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Abstract—Accurate prediction of battery performance under
various ageing conditions is necessary for reliable and stable
battery operations. Due to complex battery degradation mecha-
nisms, estimating the accurate ageing level and ageing-dependent
battery dynamics is difficult. This work presents a health-aware
battery model that is capable of separating fast dynamics from
slowly varying states of degradation and state of charge (SOC).
The method is based on a sequence to sequence learning-based
encoder-decoder model, where the encoder infers the slowly
varying states as the latent space variables in an unsupervised
way, and the decoder provides health-aware multi-step ahead
prediction conditioned on slowly varying states from the encoder.
The proposed approach is verified on a Lithium-ion battery
ageing dataset based on real driving profiles of electric vehicles.

Index Terms—battery, multiscale dynamics, machine learning

I. INTRODUCTION

As the electric vehicle market and energy storage systems
grow, Lithium-ion batteries are gaining popularity for their
advantages like higher energy densities and longer cycle
life. However, these batteries degrade over time, leading to
reduced performance. While degradation itself is due to several
complex phenomena occurring at the microscale, such as solid
electrolyte interphase, lithium plating and particle fracture, at
the macroscopic level, this manifests as capacity fade and
resistance increase. To guarantee a safe and reliable operation,
the battery’s health and behaviour at any particular degradation
level have to be known and taken into consideration by the
control system.

Model-based approaches and data-driven methods are used
to estimate a battery’s degradation state, which cannot be
directly measured. Electrochemical (EC) models and equiv-
alent circuit models (ECM) are two model-based approaches
used for health-aware battery modeling. EC models employ
partial differential equations for microscale degradation cap-
ture, offering deep insight yet demanding numerous mea-
sured/estimated parameters and high computation. Degrada-
tion can arise from various mechanisms, either individually
or in combination. While there exist well-developed models

for individual degradation mechanisms, the intricate interplay
between multiple mechanisms remains poorly understood [1].

ECM captures macroscopic battery behavior, offering a
trade-off between accuracy and complexity. However, it lacks
a microscopic physics foundation and cannot capture nonlinear
and time-varying parameters’ dependence on SOC, tempera-
ture, and current [2]. This limits its usefulness and accuracy
over longer periods, making it ineffective for simulating degra-
dation evolution [3].

Various factors affect the battery degradation phenomenon,
from materials and manufacturing to working conditions [1].
Degradation involves various physio-chemical processes, and
inferring the battery’s health remains a key challenge. Due to
the aforementioned limitations of physics-based models, data-
driven approaches for battery health modelling are becoming
increasingly attractive. Recently, there has been a significant
focus on modern machine-learning (ML) methods as they can
automate feature extraction from high-dimensional data and
efficiently learn complex patterns from it [4]. These features
of ML-based methods make them suitable for battery health
estimation problems, and many ML approaches are proposed
in the literature.

Machine learning approaches for battery modeling can be
divided into two categories. The first approach estimates
battery health by using ML to estimate its capacity or resis-
tance. For instance, Li et al. [5] used constant current phase
charging curve data to estimate capacity. Chemali et al. [6]
used deep-learning to estimate SOC using voltage and current
measurement. Aitio et al. [7] inferred health and estimated
End-of-life using the Gaussian process regression technique.
However, most of these ML-based methods are based on
supervised learning, which needs labelled data for training the
models. These labels are either SOC, capacity or resistance
at different degradation levels. It is challenging to get these
labelled data accurately from the vehicle batteries, as they are
subjected to various dynamic and varying load conditions.

The second approach of ML application in battery modeling
is to develop a health-aware battery model that simulates
battery behaviour over its lifetime. For instance, Zhao et al.
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[8] and Hong et al. [9] used recurrent neural network (RNN)
variants to do multistep-ahead voltage prediction and fault
diagnosis. Firstly, the estimated SOC is used as an input signal
in all these approaches, which may not always be accurate,
affecting the overall model’s reliability. Secondly, the limited
interpretability of these models is a significant challenge due
to the complex interplay of fast and slow dynamics, which
makes it difficult to obtain clear insights into battery health
and behaviour.

Unsupervised learning methods in machine learning, which
don’t require labeled data, can address the mentioned con-
cerns. Autoencoder-based approaches, a type of unsupervised
method, are gaining popularity for identifying complex sys-
tems as discussed in [10], [11]. Autoencoders can recognize
patterns without explicit training, making them ideal for
system identification. They can also be easily configured as
interpretable state-space models. In battery applications, au-
toencoders denoise signals to improve State of Charge (SOC)
estimation [12] or predict Remaining Useful Life (RUL)
if labeled battery capacity data is available [13]. However,
using autoencoders’ unsupervised learning to separate gradual
dynamics from fast ones and predict multi-step voltage ahead
has not been attempted before.

