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Abstract

The main purpose of a radar is to detect, recognize, and track objects of interest.
When it is known that only a single target is present, the matched filter is proven
to be optimal detector. However, in practice, a radar scene often consists of multi-
ple targets. For example, in air surveillance and monitoring applications, multiple
aircrafts might be in the airspace. When multiple targets are to be detected the
matched filter is not guaranteed to give the best results. This can happen when a
strong reflector masks the signals reflected from weak reflectors, thereby result-
ing in missed detections. Furthermore, when the sensor resolution is low, targets
that are spaced closely together may only result in a single target actually being
detected.

This research explores how the Relevance Vector Machine (RVM) framework may
be used to achieve a better multi-target detector than the commonly used basic
matched filter approach. RVM was selected to resolve the multi-target detection
problem as it estimates the target locations iteratively. In this research it was
shown how the RVM framework can be used to model the fluctuation of swerling
I/II targets. Additionally, the RVM algorithm was modified to incorporate a notion
of statistical thresholding. Simulations show that using RVM the false alarm rate
can be reduced and target locations can be more accurately recovered compared
to other existing methods in case of multiple swerling I/II fluctuating targets. Fur-
thermore, the proposed approach is shown to have a much lower convergence time
compared to a similar expectation-maximization based method, namely Enhanced
Sparse Bayesian Learning.

Keywords: Multi-target detection, Relevance vector machine, Statistical thresh-
olding
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1 Introduction

Radar technology is widely used in different sectors for detecting, recognizing
and tracking objects of interest. Different techniques and approaches are avail-
able to process the data received. The matched filter is a widely used method
in radar for the detection and estimation of a signal buried in noise. This works
well when the targets are well separated, and the received echo can be considered
a superposition of multiple distinct single targets. The problem then simplifies
into multiple independent detection problems. In practice however, targets may
be spaced closely together and influence each other. The basic matched filter does
not take this into account, and as a result, some of the targets may go undetected in
such a multitarget scenario. One way to mitigate this problem could be by using (a
bank of) mismatched filters for sidelobe reduction [1]. However, this filter would
have a lower processing gain and have a worse range resolution due to the wider
main lobe and would thus be suboptimal. Additionally, weakly reflecting targets
may still go undetected in the sidelobes of very strongly reflecting targets. An al-
ternative approach would be to consider all possible likelihoods and to select the
hypothesis that seems most likely. Such an approach would be very computation-
ally intensive and would scale exponentially with the number of target parameters
(range bin, doppler bin, angle bin). Instead, this approach may be approximated
by estimating the number of targets and their parameters in an iterative scheme.
The number of targets and their parameters are then updated according to what
maximizes the likelihood during each iteration.

In traditional radar systems the entire scene is split into several sections. The
energy sent in the direction of a particular section is limited to a certain time dura-
tion. A longer time duration means that more pulses are transmitted and therefore
more measurements are obtained. This allows for the integration of the multiple
measurements, which typically increases the probability of correctly detecting a
target. The next time the same section is illuminated, targets in that section may
have moved or rotated. Therefore, the orientations of the targets with respect to
the radar could have changed which could result in a different RCS (radar cross
section). These RCS fluctuations can be modelled statistically using for example



Swerling models [2]. In some radar systems, the modulation/operating frequency
may change in each subsequent pulse. This would also result in a fluctuation of
RCS, which can be characterized by the same Swerling models.

The Relevance Vector Machine (RVM) framework is an existing framework which
iteratively determines the number of active components present and the associated
parameters for each component by maximizing the likelihood. It also explicitly
assumes a probabilistic model for a certain component to be active. Therefore,
the RVM framework seems like a promising way to approximate a multi-target
matched filter where the RCS of the targets follow certain statistics.

1.1 Research goal and objectives

The main goal of this research was to explore how the RVM framework can be
used in a multitarget detection framework for radar applications. To achieve this
goal, the specific objectives were

* Review of literature on multitarget detection

* Development of the algorithms for modifications for the Relevance Vector
Machine

* Monte Carlo simulations to examine and compare performances of different
detection algorithms using MATLAB

1.2 Outline of the thesis

This thesis is organized in 8 chapters. Chapter 2 provides background information
on the matched filter, likelihood ratio tests, Swerling models, and some sparse re-
covery algorithms including the RVM framework. Chapter 3 gives an overview of
the relationship between RVM and some common sparse recovery algorithms.
Attempts to modify/improve on the standard RVM framwork are discussed in



chapter 4. Chapter 5 describes the extension of the RVM framework for mul-
tiple measurement vectors. A comparison of the different algorithms discussed
throughout the report is given in chapters 6 and 7. Finally, chapter 8 provides key
conclusions of this research and makes some recommendations for future work.



2 Background

This chapter describes the background knowledge and fundamentals behind detec-
tion theory, Swerling fluctuation models and several sparse recovery algorithms.
The first section explains the basic signal/measurement model that was used through-
out this entire research. The second section presents the framework for a simple
single target detection problem. Building upon this, the third section highlights
the matched filter involving unknown parameters. The next section elaborates on
how the matched filter may be extended for use in multitarget problems. Follow-
ing this, the next two sections describe the matching pursuit (MP) and orthogonal
matching pursuit (OMP) respectively. This is followed by an outline of Swerling
fluctuation models. Finally, the last section gives an overview of the relevance
vector machine (RVM).

2.1 Basic signal model

In practice, signals received from an observed scene by a radar are often high-
dimensional. This leads to a large data-stream that has to be processed. However,
the received signal generally only contains a small number of parameters of in-
terest. Thus, it can be said that the received signal is sparse or compressible in a
certain domain. Examples of commonly used sparse domains for radar are given
in [3].

In this study, we specifically focus on the case where targets in the scene can
be modelled as point targets. For simplicity we consider the received signal to be
real instead of complex. The received signal t can then be expressed as a linear
equation [4], namely

K
t=> G(m)wy+e 2.1)

k=1
where t € RV*1, (1) € RV*!, € € RV*! and R represents the real coordinate

space. When considering range, ¢(7;) may represent the response that arises due
to a target at a range corresponding to delay 7. Similarly, during angle estimation



¢(71) may represent the steering vector corresponding to an angle 75, [5]. K de-
notes the number of targets that are present in the observed scene. The noise/error
term € is assumed to be normally distributed according to € ~ A (0, o°I),

Equation 2.1 does not have any constraints for the values of 7; its value can
be anywhere on the continuous real number space. One approach to solve this
is by reformulating the problem on a discretized grid wih a sparsity assumption.
Assuming that the targets can only lie exactly on a grid point, equation 2.1 can
then be written as

t=>Pw+ € (2.2)

where ® € RM*N and w € RM*!, Here, w should be K-sparse: it contains
only K non-zero entries. The problem that arises is then to recover w from the
measurement t.

