

Delft University of Technology

HUMA
Heterogeneous, Ultra Low-Latency Model Accelerator for The Virtual Brain on a Versal
Adaptive SoC
Movahedin, Amirreza; Landsmeer, Lennart P.L.; Strydis, Christos

DOI
10.1145/3706628.3708875
Publication date
2025
Document Version
Final published version
Published in
FPGA 2025 - Proceedings of the 2025 ACM/SIGDA International Symposium on Field Programmable Gate
Arrays

Citation (APA)
Movahedin, A., Landsmeer, L. P. L., & Strydis, C. (2025). HUMA: Heterogeneous, Ultra Low-Latency Model
Accelerator for The Virtual Brain on a Versal Adaptive SoC. In FPGA 2025 - Proceedings of the 2025
ACM/SIGDA International Symposium on Field Programmable Gate Arrays (pp. 223-233). (FPGA 2025 -
Proceedings of the 2025 ACM/SIGDA International Symposium on Field Programmable Gate Arrays).
Association for Computing Machinery, Inc. https://doi.org/10.1145/3706628.3708875
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3706628.3708875
https://doi.org/10.1145/3706628.3708875

HUMA: Heterogeneous, Ultra Low-Latency Model Accelerator
for The Virtual Brain on a Versal Adaptive SoC

Amirreza Movahedin
Erasmus Medical Center

Rotterdam, The Netherlands
Delft University of Technology

Delft, The Netherlands

Lennart P. L. Landsmeer
Delft University of Technology

Delft, The Netherlands
Erasmus Medical Center

Rotterdam, The Netherlands

Christos Strydis
Erasmus Medical Center

Rotterdam, The Netherlands
Delft University of Technology

Delft, The Netherlands

Abstract
Brain modeling can occur at different levels of abstraction, each
aimed at a different purpose. The Virtual Brain (TVB) is an open-
source platform for constructing and simulating personalized brain-
network models, favoring whole-brain macro-scales while reducing
micro-level detail. Among other purposes, TVB is used to build
patient-specific, digital, brain twins that can be used in different
clinical settings, such as the study and treatment of epilepsy. How-
ever, fitting patient-specific TVB models requires a large number
of successive and time-consuming simulations. By studying the
internal structure of TVB, we observed heterogeneous computa-
tion needs in its models which could be leveraged to accelerate
simulations. In this work, we designed and implemented HUMA,
a heterogeneous, ultra low-latency, dataflow architecture on an
AMD Versal Adaptive SoC to accelerate TVB fitting to different
patient-brain makeups. Our heterogeneous solution runs about
27× faster compared to a modern-day, server-class, 32-core CPU
while consuming a fraction of its power. Additionally, it delivers on
average about 14× lower latency, 1.7× better power efficiency and
an order-of-magnitude lower energy consumption when compared
against the high-performance GPU version of TVB. The achieved
latency savings reveal a significant potential in model-fitting for
individual patients as well as in closed-loop biohybrid experiments.

CCS Concepts
•Hardware→Hardware accelerators; • Computer systems
organization → Data flow architectures.

Keywords
The Virtual Brain, Acceleration, Ultra Low-latency, Versal, Hetero-
geneous

ACM Reference Format:
Amirreza Movahedin, Lennart P. L. Landsmeer, and Christos Strydis. 2025.
HUMA: Heterogeneous, Ultra Low-Latency Model Accelerator for The Vir-
tual Brain on a Versal Adaptive SoC. In Proceedings of the 2025 ACM/SIGDA
International Symposium on Field Programmable Gate Arrays (FPGA ’25),
February 27–March 1, 2025, Monterey, CA, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3706628.3708875

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

FPGA ’25, February 27–March 1, 2025, Monterey, CA, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1396-5/25/02
https://doi.org/10.1145/3706628.3708875

1 Introduction
For centuries, understanding the brain and the way it works has
been of great concern to scientists. The National Academy of En-
gineering of the United States has classified reverse engineering
the brain as one of the grand challenges of the 21st century [20].
Due to the tremendous leaps in computing capabilities of late, brain
simulation has become increasingly important in neuroscientific
research. Brain simulation can be performed at different levels of
abstraction for different purposes [21]. Nowadays, coarse-grained
brain models are developed with the goal of clinical use in mind.

The Virtual Brain (TVB) is one of the leading tools in building
and simulating large-scale brain models [22]. By reducing the com-
plexity at the microscopic level, TVB can deliver an overview of
the brain’s macro-organization. With this modeling strategy, TVB
can produce sufficiently accurate brain signals that can be useful
in various clinical applications. TVB divides the entire brain into
different regions known as centers. Each center models the activity
of all the neurons in a given brain region, called a neural mass.
These centers are typically sparsely interconnected, affecting each
other’s activity in a process called coupling. The couplings among
centers bear different strengths (represented with a weight value)
in addition to delays which are due to the limited speed of signal
propagation in the brain.

To make the model more accurate for each patient, TVB encodes
personal, brain-imaging data in the described base model. This
means that the brain region that each center represents, in addition
to the weights and delays associated with the centers’ connectiv-
ity, are patient-specific. For each patient, the personal brain model
must be tuned in a process calledmodel fitting. One common fitting
method is Bayesian Inference [7, 11] which requires a large num-
ber of successive simulations. One class of algorithms that can be
used within the framework of Bayesian inference is Markov-Chain
Monte Carlo (MCMC) [1, 10]. These fitting strategies are used to in-
fer certain model parameters that are of interest within the setting
in which TVB is being used [28]. Under MCMC, a large number
of simulations is performed one after the other. This means that
the output of each simulation has to be used as input to the next
simulation.

Since such model-fitting strategies are typically very time-con-
suming, achieving low-latency execution of TVB models could
greatly accelerate this process. Additionally, TVB models can po-
tentially be used in brain-computer interface (BCI) systems [23, 29]
or biohybrid experiments [15], which require interaction of bio-
logical with in silico neurons in their control loop. In this case, a
low-latency platform that can iterate quickly over many, individual
TVB model simulations would be advantageous.

223

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by T
U

 D
elft L

ibrary on A
pril 7, 2025.

https://orcid.org/0009-0007-5559-7093
https://orcid.org/0000-0003-0010-7249
https://orcid.org/0000-0002-0935-9322
https://doi.org/10.1145/3706628.3708875
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3706628.3708875
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3706628.3708875&domain=pdf&date_stamp=2025-02-27

FPGA ’25, February 27–March 1, 2025, Monterey, CA, USA Amirreza Movahedin, Lennart P. L. Landsmeer, and Christos Strydis

Besides, a key observation is that center and coupling calcu-
lations are heterogeneous computations with different memory-
access needs. For all aforementioned reasons, in this work, we
present HUMA, a heterogeneous accelerator of TVB-model simula-
tions implemented on a Versal Adaptive SoC [31]. HUMA delivers
sustained lower latency compared to both multi-threaded CPU
and high-performance GPU versions of TVB while consuming less
power. The main contributions of this work are analysis of the TVB
model and its needs in terms of computation and memory capacity,
in addition to designing a heterogeneous accelerator for simulat-
ing TVB models, achieving on average 27× and 14× lower latency
compared to the CPU and GPU versions of TVB, respectively.

The rest of the paper is structured as follows: Section 2 pro-
vides necessary background information on the problem at hand.
Section 3 gives an overview of related works done regarding TVB
acceleration. Section 4 dives into the details of the design and imple-
mentation of HUMA for TVB model simulation. Section 5 presents
the performance results of HUMA and compares it to the related
work. Finally, in Section 6 concluding remarks are presented.

