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Abstract

Recent advancements in composite materials have significantly influenced various industries, neces-

sitating accurate fatigue assessment models. This research aims to evaluate the fatigue behavior of

composite structures using Kassapoglou’s analytical method, originally designed for metals. Adapted

to composites, the method gave good lifespan predictions compared to experimental data. In cases of

disagreement between predicted and experimental data (in some of the examined cases), the main cause

was the lack of discrete stress strain data from literature. In continuation to this model, a new stiffness

degradation model was also developed presenting results in a preliminary testing.

An updated Finite Element Analysis (FEA) model for a GFRP blade, part of the EcoProp project, was

created by correcting fiber alignment and adding root regions in the previous models. The aim of this

model is to find the hot spots (which are the stress critical locations) of the blade during operation and,

combined with the lifespan model to make predictions about the fatigue life of the blade. The updated

FEM model identified a new critical hot spot compared to previous works and provided a more realistic

representation of the blade, with critical stress analysis confirming the most vulnerable regions. An

experiment will be conducted in the next few months to validate whether these predictions are accurate

or not.

The study also includes the development of a stiffness degradation model, estimating tangent and

secant modulus degradation. This model aligned well with experimental data, but further investigation is

necessary, especially when the lifespan fatigue model becomes a more robust method.

Predictions for the blade under actual load conditions emphasized the importance of considering out-of-

plane stresses and highlighted the need for small-scale coupon experiments. This research demonstrates

the potential of the proposed method for rapid and accurate fatigue predictions in composites, contributing

to the development of robust fatigue assessment models and reducing the reliance on conservative safety

factors in design.
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1
Introduction

In recent years, advanced materials like composites have increasingly replaced metal components

in various sectors, especially where lighter solutions are preferred. Prominent examples include the

aerospace, aeronautical, automotive, and maritime industries. Despite their significant mechanical

advantages, there is no universal method for assessing their fatigue, often leading to overestimated safety

factors. This issue arises from the complexity of these materials, which spans from the micro to the macro

level. Numerous defects can form either during manufacturing or in the early stages of loading. One

of the most critical areas in a composite material is the interface between fibers and matrix, particularly

for fibers oriented closer to 90 degrees. These laminas are matrix-dominated, and the matrix, usually a

polymer, lacks the advanced properties of the fibers. The complexity increases further under dynamic

conditions such as fatigue.

Three categories of fatigue models are prevalent in the literature. These include fatigue life models

that use stress life cycle curves, such as Goodman diagrams; phenomenological models that address

the degradation of the mechanical response of composites either deterministically or statistically; and

progressive damage models that estimate how defects evolve during cyclic loading and how mechanical

properties degrade over time. All of these models rely heavily on fatigue experimental data from small-

scale coupons, and no single methodology applies universally to all composites. This leads to large safety

factors during the design process, so more expensive structures are fabricated with an increased adverse

environmental impact as polymer resins are used underscoring the need for a more general model.

A significant challenge in recent years has been transitioning propeller blades for ships from metal

to composite materials. Various studies have been conducted under the EcoProp project, focusing on

the fatigue assessment of marine blades. The main advantage of composites is their higher efficiency,

especially under off-design conditions, due to their ability to provide a flexible structure depending on

the orientation of the fibers. GFRP and CFRP blades were investigated by Maljaars [1] and Zhang [2]

in the case study of the Nautilus diving support vessel, which is designed to sail in calm waters with

a four-blade composite propeller rotating at a constant speed. Maljaars conducted a fluid-structure

interaction analysis for the GFRP blade, while Zhang used the same loading conditions for a carbon fiber

material. Zhang’s short-term fatigue investigation provided results on stiffness degradation and fatigue

life of the tested coupons. Van Herwerden [3] developed a progressive damage model based on Zhang’s

data and combined models from the literature, offering a fatigue lifespan for the blade. However, this

thesis presents a more detailed analysis using a different approach.

The objective of this thesis is to predict the performance of a GFRP blade in the same case study

of the Nautilus support vessel by applying an innovative method proposed by Kassapoglou [4]. This

method focuses on determining energy dissipation during cyclic loading and predicting fatigue life. It

was previously applied to metal alloys, showing good agreement with experimental data. The main goal

is to investigate whether this method can also be applied to composite materials and if it can predict

stiffness degradation. The advantage of this method is its analytical form, which leads to fast fatigue life

predictions. Additionally, this thesis explores whether combining this method with an FEM model can

provide accurate predictions for an actual structure like the blade. This process involves conducting a

ply-by-ply analysis and using the model on the most critical layer identified from FEA.

1



2
Literature Review

2.1. State of the art
2.1.1. Flexible Marine Propellers

The history of propulsion systems involves renowned scientists and engineers such as Archimedes,

Leonardo Da Vinci, Robert Hooke, and Bernoulli, among others. Inventors and engineers have proposed

numerous designs and patents over the years, all with the goal of achieving the most efficient propeller.

The design of the propeller, as known today, originated from an incident on the Paddington Canal in 1837

involving the prototype boat F P Smith [5]. The introduction of theoretical models in the 19th century

by figures like Rankine and Froude played a crucial role in understanding the physics of propellers and

contributed significantly to their development. In the past, marine propellers were primarily designed as

rigid, fixed-geometry structures. However, advances in computational modeling, material research, and

the evolution of manufacturing processes have played a crucial role in optimizing propeller efficiency by

incorporating more complex geometries and utilizing adaptive materials [6].

Focusing more on materials, composites are gaining popularity for their advantages over metals.

They offer lighter solutions, enhanced durability, and greater freedom in the design process. In contrast

to conventional rigid propellers made of nickel-aluminum-bronze (NAB) or manganese bronze (MB),

one of the advantages of composite propellers made of polymer resin and fibers is flexibility. Flexible

composite propellers can contribute to improved efficiency at off-design conditions [2]. Despite that,

careful material selection is crucial for composites used in the marine sector. The choice of reinforcement

becomes particularly significant when considering factors such as corrosion, similar to how resin can be

affected when the composite is immersed in saltwater [7]. Additionally, the potential complexity that a

composite structure may have also affects its response under fatigue loading. This is one of the reasons

that increased effort is given for more accurate predictions of composites behavior.

Maljaars [1] investigated the hydrodynamic and structural response of a flexible propeller blade made

of composite material (GFRP) in the case study of the Nautilus diving support vessel. The operational

conditions that were considered are that the vessel sails in a straight path in the calm water at the constant

speed of 10.4 knots, with a four-blade composite propeller rotating at a constant speed of 600 rpm. The

propeller experiences a non-uniform wakefield. At this study, a Fluid Structure Interaction (FSI) was

necessary which can be either done by merging the fluid and structural set of equations into one and

solve them simultaneously (monolithic solution) or by splitting the fluid and structural sub-problem and

solve them sequentially. In the second way, the coupling iterations are repeated until they converge to

the monolithic solution.

In Maljaars’ research, a combination of the Boundary Element Method (BEM) and Finite Element

Method (FEM) was employed. The BEM determined the hydrodynamic loads on the blade, while the

FEM assessed its structural response. Experimental studies were additionally conducted at the Maritime

Research Institute Netherlands (MARIN) to validate the results obtained from the BEM-FEM methods in

non-uniform flows. A notable aspect of the analysis was the consideration of material orientation in the

FEM program MARC, where a sub-routine was imported to ensure the correct alignment of fibers on the

doubly curved blade - Figures (2.1, 2.2).

2
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Figure 2.1: Geometry discretization of blade [1]

Figure 2.2: Determination of the material orientation [1]

Zhang conducted an investigation into the short-term structural performance of a blade similar in

geometry to Maljaars’ work but made of CFRP [2]. In this research, a series of specimens, both wetted and

dry, underwent testing to assess their stiffness and strength under static loading and after 10 thousand

and 1 million number of cycles. The objective was to observe the degradation of material properties due

to moisture exposure and fatigue loading. Additionally, sensors (PZT) were embedded into the blade,

and their impact on the structure was examined.

Figure 2.3: Maximum Tsai-Wu failure indices of the composite propeller blade for the new FEM model [3]
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In continuation of these works, Van Herwerden [3] applied a macroscopic Progressive Damage Model

(PDM) to evaluate the fatigue lifetime of Zhang’s CFRP blade and predict the degradation of material

properties. During this research, Van Herwerden utilized models from the literature to predict the fatigue

lifetime, drawing from works such as Shokrieh et al. [8] and Kawai [9]. Additionally, he employed two

other models derived from those mentioned before. In the first model, the strain energy densities from

longitudinal, transverse, and shear contributions were added to the total normalized strain energy density.

In the second model, the aforementioned three strain energy densities were used separately for the

determination of fatigue life. The third model was Kawai’s one where Tsai-Hill criterion was used, whereas

in the fourth model, instead of using the Tsai-Hill criterion in the Kawai’s approach, the Hashin criterion

was applied. For the gradual degradation of material properties, the model of Shokrieh and Lessard [10]

was employed.

In the progressive model, Finite Element Method (FEM) analysis was used to estimate global stresses

on the blade, subsequently transformed into local stresses. Following this, a failure analysis was

conducted, considering either an immediate degradation of material properties or a gradual degradation

per cycle. The procedure is illustrated in Figure 2.4.

Figure 2.4: Simplified flow diagram of Herwerden’s thesis taken from [3].
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Beyond the Nautilus and Greenprop propeller designs, several investigations have explored flexible

marine propellers in the past. Chuang analyzed the strength of a composite marine propeller examining

its Fluid-Structure Interaction (FSI), using Finite Element Method (FEM), and Lifting Surface Theory (LST).

The study examined symmetric balanced and unbalanced laminates made of graphite-epoxy T300/1076E

[11]. It is noteworthy to mention here that unbalanced laminates have bending-twisting coupling terms,

leading to a change in the angle of attack as the blade bends. As it is mentioned in this research, the

critical regions in terms of delamination are the trailing and leading edge of the blade. Young emphasized

the necessity of FSI analysis for flexible composite marine propellers [12]. This analysis helps predict

blade deflection, hydrodynamic loads, the impact of cavitation, and stress distribution. Blasques et al.

conducted research on optimizing the lay-up of a composite marine propeller, considering factors such

as fuel consumption, thrust, and torque [13]. Notably, the investigated propeller was larger than any

previously studied. The study suggested that flexible marine propellers surpass conventional rigid ones in

terms of fuel consumption and efficiency, a viewpoint also echoed in the work of Motley et al. [14]. Similar

conclusions were drawn in the investigation by Vijayanandh et al. [15], where GFRP marine propellers

were proposed as more suitable than aluminum alloy or steel alternatives from a fatigue assessment of a

marine blade.
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2.1.2. Fatigue Life Models

Fatigue is a phenomenon that exists everywhere in nature, from materials to human life (aging) and

describes the degradation of properties. The comprehension of fatigue has evolved over many years

of investigation. However, the fatigue behavior of composite materials differs from that observed in

metals. Various factors contribute to this distinction, ranging from disparate material configurations to

distinct manufacturing methods. Researchers have undertaken numerous efforts to model fatigue in

composites, with many of them relying on experimental work. They have sought to establish standards

wherein different parameters are controlled to assess fatigue behavior. Generally, fatigue models can be

categorized into three categories [16], as outlined in the following paragraph.

These three categories comprise Fatigue Life Models (FLM), Phenomenological Models (PM), and

Progressive Damage Models (PDM). Models falling into the first category involve stress-life cycles (S-N

curves) and Goodman diagrams, similar to those presented in the work of Kawai [17]. Phenomenological

models describe the deterioration of a material property due to fatigue, as exemplified in the work of Van

Paepegem [18]. These models may exhibit either a deterministic or a statistical character. Additionally,

Progressive Damage Models (PDM) are used to estimate how damage evolves and how it is affected by

the degradation of material properties due to fatigue, operating in iterative processes. The functionality of

a PDM is grounded in theoretical models in its background, as presented in the article by Degrieck et

al. [16]. The formulations that were presented in the method proposed by Kassapoglou [4] (for metals),

follow the typical form of S-N curves without the necessity of fitting experimental data. A component that

could be characterized closer to a PD model is the determination of stiffness degradation, which relies on

the new K and n values of Ramberg-Osgood relationship in every loop ( R-O: ε = σ
Eo

+K( σ
Eo

)n).

