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Summary

Today, pedestrian simulation models are used for many different applications. These applications range
from evacuation studies and risk analysis to assisting in the design process of pedestrian facilities. One
of the important steps in developing a model is calibration. By estimating the values of the model’s
parameters based on data from actual pedestrian flows, the goal of calibration is to increase the accuracy
of the model’s predictions. And although this is an important step in model development, calibration
has received relatively little attention in the field of pedestrian modelling. Most calibration efforts were
found to have a limited focus whereby the focus is limited because only one flow situation or metric
is used. Meanwhile, previous research by Campanella (2016) and Duives (2016), both performed at
the Transport & Planning (T&P) department of the Delft University of Technology, has shown that us-
ing different (combinations of) flow situations and/or metrics during the calibration leads to different
optimal parameter sets. Hence, it is questionable how valid it is to use a model, that has been calib-
rated using such a limited focus, to make predictions in other flow situations or for other metrics. To
overcome this problem it has been proposed to use multiple objectives whilst calibrating a pedestrian
model. However, the question what these objectives should be is largely unanswered. So, the goal
of this research is to “gain improved insights into how the choice of objectives influences the calibration res-
ults thereby improving the applicability of the multiple-objective framework”. In order to reach this goal the
following main research question is answered in this thesis:

How can a microscopic pedestrian model be calibrated, using a multiple-objective approach,
given its stochastic nature and differences in behaviour in different flow situations?

So, which flow situations and metrics does one need to adequately represent the differences in ped-
estrian behaviour in different flow situations given that the model is stochastic in nature?

Objectives

In this research an objective, that is used to determine how well the model results fit to the data, is
defined as a unique combination of a flow situation and a metric. The literature review in this research
identified five properties of flow situations which possibly influence the flow and are hence relevant
when choosing the objectives to use during the calibration. These five properties are the geometry of
the infrastructure, the demand patterns, the population composition, the movement base case and the
density level. In this research the implementation of a flow situation in the model is called a scenario.
The literature review also unravelled many different metrics which can be categorized based on three
properties. Namely, whether they are: 1) Macroscopic, mesoscopic or microscopic, 2) quantitative or
qualitative, and 3) generally usable or linked to a specific flow situation.

The availability of reference data limited the number of scenario properties which could be re-
searched. So, only the influence of the choice of movement base cases and density levels have been
studied. Table 1 and Figure 1 illustrate which scenarios were used within this research.

Table 1: Overview of the scenarios used in this research

Scenario name Movement base case(s) Density level

Low High

Bidirectional Bidirectional straight x x

Bottleneck Unidirectional entering and exiting x

Corner Unidirectional corner x x
T-junction Merging unidirectional flows x x

On top of the scenarios described above, four metrics were chosen. These four metrics are all quant-
itative and generally usable and cover both the mesoscopic and macroscopic levels. On the macroscopic
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level the flow and the spatial distribution were used and on the mesoscopic level the travel time dis-
tribution and the distribution of the effort were used. The four chosen metrics were chosen such that
at both aggregation levels they measure different aspects of the flow. The flow and travel time give
insight into the efficiency of the flow whilst the spatial distribution and effort give more insight into the
underlying behaviour.

Bidirectional Bottleneck Corner T-junction

Figure 1: Overview of the movement base cases used in this research

Pedestrian Dynamics

During this research Pedestrian Dynamics R© (PD) has been used as the pedestrian simulation model.
PD is a microscopic simulation model that contains the ability to model all three behavioural levels
of pedestrian behaviour (strategic, tactical and operational). This research focussed on the calibration
of the operational level and hence on the parameters that influence the route following and collision
avoidance behaviour. A total of 11 different parameters influence these two behaviours and a sens-
itivity analysis was performed to obtain the model’s sensitivity to those parameters. The sensitivity
analysis investigated only the first-order effects but did include all seven scenarios in Table 1. The sens-
itivity of all parameters was investigated for a range of±25% of the default value. Before a quantitative
analysis was performed, a qualitative analysis was performed to ascertain if the model produced real-
istic behaviour for the maximum deviations of ±25% of the default value. It was found that the model
did not produce unrealistic behaviour at those boundaries for any of the parameters. The quantitat-
ive analysis, which used the distribution of the instantaneous speeds as the sole metric, showed clear
differences in the sensitivity of the model to the different parameters and also clear difference between
the seven scenarios. It was concluded that the model was most sensitive to the relaxation time and the
viewing angle and that these two parameters are the most important to calibrate.

How to deal with the stochastic nature

Like most pedestrian models PD is stochastic in nature. Hence this research also investigated how one
should deal with this stochastic nature. The primary questions were how many replications one needs
and how one should determine this number. The method to determine the number of replications was
based on the test if the distribution of the instantaneous speeds had converged whereby the speed
distribution contained the data of all replications up to that point. An Anderson-Darling test (A-D
test) was used to test if for the last n consecutive replications the speed distributions were samples
considered to be drawn from the same distribution. If this was the case the distribution was considered
to have been converged. If this was not the case additional replications were run.

The method was tested for various values of n and for various significance levels required for the A-
D test. However, it was found that regardless of the values used, the order of the seeds has influence on
the results. Even when 500 replication were used, (a far larger number than was found by the method)
the seed order still had a detectable and significant effect. Hence, during the calibrations efforts a fixed
seed order and number of replications was used to ensure that any differences found were not the result
of the stochasticities.

Multiple-objective calibration of pedestrian models

To test how the choice of scenarios and metrics influences the calibration results, the model was calib-
rated using 16 different combinations of objectives. These are: The seven individual scenarios using all
four metrics, the four metrics using all scenarios, the combination of all scenarios of the same density
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level using all metrics, the combination of all metrics of the same aggregation level using all scenarios
and lastly a combination of all scenarios and metrics. The objectives were combined into a single object-
ive using the weighted sum method whereby the objectives were weighed equally. Because the metrics
have different units and different orders of magnitude a normalization method was used to ensure that
the results of different metrics could be added up in a meaningful way. The normalization method is
based on normalization values which are in turn based on the ratios between the different metrics in
the reference data. The search space was made up out of the relaxation time, the viewing angle and the
radius and a grid-search was used to determine the optimal parameter set.

It was found that the optimal parameter sets obtained using these 16 different combinations of ob-
jectives showed large differences. These differences in parameter sets already showed that the choice of
objectives has a strong influence on the calibration results. To obtain a more detailed insight, a number
of comparisons were made between the different combinations of objectives to answer three questions.
Namely, 1) How does the choice of movement base case influence the calibration results? 2) How does
the choice of density level influence the calibration results? And, 3) How does the choice of metrics
influence the calibration results? The results of the comparisons between different combinations of
objectives showed the following:

• For all movement base cases it was found that the model’s performance, with respect to a particu-
lar movement base case, decreases when an optimal parameter set is used that has been obtained
using either another movement base case or a set of movement base cases. However, on average,
this decrease is smallest when the optimal parameter set is used that has been obtained using the
combination of movement base cases. Furthermore, this was found to be far more apparent in the
high density cases than in the low density cases.

• A calibration using solely low density scenarios cannot capture the behaviour found in the high
density scenarios. This is not the case vice versa. It is not only the case when combinations of
movement base cases were used but it was also found to hold in the cases when two scenarios of
the same movement base case, but different levels of density, were compared.

• Different metrics lead to different optimal parameter sets. Furthermore, the model cannot obtain
a good fit on all metrics simultaneously.

These findings are in line with the findings of previous research and the findings of the sensitivity
analysis.

Conclusions

Based on the findings the following can be concluded:

• It is necessary to use multiple movement base cases, when calibrating a model, to capture all rel-
evant behaviour. However, this does decrease the Goodness-of-Fit (GoF) of the individual move-
ment base cases compared to the case where they are calibrated solely based on that particular
base case.

• The level of density does influence the calibration results whereby it is particularly important to
include scenarios with the highest density levels, one wants the model to be able to reproduce, in
the set of scenarios one uses for the calibration.

• The choice of metric or combinations of metrics does influence the results. Whereby, depending
on the combination of metrics, also the choice of objective function and normalization method
influences the results. Also, the model cannot obtain a good fit on all metrics simultaneously.

A critical review of the used calibration methodology showed that there are multiple ways in which
changing the methodology could affect the results. Examples are, using a more precise grid, another
objective function or another seed order. However, how it would change the results exactly and if it
would significantly change the conclusions presented above was not determined given that this would
require more quantitative analyses for which there was no time in this research. However, the fact
that the main findings are in line with previous research and the results of the sensitivity analysis and
the fact that large differences are found between optimal parameter sets of different (combinations of)
objectives, are considered strong indications that it is unlikely that the main findings would change
significantly.
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Implications

The findings and resulting conclusions have two main implications. Firstly, one should calibrate a ped-
estrian simulation model based on the intended application of the model. So, the calibration should
include those scenarios that are likely to occur to ensure that all relevant behaviour is captured. How-
ever, including scenarios that are unlikely to occur, given the intended application, will likely influence
the calibration results negatively and hence also the model’s accuracy with which it can predict the
traffic state. Furthermore, the metrics and accompanying objective functions and method for combin-
ing the multiple objectives into a single objective, should be chosen such that they represent which
metrics are most important to the intended application and what level of accuracy one wants the model
to have regarding the particular metrics

Secondly, the fact that the results of this study are in line with the previous studies, whilst using a
different model than previous studies, raises an important question. Namely, is the fact that the models
cannot obtain a good fit on different scenarios using only a single parameter set caused by the fact that:

a.) the models are simplifications of the behaviour of pedestrians and the models are too simple to
capture the behaviour of pedestrian in different flow situations well using only a single parameter
set. Or,

b.) the behaviour of pedestrians in different flow situations is so different that it might not be a valid
approach to try to capture this using a single model (i.e. the assumption that the behaviour of the
pedestrians is independent of the flow situation is not valid).

The results of this research cannot answer this question. However, it is important to answer this ques-
tion given that, in the case it would be the second cause listed above, it would fundamentally change
the way in which we need to model pedestrian behaviour.

Recommendations

Based on this research a number of recommendations were given. To practice, the main recommenda-
tions are to take into account the intended use of the model when choosing which objectives to include
during the calibration. And, to validate it using a wider range of objectives to obtain insight into how
reliable to model’s predictions are for those objective that weren’t included during the calibration.

To science the main recommendations are suggestions for further research. Besides further invest-
igations into the effect of the choice of objectives on the calibration results, investigations into how to
deal with the stochastic nature are considered worthwhile. Possibly the most important suggestion is
to investigate the question if it is a valid modelling approach to use a single model for all flow situ-
ations. Given that the answer to this question could potentially warrant a fundamental change in how
we model pedestrian behaviour.
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1 | Introduction

In the past decades many different pedestrian simulation models have been developed in different
fields of science. Reviews, such as those by Papadimitriou, Yannis and Golias (2009), Schadschneider,
Klüpfel, Kretz, Rogsch and Seyfried (2009) and Duives, Daamen and Hoogendoorn (2013), clearly show
these models vary widely. The models use different aggregation levels to describe the behaviour, from
macroscopic to microscopic and everything in between, and use different modelling approaches, using
cellular automata, discrete choice and social forces among others.

In practice, these models have a multitude of applications. This is clearly shown by the variety of
cases presented on the websites of some of the commercial packages (among others, Pedestrian Dynam-
ics by INCONTROL Simulation Solutions (2016), PTV Viswalk by PTV Group (2016) and SimWalk by
Savannah Simulations AG (2016)). These application range from evacuation studies and risk analysis
to assisting in the design process of pedestrian facilities. Some examples are:

• evaluating if and where potential bottlenecks exist at an event terrain, a train station or an airport
and how and if these bottleneck can lead to risky situations such as overcrowding.

• assisting in the design process of a train station or airport whereby the goal could be to ensure
that all passengers can comfortably walk from their origin to their destination.

• an evacuation study of a stadium or a cruise ship to assess the time necessary for a successful
evacuation

Ideally, a multitude of steps has to be taken before one has a (commercial) implementation of a ped-
estrian model that can be used in practice. In Figure 1.1 these steps, described in both (Klügl, 2008) and
(Duives, Daamen & Hoogendoorn, 2016), are depicted. As the figure illustrates, the process starts with
the proposition of the model whereby a conceptual model is created and implemented which results
in a runnable model. After this the model is verified whereby it is determined if the implementation
of the model is indeed consistent with the conceptual model. If this is indeed the case the model can
be calibrated and validated. In the calibration step the main goal is to increase the accuracy of the pre-
dictions by finding values for the model parameters that allow for better replication of reality based on
data collected from laboratory experiments or real-life situations. Unsatisfactory results, for example
no parameter set can be found which results in a reasonable fit to the data, can lead to a revision of the
proposed model as is indicated by the feedback loop in the figure. The validation step checks how valid
and accurate the predictions of the model are also using data, however, different data then was used for
the calibration process. Again, as the feedback loop indicates, unsatisfactory results in the validation
step can lead to a revision of either the calibration procedure or the model itself.
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Figure 1.1: Overview of the model development framework

The calibration step is an important step because one wants to get a model whose predictions are as
accurate as possible given all limitations such as data availability and computing power. And although
the calibration step is clearly important, it has received relatively little attention within the field of ped-
estrian modelling (Seer, Brändle & Ratti, 2014; Rudloff, Bauer, Matyus & Seer, 2011). Most studies that
have performed a calibration of a model have a limited focus (Berrou, Beecham, Quaglia, Kagarlis & Ge-
rodimos, 2007; Davidich & Köster, 2013). The focus of these studies is limited because they, for example,
only take into account one flow situation or only use one metric. Meanwhile, research by Campanella,
Hoogendoorn and Daamen (2011) and Duives (2016) shows that using different flow situations and
different metrics leads to different optimal parameter values and hence it is questionable how gener-
ally applicable a model is that has been calibrated using a limited focus. To overcome this problem

1



1. Introduction How to calibrate a pedestrian simulation model

Campanella et al. (2011) have proposed a framework for calibrating pedestrian models using multiple
objectives. Compared to a single objective approach (i.e. using one flow situation and one metric), the
multiple-objective approach uses multiple flow situations and multiple metrics such that the resulting
parameter set should result in a better overall performance instead of only performing well in one spe-
cific flow situation. Subsequent work by Campanella, Hoogendoorn and Daamen (2014) showed that
it is indeed the case that using a parameter set obtained by calibrating using multiple objectives results
in a better validation score whereby the validation also included different flow situations and metrics.

As far as the author knows, the only occurrences of the use of the multiple-objective framework for
calibrating a pedestrian model in the literature are (Campanella et al., 2011) and (Duives, 2016). As
will be shown in chapter 2 these studies clearly show the need for multiple objectives when calibrating
pedestrian models. However, chapter 2 will also show that what these objectives should be is still
largely unanswered.

1.1 Research objective

So, as is shown in the introduction and in chapter 2:

1. The applications of pedestrian models require accurate predictions of the traffic state

2. However, an essential step in the creation of a deployable and accurate model, calibration, is rarely
performed and in most cases if it is performed it is done with a limited focus.

3. This limited focus leads to a questionable general applicability of a model

4. The proposed solution is the use of multiple objectives

5. However, what these objectives should be is a largely unanswered question

Given the statements above the goal of this research is formulated as follows:

The objective of this research is to gain improved insights into how the choice of objectives in-
fluences the calibration results thereby improving the applicability of the multiple-objective
framework.

In the case of pedestrian models, an objective is a defined by a unique combination of a scenario and
a metric. A scenario is the model implementation of a flow situation defined by a number of elements
as will be shown in subsection 2.2.2. Out of these five properties, only the effect of the movement case
has been investigated. So, the aim of improving insight into the effect implies two things: Firstly, by
using another model and other data sets (see chapter 3) it can be investigated if the previous findings
(regarding the movement base cases and the metrics) also hold when another model and data set is used
(i.e. are the previous finding generalizable?). And secondly, by looking into other scenario properties,
other than the movement base case, additional insights should be gained regarding the effect of other
scenario properties.

1.2 Research scope

In this section the scope of the research is defined whereby it is discussed, which behavioural level is
included, what model will be used, what the main goal of the calibration is and which elements of the
calibration are part of this research.

Behavioural level

As has been put forward in (Hoogendoorn, 2001), pedestrian behaviour can be divided into three beha-
vioural levels namely:

• Strategic: At the strategic level a pedestrian decides which activities he/she wants to perform.
This is the process of activity choice and the result is a collection of activities called the activity
set.
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1. Introduction How to calibrate a pedestrian simulation model

• Tactical: At the tactical level two processes take place. Namely, the pedestrian schedules at which
location the activities in the activity set are performed and in which order. This is the process of
activity scheduling and the result is an activity schedule. The second process that takes place at
the tactical level if the planning of the route to the activities. The process of route choice results in
a route the pedestrian follows from his/her current location to the next planned activity.

• Operational: The operational level entails the walking behaviour of a pedestrian. It controls both
how a pedestrian follows his/her planned route (route following) and the avoidance of collisions
with objects or other pedestrian (collision avoidance).

When using pedestrian models in practice, one needs to simulate the behaviour of the pedestrians at
all three levels described above. All three levels also require calibration, however, this research will, in
line with previous research, limit itself to the operational behaviour.

Model

In this research the choice is made to use Pedestrian Dynamics R© (PD) by InControl as the pedestrian
simulation model. The reason for this choice is two-fold, namely I have experience with the program
and it is a commercial implementation that is available due to the cooperation between InControl and
the TU Delft.

It also has to be noted that the model is solely a tool and that it is not the aim of this research to
provide a calibrated model (i.e. it is not the goal to find the optimal parameter set which should be
used in practice).

Goal of the model

As is stated in (Campanella et al., 2014), the main applications of pedestrian models are related to
either safety or comfort and thus they are mostly used to predict aggregate data. This means that
the primary goal of the calibration is to increase the accuracy of the prediction of the aggregate flow
and not necessarily the accuracy of the individual behaviour. Preferably one is able to capture both
the individual behaviour and the resulting aggregate flow accurately. However, as will be shown in
subsection 2.2.3, as of yet, models do not seem to be capable of producing accurate results for both the
individual behaviour and the aggregate flow for a single parameter set.

Furthermore, as is clear from the examples of the applications in the introduction, most applications
are focussed on non-panicky situations (an orderly evacuation is also considered to be a non-panicky
situation). Hence it is assumed that the goal of the model is to predict the traffic state in a normal
situation where pedestrian show calm, non-panicking behaviour.

Elements

As will be shown in section 2.2, calibrating a pedestrian model using multiple objectives includes a
number of elements. For all of these elements a number of choices, such as which optimization method
to use, have to be made when implementing the framework. Out of the nine elements listed in Table 2.1
two fall within the scope of this research. These are the scenarios and the metrics given that these two
are directly related to the question of which objectives to use. The other six elements are relevant to
this research in the sense that they are necessary to perform the calibration. So, for the remaining seven
elements the most practical solution will be chosen, taking into account things such as the limited time
available for this research and limitations to computing time and power.
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1. Introduction How to calibrate a pedestrian simulation model

1.3 Research questions

In order to structure the research a number of research questions are posed, whereby the main question
is defined as follows:

How can a microscopic pedestrian model be calibrated, using a multiple-objective approach,
given its stochastic nature and differences in behaviour in different flow situations?

To assist the answering of this main question a number of sub-questions are posed, namely:

1. What is the state-of-the art of calibration frameworks in the field of pedestrian flow modelling?

A review of the literature should give an overview of the state-of-art of calibration frameworks in
the field of pedestrian flow modelling. Furthermore, the review of the literature should also give
an overview of which flow situations and which metrics have been used previously in calibrat-
ing pedestrian models. Finally, the review should explore the steps that make up the multiple-
objective framework.

2. How can we deal with the stochastic nature of the model and the different behaviours in different flow
situations when determining the search space?

The answer to this question should give insight into what the most important parameters are
that have to be taken into account when determining the search space, how different flow situ-
ations influence this and how one should deal with the stochastic nature of the model when doing
quantitative analyses.

3. How can we calibrate a microscopic pedestrian simulation model using the multiple-objective approach
given the stochastic nature of the model and differences between the behaviour in different flow situations?

4. How do different choices regarding metrics and flow situations in the calibration procedure affect the state
estimation of microscopic pedestrian models?

1.4 Contributions of this research

This research contributes to both science and practice in a number of ways. The primary contributions
to both are the increased insights into how different choices regarding metrics and flow situations in
the calibration procedure affect the state estimation of microscopic pedestrian models. This provides
improved information on how to calibrate a pedestrian flow given its intended usage and how this is
reflected in the choice of flow situations and metrics.

It also contributes by giving insight into why it is important to deal with the stochastic nature of
pedestrian models whilst calibrating the model and especially what the problems are one faces when
trying to do this.

Lastly, it contributes by showing the influence of using different flow situations during the sensit-
ivity analysis and hence the importance of taking the difference in behaviour into account during the
sensitivity analysis.
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1.5 Thesis outline

Based on the structure provided by the research questions this research is built up as follows. As Fig-
ure 1.2 illustrates, the research contains two major steps, the preparation step and the calibration step.

The preparation step contains the first three chapters of this thesis. Chapter 2 provides an over-
view of the state-of-the art regarding the calibration of pedestrian models. Furthermore, it analyses the
elements involved in calibrating a pedestrian model and the possible options per element. Based on
the outcomes of the literature review the research methodology is discussed in chapter 3. This chapter
introduces, among other things, the reference data and the simulation model used during this research
as well as the investigation into the question of how to deal with the stochastic nature of the model.
Based on both the outcomes of chapter 2 and chapter 3, a sensitivity analysis is performed in chapter 4
to investigate to which parameters the model is sensitive.

The second step contains the actual calibration of the model and the investigation into how different
choices of objectives influence the outcome. Section 5.1 introduces the calibration methodology based
on which the simulations are run. Based on the results of the simulations and the reference data the
model is calibrated using different combinations of scenarios and metrics. The results of the calibration
are discussed in section 5.2 and section 5.3. Section 5.4 discusses how the results of the previous two
sections could potentially be affected by the choices made in section 5.1. Based on this discussion and
the results the implication for practice are described in section 5.5

Lastly, chapter 6 discusses the main conclusions of this research as well as the limitations of this
research. It also provides a number of recommendations for both science and practice.
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Figure 1.2: Outline of the thesis
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2 | State-of-the-art of calibrating
pedestrian simulation models

In this chapter a review will be given of the literature regarding the calibration of pedestrian simulation
models. The goal of the review is to answer two questions, namely:

1. What is the state-of-the-art regarding the methods for calibrating a pedestrian model? (Section 2.1)

2. What steps are involved in calibrating pedestrian models and what methods and solutions do
exist for these steps? (Section 2.2)

Together, the answers to the questions above will provide a basis for the remainder of this research. For
the purpose of clarity, the definition of calibration is given below.

Definition:

Calibration is the process whereby the parameters of the model are systematically ad-
apted such that the model replicates reality more accurately. One has a model f(·) with
a certain input I and a certain parameter set P . For the given parameter set and input
the model results in a certain output Osim = f(I, P ). The goal of calibration is to find a
parameter set Popt such that Osim ∼ Oreal whereby Oreal is data representing the reality
one wants the model to replicate accurately. Or in words, the goal is to find a parameter
set that results to the simulated data being as similar as possible to the actual data given
a certain level of desired accuracy.

2.1 State-of-the-art of calibration methods for pedestrian models

In this section an overview is given of the state-of-the-art of calibration methods for pedestrian models.
The main goal is to answer two questions, namely: 1) What methods have been proposed and used and
2) are there generally accepted methods?

Compared to model development little attention has been given to calibration (Rudloff, Matyus, Seer
& Bauer, 2011). This is mainly attributed to the lack of data (Abdelghany, Abdelghany & Mahmassani,
2016; Berrou et al., 2007; Davidich & Köster, 2013; Rudloff, Matyus, Seer & Bauer, 2011) especially at
high densities.

Despite this there are a good number of studies where authors do calibrate a pedestrian model (e.g.
(Davidich & Köster, 2012; Bauer, 2011; Robin, Antonini, Bierlaire & Cruz, 2009; Tang & Jia, 2011; Klein,
Köster & Meister, 2010; Weichen et al., 2014)) usually by using the fundamental diagram (Campanella,
Hoogendoorn & Daamen, 2009b). However, as multiple authors mention, the calibration attempts in
these studies are limited and mostly focus on only one or a few aspects (Berrou et al., 2007; Campanella
et al., 2009b; Davidich & Köster, 2013; Hoogendoorn & Daamen, 2007; Rudloff, Matyus, Seer & Bauer,
2011). Most studies focus on one specific movement base case (e.g. a bidirectional flow in a straight
corridor), only use a single metric or do not look at various compositions of the population. Mean-
while, there are countless combinations of movement base cases, metrics and population compositions
(Campanella et al., 2009b) and from studies such as (Campanella, Hoogendoorn & Daamen, 2009a) it is
clear that these factors do affect the outcome and performance of the model. Hence there is the question
of how transferable the models are if they are calibrated using a very limited focus.

Although the large number of possible combinations of movement base cases, metrics and popula-
tion compositions together with the large number of parameters of the models (Rudloff, Matyus, Seer
& Bauer, 2011; Seer, Brändle & Ratti, 2014) is seen as a difficulty (Berrou et al., 2007; Campanella et al.,
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2009b) there are three frameworks described in the literature which try to take a more inclusive ap-
proach (i.e. try to include more than one combination). These three frameworks, (Campanella et al.,
2011), (Wolinski et al., 2014) and (Duives, 2016), will be described in more detail below.

All three frameworks can be described as using a multiple-objective approach but there are some
differences. Wolinski et al. (2014) focus on using multiple metrics to compare the model results to the
reference data whilst Campanella et al. (2011) present a framework that uses multiple movement base
cases with multiple metrics. However, during the calibration procedure both used only one metric.
The work by Duives (2016) uses multiple movement base cases with multiple metrics and furthermore
includes different combinations of weights in the objective function and thus is the most extensive of
the three.
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Figure 2.1: Overview of the multiple-objective framework

Generally speaking the frameworks mentioned above can be depicted as follows (see Figure 2.1):
Following the multiple-objective approach the calibration framework uses multiple scenarios (S1 to Sn)
whereby every scenario has reference data to which the simulation results are compared using one or
more metrics (M1 to Mk) and their corresponding objective function. This results in k error values (ε 1
to k). The errors of all metrics of all scenarios are combined into a single error value (ε) which in turn
is fed into the optimization algorithm which determines, based on stopping criteria, whether or not the
current parameter set is deemed optimal and if the next step, validation, can be initiated. In the case
that the set is not yet optimal the algorithm creates a new set which in turn is used to run the next set
of simulations.

So, it is clear from the literature that a multiple-objective approach should be used when calibrating
a pedestrian model, and hence this approach will also be used in this research. However, other than
the need for multiple objectives the question of what these objectives should be is largely unanswered.
Thus far only two dimensions, movement base cases and metrics, have been investigated. Both Cam-
panella et al. (2011) and Duives (2016) have investigated the effect of using multiple movement base
cases during the calibration versus only using one base case. These studies show that pedestrians seem
to show different behaviour in different movement base cases from which two conclusion can be drawn.
Namely, 1) Calibrating using a single movement base case, compared to using multiple base cases, will
result in better performance on that particular base case. However, 2) for general usage (i.e. more
than one base case) one does need to calibrate using multiple movement bases to capture all relevant
behaviour. The effect of using different metrics during the calibration has only been investigated by
Duives (2016). The study shows that different combinations of metrics clearly lead to different calib-
ration results. However, the research also states that more research is necessary into which metrics to
use.

So, clearly more research is necessary into what objectives should ideally be used. Besides further
investigating the influence of the movement base cases and the metric, other scenario properties (see
subsection 2.2.2) such as population composition and density level are of relevance for research.
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2.2 Framework elements

In this section the elements which together form the multiple-objective framework for calibrating a
pedestrian model will be discussed. Firstly, the elements will be identified after which each elements
is discussed in more detail whereby it is discussed what choices have to be made, what the possible
options are and which factors are to be taken into account when making the choices.

2.2.1 Element identification

As one can see in Figure 2.1 the framework contains multiple parts and implementing such a framework
involves a number of questions that have to be answered. Based upon these questions all elements are
identified.

The first question that has to be answered when implementing a multiple-objective framework is
which scenarios to use. Answering this question involves three sub-questions, namely:

1. Which scenarios one should use based upon a number of scenario properties such as the move-
ment base case and the population composition.

2. Which metrics should one use for the given scenarios?

3. What objective functions should one use and how should one compare the simulated data and
the reference data for the given metrics?

The first three elements involve answering these three questions.

As one can see in the figure, the framework not only contains a set of scenarios but also an optimiz-
ation algorithm whereby three other elements are involved namely:

1. Choosing an optimization algorithm,

2. Determining the stopping criteria, and

3. Determining the search space.

Lastly there are three elements related to the practical implementation of the framework, namely,
how to deal with the stochastic nature of the model, what type of reference data to use and how to
define the input of the model such that is closely matches the reference data.

So, nine elements are identified and in Table 2.1 an overview can be found. All elements listed in
Table 2.1 will be discussed in more detail below whereby it is explained why the element is relevant
for the multiple-objective framework, what the possible options are and what factors will influence the
choice.

Table 2.1: The nine identified elements of the multiple-objective framework

1) Scenarios (2.2.2) 6) Reference data (2.2.7)

2) Metrics (2.2.3) 7) Optimization methods (2.2.8)

3) Objective functions and comparison methods (2.2.4) 8) Stopping criteria (2.2.9)

4) Stochasticities (2.2.5) 9) Search space definition (2.2.10)

5) Input definition (2.2.6)

2.2.2 Scenarios

In order to run a simulation of a pedestrian model one has to define a number of things, namely:

• Infrastructure: What is the exact geometry of the walkable space, the location of obstacles and the
location of the entry and exit points?
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• Demand patterns: Where and when do how many pedestrians with a certain destination enter
the simulation?

• Population composition: What properties do the pedestrians have and how are they distributed?

So, these are the first three properties of a scenario and based on these two other properties can be
identified, namely:

• Movement base case: The movement base case is a property that follows from the combination
of the infrastructure and the demand pattern. For example, the bidirectional straight movement
base case is defined by a straight corridor (infrastructure) and a bidirectional flow which is the
result of the location of the entries and exits and the demand patterns.

• Density level: This property is closely related to the demand patterns however it describes the
resulting/desired density level whilst the demand pattern determines how to reach this density
level.

All five properties identified above are discussed in more detail below.

Movement base case

As is explained in (Duives, 2016) a movement base case is a movement case whereby there is only one
predominant action performed by the pedestrians. In (Duives, 2016) eight of these base cases have been
identified which can be found in Figure 2.2.

Figure 2.2: The eight movement base cases in pedestrian flow, identified in (Duives, 2016) (from Duives, 2016)

The eight movement base cases shown in Figure 2.2 are considered to “cover the range of pedes-
trian crowd movement dynamics occurring often during large-scale events” (Duives, 2016, p. 21) hence
there might be other base cases when looking outside of the scope of large-scale events. Based on the
literature review two cases have been identified which seem to involve a significantly different type of
movement compared to the eight base cases such that is seems reasonable to add them to the list of base
cases. These cases are: vertical movements such as flows up or down stairs or escalators (e.g. Daamen,
2004) and merging flows (e.g. Shiwakoti, Gong, Shi & Ye, 2015; Zhang, Klingsch, Schadschneider &
Seyfried, 2011).

Research by both Campanella et al. (2011) and Duives (2016) has shown that using different base
cases during calibration results in different optimal parameter sets and hence both studies show the
importance of using multiple bases cases when calibrating a pedestrian model for general usage. This
is further supported by the findings in (Campanella et al., 2014) which show that models perform better
in a general setting when they are calibrated using multiple base cases.

Geometry of the infrastructure

The geometry of the infrastructure defines the exact dimensions and shape of the walkable space. For
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example, it defines the width and length of straight corridor, the width and shape of a bottleneck or the
angle and width of a corner. Although the geometry is strongly linked to the movement base cases a
movement base case is not solely defined by the geometry as, for example, a straight corridor can have
either a uni-directional flow or a bidirectional flow.

Research has shown that the geometry can influence the flow but this is not necessarily always the
case. For example, Zhang, Klingsch, Schadschneider and Seyfried (2012) found no clear influence of
the width of the corridor on bidirectional flows. On the other hand Gorrini, Bandini, Sarvi, Dias and
Shiwakoti (2013) found a clear dependence of the flow rate to the angle of a corner.

Density level

The density level describes what densities occur within the scenario and thus which part of the funda-
mental diagram is covered. The density level tells something about the number of interactions between
pedestrians and how these interactions influence the movement of the pedestrians. Research has found
that, in general, the speed decreases as the density increases (and hence the number of interactions
increases), however, the exact shape of the relationship is still under discussion (Duives, 2016). Fur-
thermore, different levels of density give rise to self-organizing phenomena such as lane formation in
bidirectional flows, stripe formation in crossing flows and stop-and-go waves in unidirectional flows.
A more detailed overview of self-organizing phenomena in pedestrian flows can be found in (Duives
et al., 2013).

So, the level of density clearly affects the flow, however, the question is also does it affect the under-
lying behaviour and is it thus relevant to calibrate a model based on more than one density level? A
review of the literature did not turn up any studies giving an clear answer to these questions except for
(Campanella, 2016). In this study it is shown that poorness of data can be a problem when calibrating a
pedestrian model. Poorness of data is described as: “the insufficient amount of information about im-
portant behaviours such as collision avoidance or following behaviour” (Campanella, 2016, p. 94). So,
a model calibrated based solely on density levels where no or very few interactions are present might
have a problem with the significance of parameters responsible for the interaction between pedestrians.
However, this does not answer the question if this is also the case when one compares a case with few
interactions (low density) with a case with many interactions (high density).

Given that is it unclear how the level of density affects the calibration results, other than the case of
no interactions versus interactions, and given that it is clear that the density level affects the flow, the
level of density is considered a relevant and interesting property of a scenario to investigate in more
detail.

Population composition

The composition of the population can influence the flow in different ways. For example, a meta- ana-
lysis of Bohannon and Williams Andrews (2011) shows clear differences in walking speeds for different
age groups. Research by Chattaraj, Seyfried and Chakroborty (2009) shows that cultural differences also
impact the flow and multiple studies (Moussaïd, Perozo, Garnier, Helbing & Theraulaz, 2010; Duives,
Daamen & Hoogendoorn, 2014; Gorrini, Bandini & Sarvi, 2014) show this also holds for groups whereby
not only their size but also their composition (gender, ages etc.) influences the flow. On top of this stud-
ies by Campanella et al. (2009a) and Yang, Daamen, Hoogendoorn, Chen and Dong (2014) show that
the heterogeneity of the population clearly influence simulation results.

