
Towards Data Resilience for Fully Distributed Self-Sovereign Identity Managers

Kalin Kostadinov , Martijn de Vos , Johan Pouwelse
Delft University of Technology

Abstract
Self-Sovereign Identities provide a solution to the
identity crisis as their goal is bringing back control
over identities to their owners. Nonetheless, cur-
rently deployed SSI managers lack data resilience.
Consequently, one’s identity is lost if the device
holding it becomes inaccessible.
We achieve data resilience through identity back-
ups. Unfortunately, there is no research on the mat-
ter. Thus, we discover that traditional backup sys-
tems need eight additional requirements to become
suitable for identity backups. Then we describe
two existing solutions and introduce a novel one de-
signed by us. A comparison between them follows,
from which we conclude that our novel solution sat-
isfies the most requirements. We then extend an
existing SSI manager with a proof-of-concept im-
plementation of our solution.
Our implementation consists of three main compo-
nents. The first one takes care of identity recovery.
The second one allows verifiers to check whether
identities and their backups are consistent before
verifying their attested claims. And the last mecha-
nism takes care of access revocation.

1 Introduction
Every person on the Internet uses at least one digital identity.
Their purpose is to establish trust between service providers
and their users. They also serve as a mechanism to distin-
guish between users, utilized by services for providing an ex-
perience tailored to customers’ expectations. Unfortunately,
we currently are in the middle of an identity crisis [2] since
the Internet architecture is missing a unified identity layer.
Thus, applications running on top of the Internet need to han-
dle authentication and authorization themselves, explaining
why every application has at least one identity management
system. As a result, those systems control users’ identities,
so identity owners cannot administer their data.

In recent years, identity management has become a key
concern for governments. That has led to a large number of
regulations in the field [3]. There is a need for a novel identity
management system, and its formal description stands in the

middle of all the work [5]. It promises to Internet users to-
tal control over their identities and achieves this by satisfying
the requirements of Self-Sovereign Identities (SSI) [1]. SSI
allows every identity holder to store and manage their data.
For that, users need to use resources under their jurisdiction.

There are already several implementations that cover part
of SSI’s properties [16], and they have matured over the past
couple of years. However, the biggest obstacle preventing
them all from going mainstream is the problem of adop-
tion [7]. For the utilization of these implementations, they
need to fulfill a long list of real-world usage requirements.
One of them is storage, since every digital identity is just a
data repository of its owner’s claims, and existing solutions
are using two approaches to satisfy it.

The first one requires the existence of a single data struc-
ture (blockchain). It contains information about all transac-
tions in the network and chains them together. Thus, com-
mitting to this data structure requires time and computing re-
sources before data propagates to all nodes. Unfortunately,
most real-world identity use cases require high throughput
and low latency. Also, in some cases, there needs to be sup-
port for offline transactions. And again, having a global data
structure stands in the way because transactions need to hap-
pen online. Thus, this group of identity managers is not well
suited for solving the problem of adoption.

The second group of identity managers uses a local data
structure per node in the network. These implementations
generally satisfy real-world requirements for throughput and
latency. Such systems are also fully distributed 1, thus allow-
ing offline transactions. They have superior functionality to
the first group, but they have no data resilience. The problem
arises from the fact that such identity managers keep all data
in one physical place. And in the case that an identity owner
loses access to his identity manager, the identity gets lost ir-
revocably. For example, implementations that work only on
mobile devices are vulnerable to physical damage, theft, and
loss.

Solving the data resilience problem of fully distributed SSI
management systems could prove crucial. With such a solu-
tion, there will be no need for a single distributed or central-

1Throughout this paper, the term “fully distributed” would mean
a network of nodes, each having an identity management system and
a local data storage for the node’s identity.

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



ized data structure. Thus, throughput will increase, latency
decrease, and offline transactions will be possible while at
the same time having data resilience.

We are the first to acknowledge the importance of data re-
silience for fully distributed systems since we did not found
extensive research on the subject. Our work tries to fill a gap
in existing research of fully distributed SSI managers. It will
also be a step forward to solving the problem of adoption.
Thus, data resilience as a sub-problem of adoption is a re-
search area that is worthwhile exploring. The following re-
search question is at the center of this work:

How to make fully distributed SSI management
systems data resilient?

In the remainder of this paper, we formally specify the un-
derlying problem by defining requirements for solving it (sec-
tion 2). Then, we assess the positives and negatives of two
existing solutions and a third one created by us (section 3).
Next, the technical details of implementing our novel solution
follow (section 4). We also go over the ethical aspects and re-
producibility of the conducted research (section 5). Finally,
we discuss results, draw the main conclusions, and suggest
ideas for future work (section 6).