Some of the preceding studies regarding composite fatigue are elucidated in this paragraph. Hwang

and Han [19] introduced the concept of the ”fatigue modulus”.This built upon the assumption made by

Wang and Chim [20] that fatigue damage follows a power function of fatigue cycles and is proportionate

to a parameter dependent on the damage. Failure occurs when the resultant strain equals the ultimate

static strain. In this study, researchers recommend using physical parameters for cumulative damage

rather than the number of cycles. Mao and Mahadevan [21] proposed a damage accumulation model for

predicting the fatigue lifetime of composite materials; however, it necessitates a series of Young’s modulus

measurements every few cycles. Kassapoglou [22] developed a model to compute the residual strength

of composite structures after cyclic loading and utilized it to estimate Goodman constant life diagrams

(CLDs). This approach requires a dataset containing the statistical distribution of static strength for the

composite material. Shokrieh et al. formulated a progressive damage model to forecast the fatigue life of

cross-ply laminates [23], while Sarfaraz et al. put forth a semi-empirical formulation by amalgamating two

existing models to capture the fatigue behavior across various composite materials [24]. However, as

noted by the latter researcher, a universally applicable fatigue life prediction methodology has not been

achieved yet[25].

An interesting approach for estimating fatigue lifetime was recently introduced by Kassapoglou in his

publication titled ”Determination of energy dissipation during cyclic loading and its use to predict

fatigue life of metal alloys” [4]. This research entails deriving a closed-form expression for the initiation

of fatigue cycle to failure and outlining a methodology for determining the specific energy dissipated per

cyclic loading, specifically for stress ratios 0≤R<1. A validation study was conducted, comparing the

results with four different alloys.

The core concept of this research is founded on the idea that fatigue failure occurs when the total

energy per unit volume dissipated during cyclic loading equals the area under the stress-strain curve.

As outlined in the paper, Inglis [26] was among the pioneers who proposed this approach, serving as

inspiration for numerous researchers exploring different cases with varied properties or characteristics to

predict fatigue life or its effects. Many of these methods relied on experimental data and were primarily

applicable to low-cycle fatigue, whereas the proposed method demonstrates results that align well with

reality for low, medium, and high-cycle fatigue. An additional advantage lies in the ability to predict

material lifespan with only a static tensile test. The material is assumed to follow a Ramberg-Osgood

equation (2.1), and four key assumptions have been outlined according to [4]:

ε =
σ

Eo
+K(

σ

Eo
)n (2.1)
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1. Every loading cycle (i) follows Ramberg-Osgood equation (2.1), but it has its own stiffness Ei [GPa],

coefficient Ki and exponent ni. The last two material constants have no units.

2. The slope of the stress strain curve (AHB) during loading in figure 2.5 is assumed to be equal to the

original stress-strain curve at point B with coordinates (ε,σ).

3. The straight line (AB), which connects the residual strain (εmi ,0) with (ε,σ), splits the loading and
unloading curves (AHB) and (BIA) into two regions with equal area. εmi

refers to the residual strain

at cycle (i).

4. The last assumption requires envisioning a system with both a purely linear and an inelastic response

of a material, as illustrated in Figure 2.6. The relative area between these two lines is termed as

”unavailable” energy. When a cyclic load is applied to the nonlinear material, a new curve with

Ramberg-Osgood slope is generated, resulting in residual strain εmi
. The ratio between the area

(CGBHA) to the ”unavailable” energy (CEBGC) closely approximates the ratio of the total energy

of the nonlinear behavior to the total energy of the linear behavior. By rearranging the terms, the

following equation is derived:
CEBGC

CEF
≈ CGBHA

CGBFC
(2.2)

Figure 2.5: First two loading-unloading cycles in stress-strain space for R=0. This figure is taken from [4]

Figure 2.6: Linear versus Nonlinear material behaviors. This figure is also taken from [4]
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2.1.3. Nonlinear Behaviour of Composite Materials

A nonlinear elastic-plastic behaviour on composite laminates is usually found in shear response, and the

Ramberg-Osgood (RO) relation is commonly used to model it. Textile composite laminates present a

nonlinear response to the different material orientations as shown in the work of Cousigne et al. [27]. Jelf

et al. [28] presented the RO parameters for different materials in their investigation of the failure of carbon

fibre/epoxy tubes under combined axial compression and torsion, with Makeev et al. [29] publishing the

corresponding parameters for S2 glass/E773 epoxy tape and IM7-carbon/8552 epoxy tape for the shear

planes 1-2 and 1-3 as they are shown in figure 2.7 . Choi et al. [30] used RO formulation and presented

the experimental values of short carbon-fiber reinforced polymer composites. Benedetto et al. [31]

published the in-plane shear response of CF/Epoxy and CF Polyurethane by using RO formulation in their

work, where the values of exponent n are close to one. An alternative way of using the Ramberg-Osgood

relation was presented by Qiu and Fan [32] during the modeling of bamboo fiber-reinforced composite

materials. In their investigation, a decreasing number of parameters is required to be obtained from the

experiments. More specifically, in the generalized RO equation, stiffness Eo, coefficient K and exponent

n are required, while in their expression, stress εo and strain σo are applied and only α and n must be

defined. This can be seen in the following expressions:

ε =
σ

Eo
+K(

σ

Eo
)n (2.3)

and it can be written as:
ε

εo
=

σ

σo
+ α(

σ

σo
)n (2.4)

where (εo,σo) could be any reference stress and strain into the elastic stage with α given by:

α = Kεn−1
o (2.5)

As it is mentioned in their research, smaller α and n denote a strain hardening deformation, while large n
indicates an elastic-ideally-plastic model. For n almost equal to 1, a quasi-linear curve is obtained, and it

is noteworthy that Ramberg-Osgood cannot be used to model a strain-softening curve.

Figure 2.7: Coordinate System of Material. This figure is taken from [29]

A novel constitutive model for the generalization of the Ramberg-Osgood relation to capture nonlinear

anisotropic fibre-reinforced materials with different tensile and compressive responses under a general

stress state was published by Obid et al. [33].
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The determination of the non-linear terms used in this study was made by minimizing a cost function f
which is defined as:

f =

Ω∑
i=1

mmax∑
j=1

(
εi,j,model − εi,j,exp

εi,j,exp

)2

(2.6)

with the first sum taking over all tests included in a set Ω, whereas the second sum takes over m strain

data points within each test. This equation (2.6) was used in this thesis to capture data from the literature,

as it can be seen in the article [33].

The aforementioned approaches are related to composite materials that exhibit a nonlinear relationship.

However, there are cases where the laminate shows a linear or very close-to-linear response. In such

instances, the proposed method by Kassapoglou [4] can also be applied with a reformulation of fatigue

life formula as described in his paper.
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2.1.4. Dissipated Energy During Cyclic Loading

The concept that dissipated energy is related to the fatigue failure of a material has been investigated by

many authors, with Inglis being among the pathfinders in 1927 [26]. It has been observed that metals

indicate a convergence to the quantity of dissipated energy after some cycles of loading; however, the

dissipation of energy is more complex in composite materials. The creation of different types of damages

can lead to variations in the dissipated energy.

Holmes et al. investigated the evolution of hysteresis loops in UD SIC/CAS – II composite at room

temperature [34]. They found that the hysteresis modulus decreases at an initial stage due to matrix

multi-cracking, fiber/matrix debonding, and interface wear, with dissipated energy consistently decreasing

until approaching fatigue fracture, where it increases rapidly.

Longbiao [35] utilized a hysteresis dissipated energy-based parameter to monitor damage evolution in

carbon fiber–reinforced ceramic matrix. It was found that the response of dissipated energy is influenced

by various factors, including peak stress, fatigue stress ratio (R), matrix crack spacing, and fiber volume

fraction. Specifically, hysteresis dissipated energy, denoted as Un, increases towards final fatigue fracture

at peak stress levels but behaves differently at intermediate and low peak stress levels. In the former, Un

increases to a peak value and then decreases until fracture; in the latter situation, Un increases to a peak

value, then decreases to a valley value, and subsequently increases again until fracture. Regarding stress

ratio, Un decreases with the increase of R during cycling loading. In the case of matrix crack spacing, Un

decreases when the interface partially debonds and increases when the interface debonds at the same

cycle number. Finally, dissipated energy lessens with the rise of fiber volume fraction. More information

related to the hysteresis dissipated energy can be found on [35].

Figure 2.8: Variation of hysteresis loop under cycling loading. The figure is taken from [36]



2.1. State of the art 11

Movahedi–Rad et al. [36] presented a novel fatigue life prediction methodology considering the creep

effect on fatigue behavior in different GFRP laminates. In Figure 2.8, it can be seen that the dissipated

energy shows a convergence as the number of cycles becomes larger.

Cadavid et al. [37] studied the fatigue performances of GFRP laminates under constant sinusoidal

loading (f = 5 Hz) at room temperature in different stress ratios. In this work, it was demonstrated that in

the majority of cases, the energy dissipated per cycle near the end of the fatigue lifetime increased due to

the expanded area captured by hysteresis loops. However, for different cases of R and fiber orientation,

the energy dissipation remained nearly constant away from the end of coupons’ lifetime.

Stikkelorum, in his master thesis [38], showed that the energy dissipation in relation to the number of

cycles appeared to be a linear relationship between the lifetime of the specimen and the amount of energy

dissipated during a coupon’s life. Low, medium and high load levels were applied in his experimental

work (from 16 to 65 kN) with stress ratio R being 0.1.

Sapozhnikov et al. [39] investigated the fatigue life of GFRP laminates under high-frequency cyclic

loading. The analysis of the stress-strain curves demonstrated that hysteresis loops are slightly moving

to the right and getting narrower – Figure 2.9.

Drvoderic et al. [40] investigated GFRP laminates of different orientations to compare crack density

and dissipated energy as measures for off-axis damage. It was found that dissipated energy starts to

increase at higher cycle numbers and does not stop rising after crack saturation.

Figure 2.9: Stress strain curve for the cyclic loading of GFRP samples in the range of 25-250 MPa. The

figure is taken from [39]
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2.2. Knowledge Gaps
2.2.1. What does this research try to cover?

As outlined in the preceding paragraphs, research into flexible marine propeller blades has intrigued

researchers in the maritime sector over the years. Although it has been established that Fluid-Structure

Interaction (FSI) analysis is imperative for investigating marine propellers, there are not many studies

focusing on propellers with complex geometries made of fiber- reinforced polymer materials. As it was

described before, Maljaars and Zhang investigated the use of composite materials in marine propellers

and Van Herwerden applied a progressive damage model to assess the fatigue lifespan of the blade

based on the works of Shokrieh et al. [8] and Kawai [9].

It is important to note that both models were initially designed for unidirectional composites. In a

detailed examination of Kawai’s and Shokrieh’s models, the former relied on empirical fatigue strength

derived from existing literature, which was subsequently generalized in a later phase for the prediction

of lifespan. On the contrary, Shokrieh’s approach required a fatigue test to determine the material

constants essential for his model. Consequently, if Kassapoglou’s innovative method [4] is deemed valid

for composites, it could offer significant benefits by providing quick results only through specimen tests. It

is essential to underline the primary advantages of an analytical solution in this context, as highlighted

in the work of Villanueva [41]. These advantages include speed, efficiency, insights into underlying

mechanisms, extrapolation, generalization, and parameter-sensitive analysis.

Figure 2.10: Doubly curved propeller blade made of GFRP
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2.3. Conclusion
2.3.1. Research Questions

In concluding this literature review, a central question emerges.

To what extent can the fatigue lifetime of a composite material and subsequently propeller’s blade

be predicted using a constant dissipated energy per cycle?

To address the main question, it is necessary to formulate several sub-questions that can break it down

and explore it more thoroughly. As mentioned in the preceding paragraphs, the fatigue assessment of

fiber-reinforced composite materials can be categorized into three approaches. To be more precise, the

estimation of the fatigue life of a structure typically involves the application of Finite Element Method (FEM)

analysis to investigate hot spots. Subsequently, one of these three approaches is chosen. Specifically,

either fatigue life models, such as stress-cycle curves (S-N) or Fatigue Life Diagrams (FLDs), is employed,

or phenomenological models using empirical formulas are applied by drawing upon data from the literature,

or progressive damage models are selected. The potential to predict fatigue lifetime solely using data

from static tensile tests in case 0≤R≤1 could revolutionize the engineering design of structures.

Some of the sub-questions that will assist in answering the main question are:

Can this method be generalized and become applicable to composite materials other than

metals?

Research Question 1

What are the necessary assumptions for that transition?

Research Question 2

Is this method able to capture stiffness degradation?