2 Background
In this section, background information of the accelerated model
and the heterogeneous-computing platform used is given.

2.1 The Virtual Brain Model
As shown in Figure 1, the TVB pipeline starts with MRI imaging
to extract the brain regions in addition to the delay and strength
of the connections between them [28]. To add dynamics to the
model, neural masses are added to the information extracted from
MRI imagings. This leads to the personalized TVB model. In order
to make this model more accurate and patient-specific, it needs
to be fitted. To perform the model fitting, the personalized TVB
model is simulated, the output of the simulation is compared to
the EEG signals taken from the patient, and the model parameters
are updated accordingly. This process repeats until the model pro-
duces accurate enough outputs. Eventually, this fitted model can
be used in different applications such as virtual simulation, virtual
surgery [28], or real-time closed-loop systems [23, 29].

As mentioned earlier, TVB divides the brain into different re-
gions called centers. These centers are interconnected via different
patterns, with each connectivity (or coupling) having a certain
strength (or weight) and delay associated with it. Each center con-
tains internal neural activity called local dynamics, which comprise
the neural-mass model of that center. In addition to local dynamics,
each center is also affected by other centers which is referred to as
the coupling input to the center. If we assume there are 𝑁 centers
in the model, the activity of each center 𝑖 ∈ [1, 𝑁] over time is
described using a differential equation shown in (1).

𝑑 ®𝑋𝑖 (𝑡)
𝑑𝑡

= 𝐹

(
®𝑋𝑖 (𝑡), 𝐶𝑖 (𝑡)

)
+ 𝑢 (𝑡) + 𝜂 (𝑡) (1)

where ®𝑋𝑖 ∈ R𝑀 are the state variables of each center. The activ-
ity output of each center is one of these state variables. Function
𝐹 : R𝑀 → R𝑀 describes the local dynamics of each center, while
𝑢 (𝑡) and 𝜂 (𝑡) are the external input to the center and the noise
in the system, respectively. Although important for the model’s

Figure 1: The Virtual Brain (TVB) model fitting pipeline [19].
A low-latency TVB simulation can reduce the fitting process
time by speeding up the loop marked with red.

accuracy, these two components are ignored for the rest of this
work since they do not affect the design and implementation of the
accelerator in a meaningful way.

The coupling inputs to each center are represented by 𝐶𝑖 (𝑡),
which is added to one of the state variables of the center. The𝐶𝑖 (𝑡)
for each center 𝑖 ∈ [1, 𝑁] is calculated as formulated in (2).

𝐶𝑖 (𝑡) = 𝐾𝑝𝑜𝑠𝑡
©­«
𝑁∑︁
𝑗=1

𝑊𝑖 𝑗𝐾𝑝𝑟𝑒
(
𝑋 𝑗 (𝑡 − 𝑑𝑖 𝑗), 𝑋𝑖 (𝑡)

)ª®¬ (2)

where𝑊𝑖 𝑗 and 𝑑𝑖 𝑗 represent the weight and delay associated with
the connection from center 𝑗 to center 𝑖 respectively. Functions
𝐾𝑝𝑟𝑒 ∈ (R,R) → R and 𝐾𝑝𝑜𝑠𝑡 ∈ R → R are pre- and post-synapse
functions respectively which scale the signals from other centers
to more realistically represent their strength when reaching the re-
ceiving center [24]. It is worth noting that the connections between
the centers in the model are usually sparse, meaning that a large
number of weight values (𝑊𝑖 𝑗) in the model are zero. This allows
for utilizing sparse-storage and -calculation techniques [8] for the
coupling calculation shown in (2).

Whenwe talk about simulating the brainmodel, wemean solving
differential equations (1) for all the centers in the model over a
certain amount of timesteps. There are many methods to solve
differential equations numerically with different accuracy levels and
computational costs. The method we used in HUMA is the Forward
Euler (FE) which provides the required accuracy with minimal
computational cost [14, 24].

Since we want our implementation to be as general as possible
and require no re-synthesis when different aspects of the model
change, we replace the local-dynamics function 𝐹 in (1) with a
Multi-Layer Perceptron (MLP). MLPs are universal function approxi-
mators [12], which can be leveraged in this system. By changing
the parameters of the MLP, different local-dynamics functions can
be realized in the model with no need for re-synthesizing the im-
plementation. Additionally, MLPs that are trained to approximate
a certain neural-mass model can be used to better infer unknown
parameters that are of interest within the context in which TVB is
being used [3] (for example regional excitability in epilepsy [14]).

224

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by T
U

 D
elft L

ibrary on A
pril 7, 2025.

HUMA: Heterogeneous, Ultra Low-LatencyModel Accelerator for The Virtual Brain on a Versal Adaptive SoC FPGA ’25, February 27–March 1, 2025, Monterey, CA, USA

Figure 2: Illustration of the problem at hand. (Top) The inter-
connected network of centers with different strengths and
distances, which results in different delays. (Bottom) The
coupling calculation, MLP evaluation, and Forward Euler
solver calculations within each center.

Equation (3) formulates the computation that must be performed
for each center 𝑖 ∈ [1, 𝑁] of the model at each timestep of the
simulation. ℎ is the timestep size of the FE method, 𝑡 is the timestep
of the simulation, and 𝐶𝑖 (𝑡) is calculated as shown in (2). Figure 2
demonstrates the network of centers and the processes that exist
within each center. By comparing Equations (2) and (3), we can
see the pre-existing heterogeneous computational need within the
modified TVB algorithm which makes it a perfect fit for implemen-
tation on a heterogeneous platform such as the Versal Adaptive
SoC.

®𝑋𝑖 (𝑡 + 1) = ®𝑋𝑖 (𝑡) + ℎ ·
(
𝑀𝐿𝑃 (®𝑋𝑖 (𝑡)) +𝐶𝑖 (𝑡)

)
(3)

2.2 Versal Adaptive SoC
The Versal Adaptive SoC is a family of heterogeneous computing
platforms developed by AMD. The Versal platform we used for
HUMA, VC1902 (on the VCK190 evaluation board) combines the
traditional FPGA fabric, referred to as the Programmable Logic (PL),
with intelligent engines, referred to as the AI Engines (AIE) [31].
The Versal VC1902 platform also includes a processing system
(PS) which acts as the control unit of the device. The AIEs of the
platform consist of 400 VLIW/SIMD processing units organized
in a 2-dimensional interconnected array structure [2]. Each AIE
processor has 32 KBytes of data memory, runs at 1.25 GHz, and
can perform 8 single-precision, floating-point operations per cycle.
We refer to the specific VC1902 device on the VCK190 board as the
Versal platform for the rest of this paper.

3 Related Work
The original TVB [22] is a Python-based tool for large-scale brain
modeling available to neuroscientists. The numerical algorithms
behind the original TVB have been extracted from the main tool by
the TVB team and are available to the public [30]. This code is also

coded in Python and shows the basic algorithms and calculations
performed in the TVB system. The original TVB runs on a CPU and
does not utilize any parallelism (multithreading or SIMD). Addition-
ally, the original TVB does not use sparse-calculation techniques
for the coupling calculations and also does not include an MLP for
local dynamics evaluation.

