
Network Architectures and Services

Network-as-a-Service
Architecture with SDN and NFV
A Proposed Evolutionary Approach for Service Provider
Networks

M.P.V. Manthena

M
as

te
ro

fS
cie

nc
e

Th
es

is

PVM 2015-083





Faculty of Electrical Engineering, Mathematics and Computer Science
Network Architectures and Services Group

Network-as-a-Service
Architecture with SDN and NFV

A Proposed Evolutionary Approach for Service Provider Networks

M.P.V. Manthena
4243846

Committee members:
Supervisor: Dr. Ir. F.A. Kuipers
Mentor: Ir. Casper van den Broek
Member: Dr. R. Venkatesha Prasad
Member: Ir. N.L.M. van Adrichem

February 20, 2015
M.Sc. Thesis No: PVM 2015-083



The work in this thesis was supported by TNO ICT, Delft. Their cooperation is hereby
gratefully acknowledged.

Copyright c© 2015 by M.P.V. Manthena
All rights reserved. No part of the material protected by this copyright may be reproduced
or utilized in any form or by any means, electronic or mechanical, including photocopying,
recording or by any information storage and retrieval system, without the permission from
the author and Delft University of Technology.



Abstract

The Internet continues to grow exponentially with proliferation of devices and users being con-
nected to it along with an exploding demand for various resource and performance intensive
network services like multimedia content distribution, security, mobility, and machine-to-
machine (M2M) communications. However, the current TCP/IP (Transmission Control Pro-
tocol/Internet Protocol) based Internet architecture, which was developed over 40 years ago
and was not prepared nor designed to successfully meet such explosive demands of today, is
leading to the growing ossification of the Internet with its increasingly closed, complex, and
rigid state. Thus, limiting innovation in such networks and their corresponding services. To
overcome this ossification problem of the Internet coupled with a lack of innovation in provi-
sioning and management of network services, more and more service providers and network
operators are embracing the concept of virtualization for their networks. This trend is largely
inspired by the recent success of cloud-based service models along with their chief enabler
virtualization in addressing similar problems in the computing and storage fields of Informa-
tion Technology (IT). Although recent advances in the field of networking are witnessing new
virtualization enabling network technologies being proposed, it is still a challenge to logically
combine a set of them to realize cloud-based service models for service provider networks.
This situation is mainly due to the concerns over these proposed technologies in terms of
scalability, reliability, interoperability, and disruptive nature.

In this thesis, an evolutionary approach to implementing the Network-as-a-Service (NaaS)
cloud-based service model for service provider networks is proposed with Software-Defined
Networking (SDN) and Network Function Virtualization (NFV) as its key virtualization en-
abling network technologies. In essence, the proposed evolutionary approach realizes the major
benefits of network virtualization such as vendor-neutrality, simplicity, and flexibility while
successfully addressing the stated concerns over SDN and NFV technologies in the proposed
NaaS architecture. Furthermore, a proof-of-concept (PoC) implementation of the proposed
NaaS architecture on a physical network testbed is demonstrated along with an innovative
provisioning and management of basic network connectivity services over it. Finally, the pro-
posed evolutionary approach is validated by an experimental performance evaluation of the
PoC physical network testbed along with the recommendations for improvement and future
work.
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Chapter 1

Introduction

1-1 Research Motivation

The Internet continues to impact the way we live by revolutionizing various aspects of our
lives such as social, economic, health, and education. Meanwhile, the Internet itself is growing
exponentially with ever increasing number of devices and users being connected to it along
with an exploding demand for various resource and performance intensive network services
like multimedia content distribution, security, mobility, and machine-to-machine (M2M) com-
munications. It was predicted that the total number of global Internet users will reach the 3
billion mark (around 40% of the total world population) by the end of the year 2014, which
is around 3 times the number in the year 2005 [12]. Furthermore, according to some pre-
dictions, the total number of devices that would be connected to the Internet will reach the
50 billion mark (around 6.5 devices per person) in the year 2020 from 12.5 billion devices
(around 1.8 devices per person) in the year 2010 [13]. Finally, the total global Internet traffic
was predicted to reach the 1 zettabytes (1000 exabytes) per year mark in the year 2016 from
around 600 exabytes per year in the year 2013 [14]. This huge proliferation of devices and
users in the Internet along with its explosive traffic growth rates is due to the advent of new
information and communications technologies (ICT) like Internet of Things (IoT) involving
M2M communications, 4G/Long Term Evolution (LTE) for mobile communications, multime-
dia Content Delivery Networks (CDNs), and Big Data analytics for intelligent cloud-based
services and applications.

The current TCP/IP (Transmission Control Protocol/Internet Protocol) based Internet archi-
tecture, which was developed over 40 years ago, is not prepared nor designed to effectively and
efficiently meet such explosive demands. Moreover, its end-to-end communication model along
with its competing stakeholder roles is leading to its increasingly closed, complex, and rigid
state. This phenomenon is also resulting in the large scale vendor lock-in of network compo-
nents in the Internet and its constituent service provider networks, which besides its possible
benefits of better support and interoperability, is in turn creating high barriers to entry and
slowing down the adoption process of new and disruptive network architectures, technologies,
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2 Introduction

and services required to enable innovation in the Internet while holistically addressing its ex-
isting deficiencies. Thus, greatly limiting innovation in provisioning and management of such
networks and their corresponding services. This situation of growing ossification of the Inter-
net coupled with a lack of innovation in provisioning and management of network services is
posing non-trivial challenges for several Internet service providers. Some of these significant
challenges are high CAPEX and OPEX costs with low ROI, competition from free-riding and
over-the-top (OTT) service providers (e.g. Skype, WhatsApp, and Netflix), resource over or
under provisioning, and non-conformance with service level agreements (SLAs). Most of these
challenges are directly or indirectly related to the three major (ossification) issues of service
provider networks that are vendor lock-in, complexity, and inflexibility, which are (in general)
deeply ingrained in the key characteristics of such networks.
To address the stated challenges and issues [15, 16, 17], more and more service providers and
network operators are starting to embrace the concept of virtualization for their networks.
This trend is largely inspired by the overwhelming success of virtualization in addressing
similar challenges and issues in the computing and storage fields of Information Technology
(IT). Moreover, virtualization is the chief enabler for various cloud-based service models (e.g.
IaaS, PaaS, and SaaS), which are in turn largely successful for enabling innovation in provision-
ing and management of computing and storage services. In essence, virtualization involves
vendor-neutral resource abstraction to facilitate flexible, isolated, and efficient utilization of
underlying resources while enabling innovation in provisioning and management of services
running over it.
In the recent past, as a step towards network virtualization, several service providers and
network operators have implemented virtual overlay networks based on encapsulation tech-
niques, which use tunneling, tagging, and labeling protocols such as GRE, PPTP, L2TP, VLAN,
VXLAN, and MPLS. Although this type of network virtualization implementation enables in-
novation by provisioning various customizable network services like migration support to new
protocols and technologies (e.g. IPv6), multicast, mobility, and security (e.g. VPN), it does
not change the key characteristics of service provider networks (vendor lock-in, complexity,
and inflexibility). Thus, it realizes only the short-term benefits of network virtualization for
service provider networks. Moreover, overlay networks add additional layers of complexity
(encapsulation protocols) to the already (ossified) closed, complex, and rigid network ar-
chitecture and its components. To overcome this and realize the full potential of network
virtualization in solving the stated issues, one needs to essentially enable virtualization in
the key components of today’s network architecture, which are network control and functions
(e.g. routers, firewalls, load balancers, NAT, DNS, and other dedicated network servers).
Recent advances in the field of networking are witnessing new virtualization enabling network
technologies being proposed. Among which, Software-Defined Networking (SDN) and Network
Function Virtualization (NFV) are at the forefront of current research and innovation in the
networking community. SDN and NFV are highly complementary, but are independent of
each other. SDN primarily involves implementing the network control plane (intelligence)
in a logically centralized and fully-programmable software platform by decoupling it from
the underlying network data-forwarding plane (hardware), whereas NFV primarily involves
implementing network functions in an open and standardized IT virtualization environment
as opposed to vendor-specific and dedicated hardware. In essence, SDN enables network
simplicity and lower-layer (L2-L4) resource flexibility, whereas NFV avoids vendor lock-in and
enables higher-layer (L4-L7) resource flexibility. Moreover, open standards based SDN (e.g.
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1-2 Problem Description 3

OpenFlow [18, 19], the de-facto standard for SDN) avoids vendor lock-in. Thus, a logical
combination of SDN and NFV could potentially avoid the vendor lock-in, complexity, and
inflexibility of current service provider networks while enabling them with the long-term
benefits of network virtualization.

The Network-as-a-Service (NaaS) cloud-based service model leveraging this type of network
virtualization implementation (logical combination of SDN and NFV) could potentially enable
innovation in provisioning and management of network services while solving the major (os-
sification) issues, which are vendor lock-in, complexity, and inflexibility, in service provider
networks. In essence, NaaS is a cloud-based service model, which is similar to IaaS, PaaS, and
SaaS, that offers on-demand, customizable, and utility-based innovative network connectivity
services virtually over the Internet and its constituent service provider networks. However, it
is still a challenge to realize this type of (NaaS) cloud-based service model for service provider
networks. This situation is mainly due to the concerns over both SDN and NFV technologies
in terms of scalability, reliability, interoperability, and disruptive nature.

1-2 Problem Description

During the preliminary research phase, it was found that the NaaS cloud-based service model
with SDN and NFV as its key virtualization enabling network technologies could potentially
solve the major (ossification) issues, which are vendor lock-in, complexity, and inflexibility, in
service provider networks while enabling innovation in provisioning and management of their
network services. However, it was found that realizing this type of (NaaS) cloud-based service
model for service provider networks still remains as a challenge due to the concerns over both
SDN and NFV technologies in terms of scalability, reliability, interoperability, and disruptive
nature. Thus, to realize this NaaS cloud-based service model for service provider networks, the
following two problems must be solved. The first problem involves implementing a full-stack
(complete and modular) network architecture based on the NaaS cloud-based service model
with SDN and NFV as its key virtualization enabling network technologies. The second problem
involves successfully addressing the concerns in terms of scalability, reliability, interoperability,
and disruptive nature over SDN and NFV technologies in the proposed NaaS architecture. Both
of these problems must be holistically solved to realize this NaaS cloud-based service model
for service provider networks.
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1-3 Research Objective

The main research objective for this thesis is to realize the NaaS cloud-based service model
for service provider networks with SDN and NFV as its key virtualization enabling network
technologies to solve their major (ossification) issues in terms of vendor lock-in, complexity,
and inflexibility while enabling innovation in provisioning and management of their network
services. From this main objective the following step-by-step sub-objectives are derived:

1. To Identify the related work and state-of-the-art research in the field of networking,
which is relating to the NaaS cloud-based service model, SDN, and NFV technologies and
their implementations for networks;

2. To Identify the relevant, including the existing (traditional), network technologies and
architectures along with their major benefits, issues, and concerns;

3. To propose an implementation approach and its strategy to realize the main research
objective for this thesis while holistically addressing the identified issues and concerns
over the involved technologies in the proposed NaaS architecture;

4. To demonstrate a PoC implementation of the proposed NaaS architecture on a physical
network testbed along with an innovative provisioning and management of basic network
connectivity services over it;

5. To validate the proposed implementation approach by an experimental performance
evaluation of the PoC physical network testbed.

1-4 Research Questions

From the research objectives for this thesis the following main research question can be
deduced: Which implementation approach and its strategy should be proposed that would
realize the NaaS cloud-based service model for service provider networks with SDN and NFV
as its key virtualization enabling network technologies while holistically addressing the major
issues and concerns over the involved technologies in the proposed NaaS architecture? From
this main question the following step-by-step research questions for this thesis are derived:

1. What is the state-of-the-art research, including its shortcomings and potential enhance-
ments, relating to the implementation of NaaS cloud-based service model, SDN, and NFV
technologies for networks?

2. What are the major benefits, issues, and concerns relating to the relevant, including
the existing, network technologies and architectures, which are in accordance with the
main research question for this thesis?

3. How to propose an implementation approach and its strategy, which is the resulting NaaS
architecture based on identified network technologies and architectures, that solves the
main research question for this thesis?
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4. How to demonstrate a PoC implementation of the proposed NaaS architecture on a
physical network testbed along with an innovative provisioning and management of
basic network connectivity services over it?

5. How to validate the proposed implementation approach by an experimental performance
evaluation of the PoC physical network testbed?

1-5 Research Scope

The work in this thesis primarily focuses on single domain service provider core and edge
networks, and it does not take into account any federated and multi domain network archi-
tectures. Moreover, it does not consider any stakeholder roles (e.g. infrastructure provider,
virtual infrastructure provider, network operator, and service provider) and their correspond-
ing interactions in the proposed NaaS architecture. Nevertheless, the proposed NaaS architec-
ture can be easily extended to any type of network architecture due to its inherent highly
modular and abstract nature.

In general, this thesis aims at successfully answering the proposed research questions. Further-
more, the basic network connectivity services in the PoC implementation of the proposed NaaS
architecture on a physical network testbed involve the following virtualized network functions:
basic connectivity, firewalling, optimal path computation, and load balancing. Finally, the val-
idation of the proposed implementation approach by an experimental performance evaluation
of the PoC physical network testbed involves the performance analysis of the involved network
control overhead and basic network connectivity services.
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1-6 Related Work

As far as the problem description of this thesis is concerned, the related work and state-of-the-
art research in the field of networking can be classified into two distinct groups each of them
addressing a distinct problem in implementing the NaaS cloud-based service model for service
provider networks (existing network architectures) with SDN and NFV as its key virtualization
enabling network technologies. Accordingly, at first, the related work that focuses on the full-
stack (complete and modular) implementation of NaaS cloud-based service model, SDN, and
NFV technologies for networks is discussed (subsection 1-6-1). Later, the related work that
mainly focuses on addressing the concerns in terms of scalability, reliability, interoperability,
and disruptive nature over SDN and NFV technologies is discussed (subsection 1-6-2).

1-6-1 Full-stack Implementation

Duan et al. [2] presented a comprehensive survey on how service-oriented architecture (SOA)
principles when applied to network virtualization in telecommunications and the future In-
ternet will enable the NaaS paradigm, which in turn may facilitate a highly complementary
convergence of networking and cloud computing. In the survey, they only considered and
analyzed the high-level (application and service level) requirements of such approaches and
frameworks. As a development in this direction, the author in [20] presented a framework that
integrates the NaaS paradigm with SDN by abstracting the SDN control plane to implement
a high-level network service orchestration model based on SOA principles. This orchestration
model was proposed to enable application-aware network services with end-to-end Quality
of Service (QoS) provisioning. Similarly, Bueno et al. [21] proposed a software framework
based on NaaS paradigm and OpenFlow based SDN solution along with dynamic network con-
figuration and status monitoring to enable on-demand, customizable, and application-aware
network services with end-to-end QoS guarantees. However, none of these stated approaches
and frameworks have been validated by a proof of concept implementation on a physical
network testbed and its corresponding experimental performance evaluation.

On the other hand, Gouveia et al. [22] proposed a framework that realizes the full-stack
implementation of OpenFlow based SDN solution in provisioning and managing network con-
nectivity services both effectively and efficiently, which is validated by a network testbed
implementation and its corresponding experimental performance evaluation. However, this
framework needs to be further optimized and adapted to be relevant for existing network archi-
tectures, and it does not consider any corresponding implementation approach and strategy.
Nevertheless, it was already shown that OpenFlow based SDN solution can implement, im-
prove, and optimize any type of traditional and complex control plane such as MPLS Traffic
Engineering [23], MPLS-based VPNs [23], and Path Computational Element (PCE) [24]. Fi-
nally, various complementary implementations of NFV leveraging the OpenFlow based SDN
solution [25, 26, 27] are being proposed to implement existing network functions in a full-stack
virtualized environment, which realizes the long-term benefits of network virtualization for
existing network architectures.

In conclusion, the stated related work mainly focuses on the full-stack implementation of
SDN and NFV technologies, but none of them address the relevant concerns in terms of scal-
ability, reliability, interoperability, and disruptive nature over these virtualization enabling
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network technologies in existing network architectures, which is essential for realizing and
implementing the NaaS cloud-based service model for service provider networks.

1-6-2 Addressing Concerns

Casado et al. [1] presented the major drawbacks of OpenFlow based SDN architecture in terms
of complexity in network address mapping and evolutionary inflexibility of corresponding net-
work core and edge, and proposed a hybrid approach that retrospectively applies the insights
underlying MPLS, which are simplified hardware along with distinction between network core
and edge, to the OpenFlow based SDN architecture to overcome those major drawbacks. This
hybrid approach, which was inspired from the idea of network fabrics, involves implementing
the network core as a simple network fabric (fast and cheap packet transportation) while
pushing the complexity (complex network functions and operations) towards the network
edge to facilitate flexible and independent evolution of both network core and edge. In Figure
1-1, the proposed network fabric design by Casado et al. [1] is shown.
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Figure 1-1: The proposed network fabric design by Casado et al. [1].

As seen in Figure 1-1, the simple network core (network fabric) is decoupled from the end-
host requirements and the complex network edge context to facilitate flexible and independent
evolution of both network core and edge. Thus, facilitating the decoupling of network core
from its edge. However, this hybrid approach does not explicitly consider any deployment
scenario (implementation approach and strategy) for OpenFlow based SDN solution in existing
network architectures.

On the other hand, Hampel et al. [28] proposed an approach for extending the concept of
SDN to tackle challenges of telecom domain in terms of over dependence on tunneling solu-
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tions from specialized and vendor-specific edge gateways without any (flow-level) granularity
in network control over them. This approach involves replacing only the specialized edge
gateways with SDN nodes (incremental deployment) and equipping those nodes with encap-
sulation techniques on top of IP fundamental operations, which is named by the authors as
vertical forwarding. However, this proposed approach does not facilitate flexible and indepen-
dent evolution of network architecture as it is based on tunneling on top of IP fundamental
operations, which realizes only the short-term benefits of network virtualization for existing
network architectures.

To address the scalability and reliability concerns over OpenFlow based SDN solution, Mogul
et al. [29] proposed a modification to the OpenFlow model, which is called as DevoFlow,
for reducing unnecessary overheads in switch-controller interactions during flow setup and
statistics gathering while increasing the overall network reliability. DevoFlow involves slight
decoupling of centralized visibility from centralized control while trying to delegate most of
the appropriate decisions to the underlying switches. Thus, reducing the involved overheads
while increasing the overall network reliability (e.g. protection against single-point of failure).
Finally, various complementary implementations of NFV leveraging the OpenFlow based SDN
solution [25, 26, 27] are being proposed. Thus, the concerns over NFV are directly related to
those of OpenFlow based SDN solution in such complementary implementations.

In conclusion, the stated related work mainly focuses on addressing the concerns over SDN and
NFV technologies, but none of them present the full-stack implementation of their proposed
solutions, which is essential for realizing and implementing the NaaS cloud-based service model
for service provider networks.

1-7 Contribution

As far as the contribution of this thesis and its relation to the related work and state-of-the-
art research in the field of networking is concerned, the proposed implementation approach of
this thesis aims at making progress in both directions of the stated related work and state-of-
the-art research in the field of networking, which is presented and comprehensively discussed
in Chapters 3, 4, and 5 of this thesis. The proposed implementation approach builds on the
positives of the stated related work while addressing their corresponding stated drawbacks.
In essence, the proposed implementation approach aims to holistically address both of the
distinct problems that are stated in the problem description of this thesis, which are full-stack
implementation and addressing the concerns over SDN and NFV technologies in the proposed
NaaS architecture, to realize and implement the NaaS cloud-based service model for service
provider networks. In general, this thesis aims at successfully answering the proposed research
questions.
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1-8 Thesis Structure

This thesis is organized to answer the proposed research questions in a step-by-step fashion
and is accordingly structured as follows. Chapter 2 introduces and discusses the relevant, in-
cluding the existing, network technologies and architectures along with their major benefits,
issues, and concerns. In Chapter 3, the proposed implementation approach and its strat-
egy is introduced and discussed, which aims at realizing the NaaS cloud-based service model
for service provider networks with SDN and NFV as its key virtualization enabling network
technologies while holistically addressing the major issues and concerns over the involved
technologies in the proposed NaaS architecture. In Chapter 4, a PoC implementation of the
proposed NaaS architecture on a physical network testbed is demonstrated along with an inno-
vative provisioning and management of basic network connectivity services over it. Chapter
5 presents performance evaluation experiments on the PoC physical network testbed, and an
analysis and discussion of those experimental results to validate the proposed implementation
approach. Finally, Chapter 6 concludes this thesis along with the recommendations for future
work.