2 Requirements for Data Resilience
Data resilience means that data must never get lost. Thus, an
identity holder must always be able to access his identifying
information. Redundancy is usually the main component for
achieving data resilience. The need for redundancy comes
because, in fully distributed networks, nodes have vulnerable
storage [9]. To make a system resistant to data loss and cor-
ruption, a protocol keeping identities in at least two separate
locations should solve the problem.

An implementation supposedly looks like a backup system.
Nevertheless, SSI managers store identity data that is very
sensitive. This data comes in the form of claims. They usu-
ally contain signatures of both the identity holder and an at-
tester that guarantees the trustworthiness of the claims. Next
to that, SSI managers also hold users’ private keys, used for
signing transactions with other parties. Thus, we consider the
requirements satisfied by traditional backup systems 2 as in-
sufficient for SSI management, resulting in us inventing a few
additional ones.

Since an identity backup would contain the whole transac-
tion history of a user, the principles of SSI [1] served us as a
source of inspiration. However, not all apply to a backup sys-
tem, so we have left some out and added new ones. The fol-
lowing requirements for SSI managers’ backup systems arise.

1. Control. It is of great importance where identity back-
ups are stored because identity owners need to have full
control over their data, and this includes their backups.
Backup protocols must use storage that is under the ju-
risdiction of the identity owner. That has never been an
issue of traditional backup systems. Even though they
deal with identity information, it is usually not part of

2In this paper, traditional/conventional backup systems are
backup systems deployed by service providers for the protection of
their identity management systems.

an SSI. Thus, users of traditional backup systems do not
need and have never had direct control over the backups
of their identities.
Furthermore, encryption of backups must always take
place for privacy and security reasons. Without having
strong security and privacy, identity owners could suffer
from identity theft, misuse, or unauthorized modifica-
tions.

2. Availability. Emergencies within a network of mobile
devices that each host an identity manager could happen
at any time. And identity owners must be able to recover
their identity, no matter when or where they need to do
so. Thus, identity backups have to be always accessible
to their owners. As a consequence, high availability is
a goal. Machines with constant access to electricity and
the Internet are a must for backup storage. However, tra-
ditional backup systems usually do not need to provide
high availability. For them, it is enough that data is per-
sistently stored, sometimes even entirely offline.

3. Transparency. Backup protocols need to be transpar-
ent. Users must be explicitly aware of how their data
is getting processed and where it is stored. If any such
detail is unclear, we must not expect trust in the pro-
tocol, and regulatory agencies must prevent the adop-
tion of those technologies. There already exist plenty
of good examples when closed source systems have se-
cretly stolen or misused identities [8]. Unlike identity
backup systems, the management of traditional ones is in
the hands of service providers. And next to the fact that
identity management systems are not transparent [2],
backup systems are not either.

4. Persistence. Both identity and traditional backups need
persistence to some extent. However, identity back-
ups must reside in storage with a probability of loss
or corruption close to zero. If a user loses access to
their identity, and its backup gets corrupted, the identity
gets irrecoverable, destroying their reputation. Then, the
user will have to start collecting attestations about their
claims from scratch. On the flip side, persistence in tra-
ditional backup systems is desirable but optional. Ser-
vice providers have access to seemingly unlimited re-
sources, and their backup systems usually do not have to
be further replicated.

5. Portability. Identities must be able to exist without re-
liance on any third party. Thus, backups must be trans-
ferable to different backup systems or different instances
of the same system. In some cases, a user could lose
their identity if impossible to move a backup to a differ-
ent environment. For example, when users transfer their
identity to a new SSI manager. Like persistence, porta-
bility in traditional backup systems is voluntary and de-
pending on the use case. Usually, service providers do
not transfer backups outside their closed source backup
system deployments because they already rely just on
their systems and no third parties.

6. Usability. Adding a backup mechanism to any sys-
tem introduces increased complexity and some over-



head. The design of identity managers usually considers
different types of users. For instance, such systems are
supposed to be used by a whole nation. Not all identity
holders have the technical knowledge about managing
their identity backup system. Thus, seamless integration
within the identity manager itself is a must for backup
protocols. Backups should happen discretely, but users
must know that they can rely on a backup, and it is al-
ways available and up to date.

