

Delft University of Technology

Memristor-Based Lightweight Encryption

Siddiqi, Muhammad Ali; Hernández, Jan Andrés Galvan ; Gebregiorgis, Anteneh ; Bishnoi, Rajendra ;
Strydis, Christos; Hamdioui, Said; Taouil, Mottaqiallah
DOI
10.1109/DSD60849.2023.00092
Publication date
2023
Document Version
Final published version
Published in
Proceedings of the 2023 26th Euromicro Conference on Digital System Design (DSD)

Citation (APA)
Siddiqi, M. A., Hernández, J. A. G., Gebregiorgis, A., Bishnoi, R., Strydis, C., Hamdioui, S., & Taouil, M.
(2023). Memristor-Based Lightweight Encryption. In S. Niar, H. Ouarnoughi, & A. Skavhaug (Eds.),
Proceedings of the 2023 26th Euromicro Conference on Digital System Design (DSD) (pp. 634-641).
(Proceedings - 2023 26th Euromicro Conference on Digital System Design, DSD 2023). IEEE.
https://doi.org/10.1109/DSD60849.2023.00092
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/DSD60849.2023.00092
https://doi.org/10.1109/DSD60849.2023.00092

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Memristor-Based Lightweight Encryption

Muhammad Ali Siddiqi∗§, Jan Andrés Galvan Hernández∗, Anteneh Gebregiorgis∗, Rajendra Bishnoi∗,
Christos Strydis∗§, Said Hamdioui∗‡ and Mottaqiallah Taouil∗‡

∗Quantum and Computer Engineering Department, Delft University of Technology, The Netherlands
§Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands

‡Cognitive IC B.V., Delft, The Netherlands

{m.a.siddiqi, a.b.gebregiorgis, r.k.bishnoi, c.strydis, s.hamdioui, m.taouil}@tudelft.nl, jan-andres@live.nl

Abstract—Next-generation personalized healthcare devices are
undergoing extreme miniaturization in order to improve user
acceptability. However, such developments make it difficult to
incorporate cryptographic primitives using available target tech-
nologies since these algorithms are notorious for their energy
consumption. Besides, strengthening these schemes against side-
channel attacks further adds to the device overheads. There-
fore, viable alternatives among emerging technologies are being
sought. In this work, we investigate the possibility of using
memristors for implementing lightweight encryption. We propose
a 40-nm RRAM-based GIFT-cipher implementation using a
1T1R configuration with promising results; it exhibits roughly
half the energy consumption of a CMOS-only implementation.
More importantly, its non-volatile and reconfigurable substitution
boxes offer an energy-efficient protection mechanism against side-
channel attacks. The complete cipher takes 0.0034 mm2 of area,
and encrypting a 128-bit block consumes a mere 242 pJ.

Index Terms—Memristor, hardware security, lightweight en-
cryption, side-channel attack, GIFT cipher, 1T1R

I. INTRODUCTION

In recent years, small-form-factor edge devices have been

considered as crucial components for next-generation per-

sonalized healthcare through medical body area networks

(MBANs) [1]. Naturally, due to the sensitive nature of these

devices, security and privacy become a critical concern, which

require proper incorporation of cryptographic primitives and

secure communication protocols. However, due to the ultra-

resource-constrained nature of these devices, such as mm-sized
neural implants, security primitives implemented using avail-

able CMOS technology become too costly for integration. The

problem is further compounded when adding additional pro-

tection mechanisms to protect the security mechanisms them-

selves against side-channel attacks. Therefore, new emerging

technologies need to be explored to address this issue.

New memristive technologies have recently been employed

in implementing cryptographic primitives [2]–[12] because of

their energy efficiency and ability to protect against side-

channel attacks. However, to the best of our knowledge, there

are no works that attempt to simultaneously take advantage

of these characteristics for block encryption, which is the

preferred type of encryption for resource-constrained devices.

In this work, we attempt to explore the use of memristors in

constructing a lightweight block cipher that also offers side-

channel protection at no significant additional cost. We first

explore lightweight block ciphers in literature and select a

suitable candidate (i.e., GIFT) to showcase the potential effec-

tiveness of memristors in securing ultra-resource-constrained

edge devices. We then implement the selected cipher using a

1T1R memristive crossbar. In essence, this work provides the

following contributions:

• Restructuring of a round of GIFT encryption (i.e., sub-

stitution, permutation and round-key addition) in order

to allow RRAM-crossbar implementation. This makes it

possible to execute a round in a single read operation and

to reuse the same hardware for multiple (40) rounds.

• Exploration and evaluation of the design choices for

implementing XOR functionality that is used in round-

key addition.

• A 40-nm implementation of the GIFT cipher using a

1T1R RRAM configuration.

The rest of the paper is organized as follows: Section II

provides a brief background and an overview of related works.

Section III discusses a suitable cipher that can be used to

showcase the utility of memristors in lightweight encryption.

Section IV explains our proposed scheme followed by results

in Section V. We draw overall conclusions in Section VI.

II. BACKGROUND

A. Memristor and RRAM background
The memristor is a two-terminal element (see Figure 1) that

behaves like an ordinary resistor at a given instance [13]. It

is non-volatile and can either have a Low-Resistance State

(LRS) or a High-Resistance State (HRS). These states depend

on the voltage applied to one of the terminals and the duration

over which this is done. It can be used as a non-volatile

memory element, where HRS and LRS usually denote logic

states ‘0’ and ‘1’, respectively. The processes of changing

the resistance from LRS to HRS and HRS to LRS are

called reset and set, respectively. As an emerging technology,

memristor offers simplicity, fast switching speeds, ultra-low

power consumption and high integration density [14]. On top

of that, the memristor is CMOS-compatible and shows the

potential to overcome the von-Neumann bottleneck and sizing

problem of transistors [15].
It is most common to configure memristors in a crossbar

structure due to its simplicity. A memristor crossbar is tradi-

tionally used as a memory structure to, for example, replace

the traditional SRAM. This is also referred to as the Resistive-

RAM (RRAM). Additionally, the structure may be used as an

634

2023 26th Euromicro Conference on Digital System Design (DSD)

2771-2508/23/$31.00 ©2023 IEEE
DOI 10.1109/DSD60849.2023.00092

20
23

 2
6t

h
Eu

ro
m

ic
ro

 C
on

fe
re

nc
e

on
 D

ig
ita

l S
ys

te
m

 D
es

ig
n

(D
SD

) |
 9

79
-8

-3
50

3-
44

19
-6

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

DS
D6

08
49

.2
02

3.
00

09
2

Authorized licensed use limited to: TU Delft Library. Downloaded on March 21,2024 at 10:01:21 UTC from IEEE Xplore. Restrictions apply.