Master of Science Thesis M.P.V. Manthena



10 Introduction

M.P.V. Manthena Master of Science Thesis



Chapter 2

Relevant Technologies and
Architectures

In this chapter, the relevant, including the existing (traditional), network technologies and ar-
chitectures are introduced and discussed along with their major benefits, issues, and concerns.
This chapter includes the following network technologies and architectures: Network-as-a-
Service (NaaS) cloud-based service model (section 2-1), Software-Defined Networking (SDN)
along with the OpenFlow protocol and its switch specification (section 2-2), Network Func-
tion Virtualization (NFV) (section 2-3), TCP/IP (section 2-4), Multiprotocol Label Switching
(MPLS) (section 2-5), state-of-the-art network management technologies involving network
monitoring and configuration technologies (section 2-6), and Open vSwitch (OVS) implemen-
tations (section 2-7).

2-1 Network-as-a-Service

Network-as-a-Service (NaaS) is a cloud-based service model that offers network connectivity
services virtually over the Internet and its constituent service provider networks. NaaS is also
a cloud-based business model, which is similar to other cloud-based service models such as
IaaS, PaaS, and SaaS, in which network connectivity services can be provisioned as utilities
to its customers on a pay-per-use or monthly subscription basis. In essence, NaaS was pro-
posed to enable on-demand, customizable, and innovative provisioning and management of
network services by primarily leveraging virtualized network infrastructures and platforms
(network virtualization). Furthermore, NaaS was proposed to transform the whole network
architecture into a single big switch (hypothetical black box) that interacts and exchanges
information with its customers and their corresponding applications through its web portals,
dashboards, and externally exposed interfaces (APIs) while abstracting its internal details and
complexities. Thus, it is the responsibility of the NaaS provider to orchestrate all the involved
complex network and service management operations in meeting the on-demand, dynamic,
and custom network service requirements of NaaS customers while continuously conforming
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with the involved SLAs. Finally, this model was proposed to consider and also integrate
networking, computing, and storage resources as a unified whole to facilitate a highly comple-
mentary convergence of networking and cloud computing. In Figure 2-1, an implementation
of the NaaS cloud-based service model that leverages service-oriented architecture (SOA) and
network virtualization principles, which is proposed by Duan et al. [2], is shown.

Network Service Orchestration Layer

(Network Services and Functions) 

Network Virtualization Layer

(Network Resource Abstraction)

Network Infrastructure Layer

(Network Resources)

Service Provisioning Layer 

(Web Portals, Dashboards, and APIs)

Customers 

(End Users, Enterprises, 

and Applications)

NaaS-based 

Northbound Interface

Southbound Interface

Network Control and Orchestration Layer

Virtualization-based 

Abstraction Interface

Compute Storage

Figure 2-1: An implementation of the NaaS cloud-based service model that leverages service-
oriented architecture (SOA) and network virtualization principles, which is proposed by Duan et
al. [2].

As seen in Figure 2-1, the underlying network resources are abstracted through network
virtualization and are exposed as software-based generic network capabilities for composing
customizable network services and functions. These customizable network services and func-
tions are further orchestrated as per the network service requirements of NaaS customers.
Moreover, these customers are provisioned with simple and abstracted interfaces to subscribe
and define their on-demand, dynamic, and custom network service requirements along with
those of computing and storage cloud-based service models.

NaaS is not a new concept, but its adoption and deployment has been restricted so far due
to the inability of Internet service providers in continuously conforming with the involved
SLAs along with their lack of innovation in provisioning and management of network services.
This situation is mainly due to the ossification of such networks. Nevertheless, in the recent
past, the concept of network virtualization was proposed to effectively address and solve this
problem of ossification in the Internet and its constituent service provider networks [15, 16,
17]. However, the current state-of-the-art network virtualization research and innovation still
needs to address quite a few challenges and technical issues to successfully realize network
virtualization for the Internet and its constituent service provider networks, which are the
involved challenges in realizing an open, flexible, and heterogeneous networking environment
for the Internet [30].
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2-2 Software-Defined Networking

Software-Defined Networking (SDN) is an approach to networking that primarily involves
implementing the network control plane (intelligence) in a logically centralized and fully-
programmable software platform by decoupling it from the underlying network data-forwarding
plane (hardware) through the process of abstraction. In essence, SDN was proposed to log-
ically centralize network intelligence and state (global network view) while abstracting the
underlying network resources (data forwarding function) as a set of fully-programmable soft-
ware functions (facilitating network virtualization) to enable a simplified, flexible, and fully-
programmable network control logic (software). Furthermore, this type of fully-programmable
network control logic can be provisioned and exposed through APIs as a set of on-demand,
customizable, and innovative network services to other internal and external applications like
business software, orchestration software, and policy engines. Finally, SDN can be imple-
mented in several ways primarily based on the method of communication employed between
the control and the data plane in its architecture (type of control-data plane interface).

One such popular implementation is by using open-standards based OpenFlow protocol as
the control-data plane interface [19]. OpenFlow is the de-facto standard for SDN due to the
level of generality, flow-level granularity, and vendor-neutrality it provides to the decoupled
network control plane while being an enabler of innovation in networks [18]. The OpenFlow
protocol and its switch specification is further (comprehensively) introduced and discussed in
subsection 2-2-1. Nevertheless, alternative implementations of SDN, which are ranging from
logically centralized routing control platforms to vendor-specific SDN solutions, are also set
out to make networks more programmable [31]. Some of these alternative implementations
of SDN are briefly introduced and discussed below.

One of the early implementations of network control and data plane separation involved the
work from Internet Engineering Task Force (IETF) working group ForCES (Forwarding and
Control Element Separation) [32], which proposed a standard for an open interface (API)
between the control and data planes to enable innovation in network control logic. However,
over the years, the unwillingness of major network equipment vendors to adopt it due to
its disruptive nature has greatly hindered its incremental deployment. In the recent past,
there has been a fair amount of work that is directed towards the separation of control and
data planes in the existing TCP/IP based network architectures, especially in the context of
routing and signaling. Among which, works such as the Routing Control Platform (RCP)
[33] and the Path Computation Element (PCE) [34] proposed a logically centralized network
control. Furthermore, there are some solutions of network virtualization (virtual overlay
networks) involving SDN technology as their chief enabler without any support from the
underlying (existing) network hardware. Among which, the Network Virtualization Platform
(NVP) from Nicira/VMware [35] employs SDN supporting software switches (Open vSwitch
[36, 37]) in virtual machines to flexibly encapsulate their traffic and dynamically direct it
across existing network hardware to create logical (virtual overlay) networks for its cloud
tenants. Finally, major network equipment vendors like Cisco came up with their own vendor-
specific SDN solutions that involve application-centric network programmability through their
closed (distributed) network operating systems and interfaces [38].

Although most of these stated solutions are relatively pragmatic compared to the OpenFlow
based SDN solution and can enable application specific innovation in network control logic,
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they inherently lack generality (vendor-neutrality and simplicity) required to address the ma-
jor (ossification) issues in today’s networks. In general, there is no single (available) best
solution of SDN that suits and fits all as each of them have their own benefits and tradeoffs.
Thus, it is up to the individual service provider and network operator to decide on a partic-
ular SDN solution or combination of solutions for implementing SDN in their corresponding
networks. In Figure 2-2, a logical view of the basic SDN architecture, which is proposed by
the Open Networking Foundation (ONF) [3], is shown.
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Figure 2-2: A logical view of the basic SDN architecture, which is proposed by the Open Net-
working Foundation (ONF) [3].

As seen in Figure 2-2, the network control plane is decoupled from the underlying network
devices (data-forwarding plane) through the process of abstraction and represented in a logi-
cally centralized and fully-programmable software platform called SDN control software. This
control software (logic) interacts with (manages, controls, and programs) the underlying data
forwarding function through the control-data plane interface (e.g. OpenFlow protocol, the
de-facto standard for SDN) called SDN southbound interface by leveraging the global network
view and fully-programmable underlying network resource abstractions provided by the SDN
architecture. Moreover, this control software is provisioned and exposed through SDN north-
bound APIs as a set of on-demand, customizable, and innovative network services to other
internal and external applications like business software, orchestration software, and policy
engines.

M.P.V. Manthena Master of Science Thesis



2-2 Software-Defined Networking 15

2-2-1 OpenFlow Protocol and Switch Specification

The OpenFlow based SDN solution evolved from the collaborative work done at Stanford Uni-
versity and UC Berkeley, in and around the year 2008, which collaboration is now an integral
part of the Open Networking Research Center (ONRC) [39]. Initially, OpenFlow was proposed
as a uniform way for researchers to run and evaluate experimental protocols in heterogeneous
network devices (e.g. switches, routers, and access points) to enable innovation in campus
networks [18]. Recently, since its inception in the year 2011 as a user-driven organization,
ONF is promoting and managing the OpenFlow standard along with its corresponding SDN
concepts and frameworks [19]. Moreover, ONF maintains and regularly updates the OpenFlow
protocol and its switch specification documentation [40]. In Figure 2-3, an OpenFlow switch
architecture, which is described in the OpenFlow switch specification [4], is shown.
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Figure 2-3: An OpenFlow switch architecture, which is described in the OpenFlow switch spec-
ification [4].

As seen in Figure 2-3, an OpenFlow switch consists of three main components: (1) one or
more flow tables, a group table, and a meter table, which describe how to process and/or
forward the incoming packet (traffic flow1) by matching it against their table (flow/group)
entries, (2) a secure channel (TLS/SSL)to enable communication between the switch and the
external controller, which manages the switch and controls its traffic flows by adding, updat-
ing, and deleting corresponding flow entries in flow tables, both reactively (upon packet/flow
arrival) and proactively, and (3) the OpenFlow protocol, which defines an open and standard
mechanism for communication between the switch and the external controller.

The OpenFlow pipeline processing involves multiple flow tables, and each flow table has
multiple flow entries. In Table 2-1, the main components of a flow entry in a flow table of an
OpenFlow switch, which is described in the OpenFlow switch specification [4], is shown.

1In general, a network traffic flow is a uniquely identified sequence of packets based on their header fields
and ingress port.
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Match
Fields Priority Counters Instructions Timeouts Cookie

Table 2-1: The main components of a flow entry in a flow table of an OpenFlow switch, which
is described in the OpenFlow switch specification [4].

As seen in Table 2-1, each flow entry consists of six main components: (1) match fields,
which include the ingress port and packet header fields, and optionally metadata specified
by the previous table during the pipeline processing to match incoming packets against them
(2) priority, which describes the matching precedence of a flow entry, (3) counters, which
describe the matched packets to a flow entry, (4) instructions, which modify the action set
or pipeline processing being applied to the matched packets, (5) timeouts, which define the
maximum time or idle time before the flow entry is expired by the switch, and (6) cookie,
which describes flow entry filtering data chosen by the external controller. In general, flow
entries are uniquely identified by their match fields and priority. The flow entry that omits
all the fields and has a priority 0 is called as the table-miss flow entry, which describes the
further actions to be applied to an incoming packet in case it has no matching flow entry in
that particular flow table.

The OpenFlow pipeline processing also involves a group table to which packets are directed
by flow entries in flow tables during the pipeline processing to trigger additional methods of
forwarding (e.g. flooding, multipath, and link aggregation) with a general layer of forwarding
indirection on incoming traffic flows. Each group entry in a group table consists of a group
identifier, a group type, counters, and action buckets (buckets containing set of actions to
apply to matching packets). In Table 2-2, the main components of a group entry in the group
table of an OpenFlow switch, which is described in the OpenFlow switch specification [4], is
shown.

Group
Identifier

Group
Type Counters Action

Buckets

Table 2-2: The main components of a group entry in the group table of an OpenFlow switch,
which is described in the OpenFlow switch specification [4].

Finally, the OpenFlow pipeline processing involves a meter table to which packets are directed
by flow entries in flow tables during the pipeline processing to trigger various performance-
related (QoS) actions on incoming traffic flows. Each meter entry in a meter table consists
of a meter identifier, meter bands, and counters. Meter bands specify various performance
specific packet processing types and rates, and each meter band is further identified by its
band type, rate, counters, and type specific arguments. In Table 2-3, the main components of
a meter entry in the meter table of an OpenFlow switch, which is described in the OpenFlow
switch specification [4], is shown.

Meter
Identifier

Meter
Bands Counters

Table 2-3: The main components of a meter entry in the meter table of an OpenFlow switch,
which is described in the OpenFlow switch specification [4].
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The OpenFlow pipeline processing can be further explained by a flow diagram. In Figure
2-4, a flow diagram of the OpenFlow pipeline processing, which is described in the OpenFlow
switch specification [4], is shown.
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Figure 2-4: A flow diagram of the OpenFlow pipeline processing, which is described in the
OpenFlow switch specification [4].

As seen in Figure 2-4, the OpenFlow pipeline processing always starts at flow table 0. The
flow tables in an OpenFlow switch are sequentially numbered, starting from 0 till n, where
number of flow tables in an OpenFlow switch are always greater than or equal to one (n ≥ 0).
Moreover, the OpenFlow pipeline processing always goes forward and never backwards. Upon
arrival of an incoming packet through an ingress port, the packet is first matched against flow
entries in flow table 0. If a flow entry match is found, the instruction set of that flow entry
is executed, which may involve actions such as updating the packet action set, match fields,
metadata, and goto flow table k. If the instruction set involves goto flow table K action, the
updated packet is directed to the flow table K, where the stated process is repeated again.
At any moment, if there is no goto flow table K action in the instruction set of a matched
flow entry, the packet exists the OpenFlow pipeline and its action set is executed, which may
result in actions such as goto group or meter table, output the packet through an egress
port, and drop the packet. If a packet does not match any flow entry in a flow table, it is
called as table-miss, and the packet by default matches the table-miss flow entry. Instruction
set of a table-miss flow entry may involve actions such as drop the packet, send it to the
external OpenFlow controller as a flow request via the OpenFlow protocol, and goto the next
adjacent flow table. In general, every first packet of a new incoming flow is sent to the external
OpenFlow controller as a flow request via the OpenFlow protocol, which processes the flow
requests as per the user defined policies and instructs the underlying switches to install the
corresponding flow entries in their flow tables.
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The OpenFlow protocol enables an open, standard, and secure communication between the
switch and the external controller, which primarily involves switch and flow management mes-
sages such as switch features and statistics polling by the controller, switch messages (both
asynchronous and symmetric) to the controller, and controller instructions to the switch.
Furthermore, the OpenFlow protocol and its switch specification support real-time network
monitoring by exposing counters such as per flow table, per flow, per port, and per queue.
Finally, the currently implemented OpenFlow switch specification version 1.3 additionally
supports MPLS and IPv6 match fields along with their corresponding operations such as tun-
neling and tagging [4].

The OpenFlow controller is the most important element of the whole OpenFlow switch ar-
chitecture. Thus, a lot of recent SDN efforts are focused on designing and implementing these
controllers. NOX [41] is the first OpenFlow controller. It has been widely used as a base
for OpenFlow experimentation and building new OpenFlow controllers. Throughout the past
years, several open-source based OpenFlow supporting SDN controllers have been released.
Among which, Floodlight [42] and OpenDaylight [43] are two of the most popular OpenFlow
based SDN controllers due to their active development cycles and developer communities.

OpenFlow switches can be implemented either as OpenFlow-only switches supporting only
OpenFlow operation or as OpenFlow-hybrid switches supporting both OpenFlow operation
and normal Ethernet switching (L2/L3) operation. In the latter case, a classification mech-
anism for routing the incoming traffic between the OpenFlow pipeline processing and the
normal pipeline processing is provided outside the OpenFlow context. Moreover, OpenFlow
switches can be implemented as both physical and virtual switches (e.g. general-purpose
x86/hypervisor-based, ASIC-based, and FPGA-based). Furthermore, an OpenFlow switch sup-
ports three types of ports, which are physical ports, logical ports, and reserved ports. Among
which, reserved ports specify generic packet forwarding actions such as start of the Open-
Flow pipeline, sending to the external controller, flooding or forwarding using traditional
non-OpenFlow (normal) pipeline processing of an OpenFlow-hybrid switch. Finally, Open-
Flow switches can be implemented as part of platform virtualization software and virtualized
network testbeds to facilitate network virtualization and experimentation.

Recently, OpenFlow is being implemented in virtual switches such as Open vSwitch [36,
37], which can operate both as a software switch running in hypervisors and as the control
stack in physical switches. The Open vSwitch implementations are further introduced and
discussed in subsection 2-7. It is also being implemented in network emulators such as Mininet
[44, 45], which creates virtual networks on laptops and PCs to enable rapid prototyping of
SDNs. Alternatively, a special purpose OpenFlow controller called FlowVisor [46, 47] slices the
underlying network resources to form isolated SDNs by acting as a transparent proxy between
OpenFlow switches and multiple OpenFlow controllers.

In spite of all the promising opportunities and benefits associated with SDN, especially with
the OpenFlow based SDN solution, it encounters certain technical challenges and concerns
that are restricting its deployment in service provider networks. These encountered technical
challenges and concerns are mostly in terms of its scalability, reliability, interoperability, and
disruptive nature. Nevertheless, most of the current research on OpenFlow based SDN solution
is directed towards addressing its technical challenges in terms of its scalability and reliability
[48, 49]. However, there is hardly any research addressing the other involved major concerns
(interoperability and disruptive nature).
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2-3 Network Function Virtualization

Network Function Virtualization (NFV) is an approach to networking that primarily involves
implementing network functions in an open and standardized IT virtualization environment as
opposed to vendor-specific and dedicated hardware. In essence, NFV was proposed to decouple
network functions (e.g. routers, firewalls, load balancers, NAT, DNS, and other dedicated net-
work servers) from their dedicated hardware and implement them as software components on
fully-virtualized network infrastructures by leveraging standard IT virtualization technologies
and techniques to optimize and enable innovation in network service provisioning and man-
agement for service provider networks. Thus, this approach can greatly reduce the involved
CAPEX and OPEX costs for service providers and network operators as it promotes the use of
commodity hardware switches and servers instead of proprietary hardware appliances while
involving only short and innovative software-based development and deployment cycles.

Furthermore, NFV is highly complementary to SDN, but both of them are independent of each
other and can be implemented individually without other being required. In essence, SDN
enables network simplicity and lower-layer (L2-L4) resource flexibility, whereas NFV avoids
vendor lock-in and enables higher-layer (L4-L7) resource flexibility. Moreover, open standards
based SDN (e.g. OpenFlow [18, 19], the de-facto standard for SDN) avoids vendor lock-in.
Thus, a logically combined approach of these two concepts with open innovation can result
in adding much more benefits and value to service provider networks as these concepts are
mutually beneficial and can ease each other’s implementation and deployment.

Finally, to make NFV a reality in future for service provider networks, a new network operator-
led Industry Specification Group called "Network Functions Virtualisation" (NFV ISG) was
formed under the umbrella organization European Telecommunications Standards Institute
(ETSI). In Figure 2-5, the relationship between Network Functions Virtualisation and SDN,
which is described in the NFV ISG introductory white paper [5], is shown.
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Figure 2-5: The relationship between Network Functions Virtualisation and SDN, which is de-
scribed in the NFV ISG introductory white paper [5].
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The main purpose of this group is to define the involved requirements and to develop an
architecture for the virtualization of various possible network functions in service provider
networks while addressing the technical challenges in doing so [6]. In Figure 2-6, the Network
Functions Virtualisation architectural framework, which is described in the NFV ISG update
white paper [6], is shown.
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Figure 2-6: The Network Functions Virtualisation architectural framework, which is described in
the NFV ISG update white paper [6].

As seen in Figure 2-6, the main components of the Network Functions Virtualisation ar-
chitectural framework are the NFVI (Network Functions Virtualisation Infrastructure), the
VNF (Virtualised Network Function), and the NFV M&O (Network Functions Virtualisation
Management and Orchestration). The NFVI abstracts the underlying computing, storage,
and network resources through virtualization and provides them as virtual resources to the
VNF. The VNF consists of VNFs, which are the software implementations of (traditionally
underlying) network functions. As per the requirements of network functions, each VNF can
also be accompanied by an Element Management System (EMS). The NFV M&O involves or-
chestration and lifecycle management of physical and software resources including the VNFs.
Moreover, this architectural framework was build to interact and co-exist with existing man-
agement platforms (e.g. OSS/BSS landscape). Finally, the entire system is driven by a set of
metadata describing the involved requirements.
Although the NFV ISG group proposed the high-level requirements for NFV, it is still a chal-
lenge to implement virtualized network functions in service provider networks. This situation
is mainly due to the availability of hardly any design and implementation specific details and
research work required to realize such implementations. Nevertheless, various complemen-
tary implementations of NFV leveraging the OpenFlow based SDN solution [25, 26, 27] are
being proposed to implement existing network functions in a full-stack virtualized environ-
ment. However, such combined approaches of NFV and SDN should first address the technical
challenges and adoption concerns over SDN to realize NFV for service provider networks.
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2-4 TCP/IP

TCP/IP (Transmission Control Protocol/Internet Protocol) is the most commonly used term
to describe the Internet protocol suite, because TCP and IP are two of its most important
and early standardized protocols. The Internet protocol suite is a set of communications
protocols that define the networking model for the Internet and other private networks using
it. In essence, the TCP/IP networking model follows a layered architecture that involves
grouping of protocols into layers based on their generic functionality while abstracting them
(layers) from each other through the process of encapsulation. Accordingly, the TCP/IP model
has four layers of abstraction namely the link layer, the internet layer, the transport layer,
and the application layer [7, 8]. In Figure 2-7, the basic architecture of TCP/IP (Internet
protocol suite), which is described in the IETF RFCs (Internet standards) [7, 8], is shown.
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EthernetARP

IPICMP IGMP

IEEE 

802.x

TCP UDP

Telnet FTP SMTP DNSHTTP

Figure 2-7: The basic architecture of TCP/IP (Internet protocol suite), which is described in the
IETF RFCs (Internet standards) [7, 8].