2.2 Single target detection

The single target detection problem can be formulated as a decision problem
where the goal is to decide which hypothesis H is most likely to have gener-
ated the measurement t. Suppose that € in equation 2.2 is distributed according to
€ ~ N(0,C) where C is a known covariance matrix. Assume additionally that
7 and w are known and deterministic. Let p(t; Ho) be the distribution when no
target is present and p(t; ;) be the distribution when a target is present. Under
the null hypothesis H,, the measurement t only consists of the noise €, which
means that t ~ N(0, C). Under the alternative hypothesis #; the reflection due
to the presence of a target now results in a non-zero mean. Since w is assumed to
be deterministic, the variance of the measurement is not affected under ;. Thus,
for this hypothesis, t ~ N (¢, w,, C). Considering all vectors and matrices to be
real-valued, the likelihoods under each hypothesis are then given by

L —ltTC—lt) (2.3)

———ce
V127 C| <P 2

p(t; Ho) =



PEH) = — (-5 (6— ) C (b~ pw)  24)

V[27C|

The following likelihood ratio test can then be defined

p(t;Hl) H
L(t) = =0 2.5
(®) p(t; Ho) 7, (22)

A hypothesis is then selected based on the value of this likelihood ratio test. In

case likelihood ratio exceeds a certain threshold 6, the alternative hypothesis
is selected. Otherwise, H,, is selected.

To make computations easier, the log of the likelihood ratio is often taken instead
of the likelihood ratio itself. Using equations 2.3-2.4, the log likelihood ratio test
can then be found to be

Hi
In L(t) = In(0)
Ho

In(p(t; 1)) — n(p(t: Ho)) :z In(9)

1 | 1 | #
S 20C| — = (t — ¢ w)TCTL(t — dw) + = In |20C| + ~tTCt = In(0)
2 2 2 2 b

1 i
tTC o w — §w¢fC’1q’>7w = Inf
Ho
(2.6)

If C, ¢, and w are known a priori, only the first term of equation 2.6 is dependent
on the measurement t. Thus, whether the null hypothesis is rejected depends on
the magnitude of tTC~!¢,w. This type of detector can be interpreted as some-
thing that measures the “match” between between the template signal ¢,w and
the whitened measurement vector C~'t.

For white/uncorrelated noise we have C = ¢2I. The likelihoods under hypotheses
‘H, and H, are then given by



1 1
p(t;Ho) = o2V eXP(—TﬂtTt) (2.7)
1 1
p(t;H1) = 2rot) eXP(—@(t — ¢.w)" (t — ¢rw)) (2.8)

Following the same process as in equation 2.6 the loglikelihood ratio test for the
white noise case can be found to be
tT a T . Hq
InL(t) = LOW _ W, g (2.9)

o? 202w,

2.3 The matched filter

In most practical radar detection problems the location and reflectivity of a tar-
get are not known beforehand. This means that 7 and w are unknown and hence
the loglikelihood ratio tests described in equations 2.6 and 2.9 can not directly
be used. Such detection problems involving more than one unknown parameters
are also known as composite hypothesis problems. There exist two main (sub-
optimal) approaches for solving such composite hypothesis problems. If there is
some prior knowledge about any of the unknown parameters, a so-called Bayesian
likelihood ratio can be formed by marginalizing over the unknown parameters for
each hypothesis [6]. This method will yield the optimal result in case the prior
knowledge is actually correct. Another approach would be by obtaining the max-
imum likelihood estimates for all of the unknown parameters for each hypothesis
and plugging these values into the likelihood ratio test. The test formed using this
latter approach is also known as the Generalized Likelihood Ratio Test (GLRT)
[7]. For the single target detection problem described in section 2.2 the GLRT is

given by
t,w,T; i
p( 7w77-77-[1) 2 0 (2.10)
p(t;Ho) Ho

where w and 7 are the maximum likelihood estimates for w and 7.

These maximum likelihood values for the unknown parameters can be found by



setting the derivative w.r.t the unknown parameter to 0. As the log function is
monotonic, this is equivalent to setting the derivative of the loglikelihood w.r.t the
parameter to 0. Doing this for equations 2.4 and 2.8 we get the following:

7 =argmax = t'C' ¢ (@I C ' p,) ' pLC 't

(2.11)
b= ($IC¢:)PlC Tt
and
7 = arg max = tT¢T<¢Z¢7)_1¢Zt
T (2.12)
W= (pLps) ' PLt
respectively.

The expression given by equation 2.6 produces different values depending on the
exact shape of ¢, and the corresponding amplitude w. We can normalize and
rewrite the expression to

T—1
t C d)'r > 8/
VPTC 19,

The probability of detection F; and the probability of false alarm Py, for the

(2.13)

detector proposed in equation 2.13 are given by

Fy=Q(0 —wy/¢IC ')

(2.14)
Pfa = Q(e,)

where Q denotes the right-tail normal cumulative distribution function. The de-
tector described in equations 2.6-2.13 maximizes the probability of detection for
a given probability of false alarm and are considered optimal according to the
Neyman-Pearson criterion [8].



2.4 Multitarget usage of matched filter

The matched filter is known to be the optimal detector for a single target with
known impulse response in white noise. One way of going about the multi-target
problem is by extending the maximum likelihood estimates w in equations 2.11
and 2.12 to include estimates for all possible weights w at once. Thus, we get

7 =diag((®"C™'®)) '®dTC 't

-1
dTC 1, 0 e 0 |®TC1t|?
0 dIC 1P, ... 0 |®TC 1t (2.15)
0 0 c. @ﬂC_IQN[ |‘I’%}t‘2

and

W =(diag(®TC'®))'®TC 't

—1
dTC 19, 0 . 0 dTC 1t
0 dIC 1, ... 0 dIC1¢ (2.16)
0 0 . @7, Cley, o7 C 't

where each ®; corresponds to ¢ centered at 7;. Subsequently, we can filter out
the w;’s for which the corresponding 7;’s are below a certain threshold to obtain
a sparse solution. It is important to note that in this multitarget matched filter ap-
proach the entries in the matrices in equations 2.15 and 2.16 that are not on the
main diagonal are set to 0. This implies that 7 C~'®; should be negligible when
1 # j. The major downside of this method is that each entry of w is estimated in-
dependent from its other entries; the influence that a certain estimate w; may have
on w; is not taken into account. Therefore, while the multi-target matched filter
might be a suitable approach for targets that are spaced sufficiently far apart such
that &7 C~'®, is sufficiently small, it will likely fail for targets that are spaced
closely to each other. Instead, for more accurate target detection for such cases an



iterative solution is required.