SLj SLj-1 SL0

WL0

WL1

WLk

BLj BLj-1 BL0

Memristor

Fig. 1. Basic structure of a 1T1R crossbar array.

accelerator to drive neuromorphic applications by means of

Vector-Matrix Multiplications (VMM) [16].

There are many different crossbar configurations, which

are referred to as n-element-m-resistor (nXmR) arrays; one

crossbar bitcell consist of n element(s) (such as, transistors

or diodes) and m memristor(s). The most basic and area-

efficient configuration is 1R, which only consists of mem-

ristors. However, its difficulty lies in selecting individual

bitcells: without a specified selector, current sneak paths are

induced. This problem is avoided by implementing crossbars

with an additional element per bitcell, such as by using 1T1R

(1-transistor-1-memristor) (see Figure 1), which is the most

popular and widely used structure. It enables easy selection

and programming of the bitcells for in-memory (in-situ)

computations using Word Lines (WL) and Selection Lines

(SL) [15]. Next to that, the transistor and memristor elements

can be stacked, allowing greater density. It is also possible

to construct crossbars using more (memristive) elements. An

example of this is the 2T2R crossbar proposed in [17].

B. Memristor-based hardware security

Besides their energy efficiency, memristors intrinsically

show stochastic behavior [18] like resistance variability [7],

[19], probabilistic switching [5], [6] and Random Telegraph

Noise (RTN) [20]. On top of that, they also exhibit Device-

2-Device/Cycle-2-Cycle (D2D/C2C) variations [4], [6], which

increase the difficulty of performing side-channel analysis as

they increase the noise levels in traces and make it harder to

perform profiling attacks. With the aforementioned stochastic

properties, Physical Unclonable Functions (PUFs), True Ran-

dom Number Generators (TRNGs), and chaotic circuits can be

built depending on the employed resistive material [2], [3], [5],

[9], [21]. These security schemes are used for authentication,

key-generation and encryption.

In terms of encryption, a memristor-based block cipher

can offer the following advantages: A memristor crossbar

allows reconfigurability, which can be used to update the

cipher substitution boxes (SBs) for masking at run-time to

protect against side-channel attacks [22]. In this case, the

cipher output should be adjusted accordingly to maintain the

correct functionality. The non-volatile nature of such crossbars

allow the SBs to retain their value, which allows us to

power off the design to save energy. On the other hand, a

CMOS-only implementation will be using e.g., an SRAM

or logic implementations of the SBs. SRAM-based solutions

allow reconfiguration but have less variation and cannot be

powered off, whereas logic implementations (such as and-

or trees) cannot be modified. Another option could be to

have embedded flash-based SBs, however, these memories are

more power consuming than memristor-based ones (such as,

RRAM) during active mode [23].

C. Related work

Sun et al. [5] propose a memristor-based PUF that prevents

attacks using triggered solubility when necessary. This is

achieved by using water-assisted transfer printing. Cai et al. [6]

use a randomly-initialized memristor crossbar to perform

VMM for creating hypervectors as a means for encryption.

It relies on crossbar non-idealities and C2C variations. How-

ever, for decryption, the authors propose a neural network.

Similarly, in [4], a 1T1R crossbar is used to store plaintext and

perform in-situ XOR operations with key bits for encryption.

The key bits are generated using the subthreshold slope of

each transistor. These vary intrinsically and hence function

as a PUF. Two other works discuss the concept of key-less

encryption, using memristors as a source of entropy [3], [10].

Khedkar et al. [24] propose a memristor-based AES design

with the aim of protecting against differential power attacks.

Each AES SB is implemented using a neural network having

8 inputs, 1 output, and a hidden layer of 48 neurons, which

is not suitable for heavily resource-constrained edge devices.

However, it should be noted that energy efficiency was not the

aim of their work.

Despite these promising schemes, many of them are not

necessarily lightweight, especially the above-mentioned block

cipher. In addition, the majority of these solutions require

frequent operational switching of memristors, which should

be avoided due to the increase in energy consumption and

decrease in lifetime of the memristive device [16]. In brief,

there is still a void in literature when it comes to a lightweight

memristor-based block cipher that also supports energy-

efficient side-channel protection.

III. TOWARDS MEMRISTOR-BASED ENCRYPTION

A. Looking for the right cipher

In order to showcase the possibility of using memristors in

lightweight block encryption, we refer to existing literature to

find a suitable encryption scheme that can serve as a proof of

concept. Multiple extensive literature reviews on the state-of-

the-art lightweight cryptography already exist [25]–[27]. We

evaluate the available ciphers by looking at the throughput,
power/energy consumption, design simplicity, and most

importantly, their potential compatibility with memristors.

635

Authorized licensed use limited to: TU Delft Library. Downloaded on March 21,2024 at 10:01:21 UTC from IEEE Xplore. Restrictions apply.

These include: PRESENT, RECTANGLE, SIMON, SPECK,

GIFT, SLIM, μ2, ANU-II, NLBIST, Piccolo and BORON.