As seen in Figure 2-7, the lowest layer in the TCP/IP architecture is called the link layer.
The link layer is responsible for transmission and reception of TCP/IP packets on the network
physical medium and it defines the local area networking methods and protocols (e.g. ARP).
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In essence, TCP/IP architecture was designed to be independent of the underlying network
physical medium, access method, technology, protocol, and format. Moreover, it always as-
sumes an unreliable link layer. Thus, the link layer may constitute any type of LAN and
WAN technologies like Ethernet, IEEE 803.x, Token Ring, X.25, Frame Relay, DSL, and ATM.
The link layer provisions its services to the next layer in the stack (suite) called the Internet
layer. The Internet layer provisions uniform networking methods and protocols across net-
work boundaries (internetworking) and is responsible for uniquely addressing, encapsulating
(packaging), and routing packets to their destination. The major protocols of the Internet
layer are the Internet Protocol (IP), the Internet Control Message Protocol (ICMP), and the
Internet Group Management Protocol (IGMP). The Internet layer further provisions its ser-
vices to the next layer in the stack called the transport layer. The transport layer enables
end-to-end (host-to-host) communication services and is responsible for provisioning data-
gram and session communication services to the next layer in the stack called the application
layer. The major protocols of the transport layer are the Transmission Control Protocol (TCP)
and the User Datagram protocol (UDP). TCP is a connection-oriented and reliable communi-
cation service, whereas UDP is a connectionless and unreliable communication service. The
topmost layer called the application layer enables applications to exchange data with other
applications and hosts by defining the corresponding protocols and providing them access
to the services being provisioned by its underlying layers. Moreover, this layer also involves
TCP/IP network management protocols. The most popular application layer protocols include
the Hypertext Transfer Protocol (HTTP), the File Transfer Protocol (FTP), the Simple Mail
Transfer Protocol (SMTP), the Telnet, and the Domain Name System (DNS).
Furthermore, the TCP/IP model has been the major enabler and driver for the Internet’s
worldwide success in terms of its continuing widespread adoption (scalability and reliability)
and huge impact on the socio-economic aspects of people all over the world through its provi-
sioned services such as World Wide Web (WWW), communication services, and multimedia.
Finally, this huge success of the TCP/IP model is mainly due to some of its basic architectural
principles such as layered architecture with abstractions, open standards based protocols, and
common addressing scheme for all the TCP/IP enabled devices.
Besides the stated benefits of the TCP/IP model, it has quite a few limitations in terms of
its increasingly complex protocol stack, high signaling overhead, competing stakeholder roles,
and lack of effective and efficient network control and management. Moreover, TCP/IP’s best
effort service model is no longer applicable to most of the real-time applications (e.g. voice,
video streaming, and online). Although IETF proposed QoS frameworks such as IntServ and
DiffServ to enable much better QoS support to the network traffic in the present day Internet,
they provide only short-term benefits to such networks and additionally add new layers of
complexity (complex protocols) to the already complex TCP/IP protocol stack.
These limitations of the TCP/IP model lead to the growing ossification of the Internet coupled
with a lack of innovation in provisioning and management of network services in its con-
stituent service provider networks. Nevertheless, in the recent past, the concept of network
virtualization was proposed to effectively address and solve this problem of ossification in the
Internet and its constituent service provider networks [15, 16, 17]. However, the current state-
of-the-art network virtualization research and innovation still needs to address quite a few
challenges and technical issues to successfully realize network virtualization for the Internet
and its constituent service provider networks, which are the involved challenges in realizing
an open, flexible, and heterogeneous networking environment for the Internet [30].
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2-5 Multiprotocol Label Switching

Multiprotocol Label Switching (MPLS) is a hop-by-hop data forwarding mechanism that is
designed to enable fast switching in traditional TCP/IP based networks while provisioning
them with end-to-end QoS support through its inherent traffic classification and prioritization
capabilities (traffic engineering). In essence, for faster switching MPLS employs (fixed-length)
label based forwarding table lookups instead of longest prefix matching (e.g. IP) while for the
end-to-end QoS support MPLS classifies the incoming network traffic (packets) into forwarding
equivalence classes (FECs) based on some predefined packet header match rules and their
ingress ports, where each FEC is associated with (at least) a class of service and a label
switched path (LSP) across the network [9]. MPLS has interfaces to existing routing protocols
(e.g. RSVP, OSPF, and BGP) and requires no change to the existing Internet’s backbone routing
infrastructure. Moreover, routing in MPLS is done with existing IP routing protocols and is
independent of the network layer and link layer protocol being used (protocol independent
encapsulation).

MPLS operates by inserting its 32 bit header between traditional layer 2 and layer 3 header
fields in a TCP/IP packet (encapsulation). This header consists of a stack of MPLS labels
(label stack) with a size greater than or equal to one. MPLS Label stacking (a single packet
carrying multiple labels, organized as a last-in-first-out stack) can be used to create tunnels
for aggregation of multiple LSPs into a single LSP, failure protection of LSPs (bypass tunnel),
creation of customizable VPN tunnels with QoS support, etc. In Table 2-4, the MPLS header
format, which is described in the IETF RFC (proposed standard) [9], is shown.

Label
(20 bits)

TC
(3 bits)

S
(1 bits)

TTL
(28 bits)

Table 2-4: The MPLS header format, which is described in the IETF RFC (proposed standard) [9].

As seen in Table 2-4, the MPLS header format consists of a 20 bit label field that defines
the packet’s FEC. A three bit TC (Traffic Class) field in the MPLS header format defines the
packet’s class of service. An one bit S (Bottom of Stack) field in the MPLS header format
defines whether the packet’s topmost label is at the bottom of the label stack. Finally, an
eight bit TTL (Time To Live) field in the MPLS header defines the packets’ time to live. For
multiprotocol label switching, MPLS uses a protocol independent encapsulation technique to
push, swap, and pop labels on to the network traffic. In a MPLS domain, a MPLS capable
router is called the Label Switching Router (LSR). A LSR at the edge of a MPLS domain is
called as the Label Edge Router (LER), which are MPLS domain’s ingress and egress LSRs.
MPLS LERs in some contexts (e.g. service provider networks) are known as PE (Provider Edge)
routers, and core MPLS LSRs are known as P (Provider) routers. In Figure 2-8, an example
MPLS label switching operation, which is described in the IETF RFC (proposed standard) [9],
is shown.

As seen in Figure 2-8, each packet at the ingress of a MPLS domain is assigned to a Forwarding
Equivalence Class (FEC) by the ingress LSR. All the packets belonging to a particular FEC
are treated in the same way by all the LSRs in that MPLS domain. Once the ingress LSR
determines a packet’s FEC, it inserts a 32 bit MPLS header between the link layer header
and network layer header of that packet before forwarding it into the MPLS domain. At the

Master of Science Thesis M.P.V. Manthena



24 Relevant Technologies and Architectures

MPLS 

LER

MPLS 

LER

MPLS 

LSR

MPLS Core 

Network 

(Label 

Switching)

MPLS 

LSR

Face

End-Host 1  

(IP Add: IP1)

BA

Murdock

MPLS Core 

Network 

(Label 

Switching)
Hannibal

End-Host 2  

(IP Add: IP2)

End-Host 3  

(IP Add: IP3)

Edge

Dst: IP2

Dst: IP3

Edge

Dst: I
P2

Dst: IP3
Dst: IP3

L2

L21

Dst: I
P3

L11

Dst: IP2L1

Dst: I
P2

MPLS 

Header

Figure 2-8: An example MPLS label switching operation, which is described in the IETF RFC
(proposed standard) [9].

subsequent LSRs in the MPLS domain, the label is used as an index into a forwarding table
(Label Forwarding Information Base (LFIB)) that specifies the next hop and a new label to
that packet. At each LSR, the old label is replaced with the new label and the packet is
forwarded to the next hop. Finally, the egress LSR strips the label and forwards the packet
to its final destination based on the IP packet header. Alternatively, to reduce burden on the
egress LSR, labels are striped from packets at the penultimate hop LSRs. This phenomenon is
called as penultimate hop popping (PHP). Moreover, LER nodes have an additional label to IP
prefix binding table called the Label Information Base (LIB) along with an IP forwarding table
(FIB) for label binding of IP packets at ingress LER and label removal with subsequent layer
3 route lookup of IP packets at the egress LER. In this way, MPLS enables inter-connectivity
growth of networks with minimal addition of network hardware.

For each FEC, a specific unidirectional path called the Label Switched Path (LSP) is assigned.
To setup a LSP, each LSR must assign an incoming label to the LSP for the corresponding
FEC and then inform its relevant upstream node about the assigned label while learning the
label that its downstream node has already assigned to that LSP. These labels have only local
significance. Thus, as a result of this label distributions, forwarding tables (LFIB) are created
in the individual LSRs of a MPLS domain. This type of path setup mechanism requires label
distribution and signaling protocols. Label Distribution Protocol (LDP) and Resource Reser-
vation Protocol-Traffic Engineering (RSVP-TE) are two of the most popular label distribution
protocols being used in MPLS today. Each of these label distribution protocols have their own
individual advantages and disadvantages. LDP is used for its simplicity and quick path setup,
whereas RSVP-TE is used for its good QoS (traffic engineering) support through its signaling
protocol.

In general, LSP route setup can be done either by hop-by-hop routing or by explicit routing.
Explicit routing has several advantages over hop-by-hop routing as it can establish LSPs based
on policy and QoS requirements. It can also provision pre-established LSPs that can be used
in case of failures (failure protection). Thus, explicit routing is mostly preferred for LSP route
setup.
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Furthermore, MPLS integrates the advantages of layer 3 routing (scalability and reliability)
with that of layer 2 packet forwarding (fast switching in hardware) to enable several benefits
like fast switching, traffic engineering, and provisioning of customizable network services (e.g.
layer 2 and 3 VPNs) with end-to-end QoS support. Finally, MPLS facilitates evolutionary flexi-
bility of networks as it mainly employs simplified switching hardware with a clear distinction
between the network core and the edge, which involves simplified core that is decoupled from
the complex edge to facilitate independent evolution of both.
Besides the stated benefits of MPLS, it has quite a few limitations in terms of its static,
domain-specific, high signaling overhead, and non-application aware nature. Most of these
limitations are due to the lack of dynamic network control and management in such networks.
Nevertheless, concepts like software-defined and driven networking (e.g. OpenFlow, PCE, and
OpenFlow based PCE) are being proposed to effectively address and solve this problem in
service provider networks [23, 24]. However, these concepts are encountering some technical
challenges and adoption concerns in terms of scalability, reliability, interoperability, and dis-
ruptive nature that needs to be addressed first to successfully realize them for service provider
networks.

2-6 State-of-the-art Network Management Technologies

In this context, the state-of-the-art network management technologies that are relevant to the
proposed implementation approach and its implementation strategy are briefly discussed and
compared. In essence, network monitoring and configuration are two of the most significant
network management operations for any network operator and service provider. Thus, this
discussion and comparison is based on state-of-the-art network monitoring and configura-
tion technologies. Moreover, the proposed implementation approach and its implementation
strategy aims to achieve an open and heterogeneous network architecture for service provider
networks, and therefore vendor-neutral and remote network management (both monitoring
and configuration) technologies become very much relevant in this context.

2-6-1 Network Monitoring Technologies

As far as state-of-the-art network monitoring technologies are concerned, they can be primar-
ily classified based on the level of granularity (e.g. per interface, per flow, and per packet) they
provide in terms of network traffic monitoring. Furthermore, these technologies also differ
from each other based on their features and benefits (e.g. vendor-neutrality, device perfor-
mance and status monitoring, and low network overhead and costs) they offer to the network
operator and service provider. Accordingly, the following four popular and vendor-neutral
(open standards based) network monitoring technologies are compared in Table 2-5: Sim-
ple Network Management Protocol (SNMP) [50], Internet Protocol Flow Information Export
(IPFIX) [51]/NetFlow2 [52], sFlow [53], and port mirroring (packet capturing).
As seen in Table 2-5, each of the stated network monitoring technologies have their own
advantages and shortcomings. Thus, there is no single (available) best solution for network

2NetFlow is a Cisco Systems proprietary standard for IP traffic flow monitoring on network routers, whose
version 9 was published by them as an IETF informational RFC [52]. Moreover, the IETF Internet standard
IPFIX [51] is based on this NetFlow version 9 IETF informational RFC.
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Table 2-5: A basic comparison of popular and vendor-neutral state-of-the-art network monitoring
technologies.

monitoring that suits and fits all. Moreover, there are quite a few vendor-specific network
monitoring solutions that are based on and variants of the stated network monitoring tech-
nologies, but none of them are relevant for open and heterogeneous network architectures.
Finally, the OpenFlow protocol, the de-facto standard for SDN, besides flow-level network
control also facilitates network monitoring with flow-level granularity, which exposes the in-
stalled flow, group, and meter statistics to the external OpenFlow controller [18, 54]. However,
OpenFlow based network monitoring for large scale networks could potentially hamper the
corresponding OpenFlow based SDN solution’s scalability and reliability due to the involved
high control overhead, load, and costs.

2-6-2 Network Configuration Technologies

As far as state-of-the-art network configuration technologies are concerned, they can be pri-
marily classified based on the level of ease and flexibility they offer to the network operators
and service providers in terms of configuring the underlying network devices. As far as the
current practices are concerned, most of the network operators and service providers either
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use vendor-specific configuration methods (e.g. web service based) or command line interfaces
(CLIs) to configure each device on the network. However, only very few use vendor-neutral and
remote network configuration technologies like SNMP3 [50] and NETCONF (Network Configu-
ration Protocol) [55]. Nevertheless, with recent advances in the field of networking in terms
of new virtualization enabling network technologies being proposed (e.g. SDN and NFV), the
requirement for vendor-neutral and remote network configuration technologies has become a
necessity. Furthermore, new network configuration technologies like Open vSwitch Database
(OVSDB) Management Protocol have been proposed and implemented for the vendor-neutral
and remote configuration of Open vSwitch, the de-facto standard for open virtual switches,
implementations [56]. Accordingly, a basic comparison of the following state-of-the-art net-
work configuration technologies is done in Table 2-6: CLI, web service based, SNMP, NETCONF,
and OVSDB Management Protocol.

As seen in Table 2-6, vendor-neutral and remote network configuration technologies have
much more benefits (ease, flexibility, and interoperability4) compared to other models when
it comes to implementing them in open and heterogeneous network architectures. However,
some vendor-neutral solutions are easy to use once implemented, but their implementation
can be very hard. Moreover, within the vendor scope, there are quite a few vendor-specific
configuration tools that are easy to use and reasonably flexible. In general, there is no single
(available) best solution that suits and fits all as each of them have their own benefits and
tradeoffs. Thus, it is up to the individual service provider and network operator to decide on a
particular network configuration solution or combination of solutions for implementing them
in their corresponding networks. Finally, OpenFlow Management and Configuration Protocol
(OF-CONFIG), which is based on NETCONF, was recently proposed for the vendor-neutral and
remote configuration of the OpenFlow switch implementations [57].

2-7 Open vSwitch Implementations

Open vSwitch (OVS) is an open source, multilayer, and remotely programmable virtual (soft-
ware) switch that was proposed to enable integration of networking into the virtualization
layer [36, 37]. In essence, OVS facilitates flexible automation of network control and man-
agement by exposing its programmatic interfaces to external applications, services, and plat-
forms (e.g. OpenFlow based SDN controller, OVSDB manager, OpenStack) while supporting
traditional and standard network management technologies, protocols, and interfaces (e.g.
NetFlow, sFlow, IPFIX, SPAN, RSPAN, CLI, LACP, VLAN, 802.1ag, and tunneling protocols).
Furthermore, OVS can be implemented to operate as a software switch in a hypervisor, and as
a multilayer control stack for switching hardware (e.g. ASICs). Thus, OVS has been ported to
multiple software and hardware platforms like virtualization platforms and switching hard-
ware (chipsets). Moreover, OVS is being supported by various hypervisors (e.g. XEN, KVM,
VMware, and VirtualBox) and Linux based operating systems (e.g. Ubuntu, Debian, and
Fedora) in both kernel and user space. Finally, the Mininet network emulator implements

3In spite of SNMP being a vendor-neutral (open standard based) and remote network configuration technol-
ogy, it is not very popular because of its issues in terms of its complex MIB (Management Information Base)
structure, non-transactional model, and security concerns. In essence, SNMP as a configuration technology is
not very user friendly, but it is reasonably flexible. Nevertheless, SNMP is widely used for performance and
fault monitoring in service provider networks.

4Interoperability with open and heterogeneous network architectures.
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the kernel space OVS for rapid prototyping of SDNs [44, 45]. In Figure 2-9, the high-level ar-
chitecture of Open vSwitch, which is described in the Open vSwitch project’s Git repository
[10], is shown.
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Figure 2-9: The high-level architecture of Open vSwitch, which is described in the Open vSwitch
project’s Git repository [10].

As seen in Figure 2-9, OVS can be easily ported to any type of data plane, and to both software
and hardware platforms (e.g. user space and kernel space). In the OVS architecture, "ovs-
vswitchd" is the main user space program that accesses configuration information from the
"ovsdb-server" over an IPC channel and sends that information down to the "ofproto" library.
Moreover, it sends back status and statistics from the "ofproto" library to the "ovsdb-server".
"ovsdb-server" consists of switch-level configuration details such as bridge, interface, tunnel
definitions, OVSDB manager, and OpenFlow controller addresses. Moreover, "ovsdb-server"
can be remotely configured by an OVSDB manager via the OVSDB management protocol.
Furthermore, "ofproto" library implements an OpenFlow switch and it talks to the external
OpenFlow controller via the OpenFlow protocol. Moreover, It talks with the switching soft-
ware and hardware through an "ofproto provider". Finally, "netdev" and "netdev provider"
abstract the underlying switch interfaces for the OVS implementation.

Besides the stated benefits of OVS, some of its implementations have certain limitations in
terms of slow software based switching, high load on CPU, version mismatches, and other
generic problems related with open source based software development process. Nevertheless,
the OVS developer community is collaborating in a large way to address these limitations.
However, a particular implementation of the OVS should be thoroughly studied and tested
before implementing it for a certain application and network type.
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Network
Configuration
Technology

Type
of

Network
Configuration
Technology

Type
of

Managed
Network
Devices

Type
of

Managed
Networks

Level
of

Ease
and

Flexibility

Inter-
operability4

CLI
Vendor-
specific

Any
network
device

Small
and

homo-
geneous
networks

Low Low

Web service
based

Vendor-
specific

Some
vendor-
specific
network
devices

Large
and

homo-
geneous
networks

Low Low

SNMP3 Vendor-
neutral

Any
network
device

Large
and

hetero-
geneous
networks

Medium Medium

NETCONF
Vendor-
neutral

Any
network
device

Large
and

hetero-
geneous
networks

High High

OVSDB
Management

Protocol

Vendor-
neutral

Open
virtual
switches
(Open

vSwitch)

Large
and
Open

vSwitch
based

networks

High High

Table 2-6: A basic comparison of state-of-the-art network configuration technologies.
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Chapter 3

Proposed Evolutionary Approach and
Implementation Strategy

In this chapter, the proposed implementation approach and its strategy for service provider
networks is presented and discussed. In accordance with the thesis problem statement and
objective, the proposed implementation approach involves an evolutionary approach to im-
plementing the Network-as-a-Service (NaaS) cloud-based service model for service provider
networks. The proposed NaaS architecture involves SDN and NFV as its key virtualization
enabling network technologies. OpenFlow, the de-facto standard for SDN, is used as the SDN
implementation in the proposed NaaS architecture due to its inherent qualities of open nature
and as an enabler of innovation in networks [18, 19]. Moreover, the proposed NaaS architecture
uses network monitoring and configuration technologies for more scalable, reliable, and gran-
ular closed-loop network control and management. Fundamentally, the proposed evolutionary
approach, instead of revolutionizing the whole network architecture with the disruptive SDN
and NFV technologies (instead of upgrading the whole network at once), involves an im-
plementation strategy that facilitates an incremental deployment scenario through a highly
complementary co-existence between these disruptive technologies and the most prominent
existing network technologies, which are TCP/IP and MPLS, in service provider networks. In
Figure 3-1, a typical single domain service provider network is shown.