Similarly, for uncorrelated noise (C = o2I), the expressions in equations 2.15
and 2.16 simplify to

7 = diag((®T®)) '@t

—1
T®, 0 ... 0 BT 2
o ele, .. 0 BTt[2 2.17)
0 0 ... T, | ||BLt?

and

w = diag((®T®)) '@t

—1
T® 0 ... 0 BTt
o ele, . 0 BTt (2.18)
0 0 ... ®Td,| |00t

Here, the term 0?1 cancels out and is no longer present in the expressions. Hence,
the model is only valid when ® ®; is negligble for i # j.

2.5 Matching pursuit

The matching pursuit algorithm was first introduced in [9] as a way of decom-
posing a signal into structures. It attempts to obtain the sparse solution for w
iteratively. In each iteration, the algorithm computes the projection for each ®;
onto the residual. For the first iteration, this residual is equal to the measurement
itself. After this step, the component ¢ which has the largest projection onto the
residual is selected. Using the corresponding basis function ®;, an estimate is
made for w;. The estimated contribution ®; w; is then subtracted from the resid-
ual. This process is repeated as long as the projection onto the residual is above a

10



certain predefined threshold §. The pseudocode for the matching pursuit algorithm
is given in algorithm 1.

Algorithm 1 Matching pursuit
I: w0

rt

while ||r|>> 6 do
p + (®Tr)
k < argmax>i>1([|pil|2)
Wy, = Wk + Pk
r=r—p;®

end while

Upon completion, the matching pursuit algorithm will have decomposed the sig-
nal/measurement t into the strongest components present. As the algorithm se-
lects one 7 in each iteration, the number of selected components will be equal to
the number of iterations.

2.6 Orthogonal Matching Pursuit

The Orthogonal Matching Pursuit (OMP) algorithm is an algorithm that improves
on some of the limitations of Matching Pursuit. For example, in Matching Pur-
suit, it may happen that the same component 7 is selected more than once. Fur-
thermore, the estimation of a new weight w; may have an impact the weight of a
neighbouring cell which was selected and computed in a previous iteration. OMP
overcomes most of these issues by obtaining w through a least squares estimation
in each iteration. Because of this, if the support of the true underlying signal is
estimated correctly, OMP is able to correctly identify the number of targets and
accurately reconstruct the signal with a much higher probability [10]. The main
disadvantage of OMP compared to MP is that OMP requires a pseudo-inverse to
be calculated in each step, and is therefore much more computationally intensive
than MP. The pseudocode for OMP can be seen in algorithm 2.

11



Algorithm 2 Orthogonal Matching Pursuit
I: w0

rt

k<0

A=10

while ||r|>> 6 do
p + (®'r)
T ¢ argmaxyr>ix1([|pil2)
A~ AUrT
w < (P11, ) 1Tt
r«t— o, w

: end while

R A A i

—_
— O

2.7 Radar Cross Section and the Swerling models

The power reflected from a target is typically characterized by the Radar Cross
Section (RCS). It is defined as

RCS — 4 POWer reflected towards the source per unit angle

incident power density 2.19)
The RCS of a target depends on various factors such as its electrical properties, its
orientation relative to the radar, the radar’s transmitting frequency and its shape
and features [2]. Because of this, the RCS of a target generally shows some fluc-
tuation in several consecutive measurements. For simple targets it is possible to
explicitly calculate the dependence of the targets’ RCS on these parameters. For
complex real-world targets, however, this is not the case.

The Swerling models are a set of 5 simple models that are commonly used to ap-
proximate the RCS of a complex target [2]. These models distinguish the RCS of
a reflecting target based on probability distributions and RCS decorrelation time.

The Swerling 0/V model models the ideal case that a target’s RCS remains con-

stant. In the Swerling I model, the RCS is assumed to remain constant within
a burst of pulses, but varies from scan to scan. The complex RCS can then be

12



modelled with a chi-squared distribution with 2 degrees of freedom (Rayleigh
distribution) , which means that the I- and Q-channels can be assumed to follow
a zero-mean Gaussian distribution. This model generally applies to (large) targets
which consist of a large number of scattering surfaces. The Swerling II model
assumes the same probability distribution as the Swerling I model, only now the
RCS varies from pulse to pulse as well. The Swerling III model is similar to the
Swerling I model, in that the RCS remains constant from pulse to pulse. How-
ever, the RCS now follows a chi-squared distribution with 4 degrees of freedom.
It represents the sum of the reflection of a dominant scatterer plus many smaller
scatterers. Finally, the Swerling IV model is for similar targets to the Swerling 111
model but where the RCS also varies from pulse to pulse.

In this research, the focus was real-valued RCS. The formulation for complex-
valued RCS can be found by extending equations 2.20-2.22 to complex-valued
numbers. The detection performance is expected to be better for complex-valued
RCS as they can be seen as two independent real-valued RCS.

2.8 The Relevance Vector Machine

In the RVM framework, a probabilistic model is set over the weights w. Specifi-
cally, each wj is assumed to be zero-mean with variance «; ! (note: this term must
always be positive). Tipping’s original paper [11] involved an iterative method to
find the relevant basis functions. In that paper, the updates for the estimates for
a and 0% were derived through expectation maximization and converged rather
slowly. In his other paper [12], it is suggested to sequentially add/delete basis
functions. This significantly speeds up the process. The main idea behind the sec-
ond paper is that the marginal (log)likelihood can be split up into an expression
that depends on «;, and an expression that does not explicitly depend on «;. Thus,
by maximizing this first expression w.r.t. «; at each iteration, the estimates for the
«;’s are improved. Specifically, the marginal loglikelihood is given by equation
2.20

1
Lla) = —§[N log(27) + log |C| + tTC't] (2.20)

13



where C = 021 + ®A1®”. Here, A is a diagonal matrix consisting of all the
Oéi’S.