In terms of throughput and energy, Speck, Simon and GIFT

show the best results. Regarding simplicity, GIFT outperforms

the other two [25]. Moreover, its simple structure (mainly

consisting of substitution boxes) enables a straightforward

crossbar implementation. More specifically, a memristor cross-

bar can be composed in a way such that a GIFT encryption

round can be performed by only a single read action (as will

be discussed in Section IV). For these reasons, the GIFT cipher

is used as a reference and inspiration towards implementing

a lightweight memristor-based encryption block suitable for

next-generation edge devices. The next section will briefly

explain the working principle of GIFT.

B. The GIFT cipher

Similar to the known standardized algorithms such as AES,

SKINNY and PRESENT, GIFT is based on substitution-

permutation network, in which the plaintext nibbles are re-

placed with other values, followed by rearrangement. The ci-

pher is inspired by its predecessor PRESENT but has improved

security and efficiency [28]. The GIFT family consists of two

members: GIFT-64 and GIFT-128. The former takes in 64 bits

and uses 28 rounds while the latter encrypts 128 bits using 40

rounds. Both versions use a 128-bit encryption key. Figure 2

shows the cipher architecture. A round of GIFT consists of

three basic operations:

1) SubCells: The plaintext nibble is substituted with a 4-bit

sequence through an SB. Figure 2 shows the substitution

specification for such a 4-bit SB.

2) PermBits: The output of the SB is permuted. Each of the

4 bits is re-routed through hard-wiring.

3) AddRoundKey: For the 64(128)-bit version a 32(64)-bit

Round Key (RK) is extracted from the key state, which

is partitioned into 2(4) 16-bit words. Two bits of each

of the permuted nibbles (i.e., two LSBs of the nibbles

in the case of GIFT-64, and middle two bits in the case

of GIFT-128) are XOR-ed with two bits from the RK.

Figure 2 illustrates this for a single round of GIFT-64.

Since only two key bits per nibble are used when performing

the XOR operations, each RK is updated and shifted after

every round to ensure that the other part of the key state is

used. This is done by performing a 32-bit right rotation. This

is followed by a 2-bit and 12-bit right rotation performed on

the two MSB bytes and the two bytes thereafter, respectively.

Figure 2 depicts the complete key state update. In addition to

the RK, there also exists a 7-bit Round Constant (RC), which

is applied to bit positions n−1, 3, 7, 11, 15, 19 and 23, where

n = 64, 128. After every round, the RC is updated by means of

a rotational left shift followed by two XOR operations between

the new LSB, MSB and ‘1’. The RK and RC schedules are

the same for both versions of the cipher.

IV. PROPOSED SOLUTION

A. Design overview and assumptions

The general idea behind our approach is to take advantage

of the bit-slicing topology of GIFT and compress all the

operations shown in Figure 2 into one lightweight module

made of a memristor-based crossbar. As stated earlier, GIFT

is a natural candidate for a crossbar-based implementation due

to its simple structure. For example, the first operation, i.e.,

SubCells, is realized using 4-bit SBs, which are normally im-

plemented using Look-Up Tables (LUTs). These LUTs can in

turn be implemented using memristor crossbars. A memristive

crossbar structure is preferred over cascaded Memristor-based

Logic Gates (MLGs) due to the possibility of high-density

and in-memory computations. Moreover, a crossbar structure

mimicking LUTs eliminates frequent writing/reset operations

on memristors, which can introduce reliability issues and

shorten lifetime of these components [16]. Figure 3 shows the

top view of the proposed design. To the best of our knowledge,

no other work has proposed a memristor-based lightweight

block cipher at the time of writing.

The key aspects of our approach are as follows:

• Mapping the three GIFT operations and key scheduling

to a memristor crossbar makes it possible to execute a

GIFT encryption round in a single read operation.

• Only at the start of an encryption session would a write
operation be required to program the constant/key-bit

values.

• Each crossbar implementation covers the 40 encryption

rounds, i.e., the same hardware is reused for each round.

• By minimizing switching activity and by mapping all the

operations to the crossbar, lesser energy consumption and

footprint is achieved.

Before diving deeper into the design, a couple of assump-

tions must be established. Firstly, in this work, the 128-

bit GIFT version is considered. However, our approach also

applies to the 64-bit version. Secondly, the encryption key

needs to be created and exchanged beforehand between the

transmitter and the receiver to perform the encryption. This

prior key exchange is considered outside the scope of the paper

and has been already addressed by prior work. For instance,

in the case of a medical-implant edge application, a body-

coupled-communication-based protocol can be used for this

purpose [29].

B. Substitution box

Regarding the memristor-based LUT implementation of the

SB, there are multiple options for the crossbar structure:

Passive crossbar arrays (1R) are an attractive solution for

high-density and low-power integration. However, they have

weaknesses such as current sneak paths and floating state

issues during reading and writing operations. Furthermore,

this leakage becomes more severe when the number of cells

increases [30]. An established solution to this problem is

the nTnR structure. The most commonly used structure is

1T1R, but 2T2R has also shown significant benefits [17].

636

Authorized licensed use limited to: TU Delft Library. Downloaded on March 21,2024 at 10:01:21 UTC from IEEE Xplore. Restrictions apply.

4 bits
3 2 1 063 62 61 60

SubCells

AddRoundKey

SB SB SB SBSB SB SB SBSB SB SB SBSB SB SB SB

PermBits

8 bits

RK

RK0RK16RK31 RK15

>>2 >>12 >>32

RC0RC0

UpdateKey

64-bit plaintext

128-bit key

x SB(x)
0 1
1 a
2 4
3 c
4 6
5 f
6 3
7 9
8 2
9 d
a b
b 7
c 5
d 0
e 8
f e

Fig. 2. Architecture of GIFT-64 [28]. The encircled section (in blue) denotes a slice of a single round of encryption. The substitution specification of a 4-bit
SB is shown on the right.

