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ABSTRACT 1 

Previous research showed that the capacity of existing slab-between-girder bridges is larger than 2 

expected based on the punching shear capacity prescribed by the governing codes, as a result of 3 

compressive membrane action. A first series of fatigue tests confirmed that compressive membrane 4 

action also acts under cycles of loading. However, a single experiment in which first a number of 5 

cycles with a higher load level and then with a lower load level were applied, seemed to indicate 6 

that this loading sequence shortens the fatigue life. This topic was further investigated in a second 7 

series of fatigue tests with three static tests and ten fatigue tests. The parameters that were varied are 8 

the sequence of loading and the effect of a single or a double wheel print. The results show that the 9 

sequence of load levels does not influence the fatigue life.     10 

11 

Keywords: bridge evaluation; compressive membrane action; concrete bridges; fatigue; fatigue 12 

testing; laboratory testing; prestressed concrete; punching shear. 13 

14 
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INTRODUCTION   1 

In the Netherlands, a large number of existing bridges require assessment (Lantsoght et al., 2013a). 2 

Certain bridge types typically do not fulfil the current code requirements. For example, the shear 3 

capacity of reinforced concrete slab bridges is often found to be insufficient (Lantsoght et al., 4 

2013b). Similarly, the punching shear capacity according to NEN-EN 1992-1-1:2005 (CEN, 2005) 5 

of the slabs in slab-between-girder bridges is often found to be insufficient under the NEN-EN 6 

1991-2:2003 (CEN, 2003) loads. In total, about 70 slab-between-girder bridges in the Netherlands 7 

need to be assessed (Koekkoek et al., 2018). 8 

 The punching shear capacity expression from NEN-EN 1992-1-1:2005 (CEN, 2005) is an 9 

empirical expression that is derived from experiments on slab-column connections (Regan and 10 

Braestrup, 1985; Walraven, 2002). These specimens mimic the behavior of slab-column 11 

connections in reinforced concrete buildings up to the point of contraflexure in the slab. Most 12 

specimens have a small depth and are heavily reinforced to make sure the failure mode in the slab is 13 

punching instead of flexure. For punching of bridge decks cast in between concrete girders and 14 

subjected to concentrated loads resulting from traffic, the load-carrying behavior differs 15 

significantly from slab-column connections. In the slab-between-girder bridges, the short length of 16 

the slabs between the prestressed girders results in the activation of compressive membrane action. 17 

This effect enhances the load-carrying capacity of the structure.  18 

To incorporate the enhancement from compressive membrane action in the assessment of 19 

slab-between-girder bridges, the static and fatigue strength need to be evaluated. A first part of this 20 

research program focused on the static strength and the mechanics of compressive membrane action 21 

in thin transversely prestressed concrete decks (Amir, 2014; Amir et al., 2016). On the same test 22 

setup, exploratory fatigue tests raised concerns with regard to the activation of compressive 23 

membrane action under fatigue loading. Therefore, a new deck was cast as part of the original test 24 

setup, and a first series of fatigue tests was carried out (Lantsoght et al., in review). These results 25 
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indicated that compressive membrane action still enhances the punching capacity of slab-between-1 

girder bridges under fatigue loading, but that two parameters  needed further study: the effect of the 2 

sequence of load level in variable amplitude fatigue tests, requiring the confirmation of the validity 3 

of Miner’s rule (van Leeuwen and Siemes, 1979) for the studied bridge system, and the effect of a 4 

single wheel load versus double wheel loads.  5 

 This paper presents the results of a second series of experiments on a completely new bridge 6 

setup, which differs from the setup used in the first series. These experiments were designed to 7 

study the sequence of load levels for variable amplitude loading, and to check if the fatigue life for 8 

slab-between-girder decks under fatigue loading with a high load level followed by a lower load 9 

level is reduced as compared to the case with a lower load level followed by a higher load level.  10 