7. Consistency. With existing backup systems, there might
be discrepancies between the data and its backup. In
terms of SSI, backup and storage have to be always syn-
chronized. Transactions need to be stored at their backup
location first before considering them valid by verifiers.
If there is no synchronization, some transactions might
get lost. And since at least two users are involved in a
transaction, those users might have different knowledge
about the current state of the identity.
Traditional backup systems do not need to be consis-
tent with their source. But identity ones need to since
adversaries in the network could exploit inconsistencies
to manipulate someone’s identity. For instance, Alice
makes a claim that gets attested by Bob as part of an
agreement between them. Then, Bob causes Alice to
lose access to her identity before their transaction gets to
Alice’s backup. He also hides his transaction with Alice.
Consequently, Alice will not be able to prove anymore
that she complied with her agreement with Bob.

8. Access Revocation. Users must be able to access and re-
store from their backups through multiple devices. Thus,
there needs to be an access revocation mechanism that
prevents rogue devices from reaching identity backups.
Such devices are, for example, lost or stolen identity
holders. Although the implementation of access revoca-
tion for traditional backup systems is possible, it is not
a hard requirement since backups serve as just a mea-
sure for preventing data loss most of the time. They
need rarely be accessible online, and they usually reside
within private networks.

The following section lays out two existing solutions to the
problem at hand and describes a novel one. For all three of
them, there is an evaluation, whether they comply with the
abovementioned requirements.

3 Achieving Data-Resilience in SSI
In the previous section, it became apparent that data resilience
is achievable through the addition of redundancy. And al-
though a traditional backup system might partially solve the
problem at hand, no known conventional backup protocol sat-
isfies all requirements. Thus, in this section, two existing so-
lutions and a novel one are evaluated based on the extent to
which they meet the previously introduced requirements.

A relevant piece of related work that we were able to find
was a paper by Bokkem et al. [16]. It contains an overview
of multiple SSI managers and assesses their implementations.
Thanks to it, we learned which solutions are lacking data re-
silience. Some systems already implement identity recovery

Third-Party 
Storage Provider

Identity OwnerIdentity Owner

Identity Owner's 
Jurisdiction

Identity Owner's 
Jurisdiction

Figure 1: Users store backups with third-party storage providers.

solutions, and here, we evaluate two of those and propose a
novel solution that supposedly has fewer disadvantages than
the others.

3.1 Third-Party Storage Providers
The first solution comes as a proposal for a solution to the data
resilience problem of IRMA [4]. In his research, Derksen
refrained from specifying where backups should be stored.
However, in his future work suggestions, he argues that
users could store backups with services like Google Drive
or iCloud. For this evaluation, we assume that users utilize
third-party cloud storage as a backup space for identities. It
is the most user-friendly solution because cloud owners are
managers of the resources. Users save time and money since
they do not have to deal with data loss and corruption - com-
pany operators handle disk failures. Operators also replicate
the data enough times to ensure persistence. Figure 1 illus-
trates how this solution works.

Third-party storage usually sits near the backbone of the
Internet. Thus, backups are easily reachable from any point
in the network. This solution offers very high availability.
Also, costs are low since the infrastructure is used efficiently
by multiple users. However, cloud storage is vulnerable to
cyber-attacks. Although security measures are state of the
art, one server is responsible for the data of many users. At-
tackers have a better reason to target cloud services instead of
single users. And in case of a breach, identity backups might
disappear or get stolen.

Usually, cloud storage providers use proprietary closed
source software. Thus, it is not always clear how they man-
age users’ data. Identity owners should review such techni-
cal details before choosing a backup service. Using propri-
etary software also hinders portability. It makes it difficult,
if not impossible, to move a backup from one cloud storage
provider to another. Also, backups reside at a multitude of
locations across several countries. However, some govern-
ments do not allow for identity data to cross borders for legal
reasons. Often, there are local cloud service providers, and
their use solves the previously discussed issue.

Access revocation is another problem. Anyone with cre-
dentials will be able to access a user’s backup and steal one’s



Identity Owner

Identity Owner

Identity Owner's 
Jurisdiction

Identity Owner's 
Jurisdiction

Identity Owner

Identity Owner's 
Jurisdiction

Peer 
Identity 

Backups

Peer 
Identity 

Backups

Peer 
Identity 

Backups

Figure 2: Peers in a network of identity holders store backups on
behalf of each other.

identity. There should be extended security measures before
authorization. Also, the backup system should prevent a de-
vice from backing up data if the identity owner loses access
to the device. The work of Derksen introduced a separate
mechanism for access revocation. It uses a central key-share
server that knows the current authorized device for the man-
agement of identities and could revoke access at any time with
the user’s consent.

