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Abstract

This thesis presents a method for extracting structured roof surfaces from remote sensing im-
ages. It achieved this by combining semantic segmentation with polygon-based refinement,
which allows rooftop boundaries to be described more accurately using line and shape in-
formation. The method includes three main stages: (1) using an instance segmentation
model to detect and classify rooftop areas; (2) generating polygonal candidates for plannar
roof regions based on detected line features; and (3) optimizing label assignments through
a Markov Random Field (MRF) model, which integrates prediction confidence with the spa-
tial relationships between polygons. Experiments on benchmark datasets show that this
approach improves the accuracy and consistency of rooftop segmentation while reducing
incorrect detections. The system is modular and flexible, making it suitable for applications
that require reliable roof structure analysis in urban environments.
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1. Introduction

1.1. Background and Motivation

With the advancement of airborne LiDAR, UAV photogrammetry, and semantic 3D city
models such as CityGML [Ledoux and Meijers, 2011; Biljecki et al., 2015], the accurate ex-
traction of rooftop planar structures has become foundational for various smart city appli-
cations. These include solar potential estimation [Jochem et al., 2009; Nelson and Grubesic,
2020], urban-scale energy modeling [Peronato et al., 2017; Chen and Hong, 2018], and dis-
aster management [Rezaeian and Gruen, 2011; Calantropio et al., 2021]. As urbanization ac-
celerates, the demand for high-resolution rooftop data grows, highlighting the significance
of robust extraction techniques in both research and practice.

(a) Building Safety Mon-
itoring

(b) Green Roof Design (c) Drainage Simulation (d) Solar Potential Estima-
tion

Figure 1.1.: Examples of rooftop applications benefiting from accurate roof structure extrac-
tion.

Building segmentation is a fundamental step in urban scene interpretation and 3D modeling.
However, the resulting segmentation outputs often lack structural semantics and cannot
reliably support downstream geometric reconstruction.

Although segmentation techniques based on LiDAR or imagery data enable automatic de-
tection of building regions, they frequently produce arbitrary polygonal meshes that are dif-
ficult to edit and lack watertightness [Verma et al., 2006]. Mesh-based representations, while
preserving geometric detail, tend to compromise semantic structure and compactness [La-
farge and Mallet, 2012]. In complex urban environments, occlusions and shadows further
reduce segmentation accuracy, leading to broken or misclassified building outlines [Awrang-
jeb et al., 2014].

To overcome these limitations, recent research has increasingly focused on the extraction
of roof planar structures, aiming to enhance both the geometric completeness and semantic
clarity of building models. This task involves subdividing roof regions into geometrically
coherent and semantically meaningful facets, laying the foundation for compact and inter-
pretable 3D reconstruction.
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1. Introduction

(a) Reference Building (b) Segmentation Output (c) Structure Extraction

Figure 1.2.: Comparing building reconstruction strategies. (a) shows the reference building.
(b) illustrates the 3D reconstruction outpupt obtained from segmentation masks alone,
resulting in a coarse box model. (c) depicts our method using extracted roof structures,
yielding a more accurate and semantically meaningful reconstruction.

1.2. Inspiration and Our Approach

Planar building surfaces, as fundamental geometric units in 3D scenes, not only exhibit clear
spatial boundaries but also reflect inherent structural regularity and topological coherence.
Recent advances in structured vision modeling suggest that explicit geometric cues—such
as contours, edges, and line segments—can serve as effective intermediaries between low-
level visual signals and high-level architectural understanding. Incorporating such prim-
itives into attention-based frameworks has been shown to improve the global consistency
of plane-related predictions, facilitating unified reasoning across segmentation, depth, and
geometry [Tan et al., 2022; Yin et al., 2023].

However, in complex urban environments, image-based segmentation remains highly sus-
ceptible to visual disturbances—such as vegetation occlusion, deep shadows, and lighting
variation [Awrangjeb et al., 2014]. These factors often result in fragmented boundaries, mis-
aligned contours, or missing roof regions. Moreover, instance segmentation models may
yield overlapping fragments or ambiguous labels, especially in dense cityscapes where com-
plex morphologies are common [Yang et al., 2023; He et al., 2017]. In such cases, one roof
surface might be incorrectly assigned to multiple predicted regions, undermining the topo-
logical integrity and usability of the output [Verma et al., 2006]. These limitations highlight
that segmentation outputs, even when accurate at the pixel level, often lack the structural
completeness and geometric consistency required for reliable 3D modeling.

These challenges motivate a shift in perspective: rather than treating segmentation as the
final goal, we consider it an intermediate cue to be structurally refined. While existing
methods can detect roof outlines and reconstruct LoD2 models from orthophotos and eleva-
tion data [Gao et al., 2024], typically emphasize geometric delineation rather than modeling
inter-facet relationships. Likewise, multi-task models that jointly predict segmentation and
plane parameters rarely enforce global consistency across roof structures [Yin et al., 2023].
We instead take inspiration from approaches that combine semantic reasoning with explicit
geometry, using intermediate outputs as building blocks for structured reconstruction.

In particular, recent work has shown that polygonal surface selection can be framed as
a global optimization problem using a Markov Random Field (MRF) formulation [Chen

2



1.3. Research Question

et al., 2022]. By defining energy terms that penalize geometric redundancy and reward
data consistency, these models produce watertight and topologically sound reconstructions
through graph cut inference.

Building on this idea, we propose an MRF-based pipeline tailored to image-derived inputs.
We begin by extracting structural line segments from orthophotos, which are polygonized to
form candidate roof planes. Each candidate is then evaluated using instance segmentation
predictions—specifically, confidence scores and per-pixel probability maps—to estimate its
semantic plausibility. These form the unary potentials in our MRF, while pairwise terms
capture spatial adjacency and consistency across candidates. Optimizing this energy yields
a compact and topologically coherent polygonal roof structure, suitable for downstream 3D
modeling tasks.

Rather than relying solely on pixel-wise segmentation, our method incorporates an interme-
diate polygonal representation that integrates semantic confidence with geometric structure.
This leads to more consistent and interpretable roof plane assignments in complex urban
environments.

1.3. Research Question

This work addresses the problem of extracting structured roof planar representations from a
single satellite or aerial image. While deep segmentation networks can effectively delineate
building regions at the pixel level, transforming such outputs into compact, topologically
coherent roof structures remains a non-trivial challenge. Existing methods often struggle
to enforce global consistency or preserve geometric simplicity, especially in complex urban
environments.

Our main research question is:

How can roof planar structure be extracted from a single satellite or aerial image
using segmentation and optimization?

To investigate this question, we focus on three sub-problems:

• Polygonal Conversion: How can structured polygonal representations be derived from
pixel-based segmentation masks?

• Plane Assignment: How can fragmented roof parts be grouped and assigned to co-
herent roof planes while preserving topological integrity?

• Efficiency and Compactness: How can the extraction process be made more efficient
while maintaining geometric precision and structural consistency?

Together, these questions guide the design of our image-driven reconstruction pipeline,
which integrates semantic segmentation cues with geometric priors under a global opti-
mization framework.

3



1. Introduction

1.4. Thesis Organization

This thesis is structured into five chapters, progressively developing the motivation, frame-
work, implementation, and evaluation of a geometry-aware approach for roof plane extrac-
tion from 2D imagery:

• Chapter 1: Introduction outlines the motivation for structured roof modeling in urban
environments and identifies the limitations of existing segmentation methods. It intro-
duces roof plane extraction as a more geometrically coherent alternative and presents
the central research question along with an overview of the proposed pipeline.

• Chapter 2: Related Work reviews prior research in four main categories: building
segmentation, instance-level roof modeling, roofline detection, and planar structure
extraction. It compares existing approaches in terms of modeling strategies, output
representations, and typical limitations, thereby motivating the proposed method.

• Chapter 3: Methodology introduces a three-stage pipeline: instance segmentation
generates semantic masks, polygon proposal extracts geometric rooftop regions, and
MRF optimization refines labels by integrating semantic and structural cues.

• Chapter 4: Implementation, Results, and Discussion details the dataset preparation,
model configurations, and training procedures. It presents both qualitative and quan-
titative evaluation on benchmark datasets, compares results before and after MRF re-
finement, and analyzes typical failure cases. The chapter also discusses the observed
strengths and limitations of the proposed approach, offering insight into generalizabil-
ity and robustness across different rooftop structures.

• Chapter 5: Conclusion and Future Work summarizes the contributions of the pro-
posed pipeline and reflects on its performance across diverse datasets. The chap-
ter also outlines several future research directions aligned with each stage of the
pipeline—ranging from enhanced backbone architectures, more robust polygon pro-
posal mechanisms, to refined MRF modeling strategies—with the goal of further im-
proving semantic accuracy and structural consistency in urban environments.