Given that the composition of the population thus clearly influences the flow it is relevant to use
different population compositions when calibrating a pedestrian model for general usage.

Demand pattern

The demand pattern determines where and when which pedestrians appear in the simulated area.
Hence the demand pattern is closely related to the density level however it determines also elements
like the flow ratios, in the case of multiple flows, and how the inflow is distributed over time.

The distribution of the inflow over time can influence the flow because pedestrian flows have the
property that after the capacity is reached the flow will start to decrease when the density increases. So,
for example, when the average inflow is close to the capacity and the inflow is uniformly distributed
over time the flow will remain near capacity but when it is not uniformly distributed the inflow could
temporarily exceed the capacity causing the flow to decrease and hence a bottleneck to form.
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Research by Kretz, Grünebohm, Kaufman, Mazur and Schreckenberg (2006) shows that in a bid-
irectional flow, the flow ratios do seem to influence the flow. However, as they note themselves, the
research has its limitations because the participants where mainly in their twenties and only a single
corridor width was used. Hence the question how the flow ratio influences a flow with different popu-
lation compositions, different geometries and different base cases remains.

Conclusions

So, based on the five properties described above it is clear that there are many different possible scen-
arios which can be used when calibrating and validating a model. The large possible number of scen-
arios raises the question if all these properties are equally relevant or that some are more relevant than
others.

The movement base case and population composition seem most relevant because varying them will
answer the question if the model is capable of modelling the different types of interactions well and if
the model is able to capture the influence of differences in the population composition well. The density
level is also important however primarily to ensure that all relevant self-organizing phenomena can
occur and that the data is rich enough to estimate all relevant parameters. The geometry and demand
patterns are also relevant however given that they are at a more detailed level they are considered to be
less relevant than the other three.

So, it is clear that, when making a choice of which scenarios to use, the relevancy as described above
should be an important factor. However, the availability of data will, in the end, decide whether or not
it is possible to include different combinations of a certain property.

2.2.3 Metrics

Every scenario has one or more metrics which are used to compare the simulation and the reference
data. In Table A.1 a comprehensive overview of metrics, used in evaluating the performance of ped-
estrian models, can be found. As the table illustrates, these metrics have been categorized based on
three properties, namely whether they are: 1) Macroscopic, mesoscopic or microscopic, 2) quantitative
or qualitative, and 3) generally usable or linked to a specific set of scenario properties. These categories
will be described in more detail below.

Macroscopic, Mesoscopic or Microscopic

This property describes the aggregation level at which we look at the pedestrian flow and when de-
scribing pedestrian flows one can identify three of these aggregation levels.

At the microscopic level one looks at the behaviour of a single entity which can be either a single
pedestrian or a single group of pedestrians. For example, one compares the actual trajectory of a single
pedestrian with the simulated trajectory to determine whether or not the model is able to capture the
individual behaviour accurately.

At the mesoscopic level one looks at the distribution of a single metric whereby the metric is ob-
tained for every single pedestrian. For example, one compares the actual travel time distribution with
the simulated travel time distribution. This level can give insight into whether or not the pedestrians
behave well on average (e.g. the actual mean travel time and the simulated travel time are similar) but
more importantly, it can give insight into how well the heterogeneity is captured by the model (i.e. do
the actual travel time distribution and the simulated travel time distribution have similar shapes and
variances?).

The macroscopic level describes the aggregate and collective behaviour of the pedestrians and also
properties of the system resulting from this collective behaviour. Examples of this are the formation of
self-organizing structures such as lanes which form as a result of collective behaviour or the capacity of
a bottleneck which is a property of the system resulting from this collective behaviour.

As Table A.1 illustrates, macroscopic metrics are most frequently used and especially the three mac-
roscopic flow variables (flow, speed and density) or the relationship between them (the fundamental
diagrams). Trajectories, a microscopic metric, are also quite commonly used. Mesoscopic metrics, on
the other hand, are less commonly used and if they are used it is primarily in the form of travel time.

Ideally, one would like the model to produce behaviour that is realistic at all three levels. However,
the question is if the model captures the behaviour well enough for this to be possible or that the
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model is simply not capable of producing realistic results at all three levels using a single parameter set.
Work by Campanella (2016) has shown that parameter sets solely based on calibration of trajectories
(microscopic level) did not result in accurate predictions on the macroscopic level. Furthermore, work
by Duives (2016) has shown that using solely macroscopic metrics, compared to using solely mesoscopic
metrics, when calibrating a model results in different optimal parameter sets. So, previous research thus
shows that using metrics at different levels results in different optimal parameter sets and that a model
calibrated using only metrics at one level not necessarily produces accurate results at the other levels.
Hence, it is clearly useful to use metrics of different aggregation levels when calibrating a pedestrian
model.

However, given that the findings above implicate that, currently, pedestrian simulation models do
not seem capable of obtaining accurate results at all three aggregation levels, there is the question of
priority. Namely, does one level take priority over the other levels when calibrating a pedestrian model?
The answer to this question is will depend on the intended use of the model. For example, when the
main goal of the model is to accurately predict the flows the macroscopic level takes priority over the
microscopic level whilst if the goal is to produce animations of pedestrian movement the microscopic
level might be more relevant. As is stated in the scope (section 1.2), the main goal of the calibration is
to improve the model’s capability to predict the aggregate data and hence the macroscopic level takes
priority over the mesoscopic and the microscopic level. So, when choosing which metrics to use this
prioritisation will be leading.

Quantitative or Qualitative

A second property which can be used to categorize the metrics is whether they are quantitative or
qualitative. Note that a metric is defined as quantitative if it is expressed numerically and that this is
independent of the method used for comparing simulation results with the reference data.

Table A.1 shows that mostly quantitative metrics are used however there are also some occurrences
of the use of qualitative metrics. These qualitative metrics are either used at the macroscopic level
or at the microscopic level. At the macroscopic level they are clearly used to check whether or not a
model is capable of producing certain self-organizing patterns. This is done qualitatively instead of
quantitatively because it has been proven difficult to quantitatively describe self-organizing patterns
and hence qualitative metrics provide an easier, but less strictly defined, method for determining a
models capability to produce these patterns. At the microscopic level they are primarily used for face-
validating the model.

Quantitative metrics are preferable over qualitative metrics because they are strictly defined by their
mathematical formulas whilst qualitative metrics depend heavily on the judgement made by an indi-
vidual researcher and hence different researcher might come to different values. Furthermore, using
qualitative metrics during the calibration process is not feasible given the large number of iterations.
However, qualitative metrics do have their use is this research as section 4.1 will shows.

General or specific

The last property that will be used to categorize the metrics is whether or not they are related to a spe-
cific set of scenario properties or whether they can be used regardless of the properties of the scenario.
Metrics that can be used regardless of the scenario properties are used to compare how a model per-
forms on different scenarios. Examples of these kinds of metrics are travel time and the fundamental
diagram. Metrics that are related to a specific set of scenario properties, for example the bottleneck ca-
pacity, are useful to check whether or not the model is able to reproduce the specific behaviour related
to that scenario.

From Table A.1 it can be derived that metrics that are generally applicable are used far more often
than those that can only be used in specific scenarios. It can also be noted that all qualitative macro-
scopic metrics are related to a specific scenario which is logical given that these are used to check for
self-organizing patterns which are related to specific movement base cases.

Conclusions

The findings above have a number of implications for this research. Firstly, it is clear that preferably
metrics from all three levels should be included in every scenario to ensure that the simulated behaviour
is accurate at all these three levels. However, given that it is questionable if the model is capable of
producing accurate results at all three levels and given the goal of the model, macroscopic metrics take
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priority over meso -and microscopic metrics and mesoscopic metrics take priority over microscopic
metrics. Secondly, during calibrating the model solely quantitative metrics are used as using qualitative
metrics is not feasible given the large number of iterations. Thirdly, it is preferable to use general metrics
in all scenarios because it makes it possible to easily compare the performance of the model on these
different scenarios. However, some specific metrics, such as the bottleneck capacity, might also be very
relevant in certain scenarios given that they capture behaviour specific to that scenario.

2.2.4 Objective functions and comparison methods

In the calibration process the function that describes the difference between the simulation and reference
data given a certain parameter set is called the objective function whereby the goal is to minimize this
function. Mathematically this can be written down as follows:

f : Θ→ R (2.1)

Whereby Θ is the set of feasible solutions (i.e. the search space) and R describes the objective function
space (Zak & Chong, 2013). Given that the goal is to minimize the difference the problem can be written
down as follows:

minimize f(θ)
subject to θ ∈ Θ (2.2)

However, the definitions above assume a single objective whilst in this research the focus is on
a multiple-objective approach. In the case of multiple objectives Equation 2.1 and Equation 2.2 are
transformed to:

f : Θ→ Rn (2.3)

and

minimize f(θ)
subject to θ ∈ Θ (2.4)

Whereby f = [f(θ)1, ..., f(θ)n]T and n defines the number of objectives. As one can see Equation 2.3
and Equation 2.4 reduce to respectively Equation 2.1 and Equation 2.2 when n = 1.

In order to solve Equation 2.4 one cannot simply use standard optimization methods. Two com-
monly used approaches to tackle a multiple-objective optimization problem are: 1) The use of optimiz-
ation algorithms that aim at producing the Pareto optimal solutions. And, 2) Transforming the multiple
objective function into a single objective function so standard optimization methods can be used. The
literature review found only two cases where a pedestrian model was calibrated using multiple ob-
jectives (Campanella et al., 2011; Duives, 2016) and in both cases the multiple-objective function was
transformed to a single objective function.

As described in (Toledo & Koutsopoulos, 2004) there are multiple ways to compare simulation and
reference data. Besides technical points such as, are the underlying assumptions of a certain test valid
and can it thus be used, the main point is whether one wants to test if the model captures the behaviour
well on average or if it capture the dynamics of the behaviour well. For example, comparing the mean
travel times of simulated and reference data gives insight into the average behaviour however tells little
about the dynamics. On the other hand, comparing the flow over time along a certain line does give
insight into whether or not the dynamics are captured well. Toledo and Koutsopoulos (2004) describe
three different approaches which can be used, namely 1) Goodness-of-Fit measures, 2) Hypothesis test-
ing and Confidence intervals, and 3) Test of Underlying Structure. The Goodness-of-Fit measures are
useful to get insight into the overall performance of the model. Examples of these measures are the
Mean-Squared Error (MSE) and the Root-Mean-Squared Error (RMSE). Hypothesis testing is used to
test whether or not two distributions are equal given a certain confidence interval and given certain
assumptions. With these kinds of tests it is important to check whether these assumptions, such as the
assumption of Independent Identical Distributions (IID) when using a two-sample t-test, hold and thus
if the method can be used. The last approach is testing the underlying structure by using metamodels
and checking whether or not the metamodels obtained from the simulated data are equal to those ob-
tained from the reference data. This can be used, for example, to test certain relationships such as those
described by the fundamental diagram.
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In the only two examples of using a multiple-objective approach to calibrate a pedestrian model
(Duives, 2016; Campanella, 2016) Goodness-of-Fit measures were used whereby the MSE was minim-
ized. The research by Duives (2016) was the only study which commented on the effect of the choice
of objective function whereby it was found that the choice of the objective function and the method
for combining the multiple-objective functions into a single objective function severely influence the
calibration results.

So, in a multiple-objective framework it has to be decided, for every metric, which of the comparison
approaches described above has to be used and the exact mathematical form of the objective function.
Furthermore, it has to be decided how to deal with the results of two or more objective functions. This
has to be done in conjunction with the choice of the optimization algorithm whereby, broadly speaking,
the two options are using multiple objectives with an optimization function capable of finding the
Pareto optimal solutions or combining the objectives into a single objective and using conventional
optimization algorithms.

2.2.5 Stochasticities

Pedestrian models are often stochastic by nature (Duives, 2016). For example, they use distributions in
the input, as is common for the preferred speed, or when determining the acceleration of a pedestrian
they use a fluctuation term (e.g. see the social force model (Helbing & Molnar, 1995)). This stochastic
nature means that two simulations using the same input and parameter set but different seeds can give
different results. In order to deal with this multiple simulations have to be run using different seeds,
the result of which is a distribution representing the influence of these stochasticities on the simulation
results. However, the question is how many runs are necessary to ensure that the resulting distribution
approximates the actual distribution (the one one would obtain when running an infinite amount of
simulation with different seeds) well enough.

In the literature three approaches were found which can be used to tackle this problem. The first one
is a two-step approach presented in (Toledo & Koutsopoulos, 2004). In this case the minimum number
of replications is determined by:

Ri =
(
SR0(Yi)tα/2

di

)2

(2.5)

where
SR0(Yi) = Sample standard deviation of simulation outputs based on R0 replications
tα/2 = Critical value of the t-distribution at significance level α
di = Allowable error

This method makes two assumptions, namely that the outputs (Yi) from different replications are
normally distributed and secondly that the standard deviation does not change significantly when one
were to do more replication than R0.

The other two methods are both sequential methods whereby the first, also presented in (Toledo &
Koutsopoulos, 2004), is effectively the sequential approach of the first method. The stopping criterion
is given by:

R ≥ Ri =
(
SR(Yi)tα/2

di

)2

(2.6)

where R is the current number of replications. In (Ronchi, Kuligowski, Reneke, Peacock & Nilsson,
2013) another sequential method is proposed that is based on multiple convergence measures. They
see the results of the runs for a given metric as a series converging to an expected value (i.e. the ex-
pected value of the specified metric). If one takes Mi,j as the result for the jth run of metric i and

−→
M i,j

as the series of j results of metric i (e.g.
−→
M i,3 = (Mi,1,Mi,2,Mi,3)) then the expected value of

−→
M i,j

is given by E(−→M i,j). The stopping criterion in (Ronchi et al., 2013) is that, for all metrics, the differ-
ence between two consecutive expected values is below a certain threshold for n consecutive runs (i.e.∣∣∣∣E(−→Mi,j)−E(−→Mi,j−1)

E(−→Mi,j)

∣∣∣∣ ≤ Ti for n consecutive runs).

The difference between the three methods is two-fold. Firstly, there is a clear difference between a
two-step and a sequential approach, whereby the two-step approach has the advantage that the amount
of replications is determined before the calibration procedure and hence one can make a much better
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estimation of the required computational time for both procedures. However, one also has to assure
that the number of replications is determined based on a representative selection of scenarios, metrics
and parameter sets and thus one has to decide beforehand what this representative set looks like and
the larger this set the larger the computational time it requires to determine the number of replications.
Secondly, there is a difference between the two sequential approaches primarily in the choices that have
to be made. In case of the method in (Toledo & Koutsopoulos, 2004) one has to determine the allowable
error (di) for every metric whilst in the case of the method in (Ronchi et al., 2013) one has to determine
the threshold value for every metric. Furthermore, in the case of the method in (Toledo & Koutsopoulos,
2004) one has to ask the question of how well the calculated standard deviation approximates the actual
standard deviation when the number of replications is small and in the method of (Ronchi et al., 2013)
one has to determine the value of n.

So, based on the difference describe above, a choice has to made between using a two-step approach
and a sequential approach and in the case of a sequential approach a choice has to be made between
the two possible sequential approaches. Furthermore, it has to be decided which metric or metrics are
to be used and what the values should be for the method’s parameters (e.g. the allowable error or the
number of consecutive replications).

2.2.6 Input definition

This step involves defining the input to the simulation such that it matches the reference data well. As
is stated in (Toledo & Koutsopoulos, 2004) ideally one would want to feed the simulation with exactly
the same inputs as is the case in the reference data. It is important to do this well given that this is a
potential source of discrepancy between the simulation and the reference data and hence could cause a
wrongful estimation of the parameters. Below a number of examples is given of potential inputs used
when calibrating a pedestrian model with regards to the operational behaviour.

• Geometry of the infrastructure: Besides using the right shape and dimensions defining the in-
frastructure also involves defining the borders of the walkable area and how pedestrians interact
with these borders. For example, how to define a border when in the data the border is a line on
the ground people are instructed not to cross and in the model a border is defined as a wall? More
examples of this can also be found in (Duives, 2016)

• Speed distribution: Depending on the composition of the population in the reference data the dis-
tribution of the free speeds might differ significantly from those average values from the literature
(see for example table 3.4 in (Daamen, 2004)). So, this begs the question how closely should this
distribution match the reference data and how to estimate this in the case there is no free-flow?

• Demand pattern: The demand pattern defines where and when pedestrians enter the simulation.
The question is, should these locations and times be replicated exactly or can they also be approx-
imated using distributions?

• Route choice: In the case of simple scenarios this defines what the destination is, in the case of
multiple possible destinations, and the exact location of this destination. This is strongly related
to the demand patterns because when using distributions in the demand patterns it is logical to do
the same for the destination choice and location whilst when defining the demand patterns more
strictly it is also logical to define the destination more strictly. In both cases it boils down to the
question whether or not one want the model the replicate the reference data exactly or replicate it
on average.

From the list presented above, it is clear that, besides determining some metrics related to perform-
ance of the model some other data has to be extracted from the reference data to ensure the input of the
simulation model matches the references data as closely as possible.

2.2.7 Reference data

Every scenario has reference data to which the simulation results are compared. Needless to say the
reference data should have the same properties as the scenario, however, there is also a property specific
to the reference data namely the source. The data can be either obtained from literature or the data can
be collected through a controlled experiment or in real-life.
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The review of the literature showed that data obtained from controlled experiments and real-life are
used far more often than those taken from the literature. The examples whereby literature values were
used all used a smoothed fundamental diagram. This has the disadvantage that due to the smoothing
of the fundamental diagram it can only be confirmed whether or not the model reproduces the diagram
on average and nothing can be said about the variance.

In the case of data from controlled experiments or real-life, the data is most often obtained via cam-
eras from which trajectories can be extracted. Controlled experiments have the advantage that one has
control over many factors influencing the flow and that information about things such as the population
composition can be easily obtained. However, the data from real-life has the advantage that one knows
that one is capturing the actual behaviour of pedestrians whilst during experiments there is always the
question of how much the behaviour of the participants is influenced by the experiment itself.

So, the main difference between the three types of reference data described above is the level of
detail. The values from literature seem to be the least detailed whilst trajectories extracted from data
provide far more detail. For calibration using a multiple-objective approach a higher level of detail
seems preferable given that based on the trajectories one can extract metrics at all three aggregation
levels.

2.2.8 Optimization methods

The optimization algorithm is responsible for two things. Firstly it determines whether or not the
current parameter set is optimal and secondly if this is not the case it defines a new parameter set
which is tested. Two properties of the optimization algorithm are of relevance, namely: 1) The ability
and likelihood to find the global optimum, and 2) the computational burden. The first one is important
because the search space might contain multiple local minima and if an algorithm can get stuck in such a
local minimum the result of such an algorithm might be a sub-optimal solution. The second property is
relevant because an inefficient algorithm might take too long to find the solution to be used in practice.

In the literature a multitude of methods were found, all of them using a single objective function. An
overview of these methods can be found in Table 2.2. Wolinski et al. (2014) also combined a number of
these methods, namely: Genetic Algorithm (GA) + Greedy, GA + Simulated Annealing (SA), Covariance
Matrix Adaptation (CMA) + Greedy and CMA + SA.

Table 2.2: Overview of optimization methods found in the literature

Method Studies
fmincon (Matlab) Hoogendoorn and Daamen (2007)

Nelder-Mead Rudloff, Matyus and Seer (2014)

Genetic Algorithm (GA) Rudloff, Matyus and Seer (2014), Wolinski et al. (2014)

Greedy Wolinski et al. (2014)

Grid search Duives (2016)

Simulated Annealing (SA) Wolinski et al. (2014)

Covariance Matrix Adaptation (CMA) Wolinski et al. (2014)

GA + Simplex Campanella (2016)

Box’s Complex Algorithm (from
vehicular research)

Toledo, Ben-Akiva, Darda, Jha and Koutsopoulos (2004)

In principle all these methods can find the global optimum, however, the greedy method is more
likely to get stuck in a local minimum than the other methods and the grid search is the only exact
method and thus the only one that will certainly find the global minimum. On the other hand the grid
search method is likely to be the slowest and the other methods will outperform it with regards to the
speed.

Two of the studies found did compare the performance of the various methods described above.
Rudloff, Matyus and Seer (2014) compared the Nelder-Mead and GA methods. They concluded that,

16



2. State-of-the-art How to calibrate a pedestrian simulation model

when using trajectories, the Nelder-Mead approach was not recommended given that it resulted in bad
estimates unless the errors in the data were very small which is not to be expected when using real data
sets. They also found that, although the Nelder-Mead method was much faster than the GA method, it
was more likely to get stuck in local minima and thus should be used with caution. Wolinski et al. (2014)
compared four methods plus four combinations of methods with regards to both the optimality of the
results and the speed. The general pattern of their comparison is that the better the method performs
regarding the optimality of the solution the slower it is.

Because the goal of this research does not include finding the best/optimal optimization method the
choice of method will be based on what is the most practical method. What is practical is determined
by how easy the method is to implement and how likely it is to find the optimal solution within the
limited time available within this research.

2.2.9 Stopping criteria

The stopping criteria define whether or not a found solution is optimal. None of the studies found
explicitly define their stopping criteria, however some can be derived based on the described method.
The grid search method in (Duives, 2016) implies that the stopping criterion is simply that all possible
parameter sets have been explored and hence the whole search space has been explored according to a
predefined resolution. Most methods described in (Rudloff et al., 2014) and (Wolinski et al., 2014) seem
to use a convergence criterion whereby a solution is deemed optimal if within n subsequent iterations
no new optimal solution is found. Other possibilities are, stopping when the solution satisfies some
minimum criterion (i.e. the error is smaller than a certain value or the goodness-of-fit is larger than
a certain value.), stopping after a fixed number of iterations or after a certain maximum computation
time and stopping after manual inspection.

The choice of the stopping criteria will depend on the chosen optimization method.

2.2.10 Search space definition

The search space defines the set of possible parameter sets that can be used to calibrate the model. The
size of the search space is determined by the number of parameters and the range of these parameters.
The larger the number of parameters and their ranges the larger the search- space will be. The size of
the search space is one of the factors that will determine the computational burden of the calibration
procedure together with the complexity of the search- space and the chosen optimization algorithm.
In the literature the search space is seldomly defined with the exception of (Duives, 2016). In order
to determine which parameters to include and what range to choose for each parameter a sensitivity
analysis can be performed. Firstly, this will give insight into what the most sensitive parameters are
whereby the logic is, the more sensitive the simulation results are to a small change in a parameter
the more important it is to ensure a good estimate of the value of the parameter. Secondly, it can give
insight within what range of a parameter the model produces feasible results. Of course it is of great
importance that the sensitivity analysis covers multiple scenario and metrics to ensure that the results
are representative.

2.3 Conclusions

In this chapter a review of the literature has been performed with the goal of getting an overview of
the state-of-the-art of calibrating pedestrian models and to identify the steps involved in calibrating
pedestrian models.

The review of the state-of-the-art showed that calibration has received relatively little attention in
the field of pedestrian modelling. Most studies that did perform a calibration did so using a very limited
focus (e.g. a single movement base case, a single metric etc.). Meanwhile, other research has shown that
different choices regarding, among other things, movement base cases and metrics, lead to different
optimal parameter sets and hence that the transferability of models, which have been calibrated using a
limited focus, is questionable. The solution proposed in the literature is to use multiple objectives when
calibrating pedestrian models. However, only a few studies investigated the use of a multiple-objective
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framework and hence there are still questions about what the effects of different choices of scenarios,
metrics and objective functions are on the results of the calibration.

Based on the description of the multiple-objective framework and Figure 2.1 nine steps, involved
in calibrating a model, were identified and these nine steps can be found in Table 2.1. In all of these
steps choices have to be made whereby in case of the steps regarding the stochasticities, the input
definition, the reference data, the optimization method, the stopping criteria and the search space the
most practical solution will be chosen given that these steps are not within the scope of this research.
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The literature review in the previous chapter answers the first of the sub-questions of this research. This
chapter will discuss how the remainder if this research is set up and how this chapter and the following
two chapters will answer the remaining sub-questions. Taken together, the four sub-question will be
used to answer the main research question in the last chapter.

To answer the three remaining sub-questions three steps are performed. Firstly, a sensitivity analysis
will be performed in order to gain insight into the model’s sensitivity to the different parameters. As
subsection 2.2.10 explains this information will be used, among other things, to determine the search
space. Secondly, the calibration framework will be implemented such that, in the third step, the model
can be calibrated using different combinations of objectives to explore how the use of different objectives
affects the calibration results.

As the sub-questions imply, these steps have a number of things in common. Firstly, the question
of how to deal with the stochastic nature of the model. Secondly, how to deal with the differences in
behaviour in the different flow situations. And thirdly, the model which is calibrated and hence whose
sensitivities to its parameters will be investigated during the sensitivity analysis.
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Figure 3.1: Overview research steps

Figure 3.1 shows that those elements that both the
sensitivity analysis and the calibration have in com-
mon are discussed in this chapter. Firstly, in section 3.1
the reference data, available to this research will be dis-
cussed. The reference data will, together with the con-
clusions of subsection 2.2.2, determine which scenarios
(the model implementations of the flow situations) can
and will be used (section 3.2) during both the sensitiv-
ity analysis and the calibrations. The reference data is,
of course, also used during the calibration to determ-
ine how well the simulation results reproduce reality.
Section 3.3 will introduce the simulation model and
the parameters of the model which are of relevance
for this research. Lastly, section 3.4 will discuss the
method which will be used to deal with the stochastic
nature of the model.

In both chapter 4 and chapter 5, the methodologies
for respectively the sensitivity analysis and the calib-
ration will be discussed in more detail.

3.1 Reference data

In order to calibrate a pedestrian model one needs data. In this research two sources of data were
available. Namely, data from the Transport & Planning (T&P) department of the Delft University of
Technology and data from the Hermes project. In this section both data sets will be discussed in more
detail based on which a conclusion will be drawn as to which data is used in the remainder of this
research.

3.1.1 Data from the T&P department of the Delft University of Technology

The data, available from the T&P department of the Delft University of Technology, was collected dur-
ing experiments performed in 2002 at the university. During multiple experiment pedestrians were
tracked using cameras and from the resulting videos trajectories were extracted. For more details about
the experimental setup the reader is referred to (Daamen, 2004, Section 4.4).
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Figure 3.2: Overview of the available experiments of the TU Delft data set(adapted from (Daamen, 2004))

In total, data from four of the ten experiments (see Table 4.3 in (Daamen, 2004)) was available.
In Table 3.1 and Figure 3.2 one can find an overview of these four experiments. The table includes
the experiment number (according to Table 4.3 in (Daamen, 2004)), the movement base case and a
description of the geometry of the walkable area and the inflows. In all four experiments the pedestrians
were instructed to walk at normal speeds and in all four cases the population consisted of a mix of
children, students, adults and seniors. Furthermore, in the first three experiments (1,4 and 6) there were
no physical borders but the participants were instructed to stay within the walkable area indicated by
markings on the floor.

3.1.2 Data from the HERMES project

The data from the HERMES project1 was collected during experiments performed in Germany in 2009.
The set contains data from numerous experiments and is publicly available here2. Comparable to the
data collected at the TU Delft, the movement of the pedestrians was captured using cameras and from
the collected images the trajectories were extracted. For a more detailed overview of the experimental
setup the reader is referred to (Keip & Ries, 2009).

The participants of the experiments were mostly students with an average age of 25 ± 5.7 years
(Zhang, Klingsch, Schadschneider & Seyfried, 2012). In total, the experiments covered six of the move-
ment base case listed in subsection 2.2.2. An overview of these experiments can be found in Table 3.2
and Figure 3.3. Comparable to the TU-delft experiments, participants were instructed to walk normally.

3.1.3 Conclusion on the choice of reference data

Based on the descriptions of the data sets in the two previous subsections and the findings in subsec-
tion 2.2.2, it will be determined if both data sets can be used within this research or that only one of the
two will be used.

In subsection 2.2.2, the movement base case, the population composition and the density level were
deemed the most relevant scenario properties for this research. Together, the two data sets have two
different population compositions which would make it possible to vary this during the calibration.
However, only two experiments (straight unidirectional and bidirectional flows) are somewhat com-
parable, and would therefore be candidates for a comparison, and even these two differ in the sense
that the geometry of the infrastructure differed and the protocols of the experiments differed. There-
fore it would be difficult to assess, in case differences are found, how much of this difference can be
contributed to the difference in population composition and how much to difference in infrastructure
and experimental protocol. So, for this reason the population composition won’t be taken into account
in this research and hence only one of the two data sets will be used. Given that the data set from the
Hermes project contains more movement base cases, more density levels and different geometries of
the infrastructure, it is the data set that will be used in this research.

1http://www.fz-juelich.de/ias/jsc/EN/Research/ModellingSimulation/CivilSecurityTraffic/Projects/Hermes/_node.html
2http://www.fz-juelich.de/ias/jsc/EN/Research/ModellingSimulation/CivilSecurityTraffic/PedestrianDynamics/

Activities/database/databaseNode.html
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Table 3.1: Overview of the available data TU Delft

Experiment
nr.

Movement base case Description

1 Unidirectional
straight

Straight corridor of 10x4 meters with a unidirectional flow and an inflow of 0.5 ped/s/m

4 Bidirectional straight Straight corridor of 10x4 meters with a bidirectional flow with equal inflows on both sides and inflows of 0.3
ped/s/m/direction

6 Two-way crossing Borderless area of 8x8 meters with two flows crossing at an angle of 90 degrees and equal inflows on both sides
and inflows of 0.1875 ped/s/m/direction

10 Unidirectional
entering

A long narrow bottleneck whereby the walkable area changes from a width of 4 meters to a width of 1 meter and
the flow is unidirectional and an inflow of 0.375 ped/s/m

Table 3.2: Overview of the available data Hermes project

Experiment name Movement base case Description

Unidirectional -
closed

Unidirectional
straight

Two straight walkways with a length of 6 meters connected by two semi-circular walkways with walls on
both sides of the walkway. In total 24 experiment were performed with different combinations of walkway
widths and amount of pedestrians within the infrastructure.

Unidirectional - open Unidirectional
straight

An 8 meter long straight corridor with walls on both sides. 27 experiments were performed with different
widths of the walkway, different inflows and different widths of the exit of the corridor.

Short bottleneck Unidirectional
entering and exiting

A 1 meter long bottleneck with about 400 participants standing in front of it whereby the density is about 3
ped/m2. Five different experiments were performed with five different widths of the bottleneck.

Bidirectional Bidirectional straight An 8 meter long straight corridor with walls on both sides. In total 22 experiments were performed with
varying corridor widths, varying inflows, asymmetric inflows and forced destinations whereby the
participants were instructed to leave the corridor on a particular side.

T-junction Unidirectional
merging

A t-junction with two unidirectional flows merging at the junction and continuing as a single unidirectional
flow. Seven different experiments were performed using two different walkway widths and different
inflows.

Corner Unidirectional corner A unidirectional flow around a corner whereby a right-handed turn of 90 degrees needs to be made. 10
experiments were performed with two different walkway widths and five different inflows.
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Figure 3.3: Overview experiments Hermes (adapted from (Keip & Ries, 2009))

3.2 Scenarios

In this section it will be explained which scenarios will be used during the sensitivity analysis and
the calibration and why these are the scenarios that will be used. The first part of this section will
discuss which scenarios will be used based on the five properties described in subsection 2.2.2 and
the availability of data. After a choice is made, the second part of the section will describe the chosen
scenarios in more detail.

3.2.1 Choice of scenarios

In subsection 2.2.2 five properties were identified based on which a scenario is defined. These five
are the infrastructure, the demand patterns, the population composition, the movement base case and
the density level. Ideally, one would like to research how varying these five properties influences the
calibration results in order to gain more insight into what objectives are necessary. However, constraints
in time and data availability make it impossible to do this within this research.

Based on the review of the literature, subsection 2.2.2 concluded that the population composition,
the movement base case and the density level are the most relevant properties. Subsection 2.2.2 also
concluded that the infrastructure and the demand patterns are of a lesser relevance and hence these
are not considered in this research. The population composition will also not be considered in this
research given that section 3.1 concluded that there is not enough data to properly investigate the effect
of different population compositions on the calibration results. So, this leaves the movement base cases
and the density level as properties to be researched. The remainder of this section will explain which
movement base cases and density levels will be included and which combinations are used to form the
scenarios.

Table 3.3 shows that the data set from the Hermes project covers six of the ten movement base
cases. Out of these six, the unidirectional straight movement base case will not be used during the
calibration for the following reason. The main interaction in this movement base case is the front-
to-back interaction and this interaction is present in all other movement base cases. Furthermore, as
research by Campanella (2016) shows, the walking behaviour found in non-congested bidirectional
flows seems transferable to unidirectional flows. Out of the five remaining movement base cases, two
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cases, the entering and exiting cases, are captured in one experiment. Hence, the choice is made to
capture these two base cases in the same experiment. So, data from four different experiments will be
used and subsequently the scenarios will contain four different infrastructures.

Table 3.3: Coverage of the movement base cases by the reference data

Covered Not covered
Unidirectional straight Intersecting flow: 2 flows

Unidirectional corner Intersecting flow: 4 flows

Unidirectional entering Intersecting flow: random

Unidirectional exiting Vertical movements

Bidirectional straight

Merging flows

As subsection 2.2.2 concludes, the density level has a strong relation to the number of interactions
between pedestrians and that the density level clearly affects the flow. However, given that only the
case of no interactions versus interactions has been investigated (Campanella, 2016), the question if
using high levels of density (many interactions) versus low levels of density (few interaction) affects
the calibration results is yet unanswered. So, in this research the comparison will be made between
a low level of density and a high level of density. In the case of the short bottleneck experiment only
a high density level will be used given that at low densities the flow would become a unidirectional
straight flow which would not capture the behaviour of interest (entering and exiting).

So, as Table 3.4 shows, seven scenarios will be used in this research. The implementation of all these
seven scenarios will be discussed in more detail in the next subsection.

Table 3.4: Overview of the scenarios used in this research

Movement base case(s) Density level Reference data

Low High

Bidirectional straight x x Bidirectional straight

Unidirectional entering and exiting x Short bottleneck

Unidirectional corner x x Corner
Merging unidirectional flows x x T-junction

3.2.2 Scenario definitions

All the seven chosen scenarios will be discussed in more detail below whereby the following aspects
will be described:

• The geometry and lay-out of the infrastructure

• The route(s) of the pedestrians

• The measurement area

• The reference data set that is used to compare the results to during the calibration

The measurement area determines the area that is of interest during collection of metrics for both
the sensitivity analysis and the calibration. The measurement area is used for two reasons. Firstly,
to ensure that only the behaviour representative for the given scenario is captured. For example, in
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the bidirectional scenario one is interested in the behaviour within a bidirectional flow and one is not
interested in how pedestrian enter or exit the experiment or the simulation. Secondly, in the case of the
reference data, the cameras did not always capture the whole walkable area of the experiment which in
turn limits the area in which metrics can be collected.