 Experiments on the effect of variable amplitude fatigue loading on structural systems are 11 

scarce. For experiments on small copper elements, there is an indication that high-to-low loading 12 

levels of variable amplitude loading cannot be represented with Miner’s rule, whereas low-to-high 13 

loading levels of variable amplitude loading fit Miner’s rule (Ghammouri et al., 2011). The validity 14 

of these results for concrete structures is questionable. For seismic applications, experimental 15 

research found that the effect of variable amplitude loading can be expressed based on damage 16 

models (El-Bahy et al., 1999). Constant and variable amplitude fatigue load tests have been used to 17 

confirm the performance of concrete bridge deck slabs with glass FRP bars (El-Ragaby et al., 2007) 18 

and CFRP bars (Ju et al., 2017). The effect of variable amplitude loading may need to be modelled 19 

with nonlinear damage accumulation models (Chen et al., 2018), with their application limited to 20 

modelling uniaxial material behavior (Keerthana and Chandra Kishen, 2018). However, given the 21 

large scatter on typical fatigue test results of structural systems, such damage accumulation models 22 

may not lead to practical results for the validation of the fatigue life of new bridge systems or the 23 

study of the fatigue life of existing bridge systems. Therefore, this study will only evaluate if 24 

applying the derived Wöhler curve from the first series of experiments is conservative for high-to-25 
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low load levels with variable amplitude fatigue loading. 1 

 The discussion with regard to the effect of the sequence of load levels for variable amplitude 2 

loading has a direct practical implication. Originally, for the assessment of existing bridges in the 3 

Netherlands, it was assumed that the variations on the load magnitude are limited. Weigh-in-motion 4 

measurements, however, showed that on an annual basis 10 to 20 extreme axle loads could be 5 

registered. These axles had a load of 350 kN (79 kip), which is almost three times larger than the 6 

maximum allowed 120 kN (27 kip).  7 

 8 

RESEARCH SIGNIFICANCE   9 

The presented experiments are unique since they study behavior at the structural level rather than at 10 

the member level. These experiments study the influence of different types of variable amplitude 11 

loading on the fatigue life, which is not commonly studied on large structural concrete setups. 12 

These experiments, together with the first series of fatigue tests on a half-size slab-between-girder 13 

bridge, show that compressive membrane action enhances the ultimate capacity of transversely 14 

prestressed bridge decks under static and fatigue loading. These results are valuable for the 15 

assessment of existing slab-between-girder bridges. 16 

 17 

PREVIOUS FATIGUE TESTING ON TRANSVERSELY PRESTRESSED CONCRETE 18 

DECKS 19 

In previous research (Amir, 2014; Amir et al., 2016), the punching capacity of slab-between-girder 20 

bridges was studied experimentally in the laboratory on a half-scale specimen modeled after an 21 

existing bridge. This same specimen was subjected to four additional static tests, two tests with 22 

three cycles per load level, and seven fatigue tests. Five tests were carried out on the original 23 

specimen, and eight tests were carried out on a newly cast deck (Lantsoght et al., in review). 24 

Punching was the failure mode in all cases.  25 
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The test setup contained in total four prefabricated prestressed concrete girders, three 1 

transversely prestressed slab decks cast in situ in between the girders, and two cast in situ 2 

prestressed transverse beams. The overall dimensions of the test specimen were 12 m (39 ft) × 6.4 3 

m (21 ft). The deck had a thickness of 100 mm (4 in). 4 

Three parameters were studied with these experiments. The influence of the spacing 5 

between the prestressing ducts on the ultimate load was found to be small. Variable amplitude 6 

loading with a high load level followed by a low load level resulted in a lower fatigue life than for a 7 

low load level followed by a high load level. However, only one experiment was used for this 8 

observation. Therefore, this parameter was identified as a topic for future research. For the static 9 

tests, the maximum load when a double wheel load is used was 1.48 times the maximum load when 10 

a single wheel load is used. Only one dynamic test with a double wheel load was done. The results 11 

from this test seem to follow the same trend as the results with a single wheel load. The difference 12 

between a single and double wheel load was also identified as an interested topic for further study, 13 

especially since this loading configuration is more related to practice. 14 

The following S-N curve (average values) resulted from the experiments of the first series: 15 