4



2. Related Work

In this chapter, we review recent works related to structured building modeling. We catego-
rize these works into four types based on the level of detail and the nature of the output:

• Building Segmentation – methods that identify building regions in satellite images,
aerial photographs, or point clouds. The output is typically a binary or semantic mask
distinguishing building and non-building areas.

• Building Instance Segmentation – methods that separate individual buildings from
one another. The goal is not just to detect buildings, but to distinguish between multi-
ple adjacent structures. These methods assign a unique label to each building instance
but do not necessarily provide accurate geometric outlines.

• Roof Line Extraction – methods that extract the geometric outlines or edges of rooftops,
often as vectorized polygons or line segments. Unlike instance segmentation, these
methods focus on reconstructing accurate 2D roof footprints or contours, regardless of
whether building instances are distinguished. The emphasis is on geometric precision
rather than object identity.

• Roof Planar Structure Extraction – methods that recover the internal 3D structure of
rooftops, including multiple planar surfaces, their orientations, and spatial relation-
ships. These methods aim to support detailed 3D model reconstruction, such as LoD2
or LoD2.2 representations.

This categorization helps clarify whether a method is designed for semantic understanding,
geometric modeling, or full 3D reconstruction. The following sections review representative
works in each category.

2.1. Building Segmentation

Semantic segmentation of buildings in overhead imagery is a fundamental step for down-
stream tasks such as instance-level analysis and 3D reconstruction. Most existing methods
generate pixel-wise masks that identify building regions, but lack geometric structure or
topological awareness, limiting their applicability in tasks that require accurate contours or
shape regularity.

Progress in this area has been supported by large-scale benchmark datasets featuring diverse
urban scenes. Among these, RoofVec [Hensel et al., 2021] offers instance-level rooftop an-
notations derived from imagery, and is used in this study as the benchmark dataset. While
some datasets offer high-resolution footprints, their limited coverage and relatively uniform
architectural styles restrict generalization [Demir et al., 2018]. Others introduce variation in
imaging conditions to improve robustness, but performance remains affected by occlusion,
shadow, and viewing angle distortions [Weir et al., 2019].

5



2. Related Work

Common segmentation architectures rely on multi-scale feature fusion to enhance spatial
precision and typically perform well across different datasets. Nonetheless, their outputs are
raster-based, making them suboptimal for geometry-aware tasks such as contour extraction
or vectorized reconstruction—especially in dense urban areas where building boundaries
are often occluded or highly irregular [Chicchon et al., 2024].

(a) Input Image (b) Segmentation Output

Figure 2.1.: Example of semantic building segmentation. (a) shows an aerial input image,
and (b) presents the corresponding segmentation mask output. While such pixel-wise
predictions identify building regions, they lack geometric structure and are difficult to
convert into accurate vector representations for 3D modeling.

2.2. Building Instance Segmentation

Instance segmentation identifies and separates individual buildings within a scene, sup-
porting object-level applications such as change detection and 3D reconstruction. Unlike
semantic segmentation, this task must resolve adjacency and occlusion in dense urban lay-
outs.

General-purpose frameworks have been adapted to this domain. These models perform well
in natural image settings but often fail to respect geometric regularities in urban environ-
ments, resulting in irregular masks or merged buildings [He et al., 2017].

Recent approaches introduces a large-scale 3D dataset with fine-grained building instances.
Their proposed method segments point clouds efficiently by learning point-level relations,
avoiding clustering-based overhead [Yang et al., 2023].

Nonetheless, challenges remain, including structural ambiguity, noise sensitivity, and the
lack of geometric constraints in model outputs. These limitations point to the need for
segmentation approaches that integrate architectural priors and spatial regularization.
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2.3. Roof Line Extraction

(a) Input Image (b) Instance Segmentation Output

Figure 2.2.: Example of building instance segmentation. (a) shows the aerial input image,
and (b) displays the corresponding instance masks and bounding boxes. Compared to
semantic segmentation, instance-level predictions must resolve close adjacency and pre-
serve object boundaries.

(a) Blurry Boundaries and Polygon Distortion (b) Blurry Boundaries and
Polygon Distortion

Figure 2.3.: Failure cases in instance segmentation. Both examples suffer from blurry bound-
aries and distorted polygon shapes, leading to inaccurate and geometrically inconsistent
masks.

2.3. Roof Line Extraction

Roof line extraction focuses on recovering vectorized rooftop contours with high geometric
fidelity, typically represented as structured polygons or planar graphs. This task supports
applications such as cadastral mapping, topological modeling, and downstream 3D recon-
struction, where pixel-wise segmentation is insufficient.

Approaches to this task can be broadly categorized into unsupervised refinement, mask-to-
boundary alignment, and direct polygon prediction. Unsupervised methods operate with-
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out training data, often using geometric priors and line detection to generate building out-
lines. These methods are flexible and data-efficient, but remain sensitive to texture loss,
shading, and footprint ambiguity—especially in dense urban imagery [Gao et al., 2024].

A second line of work refines segmentation masks into vector-aligned contours by introduc-
ing structural constraints during post-processing. While this improves alignment accuracy,
performance is tightly coupled to the quality of the initial mask predictions, and tends to
degrade with occlusion or small-scale features [Xu et al., 2023].

Recent methods directly predict polygonal structures using deep learning. These include
transformer-based models that detect and connect roof corners, graph neural networks
that infer topological relations, and hybrid frameworks combining CNNs with optimiza-
tion solvers. Although these approaches achieve better geometric consistency, they can still
produce invalid shapes under noise or occlusion, and some incur significant computational
costs [Chen et al., 2021; Zorzi et al., 2023; Nauata and Furukawa, 2020].

Overall, roof line extraction remains an open challenge due to the competing demands of
structural regularity, scene complexity, and computational efficiency.

(a) Input Image (b) Roof Line Extraction Result

Figure 2.4.: Example of roof line extraction. (a) shows the raw aerial image, while (b) il-
lustrates the rooftop outlines. The result preserves geometric structure and facilitates
downstream modeling tasks.

2.4. Roof Planar Structure Extraction

Recovering the planar composition of rooftops—typically represented as sets of polygonal
surfaces with geometric and topological consistency—is essential for producing LoD2-level
3D building models. Recent work in this domain can be broadly grouped by their input
modality and modeling strategy: image-only approaches, image-height fusion methods, and
learning-based geometric modeling.
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(a) Input Image (b) Extracted Planar Structure

Figure 2.5.: Example of rooftop planar structure extraction. (a) shows an input aerial image,
and (b) depicts the extracted roof facets represented as geometrically consistent polygonal
surfaces. This structural representation forms the basis for LoD2-level 3D building mod-
eling.

2.4.1. Image-only Methods

These approaches operate solely on RGB images or orthophotos to infer planar roof struc-
tures. Methods based on monocular cues can estimate roof sections and heights from a
single image, but often produce systematic height errors and struggle with occlusions and
generalization to unseen cities [Lussange et al., 2023]. Techniques using implicit fields model
surface continuity in a latent space, yet may fail to distinguish roof and wall boundaries and
are sensitive to input sparsity or complex geometry [Chen et al., 2022]. Graph-based opti-
mization frameworks support interactive editing with geometric constraints, but typically
require manual specification of roof topology and rely on computationally intensive post-
optimization to ensure planarity [Ren et al., 2021].

2.4.2. Image + Height Fusion Methods

These methods leverage both RGB images and height information such as digital surface
models (DSMs) or normalized DSMs (nDSMs) to improve roof reconstruction. By combin-
ing spectral and geometric cues, they aim to better separate rooftops from vegetation and
capture building heights more accurately. Recent approaches fuse these modalities either
early, at the input level, or late, through multi-branch neural networks [Schuegraf et al.,
2023; Xu et al., 2024].

Despite improved performance over image-only systems, fusion-based approaches still face
notable limitations. Raster-based predictions often result in broken or rounded roof lines,
and the subsequent polygon and 3D model generation stages remain underdeveloped and
require further research [Xu et al., 2024]. In addition, deep learning methods for DSM–RGB
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fusion are still relatively immature, with limited architectural standardization and gener-
alization ability [Xu et al., 2024]. The transition to clean vectorized models remains chal-
lenging, as these methods require careful post-processing to generate valid polygons and
often struggle to distinguish buildings from spectrally similar objects such as roads or veg-
etation [Schuegraf et al., 2023]. Moreover, vertical structures are poorly reconstructed due
to the near-nadir viewing angle of most airborne sensors, limiting the completeness of fa-
cade geometry [Bauchet et al., 2024]. Finally, iterative refinement frameworks that operate
on top of initial reconstructions rely heavily on the quality of the starting model and are
constrained by a limited set of heuristic actions, which restricts their flexibility in handling
diverse architectural layouts [Zhang et al., 2021].

2.4.3. Learning-based Geometric Modeling

These approaches aim to learn structured 3D roof geometry representations directly from
data, often targeting higher levels of abstraction than per-pixel or voxel outputs. Some
methods represent geometry implicitly, learning continuous surface fields from image input,
while others use explicit primitives such as polygons or rectangles, combined with graph-
based neural architectures.