Research Question 3

Considering the fact that the dissipation of energy does not converge in some cases of compos-

ite materials (2.1.4), to what extent do these findings challenge the proposed method?

Research Question 4

Under what circumstances (regarding the dissipation of energy) can this method be deemed

applicable?

Research Question 5

How do the method’s results compare to experimental data?

Research Question 6



3
Lifetime Prediction Model

3.1. Methodology

3.1.1. Brief description of the method

The mechanisms behind an examined phenomenon can be more easily understood when closed-form

analytical expressions have been derived. As previously discussed, analytical models typically surpass

other approaches in terms of efficiency, interpretability, speed, extrapolation/generalization, and parameter

sensitivity analysis [41]. Despite these advantages, it’s important to remember that analytical models

are usually based on initial assumptions that may not fully correspond to reality, serving as simplified

representations of real cases.

An innovative approach to determining the fatigue life of metals was recently proposed by C. Kassa-

poglou [4], introducing closed-form expressions for the dissipated energy during cyclic loading and their

fatigue lives for load ratios between 0 and 1. The main idea is that fatigue failure occurs when the total

dissipated energy equals the energy density of the material, necessitating the presence of plastic strains

during cyclic loading.

The four key assumptions made by Kassapoglou were presented in the Fatigue Life Models section of

the Literature Review chapter. Referring to figures (2.5) and (2.6), the energy density of a material at

failure follows curve (CGB) and is given by:

Udf = σε−
∫ σ

0

εdσ (3.1)

which can be written as:

Udf =
σ2
f

2Eo
+

nK

n+ 1
(
σf

Eo
)n (3.2)

As described in paper [4], the goal is to determine the area enclosed in the “converged” cycle delineated

by curve (Ai Hi B) for the loading part and (B Ii Ai) for the unloading part, as shown in the next figure.

Figure 3.1: Fatigue cycles for 0≤R <1, [4]

14
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The line (Ai−1 B) divides the (i−1) cycle into two portions of equal area, according to the third assumption.
Similarly, (Ai B) divides the (i) cycle into two portions with equal area. When energy dissipation occurs,

the point Ai−1 converges to Ai, making the area (Ai−1 M Ai) zero. The area of triangle (Ai−1 B Ai) then

represents the dissipated energy during the stabilized unloading-reloading cycle. As a result, the total

dissipated energy when the first two cycles are examined is given by:

T∆A =
1

2
(σ −Rσ)(εR2

− εR1
) (3.3)

where εR1
and εR2

indicate the residual strains when the loading ratio R is not zero. A fifth assumption

to simplify the model is that “the shape of the unloading curve is the anti-symmetric one of the loading

curve for a loading ratio equal to zero.” This assumption avoids calculating K and n at each cycle when

0 ≤ R < 1.

Returning to the analysis in paper [4], the final expression for the dissipated energy between the first

two cycles is given by:

T∆A =
1

2
σ(ε− σ

Eo
)(1−R)n1+1 n

n1
(1− (1−R)n2−n1

n1

n2
) (3.4)

The coefficient ni at each cycle can be determined using the recursion expression for the ratio ni−1/ni

mentioned in [4]:

ni−1

ni
=

−3an3
i−1 + n3

i−1 + 2an2
i−1 + ani−1 − 2n2

i−1 + ni−1

−2a2n3
i−1 − 4a2in

2
i−1 − 2a2ni−1 + 3an2

i−1 − 2ani−1 − a− n2
i−1 + 2ni−1 − 1

(3.5)

where:

α =
Eoε

σ
(3.6)

Due to the great sensitivity of the hardening exponent n, it is preferred to work with the limiting case
where the ratio ni−1/ni has stabilized, given by:

lim
x→∞

ni−1

ni
=

1

2
a−1(3− a−1) (3.7)

Additionally, for a large number of cycles, ni−1 and ni become large and close in magnitude, so it can be

assumed that:

(1−R)ni−ni−1 ≈ 1 (3.8)

Finally, the dissipated energy per cycle when the convergence of Ai−1BAi occurs can be determined

using the following expression:

T∆A =
1

8
β(1− β)2(2− β)(3− β)(1−R)n1+1 (3.9)

where

β = α−1 =
σ

Eoε
(3.10)

Consequently, the number of cycles to fatigue failure can be found by dividing the total energy density

Udf by the stabilized dissipated energy:

Nf =
8Udf

σεβ(1− β)2(2− β)(3− β)(1−R)n1+1
(3.11)

in case R 6= 0, and

Nf =
8Udf

σεβ(1− β)2(2− β)(3− β)
(3.12)

in case R = 0.
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3.1.2. Adaption of the method to composite materials

As mentioned in research [4], it is assumed that no material exhibits a perfectly linear response, which

would lead to non-zero plastic strains. There are always slight deviations from linear behavior that create

plastic strains. This assumption underscores the importance of accurately measuring stresses and strains

during experiments. Consequently, Kassapoglou attempted to create a consistent methodology for metals

to convert stress-strain curves into usable data. Specifically, the 0.2% strain offset method was used to

determine the yield stress and strain, and a complementary approach to the Ramberg-Osgood relationship

was developed. The resulting expression is:

σ = Eoε+Θεθ (3.13)

where the values of θ and Θ can be determined using the expressions found in [4]. The 0.2% strain offset

method is not commonly used in composites so a new way to determine K and n values was developed.

A similar approach can be applied for θ and Θ however, the last two terms are not required to determine

the fatigue life of a material.

For this analysis, Matlab was used to replicate the stress-strain curves from various works in the

literature, using the function grabit. This function allows the user to import an image (in this case, the

curve), set the origin, the lower and upper bounds of the axes, and finally capture different points to

replicate the curve (Appendix - A). As will be explained later, the optimization function fmincon was also

used to determine the values of K and n.

Firstly, the same assumptions made by Kassapoglou are considered again. This means that even

though the stress-strain curve of a composite material follows the Ramberg-Osgood stress-strain law, the

dissipated energy during cyclic loading stabilizes after some time, and fatigue failure occurs when the

dissipated energy per cycle equals the energy density of the material at failure. The area under the static

stress-strain curve represents this energy, and the notation Udf is used to describe it. Beginning with

Figure 3.2: Energy density Udf

the complementary approach, an expression for the static total energy Udf can be derived by integrating

relation (3.13):

Udf =

∫ εf

0

(Eoε+Θεθ)dε ⇒

Udf =
1

2
Eoε

2
f +

Θ

θ + 1
εθ+1
f (3.14)

Having the stress-strain curve of the material, the area under the curve can be easily calculated using

numerical integration. Consequently, expression (3.14)) can now be expressed in relation to Θ as:

Θ = (θ + 1)
Udf − 1

2Eoε
2
f

εθ+1
f

(3.15)

where εf is the strain at failure. Replacing equation (3.15) into equation (3.14) leads to the following

formulation:

https://www.mathworks.com/matlabcentral/fileexchange/7173-grabit
https://www.mathworks.com/help/optim/ug/fmincon.html
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σ = Eoε+ (θ + 1)
Udf − 1

2Eoε
2
f

εθ+1
f

εθ ⇒

σ = Eoε+ (θ + 1)
Udf − 1

2Eoε
2
f

εf
(
ε

εf
)θ (3.16)

where only the parameter θ is unknown. The estimation of θ is based on the experimental data and the
curve created using the “grabit” function, and it can be defined using a non-linear optimization technique

to minimize the following cost function as described in research [33]:

f =
n∑

k=1

(
σmodeli,j − σexper.i,j

σexper.i,j

)2

(3.17)

Having estimated the value of θ, which must be positive, one can return to equation (3.15) and calculate
the value of Θ, which takes only negative values. Using this approach, the area under the stress curve of
the complementary approach with respect to measured strains is always the same as the area under the

measured stress-strain curve.

A similar approach can be followed for Ramberg-Osgood parametersK and n. It is crucial to calculate
them in a way that the model curve represents the experimental data with high accuracy. An expression

to calculate Udf is given in paper [4] as:

Udf =
σ2
f

2Eo
+

nK

n+ 1
σf

(
σf

Eo

)n

(3.18)

which can be reformulated as:

Udf − σ2
f

2Eo

σf
=

nK

n+ 1

(
σf

Eo

)n

(3.19)

where the left side of (3.19) can be calculated as all values are known. Therefore, by assuming that the

left side of this equation is denoted as U , which has a specific value derived from the experimental data,

equation (3.19) can be reformulated with respect to K as:

K = U
n+ 1

n

(
σf

Eo

)−n

(3.20)

The Ramberg-Osgood relationship can now be written as:

ε =
σ

Eo
+ U

n+ 1

n

(
σ

σf

)n

(3.21)

with n being the only value that must be derived. The minimization of the same cost function as before

was used but in terms of strains:

f =

n∑
k=1

(
εmodeli,j − εexper.i,j

εexper.i,j

)2

(3.22)

When the value of n has been determined, expression (3.20) is used to calculateK to ensure that equation

(3.18) is satisfied. A major parameter that highly affects the results is the value of initial stiffness Eo, and

a statistical approach is also considered to make predictions. As it was presented before, the number of

cycles until failure can be estimated using equations (3.11) and (3.12), where n1 is given by:

n1 = −1− 2α

n(n+1)2

(n−1)

(n− 1)β − (3n+ 1)
(3.23)
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3.1.3. Statistical Approach

As described in paper [4], the method is highly sensitive to errors. Even the thickness of lines for the

stress-strain curves can affect the results, not to mention the accuracy of strain measurements. A

small change in the value of n significantly influences the prediction of life cycles, and one of the major

parameters affecting the results is the initial stiffness Eo. An additional difficulty for this sensitive method

is the variability of the mechanical properties of composite materials. Most test coupons are cut from

a larger plate, which may have regions with different fiber volume fractions or misaligned fibers, either

externally or within the material. Defects introduced during cutting or fabrication further contribute to

variations in mechanical properties.

Figure 3.3: Variation of mechanical properties from region to region

This variability in the mechanical properties is the main reason for the significant differences in fatigue

lives of small-scale coupons observed in many studies. Another issue is that, in addition to Eo, the failure
stress σf and failure strain εf change for different specimens and, through them, Udf is also different.

Because the scatter of strength and the failure strain are rarely available, it was assumed that parameter

K and exponent n of Ramberg-Osgood relationship remain constant and can be determined based on the

static stress strain curve of the coupon that is published. Therefore, a variation of the Young’s modulus

Eo based on the 90th and 10th percentiles (figure 3.4) when standard deviation of Young’s modulus

is available was applied. In cases where the standard deviation of the stiffness is not given, a ± 10%

variation of the initial stiffness was used. By doing that, it is expected that the variation on the basis of

only Eo changing will be a smaller portion of the total variation that would be seen if Eo,σf and strain εf
were changed.

Figure 3.4: Normal distribution
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3.2. Model Validation and Verification
The predicted lifespans from the developing method are compared with experimental data from the

literature to verify the applicability of the proposed methodology to composite materials. To facilitate this

comparison, the use of papers with both stress - strain curves from static experiments and their fatigue

life cycles was necessary.

The first comparison is based on the work of Roundi et al. [42], who investigated four different laminates

made of glass fiber with various stacking sequences. The second comparison is from Rafiquzzaman et

al. [43], where both open-hole and unnotched specimens made of woven glass fiber reinforced polymer

laminates were tested for their mechanical performance under static and fatigue loading. The third

comparison involves O’Brien et al. [44], who conducted tension fatigue tests on quasi-isotropic glass

epoxy, graphite epoxy, and glass/graphite hybrid laminates. The predicted fatigue lifespans from the

proposed model were compared with the graphite epoxy results from this study to verify the ability of

the model to accurately predict the onset of edge delamination as reported by the authors. Finally, the

predicted fatigue life cycles for interlaminar shear stress τ13 for IM7/8552 carbon/epoxy unidirectional
tape were assessed using published data by Makeev et al. [45]. The results from these comparisons are

discussed in section (3.3).

Validation of the method compared with glass/epoxy laminates, [42]

Roundi et al. conducted an experimental investigation on four laminates with different stacking sequences:

[02/902]s, [902/02]s, [03/90]s, and [903/0]s, [42] named in this comparison as coupon 1,2,3 and 4 respec-
tively. These laminates were fabricated using the vacuum infusion process. Both static stress-strain

curves and Wohler curves are presented in their work. The tests were conducted following the ASTM

D3039/D3039M standard test method. For the fatigue experiments, tensile loads were applied at a

constant frequency of 10 Hz with a load ratio R = 0.1, and the temperature recorded at 20°C. According to

the authors, five tests were performed for each laminate during the static experiments, and approximately

three specimens were used for fatigue lifespan characterization. The next two figures constitute the static

stress-strain curves and the fatigue life cycle curves for the four different laminates as were published in

paper [42],

Figure 3.5: Figures obtained from paper,[42]

with their mechanical properties being displayed in the next table, where the mean values and the standard

deviations are given for the initial stiffness Eo and for the tensile strength σf .