From the definition of C above it follows that the covariance matrix C can be de-
composed into a term that depends on the ¢ th component, and a term that doesn’t

as follows:
C=C_ +a; ¢! ¢ (2.21)

After plugging this back into equation 2.20 and after simplifying the following
expression is obtained:

1 2
Li@) = Lia—) + Sllog(a;) = loglai +s,) + ——]  (222)
where
si=¢; C_l ¢ (2.23)
4 = ¢, C_jt (2.24)

The term ¢; provides an indication of how well ¢; increases L(a) by helping to
explain the data, while the term s; provides a measure of how much the inclusion
of ¢; serves to decrease L(a) through ’inflating’ C' and hence adding to the nor-
malising factor. Taking the first and second derivative of [(c;) shows that L(«)
has a unique maximum with respect to o;:

2 2
o= if s
Gz (2.25)
;=00 if q—igl
S

Plugging this value back into /(«;) we obtain:

14



2 2 2
ow) =L —log(ty -1 if %51

5 i 5 (2.26)
(o) =0 if <y
S5
Therefore, the «;’s corresponding to components that have a g > 1 are included

in the model.

The estimated «;’s can then be used to find the posterior estimate for w. Specifi-
cally, we then have w ~ N (u, X) with

=o't (2.27)
Y=(A+0%07®) (2.28)

2

In case the noise variance o is not known, an estimate is provided by

so_ (t—2p)T(t - Pp)
NoM+S anSmm

(2.29)

where X,,.,, is the entry of the mth row and mth column of X. This estimate can
be derived using an expectation maximization approach [11].

During each iteration of RVM, for each «;, 3 types of actions are considered:
adding, deleting and re-estimating. The adding action refers to adding a new «;
to the model and is only applicable to the components that are not yet in the
model which exceed the threshold described in equation 2.25. Executing this ac-
tion would be equivalent to including ¢ in the support of the reconstructed signal.
The deleting action refers to removing an «; that is already present in the model
which is beneath the threshold of equation 2.25, and thus corresponds to removing
the corresponding bin ¢ from the reconstructed signal. Finally, the re-estimating

15



action refers to updating «; for the components that exceed the threshold in equa-
tion 2.25 but which are already present in the model. After evaluating the change
in marginal loglikelihood for each of these quations for each «;, the action that
provides the largest increase in marginal likelihood is then executed. A schematic
overview of the RVM algorithm is provided in figure 1.

Initialization

l

For each
component

IN model: HOT IN model

qil <8 qiz =5 qiz =5

Implement action with highest
change in marginal likelihood

!

Re-estimate &

2

Figure 1: Schematic overview of the relevance vector machine algorithm

The RVM algorithm meets its stopping criteria once no more potential actions
indicate an increase in the marginal loglikelihood, or when this increase is negli-
gible. In case the noise variance is unknown, the change in noise variance must
be beneath a certain threshold as an additional stopping criteria.

As described in section 2.3, there are two main ways for solving composite hy-
pothesis problems, namely marginalizing out the unknown variables or by plug-
ging in the maximum likelihood estimates for the unknown parameters/variables.
In the RVM framework, w is marginalized out while « is estimated using maxi-
mum likelihood estimates. Hence, the RVM framework can be considered a hy-
brid between these two main approaches for composite hypothesis testing.

16



3 Multi-target detection

This chapter explores the sparse signal recovery algorithms discussed in section 2
more in depth for a multi-target setting. First, the relationship between the MP and
OMP algorithms is described in more detail. Then, it is shown that the maximum
likelihood estimate for the variance corresponds to [12]. Finally, the relationship
between RVM and OMP, and their advantages and disadvantages are discussed.

3.1 Relation between MP and OMP

In subsection 2.2 it was mentioned that an iterative approach is required for multi-
target detection. A greedy way of doing this could be by testing whether an
additional target is present during each iteration [13]. For example, in the first
iteration, the hypotheses to be tested would be

H, :  One target present 3.1)
Ho : No targets present '

The maximum likelihood estimate for the location and the amplitude of the tar-
get would then be given by equation 2.12. It can be seen that these expressions
correspond to the solution provided by the Matching Pursuit algorithm in the first
iteration for normalized basis vectors. Similarly, in the next iteration, the two
hypothesis to be tested would be

Ho :  Two targets present (3.2)
Hy: One target present '

Note the two new hypotheses implicitly assume that the target detected in the
previous step is definitely present in the measurement. Under the assumption that
the parameters (location, amplitude) of the first target were correctly detected,
the response due to the first target could be substracted from the measurement,
and the resulting problem could be reformulated as in hypothesis 3.1. Such an
iterative approach would be identical to the MP algorithm. The OMP algorithm

17



can be seen as an extension to the same solution approach where we assume the
the estimated amplitude w; in each iteration might contain some error, while the
location of the target (the support of w) is assumed to be correctly estimated. This
error may be for instance due to the presence of noise.

3.2 Derivation maximum likelihood for variance

Consider having the following two hypothesis

Hoi t=c¢€

(3.3)
7‘[1 : t= U}ld)q- +e€

where ®. is known but w; is unknown and Gaussian distributed with zero mean
and variance o', and € is Gaussian distributed with zero mean and known co-
variance matrix Cy. The covariance matrix of t for H; is then given by C; =
Co + a; '@, ¢T .Using properties of the determinant and the woodbury identity
we can then derive the following:

|C1| = |Col(a;'@ICy @, + 1) (3.4)
C/'=C,' - Cj'a (21 C' @, + )@, Cyt (3.5)
®I'C,'t|?
t'Cr't =t'Cyl't — | T2 | (3.6)
The loglikelihood under H, is then given by
log (p(t: 1)) = log(———— cxp(~ " C; 1))
0 ; = log(———exp(—=
g\p 1 g \/m’ p 92 1
_ L 127 C, | Lireoig
-3 0g |2TLg 5 1
N 1 1 1 ¢
= ——log|27| — = log(|Co|(1 + a;'sy)) — =tTCy 't + - —=
5 log 27| — 5 1og(|Col(1 + g *s1) — 587Gy 4 51—
(3.7)

This term is identical to the expression for the marginal loglikelihood in [12].
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After computing the first and second order derivative [14], we find that it results
in the maximum likelihood estimate that was described in equation 2.25.