Implicit field methods do not rely on intermediate mesh or point cloud representations and
instead encode surface geometry continuously. However, these methods often struggle to
preserve sharp roof edges or discontinuities, require iso-surfacing as a post-processing step
to obtain explicit geometry, and suffer from limited scalability due to high memory and
computation costs [Chen et al., 2022].

Primitive-based methods decompose roofs into geometric units such as rectangles or poly-
hedra and model their arrangement and relations. Roof-GAN learns to generate roof primi-
tives and their spatial relationships using adversarial training, offering diversity and realism
in generated roof structures. Still, it assumes fixed wall height and symmetry, limits roof
types to simple configurations, and is trained on a relatively small dataset [Qian et al., 2021].
Similarly, PolyGNN reconstructs polyhedral building models from point clouds by jointly
optimizing geometry and connectivity through a graph neural network. While effective
under ideal conditions, its performance depends on accurate primitive extraction and high-
quality synthetic training data, potentially limiting generalization to noisy or real-world
inputs [Chen et al., 2024].
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3.1. Overview

This chapter details the methodology for extracting and structurally refining rooftop in-
stances from 2D aerial imagery through a multi-stage processing pipeline. The overall ap-
proach integrates instance-level semantic predictions with polygon-based geometric repre-
sentations to produce rooftop segmentations with improved spatial coherence and structural
integrity.

The process begins with instance segmentation applied to the input RGB image, producing
soft semantic masks with pixel-wise confidence scores. In parallel, the RGB image is pro-
cessed to generate candidate rooftop shapes in the form of polygon proposals, capturing the
geometric boundaries of potential rooftop regions.

Subsequently, semantic probabilities from instance segmentation are aggregated over each
polygonal region to produce per-polygon label probabilities. These probabilities are used to
define unary potentials in a Markov Random Field (MRF) framework. Meanwhile, adjacency
relationships among polygons are encoded as pairwise terms in the MRF based on their
spatial connectivity.

The final step involves minimizing the total energy of the MRF, integrating both unary and
pairwise terms, to infer the most probable label assignments for each polygon. This process
allows the combination of fine-grained semantic information with structured geometric cues
for improved segmentation reliability.

Figure 3.1 illustrates the full pipeline. The blue modules represent the independent input
stages, which generate semantic predictions and polygon proposals. The orange modules
denote the MRF-based refinement process that integrates both information streams to pro-
duce the final rooftop segmentation output.

The overall process can be summarized into three main stages:

• Instance Segmentation: Produces semantic masks with confidence scores for each
rooftop object.

• Polygon Proposal Generation: Extracts oversegmented polygonal regions represent-
ing rooftop boundaries.

• MRF Optimization: Computes per-polygon unary and pairwise potentials using se-
mantic and geometric cues. Then, minimizes the total MRF energy to assign instance
labels to polygons.
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Figure 3.1.: An overview of our approach. Blue modules represent inputs and outputs, while
orange modules indicate algorithmic components of the pipeline.

The following sections elaborate on each component of the pipeline in detail, highlighting
the rationale behind their design and how they collectively enhance rooftop segmentation
by improving structural coherence, instance separation, and geometric alignment.

3.2. Instance Segmentation

The first stage of the proposed pipeline focuses on instance segmentation. This step is
responsible for detecting individual rooftop instances from aerial imagery, and it provides
the initial semantic input used in later structural refinement.

To achieve this, we employ a deep learning–based instance segmentation model that pro-
duces object-level semantic masks, enabling each rooftop to be identified as a distinct in-
stance—an essential prerequisite for topologically aware post-processing.

The model extracts hierarchical visual features from the input image using a deep back-
bone network with multi-scale capability. These features are then used to predict instance-
level masks for rooftop objects, producing high-resolution binary masks that delineate each
rooftop as a separate entity.

The model outputs a set of instance-level masks, where each instance includes both a classi-
fication confidence score and a per-pixel probability map (soft mask). The confidence score
reflects the likelihood that the predicted object belongs to the rooftop class, while the soft
mask provides pixel-wise probabilities indicating how likely each pixel belongs to the pre-
dicted instance. These two outputs are later combined to form weighted semantic evidence
for downstream inference.

Figure 3.2 shows an example of the model output, where rooftop instances are predicted as
colored regions with associated confidence scores and bounding boxes. To further illustrate
the prediction quality and potential limitations, Figure 3.3 visualizes a set of segmented in-
stances, comparing them against ground truth. Despite the presence of multiple predictions,
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only one region correctly overlaps with a true rooftop, emphasizing the need for additional
geometric refinement in the next stage.

(a) Original aerial image. (b) Instance segmentation result.

Figure 3.2.: Instance segmentation output compared to the original RGB input. In (b), Each
colored region represents a predicted rooftop instance, along with confidence scores and
bounding boxes.

Original RGB GT Pred 0 (FP) Pred 1 (FP) Pred 2 (TP)

Pred 3 (FP) Pred 4 (FP) Pred 5 (FP) Pred 6 (FP) Pred 7 (FP)

Figure 3.3.: Visualization of instance segmentation prediction. Among 8 predicted polygons,
only Pred 2 is a true positive (TP), while the rest are false positives (FP).

While instance segmentation provides valuable pixel-wise semantic cues, its output often
suffers from noise and fragmentation near object boundaries. To overcome these limita-
tions and introduce explicit geometric structure, we incorporate a complementary polygon
proposal stage.
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3.3. Polygon Proposal Generation

Instance segmentation models often suffer from imprecise object boundaries, fragmented
regions, and overlapping predictions—limitations that hinder the extraction of topologically
coherent rooftop structures. To ad dress these issues, we introduce a polygon proposal
generation stage that constructs geometrically constrained regions directly from the RGB
image, providing structured spatial units for subsequent probabilistic inference.

This stage is built upon the KIPPI algorithm (KInetic Polygonal Partitioning of Images) [Bauchet
and Lafarge, 2018], which begins with dense line segment detection and proceeds with ge-
ometric regularization and kinetic-based partitioning. The method integrates local edge
evidence with global shape priors such as parallelism and perpendicularity, producing
boundary-aligned line networks that remain robust under occlusions, lighting variation,
and urban clutter.

To ensure high recall of potential rooftop surfaces—particularly in complex or fragmented
environments—we adopt an oversegmentation strategy that favors completeness over com-
pactness. This results in a fine-grained set of candidate regions, which introduces redun-
dancy but enhances downstream label flexibility. Figure 3.4 illustrates how increasing the
segmentation granularity progressively decomposes the rooftop into finer polygonal regions,
which enables better adaptation to structural complexity.

(a) Ground truth
rooftop

(b) Low segmentation
level

(c) Moderate segmenta-
tion level

(d) High segmentation
level

Figure 3.4.: Effect of oversegmentation granularity. Increasing segmentation levels introduce
more polygon candidates, improving the likelihood of capturing fine rooftop boundaries,
especially in cluttered or irregular regions.

Following line extraction, the segments are merged based on geometric connectivity to form
a continuous rooftop line network. Closed polygonal regions are then automatically gener-
ated from this network, resulting in a set of candidate rooftop polygons. These polygons
serve as the structural units for downstream MRF-based label inference.

Figure 3.5 visualizes the full polygon proposal pipeline, starting from raw roofline detection
and ending with the construction of closed polygonal candidates. Implementation specifics,
including parameter settings and performance considerations, are provided in Section 3.3.

With a set of oversegmented polygonal regions capturing geometric layout, the next step is to
integrate these with semantic evidence from instance segmentation. This fusion is achieved
through a probabilistic graphical model that assigns labels to each polygon in a globally
consistent manner.
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(a) Original image (b) Rooflines detected (c) Aggregated into polygons

Figure 3.5.: Illustration of the polygon proposal process. Rooflines are first detected from
the input image and then aggregated to form closed polygonal regions for downstream
inference.

3.4. MRF Optimization

This section presents a graph-based energy minimization framework for assigning instance
labels to candidate rooftop polygons. Unlike deep learning–based instance segmentation
models that output pixel-wise masks and probability maps, our method directly assigns
discrete integer labels to each polygonal candidate. Here, label 0 denotes background, while
labels 1 . . . N correspond to foreground rooftop instances. This explicit labeling scheme en-
hances the clarity of instance separation and ensures better geometric consistency, facilitating
downstream structural processing and evaluation.

To achieve this, the problem is formulated as a Markov Random Field (MRF), where each
polygon corresponds to a node in a graph, and edges represent geometric adjacency be-
tween polygons. The final label assignment is obtained by minimizing a global energy func-
tion composed of a unary term and a pairwise term. This function integrates confidence-
weighted probability scores from model predictions with adjacency-based geometric infor-
mation, balancing intra-region confidence with inter-region label coherence.