 0.062log 0.910S N     (1) 16 

From this expression, it follows that at 1 million cycles, the fatigue strength is 54% of the static 17 

strength, at 10 million cycles the ratio is 48%, and at 100 million cycles 41%. Similar ratios are 18 

observed for concrete under compression and for fatigue tests on structural elements (Lantsoght et 19 

al., 2016). As such, the experiments showed that compressive membrane action also acts under 20 

fatigue loading. 21 

      22 

EXPERIMENTAL INVESTIGATION 23 

Test setup  24 

The test setup is a half-scale representation of an existing slab-between-girder bridge. The main 25 
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elements of the setup are three ZIP600 prefabricated prestressed concrete girders, two transversally 1 

prestressed deck slabs cast in situ between the girders, and two prestressed transverse beams cast in 2 

the laboratory, see Fig.  1. The overall dimensions of the setup are 12 m (39 ft) × 4.6 m (15 ft). The 3 

main difference with the test setup from the first series is that both the top flange and slabs are cast 4 

in the laboratory in these experiments, and that these are cast together resulting in a  monolithic 5 

deck, whereas for the previous setup only the slabs were cast in between the girders. However, the 6 

static tests in the first series (Amir et al., 2016) showed that failure does not occur at the interface 7 

between the prefabricated girder and the cast-in-situ slab. This difference is thus expected to be of 8 

minor importance. 9 

 To build the setup, first the prefabricated girders were delivered and placed on the supports, 10 

and for lateral stability, temporary supports were provided (Fig.  2a). Then, the crossbeams were 11 

cast and prestressed, and the temporary supports of the girders were removed. In a last step, the 12 

formwork for the top flanges and deck was made (Fig.  2b), the reinforcement was placed in the 13 

formwork (Fig.  2c), the concrete was cast (Fig.  2d), and the transverse prestressing applied. Fig.  14 

2e shows an overview of the completed test setup. Fig.  3 shows the geometry of the cross-section 15 

of the prefabricated prestressed girders. 16 

Material properties  17 

The concrete of the crossbeams, deck slab, and top flanges of the girders was cast in the laboratory 18 

with concrete delivered by truck mixer. Three batches of concrete were used: one for the 19 

crossbeams, and then two at a later date for the deck slab and top flanges. The average cube 20 

compressive strength of the concrete of the crossbeams at 149 days was fcm,cube = 78.3 MPa (11,356 21 

ksi) and the average splitting tensile strength at that age was fsp,m = 5.2 MPa (754 psi). The average 22 

cube compressive strength of the first cast of the deck and top flanges at 28 days was fcm,cube = 80.6 23 

MPa (11,690 ksi) and fsp,m = 6.1 MPa (885 psi). For cast two, the measured concrete properties at 28 24 

days were fcm,cube = 78.6 MPa (11,400 psi) and fsp,m = 6.4 MPa (928 psi). The measured concrete 25 
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compressive strength is on average 7% higher than the compressive strength in the first series of 1 

experiments (Amir et al., 2016; Lantsoght et al., in review), and the tensile strength is on average 2 

12% higher than in the first series. One should consider this difference when comparing the results 3 

of the two series of experiments. The measured concrete compressive strength at the age of testing 4 

the deck is included in Table 1 for the static tests and in Table 2 for the fatigue tests. 5 

 The properties of the prestressing steel were not tested again for this series of experiments, 6 

as the same prestressing bars from the previous setup were reused. The prestressing bars are 7 

Y1100H steel, which has a characteristic tensile strength fpk = 1,100 MPa (160 ksi). The 8 

prestressing steel in the prefabricated girders is Y1860S (prestressing strands), which has a 9 

characteristic tensile strength fpk = 1,860 MPa (270 ksi). 10 

 The properties of samples from the mild steel reinforcement were measured. For the bars 11 

with a diameter of 8 mm (0.3 in), the average measured yield strength is fym = 552 MPa (80 ksi) and 12 

the average tensile strength is ftm = 641 MPa (93 ksi). For the 10 mm bars (0.4 in), fym = 516 MPa 13 

(75 ksi) and ftm = 625 MPa (91 ksi), for the 12 mm bars (0.5 in) fym = 527 MPa (76 ksi) and ftm = 623 14 

MPa (90 ksi), and for the 16 mm bars (0.6 in) fym = 517 MPa (75 ksi) and ftm = 612 MPa (89 ksi). 15 

