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ABSTRACT

Two momentum based longshore current models and a preliminary
longshore sediment transport model are‘derived, calibrated and tested
in the present investigation. The Linear Longshore Current Model
predicts the relatively small longshore current induced by mono-
chromatic, two dimensional, gravity waves of finite height and near
normal incidence breaking on a plane, impermeable, gently sloping
bottom in the presence of a shorenormal jetty when the offshore wave
height, wave period, wave angle and water depth are known, along with
the beach slope and roughness. The Nonlinear Longshore Current Model
predicts a longshore current using the same input as its linear coun-
terpart, but the nonlinear model removes the assumptions of a relative-
ly small current and near normal wave incidence and is valid only for
uniform longshore conditions. The Linear Longshore Sediment Transport
Model predicts the integrated, time averaged longshore sediment trans-
port for a relatively small current and near normal wave incidence
under uniform longshore conditions and also describes the initial re-
sponse of a plane bed downstream of a shorenormal jetty.

The 1 ongshore current models may be considered as a series of
modifications of the original model of Longuet-Higgins (1970), while
the Linear Longshore Sediment Transport Model is a surf zone applica-
tion of the work of Madsen and Grant (1976a) on nonbreaking wave in-
duced sediment transport.

Calibration yields physically plausible behavior for the three

model parameters while fixed bed, laboratory movable bed and field

ii



testing show a general longshore current model accuracy of about 207%,
where the latter two data bases only test the Linear Longshore Current
Model. The Linear Longshore Sediment Transport Model matches the
laboratory data to an accuracy of about 20% but overpredicts the
field data by a factor of 5; in view of the latter finding, the model
should only be considered as an order of magnitude estimator of long-
shore sediment transport.

To aid in model use, examples of the three models are presented

in an appendix in the back of this report.
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1 INTRODUCTION
1.1 Significance of Longshore Currents and Longshore Sediment

Transport

The proper design and maintenance of structures and effective
management of activities along coast lines require a quantitative
understanding of the motion of water and sediment in the surf zone.
The prediction of longshore currents and the resulting longshore sedi-
ment transport generated by obliquely incident breaking water waves
is a logical starting point towards this understanding.

It is natural to begin with the water motion since the water, in
the form of traveling waves, serves as a medium transporting momentum
from offshore sources, such as the atmosphere, to the nearshore area.
If the traveling waves attain a height comparable to the water depth
they will break, forming a surf zone where forces needed to resist
the incoming flux of momentum are established. 1In the absence of
local wave generation, two such forces are possible: setup, which is
defined as a change in the time average water surface elevation, and
bottom shear, which is the resistive drag felt by a steady current
flowing over the bottom. When the waves break at an angle to the
shore line, they contain a component of momentum parallel to the
shore line, so that a steady current parallel to the shore line, or
longshore current, may be induced, thus giving rise to a balancing
bottom shear force. This breaking wave-longshore current mechanism
may be realistically schematized and measured, particularly when the

bottom is a fixed bed, and is accordingly amenable to analytical



modeling and verification; the Linear Longshore Current Model and the
Nonlinear Longshore Current Model, which are new models developed in
this investigation, extend the previous modeling efforts.

When the bottom shear is sufficiently strong and the bottom is
a movable bed, the water will erode sediment off the bottom and trans-
port it to calmer areas for subsequent deposition, causing a change in
shore line configuration with attendant impacts on coastal structures
and land use. Since the sediment receives momentum from the water, it
is physically appropriate that longshore current models, which des-
cribe the water motion, serve as input to models of longshore sediment
transport. One such model is the Linear Longshore Sediment Transport
Model developed in this report, based on the Linear Longshore Current

Model.

1.2 Problem Statement

The instantaneous fluid velocity, pressure, and free surface
elevation in the vicinity of the surf zone are complicated functions
of space and time since the surf zone represents the breakdown of
wave motion into random fluctuations and a current accompanied by
varying amounts of air entrainment. The sediment load is in reality
comprised of particles of different size, sphericity and specific
gravity with spatial and temporal variations in velocity and concen-
tration. The complexity of the actual flow field must be reduced if
there is to be any hope for a quantitative description; accordingly,

any analytical model of surf zone dynamics will deal with an idealized



environment in which certain stresses and accelerations are neg-
lected.

The idealized environment considered in the present investiga-
tion consists of the surf zone formed by a simple wave train breaking
on a simple beach, as summarized in Table 1-1.

The governing equations and boundary conditions specifying the
flow field are further simplified by neglecting the stresses and
accelerations shown in Table 1-2.

The Linear Longshore Current Model and the Linear Longshore
Sediment Transport Model are predictors of the longshore current Yy
and the time averaged longshore sediment transport qz occurring when
waves of known period T, height H and angle 6 at a given time averaged

water depth h break on a beach of given slope tanB, grain size dS and

y

a predictions, which are valid

specific gravity s. The linear v, and q
when the longshore current is small compared to the wave orbital
velocity and the waves are of near normal incidence, vary in the
longshore y and shorenormal x directions. The longshore current is
assumed to be constant with depth.

The Nonlinear Longshore Current Model, which is also uniform in
the vertical z direction, predicts vy from the same input as its
linear counterpart, but incorporates the effect of a finite current
and oblique wave incidence. The nonlinear prediction, which corre-
sponds to fully developed conditions and accordingly is a function

of x alone, approaches the fully developed Linear Longshore Current

Model expression when the current and angle of incidence are small,



Table 1-1

Idealized Environment

WAVE TRAIN

Two dimensional, horizontally propagating waves®
Monochromatic waves

Oblique angle of incidence3

Near normal angle of incidencel’2

Homogeneous, incompressible fluid

Gravity waves

BEACH

Impermeable beach

Plane beach

Gentle sloping beach

Semi-infinite beachz

Infinite beachl’3

Cohesionless sediment

Uniform, spherical sediment particles

CURRENT

Comparable magnitude relative to wave orbital motion3

Small magnitude relative to wave orbital motionl’2

Assumptions apply to all models unless noted otherwise
Modified Longuet-Higgins Model

2 Linear Longshore Current Model and Linear Longshore Sediment
Transport Model

3 Nonlinear Longshore Current Model

Table 1-2

Neglected Stresses and Accelerations

No wind stress

No atmospheric pressure gradient
No Coriolis acceleration

No tides

No local time average acceleration




so that the two models are consistent solutions to special cases of
the breaking wave-longshore current interaction.

The surf zone coordinate system is sketched in Figure 1-1.

1.3 Fixed Bed Longshore Current Data

Galvin and Eagleson (1965), Putnam, Munk and Traylor (1949),
Brebner and Kamphuis (1963) and Eagleson (1965) all measure longshore
currents induced by essentially two dimensional, horizontally propa-
gating, monochromatic water waves breaking on plane, stationary, im-
permeable, fixed bed laboratory beaches set into constant depth basins
as suggested in Table 1-3, where the G, o and B subscripts refer to
generator, deep water and breaker line conditions, respectively. The
Galvin and Eagleson (1965), Putnam et al. (1949) and Brebner and
Kamphuis (1963) data sets are represented by GE, PMT and BK, respect-
ively. The Eagleson (1965) data is taken in the developing region of
a relatively strong current in violation of the conditions in Table
1-1 and accordingly receives no further consideration in the present
investigation. Table 1-4 lists the reported variables for the three
fixed bed studies, with the norm of the breaking wave phase velocity
|2£| and time averaged free surface elevation ng- As sketched in
Figure 1-1, Xgs X and Xp refer to shorenormal distances between the
still water and time averaged shore lines, the time averaged shore
line and the swash mark denoting the extent of wave runup, and the
time averaged shore line and the breaker line, respectively. The
brackets < > and the single prime indicate surf zone averaged and

maximum quantities, respectively.
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Table 1-3
Longshore Currents over a Fixed Bed

Basin, Beach and Wave Generator Conditions

GE PMT BK
BASIN
Length (ft) 45 58 100
width (ft) 22 39 50
hg (ft) 1.15 <2 1.50
Training Wall Most None All
Refraction
BEACH
Surface Concrete Variable Indented Concrete
tanB 0.109 0.066-0.260 0.050,0.100
WAVE GENERATOR
Type Plunger Flap Flap
T (sec) 0.90-1.50 0.72-2.32 0.78-1.13
8 (o) 10—51(6G) 10—60(63) 20—60(9G)
H (ft) 0.05-0.21 (HG) 0.12-0.47 (HB) 0.075-0.258 (Ho)




Table 1-4

Longshore Currents over a Fixed Bed

Reported Variables

GE
WAVES
H HG,
) eG,eB
T T
t: I Yes
B

SURF ZONE GEOMETRY

x (x +x_), (x5-%)
h hG

Ny Yes
CURRENTS

Location v (x,y)

PMT

@

No

None

No

BK

No

None

No

vs'(y)

1.3.1 Galvin and Eagleson (1965)

As suggested by Table 1-4, the Galvin and Eagleson (1965) data

base is the most complete for a given set of basin, beach and wave

generator conditions.

A plunger-type wave generator at three align-

ments GG(I= 1-3) generates 12 different waves (J= 1-12) as shown in

Table 1-5. H_ is measured with a resistance-type wave gage in the

G

constant depth region in front of the wave generator, while T is



Table 1-5
Galvin and Eagleson (1965)

Run Classification

I 1 2 3
GG(degrees) 10 27 51
J 1 2 3 4 5 6
T (sec) 1.00 1.125 1.25 1.375 1.50 1.25
HG (ft) 0.191 0.167 0.143 0.121 0.105 0.050
J 7 8 9 10 11 12
T (sec) 1.25 1.25 1.25 1.25 1. 50 1.00
HG (ft) 0.098 0.124 0.130 0.156 0.062 0.110

obtained from the plunger frequency. The waves propagate shoreward
between two training walls normal to the wave generator and refract
over the plane beach until breaking, where HB’ GB, (xB -xs) and, in
some cases, [ZBl are measured. The training walls for the I =1, 3
runs are refracted for 1.25 sec and 1.50 sec waves, respectively,
and kept straight for I = 2, with the upstream wall extending onto
dry land and the downstream wall ending 2.2 ft from the still water
shore line. The beach, which is constructed of smooth concrete, is
assigned a relative roughness ks of 0.001 ft for the purpose of test-
ing the longshore current models. The breaker line is defined as
the location of vertical free surface slope with GB and (xB —xs)

determined by overhead sighting while the experiment is in progress,



HB measured with a resistance-type wave gage and IZB| with a second
gage positioned a fixed distance along a wave ray from the first.
ns(x,y) is measured across 8 equispaced transects normal to the
bottom contours, each consisting of 6 damped piezometers of which at
least 4 are in or near the surf zone. hG is checked with a point
gage, and (xr + xs) is obtained by visual observation. vs(x,y) is
measured across 7 transects normal to the bottom contours and located
2 ft, ¢ ft (7 ft for J = 2), 9 ft, 11 ft, 13 ft, 15 ft and 17 ft,
respectively, downstream of the upstream training wall with as many
as 7 stations in a given transect. These transects are numbered

1 through 7, respectively. Longshore current velocity is measured
with a propeller-type miniature current meter 0.052 ft in diameter
positioned, when possible, at mean depth and calibrated against the
timed travel of wooden surface floats.

Only a portion of the GE data is used. The models of the present
investigation contain a wave refraction component as well as an empir-
ical breaking criterion, so that it is possible to use generator con-
ditions, which are easier to measure and accordingly more accurate
than breaker line conditions, as input. Since the GE data are used
to determine the form of the longshore current profile, all transects
with three or less stations are excluded from consideration. Trans-
ects 1 and 7, located within two wavelengths of a training wall, are
omitted to reduce the diffractive effects of training wall misalign-
ment on the measured flow field, while transects 2, 3 and 4 are ex-

cluded from strong current runs on the assumption that they are in a

10



region of developing current in violation of the idealized environ-
ment of Table 1-1.

Table 1-6 lists the GE data adopted for calibration and testing
of the Linear Longshore Current Model and Nonlinear Longshore Current
Model. The K index denotes the transect number and X the station
number of a given velocity measurement, with X increasing in the
positive x direction. The shorenormal station distance X is measured

from the still water shore line.

1.3.2 Putnam, Munk and Traylor (1949)

The waves of the Putnam, Munk and Traylor (1949) data base are
caused by a flap-type generator aligned at a constant, but unspeci-
fied, angle with respect to the basin walls; HG and hG are similarly
unreported, while T is reported and measured by timing the generator
frequency. The waves break on plane beaches of varying slopes set at
different unspecified angles with respect to the basin walls and
finished with three different fixed surfaces. The surfaces, which
consist of sheet metal or smooth cement, glued natural sand of un-
reported size and one-quarter inch pea gravel bonded with a thin grout,
are, for the purposes of the present investigation, assigned relative
roughness values of 0.001 ft, 0.0033 ft and 0.0208 ft, respectively.
HB and hB are measured with electric point gages, while BB is obtained
from vertical photographs. Longshore currents are measured by timed

travel of dye along the beach section 5 ft to 15 ft downstream of the

upstream basin wall. Putnam et al. (1949) note that the length of

11



Table 1-6

Galvin and Eagleson (1965)

Data Used in Longshore Current Model Tests

T

S

S =

E R R AR

[, I, I

(o )N « AU A«

AN BN

[« IV S

[« N, I N ¥4

X

xm(ft)
Vs(fps)
Vs(fps)

xm(ft)
vs(fps)
Vs(fps)

x (ft)
m
Vs(fps)

v (fps)

xm(ft)

Vs(fps)
Vs(fps)
vs(fps)
vs(fps)
vs(fps)

xm(ft)
vs(fps)

Vs(fps)
vs(fps)
Vs(fps)
v, (fps)

xm(ft)

Vs(fps)
Vs(fps)
Vs(fps)
Vs(fps)

-0.17
0.37
0.34

-0.17
0.38
0.38

-0.17
0.37
0.42

-0.17
0.21
0.51
0.47
0.41
0.34

-0.17
0.15

0.24
0.27
0.19
0.27

-0.17
0.13
0.13
0.12
0.16

12

0.33
0.49
0.52

0.33
0.57
0.64

0.33
0.48
0.53

0.33
0.24
0.52
0.50
0.62
0.50

0.33
0.44

0.41
0.40
0.42
0.38

0.33
0.24
0.23
0.23
0.23

0.83
0.47
0.49

0.83
0.51
0.60

0.83
0.51
0.50

0.83
0.26
0.31
0.43
0.49
0.45

0.83
0.47

0.37
0.38
0.41
0.41

0.83
0.13
0.16
0.17
0.16

1.33
0.42
0.45

1.33
0.43
0.51

1.33
0.28
0.31

1.33
0.18
0.16
0.28
0.27
0.33

1.33
0.26

0.27
0.27
0.28
0.28

1233
0.13
0.14
0.13
0.12

1.83
0.23
0.35

1.83
0.29
0.29

1.83
0.16
0.16

1.83
0.15
0.19
0.16
0.17
0.15
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X
x (ft)
m

vs(fps)
vs(fps)
vs(fps)
vs(fps)
vs(fps)
xm(ft)

vs(fps)
vs(fps)
vs(fps)

vs(fps)
vs(fps)
xm(ft)
vs(fps)
vs(fps)
xm(ft)
vs(fps)
vs(fps)
xm(ft)
vs(fps)
xm(ft)
vs(fps)
vs(fps)
xm(ft)
vs(fps)
vs(fps)