Identity owners have command over their backups through
a management system, so they have no direct connection to
their data. Also, cloud providers often require users to pay
for services and apply different policies, which allows them to
deny access to services in case of a policy breach. Thus, iden-
tity owners do not have complete control over their backup.
In case of both service denial and data loss, the damage might
become irreversible.

The last problem that we are going to discuss here is con-
sistency. If some transactions do not get stored in the backup
system and then the identity gets lost, after recovery, those
transactions are not going to be part of the identity, thus, al-
lowing for cheating the system. As a result, transactions first
need to be brought to backup before using them in the process
of verification. When using third-party storage for identity
backups, users need to be online for transactions to move to
backup. Thus, with cloud storage, offline transactions are not
possible without additional mechanisms.

3.2 Peer-to-Peer Backup
The second solution, implemented by Sovrin [6], is called
“social recovery”. The idea behind it is to reproduce the
blockchain from the knowledge of trusted users about the lost
identity. This approach is closely related to the current devel-
opments in the field of peer-to-peer backup systems [13]. The
concept is to share encrypted pieces of a user’s identity with
trusted peers in the network so that the probability of end-
ing up with an unrecoverable identity is as low as possible.
Figure 2 gives an overview of the system.

With this solution, users again have very little control. On
the one hand, the identity manager constructs backups as a
snapshot of one’s identity and then requests peers to store it.
On the other hand, when users want their identities destroyed,
they have to ask their peers to do so. Users also need to keep
track of peers who store their backups. If this list of network
participants gets lost, identity owners immediately lose con-
trol over their backups.

Availability and persistence are other issues of this solu-
tion. There needs to be an algorithm that keeps track of where
backups are stored. It should also request backup replica-
tion with enough nodes, so there are always enough available
peers for identity recovery. At no point in time, a user should
not be able to recover his identity. Unfortunately, identity net-
works are very dynamic. There might be some offline users
during the rebuilding process. Also, some might not be hon-
est about backup versions, and others might not even exist
anymore. As a result, the algorithm would generate lots of
network traffic and use a significant amount of computing re-
sources to provide availability and persistence. For example,
phone storage devoted to backups will become unusable to
the owner of the mobile device. Also, there will be a decrease
in battery life.

Network participants usually run the same version of an
identity manager. However, peers are independent, and some
might decide to run modified versions of the code. Thus, a
peer-to-peer backup system is not very transparent. Without
the consent of the identity owner, peers might decide to sell,
destroy, or modify one’s backup. Privacy is also a concern in
this instance. It is not desirable to keep identity information,
even if it is encrypted, on untrusted nodes. Although current
encryption techniques are secure enough, in the future, there
might be a powerful enough computer that could break the
used encryption.

This solution is highly portable. The main algorithm
can move backups between nodes. Furthermore, the actual
backup gets created by the identity manager. Thus, it can pro-
duce backups for different backup networks. The algorithm
resides within the identity manager. So, the whole process
around the creation and distribution of backups is automated.
It is perfect for users since they do not need to do anything to
manage their backups.

As with the first solution, consistency is a significant con-
cern. Again, transactions might get lost, allowing users to
destroy their identity if they want to hide a specific transac-
tion. Distributing backups with the latest version of one’s
identity among pees is a must before verifiers start accepting
the attestations.

Lastly, there is a need for a revocation mechanism. Sovrin



Control Availability Transparency Persistence Portability Usability Consistency Access Re-
vocation

Third-Party Stor-
age Providers - - + + - - + + - - + + o + +

Peer-to-Peer
Backup - - o - - - + + o + +

Identity Owner as
Storage Provider + + o + + + + + + o o

Table 1: A comparison of the three solutions for data-resilience in SSI, in the context of our eight requirements.

has a separate procedure for handling revocation. In this case,
each device needs authorization for managing identities. If
the device gets compromised in any possible way, users can
disallow this device from interacting with their identities.

3.3 Identity Owner as Storage Provider
The third idea that is novel and developed in this paper is
to keep the SSI management system on a server under the
jurisdiction of the identity owner. Users manage their iden-
tities through mobile devices like smartphones, and the need
for another machine, controlled by the identity owner, will
add some unwanted overhead. It hinders further usability
because users need to have the technical know-how to op-
erate the server. Nevertheless, they will have the most control
over their identities. Also, this solution achieves transparency
since users are solely responsible for their data. Figure 3
shows the novel solution.

