:AMPL␣{power}DBM") # RF output power in dBm
86 self.gen.write(f"SOUR:FREQ␣{start_freq}MHz") # frequency in MHz
87 self.gen.write(f"FREQ:STAR␣{start_freq}MHz") # start frequency in MHz
88 self.gen.write(f"FREQ:STOP␣{stop_freq}MHz") # stop frequency in MHz
89 self.gen.write(f"SWE:POIN␣{points}") # nr of points in the sweep, doesn't exist for

hittite
90 #self.gen.write(f"FREQ:STEP {freqstep}MHz") # frequency step size Doesn't work

?
91 self.gen.write(f"SWE:DWEL␣{dwell_time}us") # dwell time in microseconds
92 self.gen.write(f"SWE:DEL␣{APUASYN20Controller.DEADTIME}us") # dead time in

microseconds
93

94 self.gen.write("TRIG:SOUR␣IMM") # trigger source: external (requires rising edge on
trigger to initiate sweep)

95 #TODO back to externaL?

A.2. Client-side program 56

96 self.gen.write("TRIG:TYPE␣NORM") # trigger type: 1st trigger starts sweep
97 self.gen.write("SWE:COUN␣1") # number of sweeps after a trigger
98

99 # self.gen.write(f"ROSC:SOUR INT") # set internal reference clock
100 # self.gen.write(f"ROSC:OUTP:FREQ 100MHz") # only available output ref clock

frequency? (pico's internal freq)
101 # self.gen.write(f"ROSC:OUTP ON") # turn on output reference clock
102

103 self.gen.write("ROSC:SOUR␣EXT") # set external reference clock
104 self.gen.write("EXT:FREQ␣10MHz") # set expected external clock frequency
105

106 def perform_sweep(self):
107 """Starts the sweep; if `block = True`, waits until it is complete."""
108 super().perform_sweep()
109 self.gen.write("FREQ:MODE␣SWE") # frequency mode: sweep
110

111 def __exit__(
112 self, exc_type: Type[BaseException] | None, exc_val: BaseException | None, exc_tb:

TracebackType | None
113) -> None:
114 """Exits the `with` block."""
115 self.gen.write("OUTP␣OFF")
116 self.gen.close()
117

118 #how to correctly turn off? Because atm, we still have to manually turn on/off the
pico every time

119

120

121 if __name__ == "__main__":
122 with APUASYN20Controller() as pico:
123 power = 13 #dBm
124 freq = 4000 #for single freq, MHz
125

126 start_freq = 6600 # MHz
127 stop_freq = 6800 # MHz
128 step_size = 1 # MHz
129 timestep = 100 # Time step in milliseconds
130

131 # pico.hardware_freq_sweep(start_freq, stop_freq, step_size, timestep, power)
132 # pico.perform_sweep(block=False)
133 # print(pico.read_status())
134

135 # pico.single_freq(freq, power)
136 # pico.read_status()
137 # sleep(30)
138

139 with HMCT2100Controller() as hmc:
140 power_2 = 13 #dBm
141 freq_2 = 4010 #MHz
142

143 start_freq_2 = start_freq + 10 # MHz
144 stop_freq_2 = stop_freq + 10 # MHz
145 step_size_2 = step_size # MHz
146 timestep_2 = timestep # Time step in milliseconds
147

148 #pico.hardware_freq_sweep(start_freq, stop_freq, step_size, timestep, power)
149 #hmc.hardware_freq_sweep(start_freq_2, stop_freq_2, step_size_2, timestep_2,

power_2)
150 #hmc.perform_sweep()
151 #pico.perform_sweep()
152 pico.single_freq(freq, power)
153 hmc.single_freq(freq_2, power_2)
154 print(hmc.read_status())
155 print(pico.read_status()) # Often doesnt work? when that happens, sweep does

work?
156 # Maybe the pico needs to cool down, or need some

reset before reading?
157

158 extra_sleep_time = 20 #s
159 print(f"Done!,␣now␣sleep␣{(timestep*1e-3*(stop_freq-start_freq)/step_size)+

extra_sleep_time}␣seconds.")

A.2. Client-side program 57

160 sleep((timestep * 1e-3 * (stop_freq - start_freq) / step_size) + extra_sleep_time
)

A.2.5. Hittite HMC_T2100 generator module
1 """Module for controlling generator(s) from Hittite"""
2

3 import sys
4 from types import TracebackType
5 from typing import Type
6

7 import pyvisa
8

9 from project.client.generator.base_controller import BaseSCPIGeneratorController
10

11 class HMCT2100Controller(BaseSCPIGeneratorController):
12 """Programmer manual:
13 https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=433

deee96a655a14caf374d4fb3d9fe0e282cbd0
14 """
15

16 DEADTIME = 250 #deadtime in us given by the manual. Cannot be changed
17

18 # https://pyvisa.readthedocs.io/projects/pyvisa-py/en/latest/
19

20 def __init__(self):
21 ###select correct visa address###
22 s = sys.platform
23 rm = pyvisa.ResourceManager("@py")
24 if s.startswith("win"):
25 # Windows
26 lr = rm.list_resources() #find the visa addresses
27 usbs = [ss for ss in lr if "ASRL11::" in ss] #pick the "ASRL coming from usb"

address
28 elif s.startswith("darwin"):
29 # macOS
30 lr = rm.list_resources() #find the visa addresses
31 usbs = [ss for ss in lr if "usb" in ss] #pick the "ASRL coming from usb"

address
32 else:
33 raise EnvironmentError(f"Platform␣'{s}'␣not␣supported␣to␣control␣HMCT2100.") #

Just haven't tested linux yet
34 try:
35 visa_address = usbs[0]
36 except IndexError as err:
37 raise IndexError("Hittite␣USB␣connection␣not␣found!") from err
38

39 ###Open the connection###
40 try:
41 self.gen = rm.open_resource(visa_address)
42 except pyvisa.errors.Error as err:
43 print(str(err), rm.list_resources())
44 self.gen = rm.open_resource(rm.list_resources()[0])
45

46 self.init()
47

48 def __enter__(self) -> "HMCT2100Controller":
49 return self
50

51 def init(self) -> None:
52 """Initialise some visa communication settings"""
53 self.gen.baud_rate = 115200
54 self.gen.data_bits = 8
55 self.gen.parity = pyvisa.constants.Parity.none
56 self.gen.stop_bits = pyvisa.constants.StopBits.one
57 self.gen.read_termination = "\n"
58 self.gen.write_termination = "\n"
59 self.gen.timeout = 20000 # 20 seconds
60

61 ###Important first commands###
62 self.gen.write("*RST") # reset the generator, important!

A.2. Client-side program 58

63 self.gen.write("*CLS") # clear status byte
64

65 self.gen.write("OUTP␣OFF") # as precaution
66

67 def query(self, parameter: str) -> float | str:
68 """Request data string via SCPI"""
69 return self.gen.query(parameter).strip()
70

71 def read_status(self) -> dict[str, str | float]:
72 """Reads status and settings from device."""
73 out: dict[str, str | float] = {}
74 out["idn"] = self.name()
75 out["freq"] = self.query("FREQ?") #For fixed frequency, so no sweep
76 out["start_freq"] = self.query("FREQ:STAR?")
77 out["stop_freq"] = self.query("FREQ:STOP?")
78 out["freqstep"] = self.query("FREQ:STEP?")
79 out["power"] = self.query("POW:AMPL?")
80 out["dwell_time"] = self.query("SWE:DWEL?") #Dwell time
81 out["sweep_count"] = self.query("SWE:COUN?") #Number of full sweeps after

triggering
82 out["sweep_dir"] = self.query("SWE:DIR?") #Direction of sweep (start->stop or

stop->start or random)
83 out["freq_mode"] = self.query("FREQ:MODE?") #Frequency mode: CW or SWEep
84 out["trig_source"] = self.query("TRIG:SOUR?") #Trigger source: IMMediate or BUS or

EXTernal
85 out["oscillator"] = self.query("ROSC:SOUR?") #Check the reference oscillator

source
86 return out
87

88 def single_freq(self, freq: float, power: float):
89 """Send configuration for static frequency and turn on output"""
90 self.gen.write(f"POW:AMPL␣{power}DBM") # RF output power in dBm
91 self.gen.write("FREQ:MODE␣FIX") # frequency mode: fixed frequency
92 self.gen.write(f"SOUR:FREQ␣{freq}MHz") # frequency in MHz
93

94 self.gen.write("TRIG:SOUR␣EXT") # trigger source: external
95 # (requires rising edge on trigger to

initiate sweep)
96

97 self.gen.write("ROSC:SOUR␣EXT") # set external reference clock
98

99 self.gen.write("OUTP␣1") # enable the RF output.
100 # self.gen.write(f"INIT:IMM") # immediately initiates the sweep,

according to manual.
101 # Not true, but is needed for actual

sweeping?
102

103 def hardware_freq_sweep(self, start_freq: float, stop_freq: float, freqstep: float,
timestep: float, power: float):

104 """Sends configuration for hardware frequency sweep, with external sweep trigger.
105 Frequencies in megahertz; time step in microseconds; power in dBm.
106 """
107 dwell_time = timestep - HMCT2100Controller.DEADTIME # Subtract dead time of 250

microseconds.
108

109 self.gen.write(f"POW:AMPL␣{power}DBm") # RF output power to 0 dBm
110 self.gen.write(f"SOUR:FREQ␣{start_freq}MHz") # frequency in MHz
111 self.gen.write(f"FREQ:STAR␣{start_freq}MHz") # start frequency in MHz
112 self.gen.write(f"FREQ:STOP␣{stop_freq}MHz") # stop frequency in MHz
113 self.gen.write(f"FREQ:STEP␣{freqstep}MHz") # frequency step size, doesn't work

for pico
114 self.gen.write("FREQ:MODE␣SWE") # frequency mode: sweep
115 self.gen.write(f"SWE:DWEL␣{dwell_time}us") # dwell time in microseconds
116

117 self.gen.write(f"TRIG:SOUR␣IMM") # trigger source: external # TODO
change to ext

118 # (requires rising edge on trigger to
initiate sweep)

119

120 def perform_sweep(self):
121 """Starts the sweep; if `block = True`, waits until it is complete."""