Per scenario it will be defined which of the data sets described in (Keip & Ries, 2009) is used to
compare the simulation results against. To get insight into the traffic states we want to reproduce dur-
ing the calibration, the traffic states in reference data will be described using cumulative curves and
fundamental diagrams. The cumulative curves are obtained at a certain flow line, the location of which
will be described for every scenario. The fundamental diagrams are obtained using the XT-method
(Duives, Daamen & Hoogendoorn, 2015) to calculate the density and the instantaneous speeds. The
fundamental diagrams only contain data obtained in the measurement areas. Furthermore, for all scen-
arios, except the bottleneck scenario, measurements obtained the first few seconds and the last few
seconds are omitted. This is done because, as the cumulative curves will show, all experiments, except
the bottleneck scenario, include a warming up and cooling down period during which the traffic states
are not representative for the given scenario. The traffic states are not considered representative because
the pedestrians do not experience the same density level as during the rest of the experiment. Hence, is
can not be assured that their behaviour is representative for the scenario.

Note: The implementations described below are the implementations as they are used during the
calibration. The implementations for the sensitivity analysis are very similar but can differ slightly.
This is because after the sensitivity analysis was performed the implementations were critically
reviewed to ensure that they matched the reference data as closely as possible. This did lead to
some minor changes. In the experimental setup section of the sensitivity analysis these changes will
be discussed.

Bidirectional straight - low & high density

The bidirectional straight low and high density scenarios are both based on a bidirectional flow through
a straight corridor. Figure 3.4 depicts the lay-out of the scenarios. As the figure illustrates, the area of
interest is a corridor section of 8 meters long and 3.6 meters wide bounded by walls on both sides.
Pedestrians flow in from both sides, walk through the corridor and at the end of the corridor leave
the corridor either at the top or the bottom. During the experiments, the participant were instructed
beforehand on which side of the corridor (top or bottom) they should exit.

8

3.6   

Wall
Measurement area
Flow line

Figure 3.4: Overview of the bidirectional flow scenario

The data also contains experiments where participants were free to choose the side of the corridor
they would exit. However, these experiments are not used because, as Figure 3.5 illustrates, this results
in two large lanes. Because of these two large lanes most of the interactions between pedestrian is
front-to-back whilst the main goal of using a bidirectional scenario is to calibrate for the front-to-front
interactions. As the figure also illustrates, the front-to-front interaction occurs far more often in the
experiments where pedestrians are forced to exit the corridor at a certain side.

During the calibration, data from the BOT-360-075-075 experiment will be used for the low dens-
ity scenario. For the high density scenario data from the BOT-360-200-200 experiment will be used.
Figure 3.6 illustrates the cumulative curves obtained at the flow line in the centre of the corridor (see
Figure 3.4). The curves clearly show that at the start of the experiment the infrastructure is still empty
and that it takes a few seconds before it is populated. The curves also show that in the case of the low

24



3. Research methodology How to calibrate a pedestrian simulation model

(a) Trajectories resulting from a free destination choice (b) Trajectories resulting from a forced destination
choice

Figure 3.5: Difference in trajectories between the free and forced destination choice in the reference data for a bid-
irectional flow

density experiment the flow from left to right is clearly somewhat higher than the flow from the right to
the left. This can be explained by the fact that the inflows were not exactly equal (0.49 ped/s/m versus
0.40 ped/s/m). The flows in the high density are very similar although here the inflows are also not
exactly equal (0.95 ped/s/m for the flow from left to right versus 0.91 ped/s/m for the flow from right
to left).

Figs. 3.7a and 3.7b show the speed-density relationships for both scenarios. The two scenarios
clearly cover different parts of the fundamental diagram. The low density scenario covers an area with
high speeds and low densities whilst in the case of the high density scenario the speeds are primarily
low and the densities high. Furthermore, the states obtained in the high density scenario clearly vary a
lot more indicating that during the experiment the state varied significantly over time and space.
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(a) Low density (BOT-360-075-075)
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(b) High density (BOT-360-200-200)

Figure 3.6: Cumulative curves bidirectional scenario
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(a) Low density (BOT-360-075-075)
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(b) High density (BOT-360-200-200)

Figure 3.7: Fundamental diagrams (ku) bidirectional scenario
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Bottleneck, short
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Figure 3.8: Overview of the bottleneck scenario

The short bottleneck scenario covers two differ-
ent movement base cases, namely, the unidirec-
tional entering case and the unidirectional exit-
ing case. As Figure 3.8 illustrates, the scenario
contains a start area in front of the bottleneck
which, at the start of the simulation, is filled
with a density of 3 ped/m2. As soon as the sim-
ulations starts the pedestrians will start moving
through the bottleneck towards the exit. The
bottleneck itself has a width of 3.6 meters and a
length of 1 meter. After the bottleneck the walk-
able area widens and pedestrians can spread
out whilst walking towards the exit. The meas-
urement area contains part of the area before
the bottleneck, the bottleneck itself and a part
of the area behind the bottleneck. The measure-
ment area only captures parts of the areas be-
fore and after the bottleneck because the cam-
eras did only capture these parts of the areas
during the experiments.

During the calibration, data from the AO-
360-400 experiment will be used for compar-
ison with the simulation results. Figure 3.10
clearly illustrates the differences between the
traffic states before, in and after the bottle-
neck. Before the bottleneck the speeds are
low, primarily below 0.5 m/s, and the densit-
ies high, mainly between 4 and 6 ped/m2. In
the bottleneck itself the speeds increase and the density decreases. After the bottleneck the speeds in-
crease even more and the densities, again, decrease. As Figure 3.9 shows, once the first pedestrians pass
the bottleneck there is a steady flow of about 2.5 ped/s/m in the bottleneck. As the last pedestrians
pass through the bottleneck the flow decreases. In total, 349 pedestrian pass the bottleneck.
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Figure 3.9: Cumulative curve in the bottleneck
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(a) Before bottleneck
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(b) In bottleneck
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(c) After bottleneck

Figure 3.10: Fundamental diagrams (ku) bottleneck scenario AO-360-400

Corner - low & high density

In the corner scenario a unidirectional flow around a corner is simulated whereby, in accordance with
the data, the turn is a right handed turn. As Figure 3.11 illustrates, the walkway is 2.4 meters wide
and the pedestrians start at the bottom right side and from there move towards the top left part of the
infrastructure. The measurement area covers the corner itself and a part of the area before and after the
corner.
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Figure 3.11: Overview of the corner scenario

For the calibration the data sets from the experi-
ments EO-240-060-240 and EO-240-150-240 are, respect-
ively, used for the low and the high density scenarios.
The cumulative curves in Figure 3.12 show that in both
cases there is a warming up period as the first pedestrian
pass through the infrastructure. After this, the flow re-
mains at a relatively steady rate of about 0.6 ped/s/m in
case of the low density scenario and 1.2 ped/s/m in the
case of the high density scenario. The fundamental dia-
grams in Figure 3.13 show a similar patterns as the dia-
grams of the two bidirectional scenarios. In the case of
the high density scenario the speeds are generally lower
and the densities higher and there is a larger variance in
the states. However, the difference between the scenarios
are smaller compared to the difference between the two
bidirectional scenarios.
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(a) Low density (EO-240-060-240)
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(b) High density (EO-240-150-240)

Figure 3.12: Cumulative curves corner scenario
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(a) Low density (EO-240-060-240)
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(b) High density (EO-240-150-240)

Figure 3.13: Fundamental diagrams (ku) corner scenario

Merging unidirectional flows in a T-junction - low & high density

In the T-junction scenarios the main movement base case is merging. As Figure 3.14 illustrates, every
part of the walkable area is 2.4 meters wide and pedestrians walk from both sides towards the junction
where the flows merge and the pedestrians move towards the exit. The measurement area consists of
the lower part where the two unidirectional flows join and the upper part where the flows have joined.
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Figure 3.14: Overview of the T-junction scenario

During the calibration, data from the
KO-240-060-240 and the KO-240-150-240 ex-
periments will be used to compare the sim-
ulation results against. The cumulative
curves in Figure 3.16, again, show a warm-
ing up period as the first pedestrians move
through the infrastructure. After this warm-
ing up period the flows remain relatively
stable at a rate of, respectively, 1.1 and 1.6
ped/s/m for the low and high density scen-
arios. The fundamental diagrams, depicted
in Figure 3.15, also show the same pattern as
the corner and bidirectional scenarios. The
low density scenario generally has higher
speeds, lower densities and a lower variance
of the states.
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(a) Low density (KO-240-060-240)
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(b) High density (KO-240-150-240)

Figure 3.15: Fundamental diagrams (ku) T-junction scenario
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(a) Low density (KO-240-060-240)
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(b) High density (KO-240-150-240)

Figure 3.16: Cumulative curves T-junction scenario

3.3 Pedestrian Dynamics

This section introduces Pedestrian Dynamics R© (PD), a microscopic pedestrian simulation model by
INCONTROL Simulation Solutions (2016). Pedestrian Dynamics R© (PD) offers a user the ability to
model the behaviour of pedestrians at all three behavioural levels (strategic, tactical and operational).
Models for both the operational behaviour (route following and collision avoidance) and the route
choice (tactical level) are already implemented and these processes are thus influenced by changing the
parameters. The processes of activity choice (strategic level) and activity scheduling (tactical level) do
not have fixed implementations and are thus left to the user to implement. In the case of this research
the pedestrians only have one activity, walking from their origin to their destination, and hence there
is no need to model the activity choice or the scheduling. The route choice and walking behaviour are
both modelled and will be discussed in somewhat more detail whereby the focus is especially on the
walking behaviour given that this will be the focus of the calibration. Furthermore, an overview of the
parameters, that influence the operational behaviour, will be given and it will be discussed if they are
relevant in the steps to come given the scope of this research.

3.3.1 Route choice

The route choice algorithm, implemented in PD, uses the concept of an Explicit Corridor Map (ECM)
(Geraerts, 2010) in combination with the A-star algorithm to determine the global route for a pedestrian.
The ECM is able to compute the shortest path given a certain minimal clearance which ensures that a
pedestrian will always be able to traverse the given path. PD offers two approaches for computing the
global route. The first one is simply using the shortest path (i.e. the path with the shortest distance
between A and B). The second option is using a least-effort approach whereby the cost is the estimated
travel time. This estimated travel time can be computed including the estimated delay caused by an
increased density on an edge and including some discomfort factors.
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In this research the global route choice is not a relevant part given that all scenarios only have one
possible global route for every Origin-Destination pair (OD-pair). Hence, in all scenarios the route
choice option is set to the shortest path option given that this is the least computationally heavy option.

3.3.2 Operational behaviour

The operational behaviour consists of two parts, route following and collision avoidance, which to-
gether determine the acceleration of a pedestrian at every time step. In PD the acceleration of an agent
is determined as follows:

d−→v i
dt

=
−→v des;i −−→v i

τ
+
∑
j

−→
f ij +

∑
W

−→
f iW [m/s2] (3.1)

In the equation above −→v des;i and −→v i are, respectively, the desired and current velocity of agent i at
the current time step.

−→
f ij and

−→
f iW are physical forces that occur when an agent comes into contact

with another agent or an obstacle. τ is the relaxation time which is a parameter that determines how
strongly an agent reacts to deviations from its desired velocity whereby a lower value indicates that the
agent’s velocity will converge faster to its desired velocity.

The desired velocity (−→v des) is determined according to the method proposed by Moussaïd, Helbing
and Theraulaz (2011). The method uses a vision based approach to avoid collisions and combines
the collision avoidance with the preferred speed and the desired destination to determine the desired
velocity. The desired velocity is a combination of the desired speed and the desired direction. The
desired speed is given by vdes = min(v0

i , dh/τ) where v0
i is the preferred speed of the agent (which is

determined in the input) and dh is the distance between the agent and the first expected collision in the
desired direction. dh is determined as follows:

dh =


di;exp:col − di;pers If the expected collision is with another

agent travelling in the same direction
di;exp:col Otherwise

[m] (3.2)

Whereby di;exp:col is the distance to the first expected collision in the desired direction α of agent i and
di;pers the personal distance of agent i. The personal distance is the distance an agent wants to keep
between itself and another agent. The desired direction is determined by minimizing the following
function:

d(α) = d2
max + f(α)2 − 2dmaxf(α)cos(α0 − α), for α ∈ [−φ, φ] (3.3)

Figure 3.17: Example of the parameters determining
the desired direction. (Fig. 1 (A) from
(Moussaïd et al., 2011))

As Figure 3.17 illustrates, φ is the viewing angle
of the agent and together with dmax, the viewing dis-
tance of the agent, it determines which obstacles are
taken into account when calculating the desired dir-
ection. f(α) is the distance to the closest expected
obstacle in the direction of α whereby it is equal
to dmax if there are no obstacles within the viewing
range. Finally, α0 is the angle towards the desired
destination.

The desired destination is determined by the loca-
tion of the attraction point which in turn is determ-
ined by the Indicative Route Method (IRM) (Kara-
mouzas, Geraerts & Overmars, 2009). The IRM uses
the ECM to produce an indicative route that runs
from the agent’s origin to its destination whereby it
is ensured that the agent can traverse the whole route
(i.e. the clearance at every point along the route is
larger than the radius of the agent).
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3.3.3 Stochastic nature

PD is stochastic by nature which means that two simulations using the same parameters and inputs but
different seeds can lead to different results. Within in this research there are three main causes for this
stochasticity. Namely, the preferred speed, the initial destination and the exact location of the origin.
All three are shortly discussed below.

By default, the preferred speed is a triangular distribution from which a preferred speed for every
agent is drawn. So, depending on the seed, an agent spawning at the same time and location in a
particular simulation can have a different preferred speed.

For every agent, its initial destination is a randomly chosen point in a destination area. The exact
location of the destination within this area is updated based on the current location of the agent whilst
it is walking through the infrastructure. However, the exact location of this initial point does influence
the indicative route and therefore the location of the attraction point.

The indicative route, and thereby the attraction point, is also influenced by the exact location at
which an agent enters the simulation. Comparable to the exact location of the destination, the origin is
also a randomly chosen point in a starting area.

The fact that the model is stochastic in nature has to be taken into account. How to deal with this
stochastic nature is the topic of the next section.

3.3.4 Parameters operational behaviour

PD contains 11 parameters that influence the operational behaviour. In Table 3.5 an overview of these
parameters can be found whereby the parameters have been divided into those that influence the loca-
tion of the attraction point and those that influence the walking behaviour itself. The parameters are all
deterministic and hence the population is homogeneous regarding these parameters. Although there is
the possibility to make almost all of these parameters stochastic, this is considered outside of the scope
of this research.

Not all of these 11 parameters might be relevant for this research, given for example the limitations
set by the choice of scenarios (section 3.2). Parameters that are not influencing the results of any of
the chosen scenarios cannot be calibrated and hence do not have to be included. In order to determine
which are relevant, for every parameter the following two questions can be posed:

• Does the parameter influence the traffic state in any of the chosen scenarios?

• Does the parameter influence behaviour in a significant way?

Based on these two question four of the eleven parameters can be eliminated. If we take the first
question posed above, it is clear that the fixed speed multiplier is not relevant for this research given that
fixed speed surfaces do not occur in any of the chosen scenarios and hence this parameter is discarded.
Based on the second question three other parameters can be discarded as well. These are the maximum
shortcut distance, the side clearance factor and the avoidance preference. The avoidance preference can
be discarded because it is considered irrelevant for the results whether or not all pedestrians prefer to
pass another pedestrian on the right or left side as long as the preference is equal for all pedestrians.
And given that by default it is the same for all pedestrians and given that, as mentioned earlier, the
effect of making a homogeneous parameter heterogeneous is outside of the scope of this research this
is the case. The maximum shortcut distance and the side clearance factor are both parameters which
can be used to fix unrealistic local path finding behaviour in case this would occur in a given part of
the infrastructure. These two parameters should thus only be changed when this unrealistic behaviour
occurs and for every scenario this should be checked. However, once the values are found which pro-
duce realistic behaviour, if they need to divert from the default at all, these values will remain constant
for the remainder of the research.

So, 7 of the 11 parameters, presented in Table 3.5, will be taken into account during the sensitivity
analysis.
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Table 3.5: Operational parameter of PD

Name Description Unit Default
value

Attraction point location

Preferred clearance The preferred distance an agent wants to keep
between itself and obstacles when planning its
indicative route through a corridor.

m 0.3

Max. shortcut distance The maximum distance the attraction point can be
from an agent whereby <= 0 means there is no
restriction.

m 0

Side clearance factor This factor determines how the agent plans its local
route in relation to the corridor’s wall whereby 0
means close to the wall and 1 in the centre.

- 0

Side pref. update factor Determines how fast the indicative route converges
towards the current position of the pedestrian.

- 1

Walking behaviour

Min. desired speed The minimum desired walking speed of agents. Once
the speed of an agent drops below this threshold it
will stop walking and only start walking again when
it can start moving at a speed higher than or equal to
this threshold.

m/s 0.06

Fixed speed multiplier The fraction of the agent’s walking speed that is used
on fixed surfaces such as escalators.

- 0

Relaxation time A parameter that determines how strongly an agent
reacts to deviations from its desired velocity (τ in
Equation 3.1).

1/s 0.5

Viewing angle The angle of the agent’s field of view (φ in
Equation 3.3).

degree 75

FoV avoidance range The distance of the agent’s field of view (dmax in
Equation 3.3).

m 8

Avoidance preference The bias that determines the preferred side of passing
an obstacle.

- Right

Personal distance The desired personal distance an agent wants to keep
between itself and another agent (dpers in
Equation 3.2).

m 0.5

3.3.5 Conclusions on the microscopic model

This section introduced the microscopic model used within this research. The model is capable of
modelling all three levels of behaviour (strategic, tactical and operational). However, the processes
of activity choice (strategic level) and activity scheduling (tactical level) won’t be modelled within the
research given that all agents only have one activity. The route choice algorithm offers two approaches, a
shortest path and a least effort approach. Given that all OD-pairs in all scenarios only have one possible
global path the decision is made to use the shortest path approach given it is the least computationally
heavy option of the two.

In total 11 parameters were identified which could influence the operational behaviour. Four of
those, the fixed speed multiplier, the maximum shortcut distance, the side clearance factor and the
avoidance preference are not considered relevant for this research and hence won’t be taken into ac-
count during the sensitivity analysis and the creation of the search space.
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3.4 How to deal with stochasticity

Pedestrian models often contain stochastic elements. This is also the case for PD and hence it is ne-
cessary, for both the sensitivity analysis and the calibration, to run multiple replications of the same
simulation in order to assure than any differences found between two different parameter sets are not
caused by the stochasticities but by the difference in parameter values. So, this section will explain how
it is determined how many replications need to be performed.

As is clear from the literature review, there are multiple methods for determining the required num-
ber of replications and a choice has to be made which method is most suitable for this particular re-
search. Besides the method itself, two other choices have to be made, namely, which metric or metrics
are used and what values to use for elements such as the confidence level, the allowable error or the
number of consecutive replications.

Regardless of the choice of method, metric or confidence level, the underlying principle is the follow-
ing: One has enough replications if the results of the n replications together form a good approximation
of the actual probability distribution of the results (i.e. the distribution of results one would get when
the number of replications would go to infinity). In other words, if one were to have two sets of n
replications of the same simulation the probability distribution of the results of these two sets would be
considered to be samples drawn from the same distribution given a desired level of confidence.

As stated in subsection 2.2.5, the first choice to be made is whether to use the two-step method
or one of the two sequential methods. Given that it is unknown how the different combinations of
parameter sets and scenarios influence the necessary number of replications and testing, beforehand,
which number of replications to use for every combination is too time consuming for this research, the
decision is made to use a sequential method.

In the remainder of this section the following elements will be discussed. First, it will be explained
which metric/metrics will be used. Second, it will be explained which method, out of the two remaining
ones, will be chosen. Lastly, the chosen method will be tested to get insight into its performance and to
determine which values are going to be used for elements such as the confidence level, the allowable
error or the number of consecutive replications, depending on the chosen method.

3.4.1 Choice of metric

Before a choice regarding the metric/metrics is made, the question - What are the requirements within
this research regarding the metric/metrics which should be used for determining the required number
of replications? - should be answered first.

The requirements for the metric/metrics follow from the goal of this research, which is, among other
things, to assess how different combinations of metrics influence the calibration result. As is explained
in subsection 2.2.3, different metrics describe the flow at different aggregation levels. The multiple-
objective approach, ideally, includes using metrics at these different aggregation levels. Hence, it is
important that the metric/metrics used in determining the required number of replications take into
account these different levels. So, the metric or metrics used should give insight into how the stochasti-
cities effect the overall flow. This can be expressed by metrics such as the flow, the fundamental diagram
or the mean speed or travel time. Moreover, the metric should provide insight into the underlying be-
haviour of which the flow is the result (i.e. metrics at the meso or microscopic level).

Besides the requirements described above, one also has to take into account the fact that a sequential
method has to be run after every replications (or n replications). Hence, from a practical point of view, it
is preferable that the calculation of the metric/metrics is not computationally heavy. For example, cal-
culating the density using the XT-method (Duives et al., 2015) is more time consuming than calculating
the travel time or the distribution of the speeds.

So, based on both the requirements and the preference from a practical point a view, the choice is
made to use the distribution of the speeds as the only metric. The distribution is comprised of the
instantaneous speeds of all pedestrians whereby the speeds are only included for those time step the
pedestrian is in the measurement area. This choice is made for the following reasons: Firstly, it is a
computationally light metric, given that the distribution is made up of the instantaneous speeds which
are easily determined based on the trajectories. Secondly, the distribution of the speeds is able to give
insight into both the efficiency of the flow (a higher mean speed indicates a more efficient flow) and into
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the underlying behaviour (e.g. a high variance can indicate that interactions are not solved efficiently
causing pedestrians to change their speed a lot).

3.4.2 Choice of method

As concluded in the introduction of this section, a sequential method will be used to determine the
number of required replications. As subsection 2.2.5 shows, there are two possible sequential methods
out of which one has to be chosen. The chosen method must determine whether the speed distribution
has converged such that data from any additional replications won’t change the distribution signific-
antly. To test whether two speed distributions are samples drawn from the same distribution one can
use the Anderson-Darling test (A-D test)1 (NIST/SEMATECH, 2012a). The use of the A-D test has direct
implications for the choice of the method given that it cannot be used in combination with the method
proposed in (Toledo & Koutsopoulos, 2004). So, the method proposed in (Ronchi et al., 2013), which is
based on one or more convergence criteria, will be used.

The following procedure is used to determine whether the distribution of the speed has converged:
if pi > pthreshold ∀ i ∈ I then

converged = True;
else

converged = False;
Run additional simulation to obtain more replications;

end

where

pi = AD(Si−1, Si), The significance level at which the null hypothesis, that the two
samples come from the same distribution, can be rejected.

I = {m− b+ 1,m− b+ 2, ...,m}
Si = Speed distribution consisting of the speeds of all i replications
m = Current number of replications
b = Number of consecutive replications for which the test should hold

The pseudo-code above illustrates that the speed distribution has converged if for b consecutive
runs the null hypothesis cannot be rejected (i.e. the p-value is larger than the chosen threshold value
(pthreshold)). Both the number of consecutive runs and the threshold value have to be chosen beforehand.
The next subsection will explore which values should be used within this research.

3.4.3 Testing the method

In this subsection the convergence method using the A-D test will be tested whereby two aspects will
be looked at. Firstly, how do different values for the number of consecutive runs (b) and the threshold
value (pthreshold) influence the required number of replications and the performance? Secondly, how
does the exact order of the seeds influence the performance and the required number of replications?
The method is considered to perform well if the required number of replications is such that adding
any number of extra replications won’t change the results (i.e. if the method has converged after m
replications the following holds AD(Sm, Sm+i) > pthreshold ∀ i ∈ N ≥ m).

All tests in this section are performed using data from two different scenarios. Both scenarios are
simulations of a bidirectional flow and use the default settings of PD. In the first scenario a flow of 0.2
ped/s/m/dir is used and in the second scenario a flow of 0.4 ped/s/m/dir. The first flow is chosen
such that the no breakdowns 2 occur whilst in the case the second flow this is likely to occur. For both
scenarios 900 replications, all with a unique seed value, are simulated using the default parameter sets.
The results of these 900 simulations are then placed in 100 different orders simulating 100 different
orders of seeds.

To explore how different values for b and pthreshold influence the results, nine different combinations
of values are tested. In Table 3.6 one can find the values used.

1The A-D test was chosen over the Kolmogorov-Smirnov (KS) test as it is generally considered to be more powerful
(NIST/SEMATECH, 2012b)

2Breakdown: The speed of the pedestrians has dropped significantly being zero or almost zero and hence pedestrians are only
capable of moving towards their destination with large difficulty if it is at all possible
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Table 3.6: The values of pthreshold and b used in the tests

pthreshold = 0.25, 0.10, 0.05
b = 10, 15, 20

In Figure 3.18 one can find the results for all nine combinations for both the low and high density
scenarios. The figure clearly illustrate two things. Firstly, the value pthreshold does influence the required
number of replications whereby the larger the threshold values the more replications are required. The
value of b does seem to have little impact on the required number of replications compared to the
threshold value. Secondly, the order of the seeds does have a clear influence on the resulting number of
required replications given the large spread of the results. In this case the value of b does seem to have
an influence on the results whereby a larger value of b results in less variance. Furthermore, the figure
also illustrates that the variance in the required number of replications is larger for the high density
scenario compared to the low density scenario. Due to the possibilities of the flow breaking down in
the high density scenario, one would expect the results of different replications to vary more and hence
a larger number of required replications.
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Figure 3.18: Required number of replications per combination for different values of pthreshold and b

Based on the obtained required number of replications, a second test is performed to get insight into
the performance. The test determines if the speed distribution, containing the data from the required
amount of replications, is drawn from the same distribution as the distribution containing the data from
all 900 replications. The test uses the A-D test whereby the distributions are not considered to be drawn
from the same distribution if the null-hypothesis can be rejected at the 5% level. As mentioned before in
this section, the method is considered to perform well if the distribution does not change significantly
when any number of additional replications is added. In the case of the low density scenario, between
58 and 63 percent of the distributions is not considered to be drawn from the same distribution as the
distribution containing the data from all 900 replications. In the case of the high density scenario 35
to 40 percent of the distributions are not considered to be drawn from the same distribution as the
distribution containing all 900 replications. So, overall the method does not seem to perform very
well given that for both scenarios the distribution changes significantly in many cases when additional
replications are added. The stopping criteria, however, do not seem to have a large influence on the
performance given that the difference between the different sets of stopping criteria are at most 5%.
Furthermore, plotting the required number of replication versus whether or not the null-hypothesis
was rejected showed no correlation. This indicates that it is the exact order of seeds that determines
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if the distribution changes significantly if more replications are added and not so much the required
number of replications. The implication of the marginal performance of the method is that, regardless
of the stopping criteria one uses, differences between sets of simulations can still be caused by the
stochasticities.

To explore how big the impact of the stochasticities can be on the results and how this correlates with
the required number of replications, a third test is performed. Again, the 900 replications are placed in
100 different orders and for six different numbers of replications the speed distributions are obtained.
Figure 3.19 illustrates, per number of replications, how the mean and standard deviation of the 100
speed distribution vary. As the figures illustrate, the variance decreases as number of replications in-
creases. However, even at 500 replications the mean and standard deviation can still vary depending
on the exact order of the seeds. The figure also illustrate that, although the patterns are similar for both
scenarios, the variances differ whereby the variance is larger in the case of the high density scenario.
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Figure 3.19: Influence of the order of the seed versus the number of replications

Overall, the tests show that the performance of the method is not very good regardless of the choice
of stopping criteria. As the figures in Figure 3.19 illustrate, one has to take into account the possible
variance caused by different seed orders when comparing results of different simulations. For a given
required number of replications, one can expect a certain variance in the results. Hence, for differences
between simulations that fall within this range one cannot exclude the possibility that this is caused the
stochastic nature of the model.

3.4.4 Conclusions on how to deal with the stochastic nature of the model

So, based on the subsections above the following can be concluded. The method for determining the
required amount of replications will use the speed distribution as the metric and a convergence based
method using the A-D test. Given that the stopping criteria do not seem to strongly influence the
performance of the method the choice if made to use 0.25 and 10 as the values for, respectively, pthreshold
and b. The lowest number of consecutive replications was chosen because the higher the number of
consecutive replications the more computationally heavy the method becomes. The largest value for
the threshold value was chosen because, as Figure 3.18 illustrates, this values clearly leads to a higher
number of replications and as Figure 3.19 illustrates, a higher number of replications leads to a smaller
influence of the exact order of the seeds. However, regardless of the required number of replications
one obtains using this method, the exact order of the seed will still have to be taken into account when
comparing different simulations. Based on figures, such as those shown in Figure 3.19, one should get
an estimate of the size of the differences that can be caused by differences in the order of seeds. This
should be done for every scenario as Figure 3.19 indicates that differences between scenario exist.
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3.5 Conclusions

In this chapter a number of elements relevant for the following chapter have been discussed. The
chapter answers the questions: Which reference data to use?; Which scenarios to use?; Which paramet-
ers to use?; and; How to deal with the stochastic nature of the model?

Based on an evaluation of the available reference data the choice was made to use data collected
during the Hermes project. The evaluation of the available data also showed there to be not enough
data to investigate the effect of different population compositions on the calibration.

Based on the literature review and the availability of reference data, seven scenarios were chosen to
be used in the upcoming sensitivity analysis and calibration. These seven scenarios include five of the
ten movement base cases and two different density levels. All seven scenarios are also coupled to an
reference data set which will be used during the calibration to compare the simulation results against.

An analysis of PD showed it to be stochastic in nature. Furthermore, 11 parameters were identified
which influence the operational behaviour. Out of these 11 parameters, four are not considered relevant
within the scope of this research and hence won’t be taken into account during the sensitivity analysis
or the formation of the search space for the calibration.

To determine the required number of replications a sequential method, based on convergence cri-
teria, and using the A-D test, will be used. Tests of the method showed its performance to be problem-
atic and hence an estimate of the possible difference caused by the stochasticities, for a certain number
of replications, is necessary for all scenarios. This estimate will indicate if differences between sim-
ulations are likely caused by stochasticities or that they can be attributed to differences in parameter
values.
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In this chapter the sensitivity analysis will be discussed. The goal of the sensitivity analysis is to obtain
insight into the model’s sensitivity to changes in the operational parameters. These insight will be used,
among other things, to determine the search space for the calibration.

The insight into the sensitivities are used, when determining the search space, to limit the number
of parameter included in the search space. The reason for limiting the number of parameters included
in the search space is the following: The size of the search space and the number of parameters are
exponentially related (kn, whereby n is the number of parameters and k is the number of parameter
values that will be taken into account during the calibration). An optimization algorithm will take at
worst kn∗t to determine the optimal parameter set whereby t is the amount of time it takes to obtain the
fitness of a given parameter set. In the case of this research this t is fairly high given that for every point
one has to run many simulations due to the need for multiple replications and the usage of multiple
scenarios. For example, running simulations for all seven scenarios using 50 replications per scenario
takes about 5 minutes on the computer available to this research.

When deciding whether or not to include a parameter in creating the search space the following ra-
tionale is used: The more sensitive the model is to changes in a particular parameter, the more important
it is that one obtains a good estimate of its value given that a small deviation can lead to significantly
different results.

The chapter is build up as follows: In the first section (section 4.1) the methodology for the sensitivity
analysis is discussed. As this section will show the methodology is based on a qualitative analysis,
discussed in section 4.2, and a following quantitative analysis discussed in section 4.3.

4.1 Methodology

This section introduces the methodology used to perform the sensitivity analysis. Ideally, the sensitiv-
ity analysis gives insight into both the model’s sensitivity to changes in a single parameter (first-order
effect) and simultaneous changes in multiple parameters (higher-order effects). A review of the literat-
ure did not turn up any methodologies specifically aimed at pedestrian simulation models. However,
a brief review of the literature of the closely related field of microscopic (motorized) traffic simulation
models did turn up a methodology. In (Punzo, Montanino & Ciuffo, 2015) a variance-based method is
proposed using a sensitivity index, including both first and higher-order effects, to rank the parameters.
Although the method has the advantage of both incorporating first and higher-order effects, compared
to, for example, a one-at-a-time method which only takes into account the first-order effects, it is com-
putationally expensive. Certainly if one takes into account that, in the case of pedestrian simulation
models, determining the sensitivities based on one scenario is impossible as a consequence of the dif-
ferences in behaviour between different movement base cases (Duives, 2016). Furthermore, an insight
into just the first-order effects is deemed sufficient for the goals of this research. So, in the remainder of
this section a three-step methodology, based on a one-at-a-time principle, will be discussed.

4.1.1 Three-step methodology

In this research the choice is made to perform the sensitivity analysis in three steps. This methodology is
chosen primarily because it limits the amount of simulations necessary to obtain the first-order sensitiv-
ities of all parameters in all scenarios. The three step of the methodology are depicted in Figure 4.1. As
the figure illustrates, the process is performed using a combination of one scenario and one parameter.
Exactly which combinations of scenarios and parameters are tested is explained in the next subsection.
Below, the three steps are introduced:

1. The first step in the process is to find the maximum deviation from the default value, for the
given parameter and scenario, that still results in realistic behaviour. This analysis is based on a
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qualitative analysis which is explained in more detail in section 4.2. This step results in an upper
and lower boundary which are the input to the next step. Because PD has undergone some basic
calibration, it is assumed that the optimal values will not deviate much from the default values.
Hence, a maximum deviation of ±25% is used. The added advantage of this step is that it also
gives insights into elements that are not easily quantified in a metric. For example, this step gives
insight into whether or not the model is capable of producing lanes in a bidirectional flow.

2. The second step is a quantitative analysis which determines if the upper and lower boundary
result in significantly different results compared to the default. If neither of the boundaries sig-
nificantly differs from the default, it is assumed that the model is not sensitive to changes in this
parameter for the given scenario and boundaries. If one or both of the boundaries result in signi-
ficant differences we continue to the third step.

3. In the third step the development of the sensitivity over the whole range between the upper and
lower boundaries is investigated. In case only one of the two boundaries produces significant dif-
ferences the development of the sensitivity is only investigated for the range between the default
value and the boundary that produced significant different results.