Reinforcement 16 

The slab and top flanges have mild steel reinforcement (Fig.  2c). Since the top flanges serve as part 17 

of the prestressed girders and the slab functions as a deck cast in between the girders, there is no 18 

continuity of the reinforcement between the slab and top flanges. The reinforcement of the top 19 

flange is designed to resist the bending moments caused by the eccentric loading of the top flange. 20 

For the deck slabs, only minimum reinforcement with a diameter of 8 mm (0.32 in) at 200 mm (7.9 21 

in) on center top and bottom in the 1.05 m (3.4 ft) direction (60 bars top and bottom in total per 22 

deck) and 8 mm (0.32 in) at 240 mm (9.4 in) on center top and bottom in the 12 m (39 ft) direction 23 

(5 bars top and bottom in total per deck) is provided. Fig.  4 shows the reinforcement of the slab, 24 

top flange, and the connection between the top flange and the prefabricated girder. 25 
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The cast-in-situ elements (slab and crossbeams) were post-tensioned with unbonded 1 

prestressing bars with a center-to-center distance of 400 mm (16 in). The ducts had a diameter of 40 2 

mm (1.6 in). The prestressing of the deck results in a compression of 2.5 MPa (363 psi) in the deck.  3 

Instrumentation 4 

Each prestressing bar is equipped with a load cell (37 in total) to verify if the required force is 5 

present in each bar, and thus to check if the required transverse prestressing level of 2.5 MPa (363 6 

psi) is introduced in the slab as well as the correct force in the crossbeams. Six additional load cells 7 

measure the support reactions of the simply supported prefabricated girders. A load cell measures 8 

the applied load in the jack, and an LVDT measures the stroke of the jack. Three lasers measure the 9 

deflections in the prefabricated girders at the same position as the load. Close to the load, two lasers 10 

and two LVDTs measure the deflection of the deck slab. Four horizontally placed LVDTs at the 11 

bottom of the slab measure the crack width of selected cracks. The full measurement report 12 

(Koekkoek and van der Veen, 2017a) of these experiments contains the detailed drawings for each 13 

experiment with the positions of the sensors. 14 

Loading procedure 15 

For the static tests, the load is applied with a monotonic loading protocol. Up to a load level of 100 16 

kN (22 kip) the load is applied in steps of 25 kN (6 kip), and for the higher load levels, the load is 17 

applied in steps of 50 kN (11 kip). The load is kept constant at each load level to inspect the 18 

specimen and mark the cracks, see Fig.  5a. The load is applied in a displacement-controlled 19 

manner. The size of the loading plate is 115 mm × 150 mm × 20 mm (4.5 in × 5.9 in × 0.8 in), 20 

which is a half-scale representation of the wheel print of the super single tire used for checking 21 

joints in the Netherlands.  22 

 For the dynamic tests, the load cycles between a lower value Flow and an upper value Fup 23 

with Flow = 0.10Fup. The loading frequency is 1 Hz. Fig.  5b shows the sine wave that is used to 24 

apply the dynamic load. The load is applied in a force-controlled manner. The fatigue tests use 25 
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variable amplitude loading, and the number of cycles per load level were determined before the 1 

experiments. If failure did not occur after a large number of cycles for the highest planned load 2 

level, then the load was increased and the fatigue test was extended until the slab punched. At 1,000 3 

cycles, 10,000 cycles, 100,000 cycles, and multitudes of 500,000 cycles the loading is paused at the 4 

maximum load level to measure crack widths and mark the cracks.  5 

 6 

EXPERIMENTAL RESULTS  7 

Test results and failure modes 8 

Each experiment has a unique ID, which starts with FAT (fatigue series) and indicates the test 9 

number, if the test is static (S) or dynamic (D), and the number of wheel prints (1 or 2). For 10 

example, FAT11D2 is the 11th test of the FAT series, and is a dynamic test using a double wheel 11 

print. The test series consists of 13 experiments: 3 static tests and 10 fatigue tests. Of these 12 

experiments, 9 use a single wheel print and 4 a double wheel print. 13 

 Table 1 summarizes the results of the static tests. In this table, Pmax is the failure load, fcm,cube 14 

is the concrete compressive strength at the age of testing the deck, which is shown in the table as 15 

well. For all static tests in this series, the failure mode was brittle punching. 16 