As seen in Figure 3-1, provider and provider edge routers are labeled as P and PE respec-
tively. Similarly, customer edge routers are labeled in the figure as CE. In general, provider
routers are MPLS label switching routers and provider edge routers are MPLS label edge
routers, which are labeled in the figure as LSR and LER respectively. In essence, the proposed
evolutionary approach realizes the major benefits of network virtualization such as vendor-
neutrality, simplicity, and flexibility while successfully addressing the concerns over SDN and
NFV technologies in terms of scalability, reliability, and interoperability. Accordingly, at first,
the data plane considerations (section 3-1) followed by the control and management plane
considerations (section 3-2) for implementing the proposed evolutionary approach in service
provider networks are presented and discussed. Finally, this chapter concludes by presenting
and discussing the overall proposed Network-as-a-Service (NaaS) architecture (section 3-3).
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Figure 3-1: A typical single domain service provider network.

3-1 Data Plane Considerations

The primary data plane consideration for implementing the proposed NaaS architecture in
service provider networks is inspired by the network fabric design proposed by Casado et al.
[1], which is depicted in Figure 1-1 (Chapter 1). According to Casado et al., implementing the
network core as a simple network fabric (fast and cheap packet transportation) while pushing
the complexity (complex network functions and operations) towards the network edge will
facilitate flexible and independent evolution of both network core and edge, which results
in the decoupling of network core from its edge. In essence, this network fabric design was
proposed to apply the insights underlying MPLS to OpenFlow based SDN architecture. For the
proposed implementation strategy, this concept of network fabric design is slightly modified
to comply with the proposed evolutionary approach, which involves incremental deployment
of SDN like disruptive technologies in service provider networks.

As it is known, MPLS is already widely implemented in service provider networks along with
TCP/IP, which is depicted in Figure 3-1. Thus, the primary data plane consideration involves
either replacing or updating the edge devices in service provider networks with OpenFlow-
enabled network devices while having its network core unchanged, which results in legacy
MPLS label switch routers (LSRs) as provider routers while OpenFlow-enabled MPLS label
edge routers (LERs) as provider edge routers. Furthermore, the legacy network core involves
proactive installation of full-mesh static LSPs instead of dynamic LSPs built through signal-
ing and routing protocols as in today’s networks. As a result, the proposed network edge
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needs to perform all the complex network operations and functions on the incoming TCP/IP
based network traffic and steer it across the simple and static legacy network core through
label switching. Finally, the proposed implementation strategy will enable an intelligent and
complex network edge that is decoupled from a simple and static legacy network core, which
involves the MPLS based network fabric design with dumb pipes, in service provider networks.
In Figure 3-2, the data plane considerations for implementing the proposed evolutionary ap-
proach in a typical single domain service provider network, which is depicted in Figure 3-1,
is shown.
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Figure 3-2: The data plane considerations for implementing the proposed evolutionary approach
in a typical single domain service provider network, which is depicted in Figure 3-1.

As seen in Figure 3-2, at the provider edge (PE), legacy MPLS LERs are replaced or updated
with OpenFlow-enabled MPLS LERs for flow-level granularity in network control and man-
agement. Furthermore, the unchanged legacy network core involves proactive installation
of full-mesh static LSPs. Thus, this approach results in an intelligent and complex network
edge that is decoupled from a simple and static legacy network core, which describes the
MPLS based network fabric design with dumb pipes. Moreover, for network-wide visibility
and monitoring, sFlow is used at the proposed network edge while SNMP is used at the legacy
network core. Finally, virtualized network functions (NFV - VNFs) are implemented either as
applications in the proposed NaaS architecture or as separate software components running
on virtualized servers enabled with OpenFlow switches that are integrated into the proposed
NaaS architecture at the proposed network edge.
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OpenFlow, the de-facto standard for SDN, is chosen as the SDN implementation due to the level
of generality, flow-level granularity, and vendor-neutrality it provides to the decoupled network
control plane while being an enabler of innovation in networks [18, 19]. Moreover, latest
versions of the OpenFlow protocol and their switch specifications support key MPLS operations
such as label push, swap, and pop with flow-level granularity [4]. This approach is similar
to Hampel et al. [28] in incremental deployment of OpenFlow based SDN at network edge,
but instead of tunneling network traffic over IP from OpenFlow-enabled network edge devices
through legacy network core it employs MPLS to enable fast and cheap packet transportation
(network fabric design) at the legacy network core while facilitating the decoupling of network
core from its edge.

For network-wide visibility and monitoring to perform closed-loop network control and man-
agement, sFlow [53] was proposed to be used as the network monitoring technology at the
proposed network edge while SNMP [50] at the legacy network core. sFlow is chosen as the
network edge monitoring technology because of its customizable packet sampling rate, which
provides sufficient network visibility and information to perform complex network control
and management operations at the proposed network edge. Furthermore, as sFlow is a push-
based and hardware (e.g. ASIC) supported network monitoring technology it offloads costs
and overheads on the underlying network devices while addressing the scalability and relia-
bility concerns over OpenFlow based SDN solution through decoupling of centralized visibility
from centralized control, which is in accordance with the concept of Devoflow proposed by
Mogul et al [29]. Moreover, most of the commercially available OpenFlow-enabled network
devices along with the Open vSwitch, the de-facto standard for open virtual switches, imple-
mentations [36, 37] support sFlow. In the legacy network core, SNMP is used as the network
monitoring technology because of its widespread adoption in legacy network devices. Fur-
thermore, SNMP provides device and interface statistics, which are sufficient for bandwidth
and fault analysis to avoid congestions, service degradation, and packet losses at the simple
and static legacy network core. Finally, both sFlow and SNMP are vendor-neutral and remote
network monitoring technologies that are highly interoperable in open and heterogeneous
network architectures, which is show in Table 2-5 (Chapter 2).

For implementing virtualized network functions (NFV - VNFs) in the proposed NaaS architec-
ture, network functions in service provider networks are proposed to be incrementally decou-
pled from dedicated hardware and are implemented either as applications in the proposed
NaaS architecture (SDN northbound applications as shown in [26]) or as separate software
components running on virtualized servers enabled with OpenFlow switches that are inte-
grated into the proposed NaaS architecture at the proposed network edge (complementary
implementation of NFV with OpenFlow based SDN as proposed in [25, 27]).

3-2 Control and Management Plane Considerations

The control and management plane considerations of the proposed implementation approach
primarily aim to provision simple abstractions of the underlying network resources, which in-
volves enabling network virtualization through SDN and NFV, to the northbound NaaS based
network service orchestration platform, which is depicted in Figure 2-1 (Chapter 2) and pro-
posed in [2, 20, 21]. The control and management plane considerations can be directly mapped
with the stated data plane considerations. According to the data plane considerations, the
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complex and intelligent network edge is decoupled from the simple and static legacy network
core, which describes the MPLS based network fabric design with dumb pipes. Thus, the con-
trol and management plane considerations of the network core and edge are also decoupled
from each other.
For the complex and intelligent network edge, the control and management plane implemen-
tation (considerations) involves an OpenFlow based SDN controller for dynamic and flow-level
traffic control and MPLS based traffic steering across the network, a sFlow based network ana-
lyzer for flow-level traffic monitoring, and a network configuration system that configures the
underlying resources at the proposed network edge, which involves OpenFlow-enabled MPLS
LERs and virtualized servers enabled with OpenFlow switches hosting the decoupled network
functions. Furthermore, for NaaS based network service orchestration and closed-loop net-
work control, OpenFlow based SDN controller and sFlow based network analyzer must expose
their open and fully-programmable northbound APIs. Optionally, the network configuration
system can also expose its open and fully-programmable northbound APIs. Nevertheless, it
can employ any type of configuration protocol and method (e.g. CLI, Web service based,
NETCONF, and OVSDB)1 as the proposed network edge involves very few network devices and
components that require frequent changes in network configurations.
For the simple and static legacy network core, one can reuse their legacy network manage-
ment system while exposing SNMP based network analyzer’s open and fully-programmable
northbound APIs to the NaaS based network service orchestration platform for interface and
device statistics. Optionally, the network configuration system can also expose its open and
fully-programmable northbound APIs. Nevertheless, it can employ any type of configuration
protocol and method (e.g. CLI, Web service based, SNMP, NETCONF)1 as the proposed legacy
network core involves only simple and static network devices and components.

3-3 Proposed Network-as-a-Service Architecture

The proposed Network-as-a-Service (NaaS) architecture involves implementing the stated data,
control, and management plane considerations to provision simple abstractions of the under-
lying network resources, which involves enabling network virtualization through SDN and
NFV, to a northbound NaaS based network service orchestration platform called the NaaS
platform. The NaaS platform leverages the provisioned simple abstractions of the under-
lying network resources to implement network orchestration, police engines, functions, and
services as fully-programmable software-based applications. These applications are in turn
abstracted and exposed to the NaaS platform’s northbound cloud-based service provisioning
platform (e.g. OpenStack). These stated applications are provisioned and managed using
the exposed abstractions of the OpenFlow based SDN controller (fully-programmable network
control), sFlow (proposed network edge traffic flow monitoring) and SNMP (legacy network
core interface monitoring) based network analyzers, and (optionally) network edge and core
configuration systems. Furthermore, underlying network resources (both networks nodes and
links) are abstracted as network graphs (graph theory and complex networks) to provision
various innovative and customizable network functions and services such as routing, fire-
walling, path computations, and traffic engineering, which is in parallel with the proposed

1For the list of different types of network configuration technologies and their comparison, refer Table 2-6
(Chapter 2).
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approaches in [22, 23, 24, 26]. Moreover, the network orchestration application in the NaaS
platform will enable service chaining of virtualized network functions running on the underly-
ing virtual servers, which is proposed in [25, 27]. Finally, this type of fully-programmable and
software-based network service orchestration platform (NaaS platform) enables innovation in
provisioning and management of network services. The overall proposed Network-as-a-Service
(NaaS) architecture is depicted and briefly explained in Figure 3-3.
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Figure 3-3: The overall proposed Network-as-a-Service (NaaS) architecture.

As seen in Figure 3-3, the data plane involves an intelligent and complex network edge that
is decoupled from the simple and static legacy network core along with incrementally (grad-
ually) deployed virtualized network functions (NFV - VNFs). Accordingly, the control and
management plane of the network edge and core are also decoupled. The proposed network
edge involves an OpenFlow based SDN controller for fully-programmable network control, a
sFlow based network analyzer for traffic flow monitoring, and a network configuration system,
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whereas the legacy network core involves a SNMP based network analyzer for interface monitor-
ing and a legacy network configuration system. Furthermore, these control and management
plane components expose their simple abstractions of the underlying network resources to the
northbound NaaS based network service orchestration platform (NaaS platform) that imple-
ments network orchestration, police engines, functions, and services as fully-programmable
software-based applications. Finally, these applications are in turn abstracted and exposed to
the NaaS platform’s northbound cloud-based service provisioning platform (e.g. OpenStack).

The proposed evolutionary approach and its implementation strategy addresses and solves
the concerns over the involved technologies (SDN, NFV, TCP/IP, and MPLS). Firstly, the pro-
posed NaaS architecture involves innovative provisioning and management of network services
and functions along with a logically centralized and fully-programmable network control and
management plane, which enables network virtualization through SDN and NFV. Secondly,
the proposed NaaS architecture involves a simple and static network core, which describes
MPLS based network fabric design with dumb pipes, with pre-installed full-mesh LSPs on
vendor-neutral legacy MPLS LSRs, which results in no (in-band) signaling and control pro-
tocols and their corresponding overhead. Thus, these two stated features of the proposed
NaaS architecture largely address and solve some of the major concerns over the existing net-
work technologies (TCP/IP and MPLS) in service provider networks in terms of their vendor
lock-in, complexity, and inflexibility while de-ossifying such networks as it enables flexible,
fully-programmable, and abstracted network virtualization without any underlying (in-band)
complex signaling and control protocols and their corresponding overhead. Thirdly, the pro-
posed NaaS architecture involves incremental deployment of SDN and NFV technologies at
the network edge while co-existing with the existing network technologies, which involves
co-existence with TCP/IP at the provider-customer edge and rest of the public internet while
with MPLS at the provider edge-core of service provider networks. Thus, this stated feature
solves the interoperability and disruptive nature concerns over SDN and NFV technologies.
Lastly, the centralized network control (SDN controller) is decoupled from the centralized
network visibility and monitoring (sFlow and SNMP network analyzers) to enable much more
efficient and effective closed-loop network control and management. Thus, this stated feature
solves the scalability and reliability concerns over SDN technology. Moreover, SDN is the chief
enabler for NFV in the proposed NaaS architecture. Thus, the concerns over NFV are directly
related to those of OpenFlow based SDN solution in such complementary implementations.

Most importantly, the proposed MPLS based network fabric design with dumb pipes decouples
the complex and intelligent network edge from the simple and static network core, which in
turn will facilitate flexible and independent evolution of both the network core and edge in
service provider networks. In conclusion, the proposed evolutionary approach realizes the
major benefits of network virtualization such as vendor-neutrality, simplicity, and flexibility
while successfully addressing the concerns over SDN and NFV technologies in terms of scal-
ability, reliability, interoperability, and disruptive nature in the proposed NaaS architecture.
In other words, it enables innovation in network service provisioning and management while
facilitating flexible and independent evolution of both the network core and edge.
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Chapter 4

Proof of Concept Implementation on a
Physical Network Testbed

In this chapter, the proof of concept (PoC) implementation of the proposed NaaS architecture
on a physical network testbed is demonstrated along with the innovative provisioning and
management of basic network connectivity services over it. Accordingly, at first, the Proof of
Concept design of the proposed NaaS architecture (section 4-1) followed by its implementation
on a physical network testbed (section 4-2) are presented and discussed. Finally, this chapter
concludes by presenting and discussing the innovative provisioning and management of basic
network connectivity services over the PoC implementation (section 4-3).

4-1 Proof of Concept Design

The Proof of Concept (PoC) design of the proposed NaaS architecture is depicted in Figure
4-1. The overall proposed NaaS architecture is depicted in Figure 3-3 (Chapter 3).

As seen in Figure 4-1, when compared with the proposed NaaS architecture (Figure 3-3, Chap-
ter 3), the PoC design additionally (optionally) supports sFlow based network core interface
monitoring in its control and management plane. Furthermore, the PoC design does not in-
volve any virtualized network functions (NFV - VNFs) being implemented on the underlying
virtual servers at the network edge. Finally, the PoC design involves CLI as the NaaS based
northbound service provisioning platform.

In this section, the PoC design components are presented and discussed. The PoC design com-
ponents can be further explained by referring to Appendix A, which consists of additional
information, graphical depictions, and code blocks relating to the PoC design components.
Firstly, as per the data plane considerations in the proposed NaaS architecture, this PoC de-
sign was first tested and implemented on Mininet [45] network emulator before implementing
it on a physical network testbed (section 4-2). Moreover, the PoC design does not involve
any virtualized network functions (NFV - VNFs) being implemented on the underlying virtual
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Figure 4-1: The Proof of Concept (PoC) design of the proposed NaaS architecture, which is
depicted in Figure 3-3 (Chapter 3).

servers at the network edge, instead basic network connectivity functions and services are
implemented as applications in the NaaS platform. Secondly, OpenDaylight Controller (Base
edition) [11] is chosen as the OpenFlow based SDN controller because of its full-stack sup-
port for SDN and NFV, well documented northbound APIs (REST1 APIs), and large developer
community [43]. Moreover, the OpenDaylight Controller has built-in base network service
functions such as host tracker, ARP handler, topology, stats, switch, and forwarding rules
manager, which are also exposed as northbound REST APIs. In Figure 4-2, the OpenDaylight
Base edition architecture, which is described in its user guide [11], is shown.

1REST (REpresentational State Transfer) is a simple and stateless web based architecture, which generally
runs over HTTP (Hypertext Transfer Protocol). It is most commonly used for exposing application program-
ming interfaces (APIs).
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Figure 4-2: The OpenDaylight Base edition architecture, which is described in its user guide
[11].

As seen in Figure 4-2, the OpenDaylight Base edition architecture supports both physical
and virtual devices, especially OpenFlow-enabled devices and Open vSwitches. Moreover,
it has NETCONF, OpenFlow versions 1.0 and 1.3, and OVSDB as its southbound interfaces
and protocol plugins for programmable network control and management (configuration) of
the underlying network devices. Furthermore, its controller program has an abstraction layer
called Service Abstraction Layer (SAL) for underlying plugin management, capability abstrac-
tions, flow programming, and inventory, etc. Other components of the controller program
such as built-in network service functions make use of these abstractions provisioned by the
SAL. Finally, controller program components and capabilities including the built-in network
service functions are exposed as REST APIs (northbound interface) to network applications
orchestrations, services (e.g. OpenStack), and its management GUI (refer Appendix A-1) and
CLI.
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Thirdly, sFlow-RT network analyzer [58] is chosen as the sFlow based network traffic analyzer
because of its support in real-time visibility to a wide range of SDN applications, well docu-
mented northbound APIs (REST APIs), and fully-customizable real-time traffic metrics, events,
and thresholds (refer Appendix A-2). Furthermore, the developer of sFlow-RT network ana-
lyzer (InMon Corp.) maintains an active web blog that discusses SDN analytics and control
using sFlow standard and sFlow-RT network analyzer [59]. Fourthly, a custom SNMP based
web application was built with well documented northbound APIs (REST APIs) for network
core interface monitoring, which exposes link failures and utilization events with customiz-
able polling intervals and thresholds (refer Appendix A-3), using the Python modules Bottle
[60] web framework and PySNMP [61] SNMP engine implementation. Optionally, sFlow-RT
network analyzer can also be used for network core interface monitoring instead of the cus-
tom built SNMP web application. Thus, this approach facilitates incremental replacement of
legacy network core routers with much more open and flexible network switches (e.g. Open
vSwitch implementations enabled with OpenFlow and sFlow protocol), which enables flexible
and independent evolution of the network core. Lastly, vendor-specific CLIs and web GUIs are
used for network device configurations as the PoC design involves only static and proactive
network configurations.

The NaaS platform involves an application called the Main App that acts as an abstraction
layer to present all the underlying REST APIs as simple abstractions and function calls to other
applications in the platform, it uses the Python module Requests [62] HTTP library for REST
API calls (refer Appendix A-4). The NaaS platform’s network service and function applications
are discussed briefly in section 4-3. Moreover, the JSON (Java Script Object Notation) [63]
based data store, which is a custom built NoSQL database, of the NaaS platform contains
all the configuration details of the underlying PoC design components and network devices
along with the ingress MPLS label to path bindings of all the pre-installed full-mesh static
LSPs at the network core (refer Appendix A-5). Thus, the underlying network resources are
abstracted as network graphs to the NaaS platform’s network service and function applications.
Fundamentally, the NaaS platform and the custom SNMP web application were built using the
Python programming language in less than 4000 lines of code2 while using JSON file format
for data storage and data interchange through REST API calls (refer Appendix A-6). Finally,
the PoC design involves CLI as the NaaS based northbound service provisioning platform (refer
Appendix A-7). Nevertheless, any type of service provisioning platform (e.g. OpenStack) can
be integrated with the PoC design as it involves open and fully-programmable network service
abstractions.

4-2 Implementation on a Physical Network Testbed

The physical network testbed consists of four Pica8 open switches, two 48 port 10 GbE P-3922
and two 48 port 1 GbE P-3290 switches [65], four Juniper M10i series routers [66], seven Linux
based virtual machines (VMs) running on five different servers with VMware vSphere server
virtualization operating system (OS) [67], and a Linux based remote PC. The four Pica8 open

2Upon publication of this thesis at TU Delft’s institutional web repository and its related research paper
(submitted) at IEEE NetSoft 2015 conference, the whole source code of the NaaS platform and the custom
built SNMP web application will be made publicly available as a GitHub repository under the author’s or his
research group’s GitHub profile [64].
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(a) The four Pica8 open switches, two 48
port 10 GbE P-3922 and two 48 port 1 GbE
P-3290 switches [65].

(b) The four Juniper M10i series routers
[66].