3.4.1. Problem Formulation

Given a set of polygon proposals extracted from an image, the objective is to assign a label
Lk ∈ {0, 1, . . . , N} to each polygon k, where non-zero labels represent foreground rooftop
instances. The labeling problem is formulated as the minimization of the following energy
function:

E(L) = ∑
k

Uk(Lk) + ∑
(i,j)∈E

λ · wij · V(Li, Lj) (3.1)

Here, Uk(Lk) denotes the unary cost of assigning label Lk to polygon k, wij represents the
geometric weight between adjacent polygons i and j, V(a, b) is the label penalty function,
and λ is a hyperparameter controlling the influence of the pairwise term.
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3.4.2. Graph Construction

We construct an undirected graph G = (V, E) from the set of polygons. Each node in V
corresponds to a polygon, and an edge is added between polygons i and j if they satisfy a
spatial adjacency criterion. Two adjacency types are considered:

• Edge-based adjacency: polygons share a non-zero boundary length.

• Point-based adjacency: polygons touch at a single vertex.

In this work, we adopt edge-based adjacency to better preserve geometric continuity and
avoid spurious connections caused by point contacts. The edge weights wij are subsequently
computed based on the shared boundary length lij. Details on this design choice and related
settings are discussed further in Section 3.4.

(a) Raw Polygon Proposal (b) Adjacency by point (c) Adjacency by edge

Figure 3.6.: Different kinds of Adjacency graph

3.4.3. Unary Term

The unary term quantifies how likely a polygon corresponds to each semantic label, based
on predictions from Mask R-CNN.

Confidence-weighted mask probability. For each predicted instance i, Mask R-CNN out-
puts a soft mask Mi(x, y) ∈ [0, 1] and a classification confidence si ∈ [0, 1]. We define:

Pi(x, y) = si · Mi(x, y) and Pbg(x, y) = 1 − max
i

Pi(x, y) (3.2)

Per-polygon label probability. Each polygon k is rasterized to generate a binary mask Ωk,
and the average probability over each label j is computed as:

pk,j =
1

|Ωk| ∑
(x,y)∈Ωk

Pj(x, y) (3.3)
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Unary Cost Transformation: To encourage the model to favor high-probability label as-
signments, we transform the label probability into a cost. Specifically, lower probabilities
incur higher costs:

Uk,j = (1 − pk,j) · α (3.4)

Here, α is a scaling parameter that controls the penalty strength for low-confidence label
assignments.

While the unary term captures how well each polygon aligns with semantic predictions,
it alone may result in noisy or inconsistent labeling. To promote spatial coherence across
adjacent polygons, we introduce a pairwise term that encodes neighborhood smoothness.

3.4.4. Pairwise Term

The pairwise term encourages spatial smoothness by penalizing label differences between
adjacent polygons.

Edge weight normalization. For each edge (i, j) ∈ E, we compute a normalized weight
based on the shared boundary length lij:

wij = f (lij) =
√

lij/lmax · scale + offset (3.5)

We empirically use lmax = 80 pixels, scale = 5, and offset = 1. This transformation mitigates
the impact of extremely long edges due to the long-tailed distribution of lij values.

Label penalty matrix. To discourage inconsistent labels across adjacent polygons, we define
a symmetric penalty:

V(a, b) =

{
0 if a = b
1 otherwise

(3.6)

Final pairwise cost. Combining both components, the full pairwise term becomes:

PairwiseCostij(a, b) = λ · wij · V(a, b) (3.7)

The hyperparameter λ controls the overall strength of spatial regularization. Larger values
of λ favor label smoothness; smaller values emphasize unary confidence.

Having defined both the unary and pairwise components of the energy function, we now
turn to the optimization process used to infer the most likely label configuration.
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3.4.5. Energy Minimization and Label Inference

Given the unary cost matrix U ∈ RN×(N+1) and the edge-weighted adjacency graph, the
final label configuration L = {L1, L2, . . . , LN} is obtained by minimizing the total energy:

L∗ = arg min
L

∑
k

Uk(Lk) + ∑
(i,j)

λ · wij · V(Li, Lj)

 (3.8)

This multi-label optimization problem is solved using the α-expansion algorithm [Boykov
et al., 2001], which efficiently minimizes the MRF energy by iteratively proposing large label
moves while preserving approximate optimality. The resulting label assignment provides
a globally consistent segmentation based on both semantic evidence and geometric adja-
cency.

After inference, the labeled polygons are converted into pixel-level masks for evaluation by
rasterizing each polygon into a 2D canvas using its predicted label. This produces image-
aligned segmentation maps that are directly comparable to ground truth annotations. These
outputs are evaluated using standard semantic metrics (IoU, precision, recall) and structural
consistency scores.
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4. Implementation, Results, and
Discussion

4.1. Implementation Details

4.1.1. Implementation Overview

To facilitate instance-level roof segmentation from 2D imagery, we propose a modular frame-
work composed of three main stages: instance segmentation, polygon proposal generation,
and MRF optimization. First, Mask R-CNN is employed to detect rooftop instances and
produce soft masks. Then, the structural outlines of roofs are extracted using edge detec-
tion and converted into candidate polygons through the KIPPI algorithm. Finally, a Markov
Random Field (MRF) model is constructed over these polygons to assign binary labels, in-
tegrating both semantic cues from the soft masks and spatial coherence from the polygon
adjacency graph.

This chapter provides key implementation details of each module, including dataset prepa-
ration, model configuration, polygon generation parameters, and MRF inference.

4.1.2. Dataset Preparation

The Cities dataset [Nauata and Furukawa, 2020] contains 1,985 aerial images with a fixed
resolution of 256 × 256 pixels. It features industrial and commercial buildings with flat yet
complex rooftops. Many images include large white margins, leading to reduced effective
rooftop areas.

The RoofVec dataset [Hensel et al., 2021] comprises 7,640 images of varying resolutions, pri-
marily depicting residential buildings with sloped and relatively simpler roof structures.

Neither dataset is orthorectified. As part of preprocessing, we convert all rooftop annotations
into polygon-based semantic masks, which serve as supervision for training the instance
segmentation model. Following this, we randomly split each dataset into 60% for training,
20% for validation, and 20% for testing.

4.1.3. Instance Segmentation Model Training

Backbone Configuration We adopt Mask R-CNN [He et al., 2017] with a ResNet-50 back-
bone and a Feature Pyramid Network (FPN) architecture for instance-level rooftop segmen-
tation. The output heads are configured to produce soft masks for each rooftop instance.
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Training Procedure The model is trained using stochastic gradient descent (SGD) with
a batch size of 4, momentum of 0.9, weight decay of 0.0005, and an initial learning rate
of 0.005, which is reduced by a factor of 0.1 every 20 epochs. Early stopping is triggered
after 15 epochs without improvement in validation IoU. All experiments are conducted on
NVIDIA A100 GPUs. Loss and IoU metrics are logged at each epoch.

Validation Strategy Validation is performed on the 20% held-out set. Predicted masks
are matched to ground truth instances using an IoU threshold of 0.5. A greedy matching
strategy based on descending confidence scores is applied, with each ground truth instance
matched at most once. The mean IoU across matched pairs is used for validation and model
selection.

Training Curves Figures 4.1–4.3 illustrate the training dynamics. The learning rate follows
a step-decay schedule. Training loss steadily decreases, and validation IoU improves until
convergence, indicating effective training and minimal overfitting.

Figure 4.1.: Learning rate schedules during training for RoofVec (left) and Cities (right).

Figure 4.2.: Training loss curves over epochs for RoofVec (left) and Cities (right).
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Figure 4.3.: Validation mean IoU over epochs for RoofVec (left) and Cities (right).

4.1.4. Polygon Proposal Generation

We use the line detection module from the KIPPI pipeline to extract structural line seg-
ments from RGB aerial images in the Cities dataset. These segments are then aggregated
into polygonal rooftop candidates through a combination of intersection refinement and
polygonization.

Parameter Configuration Two parameters significantly affect the granularity of the result-
ing polygon proposals: (1) lsd scale, which controls the degree of Gaussian smoothing
prior to line detection, and (2) num intersections, which defines the number of iterations
for resolving line intersections. We conduct a grid search over lsd scale ∈ {0.8, 1.0, 1.2, 1.5,
1.8} and num intersections ∈ {1, 2, 5, 7, 9}.

Quantitative Analysis (10-Image Sample) Table 4.1 summarizes descriptive statistics for
selected parameter combinations, computed over a sample of 10 randomly selected test im-
ages from the Cities dataset. Each cell reports the mean and standard deviation across these
10 images. As num intersections increases, the number of polygons rises sharply, while
average area and perimeter decrease—indicating finer spatial decomposition. Meanwhile,
the average vertex count remains relatively stable, reflecting preserved structural complexity
per shape.