Table 1-6 (Continued)

1

-0.17

0.13
0.13
0.14
0.15

-0.17
0.16
0.25
0.31

0.30
0.28

-0.17
0.34
0.30

-0.17
0.35
0.49

0.30
1.68

-0.06
1.17
1.10

0.26
1.53
1.71
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2

0.33

0.25
0.25
0.28
0.37
0.29

0:33
0.26
0.30
0.36

0.41
0.43

0.33
0.46
0.51

0.33
0.54
0.63

0.53
1.76

0.24
1.65
1.57

0.46
1.49
1.75

0.83

0.16
0.20
0.21
0.23
0.28

0.83
0.29
0.31
0.35

0.39
0.49

0.83
0.43
0.50

0.83
0.57
0.58

0.80
1.64

0.54
1.69
1.61

0.76
1.45
1.61

1.33

0.15
0.13
0.17
0.14
0.13

1.33
0.19
0.15
0.17

0.25
0.26

1.33
0.26
0.27

1.33
0.39
0.41

1.06
L.57

0.84
1:.57
1.56

1.06
1.11
1.32

1.83

0.15
0.15
0.15
0.15
0.14

1.83
0.16
0.16
0.17

0.14
0.14

1.83
0.14
0.14

1.83
0.20
0.20

1.47
1.15

1.24
1.30
1.23

1.46
0.81
0.87

1.76
0.93

1.64
0.79
0.85

1.73
0.43
0.52
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X
x (ft)
m

vs(fps)
vs(fps)
xm(ft)

vs(fps)
vs(fps)
xm(ft)

vs(fpS)
vs(fps)
xm(ft)

vs(fps)
vs(fps)

xm(ft)
vs(fps)
vs(fps)
xm(ft)
vs(fps)
vs(fps)
xm(ft)
vs(fps)
vs(fps)
xm(ft)
vs(fps)
vs(fps)
xm(ft)
vs(fps)
vs(fps)

Table 1-6 (Continued)

1

-0.06

0.63
0.83

-0.06
0.97
0.78

-0.06
0.36
0.44

-0.07
0.80
0.74

-0.06
1.27
1.30

0.28
2.07
2.18

0.28
1.73
1.88

0.31
2.04
1.96

0.31
1.82
1.74

2
0.24

1,51
1.38

0.24
1.22
1,21

0.24
0.73
1.03

0.22
1.25
1.30

0.24
1.58
1.75

0.78
1.85
2.04

0.78
1.71
1.61

0.81
1.79
1.80

0.81
1.74
1.56
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3

0.54

1.66
1.53

0.54
1.27
1.27

0.54
0.90
095

0.54
1.30
1.42

0.54
1.53
1.75

1.28
1.41
1.46

1.28
1.07
1.00

1.31
0.98
1.08

1.31
0.99
1.05

0.84

1.36
1.33

0.84
1.13
1.19

0.84
0.85
0.70

0.84
1.04
1.10

0.84
1.44
1.63

1.78
0.70
0.80

1.78
0.56
0.65

1.8%
0.53
0.60

1.81
0.51
0.60

1.24

0.31
0.88

1.14
0.70
0.77

1.14
0.44
0.46

1.24
0.75
0.72

1.24
1.15
1.23

1.64

0.34
0.39

1.54
0.36
0.43

1.53
0.15
0.17

1.64
0.27
0.30

1.64
0.84
0.92
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xm(ft)
vS(fps)
vs(fps)
x(ft)
vs(fps)
vs(fps)
x(ft)
vs(fps)
vs(fps)
xm(ft)
vs(fps)
vs(fps)
xm(ft)
vs(fps)
vs(fps)
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vs(fps)
vs(fps)

Table 1-6 (Continued)

0.31
1.02
0.82

0.28
1.24
1.11

0.31
1.60
1.49

0.31
1.90
1.87

0.31
2.16
2.08

0.31
1.50
1.57

0.81

0.78
0.97
0.97

0.81
1.33
1.24

0.81
1.59
1.59

1.92

0.81
0.99
1.09

1.31

0.46

0.57

1.28
0.43
0.51

1.31
0.64
0.70

1.31
0.86
0.92

1.31
1.11
1,25

1.31
0.53
0.57

1.81

0.41

0.44

1.78
0.40
0.41

1.81
0.47
0.49

1.81
0.48
0.51

1.81
0.59
0.61

1.81
0.43
0.42
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the beach is 10 or more times Xg for all runs, and that all waves
break well inside the toe of the beach slope.

Since the models of the present investigation contain an empiri-
cal breaking criterion only one of the reported variables hB and HB
may be used as input for model testing; hB is selected since it re-
quires one less free surface determination. The currents are assumed
to represent <v_> in the absence of information specifying the loca-
tion of dye injection. As with the GE data, the strong current
tanB = 0.26 runs of the PMT data are excluded from consideration on
the assumption that the longshore current is accelerating convectively

in the measured flow region. Table 1-7 lists the adopted data.

1.3.3 Brebner and Kamphuis (1963)

The third fixed bed data set adopted for use is that of Brebner
and Kamphuis (1963), who report deep water wave characteristics Ho
and 60 as well as T. H is measured using an electfic point gage
seaward of a point where h/L = 0.3 on the actual sloping beach or an
imaginary extension of this beach where L is the wavelength, while
6G is measured from the relative alignment of the wave generator and
the beach, with small amplitude wave theory adopted to compute the
corresponding deep water values; the method of measuring T is un-
specified. The beach surface is smooth concrete artificially rough-
ened by indentations created by pressing a board with nailheads at
one inch spacing into the concrete beach; in the absence of further

details concerning the roughness, however, the smooth concrete

ks = 0.001 ft value is assumed. Brebner and Kamphuis (1963) note

16



Table 1-7
Putnam, Munk and Traylor (1949)

Data Used in Longshore Current Model Tests

Lo~ UL P WD -

ks(ft) tanp T(sec) hB(ft) eB(o) <v > (fps)
0.0033 0.066 1.00 0.75 18.3 0.78
0.0033 0.066 1.06 0.44 13.8 0.64
0.0033 0.066 1.14 0.56 14.6 0.82
0.0033 0.066 1:15 0.41 12.6 0.68
0.0033 0.066 1.25 0.39 11.7 0.76
0.0033 0.066 1:32 0.40 11.7 0.75
0.0033 0.066 1.40 0.37 10.9 0.64
0.0208 0.098 0.95 0.36 30,1 1.03
0.0208 0.098 1.33 0.27 21.4 0.46
0.0208 0.098 1.67 0.20 18.0 0.20
0.0208 0.098 1.99 0.19 16.4 0.15
0.001 0.100 0.99 0.32 28.0 1.68
0.001 0.100 1.32 0.27 22.8 1.45
0.001 0.100 1.63 0.23 18.8 0.96
0.001 0.100 1.98 0.22 18.4 0.76
0.001 0.139 0.83 0.43 56.6 2.46
0.001 0.139 0.91 0.33 45.3 2.31
0.001 0.139 1.00 0.29 38.8 2522
0.001 0.139 1,012 0.24 33.2 1.93
0.001 0.139 1.35 0.25 31.1 1.52
0.0033 0.144 1.90 0.24 17.6 0.75
0.0033 0.144 2.13 0.23 17.2 0.66
0.0033 0.144 2.22 0.24 17.3 0.50
0.0208 0.143 1.08 0.47 30.4 1.32
0.0208 0.143 1.36 0.38 24.6 0.63
0.0208 0.143 1.58 0.27 19.3 0.36
0.0208 0.143 1.91 0.26 18.4 0.32
0.0208 0.143 2.32 0.30 19.1 0.18
0.0033 0.241 0.72 0.48 18.2 1.33
0.0033 0.241 0.92 0.52 16.5 1.27
0.0033 0.241 1.14 0.28 10.4 0.53
0.0033 0.241 1.22 0.27 10.6 0.69
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that the maximum longshore current vs'

is measured, using the timed
travel of dye injected at a point just inside the breaker line and
15 to 20 ft downstream of the upstream training wall. Table 1-8

lists the data adopted for testing of the longshore current models.

Table 1-8
Brebner and Kamphuis (1963)

Data Used in Longshore Current Model Tests

tang = 0.05
1
1 Ho(ft) 80(0) T(sec) oA (fps)
1 0.075 21.9 1.13 0.49
2 0.089 20.9 1.00 0.56
3 0.112 20.3 0.87 0.62
4 0.124 20.1 0.78 0.68
5 0.106 21.9 1,13 0.66
6 0.129 20.9 1.00 0.61
7 0.157 20.3 0.87 0.67
8 0.172 20.1 0.78 0.69
9 0.151 21.9 1.13 0.71
10 0.167 20.9 1.00 0.73
11 0.207 20.3 0.87 0.80
12 0.212 20.1 0.78 0.81
13 0.174 21.9 1.13 0.84
14 0.211 20.9 1.00 0.80
15 0.242 20.3 0.87 0.82
16 0.257 20.1 0.78 0.84
17 0.076 33.1 1.13 0.63
18 0.089 31.4 1.00 0.61
19 0.113 30.5 0.87 0.65
20 a.125 30.1 0.78 0.64
21 0.107 33.1 1.13 0.76
22 0.130 31.4 1.00 0.68
23 0.158 30.5 0.87 0.76
24 0.172 30.1 0.78 0.78
25 0.153 33.1 1.13 0.86
26 0.168 31.4 1.00 0.78
27 0.208 30.5 0.87 0.90
28 0.212 30.1 0.78 0.90
29 0.176 33.1 1.13 0.96
30 0.212 31.4 1.00 0.92
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31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

-

oo UL~ W -

tanB = 0.05

Ho(ft)

0.244
0.258
0.077
0.090
0.113
0.125
0.109
0.131
0.158
0.172
0.156
0.170
0.209
0.213
0.179
0.214
0.243

tang = 0.

Ho(ft)

0.075
0.089
0.112
0.124
0.106
0.129
0.157
0.172
0.151
0.167
0.207
0.212
0.174
0.211
0.242
0.257
0.076
0.089
0.113
0.125

10

Table 1-8 (Continued)

90(0)

30.5
30.1
44.5
42.1
40.7
40.2
44.5
42.1
40.7
40.2
44.5
42.1
40.7
40.2
44.5
42.1
40.7

8 (o)
o

21.9
20.9
20.3
20.1
21.9
20.9
20.3
20.1
21.9
20.9
20.3
20.1
21.9
20.9
20.3
20.1
33.1
31.4
30.5
30.1

19

T(sec)

0.87
0.78
1.13
1.00
0.87
0.78
1.13
1.00
0.87
0.78
1,13
1.00
0.87
0.78
1,13
1.00
0.87

T(sec)

. .

NOOHHNOOHEFNOOHFNOOHFHFNOWO -

COHHHFHOOHMFHFOOHMHFOOHMFEFOORM
O NOWOONOWONOWRORNOWONO W

]
v (fps)

0.98
1.03
0.66
0.80
0.68
0.83
0.79
0.89
1.00
1.07
0.87
1.07
1.04
1.12
1.06
1.07
1.15

]
£
vy (fps)

0.44
0.47
0.67
0.82
0.49
0.67
0.83
0.99
0.63
0.80
0.96
1.07
0.63
0.88
1.04
1.16
0.60
0.81
0.84
0.91



Table 1-8 (Continued)

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

20

tanB = 0.10
H_ (ft) 6, (0) T(sec) v, ' (fps)
0.107 33.1 1.13 0.83
0.130 31.4 1.00 0.97
0.158 30.5 0.87 1.04
0.172 30.1 0.78 1.14
0.153 33.1 1.13 0.94
0.168 31.4 1.00 1.12
0.208 30.5 0.87 1.25
0.212 30.1 0.78 1.32
0.176 33.1 1.13 1.07
0.212 31.4 1.00 1.25
0.244 30.5 0.87 1.29
0.258 30.1 0.78 1.32
0.077 44.5 1.13 0.70
0.090 42.1 1.00 0.83
0.113 40.7 0.87 0.88
0.125 40.2 0.78 1.05
0.109 44.5 1.13 0.91
0.131 42.1 1.00 0.96
0.158 40.7 0.87 1.10
0.172 40.2 0.78 1.22
0.156 44.5 1.13 1.08
0.170 42.1 1.00 1.18
0.209 40.7 0.87 1.36
0.213 40.2 0.78 1.53
0.179 44.5 1.13 1.21
0.214 42.1 1.00 1.34
0.243 40.7 0.87 1.48
0.077 44.5 L.13 0.66
0.090 42.1 1.00 0.74
0.113 40.7 0.87 0.90
0.125 40.2 0.78 1.03
0.109 44.5 1.13 0.85
0.131 42.1 1.00 0.95
0.158 40.7 0.87 1.10
0.172 40.2 0.78 1.26
0.156 44.5 1.13 1.03
0.170 42.1 1.00 1.14
0.209 40.7 0.87 135
0.213 40.2 0.78 1.56
0.179 44.5 1,13 1.09
0.214 42.1 1.00 1.29
0.243 40.7 0.87 1.42
0.081 56.7 1.13 0.61



64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

tanf = 0.10
Ho(ft)

0.092
0.113
0.125
0.113
0.133
0.159
0.172
0.163
0.173
0.209
0.213
0.187
0.218
0.246
0.258
0.092
0.096
0.115
0.125
0.130
0.139
0.161
0.173
0.186
0.180
0.212
0.214
0.214
0.227
0.248
0.259

Table 1-8 (Continued)

60(0)

53.1
51.0
50.3
56.7
33.1
51.0
50.3
56.7
53.1
51.0
50.3
56.7
53.1
51.0
50.3
70.9
64.7
61.5
60.5
70.9
64.7
61.5
60.5
70.9
64.7
61.5
60.5
70.9
64.7
61.5
60.5

T(sec)

1.00
0.87
0.78
1.13
1.00
0.87
0.78
1.13
1.00
0.87
0.78
1,13
1.00
0.87
0.78
1.13
1.00
0.87
0.78
1.13
1.00
0.87
0.78
1.13
1.00
0.87
0.78
1.13
1.00
0.87
0.78

VS'Gps)

0.75
0.89
1.06
1.02
0.97
1.13
1.35
1.06
1.19
1.43
1.52
1.29
1.43
1.73
1.79
0.74
0.83
0.87
0.99
0.86
1.01
1.10
1.25
1.03
1.15
1.28
1.48
1.12
1.27
1.42
1.66
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1.4 Laboratory Longshore Sediment Transport Data

The data of Krumbein (1944), Saville (1949, 1950), Shay and
Johnson (1951), Sauvage de Saint Marc and Vincent (1954), Savage
(1962), Price and Tomlinson (1968) and Fairchild (1970) are available
for use in the present investigation. Only Krumbein (1944), Saville
(1949, 1950) and Shay and Johnson (1951) report the equilibrium beach
profile data necessary to use the Linear Longshore Sediment Transport
Model, thus most of the available data is excluded from the present
investigation. Krumbein (1944) reports a nonuniform beach slope
accompanied by beach cusps implying a longshore periodicity on his
beach; this data is consequently neglected so that the experiments of
Saville (1949, 1950) and Shay and Johnson (1951) comprise the labora-
tory longshore sediment transport data base of the present investiga-
tion. The two data sets are preferred to as SV and SJ, respectively

in the present investigation.