Some optimized versions of TVB on CPU such as Fast TVB [25]
and TVB C++ [17] have also been developed by the TVB team. Fast
TVB is a specialized and optimized C implementation of TVB only
for a specific neural-mass model (meaning specific connectivity
and local dynamics for the large-scale model). Fast TVB trades the
generality of the original TVB for the higher performance of a sin-
gle model. TVB C++ is another, faster version of the original TVB
which is more general than Fast TVB, providing the flexibility of the
original TVB to some extent. Both of these implementations utilize
multithreading and SIMD execution to accelerate the original TVB
to mostly answer a specific research question. These implemen-
tations are not considered in this work any further due to their
limited generality, the lack of MLP usage for the local dynamics ap-
proximation, as well as inaccessibility for performing performance
evaluations.

The original TVB is also implemented as a JAX-based [4] Python
package for parallelized execution on different platforms such as
CPUs and GPUs called vbjax [6]. This JAX-based TVB implementa-
tion is capable of mapping the numerical calculations of the original
TVB to the cores of CPU or GPU and, unlike the original TVB, it
uses an MLP for local dynamics evaluation. However, this version
of TVB does not perform sparse coupling calculations either. The
main idea behind the acceleration performed in this version of TVB
is batching many simulation instances and running them all at the
same time, while parallelizing the calculations withing each simula-
tion as well. To permit efficient batching, all simulations running in
parallel are only different in the parameter values of the brain model
(for example the values of the connection weights), and share all
other aspects of the model. This means that all simulations running
concurrently share the same control sequence in their calculation
and differ only in the values used in those calculations, leading to
optimal coalesced memory-access during the calculations, which is
an important constraint when trying to quickly fit patient-specific
models.

In this work we developed HUMA, the first heterogeneous accel-
erator which promotes simulation speed primarily by minimizing
single-simulation latency, effectively permitting the rapid handling
of diverse patient neural makeups.

4 HUMA Accelerator for TVB
In this section, initial problem analysis and design ideas, in addition
to the implementation details of HUMA on the heterogeneous
Versal fabric are discussed.

4.1 Problem Analysis
The TVB algorithm was provided to us as a Python script [30]. We
ported this Python script to a single-threaded C++ program to use
for profiling and implementation validation. Additionally, we added
the MLP evaluation and sparse-coupling calculation support to our
C++ port of the original TVB. The profiling of the C++-coded origi-
nal TVB showed that when not using sparse calculations, 66% of the

225

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by T
U

 D
elft L

ibrary on A
pril 7, 2025.

FPGA ’25, February 27–March 1, 2025, Monterey, CA, USA Amirreza Movahedin, Lennart P. L. Landsmeer, and Christos Strydis

Table 1: Computation, memory capacity, and data-exchange
dependency of each part of the problem on the number of
centers (𝑁) and state variables per center (𝑀), number ofMLP
hidden layers (𝐻) and neurons per hidden layer (𝐿), and the
maximum coupling delay with non-zero weight (𝑑𝑚𝑎𝑥).

MLPFE CC

Computation O(𝑁𝑀𝐿 + 𝑁𝐻𝐿2) O (𝑁 2)

Memory O(𝑀𝐿 +𝐻𝐿2 +𝑀𝑁) O (𝑁 2 + 𝑁𝑑𝑚𝑎𝑥)

Data Exchange O(𝑁 +𝑀) O (𝑁)

runtime of the simulation is spent on coupling calculations and the
rest is spent on MLP evaluation. When using sparse calculations,
around 26% of the runtime is spent on coupling calculations and
the rest is spent on MLP evaluation.

To analyze the problem and design the heterogeneous system,
we divided the problem into two parts: 1) MLP evaluation and FE
solver (MLPFE), and 2) Coupling Calculation (CC). These two parts
of the problem have different computational needs. The MLPFE
part consists of a series of dense-matrix multiplication workloads
with organized, coalesced memory accesses, whereas the CC part
requires unorganized, non-coalesced memory accesses to the state-
variable history and performs sparse operations. The different com-
putation needs inherent in the problem motivated us to implement
The Virtual Brain on a heterogeneous platform.

Table 1 shows the dependency of computation, memory capacity,
and data exchange of each part of the problem on the model’s
parameters using big-O notation. As seen in Table 1, the number
of centers of the model has a quadratic effect on the computation
and memory needs of the CC part of the problem. Furthermore,
the memory needs of the CC process have a linear dependency
on the largest coupling delay with non-zero weight (𝑑𝑚𝑎𝑥), which
indicates how much history of each center is required to be stored.

When looking at the MLPFE process, both the computation and
memory needs of this part of the problem have a quadratic depen-
dency on the number of neurons per hidden layer of the MLP (𝐿).
However, unlike the simulation parameters, the hyperparameters
of the MLP are fixed throughout the operation of the system. Addi-
tionally, the MLPFE part produces 𝑁 ∗𝑀 values at each timestep
which needs to be transferred to the CC part and the main memory.
On the other hand, the CC part only produces 𝑁 coupling values
per timestep which has to be transferred to the MLPFE part. The
required bandwidths for these value transactions are reflected in
the data-exchange row in Table 1.

As mentioned in Section 2, the connections between the cen-
ters are sparse. This sparsity affects the computation and memory-
capacity requirements of the CC part of the application. According
to our analysis, if the sparsity of the connections is more than 50%,
storing data in sparse format would save onmemory. Figure 3 shows
how the computation and memory-capacity requirements of the CC
part change when the number of centers varies under two different
sparsity values. As the figure reveals, with a higher sparsity, the
computing needs still grow quadratically but at a slower rate. On
the other hand, the memory requirements switch to a linear growth
due to the sparse-storage optimization.

(a) Computation (b) Memory

Figure 3: CC requirements under different sparsity values

4.2 Design and Implementation
Design and implementation details of HUMA for each part of the
problem are discussed first, followed by the overall architecture of
the system.

4.2.1 MLP Evaluation and FE Solver (MLPFE). As mentioned
earlier, this part of the problem consists of MLP evaluation and
Forward Euler solving for all of the centers in the model. We created
MLPFE Engines that can perform the required computation for a
group of centers. All the centers in the model are divided into
different groups and the MLP and FE solving workload of all the
centers in each group are assigned to one MLPFE engine. Since the
MLP evaluation of each center only requires the past state of that
center, the MLPFE engines do not require any communication with
each other and can run in parallel independently. However, the FE
solver requires the coupling input for each center which comes
from the CC part of the problem, so the MLPFE engines have an
input receiving the calculated couplings for the centers they are
responsible for from the CC subsystem at each timestep.

Since the majority of MLPFE engines’ workload is the MLP
evaluation (which aremajoritymatrixmultiplication), these engines
were implemented on the AIE of the Versal platform. This choice
was made because we found that the AIE performance [27] exceeds
the pure FPGA implementations of DNN inference systems [9, 26]
in terms of number of calculations per second. Each MLPFE engine
time-multiplex the MLP evaluation of different centers that are
assigned to it, receives the coupling inputs for each of those centers,
and time-multiplex the FE solving step for each of the centers and
outputs the result.

4.2.2 Coupling Calculation (CC). As mentioned in Section 2.1,
each center for its coupling calculation needs to access past state
variables of certain other centers. This can be seen in the history
space diagrams shown in Figure 4. Therefore, the main question
for designing the sub-system for this part of the problem becomes
how to store and access the state variable history of the centers
efficiently.

Center-based Approach The straightforward method is to store
the state-variable history by dividing the centers into groups, and
storing the data for each group in onememory block. A computation
block resides next to each memory block that performs the coupling
calculation for the centers of that group. The combination of the
computation, memory, and necessary control blocks are referred

226

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by T
U

 D
elft L

ibrary on A
pril 7, 2025.