An idea to improve usability is to integrate the protocol
within routers. The identity backup system will then still be
under the authority of its owner. However, the management
of the system will happen automatically. Another advantage
is that the identity backup will reside on the edge of users’
home networks. It will improve accessibility. But, exposing
machines to the Internet poses a security threat.

When a server only takes care of one identity manager,
there is generally a very low probability of identity data get-
ting corrupted or lost. It is because identity managers do
not have computationally intensive processes, and storage re-
quirements are low. Therefore, there is no need for further
replication of data from the backup system. Of course, it
holds only if the server has uninterrupted access to both elec-
tricity and the Internet. However, the problem of a disaster
striking the server arises. Perhaps, snapshots of the backups
should be stored securely at another location to guarantee that
recovery is always possible.

This solution is highly portable as well. Users have to in-
stall a fresh version of their identity manager on a new server
and recover the identity from the old one. Moving the iden-
tity manager to a new server is also transparent to the mobile
device used to control the manager.

However, users cannot expect high availability. Depend-
ing on where identity holders are when they try to access
their identity manager, the server might not be reachable. In
this case, transactions happen offline, so there is a need for a
mechanism that ensures transaction replication in the backup.
This algorithm should account for consistency as well. Thus,
transactions should only be considered valid by verifiers after
their synchronization with the server.

Identity Owner

Identity Owner's 
Jurisdiction

Identity Owner

Identity Owner's 
Jurisdiction

Identity Owner

Identity Owner's 
Jurisdiction

Identity 
Backup

Identity 
Backup

Identity 
Backup

Figure 3: A network of identity holders where each user handles
their own backups.

Mobile devices can easily get lost or stolen. Thus, there
should be a mechanism that can prevent the before-mentioned
devices from controlling the identity manager. Access re-
vocation functionality is easily integrable with this solution
since a simple “blacklist” can help the manager deny access
to specific devices.

3.4 Comparison
Given the three solutions and the requirements used to evalu-
ate them, we created Table 1. It contains an overview of how
far each of the solutions comes to meeting all requisites. We
used markers (“- -”, “-”, “o”, “+”, “+ +”) to show how solu-
tions differ per requirement. They range from “- -” meaning
the requirement cannot be satisfied - to “+ +” meaning it can
be satisfied, with “o” meaning there needs to be an additional
mechanism to meet the requirement.

Table 1 makes it apparent that the third solution meets most
of our requirements. It tries to take the best of both worlds by
standing in the middle between being centralized and fully
distributed. The first solution relies on a third party to han-
dle backups of multiple users, while the second one relies on
peers for backup management. However, the third solution
can be characterized as both centralized and fully distributed
at the same time. From the user’s perspective, there is only
one machine that manages identity backups. But if we look
at the big picture, users each have a personal identity backup
manager making backups distributed.

Only with the third solution are users in total control of
their identity backups, which is perhaps the most important



Synchronization
Request

Attestation
Request

Attestation

Synchronization
Acknowledgement

Attester
Identity
Owner

Identity 
Backup

Figure 4: The attestation process after introducing backups.

feature since the goal of SSI is to give command back to users
over their identities. Next to that, it is also the most transpar-
ent solution since users manage themselves the software that
takes care of their backups.

Persistence is tightly dependent on each use case, and if
users replicate their backups multiple times, they can expect
a lower probability of their data disappearing. User-managed
data will always be highly portable. Moving an identity
backup requires only the destruction of the old backup man-
ager and the creation of a new one. Depending on whether
the identity backup manager is pre-installed or not, usability
can differ. For technical novices, there needs to be automatic
deployment software.

In conclusion, since the third solution is missing some ad-
ditional mechanisms that would make it satisfy all require-
ments, the following three questions need to be answered:

1. How to allow identity recovery?

2. How to make transactions consistent between the iden-
tity manager and its backup?

3. How to revoke access from specific devices when they
become rogue?

The following section contains an implementation outline
that uses the Trustchain Super App as a platform to develop
an answer to the abovementioned questions.

4 Implementation Details
The Delft Blockchain Lab develops one of the SSI manage-
ment systems, called IPv8 [12]. It is arguably the most so-
phisticated SSI management system. However, the issue with
IPv8 is that it does not offer long-term data resilience, thus
not offering a mechanism for recovery from lost access to the
identity manager.

Within IPv8, every user has its blockchain, called
TrustChain [10], for managing their identity. And Trustchain
allows IPv8 to work as a fully distributed system. The idea
behind this design decision is that users have more control
over their own identity if they are the only ones physically
possessing their data blocks.