1.4.1 Saville (1949, 1950)

Saville (1949, 1950) measures longshore currents and longshore
sediment transport induced by two dimensional monochromatic water
waves generated by a flap type wave generator set in a basin 66 ft x
122 ft, with hG = 1.48 ft. The waves propagate without training wall
refraction onto a movable bed 6 ft wide, 60 ft long, aligned at a 10°
angle to the wave generator, and consisting of a uniform sand of med-
ian diameter dS = 0.30 mm and specific gravity s = 2.69. The initial
beach slope is 0.10 and tests are continued until equilibrium beach

slopes are established, after which time the bottom profile is
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measured across three shorenormal transects with a moving point gage.
Wave period is measured by timing the motion of the generator and the
breaker angle is obtained from overhead photographs, while wave height
is measured at an unspecified location using a point gage. Saville
(1949, 1950) reports deep water wave height values, obtained with
linear wave theory. Longshore currents are measured by the timed
travel of a dye injected into the surf zone at an unspecified location.

Sediment transport is measured at two locations along the beach.
At the mid-beach location, shorenormal hoppers set flush to the beach
surface are intended to measure longshore bed load, while a large
trap at the downstream end of the beach measures the total longshore
load, which is carried into the trap by a pump induced steady current.
Sediment is introduced manually at the upstream end and just down-
stream of the mid beach hoppers at rates equal to those measured in
the large trap and the mid beach hoppers, respectively.

Table 1-9 shows the data that tests the Linear Longshore Sedi-
ment Transport Model. The bottom slope is computed in accordance with

H H
tan8 = 0.134 -0.94 7= (.02 < =2 <.06) (1-1)
. o o

where L0 is deep water wave length given by the linear wave expression,

e.g., Madsen (1976)

L = g%/ 2m (1-2)

with gravitational acceleration g. Eq. (1-1) is a least squares re-

gression, e.g., Benjamin and Cornell (1970), on eight equilibrium pro-
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Table 1-9
Saville (1949, 1950)

Data Used in Longshore Sediment Transport Model Tests

hy = 1.48 ft 6, = 10°
d_=0.30 m s = 2.69
I T(see)  H ()  H(f©) <vs>(fps)"I: Jax 22y,
1 0.74 0.15 0.15 0.32 23.3
2 0.85 0.13 0.13 0.27 40.2
3 0.9% 0.12 0.12 0.25 62.6
4  1.00 0.11 0.10 0.21 56.8
5 0.7 0.17 0.17 0.40 29.9
6  0.85 0.15 0.15 0.32 48.7
7 0.99 0.13 0.12 0.24 8.2

files reported by Saville (1949) and by Shay and Johnson (1951); the
measured slopes fall within 20% of the predicted values. Two of
Saville's (1949, 1950) runs with exceptionally low deep water wave
steepness (gg = 0.015, 0.007) are discarded since the equilibrium
profile expoZes the lip of a concrete retaining wall under the
breaker line, giving rise to a discontinuous bottom in the surf zone.
The wave generator angle GG is used instead of OB since it is easier

to measure, while H, is computed from the reported Ho values using

G
linear wave refraction, e.g., Madsen (1976) and the remaining data
of Table 1-9. The reported longshore current data are taken to repre-

sent fully developed v > in the absence of knowledge about the de-
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tails of dye injection, while the relative roughness is taken as the
median grain size since Saville (1949, 1950) does not report the
presence of bed forms in the surf zone. The sediment transport data
are the total load figures measured in the large trap, selected be-
cause of the potential for the mid beach traps to collect sediment
which would otherwise oscillate in the longshore direction due to a
longshore component of the wave motion. It should be noted that the
adopted transport data has inaccuracies of its own since the flow
field is affected by wave diffraction near the basin wall and the
current near the end of the beach is induced by a pump, not by waves.
In defense of the data, the establishment of an equilibrium profile
does require that the wave induced longshore current in the mid beach
area transport sand at a rate equal to the supply and removal rate
at either end of the test section and Saville (1949, 1950) rumns his
tests for 8 to 20 hours after equilibrium is established, presumably

without further changes in bottom slope.

1.4.2 Shay and Johnson (1951)

Shay and Johnson (1951) measure longshore sediment transport in
the same basin as Saville (1949, 1950) and, for the 6, = 10° runs
which are the only data used in the present investigation, on the
same beach as well. The test procedures are the same with the ex-
ception of the tanf determination, which is done by tracing the bottom
profile onto a piece of sheet metal inserted normal to the shoreline.

Shay and Johnson (1951) cite H_ values but do not report data for bed

G

load transport or longshore current velocity for this generator angle.
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Table 1-10 lists the data used in the present investigation.
Shay and Johnson (1951) report equilibrium beach profiles for the
GG = 10° runs and for one 30° run; the profiles establish Eq. (1-1)
which is used to compute the tanf values of Table 1-10. As with the

Saville (1949, 1950) data, low wave steepness runs are ignored; this

Table 1-10
Shay and Johnson (1951)

Data Used in Longshore Sediment Transport Model Tests

o

6. =10 d = 0.30 mm S =2.69
G s
g y lbs dr
B h_(ft) T(sec) H_(ft) tanf I q’dx oS GLYy
G G o S hr
1 1.44 1.08 0.11 0.116 65.4
2 1.48 1.00 0.11 0.112 73.8
3 1.48 0.86 0.15 0.096 38.1

eliminates the 30° run and some 10° runs from the data base. The
figures listed in Table 1-10 are averages of the Shay and Johnson
(1951) data since the authors test a given set of experimental condi-

tions several times and report each repeated run.

1.5 Field Longshore Sediment Transport Data

The data of Komar (1969), which are judged as the best available
by Greer and Madsen (1978) in a review of field longshore sediment
transport data, are the only data considered in the present investiga-

tion. The data are referred to as KO in the present investigation.
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Komar (1969) measured longshore currents and longshore sediment trans-
port at Silver Strand Beach near Coronado, California, from November
1967 to September 1968, and at E1 Moreno Beach on the northwest shore
of the Gulf of California in Baja California, Mexico, from May 1966
to May 1968. The E1 Moreno data receives no further consideration
since the longshore currents are large compared to the wave orbital
velocity in violation of the linearizing assumptions of Table 1-1;
the Silver Strand currents are small, however, so that the Silver
Strand data constitutes the field data base of the present investiga-
tion.

Ei’ Bi and Ti’ as listed in Table 1-11, are estimated by Komar
(1969) from energy density spectra measured at an array of digital
wave staffs and pressure transducers aligned parallel to the bottom
contours in an unspecified depth of water; DAS is Komar's (1969) run

index, E, is the sum of the energy density of the ith wave train in

i

the spectrum, T, corresponds to the frequency containing peak energy

i
density and Bi is obtained from the phase lag between the wave sensors
where there is good coherence between the periods of record at each sen-
sor. When two or more energy density peaks are present two or more sets
of parameters are presented, with the minimum energy density between
adjacent peaks distinguishing one wave train from another. Small ei
values preclude runs 132 and 133 from consideration since the data is

more sensitive to errors in 6 determination as 6 approaches zero.

Komar (1969) measures longshore currents for three sets of the
DAS runs by the timed travel of a dye patch or slightly buoyant floats

placed in the surf zone.
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Table 1-11

Komar (1969) - Silver Strand Beach

Reported Wave Data
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Komar (1969) assumes that lengshore sediment transport occurs as
a sediment layer of constant thickness moving at a uniform velocity
so that the transport rate determination consists of estimating the
thickness and the longshore velocity of the layer. The thickness and
velocity estimates for three sets of DAS runs are obtained at Silver
Strand Beach by using core samples to measure the horizontal and
vertical distribution of a fluorescent sand tracer three or four hours
after its injection into the surf zone. Tracer injection and core
sampling occur under submerged conditions at Silver Strand Beach since
the tidal range is insufficient to expose an appreciable amount of
the surf zone. The sediment comprising the beach is a uniform sand
of median diameter 0.175 mm and specific gravity 2.65, with an average
bottom slope of about 0.034.

Table 1-12 lists the data adopted for use in testing the Linear
Longshore Sediment Transport Model. The longshore current data are
the values reported by Komar (1969), while the total time averaged
longshore sediment transport rates are mass flow rates computed from
reported volumetric rates using Komar's (1969) suggested porosity of
0.4. It should be noted that the assumption of a spatially uniform
moving layer underlying the transport data may be questioned on phys-
ical grounds since the longshore bottom shear stress imparting momen-
tum to the layer varies with shorenormal distance, as discussed in
Section 4.4.1. The assumption may be questioned on observational
grounds as well since Komar's (1969) contours of tracer concentration
show appreciable shorenormal variation which may be partially attrib-

uted to a varying moving layer velocity.
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Table 1-12
Komar (1969) - Silver Strand Beach

Data Used in Longshore Sediment Transport Model Tests

tanf = 0.034 dS = 0.175 mm s = 2.65
DAS hg Hg T 0 <v > E(q)zdx
(cm) (cm) (sec) (o) (cm/sec) (gm/sec x 10—3)
138-140 410 82 11.0 6.1 55.9 47.9
198-201 370 36 10.6 9.2 14.6 7.4
202-205 410 39 8.9 3.4 12.6 6.0

The wave parameters of Table 1-12 are equivalent monochromatic
nonlinear wave parameters derived in the present investigation from
Komar's (1969) reported data wusing wave energy considerations. The
first task is to establish the time averaged water depth at the sen-
sors where conditions are represented by the G subscript. In the
course of his wave refraction calculations, Komar (1969) computes the
shorenormal component of wave energy flux EF for the ith wave train
and reports the values in Table 1-11. As discussed in Section 3.1.3,
the wave energy flux is a function of the time averaged water depth
so that, using the linear theory originally employed by Komar (1969)
the energy flux values of Table 1-11 yield estimates of hG. The esti-
mates for a given set of DAS runs are averaged to obtain hG for the
appropriate current and sediment transport measurements, as cited in
Table 1-12.

With hG established, representative values of HG’ T and GG are
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derived to formulate a reasonable equivalent wave. First, the mono-
chromatic wave energy E defined by
_ pgH
E = 8 (1-3)

is equated to the total spectral energy

EG = ZEi (1-4)
wave trains

thus providing an equivalent HG. The wave energy flux given by

> =
Ep = Enc (1-5)

where n is the energy transport function, is used to generate the

equivalent period T in accordance with

|Egl T = 2UELID), (1-6)

wave trains
with (nlgl)G, which is an implicit function of T, hG and HG, computed
using the nonlinear wave theory of Section 4.1.1 and (n|g|)i computed
using linear theory and the data of Table 1-11. Finally, BG assures
equivalence of the longshore radiation stress tensor element, i.e.,
anticipating Eqs. (3-37)

(E n cosb sine)G = 3y(E n cosf sinb)
wave trains

i (1-7)

where again n_ is computed with nonlinear wave theory and (E n cosfsinf)

G i

is computed using linear theory and the data of Table 1-11. Table 1-12

presents appropriate DAS averages for the equivalent wave parameters.
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The intent of all this reanalysis is to replace the spectral wave
data with a plausible equivalent monochromatic wave whose properties
are described by a wave theory consistent with that of the Linear Longshore

Sediment Transport Model.

1.6 Outline of Present Investigation

The idealized environment and data base discussed in the pre-
ceding sections describe a relatively simple surf zone which may be
analytically modeled and tested. The present investigation develops
the Linear Longshore Current Model as an extension of an existing
model by allowing for longshore nonuniformity and a finite wave
height. The Linear Longshore Current Model in turn leads to the
Linear Longshore Sediment Transport Model, which also allows for long-
shore nonuniformity and a finite wave height, and the Nonlinear Long-
shore Current Model. The Nonlinear Longshore Current Model approxi-
mates the effect of a finite longshore current as well as oblique
wave incidence and a finite wave height, but is only valid for uni-
form longshore conditions.

The development proceeds in Section 2 with a statement of the
conservation of mass and horizontal momentum in the surf zone, where
the flow field is assumed to be comprised of highly simplified time
averaged ,wave and randomly fluctuating partitions. The conservation
equations are depth integrated and time averaged using the approach of
Phillips (1977) and they accordingly describe the transport of mass

and horizontal momentum through a vertical column of fluid under a

32




unit free surface area; the forces and gradients of horizontal momen-
tum flux in the momentum equation appear as a balance of convective,
local driving, Reynolds, bottom shear and wave setup stresses in the
surf zone. The section concludes by presenting a modification of
Battjes' (1974) breaker parameter EB’ which characterizes useful em-
pirical knowledge of surf zone hydrodynamics observed by other in-
vestigators.

The analysis of Longuet-Higgins (1970) is restated, with minor
modifications,in Section 3 to describe the stresses under the assump-
tions of longshore uniformity, linear long waves of near normal incid-
ence and a relatively small current. The resulting differential
balance of stresses is linearized and cast into a governing differ-
ential equation closely resembling that of Longuet-Higgins (1970)
with the local driving stress balanced by shorenormal wave setup and
longshore Reynolds and linearized bottom shear stress components. The
resulting solution, which is termed the Modified Longuet-Higgins Model,
is comprised of the modified bottom slope tanA and the longshore cur-
rent profile ch* where v* is the dimensionless form of the profile
and Ve is the dimensional scale. With the Modified Longuet-Higgins
Model as bakcground, a brief survey of other existing momentum based
uniform longshore current profile models is presented.

The Linear Longshore Current Model, Linear Longshore Sediment
Transport Model and Nonlinear Longshore Current Model are derived in
Section 4. All three models assume that the modified bottom slope

satisfies the shorenormal momentum equation and the form of the long-
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shore current profile v* is similar to that of the Modified Longuet-
Higgins Model with scaling reduced to account for the effects of a
finite wave height. A modification of Madsen's (1976a) empirical
breaking criterion is also included in the models to facilitate long-
shore current and longshore sediment transport prediction when offshore
wave parameters are known.