Both step two and three, involving a quantitative analysis, are explained in more detail in section 4.3.
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Figure 4.1: Overview of the methodology for the sensitivity analysis of a single parameter and scenario

4.1.2 Combinations of scenarios and parameters

The methodology chapter (chapter 3) concluded that, in total, seven scenarios will be used during
this research and that seven parameter are of interest. This leads to 49 combinations of scenarios and
parameters that need to be investigated during this sensitivity analysis.

For every one of these 49 combinations the question - Is a change in the parameters value unlikely
to influence the simulation results? - is posed. Based on this question, three combinations are ex-
cluded from the analysis and in the case of four other combinations the analysis will only be performed
for a decreased value. The three combinations that are excluded from the analysis are the combina-
tions between the minimal desired speed and the low density scenarios. The low density scenarios are
defined such that the speeds of pedestrians should remain high and never come close to the minimal
desired speed, even when it is increased by the maximum deviation of 25%. In the case of the four high
density scenarios the default value for the FoV avoidance range is used as the upper boundary. A value
larger than the default value is not expected to make any difference given that PD only takes the four
closest pedestrians into account and in the case of the high density scenario it is highly unlikely that
these four closest pedestrians are not within the 8 meter range (the default value).

So, as Table 4.1 illustrates, for 42 of the 49 combinations the sensitivity will be investigated for both
an increase and a decrease in the parameter’s value, in four of the 49 cases it will only be investigated
for a decrease in the value and three of 49 cases won’t be investigated at all.

As noted in section 3.2, the scenarios used for the sensitivity analysis differ slightly from those used
for the calibration. In appendix B one can find the exact lay-out for all scenarios and the inflows used.
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Table 4.1: Combinations of scenarios and parameters investigated during the sensitivity analysis. The acronyms
identify the scenarios (i.e. B-L = bidirectional low, B-H = bidirectional high, B = bottleneck, C-L = corner
low, C-H = corner high, T-L = t-junction low, T-H = t-junction high).

B-L B-H B C-L C-H T-L T-H
Preferred clearance -+ -+ -+ -+ -+ -+ -+
Side pref. update factor -+ -+ -+ -+ -+ -+ -+

Min. desired speed x -+ -+ x -+ x -+

Relaxation time -+ -+ -+ -+ -+ -+ -+
Viewing angle -+ -+ -+ -+ -+ -+ -+

FoV avoidance range -+ - - -+ - -+ -

Personal distance -+ -+ -+ -+ -+ -+ -+

-+ Relevant to check both an increased and a decreased value (compared to the default)

+ Relevant to check an increased value (compared to the default)

- Relevant to check a decreased value (compared to the default)

x Not considered relevant

The inflows are chosen such that the high density scenarios have a flow twice that of the low density
scenarios. In the case of the bidirectional scenario, the high density inflow was chosen such that during
the simulation time of 1.5 minutes the flow would not break down.

4.2 Qualitative analysis

In this section the results of the qualitative analysis are presented whereby the goal of this analysis is
to determine the boundaries for the quantitative analysis. Before the results are presented it will be ex-
plained how the analysis is performed. In subsection 4.2.1 the setup of the analysis is discussed. This is
followed by the discussion of what is considered realistic behaviour in subsection 4.2.2. Subsection 4.2.3
will present and discuss the results.

4.2.1 Setup of the qualitative analysis

The basis of the analysis are 86 separate simulations (42 combinations which both a simulation with
an increased value of 25% and a simulation with an decreased value of 25% plus four simulations
with only a simulation with a 25% decreased value). All these 86 simulations are reviewed by hand to
determine whether or not the behaviour is considered realistic according to the criteria explained in the
next subsection.

In case the behaviour in a simulation is found to be realistic, the boundary is kept at the maximum
deviation of 25%. If this is not the case the bisectional method is used to find the maximum boundary,
for which the behaviour is considered realistic, within a precision of 5% point. This takes at most 3 or 5
steps including the first test with the maximum deviation.

4.2.2 Assessment of the behaviour

As the methodology states, it has to be determined what constitutes realistic behaviour. Because it is
considered easier to describe unrealistic behaviour, the assessment is based on whether or not the simu-
lations show unrealistic behaviour. First, a general description of characteristics that signify unrealistic
behaviour is given. These descriptions are independent of the movement base case. Secondly, a de-
scription is given of additional characteristics of unrealistic behaviour that are related to a specific base
case. Work by (Campanella et al., 2014) forms the basis for these descriptions.

Because it is not known how realistic the model’s behaviour is when using the default values, for
every scenario, a simulation is performed using the default values. These seven simulation runs are
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used as a baseline to which the other simulations are compared. This is done to assess whether any
unrealistic behaviour found in the simulations is the result of a change in the parameter’s value or
whether it is a case of the model not being able to model this behaviour realistically by default. Only
the first case is reason for continuing the search for the maximum boundary that does produce realistic
behaviour.

General description

To assess whether or not the simulated behaviour is realistic a number of elements are used to assess
the results.

Number of collisions: How often do pedestrians collide with nearby pedestrians? In this case a col-
lision is defined as physical contact, the two circles representing the pedestrians overlap, that causes
a clear and sudden change in either the speed and/or direction for one or both of the pedestrian in-
volved. Examples of this are: Two pedestrians colliding head-on, the circles overlap, and as a result
one of them, or both, bounce back. Or, two pedestrians colliding under an angle whereby one or both
of them bounce to the side. Two pedestrian who brush each other, whereby the circles show a small
overlap, but whose speed and direction does not show a sudden change, is an example which is not
considered to be a collision. The more collisions the more unrealistic the behaviour is consider to be.

Straying outside the walkable area: Do pedestrian stray outside of the boundaries of the walkable
area? The more they stray outside the walkable area the less realistic the simulation.

Erratic movement: Does the pedestrian move erratically, making many sudden changes to its speed
and direction (not caused by a collision)? Given that, within this research, the scope is normal walking
behaviour and not, for example, running behaviour or panicking behaviour, a pedestrian isn’t expected
to make many sudden changes in his/her movement and the more this happens the less realistic the
behaviour.

Bidirectional stream

In a bidirectional stream two additional elements are considered, namely, lane formation and ped-
estrian being pushed backwards. In the first case one would expect lanes to form in a bidirectional
stream and hence some leader-follower behaviour. Lack of this leader-follower behaviour is considered
unrealistic. Secondly, given that the bidirectional flow causes head-to-head interactions there exists the
possibility that a pedestrian is pushed backwards by one or more other pedestrian travelling in the
opposite direction. This is considered to be unrealistic behaviour.

Bottleneck

In the bottleneck scenario there are three additional elements which are considered. These are:

Pedestrians near the wall are not able to enter the bottleneck: A simulation is considered less realistic
if pedestrian near the wall of the bottleneck are consequently trapped and are not able to enter the
bottleneck.

Movement towards the wall: One would expect pedestrians, who are not already close to the wall,
generally not to move towards the wall given that it is more difficult to enter the bottleneck when
standing next to the wall.

Pedestrians do not fan out after exiting the bottleneck: After the bottleneck the walkable area widens
and hence it is expected that the pedestrians exiting the bottleneck will fan out and walk over a larger
width than the bottleneck width.

Corner

In the case of a corner scenario, a smooth turning movement thought the corner is expected so lack
of this indicated unrealistic behaviour. Furthermore, work by Duives (2016) showed that pedestrians
temporarily reduce their speed upstream of the corner and increase their speed again downstream of
the corner. Hence, no reduction of speed is considered unrealistic behaviour.
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T-junction

Based on research by Zhang, Klingsch, Rupprecht, Schadschneider and Seyfried (2012) two additional
elements are taken into account when assessing the simulations. Firstly, as the data in (Zhang, Kling-
sch, Rupprecht et al., 2012) shows, the two flows show a high level of segregation even after they
have merged. So, lack of this high level of segregation is considered to identify unrealistic behaviour.
Secondly, the research shows that one would expect a low density area with a triangular shape where
the two flows merge. So, the more pedestrians pass through this area the more unrealistic the behaviour.

4.2.3 Results of the qualitative analysis

In this part of the section the results of the qualitative analysis are presented. For every scenario it is
described what: a) the behaviour is when the default values are used, and b) for every parameter, what
the boundaries are that still result in realistic behaviour.

Bidirectional straight - high

The assessment of the simulation using the default values showed that the pedestrians walk in a non-
erratic manner, form lanes which are stable and don’t push each other backwards. However, pedestri-
ans do tend to cross the boundaries of the walkable area at multiple occasions, although the centre of
the circles always remain within the walkable area. During the simulation, collisions occur quite often
and if they occur they are usually between two pedestrians moving in opposite direction and under an
angle such that the pedestrians bounce to the side. So when the default parameter values are used, the
model seems to lack some level of realism when it comes to staying within the walkable area and when
it comes to avoiding collisions.

The assessment of the simulations for the different parameters showed little differences in the be-
haviour when compared to the default case. Only in the case of the increase of 25% of the relaxation
time did the number of collisions seem to increase somewhat compared to the default case. However,
the difference is still relatively small. So, overall the changes in parameters with ±25% do not seem to
cause the behaviour to become significantly less realistic than is the case when the default values are
used. Hence all boundaries are set to the 25% deviation.

Bidirectional straight - low

The simulation of the scenario with all parameters at their default value showed behaviour comparable
to the high density case of the same scenario. So, in this scenario it is also the case that the model cannot
prevent the occasional crossing of the boundaries and collisions.

The inspection of all the other simulations did not show clear differences in behaviour compared to
the default case. Hence, all parameter boundaries are kept at the maximum deviation of 25%.

Bottleneck

Assessing the results of the simulation performed with the default values showed some collisions,
primarily side-to-side or front-to-back, and some cases where pedestrians cross the boundaries slightly.
Overall, the movements are non-erratic and pedestrians positioned near the wall at the bottleneck entry
are able to enter the bottleneck and hence do not get stuck. After the pedestrians exit the bottleneck they
do fan out whereby especially faster pedestrian do this in order to overtake slower pedestrians.

All combinations of deviations and parameters were assessed and none of the cases showed large
deviations in the behaviour. So, in all cases the boundaries for the deviations remain at the maximum
value of 25%.

Corner - high

The results of the simulation using the default values for all parameters showed smooth turning move-
ments, a few collisions, primarily pedestrians brushing each other, and some minor crossings of the
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boundaries of the walkable area. Furthermore, pedestrians do slow down upstream of the corner to
speed-up again once they leave the corner.

The assessment of all other simulations did not show any clear unrealistic behaviour which leads to
the conclusion that all boundaries are set to the maximum deviation of 25%.

Corner - low

The simulations of the corner scenario with low flows all showed similar behaviour. The turning move-
ment is smooth, collisions do not occur, the boundaries of the walkable area are not crossed and the
pedestrians do seem to slow down somewhat upstream of the corner and speed up again downstream
of the corner especially at the inside of the corner. So, none of the simulations showed behaviour which
can be considered unrealistic and hence all boundaries are kept at the 25% deviation.

T-junction - high

The assessment of the simulation using the default values showed that the pedestrian walk in a non-
erratic manner. However, the boundaries are crossed quite frequently and a good number of collisions,
primarily side-to-side, occur especially in the area where the two flows meet. Once the flows have
merged, boundary crossings and collision don’t occur. Once the flows have merged pedestrians do
primarily walk on the same side of the corridor as the branch from which they originated. However,
there are also quite a few pedestrians who take a path that causes them to end up on the other side of
the corridor. This seems to correlate with the lack of the triangular shaped low density region which
would be expected at the point where the two flows meet. The primary cause of this seems to be the
route choice algorithm which is outside of the scope of this research.

The other simulations showed similar behaviour compared to the simulation with the default values
and large differences were not found. Hence, the boundaries of all parameters are kept at the maximum
of 25%.

T-junction- low

The results of all of the simulations showed little differences compared to the default case. In all cases
the movements where smooth and boundaries were not crossed. Very few collision occurred and if they
occurred they were primarily side-to-side and occurred in the area where the two flows meet. Similar
to the high flow case the flows after merging were not as segregated as one would expect and in the
low flow case this is far more apparent probably because in the high flow case the higher density level
forces pedestrians more to one side than in a low density case. Given that the simulations showed little
differences the boundaries all remain at the 25% deviation level.

4.2.4 Conclusions on the qualitative analysis

As is clear from the assessments of the different scenarios, the model does lack some level of realism
primarily due to the number of collisions that occur and the number of times the boundary of the walk-
able area is crossed. This primarily seems to be the case at higher densities and when the interactions
are not simply front-to-back.

The assessment of the effects of a change in a parameter’s value did show that in all cases the change
in the parameter’s value with plus or minus 25% did not cause the behaviour to become unrealistic. So,
the boundaries of all parameters for the quantitative analysis are set at the maximum deviation of 25%.

4.3 Quantitative analysis

This section presents the quantitative analysis. As described in section 4.1, it is performed to determine
whether the results at the boundaries, obtained in section 4.2, differ significantly from the default. If the
boundaries do significantly differ, a further analysis is performed to determine the development of the
sensitivity over the whole range between the lower and upper boundaries.
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In subsection 4.3.1 the setup of the analysis is discussed. Based on this setup the analysis is per-
formed, the result of which are presented in subsection 4.3.2.

4.3.1 Setup of the quantitative analysis

In order to determine whether the results at the boundaries differ significantly one needs to answer two
questions: 1) Which metric or metrics to use?, and 2) How to test whether a difference is significant?

In this research the distribution of the speeds is used as the metric, for the same reasons as it is used
for determining the number of replications (see section 3.4). The speed distribution is made up of all
instantaneous speed measurements for all pedestrians during the time they spend in the measurement
area. For all scenarios except the bottleneck scenario, the first 15 seconds of a simulation are used as a
warming up period to populate the scenario. Speeds collected during these first 15 seconds are thus not
part of the speed distribution.

To test whether the speed distribution, obtained using the boundary value of a parameter, differs
significantly from the default, the A-D test is used. If the null hypothesis of the A-D test, the two
samples are drawn from the same distribution, can be rejected at the 0.05 significance level, the speed
distributions are considered to differ significantly. However, as section 3.4 also showed, depending
on the scenario and the number of replications one cannot reject the possibility that a certain difference
exists due to the stochastic nature of the model. Hence, it should be determined if the difference is larger
than the difference which could exist purely due to the stochastic nature. This is done by comparing
the means and standard deviations of the two speed distributions and, together with the number of
replications, compare those differences with the differences found when testing for the influence of
the order of the seeds. For example, in the case of the bidirectional scenarios one would compare the
differences to those presented in Figure 3.19.

To assure that the speed distribution has indeed captured the relevant behaviour a second metric
will be used to assess any differences. This second metric is the number of pedestrians that exit the
measurement area during the measurement period. This metric is used because it is an easy to determ-
ine metric for the efficiency of the flow. Using this metric, it will be assessed if the speed distribution
indeed captures the efficiency of the flow well whereby one would expect a lower mean speed to cor-
relate with a lower number of pedestrians that exited the measurement area. This metric is used for all
scenarios except the bottleneck scenario because, contrary to the other scenarios, the bottleneck scenario
does not have a fixed end time but a fixed number of pedestrians. So, in case of the bottleneck scenario
the check is performed based on the time the last pedestrian exited the bottleneck whereby one would
expect that a lower mean speed correlates with a longer time necessary for the last pedestrian to exit
the bottleneck.

4.3.2 Results of the quantitative analysis

In this part the results for all seven scenarios are presented. First, the results of the tests with the
maximum deviations are analysed to obtain which parameters deviate such that the model can be con-
sidered sensitive to changes in this parameter for that specific scenario. Afterwards, for the parameters
that are considered sensitive, a further analysis is performed to assess how the sensitivity relates to the
size of the deviation of the parameter’s value.

As section 4.3 concludes, no unrealistic behaviour was found at the maximum deviations of 25%.
So, for every scenario, the relevant boundaries (see Table 4.1) are all set to the 25% level and analysed
accordingly.

Bidirectional straight - high

The A-D test showed that all speed distributions, for all parameters and boundaries, were significantly
different from the default speed distribution. However, if one looks at the size of the deviations (see
Table C.1), the data presented in Figure C.1 and the number of replications (N) it is clear that most
deviations fall within the range one would expect to occur just because of the stochasticities (As Fig-
ure C.1 shows, at around 100 replications one would expect deviations of respectively 2.3% and 3.1%
to occur for the mean and the standard deviation). Only two parameters resulted in deviations larger
than would be expected (these values are highlighted in Table C.1) based on stochasticities. Hence, the
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sensitivity of the model to changes in the relaxation time and the viewing angle are investigated further
below.
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Figure 4.2: Sensitivities - Bidirectional high flow
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Figure 4.3: Sensitivities check - Bidirectional
high flow

Figure 4.2 visualises the model’s response to changes in
the relaxation time and the viewing angle. From the graphs
it is clear that the model is far more sensitive to the relax-
ation time than to the viewing angle given the larger devi-
ations. Furthermore, in the case of the relaxation time, in-
creasing the value seems to have a stronger effect on the res-
ults than decreasing the value. An increased relaxation time
results in less efficient flows, given the lower mean speed,
whilst a decreased relaxation time results in a more efficient
flow.

A change in the viewing angle primarily affects the res-
ults when the viewing angle is decreased. In this case the flow becomes a little bit more efficient. In
case of an increased viewing angle there is no effect on the flow, however, a larger standard deviation
does indicate some change in the underlying behaviour.

Lastly a check is performed in order to assure the mean speeds are indeed a good indicator of the
flow. Figure 4.3 illustrates how many pedestrians exited the measurement area during the measurement
period. From the graph it is clear that a decrease in the speed indeed correlates with a decrease in the
number of pedestrian that exited the area and hence correlates with a lower flow. Furthermore, the
graph also shows a larger effect when the relaxation time is increased than when it is decreased, which
is consistent with the earlier findings.

So, in the case of the bidirectional high density scenario, the model is sensitive to changes in both
the relaxation time and the viewing angle. However, in the case of the viewing angle, this in only the
case when the deviation from the default value is near the maximum deviation.

Bidirectional straight - low

The results of the simulations showed, again, that all speed distributions were significantly different
compared to the default. However, based on the data in shown Table C.2 and Figure C.2 one can
conclude that only the increase in the relaxation time results in deviations larger than one would expect
based upon the stochastic nature of the model. And, as Figure 4.4 shows, this is only the case for a large
deviation from the default value.
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Figure 4.4: Sensitivities - Bidirectional low flow

−25 −20 −15 −10 −5 0 5 10 15 20 25
Deviation from default [%]

113.4

113.6

113.8

114.0

114.2

114.4

P
e
d
s.
 E
 
it
e
d
 [
-]

Rela ation time

Figure 4.5: Sensitivities check - Bidirectional
low flow

The graph (Figure 4.5), displaying the number of ped-
estrians that left the measurement area, does show a sim-
ilar pattern as the mean speed. An increase in the relaxation
time correlates with a decrease in the speed and a decreased
number of pedestrians leaving the measurement area.

So, the model does not seem to be sensitive to changes of
25% of most of the parameters except for the increase in the
relaxation time which does lead to a decreased efficiency of
the flow.

Bottleneck

The A-D tests, performed on the results of bottleneck scenario, did show that all speed distributions
differed significantly when compared to default. Based on the deviations at 25% (see Table C.3) and the
influence of the seeds (see Figure C.3) it is clear that the model can be considered insensitive to changes
of 25% in three of the seven parameters. These three are the side preference update factor, the preferred
clearance and the field of view avoidance range.
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Figure 4.6: Sensitivities - Bottleneck
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Figure 4.7: Sensitivities check - Bottleneck

As Figure 4.6 illustrates, a change in the relaxation time
has the largest impact on the results whereby it has to be
noticed that contrary to the bidirectional scenarios decreas-
ing the relaxation time has a larger impact than increasing
it. The viewing angle also clearly impacts the results and,
comparable to the relaxation time, this is also more appar-
ent when the value is decreased compared to when it is in-
creased. The personal distance and the minimum desired
speed do also impact the results slightly, primarily when
the increase or decrease of the value is large.

Figure 4.7 shows that the speed correlates well with the
time the last pedestrian exited the bottleneck given that a
decrease in the mean speed indeed correlates with an increase in the time the last pedestrian exited the
bottleneck.

So, in case of the bottleneck scenario the model is clearly most sensitive to changes in the relaxation
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time. Changes in the viewing angle also have a clear impact on the results. The personal distance and
the minimum desired speed can have an impact on the results when the deviations from the default
value are large. However, the model is not very sensitive to changes in either of these parameters.

Corner - high

In the case of the corner high density scenario the results of the simulations showed that all speed distri-
butions differed significantly from the speed distribution obtained using the default values. However,
when combining the data presented in Table C.4 and Figure C.4 it is clear that only two parameters
differ more than one would expect based on the stochasticity of the model.
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Figure 4.8: Sensitivities - Corner high flow

As Figure 4.8 shows, the model is primarily sensitive to changes in the relaxation time. This sens-
itivity is not symmetrical because an increase in the relaxation time clearly has a larger impact than a
decrease. The viewing angle has a small impact when the deviation from the default value is large and
the viewing angle is decreased.
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Figure 4.9: Sensitivities check - Corner high
flow

Figure 4.9, again, shows that the changes in the mean
speed correlate well with the number of pedestrians that ex-
ited the measurement area.

So, as is the case in all aforementioned scenarios, the
model is most sensitive to changes in the relaxation time
and comparable to the bidirectional scenarios the sensitiv-
ity is not symmetrical. The viewing angle has a small im-
pact but the model clearly is not very sensitive to changes
in this parameter.

Corner - low

All simulations of the low density corner scenario did result in a significant different speed distribution
compared to the default simulation. Table C.5 and Figure C.5, however, show that only a change in the
relaxation time had an effect larger than one would expect given the stochasticity of the model.
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Figure 4.10: Sensitivities - Corner low flow
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Figure 4.11: Sensitivities check - Corner low
flow

Figure 4.10 shows that, only when the deviations are
near the maximum deviation, the change is larger than one
would expect. Furthermore, this only holds for the mean
and hence it is clear that in the case of this scenario the
model is not very sensitive to any change in the paramet-
ers smaller or equal to 25%.

The graph in Figure 4.11 shows, again, a good correla-
tion between the change in the mean speed and the number
of pedestrians that exited the measurement area.

T-junction - high

As is the case for all aforementioned scenarios, all simulations did result in significantly different speed
distributions. In four of the seven parameters these differences were also larger than one would expect
based on the stochasticities of the model. The preferred clearance, the minimum desired speed and the
FoV avoidance range did not seem to have any impact on the results as can be derived from Table C.6
and Figure C.6.
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Figure 4.12: Sensitivities - T-junction high flow

As Figure 4.12 shows there is a clear difference regarding how much each parameter impacts the
results. The relaxation time is clearly the parameter to which the model is most sensitive in this scenario.
The sensitivity to the relaxation time is, again, not symmetrical and a decrease in the relaxation time
clearly has a larger impact than an increase. This asymmetry is comparable to the one found in the
bottleneck scenario. The viewing angle also has a clear impact on the model results, although this
impact is clearly smaller than is the case with the relaxation time. Comparable to the relaxation time,
and also to the bottleneck scenario, a decrease in the viewing angle has a larger impact than an increase
in the viewing angle. The other three parameters have some impact on the result, however, this is
primarily the case when the deviations are large.
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Figure 4.13: Sensitivities check - T-junction
high flow

The graph in Figure 4.13 does indeed show that as the
mean speed increases the number of pedestrians that exited
the measurement area also increases. However, the asym-
metry found in the mean speeds does not exist in case of
the number of pedestrians exited. A possible explanation
for this discrepancy could be that as the relaxation time de-
creases the pedestrians keep walking at higher speeds, how-
ever, the behaviour changes such that on average their path
is longer. The graph of the standard deviation does indic-
ate a change in behaviour when the relaxation time in de-
creased below -12%.

Overall, in the case of this scenario, the model is most sensitive to changes in the relaxation time.
Changes in the viewing angle also clearly impact the results however the size of this impact is much
smaller compared to the relaxation time. The personal distance, the side preference update factor and
the minimum desired speed do impact the results when the deviation from their default value is near
the maximum deviation. However, the model is not very sensitive to changes in these parameters.
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T-junction - low

The simulations using the maximum deviation resulted in speed distributions that were all significantly
different from the default speed distribution. Out of the six parameters tested, only changes in the
relaxation time resulted in deviations that were larger than one would expect based on the stochasticity
of the model. As Table C.7 and Figure C.7 show the other five parameters did not differ more than one
would expect even when their values were increased or decreased by 25%. Figure 4.14 shows that an
increase in the relaxation time has a smaller impact on the results than a decrease. This is opposite of
the finding in the high density case of this scenario.
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Figure 4.14: Sensitivities - T-junction low flow

−25 −20 −15 −10 −5 0 5 10 15 20 25
Deviation from default [%]

151.0

151.5

152.0

152.5

153.0
P
e
d
s.

 E
x
it

e
d
 [

-]

Relaxation time

Figure 4.15: Sensitivities check - T-junction
low flow

If one compares the mean speeds with the number of
pedestrians who exited the measurement area (see Fig-
ure 4.15) it is clear that they correlate as one would expect.
An increased relaxation time results in a decreased mean
speed and a decreased number of pedestrians who exited
the area. Contrary the the high flow case the graphs show
the same asymmetry.

So, in the case of the low density t-junction scenario the
model is only sensitive to changes in the relaxation time.

4.3.3 Conclusions on the quantitative analysis

Based on the results of all seven scenarios a number of conclusions can be drawn about the sensitivity
of the model to changes in the values of the parameters.

• Firstly, the relaxation time is the only parameter to which the model is sensitive in all seven scen-
arios. In all cases the mean speed increases as the relaxation time decreases and vice versa. How-
ever, how sensitive the model is to a change in this parameter differs per scenario and also the
asymmetry differs.

• Secondly, the model did not show any sensitivity to changes in either the preferred clearance and
the FoV avoidance range. It has to be noted of course that this only holds for deviations of up to
25% percent given that larger deviations were not tested.

• Thirdly, out of the four remaining parameters that showed some significant impacts in one or more
of the scenarios, the model is clearly more sensitive to the viewing angle than to the other three.
However, the sensitivity of the model to the viewing angle is clearly smaller than its sensitivity to
the relaxation time. The other three parameters, the personal distance, the side preference update
factor and the minimum desired speed only showed some significant impact at large deviations
and hence the model is not very sensitive to changes in these parameters.

• Overall, the speed distribution does seem to represent the flow well except in the case of the high
flow t-junction scenario where a discrepancy can be found between the size of the impact a lower
relaxation time has on the mean speed and the number of pedestrians that exited the measurement
area.
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4.4 Conclusions

In this chapter a sensitivity analysis was performed with the goal to get insight into how sensitive the
model is to changes in the operational parameters. These result are necessary to define the search space
of the calibration. In total seven different parameters were tested using seven different scenarios and a
three step approach.

The qualitative analysis showed that deviations of 25% percent of the default value did not lead to
unrealistic behaviour for any of the parameters in any of the scenarios. So, based on those results the
boundaries for all parameters were set at the maximum deviation of 25%.

The quantitative analysis showed that the model was not sensitive to changes of 25% in the values
of the preferred clearance and the FoV avoidance range. Out of the other five parameters, the relaxa-
tion time was clearly the parameter to which the model is most sensitive. The model is also sensitive
to changes in the viewing angle, however, less sensitive than it is to changes in the relaxation time.
Changes to the personal distance, the side preference update factor and the minimum desired speed
only showed some significant impact in some scenarios at large deviations and hence the model is not
very sensitive to changes in these parameters.

The quantitative analysis also showed differences between the scenarios regarding the sensitivities.
These differences are on multiple levels, namely:

• To which parameters the model is sensitive.

• How sensitive the model is to the different parameters.

• How the sensitivity is related to the size of the deviation from the default value.

So, it is clear that the sensitivity of the model to parameter changes depends on the scenarios used.
Hence, during a sensitivity analysis of a pedestrian simulation model one should use multiple scenarios
to get a complete insight into the sensitivities.

Overall it can be concluded that the model is primarily sensitive to changes in the relaxation time
and the viewing angle and hence these are the most important parameters to take into account during
the calibration. Furthermore, it can also be concluded that one needs to use multiple scenarios to obtain
complete insight into the sensitivities.
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This chapter discusses the calibration of the model using different combinations of objectives. The main
goal is to explore how different choices regarding the objectives influence the calibration.

The chapter discusses the following elements: In section 5.1 the methodology is discussed which ex-
plains how the calibration is performed. This is followed by a discussion of the results of the individual
objectives in section 5.2. Section 5.3 explores how different choices regarding the objectives impact the
calibration result by comparing different combinations of objectives to each other. In section 5.4 the
methodology is systematically discussed in order to obtain insight into how changes in the method-
ology could potentially affect the results. Lastly, section 5.5 discusses the practical implication of the
results.

5.1 Calibration methodology

In this section the calibration methodology is discussed. First, an overview will be given of the ele-
ments which are part of the multiple-objective calibration framework. After this, all these elements are
discussed in more detail.

In section 2.2 nine elements have been identified which are involved in calibrating a pedestrian
model using multiple objectives. These are:

1. Scenarios

2. Metrics

3. Objective functions and
comparison methods

4. Optimization method

5. Stopping criteria

6. Search space definition

7. Stochasticities

8. Input definition

9. Reference data

Some of these elements are discussed simultaneously given their strong interdependency. The first
subsection (subsection 5.1.1) discusses the scenarios in combination with the reference data and the
input definition. Subsection 5.1.2 discusses the metrics followed by the discussion of the objective func-
tions and comparison methods in subsection 5.1.3. In subsection 5.1.4 the choice for the optimization
method is discussed including the choice of the stopping criteria and the definition of the search space.
Lastly, in subsection 5.1.5 it is discussed how the stochastic nature of the model is dealt with.

5.1.1 Scenarios, reference data and input definition

Chapter 3 already concluded that the calibration will be performed using seven different scenarios and
the data from the HERMES project. Hence, this subsection will only discuss the implementation of the
scenarios in PD.

As the review of the literature in subsection 2.2.6 concluded, it is important that the input to the
model matches the reference data as closely as possible. The four input types, identified in subsec-
tion 2.2.6, are discussed in more detail below.

Geometry of the infrastructure

The geometry is implemented such that it exactly matches that of the experiment (i.e. both the geometry
of the walkable area and the location of walls). Figs. D.1 to D.4 give a more detailed view of the
implementation.
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Route choice

In the case of PD, the routes the pedestrians intend to follow are influenced by four elements: The
route choice algorithm, the locations of the origins and destinations, the location of waypoints and
the parameters of the route following algorithm. As concluded in subsection 3.3.1, all OD-pairs in
all scenarios have only one possible global route. Hence, the shortest path option of the algorithm,
implemented in PD, is used.

D.1 to D.4 show the locations of all origin and destination areas. Every pedestrian is assigned an
origin and a destination area. A randomly chosen point within these areas determines the exact origin
and destination of the pedestrian. The exact location of the destination can change slightly whilst the
pedestrian traverses its path. However, it will always be located within the assigned destination area.

In both the bidirectional scenarios and the t-junction scenarios waypoints are used to ensure a better
match between the trajectories in the simulations and the data. The decision to use waypoints and
the choice of their location are based upon visual comparisons of the trajectories of the data and the
simulations.

The last of the four elements, influencing the route of a pedestrian, are the parameters of the route
following algorithm. As Table 3.5 showed, the route following algorithm has four parameters. As
subsection 3.3.2 concluded, two of those four parameters, the maximum shortcut distance and the side
clearance factor, should be used to fix unrealistic local path finding behaviour. The visual comparison
of the trajectories did not show unrealistic local path finding and hence these parameters remain at their
default value. The other two parameters, the preferred clearance and the side preference update factor,
also use their default value because, as subsection 5.1.4 will explain, they are not used to define the
search space.

Demand patterns

The demands for each OD-pair in each scenario are determined based on the cumulative curves of the
accompanying data set. In Table 5.1, the demands obtained from the cumulative curves are presented.
For all scenarios the demands are assumed to be constant. A test, comparing the cumulative curve with
the curve based on the constant demand, resulted in R2 values between 0.919 and 0.999. Hence, the use
of a constant demand is considered to be a good approximation of the actual demand pattern. In the
case of the bottleneck scenario, there is no constant demand. But, at the start of the scenario the start
area is filled with 349 pedestrians which is exactly the same number as in the data.

Table 5.1: Overview of the OD-pairs and the demand per OD-pair

(a) Bidirectional scenarios

O D Demand [ped/s]

High Low

1. 1 a 1.7055 0.881
2. 1 b 1.7055 0.881
3. 2 c 1.6455 0.725
4. 2 d 1.6455 0.725

(b) Corner scenarios

O D Demand [ped/s]

High Low

1. 1 a 3.242 1.441

(c) T-junction scenarios

O D Demand [ped/s]

High Low

1. 1 a 2.213 1.348
2. 2 a 2.432 1.382

Speed distribution

Similar to the demand patterns, the distribution of the preferred speed speeds is also obtained from the
reference data such that, in the simulation, it matches the data. During the experiments, two data sets
were collected with the intention of measuring the preferred speed of the participants. These are the
EOF-300-1 and the EOF-300-2 experiments (see (Keip & Ries, 2009)). The participants walked through
the corner on their own whilst being instructed to walk at their preferred speed. In an area of 2.5 meters
long, starting 1 meter after the pedestrian has rounded the corner, the instantaneous speeds of every
pedestrian is measured. The preferred speed of a pedestrian is the mean of the measured instantaneous
speeds. Figure 5.1 shows the measured speeds in the histogram.
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In PD the default speed distribution is a single triangular distribution (i.e. no distinction is made
between groups based on properties such as gender and age). During the simulation also a single
triangular distribution is used to represent the preferred speed distribution of the population. The
choice was made to use a single distribution because the data and accompanying information did not
contain enough information to make any distinction between groups of participants.
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Figure 5.1: Measured and fitted free speed distributions

Figure 5.1 shows the fitted triangular distribu-
tion. The fit resulted in the following parameter
values:

• Min: 1.24 m/s

• Mean: 1.54 m/s

• Max: 1.92 m/s

5.1.2 Metrics

A part of the multiple-objective framework is the usage of multiple metrics. Subsection 2.2.3 concluded
that during the calibration quantitative metrics should be used, preferably covering all three aggreg-
ation levels (macro, meso and micro). In this research the choice is made to use two metrics at the
macroscopic level, the flow and the spatial distribution, and two at the mesoscopic level, the effort dis-
tribution and the travel time distribution. Microscopic metrics, usually the trajectories, are not used for
three reasons. Firstly, calibrating using trajectories requires a different approach, not compatible with
approaches that are used when calibrating based on macro and mesoscopic metrics. Secondly, cur-
rent approaches for calibrating a pedestrian model based on trajectories do not deal with the stochastic
nature of the model and developing an approach that could deal with the stochastic nature of the model
when calibrating the model based on trajectories is outside of the scope of this research. And thirdly,
as subsection 2.2.3 concludes, given the goal of the calibration, defined in the scope (section 1.2), and
the finding by Campanella (2016) that a calibration based on trajectories did result in inaccurate predic-
tions on the macroscopic level, in this research macroscopic metrics take priority over the microscopic
metrics.