A.2. Client-side program 59

122 self.gen.write("OUTP␣1") # enable the RF output.
123 self.gen.write("INIT:IMM") # immediately initiates the sweep,

according to manual.
124 # Not true, but is needed for actual

sweeping?
125

126 def __exit__(
127 self, exc_type: Type[BaseException] | None, exc_val: BaseException | None, exc_tb:

TracebackType | None
128) -> None:
129 """Exits the `with` block."""
130 self.gen.write("OUTP␣OFF")
131 self.gen.close()
132

133

134 if __name__ == "__main__":
135 with HMCT2100Controller() as hmc:
136 start_freq = 1000 # MHz
137 stop_freq = 2000 # MHz
138 step_size = 100 # MHz
139 timestep = 300 # Time step in milliseconds
140

141 hmc.hardware_freq_sweep(start_freq, stop_freq, step_size, timestep, -20)
142 print(hmc.read_status())
143 hmc.perform_sweep()
144

145 while True:
146 pass

A.2.6. Jupyter GUI
1 # %% [markdown]
2 # # OpenVNA Notebook
3

4 # %% [markdown]
5 # ## Imports
6

7 # %%
8 import os
9 if "project" not in os.listdir():

10 os.chdir(
11 os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(os.getcwd()))))
12) # change working directory to parent folder of 'project'
13 if "project" not in os.listdir():
14 raise EnvironmentError("You␣are␣not␣in␣the␣correct␣working␣directory;␣'project'␣folder␣

was␣not␣found.␣Cwd:", os.getcwd())
15

16 import glob
17 import random
18 import xarray as xr
19 import numpy as np
20 import threading
21 import ipywidgets as widgets
22 import bokeh.plotting as plt
23 import bokeh.models as model
24 from bokeh.io import output_notebook, reset_output
25 from jupyter_bokeh.widgets import BokehModel #used this to finally get live plot updates in

ipynb in vscode and jupyterlab, doesn't work in colab
26 from time import sleep
27 from IPython.display import display, clear_output
28

29 import project.client.application.dexplore as dx
30 from project import generator, OpenVQA
31

32 # %% [markdown]
33 # ## Setup
34

35 # %%
36 GEN_A = generator.HMCT2100Controller
37 GEN_B = generator.APUASYN20Controller
38 # GEN_B = generator.BaseSCPIGeneratorController # for testing

A.2. Client-side program 60

39 # Generator(s) to control during experiment.
40

41 OpenVQA.PATH_TO_NOTEBOOK = os.path.join("project", "client", "ui", "notebook", "OpenVQA.ipynb
")

42 # Full path to this Jupyter notebook; it will be saved as metadata unless set to None.
43

44 # %% [markdown]
45 # ## Initiate widgets
46

47 # %%
48 freq_low = widgets.BoundedFloatText(
49 value=5000,
50 min=0,
51 max=10000,
52 step=100,
53 description='Low␣frequency␣(MHz):',
54 disabled=False,
55 continuous_update=False,
56 style={'description_width': 'initial'}
57)
58

59 freq_high = widgets.BoundedFloatText(
60 value=7000,
61 min=0,
62 max=10000,
63 step=100,
64 description='High␣frequency␣(MHz):',
65 disabled=False,
66 continuous_update=False,
67 style={'description_width': 'initial'}
68)
69

70 freq_step = widgets.BoundedFloatText(
71 value=500,
72 min=0.001,
73 max=5000,
74 step=0.001,
75 description='Step␣frequency␣(MHz):',
76 disabled=False,
77 continuous_update=False,
78 style={'description_width': 'initial'}
79)
80

81 time_step = widgets.BoundedIntText(
82 value=10000,
83 min=0,
84 max=10000,
85 step=1,
86 description='Time␣step␣(ms):',
87 disabled=False,
88 continuous_update=False,
89 style={'description_width': 'initial'}
90)
91

92 start_button = widgets.ToggleButton(value=False, description='Sweep', disabled=False,
button_style='')

93

94 quit_button = widgets.Button(description='Quit␣GUI', tooltip='Quit␣GUI', disabled=False,
button_style='warning')

95

96 #grouping the widgets
97 items = [freq_low, freq_high, freq_step, time_step]
98 left_box = widgets.HBox([items[0], items[1]], description="Frequency␣range")
99 right_box = widgets.HBox([items[2], items[3]], description="Step␣settings")

100 button_box = widgets.HBox([start_button, quit_button], description="Buttons")
101 controls = widgets.VBox([left_box, right_box, button_box], description="Sweep␣settings")
102

103 #print(controls.keys)
104

105 #getting some basic values and arrays
106 #num_frequencies = int((freq_high.value-freq_low.value)/freq_step.value)

A.2. Client-side program 61

107 #frequencies = np.linspace(freq_low.value, freq_high.value, int(num_frequencies))
108

109 #outarray = np.zeros((num_frequencies ,13)) #array where the data will be put into
110

111 # %% [markdown]
112 # ## Run GUI
113

114 # %%
115 output_notebook() #loads Bokeh
116

117

118 class GUI:
119

120 def __init__(self) -> None:
121 self.thread_on = False
122 self.started_sweep = False
123 self.vqa = OpenVQA(GEN_A(), GEN_B())
124 start_button.value = False
125

126 def __enter__(self) -> "GUI":
127 return self
128

129 # update the button values and actions
130 def actionupdate(self, freq_low, freq_high, freq_step, time_step, start_button) -> None:
131 sleep(0.01)
132 self.freq_low = freq_low
133 self.freq_high = freq_high
134 self.freq_step = freq_step
135 self.time_step = time_step
136

137 self.num_frequencies = int((freq_high - freq_low) / freq_step + 1)
138 self.frequencies = np.linspace(self.freq_low, self.freq_high, int(self.

num_frequencies))
139 self.S21mag = np.zeros(self.num_frequencies)
140 self.S21ph = np.zeros(self.num_frequencies)
141

142 # update the start button
143 if start_button:
144 print('On!␣')
145 if self.started_sweep == False:
146 self.started_sweep = True
147

148 # create a new plot with a title and axis labels
149 self.plot = plt.figure(
150 title="S21␣Magnitude␣and␣Phase␣for␣Frequency␣range",
151 sizing_mode="stretch_width",
152 height=500,
153 x_range=model.Range1d(self.freq_low, self.freq_high),
154 x_axis_label='Frequency␣[Hz]',
155 y_range=model.Range1d(0, 0.1),
156 # y_axis_type="log",
157 y_axis_label='S21␣Magnitude'
158) #TODO change y range or make it logarithmic
159

160 # add a line renderer with legend and line thickness to the plot
161 self.mag_line = self.plot.line(
162 self.frequencies, self.S21mag, legend_label="Magnitude", line_width=2,

color='red'
163)
164

165 self.plot.extra_y_scales = {"linear_phase": model.LinearScale()}
166 #self.plot.extra_x_ranges['linear_phase'] = model.Range1d(0, 2*np.pi)
167 self.plot.extra_y_ranges = {
168 "linear_phase": model.Range1d(start=0, end=2 * np.pi)
169 } #is required, so automatic scaling is more difficult?
170 self.plot.add_layout(model.LinearAxis(y_range_name="linear_phase", axis_label

="S21␣phase␣(rad)"), 'right')
171

172 self.ph_line = self.plot.line(
173 self.frequencies,
174 self.S21ph,

A.2. Client-side program 62

175 y_range_name="linear_phase",
176 legend_label="Phase",
177 line_width=2,
178 color='blue'
179)
180

181 display(BokehModel(self.plot))
182

183 self.thread_on = True
184 #start live plotting thread
185 self.thread = threading.Thread(target=self.update_plot, name="liveplotting")
186 self.thread.start()
187 #start a sweep with the settings
188 self.vqa.sweep_acquire_2_generators(
189 trigger_per_step=False,
190 freq_low=self.freq_low,
191 freq_high=self.freq_high,
192 freqstep=self.freq_step,
193 timestep=1000 * self.time_step
194)
195 else:
196 print('OFF')
197 self.thread_on = False
198 self.started_sweep = False
199 #if self.thread.is_alive(): #thread is not alive when self.startedsweep is set

to False
200 # print('join thread!')
201 # self.thread.join()
202

203 def button_quit(self, b) -> None:
204 #leave GUI on quit button. Does this fully and safely close everything?
205 print("stop!!")
206 if self.thread.is_alive():
207 self.thread_on = False
208 # self.thread.join() #thread is not alive when self.startedsweep is set

to False
209 #stop showing the controls
210 widgetout.close()
211 controls.close()
212 #self.vqa.close() #does not work
213 #BokehModel(p).close()#does not work
214 #clear_output() #does nothing?
215 reset_output()
216

217 #update function for live plotting
218 def update_plot(self) -> None:
219 """Executed by worker thread."""
220 total_nr_points = 0
221 while True:
222 # print(threading.enumerate()) # useful to check whether a ton of threads were

started
223 if not self.thread_on: #stop this updater loop
224 print("THREAD␣STOPPED!")
225 return
226 if hasattr(self.vqa, "queue"):
227 new = self.vqa.queue.get() #takes 1 data packet from the queue (or waits for

it)
228 #new = np.random.rand(4*1) # TODO debugging (does 1 point per loop cycle

now)
229 # sleep(0.3) # TODO debugging
230

231 nr_points_received = len(new) // 4 #four entries in received data are from 1
point (Idut,Qdut,Iref,Qref)

232 if self.num_frequencies < nr_points_received:
233 new = new[:4 * self.num_frequencies] #cuts when more data is received

from queue than needed
234 nr_points_received = len(new) // 4
235

236 self.num_frequencies -= nr_points_received
237

238 #sorts the 4 measurement over 2 columns (ref and dut interleaved under each

A.2. Client-side program 63

other)
239 vertical = np.array(new).reshape(nr_points_received * 2, 2)
240 rows = vertical.shape[0]
241 columns = vertical.shape[1]
242 #calculate ref and dut magnitude
243 norm = np.linalg.norm(vertical, axis=1)
244 magnitude = norm.reshape(rows // 2, columns)
245 #calculate ref and dut phase
246 angle = np.angle(1j * vertical[:, 1] + vertical[:, 0])
247 phase = angle.reshape(rows // 2, columns)
248

249 #calculate the S21 mag (not in dB!!!!) and phase ([0,2pi)) and add to
existing array.