HUMA: Heterogeneous, Ultra Low-LatencyModel Accelerator for The Virtual Brain on a Versal Adaptive SoC FPGA ’25, February 27–March 1, 2025, Monterey, CA, USA

(a) Center-based Approach where the history data is di-
vided into groups based on the centers

(b) Delay-basedApproachwhere the history data is divided
into groups based on the delays

Figure 4: Diagram of different approaches regarding the coupling calculation

to as CC Engines. This way of approaching the problem, which we
call a center-based approach, is depicted in Figure 4a.

In this design, due to inter-center dependencies mentioned ear-
lier, the CC engines require to be able to access each others memory.
Since these accesses are arbitrary and could change from simulation
to simulation, a flexible Data Exchange block is required to facili-
tate inter-engine memory accesses. According to our analysis, the
bandwidth that the data exchange block is needed to provide has
a complexity of O(𝑁𝐸), in which 𝐸 is the number of CC engines.
With this bandwidth requirement, the data exchange block can
become a serious bottleneck in the system, in addition to limiting
the scalability of the system where increasing the number of CC
engines could worsen the performance.

Delay-based Approach In order to increase the data locality and
movement, in addition to mitigating the bandwidth-requirement
issue of the center-based approach, we designed and implemented
a dataflow-style, systolic array architecture for this part of the
problem. The main idea of this design is to change our perspective
from a center-based approach, to a delay-based approach (depicted
in Figure 4b) where we group the connectivities with the same
delay and perform the calculations of the groups in parallel. In
other words, This design uses the fact that the coupling calculation
formula (2) can be rewritten as (4) and (5). 𝐸 indicates the number of
delay groups, and 𝐷𝑒𝐿 and 𝐷𝑒𝐻 show the lower and upper bounds
of each delay group respectively.

𝐶𝑖 (𝑡) = 𝐾𝑝𝑜𝑠𝑡

(
𝐸∑︁
𝑒=1

𝐶𝑖𝑒 (𝑡)
)

(4)

𝐶𝑖𝑒 (𝑡) =
𝑁∑︁
𝑗=1

𝑊𝑖 𝑗𝐾𝑝𝑟𝑒
(
𝑋 𝑗 (𝑡 − 𝑑𝑖 𝑗), 𝑋𝑖 (𝑡)

)
For 𝑑𝑖 𝑗 ∈ [𝐷𝑒𝐿, 𝐷𝑒𝐻)

(5)

This rearrangement of equations presents a parallelization op-
portunity where data locality is increased, and data movement is
performed with higher efficiency. For the coupling input of each
center 𝑖 at each timestep 𝑡 (𝐶𝑖 (𝑡)), its calculation is divided into

different parts that need to be added together (𝐶𝑖𝑒 (𝑡)). These parts
are coupling inputs that each has a delay in the range of𝐷𝑒𝐿 to𝐷𝑒𝐻 ,
specific to each group. In this way, the calculations of each part
require no additional data from other parts, and data movement
only happens when we move from one timestep to another. To get
to an architecture based on this parallelization opportunity, and to
increase data locality, we divide the entire range of coupling delays
in the model into subgroups, and store the history of all the centers
associated with each delay range in the memory of that delay group.
This can be seen in Figure 4b.

There are multiple CC Engines in this design, and as can be seen
in Figure 4b, the engines are chained together in a way that engine
#1 can send data to engine #2, and engine #2 can send data to engine
#3, and so on. Each engine calculates the couplings associated with
a set of connection delays. We take all the unique connection delay
values, sort them, and divide the calculation points associated with
those delay values between the CC engines. At each timestep, all the
calculated state variables enter the CC engine #1. Each state variable
might or might not contribute to a coupling with the delay that
engine #1 is responsible for. If it is, the coupling value is calculated
in the engine using that value. As the simulation advances, the state
variables are passed from engine to engine until they are no longer
needed for coupling calculation and are absorbed by the last CC
engine of the chain.

The data exchange block of the center-based design is replaced
by an accumulation block in this approach (according to (5)). This is
because all the calculated couplings in different CC engines must be
added together to get the final coupling input for each center. This
accumulation block is faster, more scalable and can be implemented
efficiently in the PL of the Versal. Despite these benefits over having
a centralized data exchange block, the accumulation process can
quickly become a bottleneck when increasing the number of CC
engines. This is because of the fact that values from more and more
sources are needed to be added together. To mitigate the challenge,
we implemented this block as a 2-level, pipelined tree. More levels
can be added when increasing the number of CC engines.

227

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by T
U

 D
elft L

ibrary on A
pril 7, 2025.

FPGA ’25, February 27–March 1, 2025, Monterey, CA, USA Amirreza Movahedin, Lennart P. L. Landsmeer, and Christos Strydis

Figure 5: (Left) Block diagram of HUMA (Right) CC-Engine 12-stage calculation pipeline. 𝑛 is the pointer traversing the sparse
arrays. Some operations span more than one clock cycle.

However, unlike MLPFE engines, having more CC engines does
not necessarily translate to better performance, regardless of the
accumulation process. This will be discussed more in Section 5.2.

Within each CC engine, a 12-stage pipeline performs the calcula-
tions. Figure 5 shows the CC engine’s pipeline. Themain calculation
only happens in stages 10 and 11, with the rest of the pipeline re-
sponsible for calculating the address of the memory accesses and
transmitting the results to the accumulator. Additionally, the con-
nectivity data are stored in Compressed Sparse Row (CSR) format
which would reduce the required memory capacity for these data.
Furthermore, the calculations done within the CC engines utilize
the CSR storage format and does not decompress the connectivity
data. Figure 5 confirms our analysis that the main challenge of the
coupling calculation process is not the calculation, but the memory
capacity and access.

All of the memory blocks (containing memory for connectivity
and history data) in the calculation pipelines of the CC engines
are implemented in the Vitis HLS as true 2-port URAMs. These
URAM blocks are needed to be operating in 2-port configuration
because of the pipelining with a minimum initiation interval of
1. At the beginning of each simulation, an initialization process
populates the history and connectivity data memories from the
main memory. This process can be bypassed if many simulations
are running back to back with mostly similar connectivity data,
only needing to update the changes from the main memory.

For each timestep of the simulation, the calculation pipeline
shown in Figure 5 starts. During this process, all center calculations
related to the CC engine are performed and sent to the accumulation
block. Additionally, the history data that is needed to be passed
to the next CC engine are also transmitted during this process.
When the described calculation and transmission process are done,
a receiving process starts that reads the new history values from
the previous CC engine and updates its history ring buffer. Due to
data dependencies within the simulation algorithm, the calculation
and receiving processes are not overlapping and are performed one
after the other. Additionally, for the same reason, each simulation
timestep is calculated when the previous timestep is completely
finished. Figure 6 illustrates the details of different parts of the CC
engine and its connections to different parts of the system.

Figure 6: Details of different parts of the CC engine and its
connections to the neighboring engines and the accumula-
tion block. BRAM buffers are put between the connections
to prevent communication stalls.

In theHUMA implementation shown in Figure 5, at each timestep,
while the centers’ coupling inputs are calculated in the CC engines,
the MLPFE engines evaluate the local dynamic of all the centers
and wait for the values from the CC engines. After receiving the
calculated coupling values, the MLPFE engines perform the FE solv-
ing and produce the next step of the state variables. These newly
calculated state variables are shifted into the first CC engine, as
the state variable history values across different engines are shifted
towards the last CC engine.