The Linear Longshore Current Model integrates the depth inte-
grated conservation of mass and longshore momentum equations from the
mean shore line to the breaker line in the presence of longshore non-
uniformity introduced by a shorenormal jetty. The resulting integrated
linear longshore stress balance which neglects wave diffraction, is
similar to the balance analyzed by Eagleson (1966) with the added in-
clusion of a longshore Reynolds stress component. The nonuniformity
acts to further reduce the scale of the longshore current since part
of the driving stress is spent on current acceleration, which appears
as the convective stress term in the balance. The convective current
reduction factor Al is the analytical solution to the integrated lin-
ear longshore stress balance governing the motion.

The Linear Longshore Sediment Transport Model is derived by
assuming a steady flow sediment transport formula to be valid on an
instantaneous basis in the surf zone, following the approach of
Reyman (1976). The formula, which is proposed by Madsen and Grant
(1976a) for nonbreaking wave motion,relates longshore sediment trans-
port and the longshore bottom shear stress component of the Linear
Longshore Current Model and is considered on a time averaged, shore-

normal integrated basis.
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The Nonlinear Longshore Current Model presents the nonlinear
current reduction factor AZ which models nonlinear bottom shear stress

due to a finite current under uniform longshore conditions. AZ is
the solution to the integrated longshore stress balance for uniform
longshore conditions with the nonlinear bottom shear term evaluated
on a numerical basis. The nonlinear current reduction factor is ex-
pressed as a curve fitted function of wave and beach parameters.

The bottom and Reynolds stresses of the Linear Longshore Current
Model and the Nonlinear Longshore Current Model are characterized by
the surf zone friction factor fsz and the lateral mixing coefficient T
respectively, and it is the business of Section 5 to establish and
test physically plausible predictors of these parameters using the fixed
bed data of Section 1. The resulting predictors are assumed valid
for movable beds and the longshore sediment transport coefficient ¢
relating longshore bottom shear stress and sediment transport compon-
ents is subsequently calibrated using the laboratory movable bed and
field data of Section 1.

The three models are critically evaluated in Section 6 with
emphasis on model inconsistencies and systematic errors in model
testing in order to identify areas for future model improvement. The
investigation closes with Appendices I and II which present numerical
examples of the three models and a listing of computer subroutines,

respectively.
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2 STRESS BALANCE AND SURF ZONE EMPIRICISM

2.1 Flow Field Partitions
The instantaneous velocity and free surface elevation in the surf

zone are assumed to be comprised of uncorrelated partitions

> - - -
u=u + u, + ue (2-1)
n=n_+n, (2-2)

where the s, w and f subscripts denote time averaged, wave and random-
ly fluctuating partitions, respectively. The shorenormal and long-
shore velocity components are further assumed to be constant with

depth, i.e.,

u oV
0z 9z g

(2-3)

The assumed specification of surf zone hydrodynamics is extended by

the adoption of hydrostatic pressure,
p = pg(n-2) (2-4)

where p is instantaneous pressure and p is fluid demsity.

The justification of these highly simplified partitions rests on
the analytical simplicity of the resulting models along with the
models' ability to match longshore current and longshore sediment
transport predictions with the data of Section 1.

In keeping with model simplicity, the wave partition is treated
as a monochromatic long wave, while the contribution of the randomly

fluctuating partition to the surf zone hydrodynamics is taken to be
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the result of nonzero correlations of fluctuating velocity compon-

ents, so that n,. and pf are ignored in the present investigation.

f
The assumed vertical homogeneity of Eq.(2-3) is consistent

with the longshore current and sediment transport data base, which is

comprised of single values of flow parameters at given (x,y) loca-

tions; the homogeneity also anticipates the treatment of the conser-

vation equations on a depth integrated basis. The field data of

Meadows (1976) suggest that ¥y does not vary appreciably with depth

in the surf zone.

2.2 Conservation of Mass Equation
Consider the instantaneous conservation of mass equation for a

homogeneous, incompressible fluid

with vertical velocity component w. Following Phillips (1977),
Eq. (2-5) is integrated over the instantaneous water depth using

kinematic boundary conditions and Leibnitz's Rule with the result
r a_ 2 - »
= [u(n + d)] + 5y [vin+ ]+ (n+d) =0 (2-6)

where the vertical homogeneity of Eq. (2-3) is invoked and d is the
still water depth.

Expanding and time averaging Eq. (2-6) in view of the assumed
partitions of Egs. (2-1) and (2-2), the depth integrated, time aver-

aged conservation of mass equation is obtained for steady flow
2 h+ (un)]+a [vh+ (vn)]=0 (2-7)
ox [ s Y’ s dy Vs Vu'v's
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with the shorenormal wave and current components u_ and u_, and
longshore wave orbital velocity component v Eq. (2-7) describes
the time averaged transport of fluid mass through a column of fluid

under a unit area of the free surface, making use of the relation

h=d4d+ g (2-8)

which follows from the definitions of h, d and n.

2.3 Conservation of Horizontal Momentum Equation
The surf zone stress balance is the depth integrated, time aver-
aged conservation of horizontal momentum equation describing the

hydrodynamics of the surf zone in the absence of the stresses and

accelerations of Table 1-2.

2.3.1 Depth integration
Consider the instantaneous conservation of horizontal momentum
for a homogeneous incompressible fluid in the absence of Coriolis

acceleration, e.g., White (1974)

2 X
024 4 a(u) o(uv) | d (uw) 1 = 3 , Ar
ot 3X Yy 9z 9xX 2z

(2-9)

<

2
s v | 3GvT) | B3Cvw) 4 _ _ 3P, 317
3% oy 9z dy 9dz

v
p{at

The shear stresses Tx, 10 are assumed to be confined to thin layers
at the fluid boundaries; these boundaries are presumed to be essen-
tially horizontal so that vertical gradients dominate horizontal
gradients. The superscripts denote vector component direction and t

is time.
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Following Phillips (1977), Eq.(2-9)is integrated over the
instantaneous water depth using Leibnitz' Rule and appropriate kine-

matic boundary conditions with the result

n n n
p%%; (I_dudz) +-%; (J_d uzdz) - %; (J-d uvdz) }

n
oo an, 2, x_x
2% (J_d Pdz) + Pyt Pax Y Tn T
(2-10)
n n n
pf%; (I vdz) +-%; (J vudz) +'%— ([ vzdz)}
-d -d Y Ja
a M an d .y .y
= -3 (I-dpdz) + P, 3y + Py 3x + T, T,

where the n and b subscripts denote conditions at the free surface
and bottom, respectively.
The RHS of Eq. (2-10) may be simplified using the hydrostatic

pressure distribution of Eq. (2-4) to integrate out the pressure term

S TIIEERENC S~
(2-11)
- g—y (Jrid pdz) = -p, (-g—;- & g—;)
where
Py = pg(n + d)

and pn is arbitrarily set equal to O in the absence of an atmospheric
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pressure gradient. The viscous shear stress at the free surface must
be negligible in the absence of wind so that Txn and 17 _ vanish as well.

Incorporating these simplifications into Eq. (2-10)
ofd [u(n + d)] + 2= [P(n + D] + = [uwn + D]}
ot ox oy

X

on _
- pg(n + d) = ' b

(2-12)
Pl [v(n + O] + 2 [vatn + D) + & [V + D)

b 4

- an
pg(n + d) 3y LIRS

where vertical homogeneity is invoked.

2.3.2 Time averagihg

The surf zone stress balance is obtained by substituting the
flow partitions of Eqs. (2-1) and (2-2) into Eq. (2-12) and time aver-
aging. The local acceleration terms vanish identically for steady

time average flow while a typical expanded convection term is given by

g—x [uvin + )]
(2-13)

%; {[usvs > (uwvw)s = (ufvf)s]h R us(vw“w)s * vs(uwnw)s}

and a typical pressure term is

2
an aln_)
~ogl(n + d) 971 = -pglh 322 + —=] (2-14)

40



where ug and Ve are shorenormal and longshore velocity fluctuations.

Time averaging Eq. (2-12) and then regrouping terms

- - - -
+ + + = -
AS Sw Tf (Tb)s Pw (2-15)

Eq. (2-15) is a stress balance because the depth integration
focuses attention on a column of fluid under a unit area of the free
surface so that the forces and gradients of momentum flux appear as a
balance of stresses. Following White (1974), a positive stress is a
net efflux of positive momentum from this column.

The wave setup term ;w is the stress exerted by a tilting water

surface, i.e.,

> ans 1 ans 3

P, = ~Peh[Em 1+ 5= ) (2-16)
It is treated as an external stress since it contains no momentum flux
terms; the pressure gradient is positive in the direction of decreas-
ing free surface elevation.

The convective Ks’ local driving §§ and Reynolds T stresses are

£
ij ij

the horizontal gradients of the convection A", radiation S and

fluctuation Tij stress tensors which describe the depth integrated flux

of horizontal momentum due to steady, wave and randomly fluctuating

partitions, respectively. Thus

XX yx yy
_ r9A aA 4+ OA o
Y e f K] (2-17)
XX g¥X Y b
98 . 0S BS aS T
B ey *5y1 3 (2-18)
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i yX Xy y
fo- B+ 2 1 2 2 g (2-19)
where
Aij [u h + 2u (u n, ) ] [u v h + ug (v n, ) + vs(uwnw)s]
= .0
[usvsh * us(vwnw)s * vs(uwnw)s][vsh * 2vs(vwnw)s ]
(2-20)
2
2 g(nw)s
[(W) h+ - ] [(uv) h]
sij i w' s 2 w ‘2, S (2_21)
2 g(n )
[(uwvw)sh][(vw)sh * ——EE—E]
2
[(u2)_h] [(ucov)) _h]

IR ICRARTARY

with column j indicating a transport of j momentum in the row i
direction. I and } are unit shorenormal and longshore vectors,
respectively. The concept of a radiation stress is due to Longuet-
Higgins and Stewart (1960), who derive the tensor as a second order
phenomenon associated with small amplitude wave propagation in water
of intermediate depth. The use of the term "Reynolds stress" in the
present investigation should not be confused with the classical de-

finition, e.g., White (1974), which associates the term with the

fluctuating velocity correlation at a given location in the flow field.
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The present investigation defines the Reynolds stress as the horizontal
gradient of the depth integrated fluctuating velocity correlation, as
suggested by Eq. (2-19).

The time averaged bottom shear stress (?S)S is modeled with a
time averaged drag law expression based on near bottom wave orbital
and current partitions

(t,) ='% of

> = -> >
b’s z[(us + uw)blus + uwlb]s (2-23)

]

where the surf zone friction factor fSz is assumed to be independent
of time and space. The justification of Eq. (2-23) and indeed of the
present modeling approach rests on the physically plausible behavior
of the surf zone friction factor when it is calibrated with the data

base of Section 1.

2.4 Surf Zone Empiricism

The solutions of the stress balance developed in the present in-
vestigation ignore the observed surf zone phenomena of wave runup,
wave reflection, longshore periodicity and air entrainment while
assuming a linear wave height variation within the breaker line. The
surf zone empiricism of this section demonstrates that these assump-

tions are reasonable when
0.3 < EB < 0.7 (2-24)

where EB is the modified Battjes breaker parameter.
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2.4.1 Modified Battjes breaker parameter

The complexity of the actual fluid motion in the surf zone leaves
ample room for useful empirical models of various aspects of surf
zone hydrodynamics. A good deal of information is conveyed by
Battjes' (1974) breaker parameter EB for waves of normal incidence

breaking on plane beaches, where

tanf

PR - . - B (6 = 0) (2-25)
1/2
(HB/LO)

tp

Battjes (1974) notes that EB may be considered as the ratio of
bottom slope to breaking wave steepness. This interpretation suggests
a modified Battjes breaker parameter defined for waves of oblique

incidence

thanB coseB
£, '™ (2-26)
B 1/2
(ZWGB)

where the coseB factor reflects the decreased bottom slope in the
oblique direction of wave propagation. (HB/L':’)U2 is expressed for
later convenience in terms of relative wave length and height param-

eters y and a, respectively, evaluated at breaking, where

¥ = 'l?(g/h)l/2 (2-27)

a = H/h (2-28)

The relative wave length and height parameters govern wave propagation,

as discussed in Section 4.1.1.
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Battjes' breaker parameter, which is based on the work of earlier
investigators, characterizes such surf zone features as wave runup,
wave reflection, longshore periodicity, linear wave decay and air
entrainment. The empirical expressions describing these phenomena,
although based on normal wave incidence, are assumed to be valid for
waves of oblique incidence in light of their qualitative use in the
present investigation.

Using Galvin's (1968) breaker classification system and data,
which are also for waves of normal incidence, Battjes (1974) estab-
lishes the transitional EB values of Table 2-1; in view of Eq. (2-24),
the present investigation studies transitional spilling-plunging

breakers.

Table 2-1
Battjes (1974) and Galvin (1968)

Transitional EB Values - Breaker Classification

EB Values Breaker Classification
EB > 2.0 Surging or Collapsing
2.0 > EB > 0.4 Plunging

0.4 > EB Spilling

2.4.2 Wave runup and the swash zone
Hunt's (1959) empirical equation describing wave runup for break-
ing waves normally incident on plane slopes may be approximated using

EB in accordance with
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n /By =gy (Ep < 2.3) (2-29)

where wave runup n. is the vertical distance between the swash mark
and the still water level.

The importance of the swash zone, which is the region between
maximum and minimum shore lines, is reflected in the ratio n;/nr,
where n; (see Figure 1.1) is the vertical distance between the time
averaged shore line and the still water level. As n;/nr approaches
unity, the instantaneous shore line approaches its time averaged
position and the swash zone decreases in importance; a condition
which is physically appropriate for an analytical model that assumes
the continuous presence of water over the majority of the surf zone.
When n;/nr decreases, the swash zone dominates the surf zone as is
the case for strongly plunging breakers with their higher EB values,
and a different approach than that of the present analysis may be
warranted.

The wave setup model of Section 3.1.3 yields an expression for

the maximum wave setup. Substituting x=0 into Eq. (3-32),

2
i 3thB

ng 3 (2-30)

so that the desired ratio is simply
n'/n o (n'/n_<1) (2-31)
s r 8§B s r
The upper limit of Eq. (2-24) yields a minimum n;/nr ratio of about
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0.5; the data of Bowen, Inman and Simmons (1968) suggest that this may

be conservatively low.

2.4.3 Wave reflection and longshore periodicity
Battjes (1974) demonstrates that EB may also be used to assess
the importance of wave reflection of normally incident waves on imperme-

able slopes with

R = 0.1 5123 (R < 1) (2-32)

where R is the ratio of reflected to incident wave height. It should

be noted that Battjes (1974) expresses Eq. (2-32) in terms of HG where,
in the context of a breakwater, HG is based on the wave height at the
intersection of the slope tanB with a much flatter bottom. Anticipating
the use of Eq. (2-32) as an indicator of the order of magnitude of re-
flection, and noting that wave height appears to the one-half power in
the definition of EB, the use of EB in Eq. (2-32) is judged to be
appropriate, particularly since Battjes (1974) assumes HG = hG to inter-
pret EB as the ratio of bottom slope to breaking wave steepness.