250 self.S21mag[total_nr_points:total_nr_points + nr_points_received] = magnitude
[:, 1] / magnitude[:, 0]

251 self.S21ph[total_nr_points:total_nr_points + nr_points_received] = np.mod(
phase[:, 1] - phase[:, 0], 2 * np.pi)

252

253 total_nr_points += nr_points_received
254

255 #print('\n temp_freq_axis: ', temp_freq_axis, '\n s21_mag: ', self.s21mag)
256 # self.mag_line.data_source.data = dict(x=self.frequencies, y=self.S21mag)
257 self.mag_line.data_source.data = dict(x=self.frequencies, y=self.S21mag)
258 self.ph_line.data_source.data = dict(x=self.frequencies, y=self.S21ph)
259 if self.num_frequencies <= 0:
260 print("all␣points␣acquired;␣thread␣stopped")
261 #print("S21mag ipynb: ",self.S21mag) #TODO debugging the different

S21s
262 #print("S21ph ipynb: ",self.S21ph) #TODO debugging the different S21s
263 return
264

265 def __exit__(self, *args, **kwargs) -> None:
266 pass
267

268

269 with GUI() as ui:
270 # updater function for widgets.interactive
271 def buttonupdate(freq_low, freq_high, freq_step, time_step, start_button) -> None:
272 ui.actionupdate(freq_low, freq_high, freq_step, time_step, start_button)
273

274 #The items from the dict (which are the widget types) are read in int_outp by using item.
value, then passed as arguments to the update fuction.

275 widgetout = widgets.interactive_output(
276 buttonupdate, {
277 'freq_low': freq_low,
278 'freq_high': freq_high,
279 'freq_step': freq_step,
280 'time_step': time_step,
281 'start_button': start_button
282 }
283)
284

285 # show the results and iPywidgets
286 display(controls, widgetout)
287

288 #perform action when quit button is pressed
289 quit_button.on_click(ui.button_quit)
290

291 #TODO after a sweep has finished, turning it off and then on again does load the thread again
, but queue.get() does not work anymore.

292 #It has been tested that the queue does fill up in the second round, but queue.get() does not
notice or is stuck in its waiting state. Stop testing now

293

294 #OKE Pico was not being triggered because of splitter in the trigger path

A.2.7. Windfreak SynthHD generator module
1 """File with Python experiments controlling the WindfreakTech RF generator"""
2

3 from collections.abc import Iterable
4 from glob import glob

A.2. Client-side program 64

5 import sys
6 from time import perf_counter_ns, sleep, strftime
7

8 from serial.serialutil import SerialException
9 from windfreak import SynthHD

10

11

12 class SynthHDController(SynthHD):
13 """Extension of SynthHD with control functions.
14 https://windfreaktech.com/wp-content/uploads/2016/12/WFT_SerialProgramming_API_10b.pdf
15 explains the standard control function"""
16

17 DEBUG = True
18 """Whether to print debug information during execution of code in this class."""
19

20 def __init__(self, synth_port_name: str | None = None) -> None:
21 """Detects to which port the SynthHD is connected.
22

23 Args:
24 synth_port_name (str | None): (part of) name of the device for identification on

Linux and macOS.
25 On Windows, this is the COM number (f.i. COM7). If None, an auto search will
26 be performed and the first SynthHD that is found will be connected to.

Defaults to None.
27 """
28 self.connected = False
29 all_ports = self.get_ports()
30 if synth_port_name is None:
31 self._auto_search_connect(all_ports)
32 else:
33 p = self._manual_connect(synth_port_name, all_ports)
34 self.connect(p)
35 if SynthHDController.DEBUG: print(f"Manual␣connect:␣connected␣to␣{p}.")
36 self.connected = True
37 super().init()
38

39 def get_ports(self) -> list[str]:
40 """Finds active serial ports. Method was based on
41 https://stackoverflow.com/questions/12090503/listing-available-com-ports-with-python.
42

43 Returns:
44 list[str]: serial ports.
45 """
46 s = sys.platform
47 if s.startswith("win"):
48 # Windows
49 try_ports = [f"COM{nr}" for nr in range(1, 256)]
50 elif s.startswith('linux') or s.startswith("cygwin"):
51 # This excludes your current terminal '/dev/tty'.
52 try_ports = glob("/dev/tty[A-Za-z]*")
53 elif s.startswith("darwin"):
54 # macOS
55 try_ports = glob("/dev/tty.*")
56 else:
57 raise EnvironmentError(f"Platform␣'{s}'␣not␣supported␣to␣control␣SynthHD.")
58 return try_ports
59

60 def connect(self, devpath: str) -> None:
61 """Calls the SynthHD initialiser."""
62 super().__init__(devpath)
63

64 def _auto_search_connect(self, all_ports: Iterable[str]) -> None:
65 for p in all_ports:
66 try:
67 self.connect(p)
68 if SynthHDController.DEBUG: print(f"Auto␣search:␣connected␣to␣port␣{p}.")
69 return
70 except (SerialException, TimeoutError):
71 if SynthHDController.DEBUG: print(f"Auto␣search:␣port␣{p}␣unavailable.")
72 raise SerialException(f"No␣device␣attached␣to␣any␣of␣the␣ports␣{all_ports}.")
73

A.2. Client-side program 65

74 @staticmethod
75 def _manual_connect(port_name: str, all_ports: Iterable[str]) -> str:
76 possible = set()
77 for p in all_ports:
78 if port_name in p:
79 possible.add(p)
80 if port_name == p:
81 possible = {p}
82 break
83 if len(possible) == 1:
84 return possible.pop()
85 elif len(possible) > 1:
86 raise NameError(f"Device␣with␣name␣'{port_name}'␣is␣ambiguous;␣choose␣from␣{

possible}.")
87 else:
88 raise NameError(f"Device␣with␣name␣'{port_name}'␣not␣found;␣all␣ports:␣{all_ports

}")
89

90 def _read_settings(self) -> dict[str, str]:
91 """Reads current settings of the SynthHD."""
92 di = {}
93 for setting in self.API:
94 try:
95 di[setting] = str(super().read(setting))
96 except Exception as err:
97 di[setting] = str(err)
98 return di
99

100 def single_freq(self, channel: int, freq: float, power: float = -10.) -> None:
101 """Enables a channel on a given frequency with a given power.
102

103 Args:
104 channel (int): RF generator channel number (A=0, B=1);
105 freq (float): frequency in megahertz;
106 power (float): output power in dBm. Defaults to power_low.
107 """
108 self[channel].write("frequency", freq)
109 self[channel].power = power
110 self[channel].enable = True
111

112 def hardware_freq_sweep(
113 self, channel: int, freq_low: float, freq_high: float, freqstep: float, timestep:

float, single: bool = False
114) -> None:
115 """Write these settings only (no more no less) to get a correct frequency sweep.
116

117 Args:
118 channel (int): RF generator channel number (A=0, B=1);
119 freq_low (float): start frequency in megahertz;
120 freq_high (float): stop frequency in megahertz;
121 freqstep (float): step frequency in megahertz;
122 timestep (float): time to wait between frequencies in milliseconds;
123 single (bool): single frequency sweep or continuous sweep. Defaults to False.
124 """
125 self[channel].write("sweep_freq_low", freq_low) # MHz
126 self[channel].write("sweep_freq_high", freq_high)
127 self[channel].write("sweep_freq_step", freqstep)
128 self[channel].write("sweep_time_step", timestep) # ms
129 self[channel].write("sweep_cont", 0 if single else 1) #determines if cycle resumes

after highest frequency.
130 self[channel].write("sweep_single", 1) # This is set to 1 for both single and

continuous sweeps!
131 self[channel].write("sweep_type", 0) # linear
132

133 def turn_off(self, channels: tuple[int, ...] = (0, 1)) -> None:
134 """Quickly turn off both channels."""
135 for i in channels:
136 self[i].enable = False
137

138 def triggered_diff_freq_sweep(self, trigger_per_step: bool, freq_low, freq_high, freqstep
, timestep) -> None:

A.2. Client-side program 66

139 """Perform a differential frequency sweep, triggered by external trigger
140 For single step triggering, we do want sweep continuous. For continuous sweep

triggering,
141 the trigger seems to only start a new cycle as we want with sweep_cont=0
142 """
143 self[0].write("sweep_diff_freq", 0.001) #only set this on 1 channel if you want a

nonzero value
144 self[0].write("sweep_diff_meth", 2) # 0: no diff sweep 1:freqB = freqA-diff_freq 2:

- => +
145 self[1].write(
146 "trig_function", 3 if trigger_per_step else 1
147) #0: no trig, 1: trig full sweep, 2: trig 1 step, 3: stop all, 4: on/off
148 self.hardware_freq_sweep(
149 channel=0,
150 freq_low=freq_low,
151 freq_high=freq_high,
152 freqstep=freqstep,
153 timestep=timestep,
154 single=not trigger_per_step
155)
156 self.hardware_freq_sweep(
157 channel=1,
158 freq_low=freq_low,
159 freq_high=freq_high,
160 freqstep=freqstep,
161 timestep=timestep,
162 single=not trigger_per_step
163)
164 self[0].enable = True
165 self[1].enable = True
166

167 def control_power(self, channel, power_low, power_high) -> None:
168 self[channel].write("sweep_power_low", power_low) # dBm
169 self[channel].write("sweep_power_high", power_high)
170

171 def measure_state_reset(self) -> dict[str, str]:
172 """Measures the current state of the SynthHD, only when a frequency sweep is active.
173 Important: if you just call _read_settings, this will count as a trigger,
174 if the trigger was configured as frequency sweep or frequency step.
175 Therefore, the current sweep needs to be interrupted, then the state can be read,
176 and finally the sweep will reset to the lowest frequency.
177 """
178 self[1].write("sweep_single", 0)
179 self[0].write("sweep_single", 0)
180 settings = self._read_settings() #now reads settings of channel A right?
181 self[1].write("sweep_single", 1)
182 self[0].write("sweep_single", 1)
183 return settings
184

185 def __del__(self) -> None:
186 if self.connected:
187 self.turn_off(channels=(0, 1))
188 self.close()
189

190

191 if __name__ == "__main__":
192 sy = SynthHDController() #'/dev/tty.usbmodem206C34714E561')
193

194 def _onefixed_onesweep() -> None:
195 """With 3.7->10 GHz mixer; goal is to know when the lowest frequency is at the output

.
196 Beware: if the scope shows nonsense, unplug and replug the SynthHD device!"""
197 sy.single_freq(0, 5000, power=-5)
198 sleep(0.3)
199 sy.hardware_freq_sweep(
200 1, freq_low=4999.9911, freq_high=4999.9981, freqstep=0.003, timestep=1, single=

False
201) # Works but first ~~ 5 ms are unstable (first frequency of sweep sometimes

invisible).
202

203 def _twosweep_locked_or_not() -> None:

A.2. Client-side program 67

204 # single_freq(sy, 0, 20)
205 # single_freq(sy, 1, 22)
206 sy.hardware_freq_sweep(0, freq_low=4999.9911, freq_high=4999.9981, freqstep=0.003,

timestep=1, single=False)
207 sy.hardware_freq_sweep(1, freq_low=4999.9911, freq_high=4999.9981, freqstep=0.003,

timestep=1, single=False)
208 # sy[0].write(API) API not complete; edit dict if necessary?
209

210 """
211 # Measuring the lock time
212 sy[1].read("rf_enable")
213 t0 = perf_counter_ns()
214 while not sy[1].lock_status:
215 pass # print(sy[1].frequency)
216 t1 = perf_counter_ns()
217 print((t1 - t0) * 1E-6, "ms")
218 """
219

220 sy.turn_off() #first turn off both channels
221 # sy.triggered_freq_sweep(step=False) #Test sweeping of 2 channels simultaneously.
222 # pprint.pprint(sy.read_settings())
223 sy.turn_off()
224 """if input("Save current script? Press space-enter!") == " ":
225 save_current_file(os.path.join(r"C:/temp/upl/wft/", strftime("%Y_%m_%d-%H%M%S") + ".

py"))
226 # print(read_settings(sy))
227 """

A.2.8. Windfreak SynthHD API
This code was written by Windfreak Technologies, to provide a Python API for the SynthHD dual output
RF generator [24].

1 from .device import SerialDevice
2 from collections.abc import Sequence
3

4

5 class SynthHDChannel:
6

7 def __init__(self, parent, index):
8 self._parent = parent
9 self._index = index

10 model = self._parent.model
11 if model == 'SynthHD␣v1.4':
12 self._f_range = {'start': 53.e6, 'stop': 13999.999999e6, 'step': 0.1}
13 self._p_range = {'start': -80., 'stop': 20., 'step': 0.01}
14 self._vga_range = {'start': 0, 'stop': 45000, 'step': 1}
15 else:
16 self._f_range = None
17 self._p_range = None
18 self._vga_range = None
19

20 def init(self):
21 """Initialize device."""
22 self.enable = False
23 f_range = self.frequency_range
24 if f_range is not None:
25 self.frequency = f_range['start']
26 p_range = self.power_range
27 if p_range is not None:
28 self.power = p_range['start']
29 self.phase = 0.
30 self.temp_compensation_mode = '10␣sec'
31

32 def write(self, attribute, *args):
33 self.select()
34 self._parent.write(attribute, *args)
35

36 def read(self, attribute, *args):
37 self.select()
38 return self._parent.read(attribute, *args)

A.2. Client-side program 68

39

40 def select(self):
41 """Select channel."""
42 self._parent.write('channel', self._index)
43

44 @property
45 def frequency_range(self):
46 """Frequency range in Hz.
47

48 Returns:
49 dict: frequency range or None
50 """
51 return None if self._f_range is None else self._f_range.copy()
52

53 @property
54 def frequency(self):
55 """Get frequency in Hz.
56

57 Returns:
58 float: frequency in Hz
59 """
60 return self.read('frequency') * 1e6
61

62 @frequency.setter
63 def frequency(self, value):
64 """Set frequency in Hz.
65

66 Args:
67 value (float / int): frequency in Hz
68 """
69 if not isinstance(value, (float, int)):
70 raise ValueError('Expected␣float␣or␣int.')
71 f_range = self.frequency_range
72 if f_range is not None and not f_range['start'] <= value <= f_range['stop']:
73 raise ValueError('Expected␣float␣in␣range␣[{},␣{}]␣Hz.'.format(
74 f_range['start'], f_range['stop']))
75 self.write('frequency', value / 1e6)
76

77 @property
78 def power_range(self):
79 """Power range in dBm.
80

81 Returns:
82 dict: power range or None
83 """
84 return None if self._p_range is None else self._p_range.copy()
85

86 @property
87 def power(self):
88 """Get power in dBm.
89

90 Returns:
91 float: power in dBm
92 """
93 return self.read('power')
94

95 @power.setter
96 def power(self, value):
97 """Set power in dBm.
98

99 Args:
100 value (float / int): power in dBm
101 """
102 if not isinstance(value, (float, int)):
103 raise TypeError('Expected␣float␣or␣int.')
104 self.write('power', value)
105

106 @property
107 def calibrated(self):
108 """Calibration was successful on frequency or amplitude change.
109

A.2. Client-side program 69

110 Returns:
111 bool: calibrated
112 """
113 return self.read('calibrated')
114

115 @property
116 def temp_compensation_modes(self):
117 """Temperature compensation modes.
118

119 Returns:
120 tuple: tuple of str of modes
121 """
122 return ('none', 'on␣set', '1␣sec', '10␣sec')
123

124 @property
125 def temp_compensation_mode(self):
126 """Temperature compensation mode.
127

128 Returns:
129 str: mode
130 """
131 return self.temp_compensation_modes[self.read('temp_comp_mode')]
132

133 @temp_compensation_mode.setter
134 def temp_compensation_mode(self, value):
135 modes = self.temp_compensation_modes
136 if not value in modes:
137 raise ValueError('Expected␣str␣in␣set␣{}.'.format(modes))
138 self.write('temp_comp_mode', modes.index(value))
139

140 @property
141 def vga_dac_range(self):
142 """VGA DAC value range.
143

144 Returns:
145 dict: VGA DAC range or None
146 """
147 return None if self._vga_range is None else self._vga_range.copy()
148

149 @property
150 def vga_dac(self):
151 """Get raw VGA DAC value
152

153 Returns:
154 int: value
155 """
156 return self.read('vga_dac')
157

158 @vga_dac.setter
159 def vga_dac(self, value):
160 """Set raw VGA DAC value.
161

162 Args:
163 value (int): value
164 """
165 if not isinstance(value, int):
166 raise TypeError('Expected␣int.')
167 self.write('vga_dac', value)
168

169 @property
170 def phase_range(self):
171 """Phase step range.
172

173 Returns:
174 dict: range
175 """
176 return {
177 'start': 0.,
178 'stop': 360.,
179 'step': .001,
180 }

A.2. Client-side program 70

181

182 @property
183 def phase(self):
184 """Get phase step value.
185

186 Returns:
187 float: value in degrees
188 """
189 return self.read('phase_step')
190

191 @phase.setter
192 def phase(self, value):
193 """Set phase step value.
194

195 Args:
196 value (float / int): phase in degrees
197 """
198 if not isinstance(value, (float, int)):
199 raise TypeError('Expected␣float␣or␣int.')
200 self.write('phase_step', value)
201

202 @property
203 def rf_enable(self):
204 """RF output enable.
205

206 Returns:
207 bool: enable
208 """
209 return self.read('rf_enable')
210

211 @rf_enable.setter
212 def rf_enable(self, value):
213 if not isinstance(value, bool):
214 raise ValueError('Expected␣bool.')
215 self.write('rf_enable', value)
216

217 @property
218 def pa_enable(self):
219 """PA enable.
220

221 Returns:
222 bool: enable
223 """
224 return self.read('pa_power_on')
225

226 @pa_enable.setter
227 def pa_enable(self, value):
228 if not isinstance(value, bool):
229 raise ValueError('Expected␣bool.')
230 self.write('pa_power_on', value)
231