The delay-based, CC engine-chain architecture was initially im-
plemented exclusively on the AIEs of the Versal alongside the
MLPFE engines [18]. Our initial intuition was that the dataflow
nature of the AIEs would make it a good candidate for this design.
However, the inherent von Neumann architecture of the AIE tiles,
in addition to the limited amount of memory available to each tile
did not match the sparse calculation and large memory capacity

228

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by T
U

 D
elft L

ibrary on A
pril 7, 2025.

HUMA: Heterogeneous, Ultra Low-LatencyModel Accelerator for The Virtual Brain on a Versal Adaptive SoC FPGA ’25, February 27–March 1, 2025, Monterey, CA, USA

Table 2: TVB Datasets [5]

TVB76 TVB192 TVB600a TVB998

No. of Centers 76 192 600 998

Sparsityb (%) 72.99 90.42 94.80 96.41

No. of
Connections 1,560 3,532 18,736 35,730

aA mock-up dataset for performance measurement purposes
bPercentage of zero-valued elements in connectivity matrix.

needs of the coupling calculations. Unlike theMLPFE engines which
have organized calculations and coalesced memory accesses that
can benefit greatly from the vector processors of the AIE tiles, the
CC engines could not leverage this capability due to their sparse,
arbitrary and unorganized calculations and memory accesses. The
lower-than-expected performance of this implementation led us to
leverage the heterogeneous computation and memory needs within
the TVB algorithm, and move the CC engines to the PL of the Versal
platform.

4.2.3 Full System. Figure 5 shows the block diagram of HUMA.
The structure of the MLPFE and CC engines was discussed earlier
in this section. The accumulation process in the Accumulate and
Organize block is implemented as a reduction tree. The organization
part of this block distributes the calculated couplings among the
MLPFE engines and gathers the newly calculated state variables
from these engines.

Next to the PL and AIE, an ARM processor controls these two en-
tities. A Python-based pre-processing script takes in the simulation
inputs (such as the size of the model and the connectivity data) and
generates a configuration file for the MLPFE and CC engines. The
ARM processor reads this configuration file and configures each
MLPFE and CC engine based on it. It then starts the simulation and
reads the outputs when the simulation finishes.

5 Evaluation
In this section, the performance, power, and area of HUMA are
evaluated. Additionally, the comparison between HUMA and the
related works introduced in Section 3 is also presented in this
section.

5.1 Methodology
HUMA and related works were benchmarked using datasets pro-
vided by TVB shown in Table 2. It is worth noting that, because of
the large size of the TVB998 model, a subset of this dataset with
600 centers (TVB600) was also used for benchmarking. This subset
is not accurate in terms of neuroscientific validity and is used for
performance measurement purposes only.

For the results presented in this section, we used the state-
variable number of 2 (𝑀 = 2) and an MLP architecture with one
hidden layer of 64 neurons (𝐻 = 1 and 𝐿 = 64) which was sufficient
to accurately calculate the local dynamics for the chosen neural-
mass model [3]. The MLP was trained to approximate the local
dynamics of a Simple 2D Oscillator model [13]. Additionally, the
reported numbers in this section are for simulations running for
3,000 timesteps with a 0.05-ms step size. All of the mentioned model

Table 3: Specifications of TVB evaluation platforms

TVB
Platform CPU GPU HUMA

Language Python (JAX) Python (JAX) C++
Vitis HLS

Device
AMD Ryzen

3970X
Nvidia Quadro

RTX6000

AMD Versal
VC1902

(VCK190 Board)

Max
Freq. 4.5 GHz 1.77 GHz AIE: 1.25 GHz

PL: 250 MHz

No. of
Cores

32 Cores
(64 Threads)

4608
CUDA Cores

400
AI Engines

Memory

L1: 2 MB
L2: 16 MB
L3: 128 MB

DDR4: 128 GB

L1: 64 KB
L2: 6 MB

DDR6: 24 GB

AIE: 12.8 MB
PL: 20.5 MB
DDR4: 8 GB

RAM BW 95.4 GB/s 672.0 GB/s 136.5 GB/s

Power
Cons.a 280 W Single: 162 W

Batched: 236 W 47 W

Process 7 nm 12 nm 7 nm

No. of
Trans. 15.2 B 18.6 B 37 B

aMeasured for GPU using nvidia-smi tool while running single and
batched simulations. Extracted for HUMA by measuring the power of
the entire board while running. TDP value reported for CPU.

parameters, including the number of centers and state variables per
center, hyperparameters of the MLP, and FE solver input such as
timestep size can be changed without the need to re-synthesize the
system.

In terms of correctness, the acceleration performed in HUMA did
not compromise the accuracy of the algorithm. We verified the out-
put validity of our implementation by comparing it to the original
TVB for different models. HUMA uses single-precision floating-
point arithmetic, just like CPU and GPU versions, in addition to
implementing the same exact formulas to ensure bit-accuracy.

Table 3 shows the specifications of different platforms where
TVB has been implemented and are considered here. Comparing
very different computing platforms is not a straightforward task.
However, using different normalization metrics, we try to get an
insight into the performance comparison of these systems. For both
CPU and GPU systems, we used the JAX-based implementation
of TVB (vbjax). The multi-threading and SIMD capabilities of the
CPU, in addition to the parallel computation capacity of the GPU are
fully utilized in vbjax. Although JAX-based implementations might
compromise some performance for the abstraction they provide,
it has been shown that the XLA compiler powering JAX is highly
competitive or can even outperform hand-tuned parallelized or
CUDA implementations for the types of workloads consisting of
local dynamics and coupling calculations [16].

5.2 HUMA Results
Table 4 shows the latency, throughput, and power consumption of
the heterogeneous HUMA implementation with 64 MLPFE and 32

229

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by T
U

 D
elft L

ibrary on A
pril 7, 2025.

FPGA ’25, February 27–March 1, 2025, Monterey, CA, USA Amirreza Movahedin, Lennart P. L. Landsmeer, and Christos Strydis

Table 4: HUMA results (on Versal VC1902 and with 64 MLPFE
and 32 CC engines)

TVB76 TVB192 TVB600 TVB998

Latencya (ms) 4.1 7.5 21.1 33.8

Throughput
(iterss)

726,037 398,830 142,186 88,683

Power (Watts) 46.71
aFor a simulation with 3,000 timesteps.

CC engines on the Versal device. Additionally, Table 5 shows the
resource utilization and power consumption breakdown of HUMA.
As mentioned earlier, HUMA is implemented on a VC1902 device
on the VCK190 evaluation board. The verification of HUMA, in
addition to performance and power measurements were all done
on the hardware itself. Version 2022.2 of Vivado and Vitis toolsets
were used.

HUMA utilizes URAMs of the Versal PL to store the connectivity
and history data. The BRAM resources of the PL are used as buffers
between connections to avoid stalls in the transmitting modules.
This division of memory resources helped with the acceleration
of the place-and-route processes when implementing this design.
Table 5 shows that HUMA implementation on Versal, as expected,
saturates the memory resources of the PL before any of the logic
and computation resources. In the AIEs of the Versal implementa-
tion, a communication kernel exists next to the 64 MLPFE engines.
However, all of these engines require additional memory to store
the parameters of the MLP. For this reason, each engine uses the
memory bank of its neighboring AIE tile as additional memory to
store the MLP parameters, which brings the utilization of the AIEs
to 130 tiles.