In our work, we precisely aim to explore this research
direction. By using an autoencoder’s inherent capability of
compressed representation learning, we build a method for
inferring health and SOC in an unsupervised manner. To
reach this goal, we extend the standard autoencoder approach,
where input observations are reconstructed in the decoder,
and instead, we build a forward prediction decoder model.
The forward prediction error is used to learn the latent space
representation of the battery. This data-driven battery model
can infer slowly varying states in an unsupervised way and
simultaneously provide accurate, ageing-aware and multi-step
ahead battery voltage predictions.

Our proposed model features a 1-dimensional Convolutional
Neural Network (1-D CNN)-based encoder for abstract learn-
ing of slowly varying states from the time series signals of
current and voltage data. As a decoder, we employ RNN for
temporal learning of ageing-aware battery dynamics, which
is trained to predict the battery voltage multiple steps ahead.
The decoder structure is kept shallow, with only current as
external input and the latent space representation from the
encoder. This not only prevents overfitting but also implicitly
forces the autoencoder to learn the slow dynamics in its latent
representation, as this is the only way to reduce the forward
voltage prediction error.

The rest of the paper is divided into five sections as follows.
General battery ageing modeling with separate timescale is
detailed in Section II. Section III details the model con-
struction and the encoder-decoder-based model with details
on algorithms applied. Section IV details the data on which
the model is validated. Lastly, the Simulation and results are
discussed in Section V, and finally, the Conclusion is drawn
in Section VI.

II. BATTERY MULTISCALE MODELING

The electrical dynamics of lithium-ion batteries, when either
charging or discharging, have relatively fast dynamics, with
time scales in the order of milliseconds to a few seconds.
Conversely, degradation phenomena are relatively slow, as they
manifest over several sequences of charging and discharging
periods, with each pair of full charge and discharge being
termed a cycle. The time scale of degradation is thus com-
parable to the duration of a cycle, which is in the order of
several hours [14].

The concurrent presence of fast and slow dynamics in
batteries motivates us to consider a general, two-time-scale
nonlinear system of the form:

Σ :


ξ̇f = f(ξf , ξs, υ,Θ),

ξ̇s = g(ξf , ξs, υ,Θ),

Υ = h(ξf , ξs, υ,Θ),

(1)

where ξf ∈ Rnξf is the fast varying state vector and ξs ∈ Rnξs

is the slowly varying one. υ ∈ Rnυ is a controlled input vector
and Υ ∈ RnΥ is a measured output vector. Finally, Θ ∈ RnΘ

is a parameter vector which accounts for the battery specific
technology and for unit-to-unit variations.

Systems with distinct timescales can be modeled and con-
trolled using, for instance, the asymptotic method [15], [16].
When exact and precise equations for a particular dynamic
are not available, the problem at hand becomes increasingly
challenging. In many complex systems, multiple timescales
are intertwined, making it difficult to accurately separate them.
This issue is also observed in battery models, where the exact
timescale separation remains unknown, leading to a scarcity of
attempts in the literature to consider models with an explicit
multi-timescale separation.

In the following sections, we show how this impasse can be
overcome using a data-driven approach based on training an
autoencoder. Autoencoders have been successfully applied to
approximate physical phenomena from high dimensional data
and accurately predict future outputs [17]. In the present paper,
we use an autoencoder to separate slowly varying SOC and
ageing states from fast ones and simultaneously predict the
battery output over multiple time steps ahead. The structure
of our proposed autoencoder is explained next.

III. MODEL CONSTRUCTION

The standard autoencoder compresses input observations
into a smaller latent space via an encoder and then reconstructs
the input using a decoder. This is used in various applications
like anomaly detection. However, this method creates a rigid
latent space unsuitable for controller/observer design. To ad-
dress this, an alternative is to design the autoencoder to predict
future output signals instead of just reconstructing them [11].

Based on the physical insight of the problem at hand, we
propose the autoencoder structure depicted in Figure 1, where
Σe represents the encoder and Σd, the decoder. The symbol
y ∈ Rny denotes the battery output, that is, its voltage,
while u ∈ Rnu is an input vector consisting of the battery
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Σe Ω Σd

yt

ut

xs,t xs,t+1

ut+1

ŷt+1

Fig. 1: Battery Autoencoder model

current. We consider a discrete time domain, with the index t
denoting the tth sampling period. The encoder output, denoted
by xs ∈ Rnxs , is the reduced latent variable which, as a result
of our design choice for the autoencoder structure, encodes
the present battery slowly varying states.