Table 3.1: Data imported from paper [42]

Tensile Strength Young’s Modulus

Laminates σ (MPa) SD E (GPa) SD

Coupon 1 611 30 26.5 3.5

Coupon 2 415 25 18.5 2.5

Coupon 3 401 20 17.4 2.5

Coupon 4 205 10 7.8 1
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where the different coupons correspond to the different laminates with the different stacking sequences.

The methodology described below was applied to each laminate, but the case of [03/90]s will be presented
in detail to clarify the analytical process for the reader. Final predictions on a stress-log scale of fatigue

life will be presented for all cases. Beginning with the initial stiffness, the following graph displays the

initial slope of stress-strain data using the value of Young’s modulus as referred by the authors.

Figure 3.6: Initial slope of the experimental data

It is important to note that the values of Θ, θ, K, and n were estimated using the energy up to the tensile

strength. For the calculation of fatigue life, the total energy under the stress-strain curve was used. The

reason for determining the Ramberg-Osgood parameters using the energy up to the tensile strength is to

accurately reproduce the curve of cyclic loading at the first cycle, providing the initial values needed.

Figure 3.7: Complementary approach
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Figure 3.8: Ramberg-Osgood approach

with all required terms being demonstrated in the next table:

Table 3.2: Terms of the complementary approach and Ramberg - Osgood (RO) - first case

Complementary RO Model

Θ [MPa] θ K n

-5.7972e+07 3.7212 2.2682e+08 6.6043

Doing the same for the rest coupons, the next stress - life cycle curve were obtained. The 90th and 10th

percentiles of the coupons based on the provided data (standard deviation of the initial stiffness) can be

found in the next table:

Table 3.3: 90th and 10th percentiles of Young’s modulus - Roundi et al. [42]

Mean Value [GPa] 90thile [GPa] 10thile [GPa]

Coupon 1 26.50 22.01 30.98

Coupon 2 18.50 15.30 21.70

Coupon 3 17.40 14.20 20.60

Coupon 4 7.80 6.52 9.08
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Figure 3.9: Comparison of experimental data with predictions for coupon 1

Figure 3.10: Comparison of experimental data with predictions for coupon 2

Figure 3.11: Comparison of experimental data with predictions for coupon 3
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Figure 3.12: Comparison of experimental data with predictions for coupon 4

Validation of the method compared with woven glass fiber reinforced polymer laminates - notched

specimens, [43]

Five unnotched and five notched (open hole) specimens were tested in this study to investigate the

mechanical behavior of chopped strand mat and woven roving E-glass laminates. The authors provided

static stress-displacement curves and fatigue lifespan curves for both notched and unnotched specimens,

highlighting the significant impact of the hole on the strength of the coupons. Specifically, the average

strength of the notched specimens was approximately 60 MPa, while the strength for the unnotched

coupons was 93 MPa. The average Young’s modulus measured by Rafiquzzaman et al. was 2278 MPa

for the unnotched specimens and 3657 MPa for the notched specimens. Cyclic loading was also applied

to a set of coupons under a load ratio of R = 0 at frequencies of 1 Hz, and under room temperature

conditions. The displacement rate was 2 mm/min. To convert the displacements into strains, an initial

length of 100mm was assumed to obtain an average Young’s modulus close to what was mentioned by

the authors. The recorded data can be seen in the next two figures:

Figure 3.13: Figures obtained from paper,[43]

The experiments were conducted according to ASTM D3039 standards. Notched specimens were tested

in this study because, as shown in the first graph of (3.13), the unnotched curves exhibit slippage at

the beginning, which affects the estimated values and consequently the predictions. As before, the

resulting curves from one notched specimen will be presented; however, all specimens were used to

make predictions, and their geometric mean value curve will be presented here as every curve for each

specimen is known. As described before, the same figures will also be presented for this case to determine

the required terms to make predictions.
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Figure 3.14: Initial slope of the experimental data

with Eo having been determined to be equal to 3776.50 [MPa], and the terms of complementary approach

and Ramberg-Osgood’s model being displayed in the following table:

Table 3.4: Terms of the complementary approach and Ramberg - Osgood (RO) - second case

Complementary RO Model

Θ [MPa] θ K n

-8.8793e+07 4.0092 8.57e+05 4.7461

Figure 3.15: Complementary approach
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Figure 3.16: Ramberg-Osgood approach

The predicted life curve was determined by using the geometric mean of the predicted lifespans for each

coupon at each stress level.

Figure 3.17: Comparison of experimental data with predictions using the geometric mean of the

predicted lifespans from all specimens.
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Validation of the method compared with graphite/epoxy laminates, [44]

O’Brien et al. [44], developed a methodology to predict the fatigue life of composite laminates based on

stiffness degradation measurements, accounting for the accumulation of matrix cracks and delamination

growth. For their analysis, tension fatigue tests were conducted on quasi-isotropic and orthotropic

glass epoxy, graphite epoxy, and glass/graphite hybrid epoxy laminates. Data regarding graphite epoxy

laminates from this work were used to investigate whether the developing method can predict the onset

of delamination. The idea is that edge delamination onset is indicated in the stress-strain graph with

the graphite epoxy curve, so the energy density up to this point can be considered to verify whether the

behavior of graphite epoxy laminates can be accurately predicted.

Figure 3.18: Figures obtained from paper,[44]

Unfortunately, there are no information about the standard deviation of the measured values in this work;

therefore, only the mean value was considered again for the predicted lifespan. More specifically, the

values that were used for the predictions are:

Table 3.5: Data imported from paper [44]

Material Lay-up Average εf Average Eo [GPa]

Graphite [±45/0/90]s 0.00663 57.5

Figure 3.19: Initial slope of the experimental data
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Table 3.6: Terms of the complementary approach and Ramberg - Osgood (RO) - third case

Complementary RO Model

Θ [MPa] θ K n

-5.165e+09 3.8589 1.5772e+05 3.9011

with the graphs of the two models being:

Figure 3.20: Complementary approach

Figure 3.21: Ramberg-Osgood approach

and the predicted values for lifespan can be found in the next figure.
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Figure 3.22: Comparison of experimental data with predictions

Validation of the method compared with IM7/8552 epoxy data - interlaminar shear stress, [45]

A significant challenge in understanding the failure of thick composite structures is the lack of data related

to matrix-dominated properties, such as interlaminar ones. Makeev et al. [45] developed a methodology

to measure nonlinear stress-strain relationships. In their research, experimental data for static and fatigue

experiments are presented for coupons made of wavy IM7/8552 unidirectional laminas. Three coupons

were subjected to static load experiments using a strain rate of 0.05 inches/minute, while three other

coupons were subjected to cyclic loading under constant amplitude at a frequency of 10Hz and a load

ratio of R=0.1. The experimental data for the static interlaminar shear tests and the fatigue lifespan are

displayed below:

Figure 3.23: Figures obtained from paper,[45]

with both mean value and standard deviation being given in this work.

Table 3.7: Data imported from paper [45]

Average Values COV

Interlaminar Shear Strength [MPa] 113.8 1.59%

Interlaminar Shear Modulus G13 [GPa] 5.48 5.57%
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By following the same methodology described in Roundi’s data (3.2), the terms of the complementary

approach and those of Ramberg - Osgood law are:

Table 3.8: Terms of the complementary approach and Ramberg - Osgood (RO) - fourth case

Complementary RO Model

Θ [MPa] θ K n

-2.463e+06 2.9839 4.2117e+06 5.0063

with the E90%ile being estimated at 5871.17 [MPa] and E10%ile at 5088.83 [MPa].

Figure 3.24: Initial slope of the experimental data

Figure 3.25: Complementary approach
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Figure 3.26: Ramberg-Osgood approach

Figure 3.27: Comparison of experimental data with predictions
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3.3. Conclusions
The conclusions drawn from the resulting stress-life cycle curves indicate that, in some cases, the predicted

lifespans are close to experimental measurements, while in other cases, they are either overestimated

or underestimated. The primary reason for this variance is the lack of discrete stress-strain data in the

literature, which makes it difficult to determine the term β (3.10) with high accuracy. To address this issue,

the function ”grabit” was used to digitize the published data. However, this process can vary between

individuals and significantly affect predictions, as the method is very sensitive. Moreover, having discrete

stress-strain data allows for different sensitivity studies, such as finding the maximum slope from every 5,

10, or 15 successive points and using this as the initial stiffness Eo.

Regarding the comparisons made in this chapter, the deviations of the predicted values compared to

the experimental results can be attributed to different factors. Specifically, in the case of Roundi et al.,

the coupons were fabricated using the RTM (Resin Transfer Molding) method, which is known to produce

specimens with variations in their mechanical properties from region to region, especially due to potential

differences in fiber volume fraction. These differences affect the term and, consequently, the predicted

values.

The case of Rafiquzzaman et al. also involves uncertainties during the digitization process. After

digitizing the data using ”grabit” the displacements were converted into strains by dividing their values

by a length that resulted in an average Young’s modulus close to what was measured by the authors.

This technique is not entirely accurate and is prone to errors in predicting lifespans. Nevertheless, an

interesting observation in this research was when each specimen was examined independently.

Figure 3.28: Predictions using every static stress strain curve of each coupon

As observed in the graph, the different inputs for each specimen resulted in curves that, at least at one

stress level, the experimental results are predicted with high accuracy. This demonstrates the significant

variability among different coupons and how this method can account for it. However, the geometric

mean of these values led to figure (3.17), which shows predictions that are close to experimental values

at some stress levels while indicating large deviations at other stresses.

For the last two cases, the following reasons may explain the discrepancies between the predicted

lifespans and the published data. In the case of O’Brien et al., delamination onset was observed using a

dye penetrant to enhance the X-ray images imported at the edges of the specimens. The combination of

human error in measurements and the presence of local defects could explain the differences in results.

However, the predictions for this study align well with the experimental results (figure 3.22). Finally,

the wavy nature of the fibers in the coupons of Makeev et al. introduced local complexities, such as a

combination of shear and bending in the curved fibers, which led to a load ratio different from what was

applied to the specimen. Additionally, there is no mechanism that can be directly applied to correlate the

stress concentration in a local region with the global stresses applied.
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In conclusion, the main idea that fatigue failure occurs when the total dissipated energy density equals

the total energy per volume of the material at failure seems valid. In simpler terms, it’s like having a

material with a specific storage capacity (total energy density) that depends on its condition (whether

it is an intact specimen or already pre-loaded), and it loses a portion of this energy with every loading-

unloading cycle. An interesting direction for future research would be to investigate how the dissipated

energy varies through the cycles (at least in the first few cycles) to validate the recursion relationship of

ni/ni+1, particularly regarding n1, which is used when R is not equal to zero.



4
Stiffness Degradation Model

4.1. Methodology

The investigation of the behavior of composite materials under cyclic loading is a complex topic, whether

examining their fatigue lifespan or their stiffness degradation. The reasons for these complexities in

composite materials are the numerous interactions between the differently oriented laminas and the

matrix that holds them together and protects the fibers from environmental conditions. Many studies in

the literature address both fatigue life and stiffness degradation models, accompanied by experimental

results.

Delving further into the process of stiffness degradation, matrix cracks form at a very early stage of

fatigue loading, especially near fibers oriented at 90 degrees. This is characteristic of a matrix-dominated

lamina. The formation of these cracks leads to a deterioration in the mechanical properties, such as the

strength and stiffness of the laminate. As it can be found in many works, stiffness degradation occurs in

three stages. The first stage involves the formation of matrix cracks and the second stage involves the

development of edge delaminations. Finally, the third stage is the transition to local damage progression.

The main behavior observed in studies of stiffness degradation for fiber-reinforced composite materials is

illustrated in the following figure:

Figure 4.1: Stiffness degradation - general representation

One of the main goals of the following analysis is to extend the method used in the previous chapter

for predicting fatigue lifespan, enabling the prediction of stiffness degradation directly without requiring

additional experiments. To begin with, by applying the method used for life cycle predictions, the critical

number of cycles where failure occurs is known, as is the converged dissipated energy . Consequently,

the remaining energy density in every cycle Udm can be determined using the following equation:

Udm = Udf −mT∆A (4.1)

33
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At this point, after discussions with the supervisor the dissipated energy was translated into a pair

of stresses and strains that follow the Ramberg-Osgood relationship, with the area under their curve

corresponding to that energy. This pair of stresses and strains is displayed in the next figure, and the

idea is that by adding a strip of area at every cycle m, the entire energy density of the material would be

accounted for.