The upper EB limit of Eq. (2-24) thus insures that R < 0.1 so that,
with wave energy proportional to H2, reflected wave energy will be less
than 1% of the incident wave energy.

Battjes' breaker parameter may also be related to the occurrence
of edge waves, which are periodic in the longshore direction and accord-
ingly give rise to such longshore periodic phenomena as rip currents

and beach cusps. Minzoni and Whitham (1977), drawing upon prior stud-
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ies, suggest that a normally incident wave of frequency w can generate

ay edge wave of one half the incident wave frequency when the parameter

w-a
5 falls within the range
g tan B
2
wa
0.8 = ———5= =2 (2-33)
g tan B

where a_ is the incident wave amplitude at the time averaged shore
line and the limits are imposed by dissipation induced by viscosity
and wave breaking. If a_ is taken as the breaking wave amplitude,
then Eq. (2-33) may be expressed as a EB based criterion for half-

harmonic edge wave generation

2> EB > 1 (2-34)

In view of Eqs.(2-24) and (2-34) half-harmonic edge waves are
excluded from consideration in the present investigation. It should
be noted that analytical and experimental studies find edge waves at
much lower frequencies for spilling breakers; these are also ignored
because the low frequencies imply longshore length scales much greater

than the characteristic horizontal length scale Xp.

2.4.4 Other surf zone characteristics
Analytical modeling of surf zone hydrodynamics is greatly facili-
tated by assuming a linear wave height variation inside the breaker

line, i.e.,

H= th (x :_xB) (2-35)
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Laboratory data for breaking waves normally incident on plane slopes,
e.g., Bowen et al. (1968) and Horikawa and Kuo (1966) show that the
linear variation is reasonably valid for surf zones satisfying the EB
range of Eq. (2-24) and, in contrast to popular belief, these data
suggest that Eq. (2-35) is inappropriate for waves with EB values well
within the spilling breaker range.

As noted by Galvin (1968), plunging breakers entrain more air than
spilling breakers in violation of the Table 1-1 assumption of homogen-

eous, incompressible fluid so that the neglect of air entrainment pro-

vides another reason for an upper EB limit.
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3 MODIFIED LONGUET-HIGGINS MODEL

As suggested by Table 1-1, the Modified Longuet-Higgins Model pre-
dicts longshore currents induced by waves of near normal incidence
breaking over an infinite beach. The model invokes the implied long-
shore homogeneity and assumes linear long wave theory and a relatively

small current to reduce the stress balance of Eq. (2-15) to

=Px
w

S

£ N

(3-1)
y Y o
s + T>f' + () =0

where §w and T¥ are comprised of shorenormal gradients only. The modi-
fied bottom slope of Eq. (3-30) is the solution the shorenormal compon-
ent of Eq. (3-1) while the longshore current of Eqs. (3-61), (3-62) and

(3-76) is the solution to the longshore component of Eq. (3-1).

3.1 Modified Bottom Slope
3.1.1 Shorenormal current
The Modified Longuet-Higgins Model uses linear long wave theory to

describe the wave partition of the assumed flow field so that, recalling

Eq. (2-28),
uwI + ij = -‘%-(gh)ll2 cos¢[-coseI + sine}] (3-2)
¢ ==kx cos® + ky sinb-wt (3-3)
n, = % cos¢ (3-4)

where wave reflection is neglected in accordance with the discussion
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of Section 2.4.3 and the wave propagates with a component in the nega-
tive x direction, ¢ is the phase angle and k is the wavenumber. The
linear long wave theory and the conservation of mass equation combine

to provide an estimate of the shorenormal current strength.

Noting that the infinite beach assumption and neglect of longshore
periodicity adopted in the Modified Longuet-Higgins Model preclude
longshore gradients, the depth integrated, time averaged conservation
of mass equation of Section 2.2 becomes

(uwnw)s

us = - —_h (3-5)

after shorenormal integration from O to x. Recalling linear long wave
theory, and Eq. (2-28)

2

e S
Ys 8 (gh)

1/2 ,se (3-6)

so that us flows seaward to balance the wave induced shoreward mass

transport. Comparing the shorenormal current and wave components,

u /u' = a/b (3-7)
s w

where u; is the maximum shorenormal orbital velocity. Since a is
of order unity in the surf zone, the shorenormal wave velocity domin-

ates the shorenormal current in the Modified Longuet-Higgins Model.

3.1.2 Shorenormal convective and bottom shear stresses inside the
breaker line
Recalling Eqs. (2-15)-(2-19), the absence of longshore gradients

simplifies the shorenormal component of the stress balance to
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X X X X X
AS + Sw + '1'f + (Tb)s = PW (3-8)
where
R g% - ds™ . x _ 4™
s dx > "wo dx ? f dx

In view of Eqs. (2-20) and (2-21), the smallness of the shorenormal
current suggests that the shorenormal wave induced momentum flux dom-
inates the current induced flux so that A: is neglected.

Evaluating the shorenormal radiation stress tensor component for

linear long waves
XX pggz 2 1
s = 3 (cos™® + E) (3-9)

so that for near normal incidence, the local driving stress inside the
breaker line becomes

3pa2
X B dh
S, 8 8h G (x < xB) (3-10)

where the positive sign suggests a net influx of negative shorenormal

momentum and the linear wave height decay of Eq. (2-35) is used.
Recalling Eq. (2-23) the bottom shear stress is a function of

the norm of the near bottom wave and current velocity, which may be

expressed as

1/2

- > 2 +> 2
lu, + ?leb = (Ju|” +lu |7 + 2{uu + v v D (3-11)

The Modified Longuet-Higgins Model linearizes the time averaged bottom

shear stress by assuming a relatively small current

NN (312
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and waves of near normal incidence

v << u (3-13)

Eliminating the lowest order terms from consideration, the near bottom

wave and current velocity norm may be approximated as

2 u
|:s + leb = IEQIL (cos™¢ -2 +s cosecos¢)1/2 (3-14)
u

w'b

where |3§|; is used to normalize the expression and the wave compon-
ent is expressed in the form of Eq. (3-2). The small current assump-

tion permits Taylor expansion of Eq. (3-14),

u
> b4 I bl _ S CcOS -
[lu, +u [, 1= [a [} (|coss] 3T cosd T ST (3-15)
w'b

Using Eq. (3-15) in the time averaging process, with cosze vl

[(iis + Kw)bﬁs + Kw|b] o™ |Gw|1;1cos¢1s(zusi ¥ vs“J') (3-16)

Accordingly, recalling Eq. (2-23), the linearized time averaged

bottom shear stress is given by

e of >
(‘rb)S = "sz Iuwlg (ZuSI + vsg) (3-17)

Comparing the shorenormal local driving and time averaged bottom

shear stresses inside the breaker line,

X ansz

(x5 /s
b's" "w dh
- (dx)

(x < x3) (3-18)
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Taking the flat, rough beach data of Table 3-1 as a worst case, the
estimate of Eq. (3-18) suggests that (T:)S/S: < 0.2 so that bottom

shear may be neglected in the shorenormal momentum equation inside

the breaker line.

Table 3-1

Typical Wave and Beach Parameters

ap = 1.0

4B . tana = 0.01 flat beach

dx

gh, tanA = 0.10 steep beach

dx

fsz = 0.02 rough beach

f = 0.005 smooth beach
sz

3.1.3 Shorenormal Reynolds stress inside the breaker line

Recalling Eqs. (2-19), (2-22) and (3-8), the shorenormal

Reynolds stress component is given by

TF =0 & [v(ui)sh] (3-19)

This stress may be approximated by
o 4 (13, %0 (3-20)
d £

since uf is perfectly correlated with itself and may reasonably be

- -
assumed to be of the order |u.| , where |u characterizes the

fls fls

largest eddies of the turbulence, which carry most of the momentum.
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The characteristic randomly fluctuating velocity inside the breaker

line is estimated as

6 ], = (D /) (x < x3) (3-21)

el

Battjes (1975) equates an inviscid estimate of turbulent energy dissi-
pation to the wave energy dissipation rate inside the breaker line DSz
to obtain Eq. (3-21). This estimate is physically appropriate in that
the randomly fluctuating velocity partition is explicitly related to
the wave breaking process producing the turbulence; equating the turbu-
lent energy production and dissipation is reasonable in view of the
neglect of air entrainment which, by virtue of compressibility, would
provide an alternative sink of energy.

The divergence theorem, e.g., Hildebrand (1962) for wave energy

in the absence of longshore gradients is given by

- %;-[Igf[cose] = =D (3-22)
where D = %% is the wave energy dissipation rate per unit free surface

area and there is a net influx of wave energy into the column of fluid
under consideration. Recalling Eqs. (1-3) and (1-5) and noting that

n=1 and lZI = (gh)ll2 for linear long waves, Eq. (3-22) yields

2
5po.
_ 2% (32 dh ’
Dsz T 16 (gh) dx (3-23)

where linear wave height decay inside the surf zone and near normal
wave incidence are invoked.

In view of Egs. (3-2), (3-21) and (3-23), the velocity fluctuation
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inside the breaker line may be compared to the wave partition which

is characterized by its maximum near bottom value,
> 3 dh 1/3
qulslluwl = [2.5 (3 /ag] (3-24)

Accordingly, steeper slopes imply relatively stronger random fluctua-
tions of velocity. Recalling the typical wave and beach parameters

of Table 3-1, the fluctuating velocity partition is roughly between

30% and 60% of the wave partition. The relative importance of the shore-
normal Reynolds stress component may be assessed by combining

Eqs. (3-10), (3-20), (3-21) and (3-23) with the result

h. 2/3
Ty/s 226D (x < xp) (3-25)
Taking the steep beach as a worst case, T:/Si < .4, so that the
Reynolds stress component may be reasonably neglected from the shore-
normal stress balance. Consequently, the shorenormal component of the
stress balance inside the breaker line of the Modified Longuet-Higgins
Model is a simple balance of local driving stress and wave setup com-

ponents, i.e., in view of Egs. (2-16) and (3-10)

2
3paB dh dns
g S ax T T eEh G (x5 2 SRRl

3.1.4 Wave setup in the surf zone

Recalling that Eq. (2-8) may be differentiated to yield

dn
h _ s "
o tanf + p-ro (3-27)
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Eq. (3-26) may be solved for %23 yielding

%E ™ [ (x < x3) (3-28)

The modified bottom slope tanA, which is suggested in an appendix to
Longuet-Higgins (1970), is defined by

3a§

tanA = tanB/(1 + —5—) (3-29)

and, for small tanB, is approximated by the angle sketched in Fig-
ure 1-1.

Longuet-Higgins and Stewart (1962) deduce theoretically that the
wave setup is relatively small at and beyond the breaker line, a con-
clusion supported by the measurements of Bowen et al. (1968) as well
as Galvin and Eagleson (1965). Accordingly, the actual time averaged
free surface elevation is essentially at the still water level sea-
ward of the breaker line and rises at a constant slope shoreward of
the breaker line, as sketched in Figure 1-1.

This configuration, while physically realistic, is difficult to
deal with analytically, although series type solutions, e.g., Bowen
(1969), obtained using the Method of Frobenius, e.g., Hildebrand

(1962) are possible. The simple assumption

h = xtanA (x > 0) (3-30)

is adopted in the Modified Longuet-Higgins Model. With negligible
setup at the breaker line, Eq. (3-30) is equivalent to Eq. (3-28) in-

side the surf zone, which is the primary area of interest.
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The wave setup in the surf zone ng may be obtained by noting

that the modified bottom slope of Eq. (3-30) implies

dns 3a
==ty e (3-31)

in view of Eq. (3-27). Integrating Eq. (3-31) and recalling that
(ns)B = 0 by definition of the co-ordinate axes, the wave setup is
given by

3 2

ng = —%E (xB—x)tanA (3-32)

Eq. (3-32) is used to find the maximum wave setup n; used in the
swash zone discussion of Section 2.4.2, along with the distance be-
tween still water and mean shore lines. Referring to Figure 1-1, this

latter quantity is simply

= ' —
X ns/tanB (3-33)

so that, in view of Eq. (2-30),
2

Jghy

xs = 8 tanB

(3-34)

3.2 Longshore Stress Balance
The longshore component of the stress balance of Eq. (2-15) in

the absence of longshore gradients is given by

Y <5V wy Yy o
N AB AT ) =0

3
where (3-35)
JCEN T o AR W . AR O . o
s dx ’* "w dx * f dx
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For near normal incidence and a weak current, the wave transport clear-
ly cominates the current transport of momentum in view of Eqs. (2-20)

and (2-21) so that AZ is not considered in the Modified Longuet-Higgins
Model; thus the adopted longshore conservation equation is a balance of

local driving, Reynolds and bottom shear stresses.

3.2.1 Local driving stress

Consider the radiation stress component Sxy for waves in water of
intermediate depth

Xy Ns

s = I_d (uwyw)sdz (3-36)
This more general definition, which is consistent with the linear long
wave expression of Eq. (2-21) in shallow water, follows from the orig-
inal radiation stress expression put forth by Longuet-Higgins and
Stewart (1960). Introducing linear theory into Eq. (3-36), it can be

shown that
s*¥ = _E n cosfsind (3-37)

where, for linear waves

n-—-

N =

+ kh/sinh 2kh  (Stokes energy transport) (3-38)

The appearance of n and E in Eq. (3-37) suggests that s can be
expressed in terms of the shorenormal component of wave energy flux.

Recalling Eq. (1-5),

sind

>
Cc

Xy _ %
S = |EF|cose

(3-39)
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The wave energy flux approach can be extended by noting that Snell's
Law is valid for beaches with parallel bottom contours and small cur-

rents, e.g., Madsen (1976),

sinb

<l

= constant (3-40)

so that Sxy is proportional to the shorenormal wave energy flux com-—
ponent. Combining Eqs. (3-22) and (3-39) in view of Eq. (3-35), the
local longshore driving stress may be expressed as a function of the

wave energy dissipation rate,

siné
sV = (5 (x < x3)
12,1
(3-41)
sineB
& =D ) (x > xp)
13

where Dw represents the wave energy dissipation rate beyond the

breaker line, and knowledge of breaking wave conditions is anticipated.
The relative smallness of the longshore current implies that Dw

may be approximated by the model of Madsen (1976), who estimates energy

dissipation in the wave bottom boundary layer as

2pf
_ W .17 '3
Dw T 3 (luwlb)

(3-42)

where fw is a Jonsson (1976a) wave friction factor.

The relative importance of dissipation within and beyond the
breaker line may be assessed by using Eqs. (3-23), (3-42) and the
modified bottom slope of Eq. (3-30) to compute (Dw/Dsz) at the breaker

line with the result
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4 anw
(Dw/Dsz)B 157 tanA (3-43)

e

The flat beach of Table 3-1 is a reasonable worst case and a reason-
able fw value is 0.02; thus Eq. (3-43) yields (Dw/Dsz)B < 0.2, so that
surf zone dissipation dominates dissipation beyond the breaker line
for small currents.