The function Ω : Rnxs 7→ Rnxs is the state transition
function for xs, which thus represents the evolution over a
single time step of the battery slow states. Finally, the symbol
ŷ ∈ Rny denotes the one time step ahead prediction of the
battery output computed by the decoder.

Formally, the autoencoder model can be defined through the
following set of discrete time equations:

Σe :

{
xs,t = gw(ut, yt),

xs,t+1 = Ω(xs,t),
(2a)

Σd :

{
xf,t+1 = fw(xf,t, xs,t, ut),
ŷt+1 = hw(xf,t+1, xs,t+1, ut+1),

(2b)

where w ∈ Rnw is the tuneable weights vector associated with
Σe and Σd. The vector xf ∈ Rnxf is the fast varying state,
while the functions fw, gw and hw are parameterized in w
and are meant to approximate the fast dynamics f , the slow
dynamics g and the output function h which were defined in
(1). These choices are introduced to show explicitly how, in
the proposed structure, the encoder aims to learn the slow xs

while the decoder aims to learn the fast xf and the dependency
of xf on xs.

Assumption 1: In the present paper we assume that the
discrete sampling time is comparable to the fast dynamics time
scale, such that the approximation xs,t+1 = Ω(xs,t) ≈ xs,t

can be done.
Remark 1: Eq. (2) is based on using one single sample of

yt and ut in the past to predict one sample ŷt+1 in the future
based on the knowledge of ut+1. The scheme can be extended
to the case where na samples in the past are used to predict
nb samples in the future, in order to implement the multiple
step ahead prediction mentioned earlier. For the sake of ease
of notation and brevity, in the following we will not explicitly
denote the case with na > 1 and nb > 1, unless needed.

To effectively capture the slowly varying state, the encoder
mapping gw should maximise the autocorrelation of xs be-
tween two consecutive timesteps in any given cycle k. Thus,
the training of the autoencoder can be obtained by solving the
following optimization problem numerically:

argmin
w

Lpred(w) + λLcorr(w)

s.t.(2)
(3)

where Lpred(w) =
∑K

k=0

∑T
t=0 L(y

k
t+1, ŷ

k
t+1) and L : Rny ×

Rny 7→ R+ is any suitable loss function, such as for instance
the mean square error. The superscript k is used to identify a
given charging and discharging cycle, with k = 0 denoting a
fresh battery and k increasing monotonically during the battery
lifetime. Furthermore, each cycle k lasts for a certain time
period T. Lcorr(w) is the autocorrelation loss function between
xs,t−1 and xs,t. λ in (3) is the correlation regularization
hyperparameter.

Lcorr = −

nxs∑
i=j

|ri,j |

 (4)

where,

ri,j =
1

K

K∑
k=0

∑T
t

(
xk,i
s,t − x̄k,i

s

)(
xk,j
s,t−1 − x̄k,j

s

)
√∑T

t

(
xk,i
s,t − x̄k,i

s

)2 ∑T
t

(
xk,j
s,t−1 − x̄k,j

s

)2

(5)
i.e, ri,j represents the correlation between the latent space
values of features i and j at two consecutive timesteps t and
t − 1. x̄k,i

s is the mean value of the ith latent space feature
over cycle k.

We now outline the deep learning algorithms employed in
the model’s encoder and decoder parts for implementing the
functions fw, gw and hw.

A. Encoder

Our proposed encoder is based on a Convolutional Neural
Network (CNN). CNNs are capable of learning complex
patterns and objects from 2-D signal data, e.g. videos and
images [18]. CNN variants for 1-D sensor data, known as 1-
D CNN, have seen increasing applications in the domain of
signal processing for anomaly detection and structural health
monitoring [19]. Compared to Gated Recurrent Units (GRU),
described in III-B, 1-D CNN can effectively handle longer
sequences of data with less computation burden and also offers
better abstract learning [4]. These features make it suitable for
the slowly-varying state extraction application of the encoder,
as it is essential to have a longer receptive field to observe
significant variations.

In 1D convolution, discrete linear operations are performed
on encoder input data, denoted here generically as Ht ∈
Rnu+ny , t ∈ {1, . . . 1 + a}, with m sliding kernels of

Time

t1

u

y

t2 Sliding Kernel t3

Fig. 2: 1-D CNN with sliding kernel on encoder input data
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size Lw for input channels n = nu + ny . Wij ∈ RLw
,

i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} are the weights associated
with kernels. This convolution operation results in the output
vector qj ∈ Rnout , j ∈ {1, . . . ,m} with nout = a − Lw + 1.
Formally, the 1-D convolution operation can be described as:

qj =

n∑
i=1

Conv1D
(
Hi,W(i,j)

)
qj [k] =

n∑
i=1

LW∑
r=1

Xi[k + r − 1]W(i,j)[r]

(6)

By cascading multiple convolution operations with various
kernel sizes Lw, the dimension nout of the CNN output can
be made to reach a given latent space dimension nxs, which
is a hyperparameter. This multiple 1D-CNN layers-based deep
encoder model can then be used to estimate xs,t and provide
it as an input to the decoder.