Figure 4-3: The switches and routers that are used in the physical network testbed.

switches can either be used in a L2/L3 mode or Open vSwitch [36, 37] mode. Moreover, these
Pica8 open switches are built as custom implementations on Application-specific Integrated
Circuits (ASICs) with Linux network OS. Furthermore, the switches and routers (network
devices) that are used in the physical network testbed are depicted in Figure 4-3. Finally, the
physical network testbed can be further explained by referring to Appendix B, which consists
of additional information on configuration, specification, and implementation of the physical
network testbed components.
Fundamentally, the physical network testbed tries to emulate a service provider network
being implemented with the proposed NaaS architecture. In the physical network testbed,
a VM running on a server is used for running the OpenDaylight Controller and sFlow-RT
network analyzer for edge flow control and monitoring, a VM running on a server is used
for running the custom built SNMP web application and (optionally) the sFlow-RT network
analyzer for core interface monitoring, five VMs running on three different servers are used
as the five end-hosts, and a remote PC for hosting the NaaS platform. Moreover, one of the
end-hosts (end-host 5) is configured to be in a different IP subnet compared to the other
end-hosts in the physical network testbed to emulate a service provider network’s connection
to the Internet and other (external) network domains.
The physical network testbed involves two different implementations (testbed setups) called
Testbed Setup A3 and Testbed Setup B, which are depicted in Figure 4-4 and 4-5 respectively.
At the network edge of the two testbed setups, the two P-3922 Pica8 open switches are used

3In Testbed Setup A, at the network edge, the Juniper legacy routers that are directly connected to the
edge Pica8 open switches (OpenFlow-enabled switches) appear as end-hosts to them. However, by default,
these legacy routers only respond to ARP requests from devices within their local network (IP subnet). Thus,
interface MAC addresses of the edge Pica8 open switches are permanently published as static ARP table entries
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as the OpenFlow-enabled MPLS LERs in the Open vSwitch mode with the OpenFlow switch
specification version 1.3 [4] (refer Appendix B-1). At the network core, Testbed Setup A
involves the four Juniper M10i series routers as the legacy (traditional) and static network
core MPLS LSRs (refer Appendix B-2), whereas Testbed Setup B involves the two P-3290
Pica8 open switches in the Open vSwitch mode as the future and static network core MPLS
LSRs (refer Appendix B-3). Thus, sFlow is used instead of SNMP for network core interface
monitoring in Testbed Setup B as the Pica8 open switches support sFlow in their hardware
ASICs. In essence, the physical network testbed is implemented as two different testbed setups
to promote and demonstrate the support of the proposed NaaS architecture in enabling flexible
evolution of both network core and edge, where Testbed Setup A consists of legacy and existing
network core while Testbed Setup B consists of evolved and future network core. In other
words, it realizes incremental replacement of legacy network core routers with much more
open and flexible network switches (Open vSwitch implementations enabled with OpenFlow
and sFlow protocol), which enables flexible and independent evolution of the network core.
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Figure 4-4: The Testbed Setup A3 with Juniper M10i series legacy routers as the network core
MPLS LSRs.

In both these testbed setups, network devices are connected with 1Gb fiber-optic cables while
the end-host VMs are connected to the network through gigabit Ethernet (1Gb) cables. Fur-
thermore, full-mesh static LSPs with penultimate hop popping (PHP) are pre-installed in the
network core of both the testbed setups (refer Appendix B-2 and B-3). Thus, the OpenFlow-

in these legacy routers to enable communication between them. Alternatively, the OpenDaylight Controller
can be tweaked to handle these type of involved ARP requests and replies.
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Figure 4-5: The Testbed Setup B with Pica8 P-3290 open switches as the network core MPLS
LSRs.

enabled MPLS LERs just need to push the corresponding MPLS labels onto the incoming
network traffic (packets) to steer it across the testbed network (refer Appendix B-1) while
performing the associated basic network connectivity functions and services on them (basic
connectivity, edge firewalling, and load balancing), which are discussed in section 4-3. Fi-
nally, the OpenFlow-enabled MPLS LERs need to replace the destination MAC addresses of
the incoming network traffic (packets) with that of the next-hop router in Testbed Setup A
(refer Figure 4-4) as the involved Juniper legacy MPLS LSRs only match MPLS traffic (packets)
with their interface MAC addresses in the Layer 2 destination (packet) header fields. Thus,
a JSON file format similar to one shown in Appendix A-6 is used to install such flows in the
OpenFlow-enabled MPLS LERs of Testbed Setup A through the OpenDaylight Controller’s
REST API.

4-3 Basic Network Connectivity Services

The PoC design involves basic network connectivity functions and services (basic connectivity,
edge firewalling, optimal path computation, and load balancing) as applications in the NaaS
platform, which are innovatively provisioned and managed as basic network connectivity
services through the NaaS based northbound service provisioning platform (CLI in the PoC
design, refer Appendix A-7). Accordingly, the key applications in the NaaS platform that
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enable these basic network connectivity services are first presented and discussed. Later, the
innovative provisioning and management of the involved basic network connectivity services
is presented and discussed. Moreover, these involved basic network connectivity services can
be further explained by referring to Appendix C, which consists of additional information on
configuration and management of them and their key enabling components (NaaS platform’s
applications).

Firstly, the NaaS platform involves an application called Main App that acts as an abstraction
layer to present all the underlying REST APIs as simple abstractions and function calls to other
applications in the platform (refer Appendix A-4). Thus, the underlying network resources
are abstracted as network graphs (graph theory and complex networks) to the NaaS platform’s
network service and function applications.

Secondly, the NaaS platform has an application called sFlow based Edge Flow Monitoring App
that configures the underlying sFlow-RT network analyzer through its Main App abstractions
for customizable traffic flow monitoring at the network edge, which involves customizable
definitions of traffic flow name (unique identifier), keys (packet headers), value (frames or
bytes), filters (e.g. address groups), and thresholds (minimum flow value to trigger a flow
event in the underlying sFlow-RT network analyzer). Moreover, this can be further explained
by referring to Appendix C-1.

Thirdly, the NaaS platform has an application called sFlow/SNMP based Core Interface Moni-
toring App that configures the underlying SNMP web application or sFlow-RT network analyzer
(as per the type of testbed setup, which is either SNMP web application as in Testbed Setup
A - refer Figure 4-4 - or sFlow-RT network analyzer as in Testbed Setup B - refer Figure
4-5) through its Main App abstractions to trigger link failures and customizable high inter-
face utilization events at the network core, which involves customizable definition of interface
utilization threshold as percentage of the total available link bandwidth. Moreover, this can
be further explained by referring to Appendix C-2.

Lastly, the NaaS platform has an application called Optimal Path Computation App that per-
forms programmable optimal path computations by first constructing a network connectivity
matrix, adjacency matrix with programmable link weights, and then running the Dijkstra’s
shortest path algorithm over it. This optimal path computation application uses the Python
based software package NetworkX [68] for the involved graph theory and complex networks
related computations. Moreover, it uses the Python 2D plotting library matplotlib [69] for
provisioning graphical visualization of the optimal path computations. This can be further
explained by referring to Appendix C-3. Fundamentally, this optimal path computation in-
volves multi-constraint based QoS routing with only multiplicative QoS metrics and measures
(e.g. link failures and threshold based high utilization events) [70]. An example network
connectivity matrix, adjacency matrix with unity link weights, along with its graphical visu-
alization is depicted in Figure 4-6, which represent Testbed Setup A as depicted in Figure
4-4.

The PoC design provisions and manages three basic network connectivity services, which are
basic connectivity, load balancing, and edge firewalling. These services are provisioned and
managed by orchestrating the stated key applications in the NaaS platform. Fundamentally,
these network connectivity services are highly customizable, programmable, and reusable with
several instances of them running at any given time. Furthermore, the innovative provisioning
and management of the involved basic network connectivity services is presented and discussed
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(a) Network connectivity matrix. (b) Graphical visualization.

Figure 4-6: An example network connectivity matrix, adjacency matrix with unity link weights,
along with its graphical visualization, which represent Testbed Setup A as depicted in Figure 4-4.

in the following subsections (basic connectivity service in subsection 4-3-1, load balancing
service in subsection 4-3-2, and edge firewalling service in subsection 4-3-3). Finally, the
basic connectivity service and edge firewalling service are further explained and validated
through an experimental evaluation in Chapter 5.

4-3-1 Basic Connectivity Service

In basic connectivity service, the Basic connectivity App in the NaaS platform continuously
queries the OpenDaylight Controller through its Main App abstractions for the list of detected
end-hosts. Upon detection of a new end host, it calls the Optimal Path Computation App for
computing the shortest paths across the network to reach the new detected end-host and then
calls the OpenDaylight Controller via its Main App abstractions to install the corresponding
ingress MPLS push label flows for those paths (ingress MPLS label to static LSP path bindings,
refer Appendix A-5) in the involved underlying OpenFlow-enabled network edge switches. In
Figure 4-7, a high level flow diagram of the basic connectivity service is shown.

4-3-2 Load Balancing Service

In load balancing service, the Load Balancing App in the NaaS platform initially configures
the underlying network core interface monitoring analyzer for detecting link failures and
high bandwidth utilization events at the network core by calling the SNMP/sFlow based
Core Interface Monitoring App, and then it regularly queries the analyzer through its Main
App abstractions for those events. Upon detection of either a link failure event or a high
utilization event, it calls the Optimal Path Computation App for computing the optimal
paths by updating the network connectivity matrix with new link weights, ’0’ for link failure
and a large number ’n’ greater than the length of the matrix for high interface utilizations,
and then running the Dijkstra’s shortest path algorithm over it. Later, it steers the involved
network traffic to the computed optimal paths as per the network policy and the subscribed
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Figure 4-7: A high level flow diagram of the basic connectivity service.

service requirements by installing the corresponding ingress MPLS push label flows for those
paths (ingress MPLS label to static LSP path bindings, refer Appendix A-5) in the involved
underlying OpenFlow-enabled network edge switches through the OpenDaylight Controller’s
Main App abstractions with a priority higher than that of the existing flows in those switches.
In Figure 4-8, a high level flow diagram of the load balancing service is shown.

4-3-3 Edge Firewalling Service

In edge firewalling service, the Edge Firewall App in the NaaS platform initially configures
the underlying sFlow based network edge traffic analyzer (sFlow-RT network analyzer) for
monitoring and detecting un-trusted traffic and security vulnerability events with flow-level
granularity at the network edge by calling the sFlow based Edge Flow Monitoring App, and
then it regularly queries the analyzer through its Main App abstractions for those events. Upon
detection of a security vulnerability event, it gathers the information about the attacker(s)
from the analyzer and installs a drop action flow with the highest priority to block the
attacker(s) traffic for certain time and after that time it deletes (un-blocks) those installed
drop action flows in the involved underlying OpenFlow-enabled network edge switches through
the OpenDaylight Controller’s Main App abstractions. In Figure 4-9, a high level flow diagram
of the edge firewalling service is shown.
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Figure 4-8: A high level flow diagram of the load balancing service.
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Figure 4-9: A high level flow diagram of the edge firewalling service.

M.P.V. Manthena Master of Science Thesis



Chapter 5

Experimental Performance Evaluation
and Validation

In this Chapter, the experimental performance evaluation and validation of the proposed
evolutionary approach are presented and discussed. The proposed evolutionary approach re-
alizes the major benefits of network virtualization such as vendor-neutrality, simplicity, and
flexibility while successfully addressing the concerns over SDN and NFV technologies in terms
of scalability, reliability, interoperability, and disruptive nature in the proposed NaaS archi-
tecture. In other words, it enables innovation in network service provisioning and manage-
ment while facilitating flexible and independent evolution of both the network core and edge.
Thus, this experimental performance evaluation and validation of the proposed evolutionary
approach involves both of the stated directions, which are enabling benefits and successfully
addressing the involved concerns. Furthermore, this experimental performance evaluation is
carried out on the PoC physical network testbed that is demonstrated in Chapter 4, which
involves Testbed Setup A and Testbed Setup B as shown in Figures 4-4 and 4-5 respectively.
Accordingly, this experimental performance evaluation focuses on two major characteristics of
the proposed NaaS architecture and its PoC physical network testbed, which are performance
analysis of the involved network control overhead (closed-loop OpenFlow based network con-
trol with sFlow and SNMP based network monitoring in section 5-1) and the involved basic
network connectivity services (basic connectivity, edge firewalling, and load balancing in sec-
tion 5-2). Moreover, this experimental performance evaluation can be further explained by
referring to Appendix D, which consists of additional information on the involved experimen-
tal performance analysis data and plots. Finally, based on this experimental performance
evaluation along with the obtained knowledge and experience throughout this research, the
proposed evolutionary approach is validated (section 5-3).

For this experimental performance evaluation, network packets are first captured using the
packet analyzer Wireshark v1.12 [71] at the involved VMs (controllers, analyzers, monitors,
and end-hosts) during the performance evaluation experiments on the PoC physical network
testbed. In essence, these performance evaluation experiments mostly involve active measure-
ments (e.g. ping). Moreover, the latest Wireshark release v1.12 is used for packet capturing
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because of its support to the OpenFlow protocol as it has a built-in OpenFlow packet dis-
sector. Later, this captured packet information is studied and analyzed by plotting network
performance plots using MATLAB [72] for data analysis and visualization. Fundamentally,
as the captured packet information from Wireshark involves time-stamped data, this time
series data is resampled into buckets of one second by summing over the numerical values of
the captured data (number of frames and length of frames) in that second to plot network
load in terms of frames per second, bytes per second, and bits per second over this resampled
time.

During the performance evaluation experiments on the PoC physical network testbed, it was
found that Testbed Setup B involves slightly higher round-trip delay/time (RTD/RTT) com-
pared to that of Testbed Setup A (by around 100 milliseconds). The main reason behind this
is that the two open switches, 48 port 1 GbE Pica8 P-3290 open switches, in Testbed Setup
B’s network core support MPLS switching operations (push, pop, and swap) in their CPU in-
stead of their hardware ASICs. Thus, the involved open switches in the proposed evolutionary
approach must support MPLS switching operations in their hardware ASICs for much faster
switching, avoidance of network bottlenecks, and to prevent unnecessary load on the switch
CPUs.

5-1 Network Control Overhead Performance Analysis

For the performance analysis of the involved network control overhead in the PoC physical
network testbed, the involved OpenFlow, sFlow, and SNMP protocol traffic in Testbed Setup
A at the OpenDaylight Controller, sFlow-RT network analyzer, and custom built SNMP web
application respectively are first studied and analyzed while provisioning and managing the
PoC basic network connectivity services over it, which are discussed in section 4-3 of Chapter
4. Later, similar analysis is carried out in Testbed Setup B and compared with that of
Testbed Setup A. In essence, Testbed Setup B only differs from Testbed Setup A in terms of
its network core (open switches instead of legacy routers and sFlow instead of SNMP based
network monitoring). However, the overall control overhead is found to be much higher in
Testbed Setup A compared to that of Testbed Setup B (refer Appendix D-1).

At the network edge, the average of the total OpenFlow protocol traffic load at the OpenDay-
light Controller to and from the two underlying open switches in Testbed Setup A is around
45 Kbps with a standard deviation of around 50 Kbps, whereas in Testbed Setup B the average
value is around 1.5 Kbps with a standard deviation of around 4.5 Kbps. This huge difference
can be explained by analyzing their involved traffic load samples, which are shown in Figure
5-1. A 200 second sample of the OpenFlow protocol traffic load measurement in both Testbed
Setup A and B are shown in Sub-Figures 5-1a and 5-1b respectively.

In general, the OpenDaylight Controller gathers statistics from the underlying open switches
every 15 seconds, which involves flow, group, meter, port, and table statistics request and
reply OpenFlow packets, which can be clearly seen in Sub-Figure 5-1b. Furthermore, the only
other major operation of the OpenDaylight controller in the PoC physical network testbed is
that of installing and deleting MPLS push and static flows in the underlying open switches,
which involve OpenFlow packets of size around 200 bytes (1600 bits) only. However, the
reason for this high traffic load in Testbed Setup A is due to the involved (configured) link
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(a) Testbed Setup A.
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Figure 5-1: The OpenFlow protocol traffic load samples at the OpenDaylight Controller in the
PoC physical network testbed.

state protocol, OSPF (Open Shortest Path First) protocol, in its legacy network core, for which
the legacy routers send out multicast OSPF "Hello" request packets every 8 seconds. These
edge open switches upon receiving those packets send them to the OpenDaylight Controller
via the OpenFlow protocol for corresponding handling and action, which in turn sends them
back to the underlying open switches as ARP requests (multicast packets). In this way they
cause high traffic load in the network and at the OpenDaylight Controller. In Figure 5-2, the
Wireshark capture of a multicast OSPF "Hello" received by the OpenDaylight Controller via
the OpenFlow protocol in Testbed Setup A is shown.

Figure 5-2: The Wireshark capture of a multicast OSPF "Hello" received by the OpenDaylight
Controller via the OpenFlow protocol in Testbed Setup A.

Similarly, the end-host VMs are installed with a LLDP (Link Layer Discovery Protocol) imple-
mentation daemon called lldpd [73], which sends out multicast LLDP requests every 30 seconds
and similarly induces high traffic load in the network and at the OpenDaylight Controller as
that of the OSPF requests. In Figure 5-3, the Wireshark capture of a multicast LLDP request
received by the OpenDaylight Controller via the OpenFlow protocol in Testbed Setup A is
shown.
The sFlow based network edge traffic monitoring involves push-based exporting of sampled
packets (at a pre-configured sampling rate) and the interface counters (at a pre-configured
polling rate) to the sFlow-RT network analyzer. Thus, the sFlow protocol traffic in Testbed
Setup A is also slightly over loaded with this (in-band) additional control overhead. The
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Figure 5-3: The Wireshark capture of a multicast LLDP request received by the OpenDaylight
Controller via the OpenFlow protocol in Testbed Setup A.

sFlow protocol traffic is further explained below while discussing sFlow based network core
interface monitoring in Testbed Setup B (refer Figure 5-4b). Nevertheless, both LLDP and
OSPF are additional features to the PoC physical network testbed and can be removed or
handled effectively by the OpenDaylight Controller to avoid this (in-band) additional control
overhead. Upon mitigation of OSPF control overhead in Testbed Setup A, it will result in
control overhead similar to that of Testbed Setup B, which is depicted in Sub-Figure 5-1b.
In essence, Testbed Setup B does not involve any in-band signalling and control protocols
and their corresponding overhead in its network as it involves only the open switches in both
its network edge and core. However, Testbed Setup B still involves LLDP control overhead
as LLDP is implemented in the end-host VMs of the physical network testbed. Thus, upon
on removing LLDP implementations in the end-host VMs of the physical network testbed, in
which case control overhead can be further reduced in both the testbed setups.

At the network core, the average of the total SNMP protocol traffic load at the custom built
SNMP web application to and from the four underlying legacy routers in Testbed Setup A
is around 2.5 Kbps with a standard deviation of around 6 Kbps, whereas in Testbed Setup B
the average of the total sFlow protocol traffic load at the sFlow-RT network analyzer from
the two underlying open switches is around 0.8 Kbps with a standard deviation of around 1
Kbps. This difference can be explained by analyzing their involved traffic load samples, which
are shown in Figure 5-4. A 200 second sample of the SNMP1 and sFlow2 protocol traffic load
measurement in the corresponding testbed setup are shown in Sub-Figures 5-4a and 5-4b
respectively.

1In Testbed Setup A, at the network core, the custom built SNMP web application gathers only three
interface counters from the Management Information Bases (MIBs), which are ifOperStatus, ifInOctetes, and
ifOutOctetes in IF-MIB of SNMP MIB-2, in the underlying legacy routers at once every 20 seconds. The involved
SNMP v2c request and reply packets in gathering the three interface counters are each of size around 90 bytes
(720 bits).

2In Testbed Setup B, at the network core, the sFlow standard implementation in the underlying open
switches is configured with a packet sampling rate of 1000 and interface counters polling rate of 20 seconds,
which involves push based sFlow packet export to the sFlow-RT network analyzer. The involved sFlow packets
in exporting the per interface counters and sampled packets are each of size around 186 bytes (1488 bits) and
218 bytes (1744 bits) respectively. Furthermore, two or more interface counters and sampled packets are
sometimes exported as a single sFlow packet, in which case the total packet size is less than the sum of the
individual packet sizes when sent separately.
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(a) SNMP protocol - Testbed Setup A1.
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Figure 5-4: The network core interface monitoring traffic load samples in the PoC physical
network testbed.