Table 4.1.: Proposal statistics for selected parameter combinations (10 Cities test images).

LSD / Intersections Polygon Count Vertex Count Area (pixels2) Perimeter (pixels)

0.8 / 1 64.1 ± 36.8 6.81 ± 2.26 1021.8 ± 2833.4 137.4 ± 114.5
1.2 / 2 200.3 ± 115.6 5.81 ± 1.40 324.0 ± 1029.7 68.9 ± 66.2
1.5 / 9 1010.4 ± 636.5 5.23 ± 1.02 64.9 ± 319.1 27.4 ± 34.4
1.8 / 9 620.4 ± 182.6 5.39 ± 1.18 102.6 ± 467.5 35.2 ± 41.5

Full results for all parameter combinations are listed in Appendix A.2.
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Final Selection and Full Evaluation We adopt lsd scale = 1.5 and num intersections =
9 for all subsequent experiments. This configuration achieves a high number of propos-
als while preserving reasonable polygon complexity, making it well-suited for downstream
MRF-based labeling.

Table 4.2 shows summary statistics computed over the full Cities test set using this final
configuration. These values provide a more comprehensive view than the earlier 10-image
sample.

Table 4.2.: Final polygon statistics (LSD = 1.5, Intersections = 9) over the entire Cities test set.

Metric Mean Std. Dev. Median Max

Polygons per image 1416.9 767.8 1277.0 4153
Polygon area (pixels2) 46.3 244.5 7.18 20607.5
Polygon perimeter (pixels) 24.5 29.8 15.3 649.7
Vertex count per polygon 5.31 1.10 5.00 27

4.1.5. MRF Optimization

Graph Construction As introduced in the Section 3.4.2, we represent polygon proposals
as an undirected graph where each polygon corresponds to a node. Among the adjacency
strategies discussed, we implement only edge-based adjacency: an edge is created between
two polygons if they share a non-zero boundary segment. The length of the shared boundary
is computed and stored for each pair and later used to determine pairwise weights in the
MRF formulation.

Unary Term Computation As introduced in Section 3.4.3, the unary term reflects how
likely each polygon corresponds to semantic classes, based on predictions from Mask R-
CNN. In practice, this is computed by first rasterizing each polygon onto the image plane
and then averaging the soft mask probabilities within the region to obtain class-wise proba-
bilities pk,j. These values are subsequently transformed into energy costs using the inverse
mapping Uk,j = (1 − pk,j) · α, with α = 10.

We fix α = 10 across all experiments to provide a stable unary baseline. This allows us to
systematically explore how the overall label assignment is affected by the strength of spatial
regularization, which is controlled separately through the pairwise term.

Figure 4.4 visualizes the class-wise soft probability masks produced by Mask R-CNN for
a sample input, which form the basis for downstream polygon-level aggregation. These
probability maps serve as the foundation for computing polygon-level scores.

Figure 4.5 further illustrates the results of polygon-level aggregation. The top row shows
the averaged per-polygon probabilities, while the bottom row displays the resulting unary
cost matrix. Darker regions indicate higher energy penalties, typically corresponding to
low-confidence predictions.

For completeness, Appendix A.3 provides a numerical example showing the per-polygon
probability matrix and its transformed unary cost values, illustrating the exact input format
for MRF optimization.
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(a) Raw RBG (b) Class 0 (c) Class 1 (d) Class 2

Figure 4.4.: Raw pixel-level soft masks from Mask R-CNN. Values represent per-pixel prob-
abilities for each class.

(a) Polygon Prob (raw) class 0 (b) Polygon Prob (raw) class 1 (c) Polygon Prob (raw) class 2

Figure 4.5.: Per-polygon class probability maps computed from instance segmentation out-
puts. Values represent the aggregated semantic likelihood for each polygon belonging to
class 0, 1, or 2, respectively.

(a) Unary cost - class 0 (b) Unary cost - class 1 (c) Unary cost - class 2

Figure 4.6.: Corresponding unary cost maps derived from the polygon-level class probabili-
ties. Higher values indicate lower confidence and contribute more to the MRF energy.
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Pairwise Term Definition To encourage spatial smoothness in the final labeling, we define
pairwise costs between adjacent polygons based on the length of their shared boundary. Let
lij denote the edge length shared by polygon pair (i, j). A direct linear use of lij tends to
overemphasize a small number of large connections, due to the long-tailed distribution of
edge lengths observed in practice.

Figure 4.7 illustrates this distribution over the test set. Most polygon pairs share very short
boundaries, while a few pairs have disproportionately long edges, which can dominate the
energy minimization if not properly normalized.

Figure 4.7.: Histogram of raw shared edge lengths.

To mitigate this, we apply a square root transformation and cap the values at 80 pixels. The
normalized weight is computed as:

wij =
√

lij/80 · 5 + 1 (4.1)

This transformation compresses the dynamic range while preserving the relative order of
edge strengths. The square root reduces the influence of extreme long edges without nulli-
fying their spatial importance.

The scaling factor (·5) and offset (+1) are chosen empirically to map the resulting weights
into a numerically stable range, approximately [1, 6]. This aligns the magnitude of pairwise
terms with the unary energy scale (controlled by α = 10), ensuring balanced contributions
from both semantic and geometric cues. The offset also prevents zero-weight edges, which
would eliminate spatial regularization for weakly connected regions.

The final pairwise energy between two adjacent polygons becomes:

Costij(a, b) = λ · wij · 1[a ̸= b] (4.2)
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where λ is a smoothness hyperparameter, and 1[a ̸= b] indicates whether the polygons are
assigned different labels. This encourages label consistency along long, continuous bound-
aries.

Inference and Rasterization The MRF energy function, consisting of unary and pairwise
terms, is minimized to obtain a label assignment for all polygons. Each polygon is then
rasterized back into the image plane using its assigned label, producing a dense mask for
evaluation. These outputs are assessed using both semantic metrics (e.g., mean IoU) and
structural criteria such as label consistency across adjacent regions.

Smoothness Parameter Sweep We explore the impact of the smoothness weight λ through
a two-stage sweep. A coarse search over {0.001, 0.01, 0.1, 1, 10, 100} identifies the general sen-
sitivity range. A finer search within the transition region (e.g., λ = 0.05) is then conducted
to refine the trade-off between over-smoothing and under-regularization. The best value is
selected based on downstream performance on both semantic and structural metrics.

4.2. Result Analysis and Comparison

4.2.1. Quantitative Evaluation Metrics

We adopt standard instance-level evaluation metrics to quantify model performance: True
Positives (TP), False Positives (FP), False Negatives (FN), Precision, Recall, and Mean Inter-
section over Union (IoU). These are defined as follows:

• Precision: the proportion of predicted instances that are true rooftops.

Precision =
TP

TP + FP
(4.3)

• Recall: the proportion of ground truth rooftops that are correctly predicted.

Recall =
TP

TP + FN
(4.4)

• Mean IoU: the average intersection-over-union score over all matched predictions.

IoU =
|P ∩ G|
|P ∪ G| (4.5)

where P is the predicted polygon and G is the corresponding ground truth. We com-
pute IoU for each matched pair and report the average over all matches.

These metrics capture both semantic correctness and instance-level overlap quality, and are
used consistently throughout this section.

We evaluate the quantitative performance of our method on two datasets: Cities and RoofVec.
Comparisons are made across three stages of the pipeline: (1) raw instance predictions from
Mask R-CNN, (2) MRF labeling using only unary probabilities, and (3) full MRF inference
using unary and pairwise term.
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Baseline Performance: Mask R-CNN We begin by reporting the instance segmentation
performance of the raw Mask R-CNN model. Table 4.3 summarizes the metrics. On the
Cities dataset, the precision is only around 0.59 due to many overlapping or redundant
predictions. RoofVec performs better, but still has room for improvement.

Table 4.3.: Instance-level performance of Mask R-CNN on test sets.

Dataset TP FP FN Precision

Cities 870 600 197 0.5918
RoofVec 3338 356 48 0.9036

Ablation Study: Smoothness Weight (λ) in MRF To evaluate the impact of spatial reg-
ularization, we evaluate the MRF performance across a range of smoothness weights λ ∈
{0.001, 0.01, 0.05, 0.1, 0.5, 1.0, 10.0, 100.0}, with the unary scale α fixed at 10. Increasing λ
strengthens spatial smoothness, which helps suppress false positives. However, overly large
λ values cause the pairwise term to dominate, leading to excessive smoothing and fore-
ground collapse. Since mean IoU depends on the number and quality of true positives, it
does not necessarily improve as false positives decrease. We highlight in bold the configura-
tions that best balance semantic accuracy and structural coherence. On the RoofVec dataset,
λ = 0.1 achieves the highest mean IoU, while λ = 0.5 further reduces false positives with
only a slight drop in IoU.