232 @property
233 def pll_enable(self):
234 """PLL enable.
235

236 Returns:
237 bool: enable
238 """
239 return self.read('pll_power_on')
240

241 @pll_enable.setter
242 def pll_enable(self, value):
243 if not isinstance(value, bool):
244 raise ValueError('Expected␣bool.')
245 self.write('pll_power_on', value)
246

247 @property
248 def enable(self):
249 """Get output enable.
250

251 Returns:

A.2. Client-side program 71

252 bool: enabled
253 """
254 return self.rf_enable and self.pll_enable and self.pa_enable
255

256 @enable.setter
257 def enable(self, value):
258 """Set output enable.
259

260 Args:
261 value (bool): enable
262 """
263 if not isinstance(value, bool):
264 raise TypeError('Expected␣bool.')
265 self.rf_enable = value
266 self.pll_enable = value
267 self.pa_enable = value
268

269 @property
270 def lock_status(self):
271 """PLL lock status.
272

273 Returns:
274 bool: locked
275 """
276 return self.read('pll_lock')
277

278

279 class SynthHDv2Channel(SynthHDChannel):
280

281 def __init__(self, parent, index):
282 self._parent = parent
283 self._index = index
284 model = self._parent.model
285 if model == 'SynthHD␣v2':
286 self._f_range = {'start': 10.e6, 'stop': 15000.e6, 'step': 0.1}
287 self._p_range = {'start': -70., 'stop': 20., 'step': 0.01}
288 self._vga_range = {'start': 0, 'stop': 4000, 'step': 1}
289 self._cspacing_range = {'start': 0.1, 'stop': 1000., 'step': 0.1}
290 elif model == 'SynthHD␣PRO␣v2':
291 self._f_range = {'start': 10.e6, 'stop': 24000.e6, 'step': 0.1}
292 self._p_range = {'start': -70., 'stop': 20., 'step': 0.01}
293 self._vga_range = {'start': 0, 'stop': 4000, 'step': 1}
294 self._cspacing_range = {'start': 0.1, 'stop': 1000., 'step': 0.1}
295 else:
296 self._f_range = None
297 self._p_range = None
298 self._vga_range = None
299 self._cspacing_range = None
300

301 @property
302 def channel_spacing_range(self):
303 """Channel Spacing Range in Hz.
304

305 Returns:
306 dict: channel spacing range or None
307 """
308 return None if self._cspacing_range is None else self._cspacing_range.copy()
309

310 @property
311 def channel_spacing(self):
312 """Channel Spacing in Hz
313

314 Returns:
315 float: Channel Spacing setting in Hz
316 """
317 return self.read('channelspacing')
318

319 @channel_spacing.setter
320 def channel_spacing(self,value):
321 """Set Channel Spacing in Hz.
322

A.2. Client-side program 72

323 Args:
324 float: Channel spacing in Hz
325 """
326 if not isinstance(value, (float, int)):
327 raise ValueError('Expected␣float␣or␣int.')
328 cs_range = self.channel_spacing_range
329 if cs_range is not None and not cs_range['start'] <= value <= cs_range['stop']:
330 raise ValueError('Expected␣float␣in␣range␣[{},␣{}]␣Hz.'.format(
331 cs_range['start'], cs_range['stop']))
332 self.write('channelspacing', value)
333

334

335 class SynthHD(SerialDevice, Sequence):
336

337 API = {
338 # name type write read
339 'channel': (int, 'C{}', 'C?'), # Select channel
340 'frequency': (float, 'f{:.8f}', 'f?'), # Frequency in MHz
341 'power': (float, 'W{:.3f}', 'W?'), # Power in dBm
342 'calibrated': (bool, None, 'V'),
343 'temp_comp_mode': (int, 'Z{}', 'Z?'),
344 'vga_dac': (int, 'a{}', 'a?'), # VGA DAC value [0, 45000]
345 'phase_step': (float, '~{:.3f}', '~?'), # Phase step in degrees
346 'rf_enable': (bool, 'h{}', 'h?'),
347 'pa_power_on': (bool, 'r{}', 'r?'),
348 'pll_power_on': (bool, 'E{}', 'E?'),
349 'model_type': (str, None, '+'), # Model type
350 'serial_number': (int, None, '-'), # Serial number
351 'fw_version': (str, None, 'v0'), # Firmware version
352 'hw_version': (str, None, 'v1'), # Hardware version
353 'sub_version': (str, None, 'v2'), # Sub-version: "HD" or "HDPRO". Only

Synth HD >= v2.
354 'save': ((), 'e', None), # Program all settings to EEPROM
355 'reference_mode': (int, 'x{}', 'x?'),
356 'trig_function': (int, 'w{}', 'w?'),
357 'pll_lock': (bool, None, 'p'),
358 'temperature': (float, None, 'z'), # Temperature in Celsius
359 'ref_frequency': (float, '*{:.8f}', '*?'), # Reference frequency in MHz
360 'channelspacing': (float, 'i{:.1f}', 'i?'), # Channel spacing in Hz
361

362 'sweep_freq_low': (float, 'l{:.8f}', 'l?'), # Sweep lower frequency in MHz
363 'sweep_freq_high': (float, 'u{:.8f}', 'u?'), # Sweep upper frequency in MHz
364 'sweep_freq_step': (float, 's{:.8f}', 's?'), # Sweep frequency step in MHz
365 'sweep_time_step': (float, 't{:.3f}', 't?'), # Sweep time step in [4, 10000] ms
366 'sweep_power_low': (float, '[{:.3f}', '[?'), # Sweep lower power [-60, +20] dBm
367 'sweep_power_high': (float, ']{:.3f}', ']?'), # Sweep upper power [-60, +20] dBm
368 'sweep_direction': (int, '^{}', '^?'), # Sweep direction
369 'sweep_diff_freq': (float, 'k{:.8f}', 'k?'), # Sweep differential frequency in MHz
370 'sweep_diff_meth': (int, 'n{}', 'n?'), # Sweep differential method
371 'sweep_type': (int, 'X{}', 'X?'), # Sweep type {0: linear, 1: tabular}
372 'sweep_single': (bool, 'g{}', 'g?'),
373 'sweep_cont': (bool, 'c{}', 'c?'),
374

375 'am_time_step': (int, 'F{}', 'F?'), # Time step in microseconds
376 'am_num_samples': (int, 'q{}', 'q?'), # Number of samples in one burst
377 'am_cont': (bool, 'A{}', 'A?'), # Enable continuous AM modulation
378 'am_lookup_table': ((int, float), '@{}a{:.3f}', '@{}a?'), # Program row in lookup

table in dBm
379

380 'pulse_on_time': (int, 'P{}', 'P?'), # Pulse on time in range [1, 10e6] us
381 'pulse_off_time': (int, 'O{}', 'O?'), # Pulse off time in range [2, 10e6] uS
382 'pulse_num_rep': (int, 'R{}', 'R?'), # Number of repetitions in range [1,

65500]
383 'pulse_invert': (bool, ':{}', ':?'), # Invert pulse polarity
384 'pulse_single': ((), 'G', None),
385 'pulse_cont': (bool, 'j{}', 'j?'),
386 'dual_pulse_mod': (bool, 'D{}', 'D?'),
387

388 'fm_frequency': (int, '<{}', '<?'),
389 'fm_deviation': (int, '>{}', '>?'),
390 'fm_num_samples': (int, ',{}', ',?'),

A.2. Client-side program 73

391 'fm_mod_type': (int, ';{}', ';?'),
392 'fm_cont': (bool, '/{}', '/?'),
393 }
394

395 def __init__(self, devpath):
396 super().__init__(devpath)
397 self._model = None
398 self._model = self.model
399 if 'v2' in self.model:
400 channel_type = SynthHDv2Channel
401 else:
402 channel_type = SynthHDChannel
403 self._channels = [channel_type(self, index) for index in range(2)]
404

405 def __getitem__(self, key):
406 return self._channels.__getitem__(key)
407

408 def __len__(self):
409 return self._channels.__len__()
410

411 def init(self):
412 """Initialize device: put into a known, safe state."""
413 self.reference_mode = 'internal␣27mhz'
414 self.trigger_mode = 'disabled'
415 self.sweep_enable = False
416 self.am_enable = False
417 self.pulse_mod_enable = False
418 self.dual_pulse_mod_enable = False
419 self.fm_enable = False
420 for channel in self:
421 channel.init()
422

423 @property
424 def model(self):
425 """Model version. This is the binned version that dictates API support.
426

427 Returns:
428 str: model version or None if unsupported
429 """
430 if self._model is not None:
431 return self._model
432 hw_ver = self.hardware_version
433 if 'Version␣2.' in hw_ver:
434 sub_ver = self.read('sub_version')
435 if sub_ver == 'HD':
436 return 'SynthHD␣v2'
437 elif sub_ver == 'HDPRO':
438 return 'SynthHD␣PRO␣v2'
439 else:
440 # Unsupported sub-version. Return None.
441 return None
442 elif 'Version␣1.4' in hw_ver:
443 return 'SynthHD␣v1.4'
444 else:
445 # Unsupported hardware version. Return None.
446 return None
447

448 @property
449 def model_type(self):
450 """Model type.
451

452 Returns:
453 str: model
454 """
455 return self.read('model_type')
456

457 @property
458 def serial_number(self):
459 """Serial number
460

461 Returns:

A.2. Client-side program 74

462 int: serial number
463 """
464 return self.read('serial_number')
465

466 @property
467 def firmware_version(self):
468 """Firmware version.
469

470 Returns:
471 str: version
472 """
473 return self.read('fw_version')
474

475 @property
476 def hardware_version(self):
477 """Hardware version.
478

479 Returns:
480 str: version
481 """
482 return self.read('hw_version')
483

484 def save(self):
485 """Save all settings to non-volatile EEPROM."""
486 self.write('save')
487