LUT

4 X
 16

LUT

4 X
 16

6-B
it C

ounter

Register 31 Register 0

6 X
 40

SB31 SB0

RC/RK RC/RK

Fig. 3. Top view of the memristor-based GIFT cipher.

However, as the name suggests, 2T2R is twice the size of

1T1R. Mapping an SB LUT onto a 1T1R crossbar results in

the structure shown in Figure 4. The SB unit can have 16

possible 4-bit input values, and the internal LUT has 16 rows

of four memristor/transistor pairs, with each memristive cell

representing 1 bit of the SB output. Given a 4-bit input, an

address decoder selects one of the 16 rows (corresponding

to Figure 2) by applying a voltage to the word line (WL)

connected to the transistor gates of that row, which enables

the respective memristive cells. The details of the crossbar

operation will be provided in Section IV-E.

C. XOR operation

The second operation of the GIFT encryption is AddRound-
Key, which is performed using XOR. Finding the appropriate

MLG for such an operation is crucial for achieving low energy

and area overheads. As a result, the following notable MLG

architectures from literature were considered: Memristor-

Aided Logic (MAGIC) [31], Single-Cycle In-Memristor XOR

(SIXOR) [30], Scouting Logic [32], 1T1R In-Situ Boolean

Logic [33], Stateful 1T1R NANDs [34], Material Implication

Memristor Logic [35], Memristor-Ratioed Logic (MRL) [36],

CMOS-Like Logic [37], Parallel Input-Processing Memris-

tor Logic [38], and Dual Sense Amplifier Crossbar Logic

(DSA) [39].

Many of these MLGs are limited due to (1) cascading

problems, such as requiring signal restoration between stages,

etc.; (2) destructiveness, i.e., the follow-up operation requires

n = 39

RO SA RO SA

XOR
SA(s)

XOR
SA(s)

n = 0

Substitution

RC/RK
encryption

WL0

WL15

SL3 SL2 SL1 SL0BL3 BL2 BL1 BL0

WL16

WL55

Fig. 4. The slice architecture of the 1T1R GIFT cipher and operation sequence
corresponding to a round of encryption.

all memristors to be initialized again by means of a write

operation; and (3) a long sequence of operations. MLGs im-

plemented in a constrained environment should have very low

power consumption and acceptable delay. MLGs that require

many sequential resets may, therefore, be less desirable. As of

now, the usage of standalone MLGs such as SIXOR, MAGIC,

and MRL is too inefficient for encryption in next-generation

edge devices [12]. On the other hand, crossbar solutions show

good potential for parallel in-memory computing applications.

Moreover, they can be easily made compatible with the SB-

unit crossbar. We thus employ both Scouting Logic and DSA

to implement XOR in this work:

1) Scouting-Logic-based XOR (SXOR): The Scouting

Logic family [32] offers OR, AND, and XOR operations and is

crossbar compatible. It is non-destructive as the resistive states

are preserved across multiple operations. Hence, no switching

637

Authorized licensed use limited to: TU Delft Library. Downloaded on March 21,2024 at 10:01:21 UTC from IEEE Xplore. Restrictions apply.

SL BL

MA

MB

Vout

V1

V2

VSA

M1

M2

Fig. 5. SXOR: VSA-based Scouting Logic XOR.

between resistive states is necessary, which is power-efficient.

Moreover, a single logic operation only requires one step,

in which no initialization and restoration are needed as it

primarily consists of a reading operation. The core of the

Scouting Logic design varies depending on the employed sens-

ing scheme, i.e., voltage (VSA) and current sense amplifiers

(CSA). It has been shown in [12] that CSA has higher area

and power consumption overheads than VSA. However, it is

faster than VSA. Since performance is not a bottleneck for the

targeted edge applications, VSA is employed in this work for

the SXOR design (see Figure 5).

VSA generates a reference using additional memristors M1

and M2. It also uses a CMOS XOR gate as a threshold function

to determine the proper output pulse based on the generated

reference. When a read pulse is applied from SL to MA and

MB (which contain the two inputs for the XOR operation), a

current determined by the equivalent input resistance will flow

from the Bit Line (BL) to the VSA. Depending on whether

the current (or resulting voltage) is higher or lower than the

gate threshold, the output will be either ‘0’ or ‘1’.

2) DSA-based XOR (DXOR): In DSA [39], complex gates,

such as bitwise XOR, are composed using two sense amplifiers

(SAs). The DSA scheme is meant for crossbar operations, and

due to its simplicity, it is able to perform the operations using

a single cycle only. However, this comes at the cost of using

two SAs and a single 2-bit NOR gate.

By combining the reference currents of the NOR and NAND

SAs, an XOR operation is realized, following the equation

YXOR = X1AND NOR X2NOR, as shown in Figure 6, where

X1 and X2 are the outputs of the respective SAs.

In [39], current mirrors are used in the crossbar to drive

the SAs. For the design of the DXOR-GIFT, a voltage-based

SA is used to eliminate the need for current mirrors, resulting

in higher energy efficiency. The schematic for the voltage-

based SA is adapted from the SA proposed in [39], with minor

alterations to target only the XOR functionality (see Figure 6).

D. Permutation

Considering the permutation scheme in [28], which is also

depicted as the web of connections in Figure 2, each nth bit of

every nibble is connected to the nth bit of another nibble that

drives the SB of the next round. For example, the 1st bit (i.e.,

the second output) of SB0 (the rightmost SB in the first round)

is connected (permuted) to the second input of SB4 during

the next round, which is also encircled in Figure 2. Thus,

WL
VrefAND VrefNOR

X1AND X2NOR

Vout- Vout+

Vin+ Vin-

P1 P2

N3 N4

EN

N1 N2

Nen

Nen

BLSL

YXOR

WL EN

Fig. 6. DXOR: DSA-based XOR with the expanded voltage-based SA (right).

conceptually, SB0 of round 1 drives SB4 of round 2 with an

XOR operation in between. However, there is no difference

between the SBs of each round since they are all identical.