Although Testbed Setup B has less network core devices compared to that of Testbed Setup
A, the control overhead at the network core is still logically higher in Testbed Setup A com-
pared to that of Testbed Setup B. Firstly, SNMP based network monitoring in Testbed Setup
A involves pull-based gathering of only three interface counters for detecting interface failure
and high utilization events, whereas sFlow based network monitoring in Testbed Setup B
involves push-based exporting of all the interface counters from the underlying open switches.
Secondly, sFlow based network monitoring additionally involves flow sampling for much more
visibility into the traffic at the network core. Lastly, SNMP based network monitoring gathers
interface counters of the underlying legacy routers at once every 20 seconds, whereas sFlow
based network monitoring involves exporting of interface counters per interface every 20 sec-
onds. Nevertheless, SNMP protocol is still relevant for the proposed evolutionary approach
due to its wide-spread and vendor-neutral implementation in almost all of the legacy network
devices present in service provider networks. Moreover, sFlow standard (open switches) can
be deployed incrementally in the network core to reduce the involved control overhead while
enabling much better visibility into the network core. However, the open switches must sup-
port MPLS switching operations in their hardware ASICs for much faster switching, avoidance
of network bottlenecks, and to prevent unnecessary load on the switch CPUs.

On the whole, the proposed evolutionary approach performs much better compared to the
legacy solutions in terms of predictability, transparency, and customizability of the involved
network control overhead as it avoids the usage of complex (in-band) legacy signaling and
control protocols and their corresponding overhead. Furthermore, decoupling of network core
from edge along with the separation of network control and monitoring greatly reduces load on
OpenFlow based SDN controller and the involved network edge and core analyzers (closed-loop
OpenFlow based network control with sFlow and SNMP based network monitoring). Moreover,
static MPLS core with intelligent edge further reduces the load on OpenFlow based SDN
controller as it involves relatively less devices and traffic flow rules to manage. Finally, it was
found out that the incremental deployment of open switches in the network core will greatly
reduce the network control overhead while enabling much better visibility into the network
core (Testbed Setup B). Given that the open switches support MPLS switching operations
in their hardware ASICs for much faster switching, avoidance of network bottlenecks, and to
prevent unnecessary load on the switch CPUs.
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Figure 5-5: The basic connectivity service performance analysis in the PoC physical network
testbed.

5-2 Basic Network Connectivity Services Performance Analysis

For the performance analysis of the involved basic network connectivity services (basic con-
nectivity, edge firewalling, and load balancing) in the PoC physical network testbed, which
are discussed in section 4-3 of Chapter 4, the corresponding performance evaluation exper-
iments that are presented and discussed in this section are carried out on Testbed Setup A
(refer Appendix D-2). Nevertheless, similar results are achieved in Testbed Setup B. However,
as stated, it was found that Testbed Setup B involves slightly higher round-trip delay/time
(RTD/RTT) compared to that of Testbed Setup A (by around 100 milliseconds).

For the performance analysis of the involved basic connectivity service in the PoC physical
network testbed, a ping operation is performed at end-host 1 to send ping requests to end-host
5 that is across the network in the PoC physical network testbed while capturing the ping
traffic (ping requests and replies) at end-host 1 (VM). This ping operation was performed
from the Ubuntu terminal of end-host 1 (VM) by using the ping option [74], which pings the
destination host with Internet Control Message Protocol (ICMP) echo (ping) request packets.
Each ICMP echo (ping) request and reply packet is of length 98 bytes (784 bits) and ICMP
echo (ping) requests are sent to the destination at a rate of one frame per second (0.784 Kbps).

Based on this captured ping requests that are sent to and their corresponding replies received
from end-host 5, the response time of the basic connectivity service in establishing connections
(LSPs) between the two end-hosts that are across the network from each other is calculated
along with the number of dropped packets (ping requests with no replies), which is shown in
Figure 5-5. Moreover, this performance analysis is performed under two scenarios that are
reactive connection establishment3 and proactive connection establishment4, which are shown
in Sub-Figure 5-5a and 5-5b respectively.

As seen in Figure 5-5, reactive connection establishment involves around three seconds of
response time to establish connections between the end-hosts therefore four ping requests

3In reactive connection establishment, the end-hosts are being connected for the first time to the network,
in which case during the actual communication (data transfer) between the end-hosts they are first detected
by the OpenDaylight Controller through their ARP requests and based on this detected end-host information
the basic connectivity service establishes corresponding connections between the detected end-hosts (installs
ingress MPLS push label flows for LSPs establishment in the network via the OpenDaylight Controller).

4In proactive connection establishment, the stated process in reactive connection establishment is done
proactively before the actual communication (data transfer) between the end-hosts.
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at start have no replies from end-host 5 (dropped packets), whereas proactive connection
establishment neither involves any response time nor any dropped packets. Thus, proactive
connection establishment avoids connection setup delays and dropping of packets.
For the performance analysis of the involved edge firewalling service in the PoC physical
network testbed, a basic ping flood based denial-of-service (DoS) attack is performed on one
of the end-hosts that is across the network in the PoC physical network testbed while capturing
the attack traffic at the attack source and target end-host (VM). Later, this captured packet
information is studied and analyzed to determine the total involved network load due to the
attack along with the response time in mitigation of the attack by the edge firewalling service.
This performance analysis leads to similar results in both of the testbed setups as the edge
firewalling service involves operations only at the network edge.
For this attack, end-host 1 was chosen as the attack target and end-host 5 as the attack
source in Testbed Setup A to mimic an external security threat as end-host 5 is configured to
be in a different IP subnet compared to the other end-hosts in the physical network testbed.
Accordingly, the edge firewalling service was configured to install an incoming traffic mon-
itoring flow with a filter categorizing network traffic as (trusted) internal and (un-trusted)
external based on their IP subnet addresses and a threshold of 1000 frames per second in the
underlying sFlow-RT network analyzer to detect a DoS attack at the network edge in the two
open switches of Testbed Setup A. Furthermore, the edge firewalling service upon detection
of the DoS attack blocks the corresponding attacker traffic at all the involved network edge
open switches in Testbed Setup A.
This basic ping flood based DoS attack was performed from the Ubuntu terminal of end-host
5 (VM) by using the flood ping option [74], which floods the destination host with Internet
Control Message Protocol (ICMP) echo (ping) request packets at a maximum rate that is
possible on the network. Each ICMP echo (ping) request and reply packet is of length 98
bytes (784 bits). The overall basic ping flood based DoS attack and its mitigation is depicted
in Figure 5-6, which shows the total attack traffic load in terms of frames per second at the
attack source and target.
This basic ping flood based DoS attack mitigation by the edge firewalling service in the PoC
physical network testbed is further explained in Figure 5-7. As this attack involves ping
flood requests and replies from the attack source and target respectively, their corresponding
traffic loads at the attack source and target are represented in Sub-Figures 5-7a and 5-7b.
As can be seen in Sub-Figure 5-7a, the DoS attack was started at around 64 second mark
and upon detection of the DoS attack, reaching the 1000 frames per second threshold, the
edge firewalling service mitigates the attack at the source, blocks the attacker traffic at the
ingress network edge open switch, in less than two seconds. This response time of less than
two seconds can be further seen in Sub-Figure 5-7b.
After the attacker traffic is blocked at the ingress network edge open switch, the edge fire-
walling service after time "t" releases the firewalling actions (unblocks attacker traffic). Ac-
cordingly, a similar attack is performed again by the attack source after its traffic is unblocked,
and the edge firewalling service again unblocks it with similar performance level and response
time (less than two seconds). This second attack is similarly explained and depicted in Figure
5-8.
In essence, a distributed denial-of-service (DDoS) attack from multiple attackers can also be
performed on the PoC physical network testbed and the edge firewalling service would still
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Figure 5-6: The overall basic ping flood based DoS attack and its mitigation.
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Figure 5-7: Mitigation of a basic ping flood based DoS attack through the edge firewalling service
in the PoC physical network testbed.

mitigate them at a similar performance level and a response time, as the involved process and
mechanism in the edge firewalling service still remain the same for both the DoS and DDoS
attacks.

On the whole, good performance levels and response times were determined for all the in-
volved basic network connectivity services in the PoC physical network testbed. The basic
connectivity service involves a response time of around three seconds in its reactive mode
and a response time of zero in its proactive mode. The edge firewalling service involves a
response time of less than two seconds. However, the load balancing service response time
is completely dependent on the configured network core interface monitoring rate at the net-
work analyzers (SNMP web application in Testbed Setup A and sFlow-RT network analyzer
in Testbed Setup B). Nevertheless, real-time interface monitoring or configured monitoring
traps in the underlying network core devices can result in a response time similar to that of
edge firewalling service (less than two seconds). Thus, the performance levels and response
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Figure 5-8: The second basic ping flood based DoS attack and its mitigation.

times of the involved basic network connectivity services in the PoC physical network testbed
can be further improved by increasing the network monitoring accuracy and rate at the cost
of network control overhead, which is a simple tradeoff to make. This enables performance
customizability, transparency, and predictability of network services. Furthermore, these net-
work connectivity services are highly customizable, programmable, and reusable with several
instances of them running at any given time. Thus, the proposed evolutionary approach per-
forms much better compared to the legacy solutions in terms of innovation in provisioning
and management of network services.

5-3 Validation

In essence, the proposed evolutionary approach realizes the major benefits of network virtual-
ization such as vendor-neutrality, simplicity, and flexibility while successfully addressing the
concerns over SDN and NFV technologies in terms of scalability, reliability, interoperability,
and disruptive nature in the proposed NaaS architecture. Thus, the proposed evolutionary
approach and its implementation strategy addresses and solves the concerns over the involved
technologies (SDN, NFV, TCP/IP, and MPLS) in the proposed NaaS architecture. In other words,
it enables innovation in network service provisioning and management while facilitating flex-
ible and independent evolution of both the network core and edge. For more information on
the proposed evolutionary approach refer Chapter 3. This stated characteristics and benefits
of the proposed evolutionary approach are independently validated as follows.
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Innovative provisioning and management of network services

The proposed NaaS architecture involves innovative provisioning and management of network
services and functions along with a logically centralized and fully-programmable network
control and management plane, which enables network virtualization through SDN and NFV.
Fundamentally, the underlying network resources are abstracted as network graphs (graph
theory and complex networks) to the NaaS platform’s network service and function applica-
tions.

In Chapter 4, the PoC design provisions and manages three basic network connectivity services,
which are basic connectivity, load balancing, and edge firewalling. Fundamentally, these net-
work connectivity services are highly customizable, programmable, and reusable with several
instances of them running at any given time. This characteristic of the proposed evolutionary
approach is successfully implemented and shown in the PoC physical network testbed.

In this chapter, during their experimental performance evaluation, good performance levels
and response times were determined for all the involved basic network connectivity services in
the PoC physical network testbed. The basic connectivity service involves a response time of
around three seconds in its reactive mode and a response time of zero in its proactive mode.
The edge firewalling service involves a response time of less than two seconds. However, the
load balancing service response time is completely dependent on the configured network core
interface monitoring rate at the network analyzers (SNMP web application in Testbed Setup A
and sFlow-RT network analyzer in Testbed Setup B). Nevertheless, real-time interface moni-
toring or configured monitoring traps in the underlying network core devices can result in a
response time similar to that of edge firewalling service (less than two seconds). Thus, the
performance levels and response times of the involved basic network connectivity services in
the PoC physical network testbed can be further improved by increasing the network monitor-
ing accuracy and rate at the cost of network control overhead, which is a simple tradeoff to
make. This enables performance customizability, transparency, and predictability of network
services.

Flexible and independent evolution of both the network core and edge

Most importantly, the proposed MPLS based network fabric design with dumb pipes decouples
the complex and intelligent network edge from the simple and static network core, which in
turn will facilitate flexible and independent evolution of both the network core and edge in
service provider networks.

In Chapter 4, the PoC physical network testbed involves two different implementations (testbed
setups) called Testbed Setup A and Testbed Setup B, which are depicted in Figure 4-4 and 4-5
respectively. In essence, the physical network testbed is implemented as two different testbed
setups to promote and demonstrate the support of the proposed NaaS architecture in enabling
flexible evolution of both network core and edge, where Testbed Setup A consists of legacy
and existing network core while Testbed Setup B consists of evolved and future network core.
In other words, it realizes incremental replacement of legacy network core routers with much
more open and flexible network switches (Open vSwitch implementations enabled with sFlow
protocol), which enables flexible and independent evolution of the network core.
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In this chapter, during the experimental performance evaluation, it was found that the in-
cremental deployment of open switches in the network core will greatly reduce the network
control overhead while enabling much better visibility into the network core (Testbed Setup
B). Given that the open switches support MPLS switching operations in their hardware ASICs
for much faster switching, avoidance of network bottlenecks, and to prevent unnecessary load
on the switch CPUs.

Network vendor-neutrality, simplicity, and flexibility

The proposed NaaS architecture involves a simple and static network core, which describes
MPLS based network fabric design with dumb pipes, with pre-installed full-mesh LSPs on
vendor-neutral legacy MPLS LSRs, which results in no (in-band) signaling and control pro-
tocols and their corresponding overhead. Thus, these two stated features of the proposed
NaaS architecture largely address and solve some of the major concerns over the existing net-
work technologies (TCP/IP and MPLS) in service provider networks in terms of their vendor
lock-in, complexity, and inflexibility while de-ossifying such networks as it enables flexible,
fully-programmable, and abstracted network virtualization without any underlying (in-band)
complex signaling and control protocols and their corresponding overhead.

In Chapter 4, this characteristic of the proposed evolutionary approach is successfully imple-
mented and shown in the PoC physical network testbed. In this chapter, it was found that
the proposed evolutionary approach performs much better compared to the legacy solutions
in terms of predictability, transparency, and customizability of the involved network control
overhead as it avoids the usage of complex (in-band) legacy signaling and control protocols
and their corresponding overhead.

SDN and NFV scalability and reliability

The centralized network control (SDN controller) is decoupled from the centralized network
visibility and monitoring (sFlow and SNMP network analyzers) to enable much more efficient
and effective closed-loop network control and management. Thus, this stated feature solves
the scalability and reliability concerns over SDN technology. Moreover, SDN is the chief enabler
for NFV in the proposed NaaS architecture. Thus, the concerns over NFV are directly related
to those of OpenFlow based SDN solution in such complementary implementations.

In Chapter 4, this characteristic of the proposed evolutionary approach is successfully imple-
mented and shown on the PoC physical network testbed. In this chapter, it was found that
the decoupling of network core from its edge along with the separation of network control and
monitoring greatly reduces load on OpenFlow based SDN controller and the involved network
edge and core analyzers (closed-loop OpenFlow based network control with sFlow and SNMP
based network monitoring). Moreover, static MPLS core with intelligent edge further reduces
the load on OpenFlow based SDN controller as it involves relatively less devices and traffic
flow rules to manage. Finally, good performance levels and response times were determined
for all the involved basic network connectivity services in the PoC physical network testbed
for which this SDN and NFV implementations are the key enablers.
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SDN and NFV interoperability and faster adoption

The proposed NaaS architecture involves incremental deployment of SDN and NFV technologies
at the network edge while co-existing with the existing network technologies, which involves
co-existence with TCP/IP at the provider-customer edge and rest of the public internet while
with MPLS at the provider edge-core of service provider networks. Thus, this stated feature
solves the interoperability and disruptive nature concerns over SDN and NFV technologies. In
Chapter 4, this characteristic of the proposed evolutionary approach is successfully imple-
mented and shown on the PoC physical network testbed.
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Chapter 6

Conclusion and Future Work

6-1 Conclusion

More and more service providers and network operators are embracing the concept of cloud-
based service models along with their chief enabler virtualization to address their major
problem of network ossification coupled with a lack of innovation in provisioning and man-
agement of network services. However, it is still a challenge to logically combine a set of
newly proposed virtualization enabling network technologies to realize cloud-based service
models for service provider networks because of the involved concerns over these proposed
technologies in terms of scalability, reliability, interoperability, and disruptive nature. More-
over, the related work and state-of-the-art research in the field of networking views the stated
two challenges, cloud-based service models for networking and adoption concerns over the
proposed virtualization enabling network technologies, as two different problems and lacks
a holistic approach. In this thesis, an evolutionary approach to implementing the Network-
as-a-Service (NaaS) cloud-based service model for service provider networks is proposed with
Software-Defined Networking (SDN) and Network Function Virtualization (NFV) as its key
virtualization enabling network technologies.

In essence, the proposed evolutionary approach realizes the major benefits of network virtual-
ization such as vendor-neutrality, simplicity, and flexibility while successfully addressing the
concerns over SDN and NFV technologies in terms of scalability, reliability, interoperability,
and disruptive nature in the proposed NaaS architecture. Thus, the proposed evolutionary
approach and its implementation strategy addresses and solves the concerns over the in-
volved technologies (SDN, NFV, TCP/IP, and MPLS) in the proposed NaaS architecture. In
other words, it enables innovation in network service provisioning and management while
facilitating flexible and independent evolution of both the network core and edge.

Fundamentally, the proposed evolutionary approach, instead of revolutionizing the whole
network architecture with the disruptive SDN and NFV technologies (instead of upgrading the
whole network at once), involves an implementation strategy that facilitates an incremental
deployment scenario through a highly complementary co-existence between these disruptive
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technologies and the most prominent existing network technologies, which are TCP/IP and
MPLS, in service provider networks. The proposed NaaS architecture involves an intelligent and
complex network edge that is decoupled from the simple and static legacy network core, MPLS
based network fabric design with dumb pipes, along with incrementally deployed virtualized
network functions (NFV - VNFs).

Accordingly, the control and management plane of the network edge and core are also decou-
pled from each other and the underlying data-forwarding plane. In this regard, the proposed
network edge involves an OpenFlow based SDN controller for fully-programmable network
control, a sFlow based network analyzer for traffic flow monitoring, and a network configu-
ration system, whereas the legacy network core involves a SNMP based network analyzer for
interface monitoring and a legacy network configuration system. Furthermore, these control
and management plane components expose their simple abstractions of the underlying net-
work resources to the northbound NaaS based network service orchestration platform (NaaS
platform) that implements network orchestration, police engines, functions, and services as
fully-programmable software-based applications, which are in turn abstracted and exposed to
the NaaS platform’s northbound cloud-based service provisioning platform (e.g. OpenStack).
Thus, the proposed evolutionary approach enables innovation in network service provisioning
and management while facilitating flexible and independent evolution of both the network
core and edge.

A proof of concept (PoC) implementation of the proposed NaaS architecture on a physical
network testbed is demonstrated along with the innovative provisioning and management of
basic network connectivity services over it. These basic network connectivity services involve
the following virtualized network functions: basic connectivity, firewalling, optimal path com-
putation, and load balancing. Fundamentally, these involved virtualized network functions
use the basic concepts of graph theory and traffic engineering to provision their corresponding
basic network connectivity services. Furthermore, these stated network connectivity services
are highly customizable, programmable, and reusable with several instances of them running
at any given time. Finally, the PoC physical network testbed involves two different implemen-
tations (testbed setups) called Testbed Setup A and Testbed Setup B. In essence, the physical
network testbed is implemented as two different testbed setups to promote and demonstrate
the support of the proposed NaaS architecture in enabling flexible evolution of both network
core and edge, where Testbed Setup A consists of legacy and existing network core while
Testbed Setup B consists of evolved and future network core. In other words, it realizes
incremental replacement of legacy network core routers with much more open and flexible
network switches (Open vSwitch implementations enabled with sFlow protocol), which en-
ables flexible and independent evolution of the network core.

The proposed evolutionary approach is validated by the overall gained experience during this
research and the experimental performance evaluation of the PoC physical network testbed in
two relevant directions, performance analysis of the involved network control overhead and
the involved basic network connectivity services. This performance evaluation yielded suffi-
cient results, predictability, transparency, and customizability of the involved network control
overhead and the involved basic network connectivity services, that successfully validated the
proposed evolutionary approach as an enabler of innovation in network service provisioning
and management while facilitating flexible and independent evolution of both the network
core and edge.
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The proposed evolutionary approach is validated in terms of innovative provisioning and
management of network services, flexible and independent evolution of both the network
core and edge, network vendor-neutrality, simplicity, and flexibility, SDN and NFV scalability,
reliability, interoperability, and faster adoption. This validation results sufficiently proved that
the proposed evolutionary approach makes great progress on all the stated characteristics and
benefits. However, the proposed evolutionary approach and its implementation strategy still
needs to be further improved to implement and validate it in real-world production networks
and service provider networks. Nevertheless, its a good starting point in this direction as it
enables innovation in network service provisioning and management while facilitating flexible
and independent evolution of both the network core and edge.

6-2 Future Work

As stated, the proposed evolutionary approach and its implementation strategy still needs
to be further improved to implement and validate it in real-world production networks and
service provider networks. Thus, a few future work directions for the proposed evolutionary
approach have been proposed and briefly explained as follows.