More than 50% of the dynamic power consumption of HUMA is
due to the AI Engines, as shown in Table 5. This is mostly due to
the fact that in the AIEs of the Versal platform, 64 small vector pro-
cessors (the MLPFE engines) are running at 1.25 GHz, performing
the MLP evaluations. The Network-on-Chip (NoC) of the Versal
platform consumes around 12.4% of the total power consumption.
The NoC connects different parts of the platform, including the
ARM processor and the CC engines that reside in the PL to the
off-chip main memory controller.

The MLPFE and CC engines run in parallel, and as a result the
overall performance of the system depends on which of these parts
of the system is running slower. The system’s bottleneck itself is
determined by different simulation parameters such as the number
of centers, the number of state variables per center, the MLP hyper-
parameters, and also the sparsity of the connections. Furthermore,
during our analysis, we realized that the distribution of values in
the delay matrix also affects the performance of the CC part of the
application, which in turn can shift the bottleneck of the system.
Figure 7 shows the distribution of the non-zero values in the delay
matrix of dataset TVB192. As can be seen, the concentration of
values around 300 timesteps is very high. As a result, the workload
assigned to the CC engines responsible for that delay range is high
which would bottleneck the CC execution. It is worth noting that
in order to reduce the maximum workload assigned to a single CC

Figure 7: Delay value distribution of TVB192 dataset and the
workload assigned to each of the 32 CC engines

engine, the pre-processor of the application assigns delay ranges
in a way to balance the workloads, as can be seen in Figure 7. The
way the performance of HUMA changes with regards to different
simulation parameters depends on which part of the system is the
bottleneck, and the formulas shown in Table 1.

5.3 Comparison to Related Work
In this section, HUMA is compared to the JAX-based CPU and
GPU versions of TVB introduced in Section 3. For the CPU version,
we used an AMD Ryzen Threadripper 3970X with 32 cores. This
modern-day, server-class CPU has large cache memories and is
optimized for multithreaded execution. For the GPU version of TVB,
we used an Nvidia Quadro RTX6000 GPU, which has a relatively
high performance per Watt. We benchmarked both these systems
with a range of different models and configurations. Figures 8a
and 8b show the latency and throughput results of the CPU and
GPU version of TVB next to HUMA, respectively. For latency, the
single-simulation configuration of the CPU and GPU versions of
TVB was used, whereas in the throughput results the batched-
simulation performance is reported. Additionally, Figures 8c and 8d
show the energy consumption and performance efficiency of the
benchmarked patforms, respectively.

Table 6 presents a comparison of the different TVB implemen-
tations as ported on the CPU, GPU, and Versal platforms. In order
to make the comparison fairer and easier, reported numbers are
normalized by the number of centers in the model. This is done by
dividing the latency and multiplying the throughput results by the
number of centers in the model, respectively. This normalization
makes comparison easier across different models, and also fairer
for implementations that experience under-utilization in certain
model sizes.

In terms of latency, HUMA performs on average 27× and 14×
faster compared to the CPU and GPU versions of TVB, respectively.
Additionally, since it consumes less power compared to the bench-
marked CPU and GPU, the energy efficiency of HUMA is around
85× and 52× higher compared to the TVB implementation on CPU
and GPU, respectively.

230

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by T
U

 D
elft L

ibrary on A
pril 7, 2025.

HUMA: Heterogeneous, Ultra Low-LatencyModel Accelerator for The Virtual Brain on a Versal Adaptive SoC FPGA ’25, February 27–March 1, 2025, Monterey, CA, USA

Table 5: Resource utilization and power consumption breakdown of HUMA on the Versal platform

Resource Utilization (–) % of Total Power Consumption (W) % of Total

Programmable Logic 6.57 15.06 %

LUT 131,255 14.59 % 0.78 1.78 %FF 182,167 10.12 %
DSP 191 9.71 % 0.21 0.48 %

BRAM 466 48.19 % 1.15 2.64 %
URAM 386 83.37 % 0.26 0.60 %
Other 4.17 9.56 %

AI Engines 130a 32.50 % 15.64 35.85 %

Network-on-Chip 5.40 12.38 %
Device Static 14.67 33.62 %

Total 43.63b 100.0 %
aHalf of the utilized AIE tiles only used for their memory.
bThis is a post-implementation estimation by the Vivado power tool. The actual power consumption is 46.71 W.

(a) Latency (as measured for a single simulation with 3,000
timesteps)

(b) Throughput (as measured for the CPU and GPU ver-
sions in the batched-simulation configuration)

(c) Energy Consumption (as measured for a single simula-
tion with 3,000 timesteps)

(d) Performance Efficiency (as measured for the CPU and
GPU versions in the batched-simulation configuration)

Figure 8: Performance comparison between HUMA (AMD VC1902 on VCK190 board), GPU (Nvidia Quadro RTX6000), and CPU
(AMD Ryzen Threadripper 3970X) versions of TVB.

231

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by T
U

 D
elft L

ibrary on A
pril 7, 2025.

FPGA ’25, February 27–March 1, 2025, Monterey, CA, USA Amirreza Movahedin, Lennart P. L. Landsmeer, and Christos Strydis

Table 6: Overview of the normalized (by the number of centers) results of different versions of The Virtual Brain

Implementation TVB on CPU [6] TVB on GPU [6] TVB on Versal (HUMA)
Avg. Latencya

(ms) 1.08 0.57 0.04

Avg. Throughput
(M iters/s) 105.9 243.1 76.6

Avg. Energy Consumptiona,b

(mJ)
150.8 93.06 1.91

Avg. Throughput per Wattb

(K iters/s.Watt)
756.2 1,030.0 1,626.4

aFor a single simulation with 3000 timesteps.
bHalf the reported TDP value is used for CPU calculations.

The low latency of HUMA means that it would fit very well
within themodel-fitting processes that utilizeMCMC in their Bayesian
inference framework. Thismeans that, by utilizingHUMA, a patient-
specific, TVB brainmodel can be trained an order of magnitude faster
compared to CPU or GPU while consuming a fraction of their power.
This would benefit the patients and doctors who use large-scale
brain models such as TVB in the course of their treatment signifi-
cantly.

In terms of throughput, since the GPU is capable of batching a
large number of simulations and running them at the same time,
the GPU version of TVB performs around 3× better compared to
HUMA. This superiority of GPU over the Versal platform in terms
of throughput was expected since the GPU, with its substantial
parallel capacity, is designed for delivering very high throughputs.
The CPU implementation also outperforms HUMA when it comes
to throughput by around 1.4× on average. However, as can be seen
in Figure 8b, HUMA has slightly higher throughput when running
smaller model of 76 centers. Although both GPU and CPU versions
outperform HUMA by the throughput metric, when we look at the
normalized metrics, the comparison turns out differently.

When normalizing throughput results by power consumption,
we can see that HUMA has on average around 1.7× and 2.3× higher
throughput per Watt compared to the GPU and CPU versions of
TVB, respectively. Although both the GPU and CPU implementa-
tions have higher throughput compared to HUMA, the application-
specific, dataflow design of the heterogeneous system on the Versal
platform consumes much less power which results in better perfor-
mance efficiency. It is worth noting that for both energy consump-
tion and performance efficiency calculation of the CPU version, we
used half the reported TDP value of the CPU mentioned in Table 3
to maintain fairness in comparison. However, realistically, the CPU
version uses more than half the TDP value when executing many
simulations at the same time, utilizing all 32 cores of the device.