This means that one can consider the nth output of SBn to

simply be fed back to the nth input of the same SB.

Figure 2 shows that it is always the same bits in each

nibble that are involved in XOR operations. The only thing

that changes is the value of the key bit after every UpdateKey.

Knowing this and the fact that every bit in the nibble is routed

to the same relative position, it is possible to anticipate the

RK and RC bit values that are used in the XOR operations of

every round if the encryption key is known. More specifically,

instead of performing RK/RC updates every round, these

values are pre-computed (offline) and arranged at their relative

bit positions within the nibble after following the permutation

table. During the initialization of the encryption module, these

values are uploaded only once to the memristors in WL16 to

WL55, which saves significant overhead due to the removal of

the active key-schedule operation in its entirety.

E. Encryption round

The means of incorporating the permutation and key-

scheduling approach are illustrated in Figure 4. In addition

to the SB crossbar proposed in Section IV-B for substitution,

a 40 × 2 1T1R crossbar (or 40 × 3 for the few nibbles with

additional RC) is connected in series for RC/RK encryption.

As mentioned in the previous section, this 40-row crossbar

(WL16 to WL55) contains the RK (and RC) bit values arranged

according to the permutation table and the key schedule for

the complete encryption of a 128-bit plaintext. This means

that active key scheduling is not required anymore. For GIFT-

128, only the middle two bits of each nibble are encrypted

with the appropriate RK bits [28], as opposed to the first two

bits of each nibble for GIFT-64. The XOR SAs (i.e., DSA-

based or scouting-logic-based) are connected to the bottom

of the crossbar. Figure 4 also illustrates the flow of all the

above operations for a single slice. An encryption round is as

follows:

1) Based on the SB input and the mapping presented in

Figure 2, the corresponding WL is driven by a voltage

pulse, upon which the NMOS switches in that row are

closed, and the respective memristors are selected. In

addition, the RC/RK memristors corresponding to the first

638

Authorized licensed use limited to: TU Delft Library. Downloaded on March 21,2024 at 10:01:21 UTC from IEEE Xplore. Restrictions apply.

round are selected. The activated rows are shown using

blue arrows in Figure 4.

2) A read pulse is generated for each SL (red arrows in Fig-

ure 4), allowing current to flow through the memristors

and the BL, into the XOR and read-out (RO) SAs.

3) With the desired rows selected, an XOR operation is

performed between the top and bottom parts for bitcells

1 and 2, respectively. Depending on the resistive states

of these bits, a ‘0’ or ‘1’ pulse is generated at the output.

Bitcells 0 and 3 are read out without performing XOR.

4) All the above steps are performed within the same cycle,

and the output is temporarily stored in an output register.

5) In the next round, the register output is fed back again to

the input of the same SB.

F. Crossbar address decoders

The purpose of the address decoders in Figure 3 is to drive

the desired WLs in the crossbar, resulting in the selection of

the memristors embedded in the corresponding row. These

decoders can add significantly to the design overhead since

our GIFT-128 design requires 32 4-to-16 address decoders

and a single 6-to-40 address decoder (see Section IV-G). As

a result, different designs were considered for the optimized

implementation of these decoders. For example, one approach

is to decode the bits by means of a sequence of PMOS and

NMOS transistors connected in series, where each one of them

corresponds to the expected input bit. The disadvantage of

such a circuit is that it requires precise sizing of the tran-

sistors. Moreover, the voltage drop caused across a transistor

becomes an issue when considering the transistor overdrive.

Consequently, a repeater is required to provide enough input

drive for the WLs. A better solution is to use a complete

logic scheme that allows for the use of the smallest possible

transistor sizes. A second approach is based on NAND/NOR

trees, such as the one proposed for decoding addresses in

SRAMs [40], [41]. This approach is relatively lightweight,

reliable, and can also be applied to memristor crossbar arrays,

which is why it is used in this work.

G. RC/RK selector

The entire architecture requires a single RC/RK selector for

selecting the WLs in all the 32 RC/RK units shown in Figure 3.

The goal of this selector is to select a WL for every round,

from round 1 to 40. One approach is to use a shift register

for selecting each WL after every bit shift. However, a 40-bit

shift register is costlier than using a 6-bit counter that drives a

6-to-40 address decoder. As a result, the latter option is used

for our purpose.

V. RESULTS

A. Experimental setup

Both the 1T1R-GIFT designs, i.e., the ones based on

the DSA-based XOR (DXOR-GIFT) and scouting-logic-based

XOR (SXOR-GIFT), were implemented as SPICE netlists

using Cadence Virtuoso. Cadence Spectre was used for design

simulation/verification and power measurements. The designs

TABLE I
DESIGN PARAMETERS

Technology node 40 nm
Technology RRAM (HfO2

∗)
Operating voltage 0.9
Operating frequency 10 MHz

* JART VCM v1b model from [19].

were realized using the TSMC 40 nm library. In the original

work [28], the GIFT implementation runs at a frequency of

10 MHz. The same is done for the 1T1R implementations

for consistency. Table I summarizes the design parameters for

these implementations.