3.3 Relation between RVM and OMP

In [13] it is suggested that such a multitarget detector can be approximated through
the Orthogonal Matching Pursuit (OMP) algorithm. However, in OMP, the sup-
port is only increased in successive iterations, and the effect of removing a com-
ponent that is already present in your support is never evaluated. OMP also does
not estimate the noise precision (3, whereas RVM does. Another big difference be-
tween OMP and RVM is that if any prior information is known (e.g. the locations
of targets estimated from a previous pulse), that information can be more easily
incorporated into RVM than in OMP. In [15] it is shown that RVM generally out-
performs OMP it terms of estimation accuracy. Only when the number of targets
is known a priori, the performance of OMP approaches the performance of RVM.
Additionally, RVM naturally allows us to model fluctuation loss of targets. This
is especially effective when considering multiple measurement vectors.

In [16] a Bayesian version of OMP (BOMP) is proposed. This algorithm includes
an uniform prior for each of the components present. In other words, instead of
having a prior for each component wy;, it has the same prior for all components
in w. The resulting expression has a similar form to the estimates for p in the
RVM framework. Hence, this indicates that the RVM algorithm can be seen as
a Bayesian formulation of the OMP algorithm, where each component w; has its
own unique prior «;.
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4 Multi-target detection schemes based on RVM

The RVM framework discussed so far selects components only based on a positive
change in marginal loglikelihood. In practice, this usually results in a relatively
high fixed false alarm rate. This chapter of this report is dedicated to the modifi-
cations that were made to the RVM to include a better notion of thresholding.

4.1 Enhanced Sparse Bayesian Learning algorithm

The ESBL (Enhanced Sparse Bayesian Learning) algorithm was first proposed in
[17]. It provides an alternate, but similar, framework to the RVM to solve the
sparse recovery problem. Similar to [11] it uses the expectation-maximization
framework to iteratively retrieve the support of the signal. This results in the
algorithm having a slow convergence rate, compared to the RVM using fixed-
point derivates as described in [12]. Another big difference is that whereas RVM
is capable of adding and deleting components, the ESBL algorithm can only delete
components. This means that the ESBL algorithm has to initialize with all «’s
being positive and finite, which slows down the convergence rate even more. One
of the main contributions of [17] is that a notion of statistical thresholding is used
to determine whether a component is relevant or not. In the next section it is
shown how this may be used to introduce a notion of statistical thresholding for
the RVM.

4.2 Statistical thresholding

The basic RVM algorithm generally results in a high number of false alarms. In
practice, we would like to minimize the number of false alarms w.r.t. the number
of correct detections. The derivation for the false alarm detector can be done in a
similar approach as in [17]. Let k! define the factor that was used for threshold-
ing in [17]. Rewriting this factor to Tipping’s terms, we have:

El=1—a;'¢lC ¢, 4.1)

Using the relationship between C and C_; we can simplify the following:
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¢TI Cp;pT Cl ;i
a; + T CZl
57 (4.2)

a; + S;
Q;S;

o; + S

¢{C ¢ = ¢ C ¢ —

:Si_

The expression for k=1 is then given by

A I R (4.3)

ozi+si Oji+87;

For the components that are not considered relevant, we have a; = oo which
results in £ = 1. For the components that are considered relevant, we have «; =
s2/(q? — s;). For these relevant components we can rewrite the following:

&

K=

aﬁ—si

=/ + )

2 2
4 —Si 4y — S

s /sf + 8:q7 — 7 44
T2 o 2 _ ¢, :
qZ' Sz C]@ Sz
.
Sz‘qz
@

Thus, k = g_f

In the iterative SBL paper [17] it is shown that 0 < k~! < 1. This would mean
that 1 < k. This implies that all of the components selected by the iterative SBL.

algorithm satisfy Tipping’s test (s; < ¢?), and thus increase the marginal loglike-
lihood.
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Similarly to [17], a threshold can be selected based on a fixed false alarm rate:
6 = FX—;(1 — Pry) 4.5)

where x? indicates the chi-square distribution with one degree of freedom.
The probability of detection for a certain component is then given by

Py=1-Fe(k™'0) (4.6)

As the strength of a component (k) increases, F,2 (k=10) approaches 0, and thus
Py approaches 1. It is important to note that these probabilities only hold when the
estimate for «v is accurate. In practice, for a single realization, this estimate will
not be accurate and therefore the performance of the detector will be worse. For
multiple measurement vectors, which are considered in section 5, it is expected
that the accuracy for the probability of detection and false alarm improves.

4.3 GLRT-based algorithm

Another likelihood ratio can be formed by considering the influence of a certain
component ¢ on the marginal (log)likelihood. This likelihood ratio is inspired by
the GLRT and is given by

maxy, _a, P(tlag, ..., an)

MaXa, . an\a; P(la1, ... an\ay)

GLRT — RVM,; = 4.7)

The numerator of equation 4.7 is the loglikelihood that is obtained when all pos-
sible a’s, including «; (the precision of the component of interest) are included in
the model. The numerator denotes the marginal loglikelihood that can be achieved
when the component is not present. The change in loglikelihood generated by this
component can then be thresholded and gives us the GLRT-RVM detector. The
pseudocode for the algorithm is given in 3. Here, A is the support (relevant vec-
tors) currently in the model and £ represents the loglikelihood .The component
«; can be excluded by removing the basis from the input dictionary when running
the RVM algorithm. Just like in Tipping’s original algorithm, the «’s are con-
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strained to be larger than or equal to 0. While this algorithm tries to determine
the effect of excluding a certain «; from the model, there are certain cases where
the result provided by this algorithm may not be indicative of the relevance of a
certain component. An example of such a scenario is when pruning a component
o, results in o;_1 and a1 being falsely added to the model and the likelihood
increases. The probability of this occurring increases as the coherency between
the columns of ® increases.