Mobile applications are the most effective way of hosting
an identity management system like IPv8. And an example of

Verification Request

Verification

Verifier
Identity
Owner

Figure 5: The interaction between the identity owner and the verifier
does not change after introducing backups.

such an application is the Trustchain Super App [15]. How-
ever, mobile devices are not reliable enough. Thus, it is not
clear how users should recover their identities when access
to them is lost. IPv8 falls within the group of SSI managers
that store identities locally. Consequently, it suffers from the
problem this paper is trying to solve. That is why we are us-
ing IPv8 as a platform to implement the third solution from
section three.

In our solution, every deployment of IPv8 should consist of
two parts - an instance of IPv8 [14], running on a server under
the user’s jurisdiction as the identity backup system, and an
instance of the Trustchain Super App as the mobile identity
manager. The identity backup server represents the user’s ac-
tual identity. Thus, its public key is the user’s identifier. The
mobile deployment is only the control device for the server.
Now the answers to the three questions posed at the end of
section three follow.

4.1 Identity Recovery Mechanism
Identity creation happens during the initialization of the iden-
tity backup system. It occurs when a user decides to create a
new identity through the Trustchain Super App. During the
initialization process, the mobile app generates a mnemonic
phrase using a password provided by the user as a seed. This
phrase allows the Trustchain Super App to regenerate the mo-
bile device’s public/private key pair.

From that moment, a user can use the mnemonic phrase
and the public key of the backup system to restore their iden-
tity. And in the case that a user loses access to their current
device, they can retrieve their data on a new one using the
restoration mechanism. During recovery, the whole transac-
tion history gets transferred to the new device. The identity
backup manager notes the identity of the mobile deployment
and adds it to a list of devices with access to the backup.

4.2 Transaction Synchronisation Mechanism
Each user has two pairs of public/private keys. The first one
is owned and handled implicitly by the identity backup man-
ager. And the user explicitly manages the second one through
the Trustchain Super App. With its private key, the mobile
device can sign transactions. The idea is to support online



and offline attestation and verification. However, there is a
difference between online and offline transactions. In online
ones, both the attester/verifier and the user have access to the
identity backup manager. But, in an offline setting, it is not
accessible to anyone.

Each claim should be signed first by the mobile identity
manager, then by the attester, and finally by the backup man-
ager when the mobile deployment succeeds in connecting to
it. The identity backup manager keeps track of its mobile
deployments and signs only transactions having a signature
from one of them. In Figure 4 there is a transaction diagram
showing the process of attestation. The only difference com-
pared to how the system looked before is the obligation of the
user to synchronize their attestations with the identity backup.

Attesters are not interested in seeing the third signature.
However, verifiers regard any transaction that lacks it as in-
valid. Transactions can be verified when they have all three
signatures. The verifier checks whether the transaction has a
signature from the identity backup system before verifying it.
Figure 5 contains the process of verification. It is similar to
the previous design of Trustchain. One of the main drawbacks
to this system is that attestations become valid only after syn-
chronizing them with the identity backup manager. To make
this solution backward compatible, both attesters and verifiers
will look for a marker that will lead them to use and expect
the correct transaction structure.

To implement the abovementioned functionality, we need
to add two new fields to the Trustchain transaction [11]. The
proposed transaction structure is visible in Figure 2, and the
fields are in positions seven and eight. The first one will con-
tain the public key of the identity backup manager. It is the
key that represents the real identity of the user. Verifiers will
distinguish the actual identity holder using it. The third signa-
ture from the identity backup manager will reside in the sec-
ond one. It will prove to verifiers the successful data synchro-
nization between the mobile identity manager and the identity
backup manager.

4.3 Access Revocation Mechanism
Access revocation will use the list of known identities and
modify it to reflect changes. Such will occur when a device
goes “rogue”. Thus, it is no more accessible to the user, or
the user switches his mobile device. The main drawback is
that mobile deployments contain the whole transaction his-
tory, and adversaries could gain access to the identity if they
successfully break the security measures.

The mechanisms outlined above show a possible interpre-
tation of solution three. The approach can be considered
generic and should apply to similar systems.