Figure 4.2: Pair of stresses and strains that correspond to dissipated energy

Based on that assumption the area under each strip in the above figure, is the same, and the strain

εmb on the x-coordinate increases in a nonlinear fashion. To determine the value of εmb, the area under

the stress-strain curve in the figure above must be equal to the dissipated energy at cycle m. This gives

the condition:

σ2
mb

2Eo
+

n

n+ 1
Kσmb(

σmb

Eo
)n = m(T∆A) (4.2)

which can be solved numerically to obtain σmb and consequently calculate the strain εmb:

εmb =
σmb

Eo
+K(

σmb

Eo
)n (4.3)

Having determined these parameters, the following two assumptions were made. Firstly, the residual

strain εm was scaled relative to εmb such that when m reaches the fatigue life Nf , the residual strain

equals εmbfinal, which corresponds to the total dissipated energy when the energy density of the material

at failure has been covered.

εm = εmb(
m

Nf
) (4.4)

Secondly, the strength is assumed to decrease linearly as m increases:

σrm = σf − σf (
m

Nf − 1
) (4.5)

The following figure will help illustrate the entire methodology more clearly.



4.1. Methodology 35

Figure 4.3: Definition of stiffness degradation terms

Looking at the previous figure, it can be easily understood that

Emob =
σrm

(εf − εm)
(4.6)

Then, an assumption was made that the tangent slope to the new stress-strain curve, divided by the slope

of the line connecting the beginning of the curve to the point defined by the failure strain and the failure

stress (residual strength), gives a constant number equal to the ratio of the same quantities for the static

stress-strain curve:

Em

Emob
=

Eo

(
σf

εf
)

(4.7)

From this, the tangent modulus Em can be determined and by comparing it to Eo will give the stiffness

degradation:

Em

Eo
=

σrm

(εf−εm)
σf

εf

⇒

Em = Eo(
σrm

σf
)(

εf
εf − εm

) (4.8)

In a similar manner, the secant modulus can be defined using the next formulation:

Esecm =
σ − σmb

ε− εm
(4.9)
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4.2. Validation of the method

Comparison with experimental measurements provided in the works of Truong et al. and Vallons

et al., [46] & [47]

These two papers are consecutive parts of a research study related to the evaluation of the mechanical

behavior of multi-axial, multi-ply carbon fabric reinforced laminates. Tensile properties, along with stress-

strain curves, are available in the work of Truong et al. [46], where quadriaxial, biaxial [+45/− 45] , [0/90]
and unidirectional coupons were tested in different directions named as machine direction (MD), biaxial
direction (BD), and cross direction (CD).

Due to the research of Vallons et al. [47] on the determination of the stiffness degradation of biaxial

coupons at [0/90] degrees, the case of biaxial coupons loaded in the biaxial direction (BD) was selected
for evaluation using the stiffness degradation model described earlier. This selection was made because

this was the only case that a specific number of fatigue life was mentioned. However, as shown in the

following figure, the graph related to the biaxial direction is not clear enough to gather all data accurately,

and the provided lines are too thick, affecting the accuracy of the lifespan prediction model (which is

highly sensitive, as previously described).

Figure 4.4: Figure taken from [46]. The examined curve is the pink one B2-BD.

Moreover, the Young’s modulus that was finally calculated after the digitization was lower than what is

mentioned in [46] and equal to 5.4 [GPa] instead of 9.1 [GPa]. Using the lifespan prediction model and
trying to determine K and n that corresponds at least to first cycle, the following results were obtained:

Figure 4.5: Stress strain curve: Model vs experiment from the origin to the applied stress.
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with Ramberg – Osgood terms being displayed in the next table.

Table 4.1: R-O terms determined by the model

Ramberg - Osgood model

K 1.80e+32

n 19.971

leading to a life prediction of Nf = 316642 cycles which is 5.55% higher than what was measured in this

research (Nf = 300000). Using these values, the methodology proceeds as follows:

First, the recursion formula to determine the values of
ni−1

ni
is taken from the work of Kassapoglou [4],

and the residual strains εRm
are calculated until convergence of ∆εR occurs. The residual strains are

determined as:

εRm
= ε− (1−R)

σ

Eo
− (1−R)nm(ε− εm − σ

Eo
) (4.10)

where εm is given by

εm = (ε− σ

Eo
)(1− n

nm
) (4.11)

Therefore, when ∆εR = εRm
− εR(m−1)

becomes zero, it is known that εR(m−1)
is the last strain before

the method has converged. All these strains are then scaled to εm as described in equation (4.4). Next,

expressions (4.1) and (4.5) are used from the point of convergence to the point being examined. The

following step involves determining the stresses and strains corresponding to the dissipated energy σmb

and εmb. Consequently, equations (4.2) and (4.3) are applied, leading to the following results:

Figure 4.6: Residual stress that corresponds to dissipated energy
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Figure 4.7: Residual strain that corresponds to dissipated energy

with the first figure denoting the way that stresses vary through the cyclic loading and the second figure

the way that strains vary through fatigue lifespan. The following curve shows the initial stress strain curve

made by σrm and εm as the whole energy density was used for this example:

Figure 4.8: Stress (σmb) strain (εmb) curve

Scaling εmb to εm again, the residual strains εm changing in a nonlinear fashion as it was expected, and

the graph is displayed below:
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Figure 4.9: Residual scaled strain that corresponds to dissipated energy

By following this process, the last step is the application of (4.8) to determine the tangent modulus from

the beginning until the end of the experiment. Vallons et al. [47] show measured the stiffness degradation

at 30000 and 60000 cycles, so the predicted values and their results are demonstrated in the next table:

Table 4.2: Stiffness degradation: predicted values vs measured values

Stiffness degradation

Vallons et al. [47] D(30000) = 20.0% D(60000) = 30.00%

Predicted values D(30000) = 7.84% D(60000) = 14.31%

Comparison with experimental data provided in the doctoral thesis of Zhang, [2]

The second research that was used to validate the methodology of stiffness degradation is the work of

Zhang [2]. In his doctoral thesis, Zhang measured the secant modulus for dry and wet intact specimens,

both after 10 thousand and 1 million cycles. Due to problems with slippage of the loading tabs during

testing for the dry coupons, only the data from wet specimens were used for this comparison.

Figure 4.10: Experiments made by Zhang. This figure was taken from his thesis [2].
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Like in the previous case, the same methodology was followed for Zhang’s work, but this time the secant

modulus was calculated. A key parameter in this analysis is that the static stress-strain curves are known

as discrete points from the experimental process. However, as illustrated below, all coupons exhibited

slippage at the beginning, and the stress-strain curves do not exactly follow the Ramberg–Osgood law.

Instead, it appears that the stiffness increases as the load increases.

Figure 4.11: Stress strain curve of the first tested coupon in Zhang’s thesis.

Therefore, the toe region (εT = 1.2%) was removed and replaced by the maximum slope found after

15 successive data points starting from the origin until the end of the experimental data. Subsequently,

a straight line with this slope was used up to the strain εT = 0.012, and then the rest of the curve was
translated to align with this straight line by subtracting each strain by εT . As a result, a “fictitious” stress-
strain curve was created and used to make predictions for the fatigue life of the coupons and the stiffness

degradation. The figure below presents this “fictitious” stress-strain curve:

Figure 4.12: Fictitious stress strain curve for coupon 1.

The applied stress during the experiments was σ = 93.75 [MPa] and the load ratio was R = 0.75. The
same methodology was followed for all four coupons but the resultant stress strain curves and Ramberg

– Osgood terms will be presented for only one coupon. After having applied the lifespan prediction
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model, the new stress strain curve created by the Ramberg Osgood formula is denoted in the next graph

compared to the real experimental data:

Figure 4.13: Ramberg - Osgood model vs fictitious stress strain curve.

with the values of K and n being displayed in the following table.

Table 4.3: R-O terms determined by the model - Zhang

Ramberg - Osgood model

K 0.2964

n 1.3858

with the number of predicted cycles being Nf = 13.28 billion cycles.

Moving on the stiffness degradation model, the same methodology that described for the previous

case was followed here. Firstly, the residual strain where convergence occurred was determined and

then σmb and εmb were calculated for 1 million cycles. The closer the value of exponent n to 1, the faster

convergence occurs. The resultant figures are:

Figure 4.14: Residual stress that corresponds to dissipated energy
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Figure 4.15: Residual strain that corresponds to dissipated energy

Figure 4.16: Stress (σmb) strain (εmb) curve

with the last figure corresponding to the stresses and strains that led to the dissipated energy at 1 million

cycles. Strains εmb were scaled to εm as in the previous cases, leading to the following curve:
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Figure 4.17: Residual scaled strain that corresponds to dissipated energy

And finally, expression (4.9) was applied to evaluate the stiffness degradation of secant modulus. The

results are:

Table 4.4: Predicted values of stiffness degradation model vs experimental values

Stiffness degradation (Secant Modulus)

10 thousand cycles 1 million cycles

Coupon 1 D = 0.587% D = 5.976%

Coupon 2 D = 0.587% D = 5.976%

Coupon 3 D = 0.694% D = 7.203%

Coupon 4 D = 0.640% D = 6.456%

so the comparison between the mean value of these results and the mean value that is provided by Zhang

can be found in the following table:

Table 4.5: Comparison of mean values

Stiffness degradation (Mean Values)

10 thousand cycles 1 million cycles

Zhang D = 0.6% D = 6.7%

Predicted values D = 0.6% D = 6.4%
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4.3. Conclusions

Stiffness degradation is an inevitable process resulting from the fatigue of a material. As explained in this

chapter, developing a model to predict stiffness deterioration is commonly accompanied by data from

experiments. This new proposed model continues the lifespan prediction model of Kassapoglou and

provides results without needing extra experiments, as presented in (4.2 - a) and (4.2 - b), leading to

results that are in good agreement with experimental measurements. Delving into more detail about the

predicted values for the cases of Truong et al., Vallons et al., and Zhang, the following conclusions can

be obtained.

In the first case of the biaxial coupons [0/90] subjected to biaxial loading [46], [47], the predicted results

show a variation from the measured data. Specifically, the predicted stiffness degradation is almost half

of what was measured for both examined cycles. One potential reason for this difference could be the

difficulty in obtaining accurate stress-strain data from the static stress-strain curve (4.4). Additionally,

there is a necessity for refining the lifespan prediction model to become a more robust method. Another

potential reason could be the lack of data to perform a statistical analysis and calculate the lifespan and

stiffness degradation for a range of coupons. Lastly, further investigation will be conducted to improve

and correct this method.

In the case of Zhang, the results were more promising in terms of determining the secant modulus.

However, a sensitivity study should be done to verify how this method is affected by differences in fatigue

life and which terms are responsible for the changes. Finally, it has been proven that both the stiffness

degradation and lifespan models work more efficiently with discrete stress-strain data than with digitized

stress-strain curves.
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Finite Element Analysis

5.1. Description of the model

5.1.1. Actual load case

The best way to simulate the structural response of a blade to a hydrodynamic loading is by using

fluid-structure interaction (FSI) analysis. An analysis like that was made in the past by Maljaars, providing

a model that can be used in a FEM program to verify the structural integrity of the blade [1]. An accurate

representation of the blade, in terms of the allocation of differently oriented laminas at various locations and

the correct boundary conditions, is necessary. Maljaars’ model was later used by Zhang [2], who changed

the material properties from GFRP to CFRP and conducted an analysis using the same hydrodynamic

loads as Maljaars did. Similarly, the same blade is used in this thesis, with the same mesh size, as it was

noted that this led to the convergence of the method. Similar to Zhang, the same hydrodynamic loading

was used, but a few changes were made to the material properties and to the allocation of the laminas to

more accurately replicate the real blade.

The original idea was to manufacture a blade according to the guidelines of Jules Dock, as described in

the thesis of W.H. de Bles [48]. The image showing the original plan can be found in Appendix B. However,

there were discrepancies between the actual final blade and the one that was planned, necessitating a

new allocation of the materials in this thesis to better represent reality. The new allocation of the laminas

can also be found in the table in Appendix B. The FEM analysis was conducted at Marc/Mentat.