488 @property
489 def reference_modes(self):
490 """Frequency reference modes.
491

492 Returns:
493 tuple: tuple of str of modes
494 """
495 return ('external', 'internal␣27mhz', 'internal␣10mhz')
496

497 @property
498 def reference_mode(self):
499 """Get frequency reference mode.
500

501 Returns:
502 str: mode
503 """
504 return self.reference_modes[self.read('reference_mode')]
505

506 @reference_mode.setter
507 def reference_mode(self, value):
508 """Set frequency reference mode.
509

510 Args:
511 value (str): mode
512 """
513 modes = self.reference_modes
514 if not value in modes:
515 raise ValueError('Expected␣str␣in␣set␣{}.'.format(modes))
516 self.write('reference_mode', modes.index(value))
517

518 @property
519 def trigger_modes(self):
520 """Trigger modes.
521

522 Returns:
523 tuple: tuple of str of modes
524 """
525 return (
526 'disabled',
527 'full␣frequency␣sweep',
528 'single␣frequency␣step',
529 'stop␣all',
530 'rf␣enable',
531 'remove␣interrupts',
532 'reserved',

A.2. Client-side program 75

533 'reserved',
534 'am␣modulation',
535 'fm␣modulation',
536)
537

538 @property
539 def trigger_mode(self):
540 """Get trigger mode.
541

542 Returns:
543 str: mode
544 """
545 return self.trigger_modes[self.read('trig_function')]
546

547 @trigger_mode.setter
548 def trigger_mode(self, value):
549 """Set trigger mode.
550

551 Args:
552 value (str): mode
553 """
554 modes = self.trigger_modes
555 if not value in modes:
556 raise ValueError('Expected␣str␣in␣set␣{}.'.format(modes))
557 self.write('trig_function', modes.index(value))
558

559 @property
560 def temperature(self):
561 """Temperature in Celsius.
562

563 Returns:
564 float: temperature
565 """
566 return self.read('temperature')
567

568 @property
569 def reference_frequency_range(self):
570 """Reference frequency range in Hz.
571

572 Returns:
573 dict: frequency range in Hz
574 """
575 return {'start': 10.e6, 'stop': 100.e6, 'step': 1.e3}
576

577 @property
578 def reference_frequency(self):
579 """Get reference frequency in Hz.
580

581 Returns:
582 float: frequency in Hz
583 """
584 return self.read('ref_frequency') * 1.e6
585

586 @reference_frequency.setter
587 def reference_frequency(self, value):
588 """Set reference frequency in Hz.
589

590 Args:
591 value (float / int): frequency in Hz
592 """
593 if not isinstance(value, (float, int)):
594 raise ValueError('Expected␣float␣or␣int.')
595 f_range = self.reference_frequency_range
596 if not f_range['start'] <= value <= f_range['stop']:
597 raise ValueError('Expected␣float␣in␣range␣[{},␣{}]␣Hz.'.format(
598 f_range['start'], f_range['stop']))
599 self.write('ref_frequency', value / 1.e6)
600

601 @property
602 def sweep_enable(self):
603 """Get sweep continuously enable.

A.2. Client-side program 76

604

605 Returns:
606 bool: enable
607 """
608 return self.read('sweep_cont')
609

610 @sweep_enable.setter
611 def sweep_enable(self, value):
612 """Set sweep continuously enable.
613

614 Args:
615 value (bool): enable
616 """
617 if not isinstance(value, bool):
618 raise ValueError('Expected␣bool.')
619 self.write('sweep_cont', value)
620

621 @property
622 def am_enable(self):
623 """Get AM continuously enable.
624

625 Returns:
626 bool: enable
627 """
628 return self.read('am_cont')
629

630 @am_enable.setter
631 def am_enable(self, value):
632 """Set AM continuously enable.
633

634 Args:
635 value (bool): enable
636 """
637 if not isinstance(value, bool):
638 raise ValueError('Expected␣bool.')
639 self.write('am_cont', value)
640

641 @property
642 def pulse_mod_enable(self):
643 """Get pulse modulation continuously enable.
644

645 Returns:
646 bool: enable
647 """
648 return self.read('pulse_cont')
649

650 @pulse_mod_enable.setter
651 def pulse_mod_enable(self, value):
652 """Set pulse modulation continuously enable.
653

654 Args:
655 value (bool): enable
656 """
657 if not isinstance(value, bool):
658 raise ValueError('Expected␣bool.')
659 self.write('pulse_cont', value)
660

661 @property
662 def dual_pulse_mod_enable(self):
663 """Get dual pulse modulation enable.
664

665 Returns:
666 bool: enable
667 """
668 return self.read('dual_pulse_mod')
669

670 @dual_pulse_mod_enable.setter
671 def dual_pulse_mod_enable(self, value):
672 """Set dual pulse modulation enable.
673

674 Args:

A.2. Client-side program 77

675 value (bool): enable
676 """
677 if not isinstance(value, bool):
678 raise ValueError('Expected␣bool.')
679 self.write('dual_pulse_mod', value)
680

681 @property
682 def fm_enable(self):
683 """Get FM continuously enable.
684

685 Returns:
686 bool: enable
687 """
688 return self.read('fm_cont')
689

690 @fm_enable.setter
691 def fm_enable(self, value):
692 """Set FM continuously enable.
693

694 Args:
695 value (bool): enable
696 """
697 if not isinstance(value, bool):
698 raise ValueError('Expected␣bool.')
699 self.write('fm_cont', value)

A.2.9. Old PySide windowed application
1 '''https://zetcode.com/gui/pysidetutorial/widgets/ Useful tutorial'''
2 import sys
3 from time import sleep
4 from threading import Thread
5 import numpy as np
6

7 from PySide6.QtUiTools import QUiLoader
8 from PySide6.QtWidgets import QApplication, QMainWindow
9 from PySide6.QtCore import QFile, QIODevice, Slot

10

11 from project.client.application.api import sweep_acquire, receive_data, get_magnitude
12 from project.client.ui.app.draw_graph import Plotting
13 from project.client.ui.windows.main import Ui_MainWindow
14 from project.client.generator.wft import SynthHDController
15 from project.client.connection.tcp_client import TCPClient
16

17 class GUI:
18 def __init__(self):
19 self.sy = SynthHDController() #also connects with generator
20

21 #GUI setup
22 app = QApplication(sys.argv) #Object that manages the GUI ’applications control flow

and main settings
23 mw = QMainWindow()
24 self.window = Ui_MainWindow()
25 self.window.setupUi(mw)
26

27 #Change GUI appearance
28 self.window.pushButton_startstop.setCheckable(True)
29

30 #Connect GUI buttons
31 self.window.doubleSpinBox_freqstart.valueChanged.connect(self.start_freq_spinbox) #

This function connects the output from this button
32 self.window.doubleSpinBox_freqstop.valueChanged.connect(self.stop_freq_spinbox)
33 self.window.doubleSpinBox_frequencystep.valueChanged.connect(self.step_freq_spinbox)
34 self.window.doubleSpinBox_timestep.valueChanged.connect(self.step_time_spinbox)
35 self.window.checkBox_steptrigger.clicked.connect(self.step_button)
36 self.window.pushButton_startstop.clicked.connect(self.enable_disable)
37

38 mw.show()
39

40 sys.exit(app.exec())

A.2. Client-side program 78

41

42 @Slot()
43 def start_freq_spinbox(self):
44 self.start_freq = self.window.doubleSpinBox_freqstart.value()
45 print(self.start_freq)
46

47 @Slot()
48 def stop_freq_spinbox(self):
49 self.stop_freq = self.window.doubleSpinBox_freqstop.value()
50 print(self.stop_freq)
51

52 @Slot()
53 def step_freq_spinbox(self):
54 self.step_freq = self.window.doubleSpinBox_frequencystep.value()
55 print(self.step_freq)
56

57 @Slot()
58 def step_time_spinbox(self):
59 self.step_time = self.window.doubleSpinBox_timestep.value()
60 print(self.step_time)
61

62 @Slot() #dont know the function of this yet
63 def step_button(self):
64 self.trigger_per_step = self.window.checkBox_steptrigger.isChecked()
65 print(self.trigger_per_step)
66

67 @Slot()
68 def enable_disable(self):
69 #Initialise values
70 self.trigger_per_step = self.window.checkBox_steptrigger.isChecked() #True if we want

step triggering
71 self.start_freq = self.window.doubleSpinBox_freqstart.value()
72 self.stop_freq = self.window.doubleSpinBox_freqstop.value()
73 self.step_freq = self.window.doubleSpinBox_frequencystep.value()
74 self.step_time = self.window.doubleSpinBox_timestep.value()
75

76 #Turn on or off
77 if self.window.pushButton_startstop.isChecked():
78 x,y = sweep_acquire(self.trigger_per_step, self.start_freq, self.stop_freq, self.

step_freq, self.step_time, self.sy)[:2] #Does not do live updating of x and y
yet

79 plot = Plotting.plot_x_y(self.window.graphicsView, x, y)
80 t = Thread(target=GUI.realtime_plot, args=(self, plot, self.start_freq, self.

stop_freq, self.step_freq)).start() #Thread to do live plotting
81 else:
82 self.sy.turn_off((0,1))
83

84 def realtime_plot(self, curve, freq_low, freq_high, freqstep) -> None:
85 with TCPClient(host="10.0.0.11",port=2024) as tcp:
86 while self.window.pushButton_startstop.isChecked():
87 num_frequencies = int((freq_high-freq_low) // freqstep)
88 x = np.linspace(freq_low, freq_high, int(num_frequencies))
89