B. Implementation

The 1T1R-GIFT SPICE netlist entails a single GIFT-128

slice, as highlighted in Section IV-A. The 1T1R model em-

ployed in our implementation is adapted from [17], which

uses the HfO2-based memristor from [19] and considers non-

idealities such as wire resistances and capacitances. All the

CMOS-based logic used in the designs is implemented using

the cells provided by the TSMC 40 nm standard library. In

general, minimal size is used for the gates. However, the gates

in the final stages of the decoders are four times larger to

ensure sufficient drive strength for the WLs.
1) SXOR-GIFT: In [32], while operating Scouting Logic

VSA, the resistive states of the memristors are retained. Hence,

as with all other memristors in this design, they only need

to be programmed once. For the voltage divider to work

properly, the acting memristors need to be scaled accordingly

to guarantee an output of (at least) 0.6 VDD and 0.4 VDD

for logic ‘1’ and ‘0’, respectively. Since this work utilizes

a different structure and technology, the scaling rules stated

in [32] cannot be applied. For example, the original Scouting

Logic VSA requires M1 and M2 to be 2×LRS and 2.5×LRS,

respectively. However, when doing so for the proposed cipher,

the small resistive values result in V1 and V2 not crossing

0.20-0.30 V, which is way below the required threshold value

of 0.45 V. Moreover, keeping the 1:1.25 ratio between the

two memristors in Scouting Logic VSA results in too large

of a margin between V1 and V2, causing V2 to stay below

the threshold and resulting in operational failure. Using the

simplified model of the employed memristor crossbar, the

proper resistor values were determined: it was found that

SXOR-GIFT performs well when using 2 kΩ and 250 kΩ for

M1 and M2, respectively. Since the XOR operations are only

performed on the middle two bits of each nibble, the remaining

LSBs and MSBs just need to be read out using a read-out (RO)

SA. For this purpose, Scouting Logic VSA is downsized to just

a single memristor, M1, which is programmed to 550 kΩ, and

the XOR gate in the SA is replaced by an OR gate.
2) DXOR-GIFT: For the AND and NOR SAs in the DXOR

sensing schemes, constant voltage references of 0.45 V and

0.43 V are used, respectively. Regarding the read-out of the

LSBs and MSBs, only a single read-out SA suffices, for which

a reference of 0.43 V is used.

639

Authorized licensed use limited to: TU Delft Library. Downloaded on March 21,2024 at 10:01:21 UTC from IEEE Xplore. Restrictions apply.

TABLE II
IMPLEMENTATION RESULTS

SXOR-GIFT DXOR-GIFT CMOS-GIFT§ [28]

Average Power (μW) 257.6∗ 60.38∗ 116.6
Energy (pJ) 1030.4 241.52 478.1
Area (mm2) 0.0034 0.0034 –
Latency∗∗ (us) 4 4 4

∗ Extrapolated for 32 slices | ∗∗ Duration of 40 encryption rounds (10
MHz clock) | § Using STM 90 nm library | ‘–’: Lacking information.

Average Power

35%

6%
54%

5% Total Area

45%

18%

7%

27% Crossbar
4-to-16 decoders
6-to-40 decoder
Counter
SAs
Registers

(a) SXOR-GIFT

Average Power

40%

28%

8%

23%

Total Area

45%

18%

7%

27% Crossbar
4-to-16 decoders
6-to-40 decoder
Counter
SAs
Registers

(b) DXOR-GIFT

Fig. 7. Average-power and total-area breakdown

C. Energy- and area-efficiency analysis

The implementation results are summarized in Table II. It

can be seen that both SXOR-GIFT and DXOR-GIFT consume

almost the same amount of area. However, SXOR-GIFT has

more than 4× the power consumption of DXOR-GIFT. The

breakdown of the average power and total area is illustrated

in Figure 7. It can be seen that the scouting logic SAs are

the bottleneck in the case of SXOR-GIFT, whereas power

consumption is relatively evenly spread in the case of DXOR-

GIFT. Overall, DXOR-GIFT outperforms SXOR-GIFT and

hence can be considered a better approach for implementing

lightweight block ciphers.

D. Discussion

Our analysis indicates that memristors show significant

promise in terms of their use as building blocks for lightweight

block ciphers. In terms of energy, processing, and area over-

heads, the results of the 1T1R implementation are roughly

twice as good as those of the prior 90-nm CMOS-only

implementation [28], as shown in Table II. More importantly,

this new approach to designing lightweight block ciphers

offers additional low-cost protection against side-channel and

template attacks, as highlighted in Section II-B. Lastly, our

analysis shows that DXOR is a preferable approach compared

to the state-of-the-art MLGs available in the literature. How-

ever, there may be room for improvement in the 1T1R-GIFT

implementation depending on future advances in technology:

Researchers have pointed out the difficulty of creating long

MLG chains due to the loss in drive strength over several gate

stages and the destructive nature of the operations. Despite

numerous solutions, it is still sub-optimal due to limitations

related to the number of operands, the required number of re-

peaters, and the number of operations. Solving these problems

would allow SB construction using a simple memristor-based

AND-OR tree, thereby significantly reducing the footprint.

Another alternative could be to shift towards a 2T2R ap-

proach, as in [17]. It would result in a twofold increase in area,

but in-situ operations can be done using differential sensing,

which doubles the sensing margin compared to [32] and hence

increases reliability. Also, the energy consumption with 2T2R

operands is significantly lower. Unfortunately, this structure

does not support XOR operations yet. Besides, researchers are

also exploring the possibility of stacking memristor crossbars,

thereby significantly reducing the architecture footprint. These

are also referred to as 3D vertical RRAMs. Some successful

proposals exist that exploit different memristor-transistor com-

positions to produce 1T1R pillars [42], [43].

Lastly, the transistor of the 1T1R structure is a limiting

factor in scaling down the crossbar. However, advancements

in resistive switching materials and selection methods can help

in solving this limitation.

So, can ultra-resource-constrained edge devices benefit from

a memristor-based security solution? At the moment, it does

seem so. On top of that, further advancements in RRAM tech-

nology can potentially unlock the full capability of memristor

architectures and, consequently, make them a fitting building

block for ultra-lightweight security applications.

VI. CONCLUSIONS

In this paper, we proposed a lightweight implementation of

the GIFT cipher using an RRAM-based architecture in a 1T1R

configuration. The design was implemented using a 40 nm

process technology. Not only do our scheme’s area and power

overheads compare favorably to those of a CMOS-only imple-

mentation, but it also allows for housing the substitution boxes

(SBs) in an energy-friendly and non-volatile fashion. The

reconfigurability of these SBs allows the cipher operation to

be masked, providing protection against side-channel attacks

at no significant additional cost. Such a lightweight design

can significantly contribute to securing small-form-factor edge

devices for next-generation personalized healthcare.