Recalling Eqs. (3-23), (3-30) and (3-41), the local longshore

driving stress component in the Modified Longuet-Higgins Model is

given by
¥ SQag h 3/2
T (ghB) tanh sinby (E;) (x f_xB)
(3-44)
S‘yv=0 (x > x3)

where IZB‘ = (ghB)l/Z, linear wave height decay is adopted and Dw is
neglected. As suggested by the sign of Eq. (3-44), Sz represents a
net influx of positive y momentum into a column of fluid in the

surf zone.

3.2.2 Reynolds stress
The Modified Longuet-Higgins Model assumes the following formal
expression for the depth integrated correlation of ug and Ve

dv

(ugvp) h = -e &i h (x > 0) (3-45)

where the sign suggests that the momentum flux is against the veloc-
ity gradient. Explicit expressions and physical interpretations for
€ inside and beyond the breaker line are those put forth by Battjes

(1975) and Longuet-Higgins (1970), respectively.
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Battjes' (1975) estimate
= Me_|u,| (x < x) 3-46
€= Melllg X2 % (3-46)

is used inside the breaker line where £f is the length scale of the
largest eddies and M 1is termed Battjes' correlation constant, which
should be of order unity if the fluctuating scales are evaluated

properly. Egs. (3-45) and (3-46) are derived by noting that the mean
dv .

shear E§§ maintains a correlation between uf and vf which would other-

wise return to an uncorrelated state in the eddy turnover time

> 12
zf/lﬁfls, or e/|ufls.

The fluctuating length scale is estimated as

2. =nh (x i_xB) (3-47)

since the largest eddies contributing to the depth integrated Ug, Ve
correlation have a horizontal axis in the mean shear plane and are
consequently constrained vertically.

Combining Eqs. (3-46) and (3-47), and recalling the fluctuating

velocity scale estimate of Egs. (3-21) and (3-23)

2
5a
e = (oo tan'n)? x @ x < xp) (3-48)

using the modified bottom slope of Eq. (3-30).
dv
The mean shear EEQ generates the turbulence beyond the breaker
line and ¢ is taken as a horizontal eddy viscosity in this region,

determined by

e = rx|u_ |} (x > x5) (3-49)
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subject to
€ continuous (x = XB) (3-50)

where T is a lateral mixing coefficient. Eq. (3-49) is similar to

the expression adopted by Longuet-Higgins (1970)

e =Nx (gh)ll2

/2

(x > 0) (3-51)

who adopts (gh)l as his characteristic velocity instead of lﬁ§|g;
the correspondence becomes exact upon Longuet-Higgins' (1970) assump-

tion

(x > 0) (3-52)

with the factor aB/2 absorbed into the proportionality constant N.
The Modified-Longuet-Higgins Model, drawing upon the assumed

linear long wave theory for waves of near normal incidence with neg-

ligible wave energy dissipation seaward of the breaker line, assumes

Green's Law, i.e., Madsen (1976) to describe wave height variation

seaward of the breaker line. Green's Law may be expressed as

5/4

a = aB(hB/h) (x > xB) (3-53)

Since |;wlé is given by Eq. (3-2) for linear long waves, €

becomes

PaB h, 5/4

c= 2 D x @

(x > xB) (3-54)

upon the combination of Eqs. (3-49) and (3-53), while the matching

condition Eq. (3-50) yields a relation between I' and M

/3

= M(2.5 tan“A/aB)l (3-55)
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Combining Eqs. (3-35), (3-45), (3-48) and (3-54), the following
Modified Longuet-Higgins Model expression for the longshore component

of the Reynolds stress is obtained, in view of Egqs. (2-22) and (3-55)

pla_ tanA dv
y _ __B d 2 1/2 s
s 7 ax X @7 (x < xp)
(3-56)
pTa_tanA dv
y_ ___ B d 2 5/4 1/2 " 's
Tf 5 i [x (hB/h) (gh) a;—] (x > xB)

3.3 Solution to the Longshore Stress Balance

3.3.1 Characteristic shorenormal length and velocity scales

Following Longuet-Higgins (1970), the characteristic shorenormal
length scale of the Modified Longuet-Higgins Model is the shorenormal
distance between the time average shore line and the breaker line, so
that

x* = x/xB (3-57)

where the star superscript refers to a dimensionless variable.

The characteristic longshore current V. is defined as the long-
shore current at the breaker line predicted by the Modified Longuet-
Higgins Model in the absence of Reynolds stresses, and accordingly
involves the balance of longshore local driving and bottom shear

stresses in Eq. (3-1), i.e.,

y V301 <
Sw + ('tb)S 0 (3-58)
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Recalling Eqs. (3-17) and (3-2), the longshore bottom shear stress is

given by
pf «
(Ti)s = %B (gh)l/2 vy (x < x3)
(3-59)
pf «a
= =222 @2 mm . o xy

where linear wave height decay and Green's Law are used to describe
wave height variation within and beyond the breaker line, respectively.
(TZ)S is a net efflux of positive y momentum from the fluid column
and consequently is positive. In view of Eq. (3-44), the balance of
longshore local driving and bottom shear stress components may be

solved for v

Sma
B 1/2
< = BE__ tanAsind, (ghy) (h/hy) (x < xp)

(3-60)
L 0 (x > xB)
The characteristic velocity is obtained by evaluating Eq. (3-60) at
the breaker line

5T /2

- o hed 1
V. = BfF tanA51n6B (ghB)

Sz

(3-61)

so that, recalling the modified bottom slope assumption and noting

that

N (3-62)
S c

the dimensionless longshore current profile in the absence of Reynolds

stresses, as sketched in Figure 3-1, is given by
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*
v =X (x <1)

*
v

*
0 (x > 1)

(3-63)

The linear current strength k is defined as the ratio of the char-

acteristic velocity to the maximum near bottom wave velocity at the

breaker line, i.e.,
az =* 1
rh Vc/(Iuwlb)B

Recalling Egs. (3-2) and (3-61),

5w tanAsinBB

4f
sz

K=

It is convenient to express V. in terms of «k,

Ko
ve s Gyl

3.3.2 Dimensionless longshore current profile

(3-64)

(3-65)

(3-66)

With the inclusion of the Reynolds stress, the longshore compon-

ent of the stress balance is obtained by substituting Egs.

(3-56) and (3-59) into Eq. (3-1) with the result

Spa2

B 3/2
- —3g ¢&hgtand sinby (h/hB) L

pTa_tanA

B d 2 1
- ax x(Eh)
oL %n 1/2 5/4
0 +—2%= (gh) " (hp/m)™" " v
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dv
14 =1 =0 (x>x) (3-67)

pFaBtanA

2
-——

2 5
(hy/h)
The modified bottom slope implies that

h/hy = x (x> 0) (3-68)

so that Eq. (3-67) may be expressed in dimensionless form

ik i £ *
sz *3/2 sz *1/2 * FtanA d *5/2 dv . _ *
- X + o X vV -5 —dx* [x —dx*] 0 (x <1)
(3-69)
£z %-3/4 % l'tanA d *5/4 d * *
0 + —5Zx v =S L xS =0 (x> 1)
a dx dx

after division by the factor panc(ghB)l/z. Noting that the dimen-

sionless variables are of the order unity, the coefficients of
Eq. (3-69) represent the order of magnitude of Sz, (TZ)S and Tz,

respectively, so that the mixing parameter Psz’ defined by

_ mwl'tanA .
PSz =—F5 (3-70)
sz

is an estimate of the relative importance of the Reynolds stress
compared to the local driving and bottom shear stress which are the
same order of magnitude. Eq. (3-70) suggests that the Reynolds stress
is more important on steeper beaches with smoother bottoms.

Introducing PSz into Eq. (3-69), expanding the derivative and re-
arranging terms, the governing equation of the Modified Longuet-Higgins

Model is obtained
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2 % % * %
*¥2 d'v 5 * dv v X *
x " Sgtyx xcy oty <D
dx dx sz sz
(3-71)
*2 d2 s 5 *d y 3 *
*2 4 * P
dx dx sz
Eq. (3-71) is subject to the boundary and matching conditions
* i
v >0 (x » ) (3-72)
* ES
v >0 (x - 0) (3-73)
s %
v continuous (x =1) (3-74)
* By
g!; continuous (x =1) (3-75)
dx

It should be noted that Eqs. (3-45), (3-50) and (3-75) insure a contin-
uous Reynolds stress across the breaker line.

The governing equation closely approximates that of Longuet-Higgins
(1970); identical inside the surf zone, and slightly modified beyond
to accommodate Eq. (3-53) in place of Eq. (3-52). The solution to
Eq. (3-71), which is a second order, linear, equidimensional ordinary
differential equation, homogeneous beyond the breaker line and nonhomo-
geneous within, subject to Egs. (3-72) through (3-75), is obtained by

an exponential change of variables, e.g., Hildebrand (1962), and is

given by
c
* 1-c, % 3 * 40.4 *
v ¢y (c ) X + e x (P, Ay, x < 1)
2 3
"
1l-c. 2
* * *
v =ec, (—) x (P # 0.4, x > 1)
1 c,"Cqy sz
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% % * * *
v = 0.26x -0.71x n x (PSz = 0.4, x < 1)
. «1.71 .
v = 0.26x (PSZ = 0.4, x > 1) (3-76)
where
_ -1
¢, = (1-2.5P )
11, 1.1/2
o s Gty )
sz
3 9 1.1/2
= ST
sz

The dimensionless profiles of Eq. (3-76) are sketched in Figure
3-1 along with the profile expected in the absence of Reynolds stresses,
which is denoted by PSz = 0. As suggested by the figure, the Reynolds
stress, whose importance increases with increasing Psz’ diffuses the
longshore current beyond the breaker line.

Maximum and surf zone averaged dimensionless longshore currents

may be computed from Eq. (3-76); the resulting expressions are

W= e () (A-1/ey) (B_ #0.4)

(3-77)

*
(v) 0.38 (Psz = 0.4)

*
with (x )' denoting the location of maximum current,

1
c,—-1
%, c3—c2 3
(x)' = c3(l-c2) (PSz # 0.4)
*yroo = 0.4
(x )' = 0.53 (PSz = 0.4)
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Figure 3-1:

Dimensionless Longshore Current Profile




and

1—c2 1
(cyep@ tey 2! (B, #0.4)

<y > = Cl [
(3-78)

<v > = 0.31 (Psz = 0.4)

*
where <v > is based on the average longshore current between the time
averaged shore line and the breaker line. These parameters are

sketched as functions of PSZ in Figure 3-2.

3.4 Other Momentum Based Uniform Longshore Current Models

Bowen (1969), Thornton (1970), Jonsson, Skovgaard and Jacobsen
(1974), James (1974a, 1974b) and Reyman (1976) use the stress
balance to derive models predicting a longshore current profile that is
uniform in depth and longshore distance. The brief model summaries
presented here are intended to identify physically plausible alternative
formulations of the stress balance with simple and accurate
solutions and as such only discuss the differences between the Modified
Longuet-Higgins Model and the other models. Elements of these models
are used in the Linear Longshore Current Model and Nonlinear Longshore
Current Model.

It should be noted that the model of Battjes (1974), which deals
with random incident waves in the absence of Reynolds stress as origin-
ally proposed by Collins (1970), is excluded from present consideration
which, as suggested in Table 1-1, deals with the laboratory condition

of monochromatic waves over fixed bed beaches.
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3.4.1 Bowen (1969)

The idealized environment and neglected stresses and accelera-
tions of Bowen's (1969) model conform to the assumptions of Tables 1-1
and 1-2.

Bowen (1969) derives expressions for his local driving stress by
assuming a constant crest alignment throughout the surf zone while re-
taining the discontinuous water surface discussed in Section 3.1.4 and
sketched in Figure 1-1. The longshore bottom shear stress component
is assumed to be linear in the longshore current with a constant fric-
tion factor which has the dimensions of a velocity, while the Rey-
nolds stress is assumed to be proportional to dzvs/dxz.

Bowen (1969) formulates his governing equation on a per unit mass
basis and presents a solution in terms of four modified Bessel func-
tions.

Physically speaking, it is unfortunate that Bowen (1969) formu-
lates the stress balance on a per unit mass basis in that the
local driving and Reynolds stresses are depth integrated quantities
whose horizontal gradients should include a variation in depth. This
depth effect is accounted for in the driving stress term, but is omitted
in Bowen's (1969) expression for the longshore Reynolds stress component,
so that it is difficult to assign a physical meaning to the proportion-
ality constant in the Reynolds stress term, which Bowen (1969) construes
as a constant horizontal eddy viscosity. The longshore bottom shear
stress component ignores the contribution of the wave motion which is

assumed by Bowen (1969) to dominate the current; in this regard, the
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linearized longshore bottom shear stress component of the Modified
Longuet-Higgins Model suggests that Bowen's (1969) dimensional fric-
tion factor is proportional to Iﬁwlé and as such varies appreciably
throughout the surf zone. On the positive side, Bowen (1969) includes
a realistic setup modification in his model and is the first investi-
gator to incorporate the three stresses of the stress balance
into a longshore current model predicting a shorenormal profile.

The solution of Bowen (1969) is difficult to use because four
Bessel functions must be computed to evaluate a longshore current pro-
file and offers little hope of a predictive extension in that it
carries two unspecified constants which have a doubtful physical basis.
Bowen (1969) does not present much experimental verification for his
model; a single Galvin and Eagleson (19§5) run (I =1, J = 8) is
analyzed on a good fit basis to obtain values for the horizontal eddy
viscosity and dimensional friction factor which are accompanied by a
graph of measured and theoretical points. Bowen (1969) does state
qualitatively that the good agreement exhibited by the small current
run (I = 1, J = 8) breaks down for larger current runs, which may be
due to the fact that he makes no explicit allowance for a finite

current.

3.4.2 Thornton (1970)
Thornton (1970) relaxes some of the restrictions of the Modified
Longuet-Higgins Model by considering waves of oblique incidence on a

beach with parallel contours.
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The variation of © is evaluated using Snell's Law with phase
speed given by solitary wave theory inside the breaker line and linear
wave theory beyond. Thornton (1970) also allows for wave setup within
and beyond the breaker line for waves of normal incidence. The Jonsson
(1966a) friction factor for rough turbulent flow is used to describe
the longshore bottom shear stress component; while the longshore Rey-
nolds stress component contains a horizontzl eddy viscosity that is the
absolute value of the product of the ‘horizontal wave excursion amplitude
and horizontal wave orbital velocity. Both parameters vary across the
surf zone.

Thornton's (1970) solution is a numerical model, and he presents
typical profiles of time average depth and longshore current.