Ablation: Unary-Only vs. Full MRF To isolate the effect of pairwise terms, we compare
the performance of the unary-only labeling with the full MRF output at λ = 0.1. Table 4.5
shows that using only the unary term provides reasonable segmentation, but adding the
pairwise term improves overall label coherence. On Cities, mean IoU improves slightly, and
false positives decrease. On RoofVec, the improvement is more significant — both precision
and IoU increase, showing that pairwise consistency helps especially on clean, structured
datasets.

Performance Summary Across all evaluations, the proposed framework consistently im-
proves structural integrity and semantic accuracy over baseline Mask R-CNN outputs. The
full MRF model, combining semantic confidence with spatial smoothness, offers a principled
post-processing solution for instance segmentation refinement.

4.2.2. Comparative Analysis

We compare our method against several structured polygon prediction approaches using the
region-level F1-score, following an evaluation protocol where predicted and ground-truth
polygons are matched based on an IoU threshold of 0.7 [Nauata and Furukawa, 2020].

Under this setting, our method achieves a region F1-score of 66.1%, outperforming previous
graph- and sequence-based methods [Nauata and Furukawa, 2020; Zhang et al., 2021]. Al-
though one recent fully-convolutional method [Chen et al., 2021] reports a higher F1-score
of 70.6%, our method maintains a simpler modular design and does not rely on edge super-
vision, transformer-based decoders, or joint primitive prediction.
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Table 4.4.: MRF sweep results on the Cities and RoofVec datasets (unary scale = 10).

(a) Cities dataset

λ TP FP FN Precision Recall Mean IoU

0.001 749 319 200 0.7012 0.7893 0.8331
0.01 749 316 200 0.7035 0.7893 0.8331
0.05 749 313 200 0.7051 0.7893 0.8333
0.1 748 306 201 0.7097 0.7882 0.8336
0.5 738 277 211 0.7271 0.7778 0.8260
1.0 723 262 226 0.7340 0.7620 0.8179
10.0 373 84 576 0.8162 0.3937 0.5064

100.0 0 1 949 0.0000 0.0000 0.0000

(b) RoofVec dataset

λ TP FP FN Precision Recall Mean IoU

0.001 3265 111 90 0.9362 0.9731 0.9125
0.01 3264 109 91 0.9370 0.9729 0.9127
0.05 3263 99 92 0.9705 0.9726 0.9130
0.1 3262 94 93 0.9720 0.9723 0.9130
0.5 3261 73 94 0.9781 0.9720 0.9117
1.0 3248 70 107 0.9789 0.9681 0.9049

10.0 1863 96 1492 0.9510 0.5552 0.5568
100.0 14 69 3341 0.1683 0.0042 0.0063

Table 4.5.: Comparison of polygon labeling with and without MRF smoothing.

Dataset Method TP FP FN Precision Mean IoU

Cities Unary only 749 319 200 0.7012 0.8331
MRF (λ = 0.1) 748 306 201 0.7097 0.8336

RoofVec Unary only 3265 111 90 0.9362 0.9125
MRF (λ = 0.1) 3262 94 93 0.9720 0.9130
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For completeness, we also report our performance under a relaxed IoU threshold of 0.5,
where the region F1-score increases to 74.6%, highlighting robustness to small geometric
discrepancies.

Table 4.6.: Region-level F1 score (%) comparison with prior methods on roof structure ex-
traction, evaluated at IoU threshold 0.5 and 0.7.

Method IoU Threshold Region F1 (%)

Nauata and Furukawa [2020] 0.7 60.8
Zhang et al. [2021] 0.7 63.5
Chen et al. [2021] 0.7 70.6

Ours 0.7 66.1
Ours 0.5 74.6

In addition to the region-level F1-score, we also compute the Macro Mean IoU between
matched polygon pairs. Our method achieves 0.8286 at an IoU threshold of 0.7 and 0.8406 at
0.5, indicating high geometric consistency across predicted and ground-truth regions. While
previous works do not report this metric, we believe it offers complementary insight into
the alignment quality of predicted shapes.

We further observe that under a stricter IoU threshold (0.7), false positives tend to in-
crease, which we attribute to instance-level over-segmentation from the initial proposal
stage. Specifically, a single ground-truth region is often fragmented into multiple predicted
instances, each covering only part of the target shape. These redundant polygons dilute the
match quality and lead to an inflated false positive count. A more precise or post-refined
instance generation process could potentially reduce such errors and narrow the remaining
performance gap.

4.2.3. Qualitative Visualization

We present a series of qualitative examples to demonstrate the impact of our method on
initial instance segmentation results. Each example highlights a specific issue commonly
found in raw predictions and shows how our method addresses it effectively.

The following qualitative examples (Figures 4.8–4.11) illustrate how different components
of our MRF model address common segmentation issues such as spurious fragments, over-
fragmentation, internal boundary noise, and misalignment.

Example 1: Removing Spurious Fragments In this example, a small extra triangular frag-
ment appears in the raw instance segment prediction (highlighted by the red box in Fig-
ure 4.8 (c)). Such fragments are typically caused by noisy or ambiguous boundaries. After
applying the MRF refinement, the fragment is correctly removed, yielding a cleaner seg-
mentation output and demonstrating the model’s ability to suppress isolated, erroneous
predictions.
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(a) Original Image (b) Ground Truth (c) Mask R-CNN Prediction

(d) Polygon Proposal (e) MRF Result (f) MRF Instance (TP: Green,
FP: Red, FN: Blue)

Figure 4.8.: MRF post-processing removes spurious fragments and refines boundaries to
produce cleaner segmentations.
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Example 2: Merging Over-Segmented Instances The raw Mask R-CNN prediction ex-
hibits over-fragmentation, producing six separate instances for what is in fact a single object
(see Figure 4.9 (c)). This not only increases the perceived object count but also disrupts
structural coherence. Our MRF refinement successfully merges these redundant segments
into a unified instance mask.

(a) Original Image (b) Ground Truth (c) Mask R-CNN Prediction

(d) Polygon Proposal (e) MRF Result (f) MRF Instance (TP: Green,
FP: Red, FN: Blue)

Figure 4.9.: MRF merges over-segmented instances into cohesive masks and reduces redun-
dant predictions.

Example 3: Smoothing Internal Boundaries As seen in the red box in Figure 4.10 (c),
the baseline prediction includes jagged internal boundaries within a single instance. These
result in fragmented shapes and poor alignment. The unary-only MRF result in Figure 4.10
(e) improves the shape but retains some irregularities. The full MRF (Figure 4.10 (f)), with
pairwise terms, produces smoother, more consistent boundaries.

Example 4: Correcting Alignment and Filling Gaps As shown in Figure 4.11 (c), the base-
line prediction contains overlapping and misaligned masks. Unary-only refinement (Figure
4.11 (e)) introduces false holes due to limited spatial context. By incorporating the pairwise
term (Figure 4.11 (f)), these holes are corrected and the masks are reshaped to better match
the ground truth.
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(a) Original Image (b) Ground Truth (c) Mask R-CNN Prediction

(d) Polygon Proposal (e) MRF Result (Unary Only) (f) MRF Result (Full)

Figure 4.10.: MRF smooths jagged internal boundaries using pairwise terms, resulting in
more geometrically consistent masks.
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(a) Original Image (b) Ground Truth (c) Mask R-CNN Prediction

(d) Polygon Proposal (e) MRF Result (Unary Only) (f) MRF Result (Full)

Figure 4.11.: MRF improves alignment and fills false gaps by combining unary and pairwise
terms.
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4.2.4. Failure Cases

Despite the overall performance improvements, our framework exhibits several failure modes.
We categorize and illustrate them as follows.

Example 1: Missed Detection from Mask R-CNN Figure 4.12 illustrates a fundamental
limitation of our framework: when the base instance segmentation model completely misses
a rooftop, subsequent post-processing cannot recover it. In this case, the Mask R-CNN
output only captures the right-side rooftop, completely missing the left segment. As our
method relies on unary probabilities projected onto polygon proposals, the absence of any
initial detection results in irreversible false negatives.

(a) Original image (b) Ground Truth (c) Mask R-CNN Prediction

(d) Polygon Proposal (e) MRF result (f) MRF Instance TP/FP/FN

Figure 4.12.: Failure Case 1: Missed rooftop on the left cannot be recovered without any
initial detection.

Example 2: Shadowed Rooflines Lead to Missing Proposals Another failure pattern arises
from weak polygon initialization. As shown in Figure 4.13, the bottom portion of the rooftop
is heavily shadowed, leading to a lack of strong line segments in the initial proposal phase.
Even under a dense intersection configuration, the bottom rooftop boundary remains poorly
delineated.
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(a) Original (b) Ground Truth (c) Polygon Proposal

(d) MRF Result (e) TP / FP / FN

Figure 4.13.: Failure Case 2: Shadow occlusion causes missing polygon edges in the proposal
phase, leading to incorrect MRF segmentation.
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Example 3: Instance Over-Segmentation Limits Refinement As shown in Figure 4.14,
Mask R-CNN initially predicts eight fragmented instances (N = 8), some of which are mis-
aligned. The subsequent polygon matching and MRF refinement are limited by this frag-
mented input. Although GCO reduces label noise, the initial over-segmentation imposes a
ceiling on final quality. This failure highlights the challenge of resolving complex or repeti-
tive roof patterns when instance masks are highly fragmented.