Adding intelligence to the network core

As the current implementation of the proposed evolutionary approach involves a simple and
static core, MPLS based network fabric design with dumb pipes, with pre-installed full-mesh
LSPs. However, such a strategy is not very feasible and efficient for networks with a large
core as it becomes increasingly difficult to manage such large number of LSRs and their
corresponding full-mesh static LSPs. Thus, this proposed future work direction involves adding
decoupled and centralized intelligence to the static network core to make it much more scalable
and reliable.

Support for fully programmable network configuration technologies

As the current implementation of the proposed evolutionary approach involves mostly static
and pro-active network configurations because of its mostly static network components and
their corresponding network resources (e.g. links). However, such a strategy is not very
feasible and efficient for large networks as it becomes increasingly difficult to manage such
large number of components and their corresponding resources. Thus, this proposed future
work direction involves support for fully programmable network configuration technologies
for much more network flexibility and simplicity,

Innovative provisioning and management of network services with SLA and QoS
assurance

To meet network demands of today, the proposed evolutionary approach should be imple-
mented and updated to innovatively provision and manage network services while continu-
ously conforming with SLA and QoS requirements and demands.
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Integration with cloud-based service provisioning platforms

As the current implementation of the proposed evolutionary approach involves CLI as the
NaaS based northbound service provisioning layer. Thus, this proposed future work direction
involves integration with cloud-based service provisioning platforms such as OpenStack for
enabling convergence of networking and cloud computing.

Implementation and validation on a real-world production network

As the current implementation of the proposed evolutionary approach involves implementa-
tion and validation on a small-scale physical network testbed. Thus, this proposed future
work direction involves implementing and validating the proposed NaaS architecture on a
real-world production network and service provider network.
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Appendix A

Proof of Concept Design Components

A-1 OpenDaylight Controller

Figure A-1: Management GUI of the OpenDaylight Controller (Base edition).
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A-2 sFlow-RT Network Analyzer

Figure A-2: Interface monitoring metrics in the sFlow-RT network analyzer.

Figure A-3: Management GUI and REST API information of the sFlow-RT network analyzer - 1.
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Figure A-4: Management GUI and REST API information of the sFlow-RT network analyzer - 2.
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A-3 Custom Built SNMP Web Application

Figure A-5: REST API information of the custom built SNMP web application - 1.

Figure A-6: REST API information of the custom built SNMP web application - 2.
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A-4 Main App - NaaS Platform’s Abstraction Layer

An example abstraction of a REST API call by the Main App in the NaaS platform

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3
4 # This script requires installation of a python module called Requests
5 # It is a simple and elegant HTTP library for Python
6
7 # Importing Python modules
8 import requests # Python module for oppening URLs (mostly HTTP)
9 from requests . auth import HTTPBasicAuth # For basic HTTP authentication

10 import json # Python module for JSON
11
12 class odl_api_calls ( ) :
13 # OpenDaylight (ODL) controller’s REST API call:
14 # For the list of connected OF/OVS switches to the ODL controller
15 # OF - OpenFlow , OVS - Open vSwitch
16 # ODL controller’s REST API base url:
17 # url_odl = http://ip_add:port_no/
18 # Deafult url_odl = http://localhost:8080/
19
20 def odl_list_conn (self , url_odl , name , password ) :
21 # Connecting to the ODL controller
22 url = url_odl
23 url += ’controller/nb/v2/connectionmanager/nodes’
24 response = requests . get (url , auth = (name , password ) )
25 if response . status_code != 200 :
26 # Unable to communicate with ODL controller
27 print response . headers
28 else :
29 # Can successfully communicate with ODL controller
30 # List of connected switches to the ODL controller
31 list_conn = response . json ( )
32 if list_conn == {} :
33 print ’There are no connected OF/OVS switches’
34 else :
35 odl_switches = [ ]
36 for node in list_conn [ ’node’ ] :
37 print ’Switch ID: ’ + node [ ’id’ ]
38 print ’Connection Type: ’ + node [ ’type’ ]
39 odl_switches . append ( node [ ’id’ ] )
40 return odl_switches
41
42 # Abstracted function call
43 odl_switch = odl_api_calls ( ) . odl_list_conn ( url_odl , name , password )
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Figure A-7: List of REST API calls abstracted by the Main App in the NaaS Platform.
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A-5 JSON based Data Store - NaaS Platform’s NoSQL Database

An example network topology information in the JSON based Data Store of the
NaaS platform

1 {
2 " node_ip " : {
3 " interface_id " : " connected_node_ip " ,
4 " so_on " : " so_on " ,
5 } ,
6 " 1 9 2 . 0 . 2 . 4 " : {
7 "te −1/1/13 " : " 1 92 . 0 . 2 . 1 3 "
8 } ,
9 " 1 9 2 . 0 . 2 . 1 3 " : {

10 "ge −0/3/0 " : " 1 92 . 0 . 2 . 1 5 " ,
11 "ge −0/2/0 " : " 1 92 . 0 . 2 . 1 1 " ,
12 "ge −0/0/0 " : " 1 9 2 . 0 . 2 . 4 "
13 } ,
14 " 1 9 2 . 0 . 2 . 1 5 " : {
15 "ge −1/3/0 " : " 1 92 . 0 . 2 . 1 1 " ,
16 "ge −0/2/0 " : " 1 92 . 0 . 2 . 1 4 " ,
17 "ge −0/3/0 " : " 1 92 . 0 . 2 . 1 3 "
18 } ,
19 " 1 9 2 . 0 . 2 . 1 1 " : {
20 "ge −0/2/0 " : " 1 92 . 0 . 2 . 1 4 " ,
21 "ge −1/3/0 " : " 1 92 . 0 . 2 . 1 5 " ,
22 "ge −0/3/0 " : " 1 92 . 0 . 2 . 1 3 "
23 } ,
24 " 1 9 2 . 0 . 2 . 1 4 " : {
25 "ge −0/2/0 " : " 1 92 . 0 . 2 . 1 5 " ,
26 "ge −0/3/0 " : " 1 92 . 0 . 2 . 1 1 " ,
27 "ge −0/0/0 " : " 1 9 2 . 0 . 2 . 5 "
28 } ,
29 " 1 9 2 . 0 . 2 . 5 " : {
30 "te −1/1/13 " : " 1 92 . 0 . 2 . 1 4 "
31 }
32 }
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An example ingress MPLS label to static LSP path bindings in the JSON based Data
Store of the NaaS platform

1 {
2 " ingress_mpls_label_for_static_lsp " : [
3 " first_node_ip_in_static_lsp " ,
4 " second_node_ip_in_static_lsp " ,
5 " so_on " ,
6 " last_node_ip_in_static_lsp " ,
7 ] ,
8 " 1 0 0 0 00 1 " : [
9 " 1 9 2 . 0 . 2 . 4 " ,

10 " 1 9 2 . 0 . 2 . 1 3 " ,
11 " 1 9 2 . 0 . 2 . 1 5 " ,
12 " 1 9 2 . 0 . 2 . 1 4 " ,
13 " 1 9 2 . 0 . 2 . 5 "
14 ] ,
15 " 1 0 0 0 00 2 " : [
16 " 1 9 2 . 0 . 2 . 4 " ,
17 " 1 9 2 . 0 . 2 . 1 3 " ,
18 " 1 9 2 . 0 . 2 . 1 5 " ,
19 " 1 9 2 . 0 . 2 . 1 1 " ,
20 " 1 9 2 . 0 . 2 . 1 4 " ,
21 " 1 9 2 . 0 . 2 . 5 "
22 ] ,
23 " 1 0 0 0 00 3 " : [
24 " 1 9 2 . 0 . 2 . 4 " ,
25 " 1 9 2 . 0 . 2 . 1 3 " ,
26 " 1 9 2 . 0 . 2 . 1 1 " ,
27 " 1 9 2 . 0 . 2 . 1 5 " ,
28 " 1 9 2 . 0 . 2 . 1 4 " ,
29 " 1 9 2 . 0 . 2 . 5 "
30 ] ,
31 " 1 0 0 0 00 4 " : [
32 " 1 9 2 . 0 . 2 . 4 " ,
33 " 1 9 2 . 0 . 2 . 1 3 " ,
34 " 1 9 2 . 0 . 2 . 1 1 " ,
35 " 1 9 2 . 0 . 2 . 1 4 " ,
36 " 1 9 2 . 0 . 2 . 5 "
37 ] ,
38 " 1 0 0 0 00 5 " : [
39 " 1 9 2 . 0 . 2 . 5 " ,
40 " 1 9 2 . 0 . 2 . 1 4 " ,
41 " 1 9 2 . 0 . 2 . 1 1 " ,
42 " 1 9 2 . 0 . 2 . 1 3 " ,
43 " 1 9 2 . 0 . 2 . 4 "
44 ] ,
45 " 1 0 0 0 00 6 " : [
46 " 1 9 2 . 0 . 2 . 5 " ,
47 " 1 9 2 . 0 . 2 . 1 4 " ,
48 " 1 9 2 . 0 . 2 . 1 1 " ,
49 " 1 9 2 . 0 . 2 . 1 5 " ,
50 " 1 9 2 . 0 . 2 . 1 3 " ,
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51 " 1 9 2 . 0 . 2 . 4 "
52 ] ,
53 " 1 0 0 0 00 7 " : [
54 " 1 9 2 . 0 . 2 . 5 " ,
55 " 1 9 2 . 0 . 2 . 1 4 " ,
56 " 1 9 2 . 0 . 2 . 1 5 " ,
57 " 1 9 2 . 0 . 2 . 1 1 " ,
58 " 1 9 2 . 0 . 2 . 1 3 " ,
59 " 1 9 2 . 0 . 2 . 4 "
60 ] ,
61 " 1 0 0 0 00 8 " : [
62 " 1 9 2 . 0 . 2 . 5 " ,
63 " 1 9 2 . 0 . 2 . 1 4 " ,
64 " 1 9 2 . 0 . 2 . 1 5 " ,
65 " 1 9 2 . 0 . 2 . 1 3 " ,
66 " 1 9 2 . 0 . 2 . 4 "
67 ]
68 }
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A-6 JSON File Formats for Data Interchange through REST API
Calls

An example JSON file format for installing MPLS push label flows in the underlying
OpenFlow enabled devices through the OpenDaylight Controller’s REST API

1 {
2 " flow " : {
3 " flow−name " : " push−mpls−action " ,
4 " instructions " : {
5 " instruction " : {
6 " order " : " 4 " ,
7 " apply−actions " : {
8 " action " : [
9 {

10 " push−mpls−action " : {
11 " ethernet−type " : " 3 4 8 8 7 "
12 } ,
13 " order " : " 0 "
14 } ,
15 {
16 " set−field " : {
17 " protocol−match−fields " : {
18 " mpls−label " : " 1 000001 "
19 }
20 } ,
21 " order " : " 1 "
22 } ,
23 {
24 " set−field " : {
25 " ethernet−match " : {
26 " ethernet−destination " : {
27 " address " : " 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 1 "
28 }
29 }
30 } ,
31 " order " : " 2 "
32 } ,
33 {
34 " output−action " : {
35 " output−node−connector " : " 1 3 "
36 } ,
37 " order " : " 3 "
38 }
39 ]
40 }
41 }
42 } ,
43 " strict " : " false " ,
44 " id " : " 1 0 0 " ,
45 " match " : {
46 " ethernet−match " : {
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47 " ethernet−type " : {
48 " type " : " 2 0 4 8 "
49 } ,
50 " ethernet−destination " : {
51 " address " : " ff : ff : ff : ff : ff : ff "
52 } ,
53 " ethernet−source " : {
54 " address " : " 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 "
55 }
56 } ,
57 " vlan−match " : {
58 " vlan−id " : {
59 " vlan−id " : " 1 " ,
60 " vlan−id−present " : " true "
61 } ,
62 " vlan−pcp " : " 3 "
63 } ,
64 " ipv4−destination " : " 1 9 2 . 0 . 2 . 3 " ,
65 " ipv4−source " : " 1 9 2 . 0 . 2 . 1 " ,
66 "ip−match " : {
67 "ip−protocol " : " 5 6 "
68 } ,
69 " tcp−source−port " : " 2 5 3 6 4 " ,
70 " tcp−destination−port " : " 8 0 8 0 " ,
71 " udp−source−port " : " 2 5 3 6 4 " ,
72 " udp−destination−port " : " 8 0 8 0 " ,
73 "in−port " : " 1 "
74 } ,
75 " idle−timeout " : " 0 " ,
76 " cookie_mask " : " 0 " ,
77 " cookie " : " 0 " ,
78 " priority " : " 1 0 0 " ,
79 " hard−timeout " : " 0 " ,
80 " installHw " : " true " ,
81 " table_id " : " 0 "
82 }
83 }
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An example JSON file format for installing static flows in the underlying OpenFlow
enabled devices through the OpenDaylight Controller’s REST API

1 {
2 " installInHw " : " true " ,
3 " name " : " flow1 " ,
4 " node " : {
5 " id " : " openflow : 2 " ,
6 " type " : " MD_SAL "
7 } ,
8 " priority " : " 1 0 0 0 " ,
9 " etherType " : " 0 x800 " ,

10 " vlanId " : " 1 0 0 " ,
11 " vlanPriority " : " 7 " ,
12 " nwDst " : " 1 9 2 . 0 . 2 . 4 " ,
13 " nwSrc " : " 1 9 2 . 0 . 2 . 1 " ,
14 " dlDst " : " 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 " ,
15 " dlSrc " : " 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 " ,
16 " ingressPort " : " openflow : 2 : 1 " ,
17 " protocol " : " 6 " ,
18 " tpSrc " : " 8 0 " ,
19 " tpDst " : " 8 0 " ,
20 " actions " : [ " drop " ]
21 }
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A-7 NaaS CLI - Northbound Service Provisioning Platform

Figure A-8: NaaS CLI command prompt for service provisioning and management.
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Appendix B

Physical Network Testbed
Components

B-1 Pica8 P-3922 Open Switches as MPLS LERs

Figure B-1: Management GUI of a Pica8 P-3922 open switch.
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Configuration of a Pica8 MPLS LER in the physical network testbed along with its
Open vSwitch bridge information

1 root@PicOS−OVS$ovs−ofctl show Testbed
2
3 OFPT_FEATURES_REPLY ( OF1 . 3 ) ( xid=0x2 ) : dpid : 4 d6a486e7300006a
4 n_tables : 2 54 , n_buffers : 256
5 capabilities : FLOW_STATS TABLE_STATS PORT_STATS GROUP_STATS
6 OFPST_PORT_DESC reply ( OF1 . 3 ) ( xid=0x4 ) :
7 1(te −1/1/1) : addr : xx : xx : xx : xx : xx : xx
8 config : 0
9 state : LINK_UP

10 current : 1GB−FD FIBER AUTO_NEG
11 advertised : 1GB−FD 10GB−FD FIBER AUTO_NEG
12 supported : 100MB−HD 100MB−FD 1GB−FD 10GB−FD FIBER AUTO_NEG
13 speed : 1000 Mbps now , 10000 Mbps max
14 5(te −1/1/5) : addr : xx : xx : xx : xx : xx : xx
15 config : 0
16 state : LINK_UP
17 current : 1GB−FD FIBER AUTO_NEG
18 advertised : 1GB−FD 10GB−FD FIBER AUTO_NEG
19 supported : 100MB−HD 100MB−FD 1GB−FD 10GB−FD FIBER AUTO_NEG
20 peer : 1GB−FD FIBER
21 speed : 1000 Mbps now , 10000 Mbps max
22 9(te −1/1/9) : addr : xx : xx : xx : xx : xx : xx
23 config : 0
24 state : LINK_UP
25 current : 1GB−FD FIBER AUTO_NEG
26 advertised : 1GB−FD 10GB−FD FIBER AUTO_NEG
27 supported : 100MB−HD 100MB−FD 1GB−FD 10GB−FD FIBER AUTO_NEG
28 peer : 1GB−FD FIBER
29 speed : 1000 Mbps now , 10000 Mbps max
30 13(te −1/1/13) : addr : xx : xx : xx : xx : xx : xx
31 config : 0
32 state : LINK_UP
33 current : 1GB−FD FIBER AUTO_NEG
34 advertised : 1GB−FD 10GB−FD FIBER AUTO_NEG
35 supported : 100MB−HD 100MB−FD 1GB−FD 10GB−FD FIBER AUTO_NEG
36 peer : 1GB−FD FIBER
37 speed : 1000 Mbps now , 10000 Mbps max
38 LOCAL ( Testbed ) : addr : xx : xx : xx : xx : xx : xx
39 config : 0
40 state : LINK_UP
41 current : 10MB−FD COPPER
42 supported : 10MB−FD COPPER
43 speed : 10 Mbps now , 10 Mbps max
44 OFPT_GET_CONFIG_REPLY ( OF1 . 3 ) ( xid=0x6 ) : frags=normal miss_send_len=0
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Figure B-2: Example installed flows in a Pica8 MPLS LER.
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B-2 Juniper M10i series Legacy Routers as MPLS LSRs

Configuration of a Juniper M10i series MPLS LSR in Testbed Setup A

1 −−− JUNOS 13 .2 R1 . 7 built 2013−08−24 07 : 03 : 38 UTC
2
3 admin@Face> show configuration
4
5 ## Last commit : 2014−07−30 16 : 38 : 19 UTC by admin
6 version 13 .2 R1 . 7 ;
7 system {
8 host−name Face ;
9 root−authentication {

10 encrypted−password " . . . " ; ## SECRET−DATA
11 }
12 login {
13 user admin {
14 uid 2004 ;
15 class super−user ;
16 authentication {
17 encrypted−password " . . . " ; ## SECRET−DATA
18 }
19 }
20 }
21 services {
22 ftp ;
23 ssh {
24 root−login allow ;
25 }
26 telnet ;
27 }
28 syslog {
29 user ∗ {
30 any emergency ;
31 }
32 file messages {
33 any notice ;
34 authorization info ;
35 }
36 file interactive−commands {
37 interactive−commands any ;
38 }
39 }
40 }
41 interfaces {
42 ge−0/0/0 {
43 description " To OVS−1 te −1/1/13";
44 unit 0 {
45 family inet {
46 address 10 . 1 . 0 . 2 5/30 {
47 arp 1 0 . 1 . 0 . 2 6 mac xx : xx : xx : xx : xx : xx publish ;
48 }
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49 }
50 family mpls ;
51 }
52 }
53 ge−0/2/0 {
54 description " To Murdock ge −0/3/0";
55 unit 0 {
56 family inet {
57 address 1 0 . 1 . 0 . 1 3 / 3 0 ;
58 }
59 family mpls ;
60 }
61 }
62 ge−0/3/0 {
63 description " To BA ge −0/3/0";
64 unit 0 {
65 family inet {
66 address 1 0 . 1 . 0 . 1 0 / 3 0 ;
67 }
68 family mpls ;
69 }
70 }
71 fxp0 {
72 unit 0 {
73 family inet {
74 address 1 9 2 . 0 . 2 . 1 3 / 2 5 ;
75 }
76 }
77 }
78 lo0 {
79 unit 0 {
80 family inet {
81 address 1 7 2 . 1 6 . 0 . 4 / 3 2 ;
82 }
83 }
84 }
85 }
86 snmp {
87 community public ;
88 }
89 routing−options {
90 static {
91 route 192 . 0 . 2 . 0 /16 {
92 next−hop 1 9 2 . 0 . 2 . 1 ;
93 no−readvertise ;
94 }
95 route 192 . 0 . 2 . 0 /16 {
96 next−hop 1 9 2 . 0 . 2 . 0 ;
97 no−readvertise ;
98 }
99 route 10 . 8 . 1 . 0 / 24 next−hop 1 0 . 1 . 0 . 2 6 ;