Algorithm 3 GLRT-RVM
&, Ly < RVM(®,t)

A=0
for each o; in & do
¢ = 2/{¢:}
v, L; < RVM(D,t)
if Lo/L; > 0 then
A=AUq
end if

end for

4.4 Relevance Likelihood Ratio Test

Similarly, we can define &y, ..., &y = argmax,,, oy p(z|a1, ..., an)

p(t|aq, ..., ay)
p(t|d1, ...,@N,Oéi = 0)

(4.8)

where the numerator is the loglikelihood obtained through the RVM, and the
denominator is the loglikelihood when the variance of that component is set to
O (precision to infinity). The major difference between this algorithm and the
GLRTRVM is that in RLRT the RVM algorithm is only executed once. Thus,
there is no longer a maximization over . The expression in equation 4.8 can also
be expressed as
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p(tla; #0,A)  L(a) + (o)
Pt =0,4) Ll (4.9)

and provides an upper bound for equation 4.7. The bound is only met when com-
ponent «; is completely independent from all other relevant/selected components.
The ratio in equation 4.9 is identical to the loglikelihood ratio that follows from
Tipping’s ratio. The pseudo-code for the RLRT is given by algorithm 4.

Algorithm 4 Relevance Likelihood Ratio Test (RLRT Algorithm)
&, Ly < RVM(D,t)

A=90

for each o, in & do

L; + o = 0

if Lo/L; > 0 then
A=AUi

end if

end for
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S Extension to multiple measurement vectors

This chapter describes how the Relevance Vector Machine framework may be
extended to include multiple measurement vectors (MMYV). First, an overview is
given of the MMV model. Secondly, the expression for the marginal loglikelihood
is derived for in a MMV setting.

In case of multiple measurement vectors we can concatenate each measurement
(column-vector) into a measurement matrix T. Let D denote the number of mea-
surements/the number of transmitted pulses. The associated weights for each mea-
surement is then represented by W. Here, we assume that the targets location does
not change throughout the multiple measurements. This implies that the matrix
W is row sparse. We then have that T €¢ RM*P W ¢ RM*P_ The measurement
equation is then given by

T—®W+E 5.1)
where ® € RV*M the same as for the single measurement case, and E € RV*P,
The joint likelihood for T can then be expressed as

p(T’W) = p(tl,tg, ...,tD‘Wl,Wg, WD) =

D
N [t — Bwy||? (52)
H[(zﬂ Mg exp(— g 5]

Furthermore, the logposterior
In(p(W|T, e, €)) = In(p(T|W, 0?)) + In(p(W|a)) — In(p(T|e,0?)) (5.3)
is then maximized by

La) = —g[Nlog(Qﬂ) +log|Cl|+ TTC™'T (5.4)

Similarly to [12] we can then split this expression in a term that is dependent on
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«; and a term that does not explicitly depend on «;. Specifically, we then have

Lla) = Lla_;) + g[log(ai) —log(a; + s;)| + Z

d=1

2
45 q

5.5
a; + S ( )

This expression is similar to the one derived in [18]. However, in [18] the assump-
tion is made that that ¢; varies over multiple measurements/tasks. In our case, we
do not have this constraint, and hence our expression significantly simplifies.
Building upon the model described above, the MMV equivalent estimates for p
and 32 are then given by

p=o2®T (5.6)

and
Y=(A+o20T®)! (5.7)

Note that g is now a matrix, but that the expression for X is exactly the same as
in the single measurement vector case.
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6 Simulations for detector metrics

Monte Carlo simulations were ran in MATLAB to compare the performances of
the various algorithms discussed in the previous section. This chapter describes
the simulation in more detail. Firstly, an overview of the different parameters and
variables that were used in the simulations are elaborated. Secondly, an overview
is presented of the detector performance metrics that were used.

6.1 Simulation parameters

N,.eq denotes the number of Monte Carlo iterations that were simulated for each
scenario. This number should be high enough such that the results are accurate
even when using different values for the random numbers. However, having a
high number would also mean that the simulation takes a long time duration to
complete. Based on these two factors, N..q was set to 2000.

All of the algorithms determine whether a target is present in a certain range cell
based on whether the associated ratio exceeds a certain threshold. In simple de-
tection problems, this threshold can be set such that a desired probability of false
alarm (P,) is achieved. For multitarget detection problems it is difficult to find
the explicit relationship between Py, and the threshold because it depends on a lot
of parameters such as distance between the targets, and the SNR (signal-to-noise
ratio) of each target. In our simulations, the thresholds were chosen such that the
performance curves of the different algorithms could easily be compared. Empir-
ical estimates for the Ps,’s and P; (probability of detection) were then obtained
from the simulations.

To properly analyze the performance of the detection algorithms, two types of
measurement generation models were considered. In the first type of generation
model, the RCS is assumed to be constant whereas in the second type of gen-
eration model the RCS follows a zero-mean Gaussian distribution. The latter
generation model is equivalent to the real or imaginary component of a complex
swerling I/II target, as was mentioned in chapter 2.
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The simulations were ran for different SNR’s for each target. Here, the SNR
is defined as

pre ection
SN R — - reflection

Pnoise
pll®anl’, _ @7 @B e
lel> © No?

For the first generation model, the term E[w?| in equation 6.1 is equal to w? as
w; 1s a deterministic constant. However, for the second generation model the term

simplifies to E[w?] = a; .

Other than the SNR, the PSF’s -3 dB width was also varied. Increasing the width
of the PSF results in the columns of ® being more correlated with each other.
This is also known as an increase in coherency. It is well known that a higher
coherence makes accurate detections for sparse signal recovery algorithms such
as OMP more difficult [19]. It is therefore expected that the same will hold for the
RVM-based algorithms.

Targets spaced closely together are likely to reduce P,;. To investigate this effect
in more detail, the simulations included several scenarios with different number
of range bins between the targets. When targets are spaced sufficiently apart, they
will no longer influence each other’s P,;. In such a case, the algorithms are ex-
pected to have similar performance metrics to each other.