As noted by Jonsson et al. (1974), Thornton (1970) also fails to
take depth variation into account when the longshore component of the
Reynolds stress is evaluated, so that the governing equation and
typical solutions presented by Thornton (1970) do not reflect the
physical reasoning underlying his formulation of the stress
balance. As suggested by Battjes (1975), the momentum transport due
to waves is already present in the stress balance as the local driving
stress, so that the use of wave parameters to obtain e, which describes
turbulent momentum transport, is open to question on physical grounds,
particularly if the wave and fluctuating components are assumed to be
uncorrelated. Thornton's longshore bottom shear stress component is on
much firmer ground though, since he is the first to introduce the
Jonsson (1966a) friction factor as a rational predictor of the bottom

shear when waves dominate currents.
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The removal of the plane beach and constant friction factor assump-
tions, while physically realistic, results in a numerical model so that
Thornton's (1970) model of longshore currents is an unsolved differ-

ential equation and as such is difficult to use.

3.4.3 Jonsson, Skovgaard and Jacobsen (1974)

Jonsson, Skovgaard and Jacobsen (1974).a110w for straight bottom
contours with monotonically increasing depth in their idealized environ-
ment.

The local longshore driving stress incorporates oblique wave in-
cidence within and beyond the breaker line. Jonsson et al. (1974)
introduce an interpolation of a wave and a current friction factor into
their nonlinear expression for the longshore bottom shear stress compon-
ent based on the alignment of (Ks + Kw)b; the authors invoke the near
normal incidence assumption to express the resulting stress component in
terms of an elliptic integral. Jonsson et al. (1974), like Thornton
(1970), use the wave motion to describe € in the longshore Reynolds
stress component expression with no proportionality constant; however,
the depth variation in the horizontal gradient of h(ufvf)S is properly
accounted for in the Jonsson et al. (1974) model.

As is the case with Thornton (1970), the model of Jonsson et al.
(1974) is a differential equation which is solved on a numerical basis,
and is accordingly difficult to use.

Physically speaking, the longshore bottom shear stress component
appearing in the stress balance of Jonsson et al. (1974) allows for a

contribution from the longshore current. As indicated in Section 4.4.1,
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the near normal incidence assumption excludes some of the finite cur-
rent contribution from the bottom shear stress estimate, however, so
that the friction factor of Jonsson et al. (1974), which must compen-
sate for this underestimation, may be too large for waves of oblique
incidence. The notable improvement of the Jonsson et al. (1974) model
is the suggestion of a plausible predictor for the friction factor as
a function of fw’ the current friction factor fS and the relative
strength of the longshore current. The longshore Reynolds stress com-
ponent of Jonsson et al. (1974) is essentially identical to Thornton's
(1970) estimate, which is discussed in the preceding section.
Jonsson et al. (1974) show computed longshore current profiles for
wave and beach conditions of a Galvin and Eagleson (1965) run (I = 2,
J = 2), a run for the roughest beach of Putnam et al. (1949) as well as
a field experiment of Ingle (1966). The v, > and vs' measurements of
Putnam et al. (1949) and Ingle (1966) are in reasonable agreement with
the predicted profiles, while Jonsson et al. (1974) overestimate vs(x)
measurements of Galvin and Eagleson (1965) seaward of the breaker line.
The authors note ;hat their estimate of the horizontal eddy viscosity
is unreasonably large beyond the breaker line which may account for the
discrepancy between the prediction and the GE data. Jonsson et al.
(1974) observe that the beach roughness, which essentially determines
the friction factor, and the horizontal eddy viscosity control the

scale and the form of the profile, respectively.

77



3.4.4 James (1974a, 1974b)

James (1974a, 1974b) relaxes the plane beach assumption ofvthe
Modified Longuet-Higgins Model in his model for longshore currents.

The local driving stress is computed using Stokes and hyperbolic
wave theories with a transitional function for waves of near normal
incidence within and beyond the surf zone. James (1974a, 1974b) allows
for wave setup inside and beyond the breaker line as well as a return
current opposing the direction of wave propagation to account for mass
transport. The longshore bottom shear stress component reflects the
presence of a finite current and is evaluated by numerical integration
over a wave period. James (1974a, 1974b), following the arguments of
Longuet-Higgins (1970), assumes a horizontal eddy viscosity inside the
breaker line that is proportional to the product of the maximum hori-
zontal wave orbital velocity and the distance from shore. Beyond the
breaker line, the author uses the measured decay of (szlz)s with
distance downstream of an oscillating grid to deduce that ¢ decreases
inversely with water depth; with the proportionality obtained by match-
ing eddy viscosities at the breaker line.

James' (1974a, 1974b) model for longshore currents is a set of
differential equations which may only be solved on a numerical basis
and as such is difficult to use.

James (1974a, 1974b) emphasizes that the use of finite height wave
theory inside the breaker line is valid only for spilling breakers and
a gently sloping bottom, a conclusion which is substantiated by other

investigators of surf zone hydrodynamics, e.g., Divoky, Le Mehaute and
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Lin (1970) and Iwagaki, Sakai, Tsukioka and Sawai (1974). Accordingly,
the assumed constancy of o inside the surf zone adopted by James
(1974a, 1974b) may be questioned in view of the discussion in Section
2.4.4; the applicability of this model to the common case of transi-
tional spilling-plunging breakers of oblique incidence may be ques-
tioned as well. The longshore Reynolds stress component has a pro-
portionality factor which identifies the relative importance of the
random velocity fluctuations and as such is a step forward; however,
the author's use of a (|—1;f|2)S estimate to describe (ufvf)s behavior
seaward of the breaker line ignores the fact that ue and v may be
weakly correlated. James (1974a, 1974b) is the first investigator to
use quadrature to estimate the longshore bottom shear stress component
so that the entire contribution of the longshore current is accounted
for. It should be noted that the retention of the spilling breaker
assumption is critical in shear stress evaluation since the o power
series expansion for near bottom horizontal wave orbital velocity used
in finite height wave theories diverges under a wave crest for transi-
tional spilling-plunging breakers, a result which tends to invalidate
the quadrature. In this regard, Iwagaki et al. (1974) note that second
order Cnoidal theory, while providing a satisfactory estimate of hori-
zontal near bottom wave orbital velocity under a wave trough, may actu-
ally predict a horizontal near bottom wave orbital velocity under a
crest that opposes the direction of wave propagation for €a values as
low as 0.16.

Spilling breaker requirement notwithstanding, James (1974a, 1974b)
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compares his model with GE runs (I =1, J =6),(I =1, J = 3) and

(I =3, J=5), one PMT laboratory run and one PMT field run, with good
agreement in all cases. As noted by the author, the GE run with high
longshore current speed is better fit with a lower friction factor than
the slower GE runs, a result which is in accord with the calibration of

the Longshore Current Model in Section 5.1.

3.4.5 Reyman (1976)

Reyman (1976) considers longshore currents induced by waves of near
normal incidence.

Reyman (1976) adopts the stress balance of the Modified Longuet-
Higgins Model inside the surf zone with the exclusion of the wave setup
allowance and assumes that horizontal eddy viscosity and near bottom

-1/3 and x—4/3,

horizontal wave orbital velocity amplitude decay as x
respectively, seaward of the breaker line. Reyman (1976) notes that
the decay ocefficients yield an equidimensional governing differential
equation with an analytical solution and are reasonably representative
of the physical behavior of the Reynolds and bottom shear stress compon-
ents. The resulting dimensionless longshore current profiles are simi-
lar to those of the Modified Longuet-Higgins Model.

Reyman (1976) goes on to account for the presence of a finite cur-
rent in the longshore bottom shear stress component by assuming that
these dimensionless profiles describe the form of the longshore current

when the wave and current are of comparable magnitude. The character-

istic velocity is reduced by a factor determined from the integrated
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nonlinear longshore stress balance. This balance is obtained by inte-
grating the longshore component of the stress balance from the time
averaged shore line to the breaker line, allowing for a nonlinear time
averaged longshore bottom shear stress component. Reyman's (1976)
bottom shear term is expressed in terms of an elliptic integral and as
such is valid for waves of near normal incidence; the reduction factor
is the iterative solution to the integrated nonlinear longshore stress
balance and is presented in graphical form so that Reyman's (1976)
model is simple to use.

Reyman (1976) compares predicted values of longshore currents with

Komar's (1969) observations with reasonably accurate results.
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4  NEW MODELS

The Linear Longshore Current Model, Linear Longshore Sediment
Transport Model and Nonlinear Longshore Current Model adopt elements of
the existing models described in the prior section. The three new
models follow James (1974a, 1974b) in that they include the effects of
finite wave height on the integrated driving stress Sgy, and they inter-
polate between fs and fw to predict the surf zone friction factor fsz’
as suggested by Jonsson et al. (1974). Reyman's (1976) use of an inte-
grated nonlinear stress balance and a reduced characteristic velocity
to account for a finite current is repeated in the Nonlinear Longshore
Current Model with the nonlinear longshore bottom shear stress compon-
ent for oblique wave incidence obtained by numerical integration,
following the suggestion of James (1974a, 1974b). Last and not the
least important by any means is the use of a similarity assumption
which equates the dimensionless longshore current profile of the new
models to that of the Modified Longuet-Higgins Model, following Reyman's
(1976) concept.

The first contribution of the present investigation to the state
of the art is to include a breaking wave predictor so that offshore
wave conditions may be used as model input. Greater model accuracy
should follow since the offshore wave conditions are easier to measure
and more likely to be accurate than breaking wave conditions which are
presently required for use in the Modified Longuet-Higgins Model. The
breaking wave predictor consists of an empirical breaking criterion

combined with nonlinear wave theory. The integrated driving stress due
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to nonlinear waves is smaller than that obtained using linear wave
theory; the reduction is accounted for in the present investigation
by scaling down the Modified Longuet-Higgins Model longshore current

prediction by a factor n_, which appears as part of the output of the

B
breaking wave predictor.
Next, the effect of nonuniformity is investigated in the context
of a developing longshore current downstream of a jetty. With the
similarity assumption the effect of nonuniformity is expressed by a

reduction factor A which is applied to the Modified Longuet-Higgins

1°
Model longshore current prediction and essentially accounts for the
amount of driving stress absorbed by the longshore acceleration of the
fluid inside the surf zone. The resulting Linear Longshore Current
Model retains the linearizing small current assumption and the near
normal wave incidence assumption of the Modified Longuet-Higgins Model
and is accordingly analytical.

The third improvement of the present investigation consists of a
simple model describing the transport of sediment in the longshore
direction. The Linear Longshore Sediment Transport Model applies a
steady flow relationship between bottom shear stress and sediment
transport to the longshore motion of the surf zone on a time averaged,
shorenormal integrated basis. The new model adopts the longshore
bottom shear stress estimate of the Linear Longshore Current Model so
that the resulting analytical prediction is valid only for small

currents and near normal wave incidence.

Finally, the restrictive assumptions of a relatively small current
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and near normal wave incidence are relaxed in the Nonlinear Longshore
Current Model which, however, requires uniform longshore conditions.
The relaxation of the two assumptions yields a nonlinear time averaged
longshore bottom shear stress which in turn reduces the scale of the
Modified Longuet-Higgins Model longshore current prediction by a factor
AZ. Unlike its linear counterpart A2 must be determined numerically

and is subsequently represented by a curve fitted function.

4.1 Prediction of Breaker Conditions

The wave refraction theory used in the present investigation rests
upon a dispersion relationship, Snell's Law and an energy transport
function which describe phase speed, crest alignment and wave height
respectively, in terms of water depth, period, and, for finite height
waves, wave height. The presence of a finite wave height increases
the phase speed and decreases the efficiency with which a wave trans-
mits energy and, practically speaking, implies an iteration in compu-
tations since the unknown wave height appears implicitly in the dis-
persion and energy transport relationships. In the context of long-
shore currents, accounting for a finite wave height decreases the
integrated driving stress and the resulting longshore current relative
to the predictions obtained using linear wave theory.

Other investigators, e.g., Iwagaki (1968) and Svendsen and
Buhr Hansen (1977) demonstrate that Cnoidal wave theory describes
shoaling wave heights over a gently sloping bottom reasonably well,
even when the wave is close to breaking, particularly for waves of

small deep water steepness. The Cnoidal theory describes the observed
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tendency of the wave height to increase rapidly as breaking is ap-
proached; the description is more accurate than linear or Stokes second
order predictions, which underestimate the wave height near breaking.
This evidence justifies the use of Cnoidal wave theory, as presented

by Svendsen (1974), in conjunction with linear Stokes wave theory,
e.g., Madsen (1976), and a transitional function to predict wave re-
fraction in the present investigation. It should be added that the
small wave steepness effect noted by Svendsen and Buhr Hansen (1977)
argues for transitional spilling-plunging breakers, in view of the EB
definition of Eq. (2-25).

The assumption of an empirical breaking criterion fixes the loca-
tion of the breaker line once a wave theory is specified. Madsen's
(1976) empirical breaking criterion is adopted, with minor modifica-
tions, in the present investigation. The criterion limits the rela-
tive breaking wave height ogs it should be noted that the nonlinear
wave theory, which predicts higher waves in a given depth, moves the
breaker line seaward of a prediction made using linear wave theory and

the same aB criterion.

4.1.1 Stokes-transitional-Cnoidal dispersion and energy transport

The incident gravity wave is assumed to be described by the known
quantities (6, H, h,Tg) which may be recombined into three dimension-
less parameters using the Buckingham II theorem. Following Svendsen
(1974), the chosen parameters are 6, a, and y, where y and a are de-

fined by Eqs. (2-27) and (2-28).
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The relative wave length y, so called because it is equal to L/h
for linear long waves, may be expressed in terms of kh for Stokes waves

by making use of Stokes' dispersion relationship, valid to second order

wz = kg tanh kh (Stokes waves) (4-1)

Recalling Eq. (2-27) and noting that w = 27/T, Eq. (4-1) may be ex-

pressed as

/2

y = 2n/(kh tanh kh)1 (Stokes dispersion) (4-2)

The Stokes dispersion relationship may also be expressed in terms of a

*
dimensionless phase speed ¢ in accordance with

c* = gﬂ (Stokes waves) (4-3)

Y kh

where, per definition,

& del (4=t

and kh appears in parametric form. Eqs. (4-2) and (4-3) combine to
yield the Stokes dispersion curve c*(y) sketched in Figure 4-1. The
Stokes energy transport function may also be evaluated indirectly in
terms of Y in view of Eq. (3-38) which combines with Eq. (4-2) to
yield the Stokes energy transport function shown in Figure 4-2.
Cnoidal wave dispersion reflects the finite wave height influence

in the form of the relative wave height factor o in the relation

/2/Y

*
g KL 8 A)l (Cnoidal dispersion) (4-5)
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where A is a function of the Ursell parameter U, which in turn is

given by

U= YZ a (1L +a A) (4-6)

so that, with A(U) provided by Svendsen (1974), Eq. (4-5) may be eval-
uated on an iterative basis, yielding the Cnoidal dispersion curves
sketched in Figure 4-1. 1In similar fashion, Svendsen (1974) presents

B(U) where
B =n/8 (Cnoidal energy transport) (4-7)

so that, in view of Eq. (4-6), the Cnoidal energy transport function
may be solved on an iterative basis, with the results sketched in
Figure 4-2.