Figure 5.1: Suction side of the blade

45
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Figure 5.2: Pressure side of the blade

Maljaars and Zhang tested their blades in 60 different load cases, corresponding to a full revolution of the

blade split into 60 time-steps for a specific scenario. Specifically, a vessel sails in a straight path in calm

water at a speed of 5.35 m/s (10.4 knots), with the propeller operating at a constant rotational speed of

600 rpm, experiencing a non-uniform wake field. For each time step, the velocity potential was converted

to pressure using Bernoulli’s equation, and then the pressure was converted into nodal forces acting at

the centroids of blade face elements. The maximum force is obtained when the blade is in the wake peak,

leading to the following force components:

ΣF =


Fx = +8816N

Fy = +3565N

Fz = +318N

The total force is the absolute value of these three components and is given by:

ΣF =
√
F 2
x + F 2

y + F 2
z (5.1)

which is equal to 9.5 kN.

The hub where the root is connected was assumed to be much stiffer than the blade, so a clamped

boundary condition was used at the blade (root) – hub interface. Although the choice of a clamped

boundary condition is not the most representative and likely leads to overestimated stress values at the

critical location, potential improvements can be investigated in the future. Zhang found that the critical

load case was the 59th time step, with the critical elements (hot-spots) being numbers 1363 and 1421 on
the leading edge (figure 5.3). Consequently, this time-step was also used in this analysis to identify the

hot-spot for the GFRP blade with the ”corrected” material properties.
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Figure 5.3: Position of critical elements, both images were taken from the work of Zhang [2]

Figure 5.4: Clamped boundary condition and actual distributed pressure

Two different types of elements were used for the analysis of the blade. The brick element 21 of Marc

Mentat was used for the core, which is a 20-node, isoparametric, arbitrary hexahedral element with three

global degrees of freedom: u, v, and w. Element type 150 of Marc was used for the skin of the blade; this

is a composite brick element used for three-dimensional analysis of composite materials. Like element

21, it is also a 20-node element with the same global degrees of freedom. It consists of different layers

within the element that represent the various laminas. More information about these elements can be

found in the Marc Mentat documentation, Volume B.

Figure 5.5: Solid brick element and Composite brick element - Marc Mentat [49]
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5.1.2. Experiment

A fatigue experiment is planned as part of the EcoProp project to simulate the actual load case described

previously. A similar fatigue test was conducted in the past by Maljaars on a different blade, and now

Benjamin Groenhart is responsible for the new experiment on the examined GFRP blade. The new brace

designed by Groenhart is displayed in the following image, and its finite element model was created in

Marc/Mentat.

Figure 5.6: Design of new brace. The image is used after the permission of the designer.

Essentially, the same blade as before was used, with only the load case changed from distributed pressure

to a surface load to replicate the force induced by this new brace. The total force was split into nodal

forces on the pressure side and applied in a way to replicate the experiment, as shown below.

Figure 5.7: FEA model: Experiment

The purpose of this analysis was first to verify that the blade can carry the maximum load of 9.5 kN and

second to determine the critical load that should be applied during the experiment to control the cycle at

which failure occurs, based on the ply-by-ply analysis that will be presented in the next chapter. The load

ratio of the experiment is R = 0.65 and the frequency at which the experiment will be conducted is 5 Hz.
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5.2. Results

To calculate where the hot spot is, Tsai – Wu failure criterion was used in three dimensions. The Tsai –

Wu failure index in 3D is defined as:

F.I. = f1σ1+f2σ2+f3σ3+f11σ
2
1+f22σ

2
2+f33σ

2
3+f44τ

2
12+f55τ

2
23+f66τ

2
31+2f12σ1σ2+2f23σ2σ3+2f31σ3σ1

(5.2)

where σ corresponds to the normal stresses and τ to the shear stresses. The different terms fij can be
determined using the following equations:

f1 =
1

σT
1

− 1

σC
1

(5.3)

f2 =
1

σT
2

− 1

σC
2

(5.4)

f3 =
1

σT
3

− 1

σC
3

(5.5)

f11 =
1

σT
1 σ

C
1

(5.6)

f22 =
1

σT
2 σ

C
2

(5.7)

f33 =
1

σT
3 σ

C
3

(5.8)

f44 =
1

τ212
(5.9)

f55 =
1

τ223
(5.10)

f66 =
1

τ231
(5.11)

f12 = −1

2

√
f11f22 (5.12)

f23 = −1

2

√
f22f33 (5.13)

f31 = −1

2

√
f33f11 (5.14)

with the symbols T and C denoting the tensile and compressive strengths, respectively, and S the shear

strength. Their values were taken from the literature (section 6.2) but they are not the most accurate due

to the different ways of fabrication of the tested specimens and the different volume fraction of fibers

that were used in the different works. It is noteworthy to mention how the new user coordinate system is

defined based on the subroutine used by Maljaars to ensure the correct alignment of fibers in the blade,

as described in the Literature Review chapter (see figure 2.2). Before conducting the analysis and using

the subroutine, the global coordinate system is defined as follows:

Figure 5.8: Coordinate system before applying the subroutine
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with blue arrows corresponding to Z axis, red arrows to X axis and finally green arrows to Y axis. The

origin of this global system XYZ is the black arrows with the force components presented before following

this one (5.1.1). Marc constitutes a subroutine called orient2, which necessitates Z axis always being

the through thickness direction of the elements and this was the first step that was followed to apply the

user’s defined coordinate system.

Figure 5.9: Orient2 subroutine, image taken from [50]

Therefore, after the application of Maljaars’ subroutine, the new user – coordinate system becomes:

Figure 5.10: Coordinate system after applying the subroutine

where the Z axis (blue arrows) always runs through the thickness of the elements, the Y axis (green

arrows) corresponds to the longitudinal axis of a 0-degree lamina, and the X axis (red arrows) corresponds

to 90 degrees, similar to what is demonstrated in figure (5.11):

Figure 5.11: Relation of the user defined coordinate system (XYZ) and lamina’s local system (123)
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This transformation of the coordinate system requires the correct application of material properties.

Specifically, material properties are imported into the local system of the lamina in Marc. To be compatible

with the new coordinate system, the longitudinal axis corresponds to local direction 2 of the lamina, while

the transverse direction corresponds to local orientation 1. For instance, the inputs for Young’s modulus

for a UD lamina are:

Figure 5.12: Inputs in FEA - Marc

and similar process is followed for the shear modulus and strengths. Having explained these things, the

results of the maximum failure index for the actual loading on the blade and the loading of 9.5 kN induced

by the brace are demonstrated below:

Figure 5.13: Numerical results of the actual loading - critical layer 11
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Figure 5.14: Numerical results of the experiment - critical layer 11

In both cases, the hot-spot is found in element 29 at layer 11, near the clamp. This was expected because,

firstly, the highest stresses are usually found closer to the boundary conditions, and secondly, layer 11 is

a lamina oriented at 105 degrees that is loaded at 0 degrees . However, these results differ from what

Zhang found in his analysis, as displayed in the next figure.

Figure 5.15: Results of Zhang, [2]

The differences between the two analyses have to do with the different type of material and also with the

different allocation of the laminas in the blade.
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Predictions for a GFRP blade

6.1. Description of Methodology
One of the main goals of this research is to determine the extent to which the proposed methods for

life cycle predictions and stiffness degradation can be applied to large-scale construction. The plan

was to conduct a finite element analysis on the blade to identify where maximum stresses occur and to

define the hotspot. Subsequently, it is necessary to export those values at the critical elements in their

local coordinate system and combine them with Ramberg–Osgood terms, which can be derived from

experimental data and are required for making predictions. This methodology is detailed in this chapter,

starting with the definition of material properties, presenting the predictions for the blade’s lifespan and

stiffness deterioration, and finally drawing conclusions.

The numerical method of finite element analysis is widely used, especially for complex geometries, to

study their structural performance. This is due to the difficulty of deriving closed-form expressions from

an analytical process that considers all parameters, such as changes in geometry at different locations

and the presence of gaps, holes, or defects in the structure. In the case of the examined blade, the

combination of its double-curved geometry and the fact that it is made of composite materials with laminas

that were not placed to eliminate the coupling Bij or flexural terms Dij of the [ABD] matrix makes the
use of FEM almost obligatory.

The blade is composed of laminates with different stacking sequences at various locations, leading to

complex stress distribution fields. As observed in the chapter on Finite Element Analysis (5), the hot spot

is near the root, close to the clamped boundary conditions. Therefore, the stress values at the critical

elements were exported, and they were used to make predictions about the fatigue life of the blade. The

critical node is 3776 in element 29, as can be seen in figures 5.13 and 5.14. Layer 11 is the critical lamina,

which was expected based on prior discussions. The results of the post process analysis indicated that

T-W failure index is 0.64 for the actual load case and 0.94 for the experiment (9.5 kN).

Figure 6.1: Critical elements from the FEM analysis

53



6.1. Description of Methodology 54

Figure 6.2: Estimated variation of failure index - Actual load case

Figure 6.3: Estimated variation of failure index - Experiment

The exported stresses at every direction are summarized in the next table:

Table 6.1: Results of FEA in terms of stresses

Layer 11 (Element 29) - MPa Actual load case Experiment (9.5 kN)

σ11 189.70 269.69

σ22 38.26 58.84

σ33 26.41 36.47

σ23 -7.29 -8.39

σ13 2.14 3.49

σ12 13.05 21.17

The experiment is scaled up to accelerate the failure of the blade and the load is 5.82% higher than the

actual load of the 59th load step. However, the stress distribution of the actual loading case is reproduced

by the experiment.
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6.2. Material Properties
A series of small-scale coupon experiments is planned over the next few months to determine the

necessary parameters for predicting the fatigue life of the blade. Currently, a literature review has been

conducted to find the mechanical properties for the FEA model and the required experimental curves

to determine K and n values. Data for longitudinal and transverse directions were collected for tension,

compression, and in-plane shear. The critical type of fabric is the unidirectional one because, as the

lamina is oriented closer to 90 degrees while it is loaded at 0 degrees it becomes more matrix-dominated.

This type of lamina is the most critical based on FEA results. The tensile strength of 0-degree coupons

and their corresponding Ramberg-Osgood law terms were found based on the work of Shokrieh et al. [51].

The aim of this study was to investigate the effect of quasi-static and dynamic strain rates on unidirectional

glass/epoxy laminates with a fiber volume fraction of 0.5. Data from five samples were recorded in this

study, with the following figure used to determine K and n values for the strain rate of ε̇ = 0.0017 s−1.

Figure 6.4: Longitudinal tension of GFRP, [51]

Figure 6.5: Model vs experimental curve, longitudinal tension
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The average results of this study for tensile strength, elastic modulus, strain to failure, and absorbed

energy are given in the next table:

Table 6.2: Longitudinal tensile properties of GFRP, [51]

Properties Average value Standard deviation

Tensile strength [MPa] 783.24 2.21

Elastic modulus [GPa] 37.256 0.16

Strain to failure 0.02148 1.5e-04

Absorbed energy MJ/m3 8.52 0.24

The tensile strength, Young ‘s modulus and stress – strain curve for the transverse direction were obtained

from the work of Zhang et al. [52], where the influence of fiber orientation to the material properties of

pultruded GFRP fibers was investigated. Coupons with a fiber volume fraction of 0.42 were tested with

the following data provided as the recorded ones:

Figure 6.6: Transverse tension of GFRP, [52]

Figure 6.7: Model vs experimental curve, transverse tension
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The average values of tensile strength YT and E2 are given in the following table with the standard

deviations.

Table 6.3: Tensile properties in transverse direction of GFRP, [52]

Properties Average value Standard deviation

Tensile strength [MPa] 92.8 2.69

Elastic modulus [GPa] 10.5 0.303

Similar to the tensile mechanical properties, the stiffness and strengths for longitudinal and transverse

compressive cases were found in the literature. For the longitudinal compressive strength, the work of

Lee et al. [53] was used, where the following curves are provided. The case with a fiber volume fraction

of 0.40 was selected from the graphs shown.

Figure 6.8: Longitudinal compression of GFRP, [53]

Figure 6.9: Model vs experimental curve, longitudinal compression
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The initial stiffness and the compressive strength are:

Table 6.4: Longitudinal compression properties of GFRP, [53]

Properties Average value

Compressive strength [MPa] 647.28

Elastic modulus [GPa] 32

Similarly, the necessary data for transverse compressive mechanical properties were found in the work

of Kaddour et al. [54], which provides mechanical properties for four unidirectional laminates made

of different materials. These properties are presented not only through curves but also with discrete

stress-strain data. This specific paper was also used to select other properties required for FEA, such as

Poisson’s ratios, as three-dimensional elastic properties are provided in this publication for numerical

analyses.