The four chosen metrics are chosen such that at both aggregation levels they measure different as-
pects of the flow. The flow and travel time distribution are included as they are commonly used per-
formance indicators and the spatial distribution and the effort are included as measures that give more
insight into the behaviour and the resulting spatial patterns that do not necessarily bear a strong rela-
tion to the flow and travel time. By including these different types of metrics at both aggregation levels
insight can be gained into how the calibration is affected by the type of metric/metrics used.

In the remainder of this subsection the four metrics are explained in more detail including why they
are chosen out of the many other possibilities. However, first it is explained why a measurement area
and a measurement period are used when collecting the data.

Measurement area and period

The measurement area and period together determine where and when measurements are collected.
Limiting the area and time frame, within which the measurements are obtained, is necessary because
pedestrians are not expected to exhibit the behaviour, relevant to the particular scenario, in all parts
of the walkable area and during every moment of the simulation. The assumption is made that a
pedestrian can be expected to show relevant behaviour in a given area and time frame, when a) the
flow in the area is such that it represents the movement base case the scenario is intended to capture
and b) the density level in the area is at the level it is intended to be. Capturing only the relevant
behaviour is important because without doing so one is not able to capture any differences between the
scenarios based on the properties that make them different (i.e. the movement base case and the density
level). Parts outside the measurement area are a necessary part of the simulation though to make sure
that the simulation does represent the experiments, whose data is used, as closely as possible (i.e. and
thus also to make sure that the behaviour in the measurement area is as representative as possible).
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As an example of why these limitations are used one can take a look at the bidirectional high density
scenarios. In the case of the bidirectional high density scenario, the measurement area is limited to
the eight meter long stretch of corridor since this is where the flow is bidirectional. Outside of this
measurement area the flow is no longer really bidirectional but either unidirectional or crossing. The
measurement period starts only after the measurement area has reached the required density level. Any
data from pedestrians that traversed the area before this time is discarded given that they experienced
a density level below the required density level and their behaviour is thus not representative for the
scenario.

In figs. D.1 to D.4 one can find the locations, shapes and sizes of the measurement areas for all
scenarios. The exact measurement period differs per metric as Table E.1 in appendix E indicates. In
appendix E it is explained, in detail, how these measurement periods are determined.

Flow

In all seven scenarios the average flow is measured along a certain measurement line (see figs. D.1
to D.4) during a certain measurement period according to Equation 5.1. The flow is chosen as a mac-
roscopic metric to check how well the model is capable of reproducing the throughput in different
situations. The reason for using the average flow instead of the flow over the time is twofold. Firstly,
after the warming-up period the flow in the reference data is relatively stable. Secondly, it is easier to
compare two average flows than two timeseries of flows. The average flow is calculated as follows:

q̄i = Ni
∆t ∗ l [ped/s/m] (5.1)

Where Ni is the number of unique pedestrians with main travel direction i that passed the line in
the direction equal to the main travel direction and during the duration of the measurement period
(∆t). The flow in normalized to a flow per meter of measurement line whereby l is the length of the
measurement line. This is done to ease to comparison between scenarios.

As mentioned Ni is the number of unique pedestrians that passed the line. This means that a ped-
estrian is only counted once, namely the first time it passes the line. This is done to prevent artificially
high flow values which could occur if, for example, pedestrians pass the line twice because they were
pushed back. This would primarily be a possible problem in the bidirectional high density scenario
where either:

a An unresolved head-on interaction near the flow line causes a collision in which one of the ped-
estrian bounces back, or gets pushed back, over the flow line and afterwards passes the flow line
a second time. Or,

b The flow has broken down preventing pedestrians to move forward (i.e. towards their destin-
ation) whereby the possibility exists that pedestrians standing closely to the flow line are still
moving back and forth over the flow line without actually moving forward in a significant way.

Distribution over space

The distribution over space measures how the pedestrians are distributed over the measurement area.
A grid of 0.4 x 0.4 m overlays the measurement area and for every cell the percentage of the time it is
occupied is determined as follows:

Fi = Nocc
Nsteps

[-] (5.2)

Where Nocc is the number of time steps cell i is occupied by one or more pedestrians (based on the
centre point of the pedestrians) andNsteps is the number of time steps taken into account. Duives (2016)
showed that the model, used in that particular study, was not able to accurately reproduce the spatial
distribution patterns. Hence, it is interesting to see if this is also the case in this research given the use
of another model and other data sets.

Effort

The effort metric captures how much effort it takes a pedestrian to traverse the measurement area.
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This metric is primarily used to check how well the model is capable of reproducing the underlying
behaviour of the pedestrians. The better the model is able to reproduce the effort it takes a pedestrian
to walk from A to B the more likely it is that the model captures the underlying behaviour well.

The effort is defined as the average change in velocity per time step. So, the more a pedestrian has
to change its velocity during the traversal of the measurement area the more effort it thus takes. The
effort is calculated as follows:

effi =
∑
n−1(|vj;x − vj−1;x|+ |vj;y − vj−1;y|)

n− 1 [m/s] (5.3)

Where vj;x and vi;y are respectively the speed in the x and y-direction at time step j and n the number
of time steps. The speeds are obtained by differentiating the positions:

vj;x = xj − xj−1

t
[m/s] (5.4)

Where xj is the x-position at time step j and t is the duration of the time step. Because the reference
data and the simulation have different time steps the trajectories in the reference data are mapped to the
time steps of the simulation data such that the time steps match. The choice to interpolate the reference
data instead of the simulation data is twofold. Firstly, because the simulation data contains about 1.27
million data sets and the reference data only 7 it is far more practical from a computational point of view
to interpolate the reference data. Secondly, the time step of the reference data is smaller than the time
step of the simulation data and it is considered better to lose some accuracy than to gain it artificially.
The scipy CubicSpline1 method is used for the interpolation.

For both the reference data as the simulation data the individual effort measurements are combined
into a distribution whereby in the case of the simulation data the distribution includes the data from
all individual measurement from all replications. The effort of a pedestrian is only included if the
pedestrian entered the measurement area between the start of the measurement period and the end
of the measurement period minus a buffer. This buffer is the average time it took a pedestrian in the
experiments to traverse the measurement area. The use of the buffer prevents measurements to be taken
into account from pedestrian who only just entered the measurement area. These effort measurement
are discarded because they might not be representative for the effort it takes to traverse the whole
measurement area. The buffer is not applied in the case of the bottleneck as is explained in more detail
in appendix E.

Travel time

The travel time is the time it takes a pedestrian to traverse the measurement area. It is included because,
as Table A.1 shows, it is clearly the most commonly used mesoscopic metric. Hence, it is good to get
insight into how well the model can reproduce the travel time found in the data. The travel time of a
single pedestrian is determined as follows:

TTi = tend − tstart
lref

[s/m] (5.5)

Where tstart and tend are respectively the time the pedestrian first entered the measurement area
and time the pedestrian left the area. lref is the average length of the path in the measurement area,
as obtained from the reference data. By dividing the travel time by this path length one normalizes
the travel time to a travel time per meter. This makes a comparison between different scenarios with
different average path lengths easier.

Again, all measurements are combined into a distribution whereby only the travel time of those
pedestrians who successfully traversed the whole measurement area during the measurement period
are taken into account. The decision of only taking into account those pedestrian who successfully
traversed the whole measurement area could potentially skew the results. This could primarily happen
in the case of the bidirectional high density scenario where, at some point in the simulation, the flow
could break down. This could cause many pedestrians to get stuck in the measurement area till the
end of the measurement period. This, in turn, could potentially lead to a gross underestimation of the
travel time given that the distribution would primarily be made up of those pedestrian who traversed

1https://docs.scipy.org/doc/scipy-0.19.0/reference/generated/scipy.interpolate.CubicSpline.html
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the area before the breakdown of the flow. Hence, it should be checked if the problem described above
does influence the results.

5.1.3 Objective functions and comparison methods

This subsection answer two questions, namely: 1) What objective function to use per metric?, and 2)
How to determine a optimal parameter set from two or more objective functions? As the next subsection
(5.1.4) will show, the chosen optimization algorithm is not aimed at finding the set of Pareto optimal
solutions and hence the objectives have to be combined into a single objective. This changes the second
question to: How to combine the results of two or more objective functions2 into a single objective
function.

In this research the multiple objectives are combined into a single objective using the weighted sum
method (Zak & Chong, 2013). This is in line with research by Duives (2016), the only example in the
literature using both multiple metrics and multiple scenarios to calibrate a pedestrian model. The choice
of the method leads to two other choices which need to be made. Namely, which weights to use and
how to normalize the objectives of the different metrics such that they can be added up in a meaningful
way. The normalization of the errors is necessary because the metrics have different units and different
orders of magnitude.

The normalization method used in this research is based on the ratios between the different metrics
in the reference data. For a detailed explanation of this method and the choice to use it, the reader is
referred to appendix F. In line with previous research the distance between the reference data and the
simulation results is given by a squared error. So, the objective function for a given metric and scenario
is given by the normalized Squared Error (SE) and is determined as follows:

SEnorm(θ) =
(
Msim(θ)−Mref

Mnorm

)2
(5.6)

Table 5.2: Normalization values

Mnorm

Flow 1.0
Spatial distribution 0.18994

Effort - mean 0.99107
Effort - std. 0.20728

Travel time - mean 0.04345
Travel time - std. 0.00953

Where Msim(θ) is the metric’s value obtained from the simu-
lation using parameter set θ,Mref the metric’s reference value ac-
cording to the data (See appendix G) and Mnorm the value used
for the normalization as found in Table 5.2. In the case of the
macroscopic metrics, Msim is the mean flow or cell occupation
for the given number of replications. In the case of the meso-
scopic metrics Msim is either the mean or the standard deviation
of the distribution which combines the measurements of all rep-
lications. Squaring the errors makes sure that they are all positive
and hence makes it easier to add them up when multiple object-
ives are combined. Below it is explained in more detail how the
normalized SE is computed per type of metric.

The objective of the two macroscopic metrics is determined as follows:

SEnorm;macro(θ) = 1
m

∑
j


∑

i
Msim;i;j(θ)
n −Mref ;j

Mnorm

2

(5.7)

Where n is the number of replications and θ the parameter set. In the case of the flow m is the
number of main travel directions (m = 2 in the case of the two bidirectional scenarios and 1 in all other
scenarios). In the case of the spatial distribution m is the number of cells.

The objective of the two mesoscopic metrics is determined as follows3:

SEnorm;meso(θ) = 1
2

(
Msim;µ(θ)−Mref ;µ

Mnorm;µ

)2
+ 1

2

(
Msim;σ(θ)−Mref ;σ

Mnorm;σ

)2
(5.8)

2In this research an individual objective is defined by a unique combination of a scenario and a metric and, given the definition
in subsection 2.2.4, an individual objective function thus describes the difference between the simulation and reference data given
a certain parameter set for that given unique combination of a scenario and a metric

3The use of a combination of the mean and standard deviation to describe the distributions of the mesoscopic metrics was
chosen over more advanced methods, such as the Kolmogorov-Smirnov (KS) test, because of two practical reasons. Firstly, per-
forming the KS-test is computationally more expensive than simply calculating the mean and standard deviation and comparing
it to the reference values. Secondly, using the KS test statistic is not compatible with the used normalization method.
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The objective functions for a given set of metrics and scenarios are combined into a single objective
function as follows:

O(θ) = 1
Ns ∗Nm

∑
s

∑
m

SEnorm;s;m(θ) (5.9)

Where SEnorm;s;m(θ) is the value of the objective function of scenarios s and metricm for the parameter
set θ and Ns and Nm are, respectively, the number of scenarios and metrics in the set. Due to the use
of the SE, all values are positive and hence all resulting objective functions, both the individual and
combined ones, only contain values larger or equal to zero. So, the smaller the value of the objective
function the smaller the error and hence the better the Goodness-of-Fit (GoF) of the model to the data.
Hence to find the optimal parameter set for a given set of scenarios and metrics one has to minimize
the combined objective function.

5.1.4 Optimization method, stopping criteria and search space definition

In this research a grid search will be used to obtain the optimal parameter set. The use of the grid search
has four advantages over more complex methods (i.e. all other methods mentioned in Table 2.2). Firstly,
it is the only method that is certain to find the global optimum (given the level of precision defined by
the grid). Secondly, one does not have to determine, beforehand, which metrics, objective functions
and combinations of objective functions one want to use. Only the scenarios and search space have to
be determined beforehand. This provides much more flexibility because one can research the use of
additional metrics, objective functions and combinations based on the results without having to run
more simulations. Thirdly, it is certain to cover the whole search space and hence insight into the shape
of the surface of the objective space. And fourthly, the choice for the grid search also means that no
stopping criteria is required. The only disadvantage of using a grid-search that all other method can
potentially be faster assuming the same level of precision.

As chapter 4 concluded, the relaxation time and the viewing angle are the parameters to which the
model is most sensitive and hence the most important parameters to take into account during the cal-
ibration. So, initially the search space consist of these two parameters. However, whilst testing the
implementations of the scenarios it became apparent that, in the case of the bidirectional high density
scenario, the default radius was problematic. It was problematic because, when using the default value
for the radius, the flow almost immediately went into a grid-lock situation whereby only very few ped-
estrians, or even none at all, were able to move in the direction of their destination. This remained the
case even when lowering the values of the relaxation time and viewing angle, which, as the sensitivity
analysis showed, has a positive effect on the efficiency of the flow. The only way to prevent this was
to lower the radius of the circles representing the pedestrians. So, besides these the relaxation time and
the viewing angle, the radius will also be included in the search space.

With these three parameters the search space is defined as follows:

• The upper and lower limits are determined by a deviation of ±24%. In the case of the radius a
deviation of −40% is used and the upper boundary is equal to the default value.

• The step size is 3% of the default value (in the case of the radius it is 4% of the default value).

The combination of the step size and the limits was chosen taking the following four considerations
into account:

1. The smaller the step size the higher the precision level of the calibration

2. The larger the limits the less likely it is that the optimal value falls outside of the limits of the
search space (taking into account a maximum deviation of 25% as used in the sensitivity analysis)

3. The larger the search space the more simulations need to be run during the grid search (i.e. the
longer it takes to finish the grid search)

4. The combination of the time it takes the computer, available to this research, to run all simulations
for a single point in the search space (i.e. all replications for all seven scenarios) and the total time
available to this research to run all simulations.
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The reason for using other limits and another step-size for the radius is as follows. The radius is
not considered a parameter directly involved in the operational behaviour of the agents but rather as
a property of the agents that indirectly influence the behaviour. Hence, as explained above, it is only
added for practical reasons whereby the −40% deviation was based on the requirement that, while
using the default values (other than the radius), grid-lock would not occur during the simulation of the
bidirectional high scenario. The 4% step is based on the practical considerations described above.

Table 5.3: Search space definition

Default value Lower limit Upper limit Step size

Relaxation time [1/s] 0.5 0.380 0.620 0.015

Viewing angle [degree] 75 57 93 2.25

Radius [m] 0.239 0.14340 0.239 0.00956

5.1.5 Stochasticities

Based on the findings in section 3.4 it is decided that, during the calibration, a fixed set of seeds and
hence a fixed number of replications per scenarios will be used. This decision is made because, as
section 3.4 showed, even with a high number of replications it remains questionable if small differences
are caused by differences in the parameter values or a difference in the exact order of the seeds. This
is undesirable during the calibration given that small difference can potentially lead to very different
optimal parameter sets.

Table 5.4: Nr. of replications per scenarios

N

Bidirectional - high 100

Bidirectional - low 100
Bottleneck 30

Corner - high 50

Corner - low 40
T-junction - high 40

T-junction - low 40

So, for every scenario a fixed number of replications is
used whereby the exact number of replications depends on
the scenario. The number of replications was determined us-
ing the following methodology: For every scenarios 200 rep-
lications4 are run for 18 different parameter sets. These 18 dif-
ferent parameter set are the unique combinations of the up-
per limit, the lower limit and the default values of all three
parameters included in the search space. In all cases, the
same order of seeds was used. This same seed order is also
used during the calibration. Based on the convergence of the
speed distribution, the number of replications was determ-
ined. The number of replications for every scenario can be
found in Table 5.4.

All in all, this method assures that, within a scenario, the
differences in the objective functions are not caused by the stochastic nature of the model. However,
due to the use of the fixed order of seeds and the fixed number of replications the possibility remains
that the results of this research would be slightly different if another order of seeds would have been
used.

5.1.6 Running the calibration simulations

Using the procedures described above, more than 1.27 million simulation are run spanning the 7 differ-
ent scenarios, the 3179 points of the search space and, depending on the scenario, 30 to 100 replications
per point in the search space. All simulations have a duration of 1.5 minutes which, based on the meas-
urement periods determined in appendix E, should provide enough simulated time to include both the
measurement time and a warming-up period to fill the infrastructure. In the case of the simulations
of the bottleneck scenario a duration of 2 minutes is used to assure that all pedestrians have passed
the bottleneck before the end of the simulation. The results of these simulations and the subsequent
calculation of the different individual and combined objectives are discussed in the next two sections.

4Based on the results of section 3.4 whereby is was decided to use 400 in the case of the bidirectional high scenario
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5.2 Analysis of the individual objectives

In this section the results of the individual objectives (a combination of a single scenario and a single
metric) are discussed. In total there are 42 individual objective spaces (7 scenarios and 4 metrics
whereby in the case of the mesoscopic metrics the mean and the standard deviation are discussed sep-
arately). The goal of the analysis is to gain insight into how well the model can reproduce the reference
data, within the given search space, for a given metric and scenarios. To also gain insight into whether
the simulation, for the given search space, generally over or underestimates the results, the non-squared
and non-normalized error is used (i.e. E = Msim −Mref ). Furthermore, for this analysis it is not of
interest how the errors are distributed over the objective space. Hence, as Figure 5.2 shows, the distri-
butions of the errors are represented by box plots whereby all box plots are made up of 3179 points (i.e.
one for each unique parameter sets). The following subsections will discuss the result per metric.
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Figure 5.2: Box plots of the non-squared, non-normalized errors per scenario and metric. The acronyms identify
the scenarios (i.e. B-H = bidirectional high, B-L = bidirectional low, B = bottleneck, C-H = corner high,
C-L = corner low, T-H = t-junction high, T-L = t-junction low).
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5.2.1 Flow

Figure 5.2 shows that in the case of the bidirectional low density scenario the flow is always slightly
underestimated (less than 0.10 ped/m/s) regardless of the parameter set. In the case of the corner and
t-junction low density scenarios it is the opposite because in those two cases the flow is always slightly
overestimated. In all other cases (the four high density cases), the flow is both under and overestimated
depending on the parameter set.

What is also noticeable is the difference between the low and high density scenarios. In the case of
the high density scenarios the errors vary much more (i.e. the objective space is less flat) compared to
the low density scenarios. Furthermore, there is also a difference between the movement base cases.
In the bidirectional and bottleneck cases, the flow is generally underestimated whilst in the case of a
corner or t-junction the flow is generally overestimated.

So, for the given parameter sets, the model should, per individual scenario, be capable of reprodu-
cing the flows found in the data within a range of 0.04 ped/s/m.

5.2.2 Spatial distribution

The errors of the spatial distribution, illustrated in Figure 5.2, are the average absolute errors per cell
(hence they are always positive). The figure shows that the errors are generally smaller in the low
density scenarios and that especially in the case of the t-junction high density scenario the error is
generally large compared to the rest.

So, the best possible fit of the model to the data always results in a small average error per cell.
However, it is also clear that the size of this smallest possible error depends on lot on the scenario.

5.2.3 Effort

Figure 5.2 shows that the mean effort is generally underestimated with the exception of the bidirectional
high density scenario where it is always overestimated. Furthermore, in all low density scenarios and
the corner high density scenarios it is always the case that the mean effort is underestimated.

Regarding the standard deviation of the distribution of the effort (over the pedestrians not the object-
ive space), another pattern is found. In the case of the two scenarios of the bidirectional movement base
case, the model always overestimates the standard deviation of the distribution. In all other five cases
the standard deviation is generally underestimated and in the two scenarios of the corner movement
base case this is always the case.

So, in most cases the mean effort will be over or underestimated by at least 15% (compared to the
values in Table G.2). And, taking into account the standard deviation, only in the cases of the bottleneck
and t-junction high density scenarios is it possible that the distribution of the simulations fits the data
closely. Combining the relative errors of both the mean and standard deviation shows this indeed to be
the case. The smallest combined relative error, in the case of the two aforementioned scenarios, is about
2% whilst in the other five scenarios it is larger than 13%.

5.2.4 Travel time

The mean travel time is, as Figure 5.2 illustrates, generally underestimated with the exception of the
bidirectional high density scenario which is more likely to overestimate the travel time. The figure also
illustrates that, in general, the surfaces of the objective spaces of the high density scenarios are less
flat given the larger variance in the errors. This same pattern can be found in the case of the standard
deviation with the exception of the corner high density scenario. Combining the relative error of both
the mean and standard deviation shows that the model can reproduce the travel time distributions of
the bottleneck and the corner low density scenarios very well (smallest combined error below 0.2%). In
the other five scenarios the smallest combined error is somewhere between 1% and 10%.

So, depending on the scenario, the model is capable of reproducing the travel time distributions
with varying levels of accuracy. As subsection 5.1.2 states, the travel time could potentially be skewed,
especially in the case of the bidirectional high density scenario. To investigate if this is the case the
error of the mean travel time and the error in the number of pedestrians that make up the distribution
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are compared. If the results are not skewed one would expect a strong negative correlation (i.e. if
the distribution of the simulation contains less pedestrians one would expect a higher mean travel
time given that the lower number of pedestrians (given the same inflow) indicates a lower throughput
and hence a lower speed). Figure H.1 shows this is indeed the case for the bidirectional high density
scenario. The same check was performed for the other scenarios and it was found that also for these
scenarios there was a very strong negative correlation. Given that the bottleneck scenario has a fixed
number of pedestrians this is not relevant for this scenario.

5.2.5 Conclusions on the analysis of the individual objectives

So, as the data shows, the model is very well capable of fitting the flow to the data regardless of the
scenario. For the other three metrics the degree to which the model is able to fit to the data depends
on the scenario. One has to note that all findings above are based the individual objective spaces and
that it remains the question if the model is capable of reproducing the data well if multiple objectives
are combined. The next section will investigate different combinations of objectives and discuss how
different choices of scenarios and metrics influence the calibration results.

5.3 Analysis of the combined objectives

In this section the results of different combinations of objectives will be discussed. The main goal of
comparing the results of these different combinations is to answer the following questions:

1. How does the choice of movement base cases influence the calibration results? To recap the find-
ings of section 2.1, two previous studies (Campanella et al., 2011; Duives, 2016) found that a).
Calibrating using a single movement base case, compared to using multiple base cases, will result
in better performance on that particular base case. And b). For general usage one does need to
calibrate using multiple movement bases to capture all relevant behaviour.

2. How does the choice of level of density influence the calibration results?

3. How does the choice of metrics influence the calibration results? Duives (2016) found that differ-
ent combinations of metrics clearly lead to different calibration results.

First, an overview will be given of the combinations used during the analysis. Secondly, a general
analysis of the results is performed based on the obtained optimal parameter sets for all of the com-
binations. After this the results of different combinations will be compared to get insight into the three
questions posed above. Lastly, the results will be reflected upon by comparing the findings with those
of previous studies and the findings of the sensitivity analysis.

5.3.1 Combinations of objectives used during the analysis

Table 5.5 introduces the 16 different combinations of objectives which are used to answer the questions
posed in the introduction of this section. The table shows there are five different types of combinations:
1) Combinations using a single scenario and all metrics. 2) Combinations using a single metric and
all scenarios. 3) Combinations of all scenarios of the same density level using all four metrics. 4)
Combinations of all metrics of the same aggregation level using all seven scenarios. And finally, 5) a
combination of all metrics and scenarios.

Depending on the question that is tackled in the following subsections, different sets of these com-
binations will be used to answer the question. Which combinations are compared, is explained in every
subsection.
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Table 5.5: Tested combinations of objectives. The acronyms identify the metrics (i.e. Q = flow, SD = spatial distri-
bution, Eff = effort, TT = travel time) and the scenarios (i.e. B-H = bidirectional high, B-L = bidirectional
low, B = bottleneck, C-H = corner high, C-L = corner low, T-H = t-junction high, T-L = t-junction low).

Combination Metrics Scenarios
Q SD Eff TT B-H B-L B C-H C-L T-H T-L

Individual scenario - All metrics
1. Bidirectional - high x x x x x

2. Bidirectional - low x x x x x
3. Bottleneck x x x x x
4. Corner - high x x x x x

5. Corner - low x x x x x
6. T-junction - high x x x x x

7. T-junction - low x x x x x

Individual metrics - All scenarios
8. Flow x x x x x x x x
9. Spatial distribution x x x x x x x x

10. Effort x x x x x x x x
11. Travel time x x x x x x x x

Combinations of scenarios - All metrics
12. High density scenarios x x x x x x x x

13. Low density scenarios x x x x x x x

Combinations of metrics - All scenarios
14. All scenarios - Macro x x x x x x x x x
15. All scenarios - Meso x x x x x x x x x

Combination of all scenarios and metrics
16. All combined x x x x x x x x x x x

5.3.2 General analysis of the results

Table 5.6 presents the optimal parameter sets for all 16 combinations. The results in the table show
three notable things. Firstly, given the large variance in optimal parameter sets, it is clear that the choice
of scenarios and metrics does affect the results of the calibration. Secondly, in all 16 combinations,
the optimal viewing angle is smaller than the default and in many cases equal to the lower limit (57
degrees). Given that PD only takes into account the four closest pedestrians, it indicates that it is more
important to take those pedestrians into account who are in front rather than those who are more to
the side. This begs the question what would happen if the model would take into account more than
four pedestrians. Furthermore, it begs the question, if one would expand the search space, would the
viewing angle become significantly smaller than the current lower limit? And, how would this affect the
fit of the model and the optimal value of the other two parameters? Thirdly, there are also multiple cases
where the relaxation time takes the same value as the either the upper or lower boundary. So, again
this begs the question if the values would change significantly if the search space would be expanded.
The many cases where the optimal parameter set lies on a boundary of the search space can possibly
be explained by a difference between the used combinations and the scenarios and metric used for the
basic calibration of the model. This is especially the case for those combinations which only use one
scenario or one metric. In the case of the viewing angle, the lack of crossing movements might also
explain the fact that the viewing angle is equal to the lower boundary even when multiple scenarios are
combined.

Table 5.6 also shows the minimal value of the objective function per combination of objectives. These
values give insight into how well the model is capable of reproducing the reference data for the given
combination of objectives whereby the lower the value the better the fit. The question if a certain min-
imal value of the objective function indicates a good fit or not is outside the scope of this research for
the following reason: If a fit is good or not depends on the intended application of the model (i.e. what
is an acceptable error for the model to make given the intended application) and this research does not
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assume a specific application for the model.

Table 5.6: The optimal parameter set per combination of objectives whereby O(θ∗) represents the min-
imal value of the objective function. The cells in red indicate that the value is at the upper or
lower boundary of the search space

Combination O(θ∗) Relaxation Viewing angle Radius [m]

time [1/s] [degree]

Individual scenario - All metrics
1. Bidirectional - high (B-H) 0.1329 0.620 57.00 0.15296

2. Bidirectional - low (B-L) 0.0588 0.620 57.00 0.19120

3. Bottleneck (B) 0.1093 0.395 68.25 0.20076

4. Corner - high (C-H) 0.0561 0.395 57.00 0.23900

5. Corner - low (C-L) 0.0742 0.380 61.50 0.23900

6. T-junction - high (T-H) 0.1190 0.590 57.00 0.21988

7. T-junction - low (T-L) 0.0468 0.380 68.25 0.23900

Individual metrics - All scenarios
8. Flow (Q) 0.0146 0.380 59.25 0.20076

9. Spatial distribution (SD) 0.2015 0.575 59.25 0.21988

10. Effort (Eff) 0.1814 0.620 59.25 0.15296

11. Travel time (TT) 0.1798 0.500 57.00 0.23900

Combinations of scenarios - All metrics
12. High density scenarios (H-D) 0.2647 0.575 57.00 0.21032

13. Low density scenarios (L-D) 0.0722 0.500 57.00 0.21032

Combinations of metrics - All scenarios
14. All scenarios - Macro (Macro) 0.1444 0.545 59.25 0.21988

15. All scenarios - Meso (Meso) 0.2012 0.620 59.25 0.15296

Combination of all scenarios and metrics
16. All combined (All) 0.1841 0.575 57.00 0.21032

In the following three subsections the results of different combinations will be compared to answer
each of the three questions posed in the previous section. The comparison is based on how much the
GoF of combination A decreases when, instead of the optimal parameter set obtained using combination
A5, the optimal parameter set of another combination, combination B, is used (i.e.: How much does the
performance of the model, given the scenarios and metrics of combination A, decrease if the model
would have been calibrated using the scenario(s) and metric(s) of combination B?). The decrease in
GoF is determined as follows:

∆GoFA;B = −(OA(θ∗B)−OA(θ∗A)) [−] (5.10)

Where OA(θ∗A) is the value of the objective function of combination A when its optimal parameter set
θ∗A is used. OA(θ∗B) is the value of the objective function of combination A if the optimal parameter set
of the combination B is used. As is stated in subsection 5.1.3, an increase in the value of the objective
function means a decrease in the GoF, hence the minus sign in the equation. So the larger the decrease
in GoF, the worse the fit of the model to the data becomes if the given parameter set is used instead of
the optimal parameter set. To put the decreases in the GoF into context, section H.2 presents a detailed
analysis of how the decreases in the GoF, presented in the following three subsections, are related to
the changes in the errors for the individual objectives.

The following two subsections will go into more detail regarding the influence of the two properties
of the scenarios that are within the scope of this research. The third subsection will investigate the in-
fluence the choice of metrics has on the calibration results.

5The optimal parameter found when calibrating based the scenarios and metric of combination A
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How to interpret the data in tables 5.7 to 5.10

Tables 5.7 to 5.10 and tables H.15 to H.25 display the results of comparisons between
different combinations of objectives. In every table the value in the cell, determined by
Equation 5.10, indicates how much the GoF of the combination, in the given column,
decreases if, instead of its optimal parameter set, the optimal parameter set of another
combination, given by the row, is used. So, for example, if one takes the cell in the
second row and fifth column of Table 5.7, the value -0.4743 indicates the difference
between the GoF of the t-junction high combination obtained when using its own
optimal parameter and the GoF obtained when using the optimal parameter set of the
bidirectional high density combination (i.e. −(OT−H(θ∗B−H)−OT−H(θ∗T−H)) = −0.4743
where OT−H(θ) is the objective space of the t-junction high density combination, θ∗B−H
the optimal parameter set of the bidirectional high density combination and θ∗T−H the
optimal parameter set of the t-junction high density combination). The number -0.4743
has no direct interpretation other than the larger the number (i.e. the larger the decrease
in GoF) the worse the model performs on the predicted combination for the given
parameter set. The tables in section H.2 are used to obtain insight into what the number
-0.4743 means in terms of the increase in the errors.

Also, all cells in the tables are shaded whereby the darker the shade the larger the differ-
ence in GoF.

5.3.3 Movement base case

This subsection answers the question: How does the choice of movement base cases influence the cal-
ibration results? Table 5.7 presents the results of the comparisons between the different combinations.
All comparisons are made between (combinations of) scenarios of the same density level to exclude the
possibility that (part of) the differences are caused by a difference in the level of density and not by a
difference in movement base case.

Table 5.7: Difference in the GoF, as determined by Equation 5.10, for the comparisons between different movement
base cases. The combinations are identified by their acronyms as listed in Table 5.6. Every column shows
the decrease in GoF, compared to the optimal GoF, of that specific combination if the optimal parameter
set of the combination, defined by the row, is used. The darker the shading of the cell the larger the
decrease in GoF.

Predicted combination
H-D B-H B C-H T-H L-D B-L C-L T-L
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H-D X -0.3528 -0.1937 -0.0402 -0.0548
B-H -0.0136 X -0.1223 -0.0992 -0.4743

B -0.1257 -0.4084 X -0.0501 -0.6858
C-H -0.1013 -0.3289 -0.1533 X -0.5646
T-H -0.0135 -0.3907 -0.2679 -0.0369 X
L-D X -0.0093 -0.0110 -0.0164
B-L -0.0081 X -0.0245 -0.0366
C-L -0.0207 -0.0978 X -0.0011
T-L -0.0187 -0.0924 -0.0003 X

First, comparisons are made between the combinations of all movement base cases of the same
density level and the individual movement base cases. This analysis will show whether a parameter
set, based on calibrating the model using multiple movement base cases, does decrease the GoF of the
individual movement base cases, by how much and if the level of density influences this.

The first and sixth row of the table show that, for both the high and low density cases, it is indeed the
case that the GoF of the individual movement base cases decrease when the parameter set is used that
is based on the combination of the movement base cases. It is also clear that the density level influences
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the size of the decrease of the GoF of the individual movement base cases and how much the decreases
in GoF varies between the individual movement base cases. In the low density case, using the optimal
parameter set of the combined movement base cases results in far smaller decreases in the GoF of the
individual movement base cases compared to the high density case (between -0.0164 and -0.0093 in the
low density case compared to between -0.3528 and -0.0402 in the high density case). Furthermore, in
the low density case the difference between how much the GoFs of the individual movement base cases
decreases is much smaller compared to the high density case. Overall, the parameter set resulting from
calibrating the model using the combination of low density cases leads to a reasonably good fit on the
individual low density scenarios given that, on average, the errors only increase by between 0.46% and
2.98% of the normalization values (for a more detailed explanation see section H.2). This cannot be said
for the high density case where the errors increase by, again on average, between 4.78% and 23.18% of
the normalization values.

So, the data shows that when the model is calibrated using multiple movement base cases this does
decrease the GoF of the model to the individual movement base cases and that this is especially the case
for the high density scenarios.

To investigate if part of the difference between the low and high density cases is caused by the fact
that the high density case includes two additional movement base cases (entering and exiting in the
bottleneck scenario), the model is also calibrated using the high density scenarios except for the bot-
tleneck. The results showed that, without the bottleneck scenario, the differences become even larger.
So, the difference between the low and high density scenarios cannot be explained by the additional
movement base cases in the high density scenarios.