Finally, a word on area utilization. The Versal VC1902 SoC used
in HUMA has 37 billion transistors. However, unlike the CPU and
GPU versions of TVB which uses almost all the device capacity in a
high-throughput, batched configuration, HUMA only utilizes a frac-
tion of all the resources available in the Versal platform. Because of
the heterogeneous nature of the Versal platform, calculating exactly
what percentage of all the transistors are actually being used is

not possible. Though there is no easy way of calculating that met-
ric, by looking at the resource-utilization and power-consumption
results of HUMA shown in Table 5 and the specifications of the
CPU and GPU used (such as the high-bandwidth, on-board GDDR6
memory), we can claim that HUMA delivers at least equal if not
higher throughput per area compared to the both the CPU and GPU
versions of TVB.

6 Conclusion
In this work we presented HUMA, an ultra low-latency, power-
efficient, heterogeneous accelerator of The Virtual Brain (TVB) on
Versal VC1902 Adaptive SoC. The Virtual Brain is one of the lead-
ing, large-scale brain modeling tools that can build patient-specific,
personalized digital brain twins used for different clinical purposes
such as epilepsy. We designed a dataflow, systolic array architec-
ture for the TVB algorithm which performed on average around
27× better compared to a multi-threaded CPU implementation of
TVB in terms of latency, and more than 2× in terms of power ef-
ficiency. When compared to a high-performance GPU version of
TVB, HUMA delivered on average 14× lower latency and 55× less
energy consumption. In terms of throughput, although HUMA had
lower throughput compared to the GPU version, it delivered around
1.7× higher throughput per Watt.

TVB models require training for each patient to be as accurate
as possible. However, this training process could be very time-
consuming, and make using these models challenging in practice.
HUMA, the heterogeneous Versal implementation we developed,
with its low latency and low power consumption, makes this process
faster and more efficient for patients and doctors who benefit from
large-scale brain modeling in the course of their treatment.

Acknowledgments
This paper is partially supported by the European-Union Horizon
Europe R&I program through projects SEPTON (no. 101094901)
and SECURED (no. 101095717) and through the NWO - Gravitation
Programme DBI2 (no. 024.005.022). We thank AMD/Xilinx and
NVIDIA corporations for their donations. We are grateful to Dr.
Mario Negrello, Freddie Renyard, and Marmaduke Woodman for
all their help and feedback throughout this work.

232

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by T
U

 D
elft L

ibrary on A
pril 7, 2025.

HUMA: Heterogeneous, Ultra Low-LatencyModel Accelerator for The Virtual Brain on a Versal Adaptive SoC FPGA ’25, February 27–March 1, 2025, Monterey, CA, USA

References
[1] M. Faizan Ahmad, James Murphy, Deniz Vatansever, Emmanuel A. Stamatakis,

and Simon J. Godsill. [n. d.]. Bayesian Inference of Task-Based Functional Brain
Connectivity Using Markov Chain Monte Carlo Methods. 10, 7 ([n. d.]), 1150–
1159. https://doi.org/10.1109/JSTSP.2016.2599010

[2] AMD. 2023. Versal Adaptive SoC AI Engine Architecture Manual (AM009). https:
//docs.xilinx.com/r/en-US/am009-versal-ai-engine

[3] Nina Baldy, Martin Breyton, Marmaduke M. Woodman, Viktor K. Jirsa, and
Meysam Hashemi. 2024. Efficient Inference on a Network of Spiking Neurons
using Deep Learning. bioRxiv (2024). https://doi.org/10.1101/2024.01.26.577077

[4] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris
Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. 2018. JAX: composable transformations of
Python+NumPy programs. http://github.com/google/jax

[5] The Virtual Brain. 2019. tvb-data. https://zenodo.org/records/3474071#.XZmcU-
cza_U

[6] The Virtual Brain. 2024. vbjax. https://github.com/ins-amu/vbjax/tree/main
[7] Shuo Chen, Yishi Xing, Jian Kang, Peter Kochunov, and L Elliot Hong. [n. d.].

Bayesian modeling of dependence in brain connectivity data. 21, 2 ([n. d.]),
269–286. https://doi.org/10.1093/biostatistics/kxy046

[8] Timothy A. Davis. 2006. Direct Methods for Sparse Linear Systems (Fundamentals
of Algorithms 2). Society for Industrial and Applied Mathematics, USA.

[9] Kaiyuan Guo, Shulin Zeng, Jincheng Yu, Yu Wang, and Huazhong Yang. 2019. A
Survey of FPGA-based Neural Network Inference Accelerators. 12, 1, Article 2 (3
2019), 26 pages. https://doi.org/10.1145/3289185

[10] Imali Hettiarachchi, Shady Mohamed, and Saeid Nahavandi. [n. d.]. A
marginalised Markov Chain Monte Carlo approach for model based analysis of
EEG data. In 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI)
(2012-05). 1539–1542. https://doi.org/10.1109/ISBI.2012.6235866

[11] Max Hinne, Tom M. Heskes, Christian F. Beckmann, and Marcel van Gerven.
2013. Bayesian inference of structural brain networks. NeuroImage 66 (2013),
543–552. https://doi.org/10.1016/j.neuroimage.2012.09.068

[12] Kurt Hornik, Maxwell B. Stinchcombe, and Halbert L. White. 1989. Multilayer
feedforward networks are universal approximators. Neural Networks 2 (1989),
359–366. https://doi.org/10.1016/0893-6080%2889%2990020-8

[13] E.M. Izhikevich. [n. d.]. Which Model to Use for Cortical Spiking Neurons? 15, 5
([n. d.]), 1063–1070. https://doi.org/10.1109/TNN.2004.832719

[14] V. K. Jirsa, T. Proix, D. Perdikis, M. M. Woodman, H. Wang, J. Gonzalez-Martinez,
C. Bernard, C. Bénar, M. Guye, P. Chauvel, and F. Bartolomei. 2017. The Virtual
Epileptic Patient: Individualized whole-brain models of epilepsy spread. 145
(2017), 377–388. https://doi.org/10.1016/j.neuroimage.2016.04.049

[15] Farad Khoyratee, Filippo Grassia, Sylvain Saïghi, and Timothée Levi. 2019. Opti-
mized Real-Time Biomimetic Neural Network on FPGA for Bio-hybridization.
Frontiers in Neuroscience 13 (2019). https://doi.org/10.3389/fnins.2019.00377

[16] Lennart P.L. Landsmeer, Max C.W. Engelen, Rene Miedema, and Christos Strydis.
2024. Tricking AI chips into simulating the human brain: A detailed performance
analysis. Neurocomputing 598 (2024), 127953. https://doi.org/10.1016/j.neucom.
2024.127953

[17] Ignacio Martin, Gorka Zamora, Jan Fousek, Michael Schirner, Petra Ritter, Vik-
tor K. Jirsa, Gustavo Deco, and Gustavo Patow. 2024. TVBC++: A Fast and Flexible
Back-End for The Virtual Brain. https://doi.org/10.48550/arXiv.2405.18788

[18] Amirreza Movahedin. 2024. Heterogeneous Acceleration of Neural-Mass Models
towards Digital Brain Twins. http://resolver.tudelft.nl/uuid:4e1f0693-ae57-42d9-
bbfe-8c8d0edd330a

[19] A. Movahedin. 2024. TVB Pipeline. Created in BioRender. https://BioRender.com/
g61o515 Parts of the figure from here and here.