 Table 2 summarizes the results of the fatigue tests. In this table, Fup is the upper level of the 17 

sine wave used for the loading as shown in Fig.  5b. Pmax is the failure load in the corresponding 18 

static test. N is the number of applied cycles at the given load level Fup/Pmax. The different entries 19 

per reported test represent the sequence of the applied load levels. For example, for FAT9D2, first 20 

500,000 cycles at Fup/Pmax = 0.59 were carried out, and then 209,800 cycles at Fup/Pmax = 0.65 were 21 

carried out, after which failure occurred. The column “Age” shows the age of the specimen at 22 

testing, which is a range for tests that lasted more than a day. The value of fcm,cube is the average 23 

cube compressive strength determined at the age of testing the specimen, or the values that 24 

correspond with the begin and end age of testing the specimen when the test lasted more than a day. 25 
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The corresponding static test for FAT2D1, FAT3D1 and FAT4D1 is FAT1S1 (span 1). The 1 

corresponding static test for FAT5D1, FAT6D1, FAT12D1 and FAT13D1 is FAT7S1 (span 2). The 2 

corresponding static test for FAT9D2 is FAT8S2 (span 2). For FAT10D2 and FAT11D2, no 3 

equivalent static test on span 1 is available, but Pmax is estimated as follows: 4 

 
max, 1 1

max, 8 2

max, 7 1

570.8 128
FAT S

FAT S

FAT S

P
P kN kip

P
          5 

 The first two fatigue tests, FAT2D1 and FAT3D1 are used to check the difference between 6 

the current test setup and the previous test setup (with BB32 as comparable test). Since most of the 7 

experiments from the first series of experiments with variable amplitude loading had increasing 8 

load levels, the majority of the experiments in the current series have a high load level first 9 

(FAT2D1, FAT3D1, FAT5D1, FAT6D1, FAT10D2, FAT11D2). Low to high load levels are only 10 

used for FAT4D1 with one wheel load and FAT9D2 with a double wheel print. Experiments 11 

FAT12D1 and FAT13D1 use a high value of Fup/Pmax to study low-cycle fatigue. Fig.  6 gives an 12 

overview of the loading positions on the test specimen. The experiments were carried out 13 

sequentially, with the date since casting of the deck indicated in Table 2.  14 

Resulting S-N curve 15 

To study the presented fatigue experiments, the S-N curve is developed, with S = Fup/Pmax the force 16 

ratio and N the number of cycles to failure. Since the variable amplitude experiments used different 17 

levels of loading, the results are analyzed in a conservative way. The loading sequence and number 18 

of cycles for FAT2D1 is shown in Table 2. FAT2D1 was subjected to 3,285,217 cycles in total: 19 

100,000 cycles between 24 kN and 240 kN (5.4 kip and 54 kip), then 2,915,123 cycles between 20 20 

kN and 200 kN (4.5 kip and 45 kip), then 100,000 cycles between 24 kN and 240 kN (5.4 kip and 21 

54 kip), then 150,000 cycles between 26 kN and 260 kN (5.8 kip and 58 kip), and finally 20,094 22 

cycles between 28 kN and 280 kN (6.3 kip and 63 kip), at which failure occurred. It is thus 23 

conservative to assume that the specimen would have at least resisted 3,285,217 cycles between 20 24 
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kN and 200 kN (4.5 kip and 45 kip), at least 370,094 cycles between 24 kN and 240 kN (5.4 kip and 1 

54 kip), 170,094 cycles between 26 kN and 260 kN (5.8 kip and 58 kip), and 20,094 cycles between 2 

28 kN and 280 kN (6.3 kip and 63 kip). This approach results in 28 datapoints from the 10 3 

experiments which are used to draw the S-N curve, see Fig.  7. The expression of the S-N diagram 4 