ACKNOWLEDGMENT

This work has been supported by the EU-funded projects

SEPTON, SECURED, and CONVOLVE, with the grant agree-

ment numbers 101094901, 101095717, and 101070374, re-

spectively.

REFERENCES

[1] M. A. Siddiqi, G. Hahn, S. Hamdioui, W. A. Serdijn, and C. Strydis,
“Improving the security of the ieee 802.15. 6 standard for medical bans,”
IEEE Access, vol. 10, pp. 62 953–62 975, 2022.

[2] S. Lv, J. Liu, and Z. Geng, “Application of memristors in hardware
security: A current state-of-the-art technology,” Advanced Intelligent
Systems, vol. 3, no. 1, p. 2000127, 2021.

640

Authorized licensed use limited to: TU Delft Library. Downloaded on March 21,2024 at 10:01:21 UTC from IEEE Xplore. Restrictions apply.

[3] L. Wang, T. Dong, and M.-F. Ge, “Finite-time synchronization of
memristor chaotic systems and its application in image encryption,”
Applied Mathematics and Computation, vol. 347, pp. 293–305, 2019.

[4] L. Yang, L. Cheng, Y. Li, H. Li, J. Li, T.-C. Chang, and X. Miao,
“Cryptographic key generation and in situ encryption in one-transistor-
one-resistor memristors for hardware security,” Advanced Electronic
Materials, vol. 7, no. 5, p. 2001182, 2021.

[5] J. Sun, Z. Wang, S. Wang, M. Yang, H. Gao, H. Wang, X. Ma, and
Y. Hao, “Physical unclonable functions based on transient form of
memristors for emergency defenses,” IEEE Electron Device Letters,
vol. 43, no. 3, pp. 378–381, 2022.

[6] J. Cai, A. Amirsoleimani, and R. Genov, “Hyperlock: In-memory
hyperdimensional encryption in memristor crossbar array,” in 2022 IEEE
International Symposium on Circuits and Systems (ISCAS). IEEE, 2022,
pp. 960–964.

[7] W. Dai, X. Xu, X. Song, and G. Li, “Audio encryption algorithm based
on chen memristor chaotic system,” Symmetry, vol. 14, no. 1, p. 17,
2021.

[8] N. Du, H. Schmidt, and I. Polian, “Low-power emerging memristive
designs towards secure hardware systems for applications in internet of
things,” Nano Materials Science, vol. 3, no. 2, pp. 186–204, 2021.

[9] Y. Pang, B. Gao, B. Lin, H. Qian, and H. Wu, “Memristors for hardware
security applications,” Advanced Electronic Materials, vol. 5, no. 9, p.
1800872, 2019.

[10] B. Cambou, D. Hély, and S. Assiri, “Cryptography with analog scheme
using memristors,” ACM Journal on Emerging Technologies in Comput-
ing Systems (JETC), vol. 16, no. 4, pp. 1–30, 2020.

[11] A. P. James, “An overview of memristive cryptography,” The European
Physical Journal Special Topics, vol. 228, no. 10, pp. 2301–2312, 2019.

[12] J. A. Galvan Hernández, “Memristive security in free-floating neural
implants,” Master’s thesis, TU Delft Faculty of Electrical Engineering,
Mathematics and Computer Science, 2022. [Online]. Available:
http://resolver.tudelft.nl/uuid:cdd29307-3660-4dbf-921e-dda05faaf16c

[13] L. Chua, “Memristor-the missing circuit element,” IEEE Transactions
on circuit theory, vol. 18, no. 5, pp. 507–519, 1971.

[14] R. Wang, J.-Q. Yang, J.-Y. Mao, Z.-P. Wang, S. Wu, M. Zhou, T. Chen,
Y. Zhou, and S.-T. Han, “Recent advances of volatile memristors:
Devices, mechanisms, and applications,” Advanced Intelligent Systems,
vol. 2, no. 9, p. 2000055, 2020.

[15] H. Li, S. Wang, X. Zhang, W. Wang, R. Yang, Z. Sun, W. Feng, P. Lin,
Z. Wang, L. Sun et al., “Memristive crossbar arrays for storage and
computing applications,” Advanced Intelligent Systems, vol. 3, no. 9, p.
2100017, 2021.

[16] S. Zhang, G. L. Zhang, B. Li, H. H. Li, and U. Schlichtmann,
“Aging-aware lifetime enhancement for memristor-based neuromorphic
computing,” in 2019 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 2019, pp. 1751–1756.

[17] A. Singh, R. Bishnoi, R. V. Joshi, and S. Hamdioui, “Referencing-
in-array scheme for rram-based cim architecture,” in 2022 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2022, pp. 1413–1418.

[18] Y. Bai, H. Wu, R. Wu, Y. Zhang, N. Deng, Z. Yu, and H. Qian, “Study
of multi-level characteristics for 3d vertical resistive switching memory,”
Scientific reports, vol. 4, no. 1, p. 5780, 2014.

[19] EMRL. (2020) JART – Jülich Aachen Resistive Switching Tools.
[Online]. Available: http://www.emrl.de/JART#Artikel 1

[20] C.-Y. Huang, W. C. Shen, Y.-H. Tseng, Y.-C. King, and C.-J. Lin,
“A contact-resistive random-access-memory-based true random number
generator,” IEEE Electron Device Letters, vol. 33, no. 8, pp. 1108–1110,
2012.

[21] Y. Liu, L. Chen, X. Li, Y. Liu, S. Hu, Q. Yu, T. Chen, and Y. Liu,
“A dynamic aes cryptosystem based on memristive neural network,”
Scientific Reports, vol. 12, no. 1, p. 12983, 2022.

[22] H. Groß, S. Mangard, and T. Korak, “Domain-oriented masking: Com-
pact masked hardware implementations with arbitrary protection order,”
Cryptology ePrint Archive, 2016.