B. Decoder

The decoder we propose is based on Recurrent Neural Net-
works (RNN). RNNs are the generalisation of a feedforward
artificial neural network (ANN) to data sequences. Among
the RNN variants, the Gated Recurrent Unit (GRU) was
proposed by [20] to force the recurrent unit to capture adaptive
dependencies of different timescales with fewer computations
compared to Long-Short Term Memory (LSTM, [21]).

In particular, we use the GRU-based single-layer decoder
model, followed by a time-distributed, single neuron feedfor-
ward ANN layer for learning the xs dependent battery fast
dynamics fw and the output hw. A GRU-based decoder model
can be described in state-space form as:

Xt+2 = zt+1 tanh (Wrut+1 + Ur(rt+1 ⊚Xt+1) + br)+

(1− zt+1)Xt+1

zt+1 = σ (Wzut+1 + UzXt+1 + bz)

rt+1 = σ (Wfut+1 + UfXt+1 + bf )

ŷt+1 = tanh(W0Xt+1 + b0).
(7)

The GRU cell state vector X ∈ Rnx carries the fast and
slowly varying state info across the decoder’s future timesteps.
For the first timestep, Xt+1 = xs,t+1, as the decoder acquires
xs from the encoder. For future timesteps, Xt+i (i > 1)
carries a fast varying state depending on the inputs and also
xs acquired from the encoder. W,U and b are the weights
and bias parameters associated with the update gate (zt) and
reset gate (rt). Furthermore, the symbol ⊚ indicates element-
wise multiplication, while. σ (sigmoid) and tanh are nonlinear
activation functions.

IV. DATA

To validate the proposed autoencoder approach, an open-
source Lithium-ion battery ageing dataset provided by [22]
is used. The dataset consists of battery cells with a nom-
inal capacity of 4.85Ah (Qnom), which were cycled for
23 months using a Constant Current (CC)-Constant Voltage
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Fig. 3: Varying Battery discharge capacity measured
intermittently across different cycles [22]

(CV) charging protocol with varying charging rates (C/4
to 3C), and the real Urban Dynamometer Driving Schedule
(UDDS) based discharge driving profile. To provide a ground
truth for the health of the batteries, various Characterisation
tests, including capacity, Hybrid Pulse Power Characterization
(HPPC), and Electrochemical Impedance Spectroscopy (EIS),
were performed intermittently at intervals of 25− 30 cycles.

The cell’s discharged capacity is evaluated through a ca-
pacity test conducted by discharging it at a C/20 rate from a
fully charged state. The discharge capacity of the cells over
the cycles is reduced due to ageing, as shown in Figure 3, and
is calculated using:

Qdis =

∫
I(t) dt

Qnom × 3600
× 100, (8)

where the discharge current I(t) = 0.24A used during the
capacity test is integrated over the test period.

We used eight battery cells’ UDDS discharge profile data
for our model development (cell labels shown as a legend in
Figure 3). The battery is discharged from 80% SOC to 20%
SOC with multiple UDDS cycles. The data from a cell G1 are
kept aside for model testing, while the other seven cell data
are split into 80% training set and 20% validation set during
the training phase to prevent model overfitting. All data are
acquired at a frequency of 10Hz.

Figure 3 shows the varying battery discharge capacity
measured intermittently across different cycles, providing a
clear understanding of the battery ageing behaviour. As the
temperature is kept constant during each cycle, only current
and voltage signals are used for model development. To
accelerate the training process, all data are normalized.

V. SIMULATIONS AND RESULTS

After training a GRU-based encoder-decoder on a dataset,
three key hyperparameters emerge: latent space dimension
(nxs), encoder’s input history length (na), and decoder’s
prediction horizon (nb). These hyperparameters influence how
well the encoder captures xs, subsequently affecting the
decoder’s prediction performance. The software is built on
TensorFlow and computations run on a cluster with an AMD
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EPYC 7402 processor (24 Cores, 2.80 GHz), 200 GB RAM,
and an Nvidia Tesla V100S-PCIE-32GB GPU.