(a) Original (b) Ground Truth (c) Polygon Proposal

(d) MRF Result (e) TP / FP / FN

Figure 4.14.: Failure Case 3: Over-segmented instance masks limit final quality, even with
MRF refinement.

Example 4: Annotation Noise Causes Evaluation Errors Finally, Figure 4.15 demonstrates
the influence of annotation quality on evaluation outcomes. The left-bottom rooftop is
clearly visible in the input image and correctly predicted by the model, yet it is absent in the
ground truth annotation. This results in the prediction being counted as a false positive, de-
spite being semantically valid. Such incomplete labeling introduces ambiguity during both
training and evaluation, underscoring the need for cleaner, human-verified annotations in
urban-scale datasets.
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(a) Original (b) GT (c) Our Result

Figure 4.15.: Failure case caused by incomplete ground-truth annotation. The rooftop in the
lower-left corner is correctly segmented by our method (c) but is missing in the ground
truth (b), leading to an apparent false positive during evaluation.

These failure cases highlight critical limitations of our pipeline—namely, its reliance on accu-
rate instance proposals, coherent polygon extraction, and high-quality annotations. Future
improvements could incorporate learned polygon refinement or uncertainty-aware training
to address such limitations.

4.2.5. Application Demonstration

To illustrate the practical benefits of our proposed pipeline, we present a real-world demon-
stration of its applicability in 3D urban modeling. By combining our refined rooftop segmen-
tations with height data, we can generate plausible 3D reconstructions of urban buildings.
These outputs support downstream applications such as city planning, solar panel place-
ment, and disaster response simulation.

Given the cleaned and instance-aware rooftop masks obtained through our MRF optimiza-
tion process, we extrude each segmented region into a 3D polygon using estimated building
heights. For demonstration purposes, we assign height values manually or infer them from
LiDAR or DSM (Digital Surface Model) data when available. Each rooftop instance is repre-
sented as a planar polygon extruded vertically to form a prism.

To highlight the geometric expressiveness of our approach, we showcase reconstructions of
several common roof types:

• Gable roof: Two sloped planes meeting along a central ridge.

• Pyramidal hip roof: Four sloped planes converging to a single apex.

• Hip roof with ridge: Four sloped planes meeting along a horizontal ridge line.

• Flat roof: A horizontal planar roof surface with vertical walls.
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4.3. Discussion

The following examples show 3D renderings of these rooftop structures from multiple view-
ing angles.

Figure 4.16.: Example 1: Gable roof reconstruction. Two sloped surfaces form a central ridge.

Figure 4.17.: Example 2: Pyramidal hip roof reconstruction. Four sloped planes meet at a
single apex point.

These visualizations demonstrate that even with simple extrusion, our pipeline is capable
of generating plausible and structurally diverse 3D rooftops. This enables scalable and
lightweight reconstruction of urban environments using only 2D aerial imagery and minimal
elevation data.

4.3. Discussion

This thesis presents a three-stage pipeline for rooftop segmentation that combines instance-
level segmentation, polygon proposal generation, and MRF-based optimization. Unlike
prior approaches—such as building segmentation, building instance segmentation, roof line
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Figure 4.18.: Example 3: Hip roof with ridge. The sloped surfaces form a horizontal ridge at
the top.

Figure 4.19.: Example 4: Flat roof structure. All roof faces are horizontal with vertical extru-
sion walls.
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Figure 4.20.: Example 5: Another example of a flat roof building generated using our extru-
sion pipeline.

extraction, or roof planar structure extraction—our method integrates both geometric struc-
ture and semantic confidence into a unified, modular, and model-agnostic framework. This
enables more consistent, interpretable, and robust results across diverse urban scenes.

A core motivation for this work lies in addressing the structural challenges commonly ob-
served in rooftop segmentation. As discussed in Chapter 1, conventional instance segmen-
tation models often suffer from visual ambiguities caused by occlusion, shadows, or back-
ground clutter. These effects lead to incomplete roof boundaries, broken masks, and incon-
sistent instance assignments—particularly in dense urban scenes where rooftops are tightly
packed and visually similar.

Such issues are clearly reflected in the Cities dataset, where the raw predictions from Mask
R-CNN frequently contain overlapping segments, fragmented regions, or missing rooftop
parts. These errors result in low semantic precision (around 0.59) and undermine the ge-
ometric integrity needed for downstream applications. By introducing a polygon-based
intermediate representation and applying MRF-based optimization, our pipeline effectively
reduces redundancy, merges fragmented parts, and restores structurally plausible rooftop
regions. As a result, both precision and intersection-over-union (IoU) scores improve sig-
nificantly. In addition, experiments with different polygon proposal settings—such as line
segment thresholds and intersection attempts—show that our selected configuration (LSD =
1.8, Intersections = 9) provides a good trade-off between coverage and geometric regularity,
adapting well to occlusions and blurred edges.

In contrast to the noisy conditions of the Cities dataset, the RoofVec dataset features cleaner
imagery and more consistent annotations. As a result, the baseline instance segmentation
model already achieves strong performance, with F1 scores around 0.94. Nevertheless, our
post-processing pipeline continues to provide measurable improvements—particularly in
refining object boundaries, removing small redundant fragments, and enhancing the visual
clarity of rooftop shapes. These results highlight an important characteristic of the proposed
method: its benefits are not limited to low-quality or error-prone predictions. Even when
the initial segmentation is already accurate, the integration of geometric reasoning and topo-
logical constraints can correct subtle inconsistencies and improve structural coherence. This
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suggests that the pipeline generalizes well across data conditions, making it a practical and
robust refinement tool for real-world urban modeling tasks.

A major strength of the proposed pipeline lies in its structured representation of rooftop
regions using polygons. Unlike pixel-wise masks, which often contain noise or irregular
shapes, polygons provide clear, closed boundaries that are well-suited for spatial analysis
and vector-based modeling. This intermediate representation enables precise region adja-
cency modeling, supports 3D extrusion, and facilitates integration with GIS or urban plan-
ning systems. As demonstrated in Chapter 4.2.5, the ability to produce topologically coher-
ent and interpretable outputs enables a direct transition from 2D segmentation to plausible
3D rooftop reconstruction.

In addition, the pipeline is fully modular and model-agnostic. It operates independently
of the segmentation backbone and does not require retraining or task-specific tuning. This
flexibility allows it to serve as a post-processing module on top of any instance segmentation
network, such as ResNet, Swin Transformer, or Mask2Former. Compared to prior methods,
the proposed framework also offers advantages in terms of automation and supervision
requirements. For example, Xu et al. [2023] use multi-level supervision to directly predict
polygon structures, but require extensive annotations and dedicated training. Ren et al.
[2021] incorporate manual correction stages, limiting scalability. Zhang et al. [2021] apply
geometric optimization but incur high computational cost. In contrast, our method operates
without additional training, relies on lightweight post-processing, and delivers structured
outputs efficiently.

Finally, the system is computationally efficient. The average runtime per image is approxi-
mately 3 seconds, with most of the time spent on polygon scoring and graph construction.
Deep model inference accounts for only a small portion of the total processing time. This
runtime profile supports the method’s use as a lightweight refinement stage in large-scale
urban analysis pipelines, where both throughput and geometric fidelity are important. Ta-
ble 4.7 summarizes the average time spent in each step across 10 test images.

Table 4.7.: Average runtime per step (10 images, Cities dataset)

Step Time (s)

Load image 0.1169
Model inference 0.2164
Generate pixel probability map 0.0005
Compute polygon probabilities 1.9052
Prepare unary 0.0000
Build graph 0.6838
GCO labeling 0.1035
Rasterize prediction 0.1056
Evaluate metrics 0.0027
Smoothness stats 0.0034

4.4. Limitation

Despite the overall effectiveness of our method, several limitations remain.
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First, the performance of the system is still influenced by the quality of the original dataset
annotations. As observed in our experiments, the Cities dataset contains inconsistent or
coarse annotations, including under-segmentation and missing rooftop labels. These incon-
sistencies negatively impact evaluation metrics such as false positives and false negatives,
and make the benefits of post-processing harder to assess reliably. In contrast, the RoofVec
dataset offers more consistent and complete labels, which partially explains the higher pre-
cision and IoU observed in that setting.

Second, although our method is effective at correcting redundant or overlapping instance
predictions from Mask R-CNN, it cannot fully recover from severely incorrect initial segmen-
tations. If the base model fails to detect a rooftop entirely or misclassifies a large structure,
no amount of geometric post-processing can compensate for the absence of semantic ev-
idence. This underscores the importance of having a reasonably accurate base model in
order for downstream refinement to be effective.

