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Pipe flow experiments show that turbulent drag reduction in plug-flow of con-
centrated suspensions of macroscopic fibers is a self-similar function of the
wall shear stress over the fiber network yield stress. We model the experimental
observations, by assuming a central fiber network plug, whose radius is determined
by the yield stress. According to the model the plug constrains the size of the
turbulent eddies in the surrounding annulus, with the effect of a reduced friction
factor as compared to Newtonian flow. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4766198]

In this Letter, we present friction versus flow rate experiments for the pipe flow of suspensions
of macroscopic fibers. At large enough concentrations these fibers form a stable network, in the
central region of the pipe, confining the remnants of the original turbulent flow to the annular wall
region. In this plug-flow regime, the friction factor is reduced as compared to the Newtonian flow.
In this work, we examine the scaling of this drag reduction and present a mathematical model that
captures the experimental data. According to the model, the rigid network in the core improves the
flow, by constraining the size of the turbulent eddies in the annulus.

Drag reduction in pipes, ducts, and channels has received much attention in the literature,
and the phenomenon has mostly been studied for polymers,1 but also for macroscopic fibers,2 gas
bubbles,3 surfactants4 or clay particles.5 For a recent overview, see Ref. 6. Polymers are the most
effective, in terms of drag reduction per concentration of the additive. It is known from simulations
and experiments that polymer drag reduction scales with cr2

a , where c is the volumetric polymer
concentration, ra = l/d is the polymer aspect ratio, l is the polymer length, and d is the polymer
diameter.1, 7, 8 The large aspect ratio of extended polymers ra ∼ 104 − 105 explains that significant
drag reduction can be obtained at very small polymer concentrations c ∼ 10−5 − 10−4.

Drag reduction has also been measured using macroscopic fibers, such as wool, wood, nylon or
asbestos.2, 9 The notion that a large aspect ratio is key for drag reduction, suggests that polymers and
fibers reduce the drag according to similar mechanisms. The contrary is observed from experiments,
however, showing marked differences in the profiles of the mean flow. Polymers act in the near-
wall, buffer layer, effectively thickening the viscous sublayer, while unaffecting the momentum
transfer in the turbulent core.1 Macroscopic fibers, on the other hand, act in the turbulent core, while
unaffecting the near-wall region.2, 9 This difference stems from the different lengths of polymers and
fibers. Polymers are usually of sub-Kolmogorov length scale. On the scale of the near-wall vortices,
the polymers can be regarded as a continuum that induces an additional viscosity, which dampens
the momentum transfer of the near-wall vortices.10 Fibers, on the other hand, are usually orders of
magnitude larger than the near-wall vortices. Instead of inducing internal friction, the fibers impose
external constraints on the near-wall vortices. The presence of the fibers requires the vortices to
re-organize.

Measurements of the velocity profiles in fibre-induced, drag-reduced flow show several flow
regimes.2 At large enough Reynolds numbers or small enough concentrations, the flow is identical to
that of the pure solvent. With increasing concentration the central profile slope first increases and then
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decreases, which suggests the following two opposing mechanisms. Freely moving fibers dampen
the momentum transferring eddies, while fibre agglomerates enhance the momentum transfer. With
a further increase in the fibre concentration, the agglomerates form a network, capable of supporting
the shear stress in the fluid. The result is a central fiber network plug with a uniform velocity,
surrounded by a turbulent annulus.2, 11 With increasing fibre concentration the plug radius grows and
when the network spans the whole pipe cross section, the pipe is clogged.

The formation of the network plug with physical contacts between the fibers requires the number
of contacts between a fiber and its neighbours to be cra � 1. Most previous studies on fibre drag
reduction are restricted to c � 10−2 and ra � 102, and therefore the “plug-flow” regime has not yet
been systematically explored.

In this Letter, we use round fibers with a relatively large aspect ratio ra = 4 × 102. With this
large ra, we are able to study the plug-flow regime over a decade of fibre concentrations, revealing
new insights in the scaling behaviour of this flow.

We view drag reduction as the increase of the bulk velocity Ub at a fixed pressure gradient
dP/dx. Using this view, it is natural to scale Ub with the friction velocity

Uτ =
√

τw

ρ
, (1)

and to define drag reduction as the increase of the scaled bulk velocity U+
b = Ub/Uτ at a constant

frictional Reynolds number

Reτ = Uτ D

ν
. (2)

Here, ρ is the fluid mass density, ν = μ/ρ is the fluid kinematic viscosity, μ is the fluid dynamic
viscosity, τw = (D/4)(d P/dx) is the wall shear stress, and D is the pipe diameter.