Figure 6.10: Transverse compression of GFRP, [54]

Figure 6.11: Model vs experimental curve, transverse compression
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with Young’s modulus and strength being given in the following table:

Table 6.5: Compression properties in transverse direction of GFRP, [54]

Properties Average value

Compressive strength [MPa] 145

Elastic modulus [GPa] 16.2

Finally, the in-plane shear properties were taken from the paper by Van Paepegem et al. [55]. The

authors conducted static tests on the [+45/ − 45]2s specimens of GFRP laminates to measure the in-

plane shear properties. Subsequently, they developed a material model to represent the shear modulus

degradation and the accumulation of permanent shear strain [56]. The material used was a UD E-glass

fabric (Roviglass R17/475) with an epoxy matrix, Araldite LY 556. The properties of the lamina were

calculated based on a fiber volume fraction of 50%.

Figure 6.12: Shear properties of GFRP, [55]

Figure 6.13: Model vs experimental curve, shear
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The required shear properties are displayed in the next table:

Table 6.6: Shear properties of GFRP, [55]

Properties IH4 IG2

Compressive strength [MPa] 69.2 71

Elastic modulus [GPa] 5.09 4.66

Data from type IG2 were used to make predictions for the blade in this thesis.



6.3. Predictions 61

6.3. Predictions

With all the stress-strain curves presented earlier, the lifespan prediction methodology can be used to

determine the K and n values, and consequently estimate the blade’s life based on its in-plane stresses,

σ1, σ2, and τ12. The Ramberg-Osgood values for all cases are provided in the table below:

Table 6.7: Ramberg-Osgood terms determined for the lifespan predictions

Type of test Value of K Exponent n

Longitudinal tension 7.34 2.3687

Transverse tension 2.78e+04 3.2884

Longitudinal compression 1.94e+09 7.138

Transverse compression 4.77e+11 6.9323

In-plane shear 1.39e+19 10.4917

To calculate the blade’s life, two different criteria were used. The first criterion involves determining which

combination of stresses and its corresponding stress-strain curve leads to the minimum number of cycles.

The second criterion is the Tsai-Wu failure criterion, applied using two different approaches.

6.3.1. Actual load case of blade

First criterion

Starting with the first criterion, the stresses exported from FEA at the critical hot spot were presented in

Table 6.1. Using the Ramberg - Osgood terms that were determined based on the experimental data

(6.7), the following cycles were calculated using σ1 = 189.7MPa , σ2 = 38.26MPa, and τ12 = 13.05MPa
to the fatigue lifespan model.

NfXT
= 589356536

NfYT
= 3488703

NfS12
= 3.072e+ 18

The critical prediction results from the transverse tension at 3.48 million cycles, indicating at least the first

damage of the blade. The type of failure and the redistribution of stresses affect the fatigue life of the

blade.

Second criterion

Version 1

The second criterion is a generalization of the Tsai-Wu criterion, considering strengths as a func-

tion of cycles. This methodology is inspired by the work of Philippidis et al. [57], who used a quadratic

failure tensor polynomial, yielding results in good agreement with experimental data. The two different

approaches are related to how strength decreases cycle by cycle.

In the first version, the lifespan model presented earlier was used for various stress levels to create

a fatigue stress life cycle curve. Afterwards, a fitting curve for each strength was then applied, and

longitudinal, transverse, and shear strengths were expressed as functions of cycles. The fitting curves

and their relationships are displayed below:
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Figure 6.14: Strength as a function of cycles - longitudinal tension

Figure 6.15: Strength as a function of cycles - longitudinal compression

Figure 6.16: Strength as a function of cycles - transverse tension
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Figure 6.17: Strength as a function of cycles - transverse compression

Figure 6.18: Strength as a function of cycles - In plane shear

Subsequently, fatigue life can be determined using the Tsai-Wu (fatigue) failure criterion when the following

relation is satisfied:

F.I. = f1σ1 + f2σ2 + f11σ
2
1 + f22σ

2
2 + f44τ

2
12 + 2f12σ1σ2 ≤ 1 (6.1)

where fi and fij terms can be found in equations 5.3 to 5.14. The resultant fatigue life of the blade under
the actual load case is:

Nf = 3572728 cycles

.

Version 2

The second version consists of a different approach to how strengths change throughout the fatigue

life. As presented in the chapter on stiffness degradation, it was assumed that strength changes linearly

based on the following formula:

σJf
(m) = σJf

− m

NfJ − 1
σJf

(6.2)

where J corresponds to XT , XC , YT , YC , and S12, and m denotes the cycle that is running until it reaches

the final lifespan Nf , predicted by the first criterion. The resultant fatigue life using this approach is:

Nf = 2088800 cycles
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and it is the most conservative one.

6.3.2. Load case during experiment

Following the same process for the load case of 9.5 kN for the upcoming experiment, the results for the

two criteria with the two versions of Tsai-Wu are demonstrated below. Stresses at the hot spot were

determined to be σ1 = 269.69 MPa, σ2 = 58.84 MPa, and τ12 = 21.17 MPa.

First criterion

Nf(XT ) = 113302775 cycles

Nf(YT ) = 452063 cycles

Nf(S12) = 1.206× 1014 cycles

Second criterion

Version 1

Nf = 687068 cycles

Version 2

Nf = 167900 cycles

which means that the blade is expected to show its first significant damage during the upcoming experiment

between 167900 cycles and 687068 cycles, based on the experimental data on strength found in the

literature.

An interesting observation is that all three approaches presented results of the same order, with

only minor variance, which can be considered desirable for capturing the expected fatigue life scatter.

The most conservative predictions are made using the third approach, where strength is assumed to

change linearly. The second most conservative is when the highest in-plane stress is used in the lifespan

model. Finally, the least conservative is the Tsai-Wu criterion, which utilizes the fatigue stress-life curves

produced by the lifespan model.

Another significant observation is that all predictions closely align with the lifespan predicted by stress

applied in the transverse direction (90 degrees), particularly when the stress is tensile. This indicates that

tensile stresses promote the formation of defects due to localized stress concentrations. Additionally,

when the load is applied along the longitudinal axis of a specimen with fibers oriented at 90 degrees, the

material becomes matrix-dominated. Similarly, this suggests that the out-of-plane properties, which are

more influenced by the matrix, are potentially important parameters that should be examined.
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6.4. Conclusions

The most critical parameter that influences the fatigue life of the blade under in-plane loading stresses has

been proven to be the tensile stress in the transverse direction σ2. This is the main reason that, although

there were T-W failure indices greater than the one found in layer 11, this lamina was the most critical

one as σ2 reached its highest value close to 59 MPa.

To further validate this conclusion, the maximum stress failure criterion was also used in Marc to

compare the results with those of the Tsai-Wu failure criterion. The results can be seen in the next figures.

As observed, the position of the hot spot does not change, and layer 11 displayed the maximum failure

index for both transverse and longitudinal directions.

Figure 6.19: Maximum stress criterion - 1st failure index - transverse direction

Figure 6.20: Maximum stress criterion - 2nd failure index - longitudinal direction
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It is important to mention that the through-thickness stresses σ33, σ13, and σ23 could be the most

significant in terms of the blade’s fatigue life. However, to validate this, experimental data on static

stress-strain curves is required for these directions.

Finally, the predictions regarding the lifespan of the blade will likely change when the planned small-

scale coupons experiment is conducted. As new stress-strain curves become available, they will provide

discrete stress-strain data, leading to improved determination of the Ramberg-Osgood terms or applying

equation 3.11 or 3.12 depending on the load ratioR and subsequently to more accurate results. As a result,

with the aforementioned data, the stiffness degradation model can be used to find the deterioration of the

stiffness, which is critical for the structure in terms of both its integrity and its hydrodynamic performance.

Especially regarding hydrodynamic behavior, this is a highly significant advantage as hydrodynamic

engineers will know which stiffness should be used for their design to make the blade either stiffer or

more flexible to increase efficiency.

Figure 6.21: Actual blade: fabrication of the hub-blade interface
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Conclusions

The objective of this research was to assess the fatigue of structures made of composite materials

using the innovative analytical method proposed by Kassapoglou. Originally developed for metals and

demonstrating good agreement with experimental results, this method was adapted for composites in

this thesis. Additionally, a new stiffness degradation model was created based on the fundamentals of

this theory, showing good agreement with experimental results, though further investigation is needed.

Validity research for both the lifespan prediction and stiffness degradation models was conducted using

data from the literature.

An update to a Finite Element Analysis (FEA) model was also made, building on previous work

regarding a GFRP blade for the EcoProp project, where fiber alignment was corrected and root regions

were added. Finally, a combination of the FEM model and lifespan prediction model was implemented

by analyzing the blade in three dimensions and extracting critical stresses at hot spots. Subsequently,

in-plane stresses were used, and three different approaches were followed to predict the fatigue life of

the blade. Upcoming experiments will verify whether these predictions are accurate.

Beginning with the fatigue life assessment using Kassapoglou’s method, the same assumptions

made for metals were applied to composite materials, comparing the predicted values with experimental

data found in literature. In some cases, the experimental measurements of fatigue lives were captured

acceptably, while in others, the results were either overestimated or underestimated. The critical parameter

affecting the resultant curves is the initial stiffness, which is also influenced by the lack of discrete stress-

strain values in the literature, necessitating digitization to replicate the curves. This digitization process

varies between individuals, leading to different predictions. Additionally, this method assumes that

dissipated energy converges after a few cycles but a further investigation of how this change occurs will

assist in further improving the method especially for the first cycles that include n1. As shown in the thesis,

a new way of determining K and n values was presented using an optimization function instead of the

0.2% strain offset method.

An interesting observation was made in the work of Rafiquzzaman et al. [43] regarding the case

of R=0, where each stress-strain curve was replicated individually. The resultant curves captured the

experimental measurements of fatigue life very accurately at specific stress levels. Moreover, in cases

where the mean value of initial stiffness led to acceptable predictions, the 10th and 90th percentile curves

bracketed the experimental data, especially for short and mid-term fatigue lives. This may be because,

as described in some literature, the dissipated energy decreases during the initial cycles until it reaches a

point where it increases again. However, with further investigation, there is a high potential for resolving

these issues and improving the accuracy of the predictions. One of the greatest advantages of this

method is that it relies on measurable quantities and does not depend to curve fitting. Additionally, it is a

method which can reproduce known behavior such as the existence of fatigue threshold.

In addition to the fatigue life prediction model, a stiffness degradation model was also developed by

Kassapoglou, based on the fundamental principles of the lifespan model. This new methodology allows

for the estimation of both tangent and secant modulus degradation, with results for the two examined

cases showing good to very good agreement with experimental results especially when stress strain data

are given. The model is expected to improve further as the lifespan prediction model becomes more

robust.

Regarding the FEM model, an update to the previous models by Maljaars and Zhang was created,

revealing a different hotspot than the one proposed by the latter researcher. The new model provides a
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more realistic representation of the actual blade, with the addition of the root region. A 3D stress analysis

was conducted using the Tsai-Wu criterion and the maximum stress criterion, both identifying the same

critical location near the clamp. This result was expected, as the clamped region is the boundary condition

where internal forces become larger. Additionally, the critical layer was found to be the 11th one, with

fibers oriented at 105 degrees while it is mainly loaded at 0 degrees.

Predictions were also made for the actual load case of the blade and the upcoming experiment, based

on the lifespan prediction model. The in-plane stresses were extracted from Marc, and predictions were

made using experimental data from static stress-strain curves found in the literature. Even though an

effort was made to find properties for similar materials, there could be significant differences from the

material to be used in this program because of (a) different fabrication method(s) (b) different final fiber

volume(s) and (c) different matrix material. It was shown that the most critical component is the tensile

strength in the transverse direction (90 degrees), which is most affected by the matrix. However, it is

important to further investigate the influence of out-of-plane terms, such as stress in the through-thickness

direction and inter-lamina and intra-lamina stresses. This necessitates small-scale coupon experiments

in these directions.

Based on these conclusions, a set of recommendations for future work is provided in the next chapter 8.



8
Recommendations for future work

The proposed recommendations are listed in descending order of priority, starting with the most urgent

and ending with the less critical ones. The significance of the last recommendations is not diminished;

they simply require more time and are more general in nature.