Third, the generation of polygon candidates is still susceptible to challenging visual con-
ditions. Even after carefully tuning parameters such as the LSD threshold and the num-
ber of intersection attempts, issues such as tree shadows, strong occlusion, or low roof-to-
background contrast can hinder reliable line detection. As discussed in Section 3.3, these
conditions often lead to incomplete or distorted polygon proposals, particularly along visu-
ally ambiguous boundaries.

Moreover, tuning for dense polygon coverage introduces a trade-off of its own trade-offs: ag-
gressive configurations may generate an excessive number of small, fragmented polygons,
resulting in jagged boundaries and irregular shapes that complicate label assignment. On
the other hand, conservative settings risk under-segmenting the scene, causing valid rooftop
areas to be poorly captured or entirely missed. Striking a balance between proposal com-
pleteness and geometric regularity remains a difficult challenge, and significantly impacts
the effectiveness of the downstream MRF labeling process.

Fourth, the MRF-based label refinement depends heavily on parameter tuning—especially
the smoothness cost λ. As shown in our ablation experiments, different λ values can lead to
trade-offs between semantic accuracy (true/false positive counts) and geometric consistency
(mean IoU). Tuning this parameter requires careful balancing and extensive experimenta-
tion. A setting that improves label continuity may, in some cases, suppress fine-grained
distinctions or introduce smoothing artifacts that reduce overall IoU.

These limitations suggest that while our framework is robust and generalizable, its perfor-
mance is bounded by the quality of the underlying inputs—both in terms of data annotation
and model prediction—as well as by the sensitivity of its geometric components to scene
complexity and parameter settings.
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5.1. Conclusion

This thesis presents a three-stage framework for structure-aware rooftop segmentation, in-
tegrating deep instance prediction, polygon-based geometric abstraction, and MRF-based
label regularization. Starting from Mask R-CNN outputs, we introduce a polygon proposal
mechanism based on line detection and spatial partitioning, followed by graph-based op-
timization to refine labels across adjacent regions. The goal is to improve both semantic
accuracy and geometric consistency in complex urban settings.

Experiments on two distinct datasets—Cities and RoofVec—demonstrate the effectiveness and
generality of the approach. On the challenging Cities dataset, the method significantly re-
duces false positives and improves interpretability over baseline predictions. On the higher-
quality RoofVec, it further enhances boundary precision and spatial coherence. Ablation
studies validate each component’s contribution, and comparisons with prior work highlight
the benefits of structured, polygon-based outputs over conventional pixel-level masks.

Beyond performance, the framework is fully automated, modular, and model-agnostic. It
requires no extra supervision or retraining, and can be applied to any instance segmentation
output. This makes it especially suitable for practical use in remote sensing workflows,
where label quality varies or geometric precision is essential.

In summary, the proposed pipeline offers a robust, scalable, and interpretable solution for
rooftop segmentation. By bridging deep learning with geometric modeling, it produces
GIS-ready results well-suited for urban analysis, 3D reconstruction, and large-scale deploy-
ment.

5.2. Future Work

Future extensions to this framework can be naturally aligned with its three-stage structure:
instance segmentation, polygon proposal, and MRF-based optimization.

First, improvements to the instance segmentation stage can directly enhance the semantic
foundation of the entire pipeline. While our approach is model-agnostic, future work could
explore alternative backbones such as ResNeXt, Swin Transformer, or segmenter-based ar-
chitectures to investigate how richer feature representations impact rooftop mask quality.
Stronger initial predictions may reduce false positives and improve the coverage of small
or ambiguous rooftops, thereby supporting more accurate downstream geometric refine-
ment.
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Second, the polygon proposal stage presents opportunities to further refine the balance be-
tween structural fidelity and robustness. In this work, we have already performed a system-
atic analysis of key parameters—such as lsd scale and num intersections—and evaluated
their effects on polygon count, area, and complexity. However, we did not propagate each
configuration through the full MRF pipeline to assess downstream segmentation perfor-
mance. Future work could extend this analysis by connecting geometric proposal quality
with end-task outcomes, helping to identify parameter regimes that optimize both struc-
ture and accuracy. Additionally, polygon filtering or merging operations may help suppress
redundant or spurious candidates without sacrificing completeness.

Finally, the MRF optimization stage could be further explored by refining the definitions
of unary and pairwise terms. Currently, unary scores are computed by averaging pixel-
level probabilities within each polygon, which may underrepresent confidence in large or
boundary-touching regions. Future work could investigate weighted integration schemes
that place more emphasis on high-confidence or centrally located pixels to better capture se-
mantic certainty. In terms of spatial regularization, alternative graph constructions—such as
vertex-based adjacency or affinity-based edges—might offer improved structural awareness.
Similarly, pairwise energy terms could be reformulated using logarithmic scaling or edge-
aware weighting functions to enhance label propagation, especially in cluttered or occluded
areas.

These directions aim to improve the precision, robustness, and geometric awareness of the
pipeline, thereby enhancing its applicability to large-scale and structurally diverse urban
environments.
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A.1. Distribution of Polygon Proposals

Figures A.1–A.3 illustrate the distribution of polygon proposal characteristics under the se-
lected configuration (lsd scale = 1.8, num intersections = 9). The majority of polygons are
compact and regular, though area and perimeter distributions exhibit long-tailed behavior,
indicating the presence of a few large or elongated structures.

A.2. Extended Polygon Proposal Statistics

Table A.1 reports detailed statistics for each combination of LSD scale and number of inter-
section attempt used during polygon proposal generation. Each value is computed over 10
randomly sampled tiles from the Cities dataset.

Table A.1.: Proposal statistics under different LSD/intersection settings (Cities dataset). Each
cell shows mean ± standard deviation across 10 tiles.

LSD / Intersections Polygon Count Vertex Count Area (pixels2) Perimeter (pixels)

0.8 / 1 64.14 ± 36.77 6.81 ± 2.26 1021.76 ± 2833.45 137.42 ± 114.47
0.8 / 2 171.90 ± 97.62 5.59 ± 1.31 381.24 ± 1110.24 74.29 ± 69.75
1.0 / 1 82.43 ± 47.18 6.83 ± 2.34 795.05 ± 2518.28 120.38 ± 106.11
1.2 / 1 115.71 ± 71.09 6.85 ± 2.42 566.38 ± 2126.02 97.16 ± 92.49
1.2 / 2 200.30 ± 115.57 5.81 ± 1.40 323.95 ± 1029.65 68.88 ± 66.24
1.2 / 5 251.54 ± 148.84 5.79 ± 1.49 260.54 ± 912.67 60.71 ± 60.11
1.5 / 2 193.72 ± 108.39 5.57 ± 1.45 226.84 ± 826.44 56.90 ± 57.40
1.8 / 1 231.92 ± 195.17 6.08 ± 1.67 197.45 ± 821.54 51.19 ± 53.69
1.8 / 5 281.83 ± 155.77 5.38 ± 1.18 76.94 ± 387.47 29.66 ± 36.78
1.8 / 7 415.81 ± 159.75 5.18 ± 1.13 72.01 ± 330.93 28.61 ± 34.71
1.8 / 9 620.38 ± 182.61 5.39 ± 1.18 102.58 ± 467.53 35.23 ± 41.51
1.8 / 2 835.64 ± 518.27 5.29 ± 1.08 78.43 ± 375.87 30.33 ± 37.20
1.5 / 9 1010.38 ± 636.53 5.23 ± 1.02 64.86 ± 319.09 27.39 ± 34.44

A.3. Unary Cost Example

Table A.2 shows a sample of polygon-wise semantic probabilities and their corresponding
unary costs, computed according to the transformation Uk,j = (1 − pk,j) · α with α = 10.
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Each row represents one polygon, and columns correspond to class labels (e.g., background,
rooftop planar).

Table A.2.: Sample polygon-level class probabilities and transformed unary costs.

Polygon Class 0 Class 1 Class 2

Probabilities 0.9313 0.0000 0.0687
Unary Costs 0.6867 10.0000 9.3133

Probabilities 0.6558 0.0000 0.3441
Unary Costs 3.4415 10.0000 6.5585

Probabilities 1.0000 0.0000 0.0000
Unary Costs 0.0000 10.0000 10.0000

This table corresponds to the intermediate output passed into the MRF optimization frame-
work after soft mask aggregation and cost transformation.
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Figure A.1.: Top: Number of polygon proposals per image. Bottom: Vertex count distribu-
tion.
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Figure A.2.: Distribution of polygon area (top) and perimeter (bottom). Most proposals are
compact.
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A.3. Unary Cost Example

Figure A.3.: Log-scaled plots highlighting long-tailed behavior in area and perimeter distri-
butions.
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