Our experimental setup consists of a centrifugal pump that drives the fiber suspension through a
loop. The loop contains a 4 m test section, consisting of a transparent, straight and smooth perspex
pipe with an internal diameter of D = 5 × 10−2 m. The pressure drop is measured over the last
2.2 m of the test section, using membrane differential pressure transducers (Validyne: DP15 and
DP45). The flow rate is measured using a magnetic inductive flow meter (Krohne Altometer: IFS
4000). A video camera on a rail is used to visualize the dynamics of the flow in a co-moving frame
of reference. We use nylon fibers in tap water. The fibers have a width of d = 1 × 10−5 m and a
length of l = 4 × 10−3 m, corresponding to an aspect ratio of ra = 4 × 102. The pressure drop is
measured versus the flow rate at various fiber concentration c. For each c we conduct a series of (Ub,
dP/dx)-measurements.

Figure 1 shows the experimental data on the Prandtl-Kármán (PK)-coordinates: (Reτ , U+
b ). The

Newtonian data (c = 0) agree reasonably well with the PK law

U+
b,P K = 1

κ
log Reτ + 0.3, (3)

which is plotted in Fig. 1 with the solid line. Here, κ ≈ 0.4 is the von Kármán constant. The fibre
suspensions are drag reduced, with U+

b exceeding Eq. (3). The video recordings reveal that in the
drag reduction regime the suspensions consist of a rigid plug in the core, surrounded by a turbulent
annulus. With increasing Reτ , the plug shrinks and eventually the plug disappears completely. During
this process, the flow becomes Newtonian, which is seen in Fig. 1, as the data approach Eq. (3).

With decreasing Reτ , on the other hand, the plug grows, and eventually, when the plug diameter
reaches the pipe diameter, the system clogs. To prevent clogging we conduct each measurement
series from large to small Reτ and stop when U+

b drops below Eq. (3), which defines the clogging
Reynolds number Reτ , c. Using that the fiber network yield stress τ c is approximately equal to the
wall shear stress at Reτ , c, and using Eqs. (1) and (2), we can express τ c as follows:

τc ≈ ρ

(
νReτ,c

D

)2

. (4)
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FIG. 1. Scaled bulk flow versus frictional Reynolds number in drag-reduced pipe flow using nylon fibers at several volume
fractions c: +, c = 0; �, c = 0.72 × 10−3; �, c = 1.44 × 10−3; �, c = 2.16 × 10−3; �, c = 2.88 × 10−3; ©, c = 3.60
× 10−3; •, c = 4.31 × 10−3; �, c = 5.03 × 10−3; �, c = 6.46 × 10−3; 	, c = 7.17 × 10−3. The solid line is the
Prandtl-Kármán law (Eq. (3)). The markers on the abscissa indicate the clogging Reynolds number Reτ , c for each fiber
concentration.

The data in Fig. 1 indicate that the clogging Reynolds number Reτ , c increases linearly with the fiber
concentration c, which means that the network yield stress τ c scales with the squared concentration.
For our experiment, we find: τ c ≈ C2c2, with C2 ≈ 7.2 × 104 Pa. The c2 dependence of τ c reflects
that τ c is proportional to the number of physical contacts between the fibers.

To clearly demonstrate this quadratic scaling, we plot in Fig. 2, the excess bulk flow �U+
b

= U+
b − U+

b,P K as a function of τw/τc = ρRe2
τ ν

2/(D2C2c2). This figure essentially shows the fiber-
induced flow changes with varying wall shear stress τw. To demonstrate that clogging occurs at
a τw that is proportional to c2, we have collapsed the data from different c on a single curve by
scaling τw with c2. The collapse further means that drag reduction in the plug-flow regime is fully
determined by a single similarity variable Reτ /c. It is noted that the data for the smallest c (�) slightly
deviate from the similarity curve, indicating that the plug-flow regime has not been fully reached for
cra ≈ 0.3.

We formulate a model to explain the drag reduction in the plug-flow regime. In this model,
the flow consists of a rigid plug, surrounded by a Newtonian annulus. As sketched in Fig. 3(a) the
surface of the plug is located at r = rc, where the hydrodynamic shear stress is exactly balanced by
the fiber network yield stress τ = τ c. For r < rc, the fiber network can support the hydrodynamic
stress τ c > τ , and the plug moves with a uniform velocity

dU
dr = 0 if r < rc. (5a)

FIG. 2. Excess scaled bulk flow versus wall shear stress scaled with yield stress: τw/τc = ρRe2
τ ν

2/(D2C2c2). Markers are
explained in Fig. 1. The solid line is our model (Eq. (5)) for Reτ , c = 103.
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FIG. 3. Modeled flow using Eq. (5). (a) The upper half shows the modeled velocity U as a function of the radial coordinate
r, for Newtonian flow (dashed line) and drag reduced fiber suspension flow (solid line). The centreline and the pipe wall
correspond to r = 0 and r = D/2, respectively. The model is based on dividing the cross section into a solid plug for r < rc

and a Newtonian annulus for r > rc. Here, rc corresponds to the point in the pipe where the shear stress τ equals the fiber
network yield stress τ c. In the lower half, the dashed-dotted line shows the shear stress as a function of r. The wall shear
stress is indicated with τw . The figure illustrates that for r < rc the shear stress is smaller than the yield stress τ < τ c, resulting
in a solid plug, while for r > rc the shear stress exceeds the yield stress τ > τ c, corresponding to the turbulent annulus. (b)
The scaled bulk flow U+

b versus the frictional Reynolds number Reτ . The solid line shows a fiber suspension with a clogging
Reynolds number of Reτ , c = 103. The dashed line shows the Newtonian flow.