90 data = receive_data(num_frequencies, tcp.request_data)
91 magnitude = get_magnitude(data)
92 rel_magnitude = magnitude[:,0]/magnitude[:,1]
93

94 curve.setData(rel_magnitude) # set y array
95 # curve.setPos(i, 0) # set x to 0? why?
96 # curve.setXrange(0, 20)
97 QApplication.processEvents() # update plot
98 sleep(0.1)
99

100 '''Needed?'''
101 def __del__(self) -> None:
102 print(self.window.pushButton_startstop.isChecked())
103 if self.window.pushButton_startstop.isChecked():
104 self.window.pushButton_startstop.click()
105 print(self.window.pushButton_startstop.isChecked())

A.2. Client-side program 79

A.2.10. Old PySide graphs
1 # -*- coding: utf-8 -*-
2

3 ##
4 ## Form generated from reading UI file 'graph.ui'
5 ##
6 ## Created by: Qt User Interface Compiler version 6.7.0
7 ##
8 ## WARNING! All changes made in this file will be lost when recompiling UI file!
9 ##

10

11 from PySide6.QtCore import (
12 QCoreApplication, QDate, QDateTime, QLocale, QMetaObject, QObject, QPoint, QRect, QSize,

QTime, QUrl, Qt
13)
14 from PySide6.QtGui import (
15 QBrush, QColor, QConicalGradient, QCursor, QFont, QFontDatabase, QGradient, QIcon, QImage

, QKeySequence, QLinearGradient,
16 QPainter, QPalette, QPixmap, QRadialGradient, QTransform
17)
18 from PySide6.QtWidgets import (
19 QAbstractSpinBox, QApplication, QDoubleSpinBox, QGroupBox, QLabel, QMainWindow, QMenuBar,

QPushButton, QSizePolicy,
20 QSlider, QStatusBar, QWidget
21)
22

23 from pyqtgraph import PlotWidget
24

25

26 class Ui_MainWindow(object):
27

28 def setupUi(self, MainWindow):
29 if not MainWindow.objectName():
30 MainWindow.setObjectName(u"MainWindow")
31 MainWindow.resize(800, 600)
32 MainWindow.setAcceptDrops(False)
33 MainWindow.setWindowTitle(u"OpenVQA")
34 MainWindow.setLocale(QLocale(QLocale.English, QLocale.UnitedKingdom))
35 self.centralwidget = QWidget(MainWindow)
36 self.centralwidget.setObjectName(u"centralwidget")
37 self.groupBox_freq_sweep = QGroupBox(self.centralwidget)
38 self.groupBox_freq_sweep.setObjectName(u"groupBox_freq_sweep")
39 self.groupBox_freq_sweep.setGeometry(QRect(530, 320, 241, 221))
40 self.horizontalSlider_frequencystep = QSlider(self.groupBox_freq_sweep)
41 self.horizontalSlider_frequencystep.setObjectName(u"horizontalSlider_frequencystep")
42 self.horizontalSlider_frequencystep.setGeometry(QRect(10, 110, 211, 22))
43 self.horizontalSlider_frequencystep.setMinimum(1)
44 self.horizontalSlider_frequencystep.setMaximum(200000)
45 self.horizontalSlider_frequencystep.setPageStep(1000)
46 self.horizontalSlider_frequencystep.setOrientation(Qt.Orientation.Horizontal)
47 self.horizontalSlider_frequencystep.setInvertedAppearance(False)
48 self.horizontalSlider_frequencystep.setTickPosition(QSlider.TickPosition.TicksBelow)
49 self.label_frequencystep = QLabel(self.groupBox_freq_sweep)
50 self.label_frequencystep.setObjectName(u"label_frequencystep")
51 self.label_frequencystep.setGeometry(QRect(10, 80, 91, 21))
52 self.label_frequencystep.setText(u"<html><head/><body><p>Frequency␣step:␣</p></body

></html>")
53 self.doubleSpinBox_freqstart = QDoubleSpinBox(self.groupBox_freq_sweep)
54 self.doubleSpinBox_freqstart.setObjectName(u"doubleSpinBox_freqstart")
55 self.doubleSpinBox_freqstart.setGeometry(QRect(10, 30, 91, 31))
56 self.doubleSpinBox_freqstop = QDoubleSpinBox(self.groupBox_freq_sweep)
57 self.doubleSpinBox_freqstop.setObjectName(u"doubleSpinBox_freqstop")
58 self.doubleSpinBox_freqstop.setGeometry(QRect(150, 30, 91, 31))
59 #if QT_CONFIG(tooltip)
60 self.doubleSpinBox_freqstop.setToolTip(u"Stop␣frequency␣in␣MHz")
61 #endif // QT_CONFIG(tooltip)
62 self.doubleSpinBox_freqstop.setProperty("showGroupSeparator", False)
63 self.doubleSpinBox_freqstop.setSuffix(u"␣MHz")
64 self.doubleSpinBox_freqstop.setDecimals(0)
65 self.doubleSpinBox_freqstop.setMinimum(300.000000000000000)
66 self.doubleSpinBox_freqstop.setMaximum(14000.000000000000000)

A.2. Client-side program 80

67 self.doubleSpinBox_freqstop.setSingleStep(0.100000000000000)
68 self.doubleSpinBox_freqstop.setStepType(QAbstractSpinBox.StepType.DefaultStepType)
69 self.doubleSpinBox_freqstop.setValue(6000.000000000000000)
70 self.label_timestep = QLabel(self.groupBox_freq_sweep)
71 self.label_timestep.setObjectName(u"label_timestep")
72 self.label_timestep.setGeometry(QRect(10, 150, 91, 21))
73 self.label_timestep.setText(u"<html><head/><body><p>Time␣step:␣</p></body></html>")
74 self.horizontalSlider_timestep = QSlider(self.groupBox_freq_sweep)
75 self.horizontalSlider_timestep.setObjectName(u"horizontalSlider_timestep")
76 self.horizontalSlider_timestep.setGeometry(QRect(10, 180, 211, 22))
77 self.horizontalSlider_timestep.setMinimum(1)
78 self.horizontalSlider_timestep.setMaximum(3000)
79 self.horizontalSlider_timestep.setPageStep(100)
80 self.horizontalSlider_timestep.setValue(1)
81 self.horizontalSlider_timestep.setOrientation(Qt.Orientation.Horizontal)
82 self.horizontalSlider_timestep.setInvertedAppearance(False)
83 self.horizontalSlider_timestep.setTickPosition(QSlider.TickPosition.TicksBelow)
84 self.pushButton_frequency_direction = QPushButton(self.groupBox_freq_sweep)
85 self.pushButton_frequency_direction.setObjectName(u"pushButton_frequency_direction")
86 self.pushButton_frequency_direction.setGeometry(QRect(110, 30, 31, 31))
87 self.pushButton_frequency_direction.setText(u"→")
88 self.groupBox_magnitude_plot = QGroupBox(self.centralwidget)
89 self.groupBox_magnitude_plot.setObjectName(u"groupBox_magnitude_plot")
90 self.groupBox_magnitude_plot.setGeometry(QRect(10, 10, 481, 351))
91 self.graphicsView_magnitude_plot = PlotWidget(self.groupBox_magnitude_plot)
92 self.graphicsView_magnitude_plot.setObjectName(u"graphicsView_magnitude_plot")
93 self.graphicsView_magnitude_plot.setGeometry(QRect(10, 20, 461, 321))
94 MainWindow.setCentralWidget(self.centralwidget)
95 self.menubar = QMenuBar(MainWindow)
96 self.menubar.setObjectName(u"menubar")
97 self.menubar.setGeometry(QRect(0, 0, 800, 22))
98 MainWindow.setMenuBar(self.menubar)
99 self.statusbar = QStatusBar(MainWindow)

100 self.statusbar.setObjectName(u"statusbar")
101 MainWindow.setStatusBar(self.statusbar)
102

103 self.retranslateUi(MainWindow)
104

105 QMetaObject.connectSlotsByName(MainWindow)
106

107 # setupUi
108

109 def retranslateUi(self, MainWindow):
110 self.groupBox_freq_sweep.setTitle(QCoreApplication.translate("MainWindow", u"for-

quickly-copy-pasting-widgets", None))
111 self.doubleSpinBox_freqstart.setSuffix(QCoreApplication.translate("MainWindow", u"␣

MHz", None))
112 self.groupBox_magnitude_plot.setTitle(QCoreApplication.translate("MainWindow", u"

Magnitude␣plot", None))
113 pass
114

115 # retranslateUi

A.2.11. Old PySide windowed application
1 # -*- coding: utf-8 -*-
2

3 ##
4 ## Form generated from reading UI file 'main.ui'
5 ##
6 ## Created by: Qt User Interface Compiler version 6.7.0
7 ##
8 ## WARNING! All changes made in this file will be lost when recompiling UI file!
9 ##

10

11 from PySide6.QtCore import (
12 QCoreApplication, QDate, QDateTime, QLocale, QMetaObject, QObject, QPoint, QRect, QSize,

QTime, QUrl, Qt
13)
14 from PySide6.QtGui import (
15 QAction, QBrush, QColor, QConicalGradient, QCursor, QFont, QFontDatabase, QGradient,

A.2. Client-side program 81

QIcon, QImage, QKeySequence,
16 QLinearGradient, QPainter, QPalette, QPixmap, QRadialGradient, QTransform
17)
18 from PySide6.QtWidgets import (
19 QAbstractSpinBox, QApplication, QCheckBox, QDoubleSpinBox, QGroupBox, QLabel, QMainWindow