1. Small-scale coupon experiments are necessary. These tests are needed for several reasons. Firstly,

they will provide stress-strain data that can be used to determine the K and n values for the materials

used in the blade and not for load ratios close to zero, enabling more accurate predictions for its

fatigue. The measured properties can also be applied to the FEM model, and the analysis should

be updated accordingly. Measuring the stiffness degradation in some coupons will be helpful for

comparison with the model’s predictions, as stress-strain values will be known.

2. A fatigue experiment on the GFRP blade is highly important because it will provide data on the

blade’s fatigue life, helping to compare and optimize the lifespan prediction model. Strain gauges

placed in various regions of the blade will help verify the FEM model’s validity and determine if any

adjustments are needed. Additionally, comparing the model’s predicted fatigue life with experimental

results will indicate whether the ply-by-ply analysis is accurate.

3. Further investigation and improvements on the methods are required. Acoustic emission sensors

can be used to measure the dissipated energy in each cycle, allowing the recursion relationship of

n(i−1)/ni
to be updated and verified for applicability to composite materials. This will also determine

if the relationship holds for the entire fatigue life or changes after a few cycles. These results can

further enhance the stiffness degradation model.

4. Creating a progressive damage model in FEA is the next step. Once the method details have been

refined and the lifespan model becomes robust for predicting fatigue life in composites, a progressive

damage model can be developed. Specifically, functions indicating how strength changes through

cycles can be integrated into an FEM model, providing a more realistic representation of the blade’s

structural response when combined with the stiffness degradation model.

5. Lastly, developing a digital twin of the blade by correlating data from strain gauges during experiments

with an FEM model is crucial. This involves creating a link between the blade and the FEM model,

where data from the strain gauges are fed into the numerical model to check its structural integrity

continuously. Combining this process with lifespan and stiffness degradation models can predict

the blade’s response throughout its life, estimate remaining life, and determine when maintenance

is necessary. If proven feasible, this process can be generalized to other constructions beyond

propeller blades.
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A
Matlab functions

The two functions mentioned in Chapter 3 (Methodology) are detailed here, explaining how they work.

First, we will look at the grabit function, followed by a demonstration of script that made by using fmincon

function.

The grabit function is used to extract data from an image. According to MathWorks, the user can

import files in BMP, JPG, TIF, and PNG formats, and then extract data from the image. To illustrate

how this function operates, an example will be provided below for the coupon [03/90]s from the work of

Roundi et al. [42]. The original data on stress-strain curves from static experiments are shown in Figure 3.5.

When the function has ran, a GUI screen opens, allowing the user to import the image.

Figure A.1: GUI of grabit function
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Figure A.2: Calibration of the curve

Figure A.3: Grabbing points

where the extracted data lead to the following stress strain curve (after diving the digitized data for strains

by 100):
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Figure A.4: Resultant curve - coupon [03/90]s

Regarding fmincon, this function is used to find the minimum of a constrained nonlinear multivariable

function. The following script shows how it was used to determine exponent n according to the theory

presented in Chapter 3 (3.1.2).

Figure A.5: Script with fmincon

First, the Ramberg-Osgood function was defined as f(x), where x(1) corresponds to the exponent n.
Then, the objective function described in the theory (check equation 3.22) was defined, and the starting

point along with the lower and upper limits for exponent n were applied. Essentially, the value of x(1)
is determined so that the function f(x) results in a strain value close to the experimental one, using

the stress measured in the experiment at that specific point as an input. This means that the “fmincon”

function returns the value of n that minimizes the numerator of the objective function.

https://www.mathworks.com/help/optim/ug/fmincon.html


B
Material properties of GFRP blade

The following image constitutes the original plan for the fabrication of the blade. This image was taken

from the work of de Bles [48].

Figure B.1: Original stacking sequence of the GFRP blade
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Figure B.2: Allocation of the different zones

However, some discrepancies made during the fabrication and that was the reason that a new FEA model

was created. The correct the layup of the final blade can be found in the next table.
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No. of ply Offset Zone 1 / Zone 6 Zone 2 / Zone 7 Zone 3 / Zone 8 Zone 4 / Zone 9 Zone 5 / Zone 10 Root 1 / Root 2 Type of fabric Thickness

1 0 ERW 200 0.17

2 0 UD 600 0.5

3 0 UD 600 0.5

4 0 UD 600 0.5

5 0 UD 600 0.5

6 0mm -20 UD 600 0.5

7 0 UD 600 0.5

8 -15mm -15 UD 600 0.5

9 -20mm 0 G-Flow 0.5

10 0 UD 600 0.5

11 -20 UD 600 0.5

12 -10mm 25 UD 600 0.5

13 15 UD 600 0.5

14 0 G-Flow 0.5

15 0mm 60 UD 600 0.5

16 -60 UD 600 0.5

17 -5mm 105 UD 600 0.5

18 -60 UD 600 0.5

19 -60 UD 600 0.5

20 0 G-Flow 0.5

21 15 UD 600 0.5

22 15 UD 600 0.5

23 65 UD 600 0.5

24 0 G-Flow 0.5

25 65 UD 600 0.5

26 -20 UD 600 0.5

27 0 UD 600 0.5

28 -30mm matrix Polymat

29 0 UD 600 0.5

30 -20 UD 600 0.5

31 15 UD 600 0.5

32 0 G-Flow 0.5

33 15 UD 600 0.5

34 15 UD 600 0.5

35 10 UD 600 0.5

36 0 G-Flow 0.5

37 60 UD 600 0.5

38 50 UD 600 0.5

39 105 UD 600 0.5

40 60 UD 600 0.5

41 0mm 60 UD 600 0.5

42 0 G-Flow 0.5

43 15 UD 600 0.5

44 -10mm 15 UD 600 0.5

45 -20 UD 600 0.5

46 0 UD 600 0.5

47 -15mm 0 G-Flow 0.5

48 -25 UD 600 0.5

49 -20mm 25 UD 600 0.5

50 0mm -20 UD 600 0.5

51 0 G-Flow 0.5

53 0 UD 600 0.5

53 0 ERW 200 0.17



C
FEA: Marc Mentat

This chapter is dedicated to Marc Mentat, providing essential information to help a new FEM engineer

run an analysis. After installing Marc, it is crucial to install a Fortran compiler to compile any required

subroutine. Note that Fortran allows no more than 73 characters per line. All the guidelines that are

presented in this chapter are based on personal experience and of course, there are better ways to handle

the program with those skills being obtained after some experience.

Upon initiating Marc, the user can import or open a file by selecting ”File” and then ”Import” or ”Open,”

respectively. If the imported object or structure is not visible, selecting ”Reset View” and ”Fill View” can

help display it.

Figure C.1: Marc Mentat - GUI

To rotate or move the imported object, the user should enable the dynamic control mouse, represented

by the red arrow symbol. This option should be deselected when performing other tasks. Exploring the

various options will allow the user to discover more details about them. A simplified model of a coupon

will be presented here using a 3D analysis.

Geometry & Mesh

First, the user should define the units and dimensions of the coupon. Select the ”Length Unit” option in the

”Geometry & Mesh” tab, and choose from the emerging list of units. Assuming mm is selected, choose

”Geometry & Mesh” in the same tab to define points, curves, surfaces, and solids. For this example, a

solid will be designed. By pressing ”Add”, the sentence ”Enter block solid origin coordinates” appears in

the dialog box; input 0,0,0 as the origin of the coordinate system. Then, define the dimensions of the

object, ensuring consistency with the initially selected units (e.g., mm).

Figure C.2: Create a solid
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Due to the simple geometry of this parallelepiped, select the ”Volumes” option in the Automesh tab.

Choose hexahedral volumes in the target family (Volume) and define the target element size. Ensure

that the largest element size used is the minimum dimension. Finally, select ”Voxel Mesh” and then the

object, creating the mesh.

Figure C.3: Meshing

Marc offers various elements, detailed in its documentation. In this case, the coupon represents a

composite laminate. To provide more details, the solid will be split into three regions, with three elements

through the thickness to match the thesis’s element types.

To change the class of the elements (e.g., using hexahedral elements), select ”Change Class,” choose

Hex (20), and apply it to all existing elements in the ”Elements” tab.

Figure C.4: Selecting hexahedral elements

The 3D composite element in Marc is Element type 150, as presented in the thesis. To select this

element, go to the ”Jobs” tab and then to ”Element Types.” Select ”Solid Composite/Gasket” for all existing

elements. Verify correct application by clicking ”ID Types” and ”ID Classes” in the ”Element Types” tab.

Geometric Properties

Under ”Geometric Properties,” select ”Solid Composite/Gasket,” and ”Face 4” as the direction, assuming

the z-direction is through the thickness. Click ”Add” and apply this property to all existing elements.
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Material Properties

Defining material properties is critical for the analysis. In the ”Material Properties” tab, click ”New” and

select ”Standard” to create a lamina or matrix core.

Assuming the matrix core is created first, since the material is isotropic, select ”Elastic-Plastic Isotropic,”

and input Young’s modulus and Poisson ratio. If a failure criterion is to be used, select the ”Damage

Effects” tab and choose failure instead of damage.

Figure C.5: Available failure criteria

If a user subroutine is to be used for a failure criterion, select ”User Sub. Ufail.” Otherwise, up to three

criteria from the list can be used, detailed in Marc’s documentation. Before applying this material to the

elements, define the different laminas. Select ”Standard” again, choose ”Elastic-Plastic Orthotropic,” and

apply the properties in three directions. Similarly, select ”Damage Effects” and apply the failure criteria.

To construct the laminate, select ”Composite” instead of ”Standard” material.

Figure C.6: Creating a composite material
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The available materials will be displayed on the right. To build the laminate, click ”Append” and create the

stacking sequence. Assume the coupon consists of a carbon fiber oriented at 60 degrees, a GFRP blade

oriented at 45 degrees, a core matrix, and symmetrical laminas. Assign the appropriate material to each

element.

Figure C.7: Stacking sequence

Creating the external surfaces of the coupons first and hiding them to apply the polymat material to the

middle elements by selecting ”Add” for all visible elements yields the desired laminate structure.

Figure C.8: Different materials

To apply a second type of element, such as solid brick elements type 21, return to the ”Geometric

Properties” tab, select ”Solid,” and then hide the composite materials to choose the middle elements.

This process applies the correct section to the middle elements. From the ”Jobs” tab, select solid element

21 and apply it to the middle elements.
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Figure C.9: Different types of elements

In the ”Material Properties,” apply ”Usub Orient2” to ensure the Z-direction is through the thickness if

draping capabilities are needed. However, for this coupon, the ”Usub Orient2” subroutine is unnecessary

as it was specific to correcting fiber orientation in the complex shape of the blade described in the thesis.

Boundary Conditions

Assuming the coupon is clamped on one side and under tension on the other, click ”New” in the ”Boundary

Conditions” tab to restrict displacement in all axes and apply the condition to the desired nodes.

Figure C.10: Clamped boundary condition

Similarly, apply a point load to each node on the other side of the coupon.
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Figure C.11: Tensile force at the other side

For a smooth load application, use ”Tables Coord. Syst.” and follow the provided guidelines.

Figure C.12: Use table

Figure C.13: Apply the load linearly
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Figure C.14: Select table when the load is applied

Loadcases

Select a new load case in the corresponding tab, choose ”Static,” and define the time steps for the analysis.

For this analysis, only one step is adequate, but this depends on user requirements.

Figure C.15: Time steps
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Jobs

In the ”Jobs” tab, select the type of analysis (e.g., Structural) and choose between three numerical methods

for result calculation. ”Large Strain” was selected in the thesis, but further information is available in

Marc’s documentation. For initial loads, only displacement should be selected as the coupon is assumed

intact before loading.

Figure C.16: Initial loading

Select load case ”lcase1” and choose the list of job results.

Figure C.17: Job results

In ”Job Properties,” under the ”Analysis Options” tab, details about the solving process are available.

Before running an analysis, perform a ”Check” to identify any warnings or errors in the model. If no

problems are found, press ”Submit” to run the model. If a user subroutine is required, import it by clicking

”Fortran Source File” and selecting the subroutine, ensuring it is on the same disk as the Fortran compiler.
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Results

To view the results, ensure the ”Status” indicates ”Complete,” then click ”Open Binary Post File.” Results

can be viewed in the ”Model Plot” tab. To extract data from the model, follow the provided process.

Figure C.18: Extract results

Figure C.19: Tools
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