[20] National Academy of Engineering. 2008. Grand Challenges. https://www.
engineeringchallenges.org/challenges.aspx

[21] Anagh Pathak, Dipanjan Roy, and Arpan Banerjee. [n. d.]. Whole-Brain Network
Models: From Physics to Bedside. 16 ([n. d.]). https://doi.org/10.3389/fncom.
2022.866517 Publisher: Frontiers.

[22] Leon Paula, Knock Stuart, Woodman M., Domide Lia, Mersmann Jochen, McIn-
tosh Anthony, and Jirsa Viktor. 2013. The Virtual Brain: a simulator of pri-
mate brain network dynamics. Frontiers in Neuroinformatics 7, 10 (2013).
https://doi.org/10.3389/fninf.2013.00010

[23] Dirk Ridder, MuhammadAli Siddiqi, Justin Dauwels,Wouter Serdijn, and Christos
Strydis. 2024. NeuroDots: From Single-Target to Brain-Network Modulation:
Why and What Is Needed? Neuromodulation: Technology at the Neural Interface
27 (04 2024). https://doi.org/10.1016/j.neurom.2024.01.003

[24] Paula Sanz-Leon, Stuart A. Knock, Andreas Spiegler, and Viktor K. Jirsa. 2015.
Mathematical framework for large-scale brain network modeling in The Virtual
Brain. 111 (2015), 385–430. https://doi.org/10.1016/j.neuroimage.2015.01.002

[25] Michael Schirner, Lia Domide, Dionysios Perdikis, Paul Triebkorn, Leon Ste-
fanovski, Roopa Kalsank Pai, Paula Prodan, Bogdan Valean, Jessica Palmer,
Chloê Langford, André Blickensdörfer, Michiel A. van der Vlag, Sandra Díaz-Pier,
Alexander Peyser, Wouter Klijn, Dirk Pleiter, Anne Nahm, Oliver Schmid, Mar-
maduke M. Woodman, Lyuba Zehl, Jan Fousek, Spase Petkoski, Lionel Kusch,
Meysam Hashemi, Daniele Marinazzo, J. F. Mangin, Agnes Flöel, Simisola Ak-
intoye, Bernd Carsten Stahl, Michael Cepic, Emily Johnson, Gustavo Deco,
Anthony Randal Mcintosh, Claus C. Hilgetag, Marc Morgan, Bernd Schuller,
Alex Upton, Colin McMurtrie, Timo Dickscheid, Jan G. Bjaalie, Katrin Amunts,
Jochen Mersmann, Viktor Jirsa, and Petra Ritter. 2022. Brain simulation as a
cloud service: The Virtual Brain on EBRAINS. NeuroImage 251 (2022). https:
//doi.org/10.1016/j.neuroimage.2022.118973

[26] Ahmad Shawahna, Sadiq M. Sait, and Aiman El-Maleh. 2019. FPGA-Based Accel-
erators of Deep Learning Networks for Learning and Classification: A Review.
IEEE Access 7 (2019), 7823–7859. https://doi.org/10.1109/ACCESS.2018.2890150

[27] Endri Taka, Aman Arora, Kai-Chiang Wu, and Diana Marculescu. 2023. MaxEVA:
Maximizing the Efficiency of Matrix Multiplication on Versal AI Engine. In
2023 International Conference on Field Programmable Technology (ICFPT). 96–105.
https://doi.org/10.1109/ICFPT59805.2023.00016

[28] Huifang E Wang, Paul Triebkorn, Martin Breyton, Borana Dollomaja, Jean-Didier
Lemarechal, Spase Petkoski, Pierpaolo Sorrentino, Damien Depannemaecker,
Meysam Hashemi, and Viktor K Jirsa. 2024. Virtual brain twins: from basic
neuroscience to clinical use. National Science Review 11, 5 (2024), nwae079.
https://doi.org/10.1093/nsr/nwae079

[29] Junsong Wang, Ernst Niebur, Jinyu Hu, and Xiaoli Li. 2016. Suppressing epilep-
tic activity in a neural mass model using a closed-loop proportional-integral
controller. Scientific Reports 6 (2016). https://doi.org/10.1038/srep27344

[30] Marmaduke Woodman. 2020. tvb-algo. https://github.com/maedoc/tvb-algo
[31] Xilinx. 2020. Versal: The First Adaptive Compute Acceleration Platform (ACAP).

https://docs.xilinx.com/v/u/en-US/wp505-versal-acap

233

D
ow

nloaded from
 the A

C
M

 D
igital L

ibrary by T
U

 D
elft L

ibrary on A
pril 7, 2025.

https://doi.org/10.1109/JSTSP.2016.2599010
https://docs.xilinx.com/r/en-US/am009-versal-ai-engine
https://docs.xilinx.com/r/en-US/am009-versal-ai-engine
https://doi.org/10.1101/2024.01.26.577077
http://github.com/google/jax
https://zenodo.org/records/3474071#.XZmcU-cza_U
https://zenodo.org/records/3474071#.XZmcU-cza_U
https://github.com/ins-amu/vbjax/tree/main
https://doi.org/10.1093/biostatistics/kxy046
https://doi.org/10.1145/3289185
https://doi.org/10.1109/ISBI.2012.6235866
https://doi.org/10.1016/j.neuroimage.2012.09.068
https://doi.org/10.1016/0893-6080%2889%2990020-8
https://doi.org/10.1109/TNN.2004.832719
https://doi.org/10.1016/j.neuroimage.2016.04.049
https://doi.org/10.3389/fnins.2019.00377
https://doi.org/10.1016/j.neucom.2024.127953
https://doi.org/10.1016/j.neucom.2024.127953
https://doi.org/10.48550/arXiv.2405.18788
http://resolver.tudelft.nl/uuid:4e1f0693-ae57-42d9-bbfe-8c8d0edd330a
http://resolver.tudelft.nl/uuid:4e1f0693-ae57-42d9-bbfe-8c8d0edd330a
https://BioRender.com/g61o515
https://BioRender.com/g61o515
https://www.fz-juelich.de/en/inm/inm-1/news/announcements/new-release-of-the-julich-brain-atlas-adds-52-new-maps
https://www.snexplores.org/article/scientists-say-connectome-definition-pronunciation
https://www.engineeringchallenges.org/challenges.aspx
https://www.engineeringchallenges.org/challenges.aspx
https://doi.org/10.3389/fncom.2022.866517
https://doi.org/10.3389/fncom.2022.866517
https://doi.org/10.3389/fninf.2013.00010
https://doi.org/10.1016/j.neurom.2024.01.003
https://doi.org/10.1016/j.neuroimage.2015.01.002
https://doi.org/10.1016/j.neuroimage.2022.118973
https://doi.org/10.1016/j.neuroimage.2022.118973
https://doi.org/10.1109/ACCESS.2018.2890150
https://doi.org/10.1109/ICFPT59805.2023.00016
https://doi.org/10.1093/nsr/nwae079
https://doi.org/10.1038/srep27344
https://github.com/maedoc/tvb-algo
https://docs.xilinx.com/v/u/en-US/wp505-versal-acap

	Abstract
	1 Introduction
	2 Background
	2.1 The Virtual Brain Model
	2.2 Versal Adaptive SoC

	3 Related Work
	4 HUMA Accelerator for TVB
	4.1 Problem Analysis
	4.2 Design and Implementation

	5 Evaluation
	5.1 Methodology
	5.2 HUMA Results
	5.3 Comparison to Related Work

	6 Conclusion
	References