, QMenu, QMenuBar, QPushButton,
20 QSizePolicy, QStatusBar, QWidget
21)
22

23 from pyqtgraph import PlotWidget
24

25

26 class Ui_MainWindow(object):
27

28 def setupUi(self, MainWindow):
29 if not MainWindow.objectName():
30 MainWindow.setObjectName(u"MainWindow")
31 MainWindow.resize(790, 420)
32 MainWindow.setAcceptDrops(False)
33 MainWindow.setWindowTitle(u"OpenVQA")
34 MainWindow.setLocale(QLocale(QLocale.English, QLocale.UnitedKingdom))
35 self.centralwidget = QWidget(MainWindow)
36 self.centralwidget.setObjectName(u"centralwidget")
37 self.groupBox = QGroupBox(self.centralwidget)
38 self.groupBox.setObjectName(u"groupBox")
39 self.groupBox.setGeometry(QRect(20, 0, 271, 351))
40 self.label_frequencystep = QLabel(self.groupBox)
41 self.label_frequencystep.setObjectName(u"label_frequencystep")
42 self.label_frequencystep.setGeometry(QRect(20, 120, 101, 21))
43 self.label_frequencystep.setText(u"<html><head/><body><p>Frequency␣step</p></body></

html>")
44 self.doubleSpinBox_freqstart = QDoubleSpinBox(self.groupBox)
45 self.doubleSpinBox_freqstart.setObjectName(u"doubleSpinBox_freqstart")
46 self.doubleSpinBox_freqstart.setGeometry(QRect(10, 50, 121, 31))
47 self.doubleSpinBox_freqstart.setFrame(True)
48 self.doubleSpinBox_freqstart.setDecimals(3)
49 self.doubleSpinBox_freqstart.setMinimum(300.000000000000000)
50 self.doubleSpinBox_freqstart.setMaximum(14000.000000000000000)
51 self.doubleSpinBox_freqstart.setSingleStep(100.000000000000000)
52 self.doubleSpinBox_freqstart.setValue(4000.000000000000000)
53 self.doubleSpinBox_freqstop = QDoubleSpinBox(self.groupBox)
54 self.doubleSpinBox_freqstop.setObjectName(u"doubleSpinBox_freqstop")
55 self.doubleSpinBox_freqstop.setGeometry(QRect(140, 50, 121, 31))
56 #if QT_CONFIG(tooltip)
57 self.doubleSpinBox_freqstop.setToolTip(u"Stop␣frequency␣in␣MHz")
58 #endif // QT_CONFIG(tooltip)
59 self.doubleSpinBox_freqstop.setProperty("showGroupSeparator", False)
60 self.doubleSpinBox_freqstop.setSuffix(u"␣MHz")
61 self.doubleSpinBox_freqstop.setDecimals(3)
62 self.doubleSpinBox_freqstop.setMinimum(300.000000000000000)
63 self.doubleSpinBox_freqstop.setMaximum(14000.000000000000000)
64 self.doubleSpinBox_freqstop.setSingleStep(100.000000000000000)
65 self.doubleSpinBox_freqstop.setStepType(QAbstractSpinBox.StepType.DefaultStepType)
66 self.doubleSpinBox_freqstop.setValue(6000.000000000000000)
67 self.label_timestep = QLabel(self.groupBox)
68 self.label_timestep.setObjectName(u"label_timestep")
69 self.label_timestep.setGeometry(QRect(170, 120, 61, 21))
70 self.label_timestep.setText(u"<html><head/><body><p>Time␣step</p></body></html>")
71 self.label_freqstart = QLabel(self.groupBox)
72 self.label_freqstart.setObjectName(u"label_freqstart")
73 self.label_freqstart.setGeometry(QRect(20, 30, 101, 16))
74 self.checkBox_steptrigger = QCheckBox(self.groupBox)
75 self.checkBox_steptrigger.setObjectName(u"checkBox_steptrigger")
76 self.checkBox_steptrigger.setGeometry(QRect(10, 90, 111, 20))
77 self.label_freqstop = QLabel(self.groupBox)
78 self.label_freqstop.setObjectName(u"label_freqstop")
79 self.label_freqstop.setGeometry(QRect(150, 30, 101, 16))
80 self.checkBox_reversedirection = QCheckBox(self.groupBox)
81 self.checkBox_reversedirection.setObjectName(u"checkBox_reversedirection")
82 self.checkBox_reversedirection.setGeometry(QRect(140, 90, 131, 20))
83 self.doubleSpinBox_frequencystep = QDoubleSpinBox(self.groupBox)

A.2. Client-side program 82

84 self.doubleSpinBox_frequencystep.setObjectName(u"doubleSpinBox_frequencystep")
85 self.doubleSpinBox_frequencystep.setGeometry(QRect(10, 140, 121, 31))
86 self.doubleSpinBox_frequencystep.setDecimals(3)
87 self.doubleSpinBox_frequencystep.setMaximum(14000.000000000000000)
88 self.doubleSpinBox_frequencystep.setValue(100.000000000000000)
89 self.doubleSpinBox_timestep = QDoubleSpinBox(self.groupBox)
90 self.doubleSpinBox_timestep.setObjectName(u"doubleSpinBox_timestep")
91 self.doubleSpinBox_timestep.setGeometry(QRect(140, 140, 121, 31))
92 self.doubleSpinBox_timestep.setDecimals(1)
93 self.doubleSpinBox_timestep.setMinimum(0.300000000000000)
94 self.doubleSpinBox_timestep.setMaximum(100000.000000000000000)
95 self.doubleSpinBox_timestep.setValue(100.000000000000000)
96 self.pushButton_startstop = QPushButton(self.groupBox)
97 self.pushButton_startstop.setObjectName(u"pushButton_startstop")
98 self.pushButton_startstop.setGeometry(QRect(90, 310, 100, 32))
99 self.pushButton_startstop.setStyleSheet(u"")

100 self.groupBox_magnitude_plot = QGroupBox(self.centralwidget)
101 self.groupBox_magnitude_plot.setObjectName(u"groupBox_magnitude_plot")
102 self.groupBox_magnitude_plot.setGeometry(QRect(290, 0, 481, 351))
103 self.graphicsView = PlotWidget(self.groupBox_magnitude_plot)
104 self.graphicsView.setObjectName(u"graphicsView")
105 self.graphicsView.setGeometry(QRect(10, 30, 461, 311))
106 MainWindow.setCentralWidget(self.centralwidget)
107 self.menubar = QMenuBar(MainWindow)
108 self.menubar.setObjectName(u"menubar")
109 self.menubar.setGeometry(QRect(0, 0, 790, 24))
110 self.menuSweep_menu = QMenu(self.menubar)
111 self.menuSweep_menu.setObjectName(u"menuSweep_menu")
112 MainWindow.setMenuBar(self.menubar)
113 self.statusbar = QStatusBar(MainWindow)
114 self.statusbar.setObjectName(u"statusbar")
115 MainWindow.setStatusBar(self.statusbar)
116

117 self.menubar.addAction(self.menuSweep_menu.menuAction())
118

119 self.retranslateUi(MainWindow)
120

121 QMetaObject.connectSlotsByName(MainWindow)
122

123 # setupUi
124

125 def retranslateUi(self, MainWindow):
126 self.groupBox.setTitle(QCoreApplication.translate("MainWindow", u"Frequency␣sweep",

None))
127 self.doubleSpinBox_freqstart.setSuffix(QCoreApplication.translate("MainWindow", u"␣

MHz", None))
128 self.label_freqstart.setText(QCoreApplication.translate("MainWindow", u"Start␣

frequency", None))
129 self.checkBox_steptrigger.setText(QCoreApplication.translate("MainWindow", u"Step␣

triggering", None))
130 self.label_freqstop.setText(QCoreApplication.translate("MainWindow", u"Stop␣frequency

", None))
131 self.checkBox_reversedirection.setText(QCoreApplication.translate("MainWindow", u"

Reverse␣direction", None))
132 self.doubleSpinBox_frequencystep.setSuffix(QCoreApplication.translate("MainWindow", u

"␣MHz", None))
133 self.doubleSpinBox_timestep.setSuffix(QCoreApplication.translate("MainWindow", u"␣ms"

, None))
134 self.pushButton_startstop.setText(QCoreApplication.translate("MainWindow", u"Turn␣on"

, None))
135 self.groupBox_magnitude_plot.setTitle(QCoreApplication.translate("MainWindow", u"

Magnitude␣plot", None))
136 self.menuSweep_menu.setTitle(QCoreApplication.translate("MainWindow", u"Sweep␣menu",

None))
137 pass
138

139 # retranslateUi

	Nomenclature
	IntroductionThis chapter is shared between the three theses written by the three subteams of the project.
	VNA, a general overview
	Application in quantum research
	Existing solutions
	Functional requirements
	Materials
	Problem definition

	Specific requirements
	Functional requirements
	Objectives

	Program structures
	Server-side program
	Client-side program

	PS/PL interface
	Before communication
	DMA: continuous data streaming
	Averaging
	Python implementation
	Throughput

	MMIO: configuration
	Software testing

	TCP
	Data transmission protocol
	Communication protocol
	Python implementation
	Throughput

	Generator communication
	SCPI
	VISA
	Physical connection
	Windfreak SynthHD

	GUI
	PySide
	Jupyter
	Implementation

	Conclusion & discussion
	Conclusions about the Python software
	Recommendations

	References
	Source code
	Server-side program
	Data processing module
	TCP server module
	Communication and PS/PL protocol module
	Helper module
	Main server script
	Mocked PYNQ module
	Tests for data processing module
	Tests for TCP server module

	Client-side program
	Application programming interface
	Plotting module (for testing)
	TCP client module
	AnaPico APUASYN generator module
	Hittite HMC_T2100 generator module
	Jupyter GUI
	Windfreak SynthHD generator module
	Windfreak SynthHD API
	Old PySide windowed application
	Old PySide graphs
	Old PySide windowed application