5 Responsible Research
We think that this research topic is part of the foundation of
SSI. Thus, we tried to make our work first- and foremost re-
latable. That is why we decided to enumerate the most impor-
tant requirements for an identity backup system. Our speci-
fication for the solution to the problem of data resilience will
help other developers better and critically assess the quality of
our contributions. Furthermore, given they agree with the re-
quirements, they could create more elaborate interpretations

Number Description
1 Requester public key
2 Requester sequence number
3 Responder public key
4 Responder sequence number
5 Requester previous hash
6 Signature
7 Backup manager public key
8 Backup manager signature
9 Transaction block size (n)

10 Transaction block

Table 2: Modified Trustchain Transaction

that compete with the abovementioned one. That is important
especially given the time constraint of this project. And since
this project ran for only ten weeks, we could not conduct any
evaluations. Thus, again we focused most of our efforts on
eliciting the requirements. That helps other researchers fol-
low our line of thought and run some experiments that will
determine the quality of this paper.

In terms of reproducibility, in section four, we formally de-
scribed an implementation of our solution with a currently
existing system. Following the example, developers of other
SSI managers should also be able to reproduce our work. The
main takeaway from our implementation is that transactions
should possess a signature from the identity backup system to
regard them as valid, and verifiers should look for them dur-
ing verification. Furthermore, backups should reside within
the jurisdiction of the identity holder. Thus, users need to host
their identity backup manager. And last but not least, identity
backup systems must employ an access control mechanism
that allows users to recover their identities and prevents unau-
thorized access to identities by possible adversaries.

Ethical aspects were another pillar of our efforts to pro-
vide an answer to the research question. Our solution takes
into account the need for user control. Thus, we gave iden-
tity holders total control over their identity backups. Further-
more, since users administer their data, their privacy gets pre-
served. Also, we believe that transparency is of great impor-
tance, and we advocate that software should run on machines
managed by the identity owner. Moreover, we took usability
under consideration by requiring every identity management
system to be seamlessly integrated with its backup system.

To conclude, this paper was able to balance between a
concrete implementation and an abstract solution definition.
Both of those are important for the further development of
SSI backup systems.

6 Conclusions and Future Work
We now complete this work with conclusions and suggestions
for future work.

6.1 Conclusions
This research paper outlines a general solution to data re-
silience that some SSI managers need. First of all, we began
our work by devising eight requirements for identity backup
systems. They help show what properties should be possessed



by a system that takes care of identity backups. For them, we
took inspiration from the ten principles of SSI [1].

We were not able to find prior research that concerns iden-
tity backups. Thus, previously there were no sources that
specified the requirements of such a system. That makes our
work novel and encourages other researchers and develop-
ers to adjust their solutions according to our contributions or
question them.

Secondly, we tried to answer our research question by find-
ing the solution that best fits our requirements. Unfortunately,
the currently deployed SSI backup systems do not provide
satisfactory results.

The first solution that we described uses third-party
providers for backup storage. It achieves high availability
and is the most user-friendly of the three. However, it was
flawed because users can never have direct and total control
over their data.

The second solution relied on peers in a network of identity
managers to handle backups of users. It was motivated by the
existence of peer-to-peer backup systems [13]. Its most major
concern was that such networks are usually very dynamic,
and excessive resources will get wasted to ensure persistence
and availability.

Consequently, we were inspired to find an original answer
to our research question. Our solution managed to satisfy
most of our requirements. It demands users host their iden-
tity backup manager on a separate from their identity man-
ager server. However, to satisfy all requirements, our solu-
tion needed further development. It was missing three main
mechanisms:

1. Allowing identity recovery.
2. Making data consistent between the mobile identity

manager and its backup system.
3. Revoking access to mobile identity managers that have

gone rogue.
We used section four to describe a possible implementation

of the solution and the three missing mechanisms. Trustchain
acted as a platform for our development. Unfortunately, the
length of the project allowed for only a partial implementa-
tion in code.

In conclusion, the elicited requirements and our novel solu-
tion should lead to the further development of identity backup
systems that do not rely on centralized or global storage. With
them, we take the first vital steps towards data resilience for
fully distributed identity managers. Their need is part of the
problem of adoption that keeps SSI managers from going
mainstream.

6.2 Future Work
There needs to be an evaluation of the proposed solution.
After its full implementation, developers should run several
experiments to determine where availability stands and how
resilient the system is to data loss. An experimental environ-
ment that simulates disasters in a network of identity man-
agers could help in achieving this goal. Furthermore, re-
searchers should conduct experiments with real users to mea-
sure usability, which we consider one of the most important
aspects of any identity backup system.

Since in our solution, both devices are fully featured nodes
in a network of identity managers, transactions done by the
mobile identity manager are on behalf of the identity backup
manager. Thus, we have touched upon transactions that hap-
pen on behalf of other peers. Consequently, the following
question for further research arises: Should users be able to
make transactions on behalf of their peers, and how should
those transactions happen? Our current developments might
prove helpful in answering that question.