Finally, two types of PSF’s were used: a Gaussian PSF and a sinc PSF. The
Gaussian PSF was used as it is simple and provides basic insights into the per-
formances of the different algorithms. To make it possible to analyze the effects
of a weak target being hidden in the sidelobe of a strong target, the sinc PSF had
to be used as well.
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6.2 Performance metrics

One way to compare the performance of different detectors is by plotting their
empirical ROC-curves (Receiver Operating Characteristic-curves). Such curves
illustrate how P, and Py, for the detector vary for different thresholds. A curve
that approaches the top-left corner (high P; for low P4,) is considered better. In
the multitarget case, there are different ways to define the Pf,. In this research,
similar to [13], Py, was determined to be the false alarm rate over the whole
observation window. The false alarm rate over the whole observation window can
be found by averaging out the false alarm rates for each cell (P, ;). Let us define
Ny, to be the number of false alarms that occur in range cell ¢ throughout the
Monte Carlo iterations and let Ny, ; be the number of times no target was present
and no target was detected in range cell 7. The false alarm rate for a range cell i is
obtained using

Ppos = ——L (6.2)

Similarly, let N;; denote the number of times a target was correctly detected in
range cell 4, and let NV,,,4; be the number of times a missed detection occured in
range cell 7. The probability of detection for a single cell is defined by

Ng,i
Py &

= @ 6.3
" Ngi+ Npa (63)

During the simulation, Ny ;,Nyy, i,/Ng; and N4, are kept track of and updated
in each Monte Carlo iteration. Once all N, iterations are complete, Py, ; and
P, ; are computed. An example showing F; and Py, ; for each range cell, with 2
targets spaced 1 range cell apart is provided in figure 2.

In this research, the definitions for Py, ; and P, ; are quite stringent. In practice,
we may not necessarily be interested in finding the precise locations of the targets.
In that case we may relax the definitions for F,;; to include detections in neigh-
bouring cells from the correct target locations as well. However, by using such
a modification, it may be difficult to accurately determine the number of targets
present in the radar scene.
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Figure 2: False alarm rate and hit rate per cell

Another method that is often used to characterize the performance of an algorithm
in reconstruction problems is the MSE (mean squared error). It can be defined as

MSE(w, W) = E[(w — w)"(w — W)] (6.4)

where w is the estimate for w. A downside to using this metric is that it penalizes a
target being detected in a neighbouring incorrect range cell very heavily. Similarly
to the previously discussed metrics, an empirical estimate for the MSE is obtained
by averaging out the MSE computed using each Monte Carlo iteration.
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7 Results

This chapter of the report discusses the results that were obtained using the sim-
ulator discussed in chapter 6. First, an overview of the runtime for the different
algorithms is provided. Next, the effect of modifying each parameter in the simu-
lation is discussed.

7.1 Comparison of runtimes

To compare the runtime of the different detection algorithms, the execution time
for 2000 Monte Carlo iterations was kept track of for each algorithms. The results
can be seen in table 1.

The table shows that the multitarget matched filter has the lowest execution time.
This is as expected, since the mutlitarget matched filter is less computationally
intensive compared to the other algorithms.

Another important observation is that the runtime for the modified RVM is signif-
icantly reduced compared to the basic RVM. This is because the modified RVM
has a higher threshold compared to the basic RVM. Consequently, less weaker
components are allowed into the model. Once the «;’s for the stronger compo-
nents have been accepted, the modified RVM algorithm then terminates which
leads to this speedup.

The execution time for the ESBL algorithm turned out to be much slower than
expected. This can be attributed to the estimated parameters being updated to
fixed-point derivatives which have a very slow convergence rate. The runtimes
provided in table 1 are only for a single threshold. Thus, due to time restrictions,
it was not possible to accurately evaluate the performance of the ESBL algorithm
in terms of Py and Ps,. However, inspection during the simulating process showed
that the P; and P, were similar to that of the modified RVM algorithm.
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Algorithm Runtime [s]
Basic RVM 129.5
Modified RVM | 56.1

ESBL 1033.95
Matched filter | 1.80
OMP 12.9
GLRT 27.4
RLRT 29.7

Table 1: Execution time for the detection algorithms

7.2 Setting the false alarm rate for the modified RVM

As a first scenario, consider the case where there are no targets present in the radar
scene. The probability of detection P, is then 0. The false alarm rate Py, depends
on the threshold 6 that was used. For the modified RVM algorithm, the relation-
ship between Py, and the threshold was given in equation 4.5. The relationship
between the desired Pf, and the empirical Py, evaluated from the simulation can
be seen in figure 3.

Desired Pf vs empirical Pf
02 a a
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o =
= 2 o
[s=] - ]
.
]
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Figure 3: Desired Py, vs Empirical Py,

32



Figure 3 indicates that the desired Py, doesn’t perfectly match with the empirical
Py,. The empirical Py, is always slightly higher than the desired Py,. This be-
haviour can likely be attributed to the RVM algorithm not removing a component
because it lowers the marginal loglikelihood despite that component not meeting
the statistical threshold.

7.3 Single target detection

Consider the case where there is only a single target present in the radar scene.In
this specific case the target has a SNR of 25.1 dB and the response from the target
results in a Gaussian PSF that reaches its -3 dB point exactly at the neighbouring
range bins. Figure 4 indicates that the performance of all the algorithms, ex-
cept for the multitarget matched filter, are very similar. This does not correspond
with our expectations, as it was expected that all of the algorithms would have
very similar ROC curves. An explanation for this discrepency is that because the
SNR is very high, a signal component is detected in the neighbouring bins for
the multitarget matched filter. A practical way to reduce this effect is by using a
clustering-based algorithm which can detect the neighbouring components jointly
as a single target.

7.4 Increasing the targets spacing for Gaussian PSF

As the next scenario, consider the case where there are two targets with equal SNR
that are spaced in consecutive range bins (A = 1). Additionally we have that the
amplitude of the PSF reaches its -3 dB point at the center of the neighbouring
range bins (L. = 1). The resulting ROC curves for each algorithm are displayed
in figure 5. It can be observed that the curves for the RLRT and GLRT seems to
coincide for the curve of the modified RVM algorithm. Furthermore, the curves
for all 3 algorithms intersect with the operation point of the basic original RVM.
Recalling that the original RVM algorithm has the lowest possible threshold that
still increase the loglikelihood, this implies that the RVM-based algorithms will
not be able to have a false alarm rate that exceeds the false alarm rate of the origi-
nal RVM. Finally, we see that the RVM based algorithms outperform OMP. This
is likely due to the substraction step of OMP, where two neighbouring targets are
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Figure 4: ROC curve for a single target, SNR =25.1 dB, L =1

seen as one target with a larger RCS, and subsequently too much signal is sub-
stracted. Thus, this is due to OMP not being able to remove a component from
its support once it has been added. For a low false alarm rate, the RVM algorithm
also has a higher probability of detection than the matched filter approach. How-
ever, the matched filter outperforms all the other algorithms at high Py, ’s.