The second set of comparisons are used to answer the question - How does the use of a single
movement base case to calibrate the model influence the GoF of the other movement base cases and
the combinations of movement base cases? The data shows that in all cases the GoF of the individual
movement base cases decreases when the optimal parameter set of another movement base case is used.
However, the data also shows that the decrease in the case of using the optimal parameter set of the
corner low density scenario in the t-junction low density scenario is very small, certainly compared
to the rest, and that this is also the case vice versa. Table 5.6 does also show that the parameter sets
are fairly similar given that only the viewing angle differs slightly. This is not a surprise given that
both involve the pedestrians rounding a corner and in the t-junction low density case the influence
of merging is probably limited given the low densities. Furthermore, the data shows that, again, the
differences are much larger in the case of high densities. The fact that, in most cases, the GoF of other
movement case cases decrease significantly when the optimal parameter set of another movement base
case, shows that it is necessary to calibrate using multiple movement base cases to capture all relevant
behaviour, especially in the case of high density levels. However, as the analysis also shows, at the
low density level it is likely sufficient to include either the t-junction or the corner but not necessarily
both. This is also supported by the data in section H.2. Because, as the data shows, the decreases of
respectively -0.0011 and -0.0003 are correlated with very small increases of the errors (respectively 0.46%
and 0.04% on average).

Besides the observations discussed above, Table 5.7 shows two other notable patterns in the case
of the high density scenarios. Namely, regardless of the used parameter set, the corner high density
scenarios always has smallest decrease in the GoF out of all four individual high density scenarios.
And, both the bidirectional and t-junction high density scenarios shows large decrease in the GoF when
the optimal parameter set of another scenario is used. However, when the scenarios are combined the
decrease in GoF is relatively small for the t-junction scenario whilst for bidirectional scenario it remains
high. The first observation can be explained using Figure 5.3 which shows how the objective values
of the four high density scenarios are distributed. The figure illustrates that the objective values of the
corner scenario are generally smaller than those of the other three scenarios and that they also vary
less. The curves also explain part of the second observation because most of their objective values are
larger than those of the corner and bottleneck scenarios. However, the difference in the decrease in GoF
when the optimal parameter set of the combined scenarios is used isn’t. A possible explanation for this
is that the area(s) in the objective space where the bidirectional scenario has relatively low objectives
values does/do not coincide with the area(s) where the t-junction scenarios has relatively low objectives
values. If this is the case the calibration method would not be able to obtain a good fit on both of them
simultaneously. Furthermore, as Table 5.6 the optimal parameter set of the bidirectional scenario has a
larger distance to the optimal parameter sets of the bottleneck and corner scenarios than the t-junction
scenario. Hence, it is logical that, when all high density scenarios are combined, and, when the method
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cannot obtain a good fit on both the bidirectional scenario and the t-junction scenario simultaneously,
the calibration method results in a good fit for the t-junction scenario and not for the bidirectional
scenario.
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Figure 5.3: The cumulative distribution functions (CDFs) showing how the objective values are distributed for the
four high density scenarios. The curves thus show the likelihood (y-axis) of encountering an objective
value smaller than a certain value (x-axis) in the objective space of the given combination. The further
to the left the curve generally is the smaller the objective values (and thus the errors) and the larger the
spread over the x-axis the larger the difference between objective values in the same objective space (i.e.
the less flat the objective space is).

So, overall it is clear that the choice of movement base case(s) does influence the calibration results.
None of the movement base cases is able to capture all relevant behaviour and hence one does need a
combination of multiple movement base cases to capture all relevant behaviour, especially at high dens-
ity levels. In some cases though, certain movement base cases might be interchangeable (e.g. the low
density corner and t-junction scenarios). And although one needs a combination of multiple movement
base cases to capture all relevant behaviour, this practice does lead to a decrease in the performance on
the individual movement base case.

5.3.4 Density level

The second question posed at the start of the section is: How does the choice of level of density influence
the calibration results? In order to answer this question two comparisons will be made. Firstly, the three
scenarios which have both a low and high density case will be compared. Secondly, a comparison is
made using the combinations of high and low density scenarios.

The data in Table 5.8 shows the following regarding the influence of the density level on the indi-
vidual movement base cases. Firstly, in all three cases the decrease in the GoF is far smaller when the
optimal parameter set of the high density case is used in the low density case than vice versa. Espe-
cially in the cases of the bidirectional and t-junction scenarios the differences between the two different
density level cases are large compared to the corner scenarios. Secondly, for both the high and the low
density levels the decrease in GoF is largest in the case of the t-junction scenario. This indicates that,
for the t-junction scenario, the difference in behaviour between a low density case and a high density
case is larger than is the case for the other two scenarios. This is also consistent with the fact that, as
Table 5.6 shows, the difference in parameter sets between the two t-junction scenarios is larger than is
the case for the other two pairs of scenarios.

When the decreases in the GoF depicted in Table 5.8 are put into the context of the change in the
errors the following can be concluded. The decreases in the GoF of the bidirectional low density scenario
and both corner scenarios correlate with very minor increases in the average error (< 1%) and increases
in the standard deviation of the errors. Hence for these three scenarios, using the optimal parameter set
obtained using the other density level leads to a very similar GoF and sizes of the errors. This is not the
case for the other three scenarios where the errors and/or the standard deviations of the errors increase
a lot more, especially in the case of the t-junction high density scenario.

When the two combinations of scenarios of the same density level are compared the following can
be concluded. The first two columns of Table 5.9 show that using the parameter set, obtained using
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Table 5.8: Difference in the GoF, as determined by Equation 5.10, for the comparisons between different density
levels for every movement base case. The combinations are identified by their acronyms as listed in
Table 5.6. Every column shows the decrease in GoF, compared to the optimal GoF, of that specific com-
bination if the optimal parameter set of the combination, defined by the row, is used. The darker the
shading of the cell the larger the decrease in GoF.

Predicted combination
B-H B-L C-H C-L T-H T-L
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B-H -0.0026
B-L -0.3149
C-H -0.0019
C-L -0.0032
T-H -0.0258
T-L -0.5869

the combination of high density scenarios, results is less of a decrease of the GoF of the combination
of low density scenarios than vice versa. This is consistent with the previous conclusion that for all
three scenarios the usage of the high density’s optimal parameter set on the low density case leads to a
smaller decrease in the GoF than vice versa. When the decreases of the GoFs are put into the context of
the change in the errors it is clear that using the parameter set obtained using the combination of high
density scenarios on the combination of low density scenarios leads to only minor changes in the errors
as the mean error increases from ±19.38% to ±19.49% and the standard deviation of the errors from
19.12 to 19.73. This is not the case the other way round where the increases in both the mean error and
the standard deviation of the errors are many times larger.

Table 5.9: Difference in the GoF, as determined by Equation 5.10, for the comparisons between different density
levels for combinations of movement base cases. The combinations are identified by their acronyms as
listed in Table 5.6. Every column shows the decrease in GoF, compared to the optimal GoF, of that specific
combination if the optimal parameter set of the combination, defined by the row, is used. The darker the
shading of the cell the larger the decrease in GoF. (U.p.s = Used parameter set)

Predicted combination
H-D L-D B-H B C-H T-H B-L C-L T-L

U
.p

.s
.

H-D X -0.0044 -0.3528 -0.1937 -0.0402 -0.0548 -0.0055 -0.0194 -0.0250
L-D -0.0655 X -0.3154 -0.1262 -0.0433 -0.4185 -0.0093 -0.0110 -0.0164

Table 5.9 also shows how the decreases in the GoF for all individual scenario when either of the
parameter sets obtained using the combinations of scenario are used. Surprisingly, the decrease in GoF
of both the high density bidirectional scenario and the bottleneck scenario is smaller when the optimal
parameter of the low density combination is used. This might be explained by:

a) As shown in the previous subsection the location of the optimal parameter set obtained using the
combination of the high density scenarios is dominated by the t-junction scenario. And,

b) In this subsection is was found that the density level has the largest impact on the difference
between the t-junction scenarios.

So, given the two findings above it might be expected that the combination of low density scenario
results in a parameter set that balances the errors differently over the scenarios than the combination of
high density scenarios would and that this has the largest impact on the t-junction high density scenario.

Also surprisingly, the fit of the bidirectional low density scenario is better when the optimal para-
meter set of the high density combination is used. This whilst it was not included in the objectives
based on which the optimal parameter set was determined and the fact that the high density bidirec-
tional scenario has the worst fit compared to the other scenarios. This can be explained by the fact that
the bottleneck movement base case does not include a low density case. Tests show that if the bottleneck
scenario is omitted from the combination of high density cases, the resulting parameter set does indeed
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show a worse fit for the bidirectional low density scenario compared to the fit using the parameter set
obtained using the low density combination.

The last observation that is made is the fact that Table 5.6 shows that the optimal parameter sets of
the combination of high density scenario and the combination of all seven scenarios are the same. This
can possibly be explained by the fact that, as the CDFs in Figure 5.4 clearly show, the objective values
of the low density cases are almost always smaller than the objective values of the high density cases
regardless of the parameter set. Hence, in this case the low density scenarios won’t have any influence
on the location of the optimal parameter set when they are combined with the high density scenarios.
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Figure 5.4: The CDFs showing how the objective values are distributed for the all seven scenarios

So, generally a calibration using solely low density scenarios cannot capture the behaviour found
in the high density scenarios. This is not the case vice versa. The exception seems to be the corner
movement base case. Hence, it is clearly important to, at least, include scenarios with the highest
density levels, one wants the model to be able to reproduce, in the set of scenarios one uses for the
calibration. Is also has to be noted that, in this particular case, the low density scenarios could even
be omitted given that the same optimal parameter set is found regardless if they are included or not.
However, the question remains if this would also be the case if another combination of scenarios is used
or another combination of metrics. Hence, it would be advisable to at least check the performance of
the model on the low density cases during the validation.

5.3.5 Metrics

The question - How does the choice of metrics influence the calibration results? - is investigated using
the results from combinations 8 - 11 and 14 - 16. Table 5.6 clearly shows that the choice of metric or
combination of metrics influences the resulting optimal parameter set. The comparisons, whose results
are presented in Table 5.10, give a more detailed picture from which a number of observations can be
made.

Firstly, there seems to be a correlation between the distribution of the effort and the spatial distribu-
tion. When the model is calibrated using only one of them, the decrease in the GoF of the other is small,
certainly when compared to the flow or travel time distribution. The correlation is also apparent when
the model is calibrated using the two macroscopic metrics.

Secondly, when the optimal parameter set obtained using solely the travel times is used the decrease
in the GoF is very small. As subsection H.2.3 shows the decrease of -0.0079 correlates with an average
increase of just 2% of the normalization value and the standard deviation also increases only slightly.
This in contrast to when the optimal parameter set of either of the other two metrics is used. These lead
to increases of the around 7.5% and large increases in the standard deviation.

Thirdly, it is clear that if combinations of metrics are used and both macroscopic metrics are in-
cluded, the resulting optimal parameter set results in only a small decrease in the GoF of the spatial
distribution but a very large decrease in the GoF of the flow. Figure 5.5 gives insight why this might
be the case. As the figure illustrates, the objective values of the flow are small compared to the other
three metrics and hence it is thus not surprising that when the flow is used in combination with any
of the other three metrics it weighs less heavily when determining the optimal parameter set. The po-
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Table 5.10: Difference in the GoF, as determined by Equation 5.10, for the comparisons between different metrics.
The combinations are identified by their acronyms as listed in Table 5.6. Every column shows the de-
crease in GoF, compared to the optimal GoF, of that specific combination if the optimal parameter set of
the combination, defined by the row, is used. The darker the shading of the cell the larger the decrease
in GoF.

Predicted combination
Q SD Eff TT
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Q X -0.1281 -0.1213 -0.1635

SD -0.0844 X -0.0228 -0.1454

Eff -0.0902 -0.0198 X -0.0596
TT -0.0079 -0.1235 -0.0412 X

Macro -0.0697 -0.0029 -0.0261 -0.1416
Meso -0.0079 -0.1235 -0.0412 0.0000

All -0.0697 -0.0120 -0.0548 -0.0223

tential influence of the choice of normalization values on this observation is discussed in more detail in
section 5.4.
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Figure 5.5: The CDFs showing how the objective values are distributed for the four metrics

Fourthly, when only the two mesoscopic parameters are used when calibrating the model this leads
to the same optimal parameter set as when only the travel time is used. Figure 5.5 shows that this can
be explained by the objective values of the effort are generally smaller than those of the travel time and
hence, comparable to the macroscopic metrics where the spatial distribution is dominant, the travel
time is in this case dominant.

Lastly, Table 5.10 shows clearly that whatever combinations of metric is used, the model cannot be
calibrated such that is results in a good fit on all four of them.

Overall it is clear that the choice of metrics influences the results of the calibration. Depending on
the choice of metric or combination of metrics, different optimal parameter sets are found which in turn
lead to different results regarding the GoF to the individual metrics. Furthermore, the method used to
determine the objective function does seem to influence the results as well. Especially the normaliza-
tion could be a large influence. The results also show that the model is not capable of simultaneously
obtaining accurate results for the different metrics using a single parameter set.

5.3.6 Reflection on the results

The previous three subsections list a number of findings. The question is, how do these finding compare
to the findings of previous studies? And, how do the finding compare to the findings of the sensitivity
analysis?

The findings of this research regarding the influence of the movement base cases are found to be
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consistent with both (Campanella et al., 2011) and (Duives, 2016). Similar to those studies, this research
finds that:

• It is indeed the case that the GoF of the individual movement base cases decreases when the
parameter set based on multiple movement base cases is used.

• It is indeed necessary to use multiple movement base cases, when calibrating a model, to capture
all relevant behaviour.

Also, comparable to the finding in (Duives, 2016), this research finds that the choice of metric does
clearly influence the results of the calibration and that the model cannot obtain a good fit on all of
them simultaneously. Furthermore, there are also indications that the choice of objective function and
normalization method influence the results when more than one metric is used.

Furthermore, the finding that the high density scenarios influence the calibration more heavily than
the low density scenarios, is consistent with the findings of the sensitivity analysis. Namely, the sensit-
ivity analysis (see chapter 4) shows that the model is more sensitive to changes in the parameters in the
case of the high density scenarios.

The fact that the results of this study are in line with the previous studies, whilst using a different
model than the two previous studies, raises an important question. Namely, is the fact that the models
cannot obtain a good fit on different scenarios using only a single parameter set caused by the fact that:

a.) the models are simplifications of the behaviour of pedestrians and the models are too simple to
capture the behaviour of pedestrian in different flow situations well using only a single parameter
set. Or,

b.) the behaviour of pedestrians in different flow situations is so different that it might not be a valid
approach to try to capture this using a single model (i.e. the assumption that the behaviour of the
pedestrians is independent of the flow situation is not valid).

The results of this research cannot answer this question. However, it is important to answer this ques-
tion given that, in the case it would be the second cause listed above, it would fundamentally change
the way in which we need to model pedestrian behaviour.

5.4 Discussion on the calibration results and the methodology

In this section the used methodology is systematically discussed in order to obtain insight into how
changes in the methodology (e.g. using another objective function) could potentially impact the results.
All elements that fall outside of the scope of this research will be discussed. So, these are all elements
except for the metrics and the scenarios and the accompanying reference data. The three elements that
are within the scope of this research are discussed in chapter 6 where the primary question is - How
generalizable are the results?.

So, in total six of the nine elements will be discussed in this section whereby, similarly to section 5.1,
some elements are discussed simultaneously. Per elements it will be discussed if and how a different
choice, regarding that element, could potentially change the results.

5.4.1 Input definition

Four types of input were identified in subsection 5.1.1. Namely, the geometry of the infrastructure, the
route choice, the demand patterns and the speed distribution. The geometry of the infrastructure was
implemented such that it matched the experiments exactly so there is no reason to assume it has had any
influence on the calibration. The need for the waypoints in the bidirectional and t-junction scenarios
does raise the question what would happen if one were to omit them or position them slightly different.
Would it affect the calibration results significantly or is the model not very sensitive to these changes.
To answer this one could test different configurations of waypoints to obtain insight into the effect it
has on the flows in these scenarios.

The third input to the model were the demand patterns. The demands were assumed to be constant
and tests showed this to be a good approximation. However, would it impact1 the calibration results if
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a more precise definition of the demands would have been used. Given that: a) The approximations of
the demands are already fairly precise (i.e. the high R2 values shown in subsection 5.1.1), and b) Due
to the stochastic nature of the model there is already variability in exactly where pedestrians enter the
simulation and the route they choose to walk from this point onward. It is the question if the slight
increase in variability in the demand pattern would have any measurable effect on the simulations.

The last input to the model is the distribution of the preferred speeds. The distribution was fitted
on the speed measurements of 54 participants. Figure 5.1 shows that the distribution is a reasonable fit
to the measurements however by no means a perfect fit. However, one also has to note that the speed
measurements are based on only a sample of the participants and hence the exact distribution of the
preferred speeds is to some degree uncertain. So, the main question would be how sensitive the model
is to this uncertainty in the distribution of the preferred speeds.

Overall, three of the four inputs used in this research could potentially have some impact on the
calibration results. However, to ascertain if this would change the results to such a degree that it would
change the conclusions, one would have to test how sensitive the model is to uncertainties in the input.

5.4.2 Objective functions and comparison methods

This subsection discusses if and how:

a.) Using a different objective function could lead to different calibration results.

b.) Using different normalization values could lead to different calibration results.

c.) Using a different method for combining multiple objectives into one could lead to different calib-
ration results.

Would a different objective function lead to different results? Table I.1 in appendix I shows that
using another objective function, in this case using the absolute errors instead of the squared errors,
does indeed lead to different optimal parameter sets. However, clear differences between the optimal
parameter sets of different scenarios and different metrics still clearly exist. So, the fact that differences
in the optimal parameter sets also exist when using a different objective function is an indication that
the conclusions from the previous section are likely to hold when another objective function is used.

Would different normalization values change the results? The detailed analysis in appendix H
shows that, although the results do change here and there, the main conclusions hold when instead
of all four metrics only one of the metrics is used. Hence, the usage of different normalization values
would not change the main conclusions regarding the movement base cases and the density levels. It
would of course have an impact on the conclusion regarding the metrics. However, also in this case
slight changes in the normalization values are not expected to change the main conclusions.

Would a different method for combining multiple objectives into one change the results? In many
respects this question is similar to the question above regarding the normalization values because it is
primarily the question if using different weights for the individual objectives would result in changes.
Given that the detailed analyses in section H.3 show that the main conclusions also hold when only
single objectives are used, using different weights are not likely to affect the main results.

5.4.3 Optimization method, stopping criteria and search space definition

This subsection discusses how different choices regarding the optimization method, the stopping cri-
teria and the search space definition could potentially affect the calibration results. If one assumes that
one uses a different optimization method correctly such that it finds the global optimum for the given
level of precision, the question becomes - If one uses a different method and stopping criteria which
would change the precision with which the global optimum is determined, how could this potentially
affect the results?. This question is discussed in the part of this subsection that discusses the potential
affect of changing the precision of the search space definition.

The choice of search space could influence the results in three ways. Firstly, it only takes into account
2 of the 7 parameters which were investigated during the sensitivity analysis. Although the sensitivity

1Would it result in changes in the calibration results such that the conclusions, made based on the analyses of the previous
section, would not longer be valid?
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analysis concluded that the model was not sensitive, or very slightly sensitive, to changes in these five
parameters, it did only take into account the first-order effects. So, the question is, would including
more parameters significantly change the results? A more extensive sensitivity analysis, which would
include the higher-order effects, could give insight into this question. If the parameters, not included
into the search space, would not show any significant higher-order effects it would be unlikely that the
results of the calibration would change significantly.

Secondly, Table 5.6 in section 5.3 shows that in multiple cases the optimal value of the viewing angle
and/or the relaxation time is equal to the upper or lower boundary of the search space. This begs
the question if these values are actually the optimal value or if they are the optimal value given the
boundaries of the search space. To answer this question the search space would have to be extended,
in accordance with section 4.2 it should be checked if the new boundaries still produce realistic results,
and additional simulations would have to be run. However, given the large variation in the optimal
parameter sets, especially in the optimal value of the relaxation time, it is considered unlikely that
expanding the search space will decrease the difference between the optimal parameter sets for the
different combinations and hence unlikely that it will significantly change the results.

Thirdly, to keep the number of required simulations at a feasible level a step-size of 3% of the default
value (4% in case of the radius) was used in this research. The question is what would happen to the
results if a smaller step-size would be chosen? The potential effect of a smaller step-size is explained
using the example depicted in Figure 5.6. The figure shows the objective function O(θ) at two different
locations (I and II) in the 1d search space (Θ, θ ∈ Θ). The solid lines represent the objective function
and the vertical striped lines the location of the points in the grid for a given level of precision. The
figure shows that, although the minimum value of the objective function can be found at location I, due
to the way the grid overlays the objective space it is found at location II. This example shows that the
precision with which the grid is defined matters and that the more precise the grid the more likely the
actual location at which the objective is minimized is found.

I II

�

����

Figure 5.6: Example of the influence of the precision of the search space on the optimal parameter set

So, given the fact that the precision of the grid can influence the results how likely is it that using a
more precise grid would significantly change the findings? Based on the analysis of the objective space
surfaces in appendix J, it would probably be worthwhile to investigate this given that, for example,
in the bidirectional high density scenarios there are points that reside in a very different part of the
objective space (i.e. have significantly different parameter sets) than the optimal point but have only
slightly higher objective values. However, this does not hold for the other three high density scenarios
so, for example, the conclusion that one needs a combination of multiple movement base case will likely
still be valid even if the search space is defined more precisely.

5.4.4 Stochasticities

Section 3.4 showed that even at a high number of replications different seed orders can result in sig-
nificant different results. This means that, if for two sets of replications different seed orders are used,
one has to determine if and how much of the difference found between the two sets is caused by the
stochastic nature. Subsection 5.1.5 explained why this is problematic during a calibration and hence
why the decision was made to use a fixed seed order during the calibration. However, by using a fixed
seed order and hence also a fixed number of replications it remains the question if the resulting distri-
bution (for a given metric) is representative of the actual distribution (i.e. the one one would get if an
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infinite amount of replications were to be used). Hence, the question also remains, would a different
order of the seeds or a higher number of replications lead to significantly different results?

Ideally, one would research this by, for example, defining every point in the objective space as a
distribution around the current objective value and by using a monte-carlo-like method determining
the likelihood that a certain point in the objective space is the optimal point. However, time restrictions
prevented this analysis to be performed within this research. However, the analysis in appendix J gives
some insight into which cases are probably more sensitive to this than others. Appendix J concludes
that the low density scenarios are more likely to be affected by this than high density scenarios and
that the bidirectional scenarios are more likely to be affected by this than the other scenarios of the
same density level. Furthermore, it also shows that when the flow would be used as the sole metric the
calibration results are far more likely to be affected than if any of the other metric or a combination of
metrics is used.

Overall, the analysis of appendix J does show that using a different order of the seeds or a higher
number of replications could affect the results. However, what the effect exactly would be and if it
would result in different conclusions cannot be said based on this analysis. So, further research into
how to deal with the stochastic nature of pedestrian models during calibration would be advised. This
could both involve coming up with a better (more stable) method to determine the required number of
replications or a method aimed at dealing with the uncertainty caused by the stochastic nature during
the calibration.

5.5 Practical implications of the results

The findings of the previous section have a number of implication for practice. The main implication of
the results for practice is that the intended use of the model should be taken into account when deciding
which scenarios, metrics, objective functions and method for combining multiple objectives one should
use. Why this is the case is discussed in the remainder of the section.

As this research confirms, one needs to use multiple movement base cases when calibrating a model
intended for general usage. However, when the intended use of the model is more limited (e.g. in its
use only some movement base cases occur) it might be better to also use a more limited set of movement
base cases during the calibration. This is mainly because, as this research also confirms, the GoF of the
individual movement base cases decreases when multiple movement base cases are used during the
calibration. The results do also indicate that it is important to take into account the density level during
the calibration. Again, depending on the intended use of the model, different density levels should be
taken into account during the calibration. Furthermore, as the results show, it is far more important to
take the higher levels of density into account.

Given that:

1. There are many possible metrics which one could use to quantify a pedestrian flow (see Table A.1)

2. The results show that the choice of metric or combinations of metrics does influence the results

3. The results show that, in the case of using multiple metrics, the choice of normalization method
and the method for combining multiple objectives into a single objective also influence the results

the choice of metrics, accompanying objective functions and method for combining multiple objectives
into a single objective depends even more on the intended use than the choice of scenarios. Depending
on the intended use of the model, one should decide which metric or metrics are most important (i.e.
which metrics are most important and hence need to be reproduced as accurately as possibly). One
should also decide how to reflect this in the method for combining multiple objectives into one. Besides
using different normalization methods in combination with the weighted sum method, one could also
use other approaches. For example, one could use methods based on constraints (e.g. the ε-Constraint
method) where one or more of the objectives are transformed into constraints (Ehrgott, 2005). An ex-
ample of this would be that one sets the maximum error one would allow the model to make with
regard to the flow as a constraint and then optimize based on the travel time distribution.

To show how the intended use of the model could potentially affect how it should be calibrated two
examples are given. The first example is a model that is intended to be used for evacuation studies.
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During evacuation the flows are primarily unidirectional and depending on the situations the density
can be high (for example a full stadium that is being evacuated). So, this would mean one would
like to prioritize the unidirectional movement base cases over the bidirectional and crossing movement
base cases either by using different weights or not including them altogether. Furthermore, one would
probably only have to include those scenarios with high densities as the results of this research show
that including the low density scenarios will probably not affect the calibration results. Regarding the
metrics, the distribution of evacuation times could be a good candidate as the most important metric
(i.e. the objective functions should be determined such that calibration results in a parameter set that
leads to an error that is at least lower than a certain threshold) supplemented with a metric that focusses
more on the underlying behaviour such as the effort indicator in this research. Whatever the exact
choice of scenarios and metrics is and regardless of how they are prioritized, one should note that it is
important to validate the calibrated model using a wider selection of scenarios and metrics to obtain
insight into what would happen if, for example, for whatever reason there are bidirectional flows during
the simulation of the evacuation.

The second example used is a station hall during off-peak hours. In this case the bidirectional flows
and crossing flow become more important and the higher density levels less important. Hence, one
would primarily prioritize these movement base cases at a low density level. Regarding the metrics, a
metric that captures how comfortable a pedestrian can walk from A to B might become more relevant
than performance measures such as the flow or the travel time. So, for example, the distribution of the
effort can be taken as the primary metric supplemented with a metric such as the travel time distribu-
tion. Again, it is important to validate the calibrated model using a wider selection of scenarios and
metrics.

In the examples above, using a parameter set that has been obtained using the specifics of the type
of situation that has to modelled into account will probably result in more accurate prediction than if
one where to use a parameter set obtained using no specific application in mind.

5.6 Conclusions

In this chapter the model was calibrated using different combinations of objectives to investigate the
influence different choices regarding scenarios and metrics have on the calibration results. In section 5.1
the methodology used was explained. In total, seven different scenarios were used and four different
metrics. Based on, among other things, the sensitivity analysis, the search space was made up out of
three parameters, the relaxation time, the viewing angle and the radius. This lead to a search space
of 3179 points. To deal with the stochastic nature of the model every scenario used a fixed number of
replications and the same order of seeds. All in all, this lead to over 1.27 million simulations, the results
of which were compared to reference data which, in turn, lead to 42 different objective spaces (1 for
each individual objectives).

Section 5.2 discussed the results of these 42 individual objectives. The data showed, for the given set
of parameters, that the model was capable of fitting the simulated flow to the data. For the other three
metrics the degree to which the model was able to fit to the data depended on the scenario.

Section 5.3 discussed the comparisons between different combinations of objectives. In total 16 dif-
ferent combinations of scenarios and metric were used whereby the multiple objectives were combined
into a single objective using the weighted sum method. The different comparisons were used to answer
the following three questions:

1. How does the choice of movement base cases influence the calibration results?

2. How does the choice of level of density influence the calibration results?

3. How does the choice of metrics influence the calibration results?

The calibration results show that using different combinations of scenarios and metric does lead to
different optimal parameter sets and hence the choice of scenarios and metrics clearly influences the
calibration results. Regarding the influence of the movement base cases it was found that: a) The GoF
of the individual movement base cases decreases when the parameter set based on multiple movement
base cases is used. And b) It is necessary to use multiple movement base cases, when calibrating a
model, to capture all relevant behaviour. These two findings are in line with the finding of the two
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previous studies which investigated the influence of the movement base cases. A difference in the level
of density did also impact the results. High density scenarios have a larger impact on the results which
is consistent with the findings of the sensitivity analysis where it was found that the model is more
sensitive to changes in the parameters in the high density scenarios. Also, the comparisons showed that,
similar to (Duives, 2016), the choice of metric also influence the results. When a combination of metrics
is used the results also showed that the choice of normalization method also can influence the results.
Lastly, the results point to a fundamental question. Namely, given the differences found between the
scenarios, is it a valid approach to use a single model to capture the behaviour of pedestrians?

Section 5.4 discussed the used methodology and how different choices regarding the methodology
could potentially affect the results. Elements, such as using a more precise search space grid or using
another seed order were found to have the potential to affect the results. However, quantitative ana-
lyses, for which there was no time in this research, should be performed to ascertain what the exact
effects are and if this would change the main conclusion significantly. The fact that the main conclu-
sions are in line with previous research and the results of the sensitivity analysis, though, gives a strong
indication that this is not likely.

The result were also found to have a number of practical implications as is pointed out in section 5.5.
The main implication found was that it is important to take the intended use of the model into account
when performing a calibration. This is especially the case for the choice of metrics and the method used
to combine multiple objectives into a single objective.
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In this chapter the main conclusions are drawn, the findings and limitation are discussed and recom-
mendations to both science and practice are made. In section 6.1 the main conclusions of this research
are discussed in light of the main research question. Section 6.2 will, based on the findings, discuss the
main limitations of this research. Lastly, section 6.3 will discuss the recommendations that can be made
based on this research.

6.1 Conclusions

This research aims to improve the applicability of the multiple-objective framework for calibrating ped-
estrian simulation models by gaining improved insights into how the choice of objectives influences the
calibration results. To structure the research the following main research question is posed:

How can a microscopic pedestrian model be calibrated, using a multiple-objective approach,
given its stochastic nature and differences in behaviour in different flow situations?

A review of the literature concluded that the transferability of models, which are calibrated using a
limited focus, is questionable. Hence, as the literature suggests, a multiple-objective approach should
be used when calibrating a pedestrian simulation model. The review of the literature identified nine
elements which are necessary to calibrate a pedestrian model using multiple objectives.

As the research question states, one should take into account the stochastic nature of the model
when calibrating it. Section 3.4 showed why this is the case whereby it was found that, even with a
high number of replications, different seed orders lead to significantly different speed distributions.
During a calibration this is problematic given that one assumes that differences in the objective values
are caused by differences in the parameter values. If these differences could also be caused by the
stochastic nature of the model this assumption would no longer hold. So, to prevent this, this research
used a fixed order of seeds during the calibration.

The research question also states that one should take into account the differences in behaviour in
different flow situations. Chapter 4 showed why this is not only the case during the calibration but why
this is also important during the sensitivity analysis. This research showed that the sensitivity of the
model to changes in the parameters differs between the different scenarios. Hence, to get a complete
picture of the sensitivity of the model one should use multiple scenarios. This complete picture of the
sensitivities is, in turn, necessary because the sensitivities are used, among other things, in determining
the search space for the calibration.

Chapter 5 showed why it is indeed important to take into account the differences in behaviour in
different flow situations during the calibration. Subsection 5.3.3 showed that in order to capture all rel-
evant behaviour one does need to include multiple movement base cases in the calibration. However,
as the subsection also showed at some density levels some movement base cases might be interchange-
able. Subsection 5.3.4 showed that one also needs to take into account the density level. The results
show that the influence of the high density level scenarios on the calibration is far larger than that of
the low density level scenarios. Hence, it is clearly important to, at least, include scenarios with the
highest density levels, one wants the model to be able to reproduce, in the set of scenarios one uses for
the calibration.

Chapter 5 also showed in subsection 5.3.5 that the choice of metric or combinations of metrics clearly
influences what optimal parameter set results from the calibration. When using multiple metrics during
the calibration, it also clear that the method used to combine multiple objectives into a single objective
influences the results especially the normalization of the metrics. Furthermore, the data also shows that
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the model does not seem capable of obtaining a good fit on all metrics at the same time. Hence, it is
important to prioritize which metrics are most important for the given application such that is can be
assured that a good fit (or at least a as good as possible fit) is obtained during the calibration.

All in all, the conclusions above point to one important implication for the use of the multiple-
objective approach when calibrating a pedestrian simulation model. One should calibrate a pedestrian
simulation model based on the intended application of the model. So, the calibration should include
those scenarios that are likely to occur to ensure that all relevant behaviour is captured. However,
including scenarios that are unlikely to occur, given the intended application, will likely influence the
calibration results negatively and hence also the model’s accuracy with which it can predict the traffic
state. Furthermore, the metrics and accompanying objective functions and method for combining the
multiple objectives into a single objective, should be chosen such that they represent which metrics are
most important to the intended application and what level of accuracy one wants the model to have
regarding the particular metrics.

Moreover, the conclusions also point to an important question. Is the assumption, underlying most
if not all pedestrian simulation models, that the behaviour of the pedestrians is independent of the flow
situation valid? This research cannot answer this question. However, if the answer to this question
is, no it is not valid, it would fundamentally change the way in which we need to model pedestrian
behaviour.

6.2 Discussion

This section discusses the limitations of the research and puts the results into perspective. Four differ-
ent elements will be discussed. Firstly, subsection 6.2.1 discusses the limitations of the fact that only
a number of different scenarios were used during this research. Subsection 6.2.2 discusses the used
metrics and especially the choice not to use microscopic metrics. Thirdly, subsection 6.2.3 discusses the
lack of a validation. And lastly, subsection 6.2.4 discusses the generalizability of the results (i.e. are the
conclusions also likely to hold when another pedestrian simulation model is used?). The limitations
of the used calibration methodology have already been discussed and this discussion can be found in
section 5.4.

6.2.1 Scenarios

In subsection 2.2.2 five different properties of a scenario were identified. Namely, the infrastructure,
the demand patterns, the population composition, the movement base case and the density level. Out
of these five properties only two have been researched in this study (the movement base case and the
density level) and also for these two properties there were limitations regarding the extent to which
they could be researched. This subsection will discuss the limitations per property.

Infrastructure

This research did not vary the geometry of the infrastructure and hence cannot answer the ques-
tion whether or not one should include different geometries when calibrating a pedestrian simulation
model. The review of the literature in subsection 2.2.2 also found mixed evidence for the influence of
the geometry on the flow. Hence, this could be a topic for further research.