(average values) is: 5 

 0.064log 1.011S N     (2) 6 

Sequence of load levels 7 

In the first series of experiments, all experiments had an increasing amplitude when a variable 8 

amplitude loading was used except for BB32. In the current series, the majority of the experiments 9 

had variable amplitude loading for which first a high load level was applied. The results of BB32 10 

seemed to indicate that applying a high load level first reduces the fatigue life. With the results from 11 

the current series of experiments, the influence of the sequence of load levels can be studied. For 12 

this purpose, the S-N diagram with the results from the high-to-low variable amplitude tests is 13 

compared to the diagram with the results from the low-to-high tests, see Fig.  8. The resulting 14 

expression for the low-to-high experiments is: 15 

 0.062log 0.950S N     (3) 16 

The expression for the high-to-low experiments is: 17 

 0.066log 1.002S N     (4) 18 

As can be seen from these expressions and Fig.  8, the influence of the sequence of load levels is 19 

negligible. It has thus been shown that there is no reason for concerns (which were raised based on 20 

the result of BB32) regarding the influence of the sequence of load levels on the fatigue life. A full 21 

description of the analysis of the test results can be found in the analysis report (Koekkoek and van 22 

der Veen, 2017b).  23 

Single or double wheel load 24 

Comparing the results of the static experiments can be used to calculate the increased load that can 25 
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be applied for a double wheel print as compared to a single wheel print. To calculate this value, the 1 

results from FAT7S1 and FAT8S2 can be compared, which gives a ratio of 1.64. Combining this 2 

result with the ratio of 1.48 from the BB test series gives an average increase of the maximum load 3 

with 1.56 for a double wheel print as compared to a single wheel print. 4 

To check the relation between testing with a single or double wheel load, the S-N curves of 5 

the experiments with a single wheel load and with a double wheel load are represented separately, 6 

see Fig.  9. Fig.  7 already indicates that the experimental results for a single and double wheel load 7 

follow a similar trend. The resulting S-N relation for the experiments with a single wheel load is 8 

(Fig.  9a): 9 

 0.066log 1.026S N     (5) 10 

The resulting S-N for the experiments with a double wheel load is (Fig.  9b): 11 

 0.045log 0.885S N     (6) 12 

Comparing these expressions and the plots in Fig.  9 shows that the slope of the experiments with a 13 

double wheel print is lower than the slope of the experiments with a single wheel print. The 14 

extrapolated value for 1 cycle is lower for the case of a double wheel print than for a single wheel 15 

print. However, for the data set of experiments with a double wheel print, no low-cycle fatigue 16 

results are available. As such, evaluating the results for a low number of cycles based on the results 17 

of the data set of experiments with two wheel prints may not be advisable. For 1 million cycles, S 18 

according to Eq. (5) is 0.63 and according to Eq. (6) is 0.62. For the range of cycles that have been 19 

tested, the differences between a single wheel load and a double wheel load are thus not important 20 

for the evaluation of existing slab-between-girder bridges. 21 

Comparison to previous fatigue experiments 22 

The results of the current series of fatigue FAT tests (28 data points) can be compared to the 23 

previous BB series (16 data points). The differences between the data sets are the result of the 24 

different values of the concrete compressive strength and differences in the test setup. Comparing 25 
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Eq. (1) and Eq. (2) shows that the slope of the two expressions is similar, but that the extrapolated 1 

value for 1 cycle is higher for the FAT experiments than for the BB experiments. For a general 2 

quantification of the effect of fatigue on the punching shear behavior of slab-between-girder 3 

bridges, the results from both series can be combined, see Fig.  10. The resulting overall S-N 4 

expression is then: 5 

 0.062log 0.969S N     (7) 6 

 7 

DISCUSSION 8 

From Eq. (7) follows that for 1 million cycles the maximum load ratio S is 60%, for 10 million 9 

cycles it is 54% and for 100 million cycles 47%. The resulting fatigue strength resulting from the 10 

experiments is similar to fatigue tests of structural concrete and the fatigue resistance of concrete 11 

under compression. The experiments from the second series result in a slightly longer fatigue life 12 

than from the first series. The difference between the series lies in the tested specimen: for the first 13 

series the deck was cast in between the girders, whereas for the second series the deck and the top 14 

flange of the prefabricated girders were cast in the laboratory. In the second series, the 15 

reinforcement ratio in the deck was higher than in the first series because of the larger diameter of 16 