Lastly, a further advancement that goes beyond the goals
of this research project will be the creation of emergency ac-
cess “terminals” that will be available at border control, for
instance. They will allow someone access to their identity
manager with restricted controls if their other SSI managers
are not reachable. Those emergency “terminals” should only
allow for verification of attestations. And with that mecha-
nism, SSI managers will begin their journey towards disaster
resilience.

References
[1] Christopher Allen. The path to self-sovereign iden-

tity. 2016. http://www.lifewithalacrity.com/2016/04/
the-path-to-self-soverereign-identity.html.

[2] Gergely Alpár, Jaap-Henk Hoepman, and Johanneke
Siljee. The identity crisis. security, privacy and usability
issues in identity management. 2011.

[3] European Commission. Regulation (eu) 2016/679 of the
european parliament and of the council. 2016. https:
//eur-lex.europa.eu/eli/reg/2016/679/oj.

[4] Ivar Derksen. Backup and recovery of irma creden-
tials. 2019. https://privacybydesign.foundation/pdf/
Backup-and-Recovery-of-IRMA-credentials-thesis.
pdf.

[5] Md Sadek Ferdous, Farida Chowdhury, and Madini O.
Alassafi. In search of self-sovereign identity leverag-
ing blockchain technology. IEEE Access, 7:103059–
103079, 2019.

[6] Daniel Hardman. What if i lose my phone?
2019. https://sovrin.org/wp-content/uploads/2019/03/
What-if-someone-steals-my-phone-110319.pdf.

[7] Riley Hughes. 4 keys to self-sovereign identity adop-
tion. https://trinsic.id/4-keys-to-ssi-adoption/.

[8] Jim Isaak and Mina J. Hanna. User data privacy:
Facebook, cambridge analytica, and privacy protection.
Computer, 51(8):56–59, 2018.

[9] Xueping Liang, Juan Zhao, Sachin Shetty, and Danyi
Li. Towards data assurance and resilience in iot using
blockchain. pages 261–266, 2017.

[10] Pim Otte, Martijn de Vos, and Johan Pouwelse.
Trustchain: A sybil-resistant scalable blockchain. Fu-
ture Generation Computer Systems: the international
journal of grid computing: theory, methods and appli-
cations, 107:770–780, June 2020.

[11] Johan Pouwelse. Trustchain protocol. 2018. https://
tools.ietf.org/id/draft-pouwelse-trustchain-01.html.

http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://privacybydesign.foundation/pdf/Backup-and-Recovery-of-IRMA-credentials-thesis.pdf
https://privacybydesign.foundation/pdf/Backup-and-Recovery-of-IRMA-credentials-thesis.pdf
https://privacybydesign.foundation/pdf/Backup-and-Recovery-of-IRMA-credentials-thesis.pdf
https://sovrin.org/wp-content/uploads/2019/03/What-if-someone-steals-my-phone-110319.pdf
https://sovrin.org/wp-content/uploads/2019/03/What-if-someone-steals-my-phone-110319.pdf
https://trinsic.id/4-keys-to-ssi-adoption/
https://tools.ietf.org/id/draft-pouwelse-trustchain-01.html
https://tools.ietf.org/id/draft-pouwelse-trustchain-01.html


[12] Quinten Stokkink, Dick Epema, and Johan Pouwelse. A
truly self-sovereign identity system. 2020.

[13] Rabih Tout, Nicolas Lumineau, Parisa Ghodous, and
Mihai Tanasoiu. Backup scheduling in clustered p2p
network. pages 185–193, 2008.

[14] Tribler. Ipv8. https://github.com/Tribler/py-ipv8.
[15] Tribler. Trustchain super app. https://github.com/

Tribler/trustchain-superapp.
[16] Dirk van Bokkem, Rico Hageman, Gijs Koning, Luat

Nguyen, and Naqib Zarin. Self-sovereign identity solu-
tions: The necessity of blockchain technology. 2019.

https://github.com/Tribler/py-ipv8
https://github.com/Tribler/trustchain-superapp
https://github.com/Tribler/trustchain-superapp

	Introduction
	Requirements for Data Resilience
	Achieving Data-Resilience in SSI
	Third-Party Storage Providers
	Peer-to-Peer Backup
	Identity Owner as Storage Provider
	Comparison

	Implementation Details
	Identity Recovery Mechanism
	Transaction Synchronisation Mechanism
	Access Revocation Mechanism

	Responsible Research
	Conclusions and Future Work
	Conclusions
	Future Work