[23] F. Oboril, R. Bishnoi, M. Ebrahimi, and M. B. Tahoori, “Evaluation
of hybrid memory technologies using sot-mram for on-chip cache
hierarchy,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 34, no. 3, pp. 367–380, 2015.

[24] G. Khedkar, C. Donahue, and D. Kudithipudi, “Towards leakage re-
siliency: memristor-based aes design for differential power attack miti-
gation,” in Machine Intelligence and Bio-inspired Computation: Theory
and Applications VIII, vol. 9119. SPIE, 2014, pp. 40–50.

[25] A. Joseph et al., “An analysis on low cost and performance of hardware
and software oriented lightweight block ciphers for iot applications,”
in Proceedings of the International Conference on IoT Based Control
Networks & Intelligent Systems-ICICNIS, 2021.

[26] V. A. Thakor, M. A. Razzaque, and M. R. Khandaker, “Lightweight
cryptography algorithms for resource-constrained iot devices: A re-
view, comparison and research opportunities,” IEEE Access, vol. 9, pp.
28 177–28 193, 2021.

[27] N. M. Naser and J. R. Naif, “A systematic review of ultra-lightweight
encryption algorithms,” International Journal of Nonlinear Analysis and
Applications, vol. 13, no. 1, pp. 3825–3851, 2022.

[28] S. Banik, S. K. Pandey, T. Peyrin, Y. Sasaki, S. M. Sim, and Y. Todo,
“Gift: A small present: Towards reaching the limit of lightweight
encryption,” in Cryptographic Hardware and Embedded Systems–CHES
2017: 19th International Conference, Taipei, Taiwan, September 25-28,
2017, Proceedings. Springer, 2017, pp. 321–345.

[29] M. A. Siddiqi, R. H. Beurskens, P. Kruizinga, C. I. De Zeeuw, and
C. Strydis, “Securing implantable medical devices using ultrasound
waves,” IEEE Access, vol. 9, pp. 80 170–80 182, 2021.

[30] N. TaheriNejad, “Sixor: Single-cycle in-memristor XOR,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 29, no. 5,
pp. 925–935, 2021.

[31] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman,
A. Kolodny, and U. C. Weiser, “Magic—memristor-aided logic,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 11,
pp. 895–899, 2014.

[32] L. Xie, H. A. Du Nguyen, J. Yu, A. Kaichouhi, M. Taouil, M. Al-
Failakawi, and S. Hamdioui, “Scouting logic: A novel memristor-based
logic design for resistive computing,” in 2017 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI). IEEE, 2017, pp. 176–181.

[33] Z.-R. Wang, Y.-T. Su, Y. Li, Y.-X. Zhou, T.-J. Chu, K.-C. Chang, T.-C.
Chang, T.-M. Tsai, S. M. Sze, and X.-S. Miao, “Functionally complete
boolean logic in 1t1r resistive random access memory,” IEEE Electron
Device Letters, vol. 38, no. 2, pp. 179–182, 2016.

[34] W. Shen, P. Huang, M. Fan, R. Han, Z. Zhou, B. Gao, H. Wu, H. Qian,
L. Liu, X. Liu et al., “Stateful logic operations in one-transistor-one-
resistor resistive random access memory array,” IEEE Electron Device
Letters, vol. 40, no. 9, pp. 1538–1541, 2019.

[35] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C.
Weiser, “Memristor-based material implication (imply) logic: Design
principles and methodologies,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 22, no. 10, pp. 2054–2066, 2013.

[36] S. Kvatinsky, N. Wald, G. Satat, A. Kolodny, U. C. Weiser, and E. G.
Friedman, “Mrl—memristor ratioed logic,” in 2012 13th International
Workshop on Cellular Nanoscale Networks and their Applications.
IEEE, 2012, pp. 1–6.

[37] I. Vourkas and G. C. Sirakoulis, “A novel design and modeling paradigm
for memristor-based crossbar circuits,” IEEE Transactions on Nanotech-
nology, vol. 11, no. 6, pp. 1151–1159, 2012.

[38] G. Papandroulidakis, I. Vourkas, N. Vasileiadis, and G. C. Sirakoulis,
“Boolean logic operations and computing circuits based on memristors,”
IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61,
no. 12, pp. 972–976, 2014.

[39] S. Jain, A. Ranjan, K. Roy, and A. Raghunathan, “Computing in memory
with spin-transfer torque magnetic ram,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 26, no. 3, pp. 470–483,
2017.

[40] A. K. Mishra, D. P. Acharya, and P. K. Patra, “Novel design technique
of address decoder for sram,” in 2014 IEEE International Conference
on Advanced Communications, Control and Computing Technologies.
IEEE, 2014, pp. 1032–1035.

[41] S. Singh and S. Akashe, “Low power consuming 1 kb (32× 32) memory
array using compact 7t sram cell,” Wireless Personal Communications,
vol. 96, pp. 1099–1109, 2017.

[42] J. Wu, F. Mo, T. Saraya, T. Hiramoto, and M. Kobayashi, “A monolithic
3-d integration of rram array and oxide semiconductor fet for in-memory
computing in 3-d neural network,” IEEE Transactions on Electron
Devices, vol. 67, no. 12, pp. 5322–5328, 2020.

[43] M. Ezzadeen, D. Bosch, B. Giraud, S. Barraud, J.-P. Noel, D. Lattard,
J. Lacord, J.-M. Portal, and F. Andrieu, “Ultrahigh-density 3-d vertical
rram with stacked junctionless nanowires for in-memory-computing
applications,” IEEE Transactions on Electron Devices, vol. 67, no. 11,
pp. 4626–4630, 2020.

641

Authorized licensed use limited to: TU Delft Library. Downloaded on March 21,2024 at 10:01:21 UTC from IEEE Xplore. Restrictions apply.