Optimal selection of state dimension (nxs) is crucial to
minimize multi-step prediction error. Very low nxs hampers
encoder training due to limited update potential across en-
coder and decoder timesteps. Conversely, excessively high nxs

is redundant, not enhancing decoder prediction (Figure 4).
Simulation experiments established ideal nxs through Mean
Squared Error (MSE) loss across epochs (Figure 4). Results
indicate nxs = 1 limits training, while nxs > 3 minimally
boosts MSE; thus, nxs = 3 is chosen.

GRU learning, based on the backpropagation through time
algorithm, can be computationally expensive for longer se-
quences due to sequential gradient updates. However, learning
on shorter sequences can hinder accurate capture of xs. To
balance robust health learning and computational efficiency,
we initially set na and nb to 200. While the decoder pre-
dicted voltage accurately, the encoder’s latent space output
was inconsistent. This inconsistency was attributed to the
encoder lacking context for inferring health with a short
history. Increasing na resolved the latent space inconsistency
but led to higher computational load and vanishing gradients.
In contrast, the 1D-CNN (described in section III-A) excels
in abstract learning and efficiently handles longer sequences
compared to GRU, without significant computational burden.
Setting na = 500 with a 1-D CNN-based encoder consistently
provided accurate health estimation.

Finally, after setting the encoder-decoder architectures based
on 1D-CNN and GRU, respectively, and setting nxs = 3, na =
500, and nb = 200, the model was trained on the dataset
mentioned in Section IV. Model test results on the G1 battery
test dataset are described here.

A. Latent space

Figure 5 illustrates the reduced latent space output from
the encoder across various cycles while holding the state of
charge (SOC) constant. Notably, a distinct pattern emerges in
the latent space as the fresh battery ages with charging and
discharging cycles. To verify the encoder model’s effectiveness

Fig. 5: Battery Encoder model’s latent space evolution across
cycles for constant SOC=80%

SOC

80%

20%

Fig. 6: Evolving latent space within one single discharge
cycle as SOC changes from 80% to 20%

in capturing the ageing state, data from a previously unseen
cell replaces the original holdout dataset. The consistent emer-
gence of patterns with ageing across different cells establishes
the encoder’s ability to track the gradual shift in battery
health level when provided with a sufficient history of input-
output data. The gradual shift in the latent space is similar
to the gradually changing discharge capacity (Qdis) shown in
Figure 3. This result highlights the potential of the encoder
model in accurately capturing the gradual degradation of
battery health over time.

Similarly, the encoder model can also effectively capture the
SOC within a single cycle of battery operation. This can be
observed in the latent space output for different SOC levels
within a single discharge cycle, as shown in Figure 6. The
separation between the SOC levels in the latent space confirms
the ability of the encoder to capture the SOC. This proves the
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encoder model’s capability of capturing slowly varying SOC
and ageing state without being explicitly trained for and also
proves the autoencoder’s ability to separate xs from xf .

B. Health-aware voltage prediction

The results presented in Figure 7 demonstrates the effec-
tiveness of the proposed decoder model in accurately predict-
ing the voltage of a battery over a range of state-of-charge
values and ageing conditions. Specifically, the decoder model
predicted the voltage for a total of nb = 200 timesteps,
corresponding to a prediction horizon of 20 seconds, with
a sampling frequency of 10Hz. To evaluate the accuracy
of the predictions, two metrics were used - the root mean
squared error (RMSE) and maximum absolute error (MAE).
The RMSE and MAE values were found to be 51mV and
60mV, respectively, across all 212 discharge cycles of the
test cell. These results suggest that the decoder model is
effective in capturing the ageing and SOC-dependent dynamics
of the battery, demonstrating its ability to accurately predict
the battery’s performance under varying operating conditions.

VI. CONCLUSION

We presented an unsupervised learning approach to separate
the multiscale dynamics of batteries, which involves separating
the slowly varying ageing and state of charge (SOC) states
from the fast cycling dynamics. Our approach involves recon-
figuring the standard autoencoder structure. We evaluated the
proposed approach using a real driving profile dataset, and
the results demonstrate that the model’s encoder accurately
captures the ageing and SOC states, while the decoder provides
accurate multi-step ahead predictions. In contrast to other ma-
chine learning-based battery models, the time-scale separation-
based approach presented here offers enhanced interpretability
by isolating ageing dynamics from fast dynamics. This strategy
provides a foundation for developing more precise, physics-
informed machine learning models. As the fast dynamics
decoder component can incorporate a physics-based model

structure, which further improves the accuracy and inter-
pretability of the model. Future work involves mapping latent
space into an accurate estimation of the state of charge and
health state and incorporating uncertainty in the multi-step
ahead voltage predictions to quantify the confidence level.
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