Demand patterns

Comparably to the infrastructure, the effect of varying the demand patterns was not studied in this
research. And, again, the review of the literature did not provide a clear answer as to if varying the
demand patterns influences the flow and if so by how much. So, this could also be a topic for further
research.

Population composition

The review of the literature in subsection 2.2.2 found that the composition of the population can influ-
ence the flow and that it is thus an important element to consider whilst calibrating a pedestrian model.
However, section 3.1 showed that the available data did not make it possible to vary this property in
this research. Furthermore, the population used in the experiments which provided the reference data
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for this research was fairly homogeneous. So, this begs how the calibration results, and especially the
differences regarding the movement base cases and the density levels, would change if the population
composition would be varied and if the main conclusion would still hold.

Movement base case

The influence of using different movement base cases has been studied in this research. However, it
lacked two classes of movement base cases, namely the crossing flows and the vertical movements. It
would be interesting to study if these movement base cases also would have to be included or if they
show similar behaviour to another movement base case. Regardless of this is the case or not, including
them would not change the main findings of this research but only expand them.

Density level

This research only included two different levels of density during the calibration and this has given
insight into the influence the density level could have on the calibration. However, the insights are
limited and research including more levels of density would be necessary to get a more detailed view
of what levels of density produce different results and which don’t.

6.2.2 Metrics

This research used a total of four metrics to assess the influence of using different metrics whilst calib-
rating a pedestrian model. The chosen metrics covered two of the three aggregation levels and did not
include microscopic metrics. Subsection 5.1.2 gives the reasons why this choice was made. However,
this raises the question if the conclusions would also hold if microscopic metrics would be used instead
of macroscopic or mesoscopic metrics. The primary concern would be if the macroscopic and meso-
scopic capture the behaviour at sufficiently high detail for them to differentiate between solutions with
comparable levels of GoF. Chapter J shows that, for example, the flow metric (a macroscopic metric),
does have problems with differentiating between the solutions obtained using different parameter sets
and that this also holds for the combination of all four metrics in the case of the low density scenarios.
So, it would be interesting to study if adding microscopic metrics would make it possible to differentiate
between the solutions of different parameter sets in these cases.

However, one has to keep in mind that, as shown in (Campanella, 2016), calibrating a pedestrian
model solely using trajectories (i.e. calibrating it only on the microscopic level) does not lead to accurate
predictions on the macroscopic level and that pedestrian simulation models are mostly used to make
predictions on the macroscopic level (Campanella et al., 2014). So, it might only be fruitful to use
microscopic metrics within the domain of the search space where it has been established that the model
produces valid outcomes at the macroscopic and mesoscopic levels.

6.2.3 Validation

If one looks at definitions of validation given in the literature (e.g. Department of Defense, 1996; Law,
2008; Knoop & Buisson, 2014) one can see that there are two important elements regarding the defini-
tion, namely:

• Firstly, that the goal of the process is to determine to which degree the model is an accurate rep-
resentation of the real world.

• And secondly, that this should be determined in light of the intended use of the model.

Figure 1.1 also shows it is an important step in the development of the model and especially in de-
termining the quality of the calibrated model and thus in part the quality of the calibration procedure.
Due to time constraints, a validation could not be performed within this research. However, it also
has to be noted that within this research the goal was not to deliver a calibrated model and that there
is no intended usage assumed. So, the validation would have served a slightly different goal within
this research. Namely, to obtain some additional insights regarding the effects of different choices of
objectives (e.g. by using different/additional metrics during the validation) and to check if the findings
would also hold in slightly different situation (e.g. when slightly different levels of density would be
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used). So, though not strictly necessary for this type of research, performing a validation has the poten-
tial to expand the insights into the effects of choosing different objectives and to give better insight into
how reliable the conclusions of this research are.

6.2.4 Generalisation of the results to other microscopic models

The results of this research are in line with other studies in the literature that both used another micro-
scopic simulation model (NOMAD). Together with the fact that PD, the model used in this research,
and NOMAD use different approaches (see chapter 2 in (Campanella, 2016) for more details), this is a
strong indication that the main conclusions of this research do not depend on the specific model used.
However, more research using other modelling approaches, for example cellular automata or discrete
choice modelling, would give better insight into how generalizable the conclusion actually are.

6.3 Recommendations

Based on this research a number of recommendations can be made to both science and practice. First the
recommendations for practice will be discussed in subsection 6.3.1 followed by the recommendations
for science discussed in subsection 6.3.2.

6.3.1 Recommendations to practice

Based on this study the following recommendations can be done for practice.

• Calibrate the model using the flow situations that are expected to occur given the intended use and
using the metrics which are most important for the given application. Including flow situations
that are unlikely to occur in the given application will likely decrease the accuracy of the model.
The same holds for the metrics.

• Following from the first recommendation, calibrate the model for one specific application only.
Calibrating the model for multiple applications at once will likely decrease the accuracy of the
model’s predictions if these applications include different flow situations which are likely to occur
and/or different metric which are important.

• Validate the model using a wide range of flow situations and metrics such that one has insight into
how reliable or unreliable the model’s predictions are for those situations which weren’t included
in the calibration. This way one can determine how detrimental the occurrence of these flow
situations would be if they unexpectedly were to occur in the simulation.

6.3.2 Recommendations to science

Based on this study also a number of recommendations can be done for science.

• Based on this research the following suggestions can be done for future research:

– Research into the effect of the scenario properties that were not part of this research. Namely,
in order of relevance, the population composition, the geometry of the infrastructure and the
demand patterns.

– Research into how to deal with the stochastic nature of pedestrian models during calibrating
and validating the model or whilst performing a sensitivity analysis.

– Research into how to combine calibration based on microscopic metrics with calibration us-
ing macroscopic and mesoscopic metrics whereby the microscopic metrics are used in those
situations where the macroscopic and mesoscopic metrics lack the power to differentiate
between different solutions.

– Research into the question if the behaviour of the pedestrians is independent of the flow
situation.
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• When doing experiments with pedestrians with the goal of using the data for calibrating and
validating the model, take the following two considerations into account:

– Take into account the composition of experiments used to collect data on pedestrian walking
behaviour. When the data set is collected with the possible intention to use it for calibrating
a pedestrian model it is good to take into account the different scenario properties described
in subsection 2.2.2. For example, if the plan is to include multiple movement base cases try
to include at least those who are most likely to show the largest differences in behaviour.

– The duration of the experiments, short time spans might be a cause for the large number of
necessary replications given that stochastic elements (e.g. preferred speed, the initial location
of the origin and destination which influence the local route choice) have more impact on
the results when short time spans (e.g. the 1.5 minutes used in this research) are simulated.
Furthermore, at high density levels the question is if certain flows can be sustained for longer
periods at a time and primarily if the model is also capable of reproducing this. For example,
in this research it was found that in the case of the high density bidirectional scenario total
breakdown of the flow occurred quite frequently. However, it was also found that the exact
time when this occurred differed a lot between simulations and sometimes this only occurred
at the very end of a simulation (at a moment possibly outside of the measurement period)
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A | Overview metrics

The table below contains an overview of metrics, found in the literature, which are used to evaluate the
performance of a pedestrian simulation model. As subsection 2.2.3 describes, the metrics are categor-
ized based on three properties, namely:

1. Aggregation level: Is the metric macroscopic, mesoscopic or microscopic?

2. Quantitative or qualitative: Is the metric obtained quantitatively or qualitatively?

3. General or specific: Can the metric be used independent of the flow situation or is it used only in
specific flow situations?
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Table A.1: Overview of metrics, found in the literature, used to evaluate the performance of a pedestrian simulation model. The metrics are categorized by: 1) Aggregation level
(Macro, Meso or Micro). 2) Whether they are obtained quantitatively (Quan.) or qualitatively (Qual.). and 3) If they are used only in a specific flow situation (Spec.) or
independent of the flow situation (Gen.).

Metric Macro Meso Micro Quan. Qual. Spec. Gen. Studies

Formation of lanes x x x Campanella et al. (2014)

Funnel shape upstream of
bottleneck

x x x Campanella et al. (2014), Berrou et al. (2007)

Merging patterns x x x Wagoum and Seyfried (2013)

Stop & Go waves x x x Moussaïd et al. (2011)

Turbulence x x x Moussaïd et al. (2011)

Zipper effect x x x Campanella et al. (2014)

Density x x x Weichen et al. (2014), Berrou et al. (2007), Davidich
and Köster (2013), Daamen (2004), Abdelghany et al.
(2016)

FD (Flow-density) x x x Bandini et al. (2014), Berrou et al. (2007),
Schadschneider and Seyfried (2009), Klein et al.
(2010), Davidich and Köster (2012), Davidich and
Köster (2013)

FD (Speed-density) x x x Bandini et al. (2014), Chraibi et al. (2014), Köster et al.
(2014), Moussaïd et al. (2011), Rudloff, Matyus, Seer
and Bauer (2011), Schadschneider et al. (2011, 2011),
Campanella et al. (2014, 2009b)

Flow x x x Berrou et al. (2007), Kretz et al. (2008), Sano et al.
(2011), Abdelghany et al. (2016)

Ped count per region per step vs.
the capacity of the region

x x x Banerjee and Kraemer (2010)

Pedestrian within area over time x x x Daamen (2004), Bauer (2011)

Speed over space x x x Weichen et al. (2014)

Continued on next page
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Table A.1 – continued from previous page

Metric Macro Meso Micro Quan. Qual. Spec. Gen. Studies

Speed vs distance headway x x x Chattaraj et al. (2013)

Bottleneck capacity x x x Campanella et al. (2014), Weichen et al. (2014),
Campanella et al. (2009b)

Crossing time (Boarding and
Alighting)

x x x Rudloff, Bauer et al. (2011)

Egress speed vs. group size x x x Köster et al. (2014)

Lane formation x x x Campanella et al. (2009b)

Occupants out vs. time x x x Galea (1998), Galea et al. (2014)

Speed vs. group size x x x Moussaïd et al. (2010)

Time vs. nr. of passengers
alighted or boarded

x x x Berrou et al. (2007)

Total evacuation time x x x Galea et al. (2014), Kretz et al. (2008)

Distribution ped trajectories x x x Davidich and Köster (2013)

Probability of choosing an
alternative

x x x Robin et al. (2009)

Speed x x x Davidich and Köster (2013)

Travel time x x x Campanella et al. (2014), Bauer (2011), Rudloff,
Matyus, Seer and Bauer (2011), Seer, Brändle and
Ratti (2014), Bauer (2011)

Walking speed alighting or
boarding (Mean, variance and vs
distance)

x x x Daamen (2004)

Walking speed stairs up or down
(Mean, variance and
distribution)

x x x Daamen (2004)

Average distance between
pedestrians

x x x Campanella et al. (2014)

Continued on next page
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Table A.1 – continued from previous page

Metric Macro Meso Micro Quan. Qual. Spec. Gen. Studies

Group cohesion x x x Köster et al. (2014)

Number of collisions with
nearby pedestrians

x x x Campanella et al. (2014)

Staying in simulated area x x x Campanella et al. (2014)

Trajectories x x x Moussaïd et al. (2011), Seer, Brändle and Ratti (2014),
Weichen et al. (2014)

Number of collisions straight on x x x Campanella et al. (2014)

Pushed back pedestrians x x x Campanella et al. (2014)

Pushed towards the obstacles x x x Campanella et al. (2014)

Trapped pedestrians x x x Campanella et al. (2014)

Acceleration curve x x x Moussaïd et al. (2009)

Choice sets x x x Robin et al. (2009)

Trajectories (Acceleration) x x x Campanella et al. (2011), Hoogendoorn and Daamen
(2007), Daamen and Hoogendoorn (2012), Ko et al.
(2013), Seer, Rudloff et al. (2014), Tang and Jia (2011)

Trajectories (Position) x x x Seer, Brändle and Ratti (2014), Rudloff, Matyus, Seer
and Bauer (2011), Chraibi et al. (2016), Tang and Jia
(2011), Schadschneider et al. (2011)

Wall and pedestrian overlap x x x Rudloff, Bauer et al. (2011)
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B | Scenarios sensitivity analysis
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Figure B.1: Overview bidirectional scenario
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Figure B.2: Overview bottleneck scenario
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B. Scenarios sensitivity analysis How to calibrate a pedestrian simulation model

����������	
����

��	�� �
�	

��� ��� ���

���

���

���

���

���

Figure B.3: Overview corner scenario
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Figure B.4: Overview T-junction scenario

Table B.1: Inflows per scenario in ped/s/m/entry

Low High

Bidirectional 0.2 0.4
Bottleneck *
Corner 0.5 1.0
T-junction 0.4 0.8

∗ Start area filled with a density of 3 ped/m2
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C | Results quantitative sensitivity
analysis

C.1 Bidirectional straight - high

Table C.1: Deviation from the default value [%] - Bidirectional straight high

Mean Std. N
Personal distance -25% 1.07 -1.13 131
Personal distance +25% 0.33 0.00 130
Side pref. update factor -25% 0.33 -0.19 109

Side pref. update factor +25% 0.79 -0.94 122

Relaxation time -25% 9.43 -9.74 100
Relaxation time +25% -21.12 21.41 262
Min. desired speed -25% 0.50 -0.04 107

Min. desired speed +25% 0.96 -0.82 110

Preferred clearance -25% 0.44 -1.04 115
Preferred clearance +25% 1.04 -0.98 100
FoV avoidance range -25% 0.76 0.02 118

Viewing angle -25% 3.14 -4.13 100

Viewing angle +25% -1.52 3.79 121
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Figure C.1: Influence of seeds versus the number of replications - Bidirectional straight high
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C. Results quantitative sensitivity analysis How to calibrate a pedestrian simulation model

C.2 Bidirectional straight - low

Table C.2: Deviation from the default value [%] - Bidirectional straight low

Mean Std. N
Personal distance -25% -0.23 1.80 50
Personal distance +25% -0.36 2.47 50
Side pref. update factor -25% 0.10 0.77 50

Side pref. update factor +25% -0.50 1.89 50

Relaxation time -25% 0.66 -0.89 50
Relaxation time +25% -2.37 5.11 71
Preferred clearance -25% 0.21 0.38 50
Preferred clearance +25% -0.08 0.41 59
FoV avoidance range -25% 0.13 0.71 50

FoV avoidance range +25% 0.09 0.16 52

Viewing angle -25% -0.32 -0.13 50

Viewing angle +25% -0.86 2.31 50
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Figure C.2: Influence of seeds versus the number of replications - Bidirectional straight low
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C. Results quantitative sensitivity analysis How to calibrate a pedestrian simulation model

C.3 Bottleneck

Table C.3: Deviation from the default value [%] - Bottleneck

Mean Std. N
Personal distance -25% 1.13 -1.35 50
Personal distance +25% -1.43 0.94 50
Side pref. update factor -25% -0.57 -0.21 50

Side pref. update factor +25% -0.16 -0.17 50

Relaxation time -25% 17.48 8.63 50
Relaxation time +25% -13.06 -6.96 53
Min. desired speed -25% -0.47 -0.69 61

Min. desired speed +25% -0.17 0.25 64

Preferred clearance -25% -0.48 -0.32 56
Preferred clearance +25% 0.43 0.21 66
FoV avoidance range -25% -0.57 0.26 53

Viewing angle -25% 7.59 2.03 54

Viewing angle +25% -3.44 0.31 50
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Figure C.3: Influence of seeds versus the number of replications - Bottleneck
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C. Results quantitative sensitivity analysis How to calibrate a pedestrian simulation model

C.4 Corner - high

Table C.4: Deviation from the default value [%] - Corner high

Mean Std. N
Personal distance -25% 0.28 -2.26 50
Personal distance +25% -0.66 0.71 64
Side pref. update factor -25% -0.20 -0.26 67

Side pref. update factor +25% -0.03 -0.77 65

Relaxation time -25% 5.81 -5.29 50
Relaxation time +25% -10.98 10.32 64
Min. desired speed -25% -0.46 -0.35 54

Min. desired speed +25% 0.24 -1.31 63

Preferred clearance -25% 0.74 0.59 50
Preferred clearance +25% -1.05 0.56 75
FoV avoidance range -25% 0.29 -1.56 53

Viewing angle -25% -1.90 3.66 50

Viewing angle +25% 0.27 -1.83 50
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Figure C.4: Influence of seeds versus the number of replications - Corner high
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C. Results quantitative sensitivity analysis How to calibrate a pedestrian simulation model

C.5 Corner - low

Table C.5: Deviation from the default value [%] - Corner low

Mean Std. N
Personal distance -25% -0.58 -0.23 52
Personal distance +25% -0.40 0.31 50
Side pref. update factor -25% -0.29 -0.76 52

Side pref. update factor +25% 0.10 -0.08 57

Relaxation time -25% 1.79 1.17 50
Relaxation time +25% -2.04 1.27 50
Preferred clearance -25% 0.28 -0.49 50
Preferred clearance +25% -0.28 -0.32 50
FoV avoidance range -25% 0.77 -2.10 50

FoV avoidance range +25% 0.18 -0.36 50

Viewing angle -25% -0.25 0.43 50

Viewing angle +25% 0.65 -1.10 58
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Figure C.5: Influence of seeds versus the number of replications - Corner low
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C.6 T-junction - high

Table C.6: Deviation from the default value [%] - T-junction high

Mean Std. N
Personal distance -25% 0.43 -1.52 75
Personal distance +25% -0.48 1.40 75
Side pref. update factor -25% -1.54 -0.82 75

Side pref. update factor +25% 0.95 0.46 75

Relaxation time -25% 72.87 -8.03 88
Relaxation time +25% -17.35 -7.16 75
Min. desired speed -25% 0.18 -0.60 75

Min. desired speed +25% 0.80 0.54 75

Preferred clearance -25% -0.50 -0.22 75
Preferred clearance +25% -0.39 -0.44 75
FoV avoidance range -25% -0.68 -0.02 75

Viewing angle -25% 7.92 -0.90 75

Viewing angle +25% -3.69 1.55 75
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Figure C.6: Influence of seeds versus the number of replications - T-junction high
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C.7 T-junction- low

Table C.7: Deviation from the default value [%] - T-junction low

Mean Std. N
Personal distance -25% 0.02 -0.78 75
Personal distance +25% -0.31 0.55 75
Side pref. update factor -25% -0.29 0.88 75

Side pref. update factor +25% -0.25 -0.09 75

Relaxation time -25% 6.44 -11.37 75
Relaxation time +25% -9.28 16.33 75
Preferred clearance -25% 0.33 -0.11 75
Preferred clearance +25% -0.41 -0.23 75
FoV avoidance range -25% -0.20 -0.13 75

FoV avoidance range +25% -0.22 -0.43 75

Viewing angle -25% 0.66 -1.36 75

Viewing angle +25% -0.22 1.18 75
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Figure C.7: Influence of seeds versus the number of replications - T-junction low
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D | Scenarios calibration
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Figure D.1: Overview bidirectional scenario
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E | Measurement periods calibration

The measurement period determines the time frame within which the different metrics are measured.
As this appendix will show, there is a difference between the scenarios and the metrics regarding how
the measurement period is determined. In the case of the scenarios there is a difference between the
bottleneck scenarios and all other scenarios. This is due to the fact that the bottleneck scenario is fully
populated at the start of the simulation whilst all other scenarios need a warming up period to populate
the infrastructure with the desired density level. The difference between the metrics is due to how and
where they are measured.

The duration of the measurement period for the simulations is determined based on the reference
data. This is the case for all scenarios except the bottleneck due to the fact that the bottleneck scenario
is the only scenario based on a fixed number of pedestrians. The start time of the measurement period
is determined per individual simulation and in the case of the simulations the end time is the start
time plus the duration. Table E.1 shows, for every metric, an overview of how the start and end of
the measurement period is determined. Table E.2 shows the durations of the measurement periods,
determined based on the reference data, per scenario and metric. In the remainder of this appendix it is
explained in more detail why the measurement periods are determined as shown in Table E.2.

Table E.1: Measurement periods

Bottleneck scenario Other scenarios

Start End Start End
Flow First pedestrian

passes flow line
Last pedestrian
passes flow line

First pedestrian
passes flow line +
free travel time

Last pedestrian
enters the
measurement area

Spatial
distribution

First pedestrian
passes flow line

Last pedestrian
exits the
measurement area

First pedestrian
exits the
measurement area

Last pedestrian
enters the
measurement area

Effort First pedestrian
passes flow line

Last pedestrian
exits the
measurement area

First pedestrian
exits the
measurement area

Last pedestrian
enters the
measurement area

Travel time First pedestrian
passes flow line

Last pedestrian
exits the
measurement area

First pedestrian
exits the
measurement area

Last pedestrian
enters the
measurement area

Table E.2: Measurement period duration in seconds

Flow Spatial
Distr.

Effort Travel
time

Bidirectional - high 43.3750 40.8125 46.0000 46.0000

Bidirectional - low 27.2500 24.6875 29.8750 29.8750
Corner - high 23.3750 23.3750 28.6875 28.6875

Corner - low 29.5625 29.5625 34.8750 34.8750
T-junction - high 54.1875 54.1875 58.6875 58.6875

T-junction - low 36.6250 36.6250 41.1250 41.1250
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E. Measurement periods calibration How to calibrate a pedestrian simulation model

Flow

Start: Time the first pedestrian passes flow line + free travel time.

End: Time the last pedestrian enters the measurement area.

Free travel time: The time it takes a pedestrian to travel from the start of the measurement area to the
flow line when walking at the average preferred speed.

Why: This should ensure that a pedestrian passing the flow line during the measurement period exper-
iences the desired density level when passing the flow line.

Notes: In the case of the bidirectional scenarios the start time is not determined based on the first
pedestrian that passes the flow line. However, for both travel directions, the time the first pedestrian
passes the line is taken and the maximum of those two is used. In the case of the end time the minimum
time of the two directions is used.

Bottleneck: In the case of the bottleneck scenario, the average flow is determined by the time it takes
all 349 pedestrian to pass the bottleneck. Hence, the measurement period is simply the time between
the first pedestrian passing the flow line and the last pedestrian passing the flow line.

Spatial distribution

Start: Time the first pedestrian exists the measurement area + free travel time.

End: Time the last pedestrian enters the measurement area.

Free travel time: The time it takes a pedestrian to travel from the start of the measurement area to the
end of the measurement area when walking at the average preferred speed.

Why: This should ensure that all steps of all pedestrians, taken into account, happen whilst the density
is at the desired level.

Note: In the case of the bidirectional scenarios the start time is not determined based on the first pedes-
trian that exists the measurement area. However, for both travel directions, the time the first pedestrian
exists the measurement area is taken and the maximum of those two is used. In the case of the end time
the minimum time of the two directions is used.

Bottleneck: In the case of the bottleneck scenario the spatial distribution is based during the period the
measurement area contains at least one pedestrian.

Effort and travel time

Start: Time the first pedestrian exists the measurement area.

End: Time the last pedestrian enters the measurement area.

Why: This should ensure that only the effort or travel time of those pedestrians that experienced the
desired level of density is taken into account.

Note: In the case of the bidirectional scenarios the start time is not determined based on the first pedes-
trian that exists the measurement area. However, for both travel directions, the time the first pedestrian
exists the measurement area is taken and the maximum of those two is used. In the case of the end time
the minimum time of the two directions is used.

Bottleneck: In the case of the bottleneck scenario the effort and travel time of all pedestrians is taken
into account.
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F | Objective functions and
normalization method

As subsection 5.1.3 states, the question is: How to combine the results of two or more objective functions
into a single objective function? As the subsection also states, the choice is made to use the weighted
sum method to combine the results of the individual objective into a single objective function. However,
in order to combine the results of different metrics in a meaningful way they need to be normalized
given the differences in units and orders of magnitude. This appendix will explain the method which
is used and the rationale behind it.

Roughly speaking one has two options when determining the error between the simulation results
and the reference data:

1. Absolute error (Msim −Mref )

2. Relative error
(
Msim

Mref
− 1
)

The choice between these two options is the choice between two different sets of assumptions.

The first set of assumptions is related to how the size of the deviation (Msim−Mref ) is related to the
size of the error given the reference value (Mref ). In the case of the absolute error one assumes that the
relationship between the size of the deviation and the size of the error is not dependent on the size of
the reference value (i.e. a deviation of 1 unit, for example 1 ped/s/m in the case of the flow, is equally
wrong regardless of the reference value). In the case of the relative error one assumes that the same
deviation is less wrong in the case of a higher reference value compared with a lower reference value.

The second set of assumptions is related to how the size of the deviation of one metric is related
to the size of the deviation in another metric. In the case of the relative error one assumes that the
deviation of one times the reference value of one metric is equally wrong as the deviation of one times
the reference value of another metric. In the case of the absolute error one assumes that the deviation
of 1 unit of one metric is equally wrong as a deviation of 1 unit of another metric (e.g. a deviation of 1
ped/s/m is equally wrong as a deviation of 1 m/s in the mean effort).

On top of the two sets of assumptions presented above, one has to also take the following practical
point into account when making a choice between the two options. In the case of the relative error
a problem can occur when the reference value is zero given that the error will become infinite. This
situation will occur in the case of the spatial distribution metrics where there are cells which are never
occupied. Unless one is of the opinion that any deviation from a reference value of zero constitutes an
infinitely large error one has come up with another method to determine the size of the error.

Taking the assumptions and the practical point presented above into account the choice is made to
use the absolute error for the following reasons:

1. It avoids the practical problem described above.

2. The assumption that, for an equally large deviation, the error is smaller in the case of a scenario
with a large reference value compared to a scenario with a smaller reference value, assumes dif-
ferent levels of accuracy between the different scenarios. Given the goal of calibrating a model
for general use, this is not considered to be a be a very good assumption. Certainly, given that it
might even be preferable to gain more accurate predictions near the capacity point than a point
somewhere in the free-flow branch given the large impact small deviations can have within this
area of the fundamental diagram.

3. The problem with the different scales and units can be solved by the normalizing.

However, this choice leads to another problem. How to normalize the errors? The only example found
in the pedestrian modelling literature was that of (Duives, 2016). In the case of Duives (2016), the
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F. Objective functions and normalization method How to calibrate a pedestrian simulation model

normalization is done based on the maximum error for a given scenario and metric.

Enorm;s;m(θ) = Es;m(θ)
max
θ∈Θ

Es;m
(F.1)

WhereEnorm;s;m(θ)) is the normalized error for parameters set θ, scenario s and metricm. Θ is the set of
parameter sets. This method assumes that the maximum error of a scenario and metric is equally wrong
as every other maximum error of every other combination of scenario and metric. So, for example, an
error in the flow of 1 ped/s/m in one scenario is considered equally wrong as an error of 1.5 ped/s/m
in another scenario. Or, a larger error in the flow is considered equally wrong as a small error in the
mean effort. This assumption is very similar to the assumption made when using the relative error as
hence is problematic for the same reason.

To take away a part of the problem, namely the assumption that for an equally large deviation the
normalized error can differ depending on the size of the maximum error in the given scenario, one
could normalize based on the maximum value per metric over all scenarios:

Enorm;s;m(θ) = Es;m(θ)
max
θ∈Θ

max
s∈S

Es;m
(F.2)

Where S is the set of all scenarios.

However, this method still has one problem: The maximum error in metric A is equally wrong as
the maximum error of metric B whilst the maximum error of metric A can be, relatively speaking, many
times larger than the maximum error of metric B. To prevent this problem one could come up with error
values for every metric which one considers to be 100% wrong. So, for example, one could consider an
error in the flow of 1 ped/s/m as equally wrong as an error of 1 s/m in the travel time. However, on
what should these values be based?

An option would be to base it on the ratios between the values of the metrics from the reference data.
In Table F.1 the ratios per scenario can be found whereby the ratios are calculated based on equating the
flow to 1 (So in the table below, an error of 1 ped/s/m is considered equal to an error of 0.8783 s/m in
the travel time mean in the case of the bidirectional low density scenario).

Table F.1: Ratios between metric values per scenario

B-H B-L B C-H C-L T-H T-L
Flow 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Spatial distr. 0.3110 0.1250 0.1267 0.0499 0.3184 0.0630 0.3356

TT mean 1.2581 0.8783 0.7783 0.8377 1.2732 1.0581 0.8537
TT std. 0.3006 0.1006 0.3872 0.1043 0.1522 0.2606 0.1454

Effort mean 0.0342 0.0507 0.0191 0.0399 0.0900 0.0256 0.0446
Effort std. 0.0089 0.0128 0.0048 0.0101 0.0154 0.0063 0.0083

However, as one can see these ratios differ per scenarios. So, there are two options:

1. Use different values for different scenarios

2. Take the mean ratios and base the normalization values on that

The first option would involve running into the same problem as using the relative errors, namely: the
size of the error depends on the reference value so, for example, an error of 1 ped/s/m in on scenario
equals an error of 1.5 ped/s/m in another. Hence, this is not considered a good option. The second
option would lead to the normalization values displayed in Table 5.2. Overall, this method (using the
second option) is considered to be a better method than using the maximum values given that is also,
approximately, takes into account the relative differences between the metrics.

105



G | Reference data - Metrics

Acronyms used in the tables for the data sets:

Name Data set
B-H Bidirectional high BOT-360-200-200

B-L Bidirectional low BOT-360-075-075
B Bottleneck AO-360-400
C-H Corner - high EO-240-150-240

C-L Corner - low EO-240-060-240
T-H T-junction - high KO-240-150-240

T-L T-junction - low KO-240-060-240

Table G.1: Measured flows [ped/s/m] per data set

Total l2r r2l
B-H 1.27 0.63 0.64
B-L 0.87 0.48 0.39
B 2.32
C-H 1.16
C-L 0.58
T-H 1.62
T-L 1.07

Table G.2: Measured effort [m/s] per data set

Mean Std. N
B-H 0.0434 0.0113 182
B-L 0.0439 0.0111 74
B 0.0422 0.0112 349
C-H 0.0462 0.0117 67
C-L 0.0520 0.0089 41
T-H 0.0415 0.0102 217
T-L 0.0477 0.0089 95

Table G.3: Measured travel time per data set

Mean Std. N Mean Std. Length

[s/m] [s] [m]
B-H 1.59 0.381 150 13.81 3.300 8.66
B-L 0.76 0.087 73 6.17 0.707 8.12
B 1.80 0.896 349 17.00 8.455 9.43
C-H 0.97 0.121 63 7.75 0.966 7.99
C-L 0.74 0.088 40 5.49 0.656 7.46
T-H 1.72 0.423 204 12.00 2.956 6.99
T-L 0.91 0.155 93 5.66 0.964 6.20
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Figure G.1: Spatial distributions
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H | Detailed calibration results

In this appendix a more detailed picture of the calibration results is presented. Section H.1 presents
how the mean travel time error and the pedestrian count error are correlated in the case of the bidirec-
tional high density scenario. Section H.2 discusses how the decrease in GoF is related to the average
normalized error. And finally, section H.3 presents the calibration results split into their individual
objectives.

H.1 Correlation between mean travel time error and pedestrian
count error
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Figure H.1: Correlation between mean travel time error and pedestrian count error - Bidirectional high density
scenario (p is the Pearson correlation coefficient)

H.2 How is the decrease in GoF related to the changes
in the errors?

This section presents how the decreases in GoF, shown in tables 5.7 to 5.10, are related to the changes in
the errors of the individual objectives (a combination of a single metric and scenario). The changes in
the errors by means of the changes in the average error and the change in the standard deviation of the
errors. How these are computed will be shown by the following example:

Table H.1: An overview of the changes in errors of the combination of low density cases when, instead of its own
optimal parameter set, the optimal parameter set of the bidirectional low density scenario is used

Metrics
Q SD Effµ Effσ TTµ TTσ

Sc
en

ar
io

s

B-L
Base -7.83 0.99 15.81 -40.28 54.68 -3.53 1.82
B-L -8.29 1.06 14.44 -42.54 45.49 -0.91 8.95

C-L
Base 1.96 17.48 -62.80 -38.49 -0.81 -0.67
B-L 2.33 20.73 -65.47 -42.77 1.84 1.95

T-L
Base 4.81 27.90 -35.91 -20.08 -12.89 -19.44
B-L 4.61 32.53 -40.21 -30.81 -3.13 -3.12
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The table above shows the normalized errors, expressed as percentages of the normalization values,
for the combination of the low density scenarios. The base rows show the errors made when the optimal
parameter set obtained using the combination of the low density scenarios is used. The B-L rows show
the errors made when the optimal parameter set obtained using the bidirectional low density scenario
is used. When the optimal parameter, obtained using the combination of the low density scenarios, is
used the average error is ±19.54% of the normalization values. This number is calculated as follows:

ĒA:B = 1
Ns +Nm

∑
s

∑
m

∣∣∣∣Msim;s;m(θ∗B)−Mref ;s;m

Mnorm;m
∗ 100%

∣∣∣∣ (H.1)

Where Msim;s;m(θ∗B) is the simulated value of scenario s and metric m for the optimal parameter set of
B. Mref ;s;m is the reference value of scenario s and metric m and Mnorm;m is the normalization value of
metric m. Ns and Nm are respectively the number of scenarios and metrics. The absolute values of the
errors are used because the interest is in the average size of the errors. Furthermore, as the table shows,
the metrics are not combined as is the case in the calibration but are treated separately (e.g. the mean
and the standard deviation of the effort are not combined into a single value). Similarly, the standard
deviation of the errors is also based on the absolute values.

So, the errors shown in the table above result in the following average errors and standard devi-
ations:

Error stats. Deviation from base
∆GoF Mean Std. Mean Std.

Base 19.38 19.12
B-L -0.0081 19.54 20.01 0.16 0.89

The remainder of this appendix will present the tables showing how the decreases in the GoF,
presented in tables 5.7 to 5.10, are related to the change in the average size of the errors and the variance
of the errors.

H.2.1 Combined scenarios

Table H.2: An overview of the decreases in GoF and the accompanying descriptive statistics of the errors whereby
the base case is the combination of the high density scenarios

Error stats. Deviation from base
∆GoF Mean Std. Mean Std.

Base 37.78 33.64
B-H -0.0136 41.41 27.45 3.62 -6.19

B -0.1257 44.31 44.67 6.53 11.03
C-H -0.1013 43.99 40.69 6.21 7.05
T-H -0.0135 37.40 35.85 -0.38 2.21

Table H.3: An overview of the decreases in GoF and the accompanying descriptive statistics of the errors whereby
the base case is the combination of the low density scenarios

Error stats. Deviation from base
∆GoF Mean Std. Mean Std.