For r > rc, on the other hand, the hydrodynamic stress disintegrates the fiber network τ > τ c. The
flow profile in this annulus is governed by the shear stress balance

μ dU
dr + τ R = − 2τwr

D if r > rc. (5b)

Here, μdU/dr is the viscous shear stress and τR is the Reynolds shear stress. The right hand side
of Eq. (5b) is the total shear stress τ in the system, which by definition is a linear function of r.
In Eq. (5b), we have neglected the stress produced by the fibers. This assumption is based on the
experimental observation in Fig. 2, that for large τw/τc the flow becomes Newtonian, which means
that the fiber stress approaches zero. For not too large τw/τc on the other hand, however, the fiber
stress in the annulus is non-zero. This means that the turbulence in the annulus is non-Newtonian.
We do not take these effects into account, since there are no models available for the stress induced
by entangled fibers that are larger than the Kolmogorov length scale. Deriving such models is not the
focus of this work. For simplicity, we therefore assume that the flow in the annulus is Newtonian.
This does not mean that the flow profile is unchanged compared to the flow without fibers. As we
will argue below, the presence of the central plug dampens the Reynolds stress in the annulus. As
an effect the flow profile changes, and the friction factor reduces.

The Reynolds stress in Eq. (5b) is modeled using the mixing length model with the Van Driest
damping12

τ R =
(

κrm

[
1 − e− rm Uτ,l

26ν

] dU

dr

)2

. (5c)
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Here, rm is the mixing length. In the annulus, the flow is bounded by the pipe wall and the plug
surface. The latter is modeled as a flat no-slip surface at r = rc that is moving with the speed of the
plug. The mixing length rm is therefore defined as the smallest distance to either the pipe wall or the
plug surface

rm = min(D/2 − r, r − rc). (5d)

Accordingly, we base the local friction velocity Uτ , l in Eq. (5c) on the shear stress at the pipe
wall τw or the shear stress at the plug surface τ c.

Figure 3(a) shows the velocity profile U(r), modeled by Eq. (1), for Reτ = 2 × 103 and Reτ , c

= 103. The suspension velocity is plotted with the solid line and the Newtonian velocity is plotted
with the dashed line. It is noted that a similar profile is predicted by the k − ε model, applied
to the water annulus in oil-water pipe flow.13 Drag reduction is reflected by the larger suspension
velocity than the Newtonian velocity. As shown in Fig. 3(a), the larger velocity in the suspension is
the effect of a sharp velocity increase in the annulus close to the plug surface. This increase is due
to a reduction of the mixing length, due to the geometrical constraint imposed by the plug on the
turbulent eddies.

The bulk flow Ub is the weighted average of the velocity profile: Ub = 8
D2

∫ D/2
0 U (r )rdr . In our

model, the scaled bulk flow U+
b is a function of the frictional Reynolds number Reτ and the clogging

Reynolds number Reτ , c. In Fig. 3(b), we plot our model results on the (Reτ , U+
b )-plane using Reτ , c

= 103. The model correctly reproduces the experimental trends. For Reτ > Reτ , c, the bulk flow
exceeds the Newtonian value, which corresponds to drag reduction. When Reτ is further increased,
the drag reduction passes through a maximum and decreases asymptotically to zero, corresponding
to Newtonian flow. In Fig. 2, we plot the model together with the experimental data. The model
agrees qualitatively, but differs quantitatively, with a faster descent towards Newtonian flow.

Our model is based on the concept of a yield stress, needed to disintegrate the fiber network.
When the wall shear stress is below the yield stress, the network spans the whole pipe cross section
and the pipe is clogged. Above the yield stress, the network shrinks inwards, due to the growth of
a turbulent annulus. In this regime, the flow is drag reduced, which we explain in this Letter by a
two-layer model, with a flat profile in the core, surrounded by a Newtonian annulus. According to
the model, the rigid fiber network in the core inhibits the size of the turbulent eddies in the annulus,
effectively dampening the Reynolds stress, resulting in drag reduction. It is emphasized that this is
a model picture and that in reality the drag reduction is probably accompanied with other changes
in the turbulence structure.

While the model qualitatively explains the drag reduction mechanism in the plug-flow regime,
there are some quantitative differences in the shape of the flow curve on the Prandtl-Kármán
coordinates. These discrepancies are, at least partly, due to the neglect of a fiber stress term in
Eq. (5b). As opposed to sub-Kolmogorov fibers, the form of this stress is not known for concentrated
suspensions of fibers that are larger than the Kolmogorov length scale. However, the observation
that for large Reynolds numbers the flow is Newtonian implies that the fiber stress is zero in this
limit. This explains the success of our model to capture the qualitative trends.
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