the reinforcement bars. 17 

The specimen that was test during the first and second series of static and fatigue tests had a 18 

center-to-center distance between the girders of 1.8 m (5.9 ft), modeled after an existing bridge with 19 

a girder spacing of 3.6 m (11.8 ft). This distance is the largest girder spacing for slab-between-20 

girder bridges in the Netherlands, and results in the largest slenderness ratio (15.7) of this subset of 21 

bridges. Since for other bridges the spacing is smaller and the resulting slenderness is smaller, it is 22 

conservative to extrapolate the results of this most unfavorable case to the rest of the subset of slab-23 

between-girder bridges. 24 

In general, the results indicate that under fatigue loading, compressive membrane action can 25 
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still enhance the capacity of slab-between-girder bridges. As such, the enhancement from 1 

compressive membrane action can be taken into account for the assessment of slab-between-girder 2 

bridges. 3 

 4 

SUMMARY AND CONCLUSIONS  5 

For static loading, compressive membrane action enhances the punching shear capacity of slab-6 

between-girder bridges. Previous research studied whether or not compressive membrane action 7 

also enhances the capacity of such structures under fatigue loading. From these experiments, some 8 

concerns were raised regarding the sequence of loading in variable amplitude fatigue tests, and on 9 

the effect of a single wheel print versus a double wheel print.  10 

 A half-scale model of a slab-between-girder bridge was built in the laboratory. In this series 11 

of experiments, prefabricated inverted T girders were used, and the top flange of the girders as well 12 

as the deck slab were cast in the laboratory. This arrangement is different from the first series of 13 

experiments for which the full prestressed girder was prefabricated and only the deck slab was cast 14 

in between the girders in the laboratory. Comparing the results of the two series of experiments 15 

shows that the overall structural behavior of both specimens is comparable and that the resulting 16 

datapoints can be studied together. 17 

 On the new test setup, 13 experiments were done: 3 static tests and 10 fatigue tests, of which 18 

2 tests with low-cycle fatigue. For 9 experiments a single wheel print was used and for 4 19 

experiments a double wheel print. The failure mode for all experiments was punching shear, as also 20 

observed in the first series of experiments and the corresponding static tests that explored the effect 21 

of compressive membrane action in slab-between-girder bridges.  22 

 The conclusions from these new experiments are that the influence of the sequence of load 23 

levels for variable amplitude fatigue tests is not important. The concerns with regard to the effect of 24 

cycles with a high level loading before cycles with low level loading are thus not confirmed with 25 
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these experiments. For experiments with a double wheel load overall similar behavior was found as 1 

for experiments with a single wheel load. The maximum load for the case with a double wheel load 2 

is 1.56 times the maximum load for the case with a single wheel load.  3 

The new experiments confirm the first series of experiments. The resulting S-N curve that 4 

can be used for transversely prestressed decks in slab-between-girder bridges is: 5 

0.062log 0.969S N    6 

Ultimately, these experiments confirm that compressive membrane action enhances the punching 7 

capacity of transversely prestressed decks in slab-between-girder bridges, and that the concerns 8 

with regard to possible loss of this mechanism are unfounded.  9 
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NOTATION 1 

fcm,cube  average measured cube concrete compressive strengthf 2 

fpk  tensile strength of prestressing steel 3 

fsp,m  average measured concrete splitting strength measured on cubes 4 

ftm  tensile strength of reinforcement steel 5 

fym  yield strength of reinforcement steel 6 

Flow  the lower load level in the fatigue tests 7 

Fup  the upper load level in the fatigue tests 8 

N  number of cycles 9 

Pmax  failure load 10 

S  ratio between applied load and failure load 11 

12 
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TABLES AND FIGURES 1 

List of Tables 2 

Table 1 – Overview of static tests. Conversion: 1 kN = 0.225 kip, 1 MPa = 145 psi 3 

Table 2 – Overview of fatigue tests. Conversion: 1 kN = 0.225 kip, 1 MPa = 145 psi 4 

 5 

Table 1 – Overview of static tests. Conversion: 1 kN = 0.225 kip, 1 MPa = 145 psi 6 

Test number Pmax (kN) Age (days) fcm,cube (MPa) 