100 }
101 router−id 1 7 2 . 1 6 . 0 . 4 ;
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102 autonomous−system 65001 ;
103 }
104 protocols {
105 rsvp {
106 interface lo0 . 0 ;
107 interface ge −0/0/0.0;
108 interface ge −0/2/0.0;
109 interface ge −0/3/0.0;
110 }
111 mpls {
112 static−label−switched−path path1 {
113 transit 1000001 {
114 next−hop 1 0 . 1 . 0 . 9 ;
115 swap 1000011;
116 }
117 }
118 static−label−switched−path path2 {
119 transit 1000002 {
120 next−hop 1 0 . 1 . 0 . 9 ;
121 swap 1000021;
122 }
123 }
124 static−label−switched−path path3 {
125 transit 1000003 {
126 next−hop 1 0 . 1 . 0 . 1 4 ;
127 swap 1000031;
128 }
129 }
130 static−label−switched−path path4 {
131 transit 1000004 {
132 next−hop 1 0 . 1 . 0 . 1 4 ;
133 swap 1000041;
134 }
135 }
136 static−label−switched−path path5 {
137 transit 1000052 {
138 next−hop 1 0 . 1 . 0 . 2 6 ;
139 pop ;
140 }
141 }
142 static−label−switched−path path6 {
143 transit 1000063 {
144 next−hop 1 0 . 1 . 0 . 2 6 ;
145 pop ;
146 }
147 }
148 static−label−switched−path path7 {
149 transit 1000073 {
150 next−hop 1 0 . 1 . 0 . 2 6 ;
151 pop ;
152 }
153 }
154 static−label−switched−path path8 {
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155 transit 1000082 {
156 next−hop 1 0 . 1 . 0 . 2 6 ;
157 pop ;
158 }
159 }
160 interface ge −0/0/0.0;
161 interface ge −0/2/0.0;
162 interface ge −0/3/0.0;
163 }
164 ospf {
165 traffic−engineering ;
166 area 0 . 0 . 0 . 0 {
167 interface lo0 . 0 ;
168 interface ge −0/0/0.0;
169 interface ge −0/2/0.0;
170 interface ge −0/3/0.0;
171 }
172 }
173 lldp−med {
174 interface all ;
175 }
176 }
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Route table entries of a Juniper M10i series MPLS LSR in Testbed Setup A

1 admin@Face> show route
2
3 inet . 0 : 22 destinations , 22 routes (22 active , 0 holddown , 0 hidden )
4 + = Active Route , − = Last Active , ∗ = Both
5
6 10 . 1 . 0 . 0 / 30 ∗ [ OSPF /10 ] 1w5d 23 : 3 3 : 3 4 , metric 2
7 > to 1 0 . 1 . 0 . 9 via ge −0/3/0.0
8 10 . 1 . 0 . 4 / 30 ∗ [ OSPF /10 ] 1w6d 00 : 1 2 : 2 2 , metric 2
9 > to 1 0 . 1 . 0 . 1 4 via ge −0/2/0.0

10 to 1 0 . 1 . 0 . 9 via ge −0/3/0.0
11 10 . 1 . 0 . 8 / 30 ∗ [ Direct /0 ] 1w6d 00 : 43 : 40
12 > via ge −0/3/0.0
13 10 . 1 . 0 . 1 0/32 ∗ [ Local /0 ] 1w6d 00 : 43 : 40
14 Local via ge −0/3/0.0
15 10 . 1 . 0 . 1 2/30 ∗ [ Direct /0 ] 1w6d 00 : 43 : 40
16 > via ge −0/2/0.0
17 10 . 1 . 0 . 1 3/32 ∗ [ Local /0 ] 1w6d 00 : 43 : 40
18 Local via ge −0/2/0.0
19 10 . 1 . 0 . 1 6/30 ∗ [ OSPF /10 ] 1w5d 23 : 3 3 : 3 5 , metric 2
20 > to 1 0 . 1 . 0 . 1 4 via ge −0/2/0.0
21 10 . 1 . 0 . 2 0/30 ∗ [ OSPF /10 ] 0 2 : 0 4 : 3 7 , metric 3
22 to 1 0 . 1 . 0 . 1 4 via ge −0/2/0.0
23 > to 1 0 . 1 . 0 . 9 via ge −0/3/0.0
24 10 . 1 . 0 . 2 4/30 ∗ [ Direct /0 ] 02 : 04 : 56
25 > via ge −0/0/0.0
26 10 . 1 . 0 . 2 5/32 ∗ [ Local /0 ] 1w6d 00 : 43 : 40
27 Local via ge −0/0/0.0
28 10 . 1 . 0 . 2 8/30 ∗ [ OSPF /10 ] 1w6d 00 : 2 4 : 2 9 , metric 2
29 > to 1 0 . 1 . 0 . 9 via ge −0/3/0.0
30 10 . 1 . 0 . 3 2/30 ∗ [ OSPF /10 ] 1w6d 00 : 1 2 : 2 2 , metric 2
31 > to 1 0 . 1 . 0 . 1 4 via ge −0/2/0.0
32 10 . 8 . 1 . 0 / 24 ∗ [ Static /5 ] 02 : 04 : 56
33 > to 1 0 . 1 . 0 . 2 6 via ge −0/0/0.0
34 192 . 0 . 2 . 0 /16 ∗ [ Static /5 ] 1w5d 23 : 56 : 18
35 > to 1 9 2 . 0 . 2 . 1 via fxp0 . 0
36 192 . 0 . 2 . 0 /16 ∗ [ Static /5 ] 1w5d 23 : 56 : 18
37 > to 1 9 2 . 0 . 2 . 1 via fxp0 . 0
38 192 . 0 . 2 . 0 /25 ∗ [ Direct /0 ] 1w5d 23 : 56 : 18
39 > via fxp0 . 0
40 192 . 0 . 2 . 1 3/32 ∗ [ Local /0 ] 1w6d 01 : 12 : 45
41 Local via fxp0 . 0
42 172 . 16 . 0 . 2 /32 ∗ [ OSPF /10 ] 1w6d 00 : 1 2 : 2 2 , metric 1
43 > to 1 0 . 1 . 0 . 1 4 via ge −0/2/0.0
44 172 . 16 . 0 . 3 /32 ∗ [ OSPF /10 ] 1w6d 00 : 2 4 : 2 9 , metric 1
45 > to 1 0 . 1 . 0 . 9 via ge −0/3/0.0
46 172 . 16 . 0 . 4 /32 ∗ [ Direct /0 ] 1w6d 01 : 12 : 45
47 > via lo0 . 0
48 172 . 16 . 0 . 5 /32 ∗ [ OSPF /10 ] 1w3d 01 : 0 5 : 1 3 , metric 2
49 to 1 0 . 1 . 0 . 1 4 via ge −0/2/0.0
50 > to 1 0 . 1 . 0 . 9 via ge −0/3/0.0
51 224 . 0 . 0 . 5 /32 ∗ [ OSPF /10 ] 1w6d 01 : 0 2 : 0 9 , metric 1
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52 MultiRecv
53
54 mpls . 0 : 16 destinations , 16 routes (16 active , 0 holddown , 0 hidden )
55 + = Active Route , − = Last Active , ∗ = Both
56
57 0 ∗ [ MPLS /0 ] 1w6d 00 : 5 0 : 4 2 , metric 1
58 Receive
59 1 ∗ [ MPLS /0 ] 1w6d 00 : 5 0 : 4 2 , metric 1
60 Receive
61 2 ∗ [ MPLS /0 ] 1w6d 00 : 5 0 : 4 2 , metric 1
62 Receive
63 13 ∗ [ MPLS /0 ] 1w6d 00 : 5 0 : 4 2 , metric 1
64 Receive
65 1000001 ∗ [ MPLS /6 ] 1w1d 07 : 2 2 : 2 2 , metric 1
66 > to 1 0 . 1 . 0 . 9 via ge −0/3/0.0 , Swap 1000011
67 1000002 ∗ [ MPLS /6 ] 1w1d 07 : 2 2 : 2 2 , metric 1
68 > to 1 0 . 1 . 0 . 9 via ge −0/3/0.0 , Swap 1000021
69 1000003 ∗ [ MPLS /6 ] 1w1d 07 : 2 2 : 2 2 , metric 1
70 > to 1 0 . 1 . 0 . 1 4 via ge −0/2/0.0 , Swap 1000031
71 1000004 ∗ [ MPLS /6 ] 1w1d 07 : 2 2 : 2 2 , metric 1
72 > to 1 0 . 1 . 0 . 1 4 via ge −0/2/0.0 , Swap 1000041
73 1000052 ∗ [ MPLS /6 ] 0 2 : 0 4 : 5 6 , metric 1
74 > to 1 0 . 1 . 0 . 2 6 via ge −0/0/0.0 , Pop
75 1000052(S=0) ∗ [ MPLS /6 ] 0 2 : 0 4 : 5 6 , metric 1
76 > to 1 0 . 1 . 0 . 2 6 via ge −0/0/0.0 , Pop
77 1000063 ∗ [ MPLS /6 ] 0 2 : 0 4 : 5 6 , metric 1
78 > to 1 0 . 1 . 0 . 2 6 via ge −0/0/0.0 , Pop
79 1000063(S=0) ∗ [ MPLS /6 ] 0 2 : 0 4 : 5 6 , metric 1
80 > to 1 0 . 1 . 0 . 2 6 via ge −0/0/0.0 , Pop
81 1000073 ∗ [ MPLS /6 ] 0 2 : 0 4 : 5 6 , metric 1
82 > to 1 0 . 1 . 0 . 2 6 via ge −0/0/0.0 , Pop
83 1000073(S=0) ∗ [ MPLS /6 ] 0 2 : 0 4 : 5 6 , metric 1
84 > to 1 0 . 1 . 0 . 2 6 via ge −0/0/0.0 , Pop
85 1000082 ∗ [ MPLS /6 ] 0 2 : 0 4 : 5 6 , metric 1
86 > to 1 0 . 1 . 0 . 2 6 via ge −0/0/0.0 , Pop
87 1000082(S=0) ∗ [ MPLS /6 ] 0 2 : 0 4 : 5 6 , metric 1
88 > to 1 0 . 1 . 0 . 2 6 via ge −0/0/0.0 , Pop
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ARP table entries of a Juniper M10i series MPLS LSR in Testbed Setup A

1 admin@Face> show arp
2
3 ( MAC Address − Address − Name − Interface − Flags )
4
5 xx : xx : xx : xx : xx : xx − 1 0 . 1 . 0 . 9 − 1 0 . 1 . 0 . 9 − ge −0/3/0.0 − none
6
7 xx : xx : xx : xx : xx : xx − 1 0 . 1 . 0 . 1 4 − 1 0 . 1 . 0 . 1 4 − ge −0/2/0.0 − none
8
9 xx : xx : xx : xx : xx : xx − 1 0 . 1 . 0 . 2 6 − 1 0 . 1 . 0 . 2 6 − ge −0/0/0.0 − permanent

published
10
11 xx : xx : xx : xx : xx : xx − 1 2 8 . 0 . 0 . 2 − 1 2 8 . 0 . 0 . 2 − fxp1 . 0 − none
12
13 xx : xx : xx : xx : xx : xx − 1 9 2 . 0 . 2 . 1 − 1 9 2 . 0 . 2 . 1 − fxp0 . 0 − none
14
15 xx : xx : xx : xx : xx : xx − 1 9 2 . 0 . 2 . 9 − 1 9 2 . 0 . 2 . 9 − fxp0 . 0 − none
16
17 Total entries : 6
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B-3 Pica8 P-3290 Open Switches as MPLS LSRs

Figure B-3: Management GUI of a Pica8 P-3290 open switch.
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Configuration of a Pica8 MPLS LSR in Testbed Setup B along with its Open
vSwitch bridge information

1 root@PicOS−OVS$ovs−ofctl show Testbed
2
3 OFPT_FEATURES_REPLY ( OF1 . 3 ) ( xid=0x2 ) : dpid : 4 d6a089e01e9950d
4 n_tables : 2 54 , n_buffers : 256
5 capabilities : FLOW_STATS TABLE_STATS PORT_STATS GROUP_STATS
6 OFPST_PORT_DESC reply ( OF1 . 3 ) ( xid=0x4 ) :
7 49(te −1/1/49) : addr : xx : xx : xx : xx : xx : xx
8 config : 0
9 state : LINK_UP

10 current : 1GB−FD FIBER AUTO_NEG
11 advertised : 1GB−FD FIBER AUTO_NEG
12 supported : 1GB−FD 10GB−FD FIBER AUTO_NEG
13 peer : 1GB−FD FIBER
14 speed : 1000 Mbps now , 10000 Mbps max
15 50(te −1/1/50) : addr : xx : xx : xx : xx : xx : xx
16 config : 0
17 state : LINK_UP
18 current : 1GB−FD FIBER AUTO_NEG
19 advertised : 1GB−FD FIBER AUTO_NEG
20 supported : 1GB−FD 10GB−FD FIBER AUTO_NEG
21 peer : 1GB−FD FIBER
22 speed : 1000 Mbps now , 10000 Mbps max
23 51(te −1/1/51) : addr : xx : xx : xx : xx : xx : xx
24 config : 0
25 state : LINK_UP
26 current : 1GB−FD FIBER AUTO_NEG
27 advertised : 1GB−FD FIBER AUTO_NEG
28 supported : 1GB−FD 10GB−FD FIBER AUTO_NEG
29 peer : 1GB−FD FIBER
30 speed : 1000 Mbps now , 10000 Mbps max
31 52(te −1/1/52) : addr : xx : xx : xx : xx : xx : xx
32 config : 0
33 state : LINK_UP
34 current : 1GB−FD FIBER AUTO_NEG
35 advertised : 1GB−FD FIBER AUTO_NEG
36 supported : 1GB−FD 10GB−FD FIBER AUTO_NEG
37 peer : 1GB−FD FIBER
38 speed : 1000 Mbps now , 10000 Mbps max
39 LOCAL ( Testbed ) : addr : xx : xx : xx : xx : xx : xx
40 config : 0
41 state : LINK_UP
42 current : 10MB−FD COPPER
43 supported : 10MB−FD COPPER
44 speed : 10 Mbps now , 10 Mbps max
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Figure B-4: Installed proactive MPLS flows in a Pica8 MPLS LSR, which describe the pre-installed
full-mesh static LSPs in the network core of Testbed Setup B.
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Appendix C

Basic Network Connectivity Services
Key Enabling Components

C-1 sFlow based Edge Flow Monitoring App

Figure C-1: Example monitoring flows configured in the sFlow-RT network analyzer.
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Figure C-2: Example monitoring flow thresholds configured in the sFlow-RT network analyzer.

Figure C-3: Example monitoring flow events triggered by the sFlow-RT network analyzer.
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C-2 sFlow/SNMP based Core Interface Monitoring App

C-2-1 Testbed Setup A

Example link failure events triggered by the custom built SNMP web application.

1 {
2 " 1 " : {
3 " Agent " : " 1 9 2 . 0 . 2 . 1 " ,
4 " Interface ID " : " 5 0 1 " ,
5 " Metric " : " ifoperstatus " ,
6 " Value " : " down " ,
7 " Last Updated " : " 123456789 "
8 } ,
9 " 2 " : {

10 " Agent " : " 1 9 2 . 0 . 2 . 2 " ,
11 " Interface ID " : " 5 0 2 " ,
12 " Metric " : " ifoperstatus " ,
13 " Value " : " down " ,
14 " Last Updated " : " 123456789 "
15 }
16 }

Example link high utilization events triggered by the custom built SNMP web
application.

1 {
2 " 1 " : {
3 " Agent " : " 1 9 2 . 0 . 2 . 3 " ,
4 " Interface ID " : " 5 0 3 " ,
5 " Metric " : " ifinutilization " ,
6 " Value " : " 2 5 " ,
7 " Last Updated " : " 123456789 "
8 } ,
9 " 2 " : {

10 " Agent " : " 1 9 2 . 0 . 2 . 3 " ,
11 " Interface ID " : " 5 0 4 " ,
12 " Metric " : " ifoututilization " ,
13 " Value " : " 2 5 " ,
14 " Last Updated " : " 123456789 "
15 }
16 }
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C-2-2 Testbed Setup B

Figure C-4: Example interface monitoring statistics in the sFlow-RT network analyzer.
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C-3 Optimal Path Computation App

C-3-1 Testbed Setup A

Figure C-5: Network connectivity matrix of Testbed Setup A.

Figure C-6: Network graphical visualization of Testbed Setup A.
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Figure C-7: An example end-to-end computed optimal path in Testbed Setup A - 1.

Figure C-8: An example end-to-end computed optimal path in Testbed Setup A - 2.
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C-3-2 Testbed Setup B

Figure C-9: Network connectivity matrix of Testbed Setup B.

Figure C-10: Network graphical visualization of Testbed Setup B.
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Figure C-11: An example end-to-end computed optimal path in Testbed Setup B - 1.

Figure C-12: An example end-to-end computed optimal path in Testbed Setup B - 2.
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Appendix D

Experimental Performance Analysis
Data and Plots

D-1 Network Control Overhead
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Figure D-1: First sample of the OpenFlow protocol traffic load at the OpenDaylight Controller
in Testbed Setup A.
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Figure D-2: Second sample of the OpenFlow protocol traffic load at the OpenDaylight Controller
in Testbed Setup A.
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Figure D-3: Total sample of the OpenFlow protocol traffic load at the OpenDaylight Controller
in Testbed Setup A.
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Figure D-4: First sample of the OpenFlow protocol traffic load at the OpenDaylight Controller
in Testbed Setup B.
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Figure D-5: Second sample of the OpenFlow protocol traffic load at the OpenDaylight Controller
in Testbed Setup B.
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Figure D-6: Total sample of the OpenFlow protocol traffic load at the OpenDaylight Controller
in Testbed Setup B.

Figure D-7: Wireshark capture of OpenFlow statistics polling by the OpenDaylight Controller
via the OpenFlow protocol in the PoC physical network testbed.
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Figure D-8: Wireshark capture of OpenFlow flow modification by the OpenDaylight Controller
via the OpenFlow protocol in the PoC physical network testbed.

Figure D-9: Wireshark capture of a multicast OSPF "Hello" received by the OpenDaylight Con-
troller via the OpenFlow protocol in Testbed Setup A.

Figure D-10: Wireshark capture of a multicast LLDP request received by the OpenDaylight
Controller via the OpenFlow protocol in Testbed Setup A.
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Figure D-11: Wireshark capture of a multicast ARP request received by the OpenDaylight Con-
troller via the OpenFlow protocol in Testbed Setup A.
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Figure D-12: First sample of the sFlow protocol based edge flow monitoring traffic load at the
edge sFlow-RT network analyzer in the PoC physical network testbed.
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Figure D-13: Second sample of the sFlow protocol based edge flow monitoring traffic load at
the edge sFlow-RT network analyzer in the PoC physical network testbed.
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Figure D-14: Total sample of the sFlow protocol based edge flow monitoring traffic load at the
edge sFlow-RT network analyzer in the PoC physical network testbed.
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Figure D-15: First sample of the SNMP protocol based network core interface monitoring traffic
load at the SNMP web application in Testbed Setup A.
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Figure D-16: Second sample of the SNMP protocol based network core interface monitoring
traffic load at the SNMP web application in Testbed Setup A.
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Figure D-17: Total sample of the SNMP protocol based network core interface monitoring traffic
load at the SNMP web application in Testbed Setup A.

Figure D-18: Wireshark capture of SNMP interface counters polling by the SNMP web application
via the SNMP protocol in Testbed Setup A.
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Figure D-19: First sample of the sFlow protocol based network core interface monitoring traffic
load at the core sFlow-RT network analyzer in Testbed Setup B.
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Figure D-20: Second sample of the sFlow protocol based network core interface monitoring
traffic load at the core sFlow-RT network analyzer in Testbed Setup B.
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Figure D-21: Total sample of the sFlow protocol based network core interface monitoring traffic
load at the core sFlow-RT network analyzer in Testbed Setup B.

Figure D-22: Wireshark capture of sFlow interface counters polling at the sFlow-RT network
analyzer via the sFlow protocol in the PoC physical network testbed.
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Figure D-23: Wireshark capture of sFlow sampled flows polling at the sFlow-RT network analyzer
via the sFlow protocol in the PoC physical network testbed.

Figure D-24: Wireshark capture of combined sFlow interface counters and sampled flows polling
at the sFlow-RT network analyzer via the sFlow protocol in the PoC physical network testbed.
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D-2 Basic Network Connectivity Services
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Figure D-25: Reactive basic connectivity service performance analysis - frames per second.
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Figure D-26: Reactive basic connectivity service performance analysis - bytes per second.
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Figure D-27: Reactive basic connectivity service performance analysis - bits per second.
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Figure D-28: Proactive basic connectivity service performance analysis - frames per second.

M.P.V. Manthena Master of Science Thesis



D-2 Basic Network Connectivity Services 117

0 5 10 15 20 25 30 35 40 45 50
195

195.5

196

196.5

197

Sampled Time (s)

B
y
te

s
 p

e
r 

S
e

c
o

n
d

Dropped Packets = 0

Figure D-29: Proactive basic connectivity service performance analysis - bytes per second.
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Figure D-30: Proactive basic connectivity service performance analysis - bits per second.
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Figure D-31: Wireshark capture of ping echo request during basic network connectivity service
in the PoC physical network testbed.
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Figure D-32: Basic ping flood based DoS attack and its mitigation.
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Figure D-33: Basic ping flood based DoS attack and its mitigation - ping flood requests.
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Figure D-34: Basic ping flood based DoS attack and its mitigation - ping flood replies.
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Figure D-35: Second basic ping flood based DoS attack and its mitigation.

Figure D-36: Wireshark capture of ping flood echo request during basic network connectivity
service in the PoC physical network testbed.
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