Next, we use the exact same simulation parameter settings, except that there is
now one range bin between the two targets (L = 2). The results are visualized
in figure 6. In this scenario, we see that the performance of all the algorithms,
except for the matched filter, are similar. These algorithms outperform the multi-
target matched filter as the curves are similar for a high Py,, but the matched filter
performs much worse for a low P,,.

Increasing the width even more, we get the data shown in figure 7. The results
seem very comparable to figure 6. Recalling that our -3dB width is 1 range cell
away, this would mean that the two targets barely influence each other at A = 2,
which explains these similar results.
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Figure 6: ROC curve for A =2, SNR =25.1 dB, L=1
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Figure 7: ROC curve for A =3, SNR =25.1 dB, L=1

7.5 Detecting a weak target in a sidelobe

We now consider the case with sinc PSF’s, where there is a strong target with a
SNR of 26.3 dB. A weaker target with a SNR of 4.8 dB is located in the sidelobe
of the stronger target. The resulting ROC curves are displayed in figure 8. Here,
the P, on the y-axis represents the probability of detection for the weak target.
We can repeat this process for multiple different SNRs for the small target. Using
these ROC curves, and taking a sice at around Pj, = 0.147 we obtain the plot in
figure 9. From this figure it can be concluded that the RVM algorithm has a better
performance than the matched filter approach. This difference seems to increase
as the SNR of the weak target increases. This is also why sparse signal processing
algorithms such as OMP are often used instead of the multitarget matched filter
for estimating targets hidden in sidelobes [13].
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7.6 Effect of the PSF width

In this section, we verify the effect that the PSF has on the performance of the dif-
ferent algorithms. The -3 dB widths were set to 1.5, 2, 2.5 and 3. The results can
be seen in figures 10-13. From these figures it can be observed that the matched
filter performs much better than the RVM based algorithms and OMP when the
PSF is increased. However, the RLRT seems to outperform the modified RVM

and the GLRT algorithm.
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Figure 10: ROC curve, L = 1.5
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Figure 12: ROC curve, L = 2.5
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8 Conclusions and future work

8.1 Conclusions

Based on the simulation results conducted during this study, it can be concluded
that for low probabilities of false alarms, the RVM outperforms the multitarget
matched filter approach and OMP. The LRLT and GLRT generally tend to fol-
low similar metrics as the modified RVM algorithm. Furthermore, based on the
simulations where we varied the SNR of the target, it was found that the same
thresholds gave the same probability of false alarms. This implies that the expres-
sions derived from the ESBL algorithm transfer properly to the RVM framework.
However, in the case of very low SNR the RVM generally performs poorer com-
pared to the matched filter. In these cases, the constant false alarm rate (CFAR)
property of the modified RVM framework also ceases to function. In practice, we
see that the empirical false alarm probability does not completely correspond to
the theoretical false alarm probability.

One of the reasons that the RVM performs better compared to the other sparse
signal processing algorithms examined in this study (namely MP and OMP) is be-
cause the signal support is iteratively updated based on the received measurement
data. In each iteration of the RVM algorithm, it is possible that a signal support
gets removed, re-estimated or deleted. Such steps are not present in the multi-
target matched filter solution or in OMP.

The ESBL algorithm initializes with all components included in the support, whereas
the RVM based algorithm initialize with an empty support set. Due to this, the
ESBL algorithm scales poorly as the number of bins N in the measurement in-
creases. Additionally, the ESBL has a much slower convergence rate compared to
the other algorithms discussed such as OMP and RVM.

The thresholds for the GLRT-RVM algorithm are very much dependent on the

measurement and specific reconstruction problem. Consequently, it is hard to
tune the threshold for this algorithm in order to achieve a specific probability of
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false alarm. The reason that the GLRT-RVM algorithm does not provide robust
results for a certain threshold may be attributed to the algorithm selecting neigh-
bouring components «;_; and «;,; when the component corresponding to « is

temporarily pruned.

The results obtained also showed that all the algorithms perform much worse
when the -3 dB width of the PSF is increased. This is due to the increased co-
herency between the columns of ®, which generally reduces the probability of
accurate recovery. This seems to impact the multitarget matched filter less com-
pared to the other algorithms.
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8.2 Future work

It was expected that the empirical ROC-curves would coincide for the single tar-
get detection case. However, the matched filter seems to perform poorer in such
scenarios when considering low threshold values/ low probabilities of false alarm.
The exact reason behind this is not exactly known and should be explored in fu-
ture research.

The RLRT and GLRT-RVM algorithms currently perform worse than the mod-
ified RVM algorithm in most scenarios. This is likely because the RLRT and
GLRT-RVM algorithm only suppress one component at a time. Future work may
explore how suppressing multiple components at once may increase the perfor-
mances of these algorithms.

This research specifically focused on detecting targets based on range measure-
ments only. This was done by having a basis function ¢; for each range bin. In
future research, this approach could be extended to consider angular and doppler
velocities as well by associating a basis function ¢; to each range-angle bin. Ad-
ditionally, more complicated basis functions may also be considered.

One of the original applications that RVM was developed for was to solve stan-
dard regression problems. In such problems, the assumption that the amplitude
w; associated with a basis function ¢; follows a Gaussian distribution with a cer-
tain mean and variance, is generally not correct. Despite this, RVM still manages
to outperform various other sparse signal processing techniques and is generally
able to provide acceptable results. Although the model would not be perfectly
matched to the problem, future work may explore the use of the RVM framework
for swerling III/IV target models.

In [17] an example is provided on how measurements from different polariza-
tion channels may be used in a multiple measurement vector (MMV) framework.
A similar extension could be done for the modified RVM model. In that case, each
polarization channel can be modelled by its own «;.
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In this research, the focus was specifically on processing individual measure-
ments, and processing measurements that arrive in batch. In a more practical
setting, information from previous measurement (e.g. velocity estimate) may be
used as prior into the next measurement. As RVM is built upon a Bayesian frame-
work, it can be more easily extended to include such priors. In [20] a framework
has been provided in which both the weight parameters and prior hyperparameters
are updated as measurement data arrives sequentially.

Finally, this study specifically focused on scenarios where the targets are located
exactly on a grid point at the center of the range bin. In a practical radar scene
targets do not have such restrictions. Future work may focus on how the marginal
loglikelihood may be used to find the correct location of a target in a continuous
parameter space using grid search.
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