FAT1S1 347.8 94 82.2 

FAT7S1 393.7 240 88.8 

FAT8S2 646.1 245 88.6 

 7 

Table 2 – Overview of fatigue tests. Conversion: 1 kN = 0.225 kip, 1 MPa = 145 psi 8 

Test number  Fup  

(kN) 

Fup/Pmax N  Age  

(days) 

fcm,cube  

(MPa) 

FAT2D1 240 0.69 100,000 102 - 144 82.6 - 84.6 

200 0.58 2,915,123 

240 0.69 100,000 

260 0.75 150,000 

280 0.81 20,094 

FAT3D1 240 0.69 200,000 149 - 168 84.9 – 85.8 

200 0.58 1,000,000 

240 0.69 100,000 

260 0.75 300,000 

280 0.81 6,114 

FAT4D1 200 0.58 1,000,000 169 – 190 85.8 – 86.8 

240 0.69 200,000 

260 0.75 100,000 

280 0.81 63,473 

FAT5D1 280 0.71 10,000 192 – 217 91.6 – 89.6 

200 0.51 1,000,000 

240 0.61 100,000 

260 0.66 1,000,000 

280 0.71 1,424 

FAT6D1 280 0.71 10,000 219 – 239 89.6 – 88.8 

200 0.51 1,000,000 

240 0.61 100,000 

280 0.71 160,000 

200 0.51 410,000 

280 0.71 26,865 

FAT9D2 380 0.59 500,000 246 - 255 88.5 – 88.2 
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420 0.65 209,800 

FAT10D2 360 0.63 100,000 260 – 284 90.2 – 91.3 

320 0.56 1,000,000 

360 0.63 950,928 

FAT11D2 380 0.67 100,000 288 – 315 91.5 – 92.8 

340 0.60 1,000,000 

380 0.67 1,100,000 

420 0.75 1,720 

FAT12D1 350 0.89 30 318 85.9 

FAT13D1 340 0.86 38 319 85.8 

 1 
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of the girders; (d) casting of the slab and top flanges of the girders; (e) complete test setup, with 7 

loading frame and instrumentation. 8 

Fig.  3–Prefabricated prestressed girder. Dimensions in mm. Conversion: 1 mm = 0.04 in. 9 
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Fig.  9-Influence of type on loading on S-N curve: (a) single wheel print results; (b) double wheel 18 

print results. 19 
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 1 

Fig.  1–Geometry of specimen: (a) top view showing three prestressed girders and two deck 2 

panels; (b) side view showing section of the slab-between-girder structural system. All units 3 

are mm. Conversion: 1 mm = 0.04 in, 1 m = 3.3 ft.  4 
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 1 

Fig.  2–Construction of test setup: (a) Prefabricated prestressed girders, with lateral support 2 

system; (b) formwork of the slab and top flanges of the girders; (c) reinforcement of the slab 3 

and top flanges of the girders; (d) casting of the slab and top flanges of the girders; (e) 4 

complete test setup, with loading frame and instrumentation. 5 
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 1 

Fig.  3–Prefabricated prestressed girder. Dimensions in mm. Conversion: 1 mm = 0.04 in. 2 

 3 

Fig.  4–Reinforcement details of slab, top flange, and connection between prefabricated girder 4 

and top flange cast in the laboratory. Dimensions in mm. Conversion: 1mm = 0.04 in. 5 

 6 
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 1 

Fig.  5–Loading protocol for fatigue series: (a) static loading; (b) excerpt from dynamic 2 

loading. 3 

 4 

Fig.  6-Position of experiments and numbering of transverse prestressing bars in the deck 5 

slab. 6 
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 1 

Fig.  7- Resulting S-N curve of FAT series of experiments, showing average S-N relation as 2 

well as 5% lower and 95% upper bound values. 1W is used for experiments with a single 3 

wheel print and 2W for the experiments with a double wheel print. 4 

 5 

Fig.  8-Influence of loading sequence on S-N curve. 6 
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 1 

Fig.  9-Influence of type on loading on S-N curve: (a) single wheel print results; (b) double 2 

wheel print results. 3 

 4 

Fig.  10-Resulting S-N curve from the combination of BB and FAT fatigue experiments. 5 