Base 19.38 19.12
B-L -0.0081 19.54 20.01 0.16 0.89
C-L -0.0207 20.10 25.67 0.72 6.55
T-L -0.0187 19.82 25.39 0.44 6.27
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H.2.2 Individual scenarios

Table H.4: An overview of the decreases in GoF and the accompanying descriptive statistics of the errors whereby
the base case is the high density bidirectional scenario

Error stats. Deviation from base
∆GoF Mean Std. Mean Std.

Base 29.19 17.08
H-D -0.3528 52.38 53.07 23.18 35.99

B -0.4084 54.60 56.55 25.41 39.47
C-H -0.3289 53.83 48.11 24.64 31.03
T-H -0.3907 54.34 55.28 25.15 38.20
L-D -0.3907 50.95 49.63 21.76 32.55
B-L -0.3149 49.14 51.45 21.50 34.37

Table H.5: An overview of the decreases in GoF and the accompanying descriptive statistics of the errors whereby
the base case is the bottleneck scenario

Error stats. Deviation from base
∆GoF Mean Std. Mean Std.

Base 22.38 13.30
H-D -0.1937 39.16 25.03 16.78 11.73
B-H -0.1223 42.89 21.05 20.51 7.75
C-H -0.1533 35.21 23.53 12.83 10.23
T-H -0.2679 44.67 27.18 22.29 13.88
L-D -0.1262 37.27 15.21 5.02 -1.87

Table H.6: An overview of the decreases in GoF and the accompanying descriptive statistics of the errors whereby
the base case is the high density corner scenario

Error stats. Deviation from base
∆GoF Mean Std. Mean Std.

Base 21.65 3.68
H-D -0.0402 26.43 21.19 4.78 17.51
B-H -0.0992 33.99 22.55 12.34 18.87

B -0.0501 30.30 10.37 8.65 6.69
T-H -0.0369 24.19 23.69 2.54 20.01
L-D -0.0433 28.91 15.33 7.26 11.65
C-L -0.0032 22.40 3.64 0.75 -0.04

Table H.7: An overview of the decreases in GoF and the accompanying descriptive statistics of the errors whereby
the base case is the high density t-junction scenario

Error stats. Deviation from base
∆GoF Mean Std. Mean Std.

Base 23.60 17.23
H-D -0.0548 30.73 21.47 7.14 4.24
B-H -0.4743 61.59 39.34 38.00 22.10

B -0.6858 68.24 61.70 44.65 44.47
C-H -0.5646 63.65 57.55 40.05 40.31
L-D -0.4185 56.14 48.60 32.54 31.37
T-L -0.5869 64.75 58.45 41.15 41.22
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Table H.8: An overview of the decreases in GoF and the accompanying descriptive statistics of the errors whereby
the base case is the combination of the low density bidirectional scenario

Error stats. Deviation from base
∆GoF Mean Std. Mean Std.

Base 17.39 18.81
L-D -0.0093 17.85 21.25 0.46 2.44
C-L -0.0978 22.70 37.47 5.31 18.66
T-L -0.0924 22.30 36.81 4.91 18.00
H-D -0.0055 18.30 19.94 0.92 1.13
B-H -0.0026 17.25 19.09 -0.14 0.28

Table H.9: An overview of the decreases in GoF and the accompanying descriptive statistics of the errors whereby
the base case is the combination of the low density corner scenario

Error stats. Deviation from base
∆GoF Mean Std. Mean Std.

Base 19.53 23.26
L-D -0.0110 20.37 25.48 0.84 2.22
B-L -0.0245 22.52 26.52 2.99 3.26
T-L -0.0003 19.57 23.37 0.04 0.11
H-D -0.0194 21.43 26.41 1.90 3.15
C-H -0.0019 19.75 23.58 0.22 0.32

Table H.10: An overview of the decreases in GoF and the accompanying descriptive statistics of the errors whereby
the base case is the combination of the low density t-junction scenario

Error stats. Deviation from base
∆GoF Mean Std. Mean Std.

Base 17.19 11.47
L-D -0.0164 20.17 10.92 2.98 -0.55
B-L -0.0366 19.07 17.23 1.88 5.75
C-L -0.0011 17.65 11.38 0.46 -0.10
H-D -0.0250 18.95 14.82 1.76 3.35
T-H -0.0258 17.67 16.47 0.48 4.99
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H.2.3 Metrics

Table H.11: An overview of the decreases in GoF and the accompanying descriptive statistics of the errors whereby
the base case is the flow metric

Error stats. Deviation from base
∆GoF Mean Std. Mean Std.

Base 9.10 6.91
SD -0.0844 16.61 24.62 7.51 17.70
Eff -0.0902 16.75 25.54 7.65 18.63
TT -0.0079 11.24 8.47 2.14 1.56

Macro -0.0697 15.09 22.89 5.99 15.98
Meso -0.0079 11.24 8.47 2.14 1.56

All -0.0697 14.77 22.85 5.68 15.94

Table H.12: An overview of the decreases in GoF and the accompanying descriptive statistics of the errors whereby
the base case is the spatial distribution metric

Error stats. Deviation from base
∆GoF Mean Std. Mean Std.

Base 32.53 16.81
Q -0.1281 39.68 31.92 7.15 15.11

Eff -0.0198 33.65 20.05 1.12 3.24
TT -0.1235 39.68 26.00 7.14 9.20

Macro -0.0029 32.92 17.37 0.38 0.56
Meso -0.1235 39.68 26.00 7.14 9.20

All -0.0120 33.40 17.06 0.86 0.25

Table H.13: An overview of the decreases in GoF and the accompanying descriptive statistics of the errors whereby
the base case is the effort metric

Error stats. Deviation from base
∆GoF Mean Std. Mean Std.

Base 37.89 19.76
Q -0.1213 41.62 37.12 3.72 17.36

SD -0.0228 42.58 15.16 4.69 -4.59
TT -0.0412 45.25 13.24 7.35 -6.52

Macro -0.0261 42.21 17.30 4.32 -2.46
Meso -0.0412 45.25 13.24 7.35 -6.52

All -0.0548 42.86 14.70 4.96 -5.06

Table H.14: An overview of the decreases in GoF and the accompanying descriptive statistics of the errors whereby
the base case is the travel time metric

Error stats. Deviation from base
∆GoF Mean Std. Mean Std.

Base 27.15 34.05
Q -0.1635 39.59 45.01 12.44 10.96

SD -0.1454 27.06 52.26 -0.10 18.20
Eff -0.0596 26.65 42.78 -0.50 8.72

Macro -0.1416 30.20 49.96 3.05 15.91
Meso 0.0000 27.15 34.05 0.00 0.00

All -0.0223 24.87 43.14 -2.28 9.08
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H.3 Tables split out per individual objective

The results, found in tables 5.7 to 5.10 are split-out by either metric or scenario and checks are performed
if the main conclusions of section 5.3 still hold. The results are discussed in the same order as they are
in section 5.3. So, subsection H.3.1 discusses if the results of subsection 5.3.3 still hold, subsection H.3.2
discusses if the results of subsection 5.3.4 still hold and subsection H.3.3 discusses if the results of
subsection 5.3.5 still hold.

H.3.1 Movement base cases - detailed results

The main conclusions of subsection 5.3.3 were as follows:

1. The GoF of the individual scenarios decreases, compared to the optimal GoF, when the parameter
set of the combined set is used.

2. The effect, described above, is larger in the case of the high density levels compared to the low
density cases.

3. The GoF of the individual scenarios decreases, compared to the optimal GoF, when the parameter
set of another scenario of the same density level is used.

4. The effect, described above, is larger in the case of the high density levels compared to the low
density cases.

5. At low densities the corner and t-junction scenarios are interchangeable.

6. No good fit can be obtained on simultaneously the t-junction and bidirectional high density scen-
arios.

Tables H.15 to H.18 show the results split-out by metric. The data in the tables shows that the con-
clusions, listed above, do indeed hold when just one of the metrics is used except for the last two con-
clusions. The data shows that, although using the optimal parameter set of the low density t-junction
scenario does produces only a very small decrease in the GoF of the corner scenario (compared to the
bidirectional low scenario) this is not the case the other way round except when the flow in used as
the only metric. This could be explained by the fact that as Figure 5.2 clearly shows, the errors for the
individual metrics in the case of the corner low density scenario are generally smaller and vary less
compared to the low density t-junction scenario with the exception of the effort. Whether or not good
fit can be obtained on simultaneously the t-junction and bidirectional high density also depends on the
used metric. The model primarily seems to have a problem with obtaining the simultaneously good fit
in the case of the travel time. When one of the other three metrics is used is does not seem to be that
much of a problem.

Two other notable things that the four tables below show are: 1) When the travel time is used as
the sole metric, the t-junction and corner high density scenarios seem interchangeable. And 2) he fit of
the model to the travel time in the case of the bidirectional high density scenario is very bad when the
optimal parameter set of any of the other scenarios is used.

So, the major patterns do not depend on the specific metric used (i.e. the first for conclusions listed
above). However, the more specific patterns, the last two conclusions, do seem to depend on the specific
(combination of) metric(s) used.
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Table H.15: Difference in the GoF, as determined by Equation 5.10, for the comparisons between different move-
ment base cases using the flow as the only metric. The combinations are identified by their acronyms
as listed in Table 5.6. Every column shows the decrease in GoF, compared to the optimal GoF, of that
specific combination if the optimal parameter set of the combination, defined by the row, is used.

Predicted combination
H-D B-H B C-H T-H L-D B-L C-L T-L

U
se

d
pa

ra
m

et
er

se
t

H-D X -0.0074 -0.0066 -0.0327 -0.0496
B-H -0.0142 X -0.0696 -0.0368 -0.0467

B -0.0046 -0.0285 X -0.0375 -0.0487
C-H -0.2507 -0.0598 -0.9772 X -0.0623
T-H -0.1326 -0.0312 -0.5783 -0.0175 X
L-D X -0.0004 -0.0001 -0.0006
B-L -0.0004 X -0.0376 -0.0487
C-L -0.0003 -0.0005 X -0.0014
T-L -0.0019 -0.0065 -0.0002 X

Table H.16: Difference in the GoF, as determined by Equation 5.10, for the comparisons between different move-
ment base cases using the spatial distribution as the only metric. The combinations are identified by
their acronyms as listed in Table 5.6. Every column shows the decrease in GoF, compared to the optimal
GoF, of that specific combination if the optimal parameter set of the combination, defined by the row,
is used.

Predicted combination
H-D B-H B C-H T-H L-D B-L C-L T-L

U
se

d
pa

ra
m

et
er

se
t

H-D X -0.0280 -0.2821 -0.0182 -0.0202
B-H -0.5287 X -0.1856 -0.0966 -1.0501

B -0.6224 -0.3634 X -0.1338 -1.2101
C-H -0.3124 -0.0395 -0.4074 X -0.0205
T-H -0.2993 -0.0320 -0.3728 -0.0099 X
L-D X -0.0122 -0.0012 0.0000
B-L -0.0984 X -0.0253 -0.0990
C-L -0.0821 -0.0383 X -0.0369
T-L -0.0616 -0.0126 -0.0010 X

Table H.17: Difference in the GoF, as determined by Equation 5.10, for the comparisons between different move-
ment base cases using the effort as the only metric. The combinations are identified by their acronyms
as listed in Table 5.6. Every column shows the decrease in GoF, compared to the optimal GoF, of that
specific combination if the optimal parameter set of the combination, defined by the row, is used.

Predicted combination
H-D B-H B C-H T-H L-D B-L C-L T-L

U
se

d
pa

ra
m

et
er

se
t

H-D X -0.1886 -0.0995 -0.1335 -0.0149
B-H -0.0345 X -0.2146 -0.2790 -0.0810

B -0.0892 -0.5282 X -0.2093 -0.0557
C-H -0.1077 -0.8370 -0.0053 X -0.0250
T-H -0.0577 -0.5378 -0.0375 -0.0919 X
L-D X -0.0435 -0.0288 -0.0457
B-L -0.0213 X -0.0897 -0.0923
C-L -0.0369 -0.2120 X -0.0167
T-L -0.0793 -0.3504 -0.0054 X
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Table H.18: Difference in the GoF, as determined by Equation 5.10, for the comparisons between different move-
ment base cases using the travel time as the only metric. The combinations are identified by their
acronyms as listed in Table 5.6. Every column shows the decrease in GoF, compared to the optimal
GoF, of that specific combination if the optimal parameter set of the combination, defined by the row,
is used.

Predicted combination
H-D B-H B C-H T-H L-D B-L C-L T-L

U
se

d
pa

ra
m

et
er

se
t

H-D X -0.0344 -0.2147 -0.0248 -0.9209
B-H -0.0526 X -0.2874 -0.0302 -1.0877

B -0.4665 -2.7176 X -0.0205 -0.3226
C-H -0.5022 -2.3073 -0.8963 X 0.0000
T-H -0.5022 -2.3073 -0.8963 0.0000 X
L-D X -0.0007 -0.0004 -0.0006
B-L -0.0051 X -0.0001 -0.0168
C-L -0.0077 -0.0082 X -0.0168
T-L -0.0108 -0.0341 -0.0002 X

H.3.2 Density levels - detailed results

The main conclusions of subsection 5.3.4 were as follows:

1. In the case of the individual scenarios, the decrease in GoF is far smaller in the case that the
optimal parameter set of the high density scenario is used in the low density scenario (of the same
movement base case) than vice versa.

2. The difference in GoF are largest for the t-junction scenarios.

3. The use of the optimal parameter set obtained using the combination of high density scenarios in
the combination of low density scenario leads to a small decrease in the GoF. This is not the case
vice versa.

Tables H.19 to H.25 show the results split-out by metric. Regarding the first conclusion listed above,
it holds for all metrics except the effort. In the case of the effort the decrease in GoF of the bidirectional
low density scenario is larger than the decrease in the case of the high density scenario. Furthermore,
the difference between the t-junction scenarios is also very small.

The second conclusion listed above holds when the macroscopic metrics are use but not when the
mesoscopic metrics are used. In the case of the effort the t-junction low density scenario has indeed the
largest decrease in GoF of the low density scenarios. However, in the case of the high density scenarios
the largest decrease in GoF is found in the case of the corner scenario. In the case of the travel time the
largest decreases in GoF are found for the bidirectional scenarios.

The last conclusion listed above holds for the flow and the travel time. However, in the case of the
spatial distribution and the effort the decrease in the GoF of the combination of low density scenarios is
not small. It is however clearly smaller than the decrease in the GoF of the combination of high density
scenarios.

The main conclusion that it is more important to include the high density scenarios does seem to
hold regardless of the metric or metrics used certainly when multiple movement base cases are used.
However, the data also shows that it does not necessarily holds for every combination of movement
base case and metric.
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Table H.19: Difference in the GoF, as determined by Equation 5.10, for the comparisons between different density
levels for every movement base case using the flow as the only metric. The combinations are identified
by their acronyms as listed in Table 5.6. Every column shows the decrease in GoF, compared to the
optimal GoF, of that specific combination if the optimal parameter set of the combination, defined by
the row, is used.

Predicted combination
B-H B-L C-H C-L T-H T-L

U
se

d
pa

ra
m

et
er

se
t

B-H -0.0004
B-L -0.0721
C-H -0.0002
C-L -0.0255
T-H -0.0013
T-L -0.1191

Table H.20: Difference in the GoF, as determined by Equation 5.10, for the comparisons between different density
levels for combinations of movement base cases using the flow as the only metric. The combinations are
identified by their acronyms as listed in Table 5.6. Every column shows the decrease in GoF, compared
to the optimal GoF, of that specific combination if the optimal parameter set of the combination, defined
by the row, is used. (U.p.s = Used parameter set)

Predicted combination
H-D L-D B-H B C-H T-H B-L C-L T-L

U
.p

.s
.

H-D X -0.0001 -0.0074 -0.0066 -0.0327 -0.0496 -0.0002 -0.0002 -0.0011
L-D -0.0545 X -0.0002 -0.2519 -0.0278 -0.0346 -0.0004 -0.0001 -0.0006

Table H.21: Difference in the GoF, as determined by Equation 5.10, for the comparisons between different density
levels for every movement base case using the spatial distribution as the only metric. The combina-
tions are identified by their acronyms as listed in Table 5.6. Every column shows the decrease in GoF,
compared to the optimal GoF, of that specific combination if the optimal parameter set of the combin-
ation, defined by the row, is used.

Predicted combination
B-H B-L C-H C-L T-H T-L

U
se

d
pa

ra
m

et
er

se
t

B-H -0.0192
B-L -0.0585
C-H -0.0137
C-L -0.1500
T-H -0.0961
T-L -0.8790

Table H.22: Difference in the GoF, as determined by Equation 5.10, for the comparisons between different density
levels for combinations of movement base cases using the spatial distribution as the only metric. The
combinations are identified by their acronyms as listed in Table 5.6. Every column shows the decrease
in GoF, compared to the optimal GoF, of that specific combination if the optimal parameter set of the
combination, defined by the row, is used. (U.p.s = Used parameter set)

Predicted combination
H-D L-D B-H B C-H T-H B-L C-L T-L

U
.p

.s
.

H-D X -0.0404 -0.0280 -0.2821 -0.0182 -0.0202 -0.0055 -0.0259 -0.1032
L-D -0.2231 X -0.0213 -0.3184 -0.0358 -0.8655 -0.0122 -0.0012 0.0000
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Table H.23: Difference in the GoF, as determined by Equation 5.10, for the comparisons between different density
levels for every movement base case using the effort as the only metric. The combinations are identified
by their acronyms as listed in Table 5.6. Every column shows the decrease in GoF, compared to the
optimal GoF, of that specific combination if the optimal parameter set of the combination, defined by
the row, is used.

Predicted combination
B-H B-L C-H C-L T-H T-L

U
se

d
pa

ra
m

et
er

se
t

B-H -0.0196
B-L -0.0133
C-H -0.0078
C-L -0.0948
T-H -0.0203
T-L -0.0223

Table H.24: Difference in the GoF, as determined by Equation 5.10, for the comparisons between different density
levels for combinations of movement base cases using the effort as the only metric. The combinations
are identified by their acronyms as listed in Table 5.6. Every column shows the decrease in GoF, com-
pared to the optimal GoF, of that specific combination if the optimal parameter set of the combination,
defined by the row, is used. (U.p.s = Used parameter set)

Predicted combination
H-D L-D B-H B C-H T-H B-L C-L T-L

U
.p

.s
.

H-D X -0.0256 -0.1886 -0.0995 -0.1335 -0.0149 -0.1033 -0.0497 -0.0416
L-D -0.0892 X -0.5282 0.0000 -0.2093 -0.0557 -0.0435 -0.0288 -0.0457

Table H.25: Difference in the GoF, as determined by Equation 5.10, for the comparisons between different density
levels for every movement base case using the travel time as the only metric. The combinations are
identified by their acronyms as listed in Table 5.6. Every column shows the decrease in GoF, compared
to the optimal GoF, of that specific combination if the optimal parameter set of the combination, defined
by the row, is used.

Predicted combination
B-H B-L C-H C-L T-H T-L

U
se

d
pa

ra
m

et
er

se
t

B-H -0.0023
B-L -1.5712
C-H -0.0001
C-L -0.0108
T-H -0.0020
T-L -0.0334

Table H.26: Difference in the GoF, as determined by Equation 5.10, for the comparisons between different density
levels for combinations of movement base cases using the travel time as the only metric. The com-
binations are identified by their acronyms as listed in Table 5.6. Every column shows the decrease in
GoF, compared to the optimal GoF, of that specific combination if the optimal parameter set of the
combination, defined by the row, is used. (U.p.s = Used parameter set)

Predicted combination
H-D L-D B-H B C-H T-H B-L C-L T-L

U
.p

.s
.

H-D X -0.0017 -0.0344 -0.2147 -0.0248 -0.9209 -0.0008 0.0000 -0.0059
L-D -0.1216 X -1.0595 -0.0411 -0.0160 -0.5648 -0.0007 -0.0004 -0.0006
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H.3.3 Metrics - detailed results

The main conclusions of subsection 5.3.5 were as follows:

1. There seems to be some correlation between the spatial distribution and effort.

2. The spatial distribution dominates the flow when both are used.

3. The travel time dominates the effort when both are used.

4. The model cannot obtain a good fit on all four metrics simultaneously.

Tables H.27 to H.33 show the results split-out by scenario. The first conclusion listed above does
hold for the low density scenario but not for the high density scenarios. This begs the question if the
correlation found when combining all scenarios is due to the inclusion of the low density scenarios or
that is would also be apparent if one were to combine the four high density scenarios.

In none of the individual cases the spatial distribution seems do dominate the flow as the decrease
in the GoF of the flow is generally not much larger when the optimal parameter set obtained using the
two macroscopic metrics is used. The travel time also does not seem to dominate the effort in most
of the cases. Only in case of the bidirectional scenarios and the t-junctions low density scenario this is
somewhat the case. Hence, both seem to be the result of combining multiple movement base cases.

The last conclusion does hold for all seven scenarios. In none of the cases the model is capable
of simultaneously obtaining a good fit on all four metrics. This does indicate that it is important to
prioritize which metrics are most important given the application of the model as one cannot necessarily
obtain a good fit on all metrics.

So, overall the most important conclusion that the model cannot obtain a good fit on all four metrics
simultaneously does not seem to be dependent on the used scenario or combination of them. The other
conclusion, however, do seem to depend on the exact combination of scenarios used.

Table H.27: Difference in the GoF, as determined by Equation 5.10, for the comparisons between different metrics
using the bidirectional high density scenario as the sole scenarios. The combinations are identified
by their acronyms as listed in Table 5.6. Every column shows the decrease in GoF, compared to the
optimal GoF, of that specific combination if the optimal parameter set of the combination, defined by
the row, is used.

Predicted combination
Q SD Eff TT

U
se

d
pa

ra
m

et
er

se
t

Q X -0.0811 -0.7682 -0.6197

SD -0.0031 X -0.7488 -0.1252

Eff -0.0642 -0.1221 X -1.8546
TT -0.0167 -0.0656 -0.1434 X

Macro -0.0007 -0.0020 -1.1050 -0.2234
Meso -0.0251 -0.1001 -0.0650 -0.0171

All -0.0129 -0.0527 -0.0959 -0.0193
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Table H.28: Difference in the GoF, as determined by Equation 5.10, for the comparisons between different metrics
using the bidirectional low density scenario as the sole scenarios. The combinations are identified by
their acronyms as listed in Table 5.6. Every column shows the decrease in GoF, compared to the optimal
GoF, of that specific combination if the optimal parameter set of the combination, defined by the row,
is used.

Predicted combination
Q SD Eff TT

U
se

d
pa

ra
m

et
er

se
t

Q X -0.0417 -0.1226 -0.0092

SD -0.0060 X -0.0018 -0.0864

Eff -0.0070 -0.0018 X -0.1010
TT -0.0002 -0.0119 -0.1054 X

Macro -0.0014 -0.0013 -0.0410 -0.0357
Meso -0.0002 -0.0298 -0.0164 -0.0040

All -0.0083 -0.1908 -0.1236 -1.2741

Table H.29: Difference in the GoF, as determined by Equation 5.10, for the comparisons between different metrics
using the bottleneck scenario as the sole scenarios. The combinations are identified by their acronyms
as listed in Table 5.6. Every column shows the decrease in GoF, compared to the optimal GoF, of that
specific combination if the optimal parameter set of the combination, defined by the row, is used.

Predicted combination
Q SD Eff TT

U
se

d
pa

ra
m

et
er

se
t

Q X -0.0601 -0.0620 -0.5983

SD -0.1644 X -0.0053 -0.9130

Eff -0.3284 -0.0838 X -1.7291
TT -0.5000 -0.2620 -0.2375 X

Macro -0.0001 -0.0365 -0.1144 -0.4472
Meso -0.4709 -0.4320 -0.0047 -0.0184

All -0.0443 -0.1301 -0.0109 -0.0654

Table H.30: Difference in the GoF, as determined by Equation 5.10, for the comparisons between different metrics
using the corner high density scenario as the sole scenarios. The combinations are identified by their
acronyms as listed in Table 5.6. Every column shows the decrease in GoF, compared to the optimal
GoF, of that specific combination if the optimal parameter set of the combination, defined by the row,
is used.

Predicted combination
Q SD Eff TT

U
se

d
pa

ra
m

et
er

se
t

Q X -0.0139 -0.2822 -0.0036

SD -0.0062 X -0.2197 -0.0021

Eff -0.0295 -0.0410 X -0.0427
TT -0.0001 -0.0209 -0.2480 X

Macro -0.0062 0.0000 -0.2197 -0.0021
Meso -0.0295 -0.0410 0.0000 -0.0427

All -0.0278 -0.0318 -0.0083 -0.0378
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Table H.31: Difference in the GoF, as determined by Equation 5.10, for the comparisons between different metrics
using the corner low density scenario as the sole scenarios. The combinations are identified by their
acronyms as listed in Table 5.6. Every column shows the decrease in GoF, compared to the optimal
GoF, of that specific combination if the optimal parameter set of the combination, defined by the row,
is used.

Predicted combination
Q SD Eff TT

U
se

d
pa

ra
m

et
er

se
t

Q X -0.0124 -0.0598 0.0000

SD -0.0003 X -0.0183 -0.0007

Eff -0.0002 -0.0072 X -0.0005
TT -0.0001 -0.0151 -0.0545 X

Macro -0.0003 0.0000 -0.0183 -0.0007
Meso -0.0002 -0.0072 0.0000 -0.0005

All -0.0004 -0.0011 -0.0024 -0.0006

Table H.32: Difference in the GoF, as determined by Equation 5.10, for the comparisons between different metrics
using the t-junction high density scenario as the sole scenarios. The combinations are identified by
their acronyms as listed in Table 5.6. Every column shows the decrease in GoF, compared to the optimal
GoF, of that specific combination if the optimal parameter set of the combination, defined by the row,
is used.

Predicted combination
Q SD Eff TT

U
se

d
pa

ra
m

et
er

se
t

Q X -0.1549 -0.0757 -0.0643

SD -0.0162 X -0.0687 -0.0310

Eff -0.0366 -0.7107 X -1.3202
TT -0.0522 -0.1295 -0.0702 X

Macro -0.0070 -0.0007 -0.0784 -0.0326
Meso -0.0363 -0.0717 -0.0423 -0.0079

All -0.0084 -0.0015 -0.0623 -0.0201

Table H.33: Difference in the GoF, as determined by Equation 5.10, for the comparisons between different metrics
using the t-junction low density scenario as the sole scenarios. The combinations are identified by their
acronyms as listed in Table 5.6. Every column shows the decrease in GoF, compared to the optimal GoF,
of that specific combination if the optimal parameter set of the combination, defined by the row, is used.

Predicted combination
Q SD Eff TT

U
se

d
pa

ra
m

et
er

se
t

Q X -0.1200 -0.0882 -0.0399

SD -0.0012 X -0.0010 -0.0579

Eff -0.0013 -0.0047 X -0.0545
TT -0.0010 -0.0931 -0.0788 X

Macro -0.0012 0.0000 -0.0010 -0.0579
Meso -0.0014 -0.0080 -0.0038 -0.0485

All -0.0012 -0.0043 -0.0017 -0.0526
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I | Calibration - different objective
functions

This appendix shows how the optimal parameter sets of all 16 combinations would change if instead of
the squared error the absolute of the error would have been used in the objective functions. The three
equations below show how the equations 5.6 to 5.8 would be if the absolute error is used instead of the
squared error.

Enorm(θ) =
∣∣∣∣Msim(θ)−Mref

Mnorm

∣∣∣∣ (I.1)

Enorm;macro(θ) = 1
m

∑
j

∣∣∣∣∣∣
∑

i
Msim;i;j(θ)
n −Mref ;j

Mnorm

∣∣∣∣∣∣ (I.2)

Enorm;meso(θ) = 1
2

∣∣∣∣Msim;µ(θ)−Mref ;µ

Mnorm;µ

∣∣∣∣+ 1
2

∣∣∣∣Msim;σ(θ)−Mref ;σ

Mnorm;σ

∣∣∣∣ (I.3)

Table I.1: Comparison of the optimal parameter sets resulting from either using a squared objective function or an
absolute error objective function. The red shading in the Abs columns indicates how large the difference
is between the two parameter value (the darker the shading the larger the difference)

Relaxation time [1/s] Viewing angle [degree] Radius [m]

MSE Abs MSE Abs MSE Abs
1. B-H 0.620 0.590 57.00 57.00 0.15296 0.15296
2. B-L 0.620 0.620 57.00 66.00 0.19120 0.16252
3. B 0.395 0.380 68.25 68.25 0.20076 0.19120
4. C-H 0.395 0.515 57.00 57.00 0.23900 0.23900
5. C-L 0.380 0.380 61.50 59.25 0.23900 0.20076
6. T-H 0.590 0.575 57.00 59.25 0.21988 0.21988
7. T-L 0.380 0.380 68.25 66.00 0.23900 0.23900
8. Q 0.380 0.380 59.25 81.75 0.20076 0.18164

9. SD 0.575 0.590 59.25 59.25 0.21988 0.21988
10. Eff 0.500 0.410 57.00 57.00 0.23900 0.23900
11. TT 0.620 0.605 59.25 57.00 0.15296 0.21032
12. H-D 0.575 0.605 57.00 57.00 0.21032 0.21032
13. L-D 0.500 0.410 57.00 57.00 0.21032 0.23900
14. Macro 0.545 0.380 59.25 68.25 0.21988 0.19120
15. Meso 0.620 0.515 59.25 57.00 0.15296 0.23900
16. All 0.575 0.605 57.00 57.00 0.21032 0.21032
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J | Decrease in GoF versus the distance
from the optimal parameter set

The relationship between the decreases in the GoF and the distance between the accompanying para-
meter sets and the optimal parameter set gives insight into how the objective values are distributed in
relation to the optimal parameter set and the lowest objective value.

The distance between a parameter set and the optimal parameter set is determined as follows:

D(θ,θ∗) =
√
Nτ (θ, θ∗)2 +Nφ(θ, θ∗)2 +Nr(θ, θ∗)2 (J.1)

Where Nτ (θ, θ∗), Nφ(θ, θ∗) and Nr(θ, θ∗) are respectively the number of step-sizes between the optimal
parameter set θ∗ and the parameter set θ for the relaxation time, the viewing angle and the radius.
So Nτ (θ, θ∗) = 2 means that the relaxation time of parameter set θ is 2 step-sizes removed from the
relaxation time of the optimal parameter set. The maximum distance is 24.74 (

√
162 + 162 + 102) which

is the distance between one corner of the search space to the opposite corner of the search space.

The relationship is of interest because it can give insight into the question if the objective space
contains local minima which have only a slightly higher objective value than the minimal/optimal
objective value but are in a totally different area of the search space. This is of interest because, as
subsection 5.4.3 shows, slight changes in, for example the search-grid, might cause slight changes in the
objective space. The more local minima with slightly higher objective values than the optimal value the
objective space contains which are in a totally different area of the search space, the more likely it is that
small changes in the methodology can cause the optimal parameter set to change significantly.

The graphs in figures J.1 to J.3 show the relationships between the decrease in GoF and the distance
to the optimal parameter set for all 15 combinations. The graphs only show the relationship for a limited
range of decreases of GoF1. The limited range is chosen because the interest is in the points which only
slightly differ in objective value from the optimal value.

The graphs in Figure J.1 show a clear difference between the low and the high density scenarios. The
low density scenarios have many points in their objective-spaces which differ only slightly in objective
value but are many step-size removed from the optimal parameter set. This is especially the case for
the bidirectional low density scenario which has the points with the smallest decrease in GoF and the
highest distance values (i.e. points near the top-right corner of the graph). The high density scenarios
show a different pattern compared to the low density scenarios whereby for the same decrease in GoF
the maximal distance is far smaller compared to the low density scenarios. Compared to each other it is
clear that, similar to the low density scenarios, the bidirectional scenarios has the points with the lowest
decrease in GoF and the highest distance values. In summary, the graphs show that small changes in the
objective space are far more likely to affect the location of the optimal parameter set of the low density
scenarios than the high density scenarios and are more likely to affect the bidirectional scenario than
other scenarios of a similar density level.

The graphs in Figure J.2 show clear differences between the four metrics. Especially the flow differs
from the other three given that it has many points with small decrease in the GoF but a high distance
value whilst none of the other three metrics has any points with small decreases in the GoF and a high
distance value. This shows that the model can obtain good estimates of the flow using many different
parameter sets and hence it also shows the flow is probably not a good metric to be used on its own
given that it cannot differentiate well between the different parameter sets and the differences in the
underlying behaviour.

The graphs in the first column Figure J.3 show the clear difference between the combinations of
low and high density scenarios. As was concluded earlier, theses graphs show that small changes in
the objective space are far more likely to affect the location of the optimal parameter set of the low

1Figures J.4 to J.6 show the graphs over the whole range of decreases in the GoF and also show which areas are displayed in
the graphs of figures J.1 to J.3.
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density scenarios than the high density scenarios. The second column shows the differences between
the different combinations of metrics of the same aggregation level. The graph of the macroscopic metric
clearly shows the dominance of the spatial distribution over the flow given that there are no longer any
points with very small decreases in the GoF but high distance values as was the case for the flow. The
graph of the mesoscopic metrics shows that combining them affects the relationship negatively in the
sense that there are points with a smaller decrease in the GoF and a higher distance value than can be
found in the graphs of either of the individual metrics.
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Figure J.1: The decrease in the GoF versus the distance from the optimal parameter set for the individual scenarios - all metrics (combinations 1-7).
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Figure J.2: The decrease in the GoF versus the distance from the optimal parameter set
for the individual metrics - all scenarios (combinations 8-11)

0

5

10

15

20

L-D Meso

0.06 0.04 0.02 0.00
0

5

10

15

20

H-D

0.06 0.04 0.02 0.00

Macro

Decrease in GoF [-]
Di

st
an

ce
 fr

om
 o

pt
im

al
 p

ar
am

et
er

 se
t [

-]

Figure J.3: The decrease in the GoF versus the distance from the optimal parameter set
for the different combinations of scenarios and metrics (combinations 12-15)
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Figure J.4: The decrease in the GoF versus the distance from the optimal parameter set for the whole range of decreases in GoF for the individual scenarios - all metrics (combin-
ations 1-7). The shaded area corresponds with the zoomed-in area displayed in Figure J.1
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Figure J.5: The decrease in the GoF versus the distance from the optimal parameter set
for the whole range of decreases in GoF for the individual metrics - all scen-
arios (combinations 8-11). The shaded area corresponds with the zoomed-in
area displayed in Figure J.2
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Figure J.6: The decrease in the GoF versus the distance from the optimal parameter set
for the whole range of decreases in GoF for the combinations of scenarios
and metrics (combinations 12-15). The shaded area corresponds with the
zoomed-in area displayed in Figure J.3
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