A transitional function is needed to insure a continuous predic-
tion of wave dispersion and energy transport. An inspection of the
B(U) tabulation by Svendsen (1974) shows that B approaches its linear
long wave value of 0.125 as wave height approaches zero so that the
energy transport function may serve as a reasonable basis for the
arbitrary transition, which, as sketched in Figure 4-2, is simply

n(Cnoidal) [n(Cnoidal) < n(Stokes)]

(4-8)
n(Stokes) [n(Stokes) < n(Cnoidal)]

n = {

so that the n transition occurs at the intersection YT(a) of the
Stokes curve and the appropriate Cnoidal branch in Figure 4-2. As
pointed out by Svendsen and Buhr Hansen (1977), an abrupt change of

wave theories at a given y.(a) value results in a discontinuity in
g T

89



either wave height or energy flux; in the present context, the discon-

*

tinuity would appear in the ¢ curves in Figure 4-1 as a drop along a
% *

given Yo value from the appropriate a Cnoidal branch where c = o

(Cnoidal) down to the Stokes curve. To avoid this discontinuity,

the following dispersive transition is adopted in the present investi-

gation
* *
¢ = c (Cnoidal) (v > YT)
* * *
& Co (Cnoidal) [cT (Cnoidal) > ¢ (Stokes)] (4-9)
c = {4 * * (vp > Y)
¢ (Stokes) [c (Stokes) > ¢ (Cnoidal)]

so that, as sketched in Figure 4-1, a horizontal and not a vertical
1ine connects the Cnoidal branches to the Stokes curve, thus forming
a continuous transition between the two theories.

Cnoidal theory, which rests in part on the long wave assumption
h/L << 1, cannot be applied for large depths, or small y values, while
Stokes theory cannot be applied for long waves of finite height, or
large o values. In this regard, Svendsen and Buhr Hansen (1977)
recommend an upper h/Lo limit of 0.10 for use of Cnoidal wave theory,
which corresponds to a lower Yy limit of 8. Madsen (1971), in a dis-
cussion of long waves,suggests that U < 25 for the use of Stokes long
waves which corresponds to n < .98. These two criteria may be sketched
onto Figure 4-2 to demonstrate that the Stokes-transitional-Cnoidal
wave theory adopted in the present investigation is consistent with the

*
recommendations of these investigators since n and ¢ are at or near
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their Stokes values for y < 8, while for n < .98 and y > 15, Cnoidal

theory is in use, where the y limit insures Stokes long waves.

4.1.2 Modified Madsen empirical breaking criterion
Madsen (1976) combines the empirical breaking criteria of earlier
investigators for long waves of normal incidence breaking on plane

impermeable beaches into the following equation:

a 0.72 (1.0 + 6.4 tanB) (tanB < 0.10)

B

ag = 1.18 (tang > 0.10)

(4-10)

The upper limit corresponds to the highest observed value of ap appear-
ing on the summary of investigations presented by Longuet-Higgins
(1970).

Eq. (4-10) may be combined with the general breaking criterion of

Miche (1944)

/L. = 0.14 tanh (27 /L) (4-11)
HB B hB B

to yield the modified Madsen empirical breaking criterion, which is

sensitive to bottom slope and depth varying wave parameters

]

(H/L)B 0.1l4tanh{ (0.8 + StanB)ZﬂhB/LB} (tanB < 0.10)

(4-12)

(H/L)B 0.14tanh{(.l3)2ﬂhB/LB} (tanB > 0.10)

The modified Madsen empirical breaking criterion can be combined with
the Stokes-transitional-Cnoidal wave theory of Section 4.1.1 to yield

aB(YB,tanB) as sketched on Figure 4-3.
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Noting that tanh x 2 x in shallow water, Eq. (4-12) approaches the
Madsen (1976) criterion for long waves, while with tanh x = 1 in deep
water, Eq. (4-12) is seen to approach the Miche (1944) criterion for
short waves. It should be noted that Figure 4-3 falls within 10% of
the empirical curves presented by Goda (1970) for normally incident
breaking waves on plane impermeable slopes. -

The modified Madsen empirical breaking criterion is used in the
present investigation which deals with obliquely incident waves; since
the development of this criterion is predicated on normal wave inci-
dence, some justification of the oblique application is appropriate.
Accordingly, Table 4-1 presents a comparison of the ap values measured
by Galvin and Eagleson (1965) and by Putnam et al. (1949) with ap

values predicted using the theory of the present investigation.

Table 4-1
Modified Madsen Empirical Breaking Criterion

Systematic Errors in 0

B
(o} o (o} o
0 <6, <10 10 < 85 < 20 20 < 85 < 30 300 < 6g
nQ Qa nQ Qa nQ Qa nQ Qa
*
GE-6 8 +0.25 8 +0.13 7 +0.15 2 +0.27
PMT - - 21 -0.27 B -0.27 12 -0.24

*
GE-6 = Galvin and Eagleson (1965) - transect 6
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The table presents sample means of the random variable Qa defined by

aB(measured) —aB(predicted)

Qa - aB(predicted) (4-13)

In order to identify systematic errors with eB, the GE and PMT data

sets are subdivided into samples of size n, of comparable breaking

Q

angle, and sample means are computed in accordance with, e.g.,

Benjamin and Cornell (1970),

n
q = h Q) (4-14)
o nQ =1 o’ i

A fuller account of this type of data comparison is presented in
Section 5.2.

Table 4-1 suggests that there is no systematic error in GB for
prediction of o

B S° that breaker angle does not appear to be an import-
ant factor in the determination of the breaker height to breaker depth
ratio, and the oblique application of the modified Madsen empirical
breaking criterion in the present investigation is judged to be reason-
able. The underprediction and overprediction of ap for the GE and PMT
data bases, respectively, is not surprising in view of the difficulties
inherent in the measurement of breaker conditions and the subjectivity
in the definition of the breaker line itself. Indeed, a prime consider-
ation in the design of the models of the present investigation is to
establish conditions seaward of the breaker line as input parameters

since these parameters may be measured with more accuracy and consist-

ency.

94



4.1.3 Breaking wave iteration

The wave dispersion and energy transport functions, along with
Snell's Law, d constancy and the modified Madsen breaking criterion
provide enough information to predict breaking wave conditions (aB,
Yg» OB) when offshore conditions and the bottom slope (a, y, 6, tanB)
are specified, where the dimensionless variables of the preceding sec-
tion are adopted. As suggested by Table 4-2, the breaking wave predic-

tion is an iteration on Yg» and requires two known offshore parameters

%
(sinb/c , c4) as input, where

c, = Y/(azn sinZe)l/4 (4-15)
*

and ¢ and n may be obtained from Figures 4-1 and 4-2.
Following the iteration, assume a trial value Ygs experience sug-

gests 15.0 as a reasonable starting point. The Yg estimate generates

an ap estimate with tanf known by virtue of the modified Madsen empir-

Table 4-2

Breaking Wave Iteration

1l. Assume YB
2. Read aB(YB,tanB) from Figure 4-3
*
3. Read cB(YB,aB) from Figure 4-1
%* *
4., Read BB(CB, sin6/c ) from Figure 4-4
5. Read nB(YB,aB) from Figure 4-2
6. Compute Yg from Eq. (4-17)

7. Compare steps 1 and 6 and iterate
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*
jcal breaking criterion. With y, and a, guessed, c, may be obtained
B B

B
from the wave dispersion relationship and used with Snell's Law,
Eq. (3-40), to obtain eB from known sinB/c* as indicated on Figure 4-4.
The Yg and ap estimates also yield Nps which may be used with the
constancy of g™ beyond the breaker line assumed in Section 3.2.1 to
derive a second estimate of g Noting that Eq. (3-37) is valid for

nonlinear waves, as shown by Longuet-Higgins (1972), the constancy of

i beyond the breaker line implies

HznsinZB = HgnBsinZGB (x > xB) (4-16)

which may be expressed as a second estimate of Yg

Yg = (aB)llz(nBsinZGB)1/4c4 (4-17)

This second estimate, if significantly different from the first esti-
mate, may be iterated into step 2 until an acceptable closure is ob-

tained.

Appendix I illustrates the breaking wave iteration.

4.1.4 Reduced integrated driving stress

As suggested by Eq. (3-37) and Figure 4-2,a finite wave height
reduces the radiation stress component Sxy from its linear value due
to a decrease in the wave energy transport function n; it follows that
the local longshore driving stress and longshore current will be less
than their Modified Longuet-Higgins Model counterparts as well since

the model is based on linear wave theory. The present investigation
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follows Reyman (1976) and models the effect with the similarity

assumption
%
v, = (v vc) constant (4-18)

where the constant is determined by considering the depth integrated,
time averaged conservation of longshore momentum on a shorenormal inte-
grated basis.

Accordingly the longshore stress balance of Eq. (3-35) is inte-
grated from the time averaged shore line to the breaker line in the

absence of convective stresses, with the result

Xy , XY Yy 5 - _
SB -+ TB e Xg <(tb)s> 0 (4-19)

Eq. (4-19) describes the time averaged flux of longshore momentum
under uniform longshore conditions through a fluid slice bounded by
the bottom, time averaged free surface, breaker line and two shore-
normal planes a unit longshore distance apart. With the assumption of
near normal wave incidence and a relatively small current, the second
and third terms of Eq. (4-19) are linear in v and may, in view of

Eq. (4-18), be expressed as
Xy SO Xy y .
Tp" + % <(1b)s> constant [T + Xy <) >l (4-20)

where the subscript represents terms computed under the additional
Modified Longuet-Higgins Model assumption of linear wave motion.
Eq. (4-19) must also hold for the integrated Modified Longuet-Higgins

Model stresses, so that
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Xy y - _reXy
[Ty + %g<() ¢ han = 155 lan L6-21)
Combining Eqs. (4-19)-(4-21) then,

Sxy—

X
g = comstant [SB (4-22)

7]
MLH
and, recalling Eq. (3-37) with ng = 1.0 in the Modified Longuet-Higgins

Model, the simple result follows

constant = ng (4-23)

4.2 Linear Longshore Current Model

The Linear Longshore Current Model predicts longshore currents
generated by water waves of near normal incidence breaking over an in-
finite plane beach in the presence of a shorenormal jetty. The model
follows the approach of Eagleson (1966) by neglecting wave diffraction,
by assuming that ng stays constant in the longshore direction, and by
integrating the conservation equations from the time averaged shore

line to the breaker line with the resulting balance

yy
Xy 9A . gXY Xy | y _ _
AB *B <3y z SB TB xB<(Tb)s> . (4-28)

As with the integrated balance of Section 4.1.4 the small current
and near normal wave incidence assumptions of the Modified Longuet-
Higgins Model are retained while the waves are of finite height; the
difference here is the inclusion of integrated convective stresses in

Eq. (4-24) due to longshore nonuniformity. The analysis is similar to
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that of the preceding section. However, Reyman's (1976) similarity
assumption expresses the nonuniform effects in terms of the convective
current reduction factor whose solution is given by Eq. (4-49).

The modified bottom slope of Eq. (3-30) is adopted as the solution
of the shorenormal momentum equation in the Linear Longshore Current

Model.

4.2.1 Conservation of mass equation

Consider the depth integrated, time averaged conservation of mass
equation which, with the retention of longshore gradients, is given by
Eq. (2-7). Recalling linear wave theory of Egs. (3-2)-(3-4) the corre-

lation of v_and n_ is given by
w w

(v ), =2 (g 2sin (4-25)

Noting that v is of order Vs the relative importance of (vwnw)s in

the conservation of mass equation is given by the ratio

[(vwnw)s]B - fszaB
VchB 51 tanA

(4-26)

in view of Egqs. (3-61) and (4-25). With the flat, rough beach of
Table 3-1 as a worst case, [(vwnw)S]B/vchB < 0.2 so that the depth
integrated, time averaged conservation of mass equation may be safely

approximated as

3(v_h)

9 s _
e [ush + (uw nw)s] 4 3y 0 (4-27)
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Integrating Eq. (4-27) from 0 to Xy and transposing terms,
= 9
uh + (un) I = x5 5 (v h)> (4-28)

Eq. (4-28) suggests that there is a net flux of mass flowing shoreward
through the breaker line to accommodate the increased longshore flux of
mass through the fluid slice bounded by the bottom, the breaker line,
the free surface and two vertical shorenormal planes a unit longshore

distance apart.

4.2.2 Integrated linear longshore stress balance
The Linear Longshore Current Model continues the Modified Longuet-
Higgins Model's neglect of longshore gradients of time average free

surface

N, = nS(X) (4-29)

Eq. (4-29) implicitly neglects wave diffraction due to the jetty
along with the longshore periodicity discussed in Section 2.4.3. The
neglect of diffraction suggests that the shore normal jetty has a
length of the order Xp 80 that the incident waves approach the surf
zone over an infinite plane beach; the use of an involved wave diffrac-
tion theory inside the breaker line is judged to be unwarranted due to
the complexity of the actual motion in the surf zone. It should be
noted that Liu and Mei (1976) analyze the diffraction caused by a
shorenormal jetty extending far seaward of the breaker line; the analysis
is numerical and ignores convection and Reynolds stresses. The contin-

ued neglect of longshore periodicity implied by Eq. (4-29) may be ques-

101



tioned since the Linear Longshore Current Model deals with longshore
length scales comparable to those of the low frequency edge waves des-
cribed earlier. The justification of Eq. (4-29) thus rests upon model
simplicity and the Linear Longshore Current Model should consequently
be regarded as a first step towards a more general two dimensional
model of surf zone hydrodynamics.

The utility of Eq. (4-29) lies in its elimination of terms from
the depth integrated, time averaged conservation of longshore momentum
equation, which in full form is given by

>

9 [\XY Xy Xy
ax[A + 8 + T ]+8y

¥ o oW yy Yy = pY _
[A77 + 877 + 177] + (7)) = B (4-30)

upon reference to Eqs. (2-15) and (2-17)-(2-19). The wave setup term
vanishes identically upon the assumption of nx(x), while the §77 term,
which involves time averaged wave properties that are functions of
water depth, likewise has a zero longshore gradient. The Reynolds

stress term ™Y is given by

yy _ 2 -
7 = D(vf)sh (4-31)

(v%)s may be analyzed in similar fashion to the (ui)B analysis of
Section 3.1.3 upon the assumption of isotropic turbulence, so that Y

may be construed as a function of the wave dissipation D. Since D is
yy

oy

homogeneous in the longshore direction, = 0. Thus, Eq. (4-29)
reduces the depth integrated, time averaged conservation of longshore

momentum equation to

y y y Yy o -
As + sw + Tf + (Tb)s 0 (4-32)
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where

Xy yy Xy Xy
Ay _ 9A + A , Sy _ das Ty - dT

s 9x oy w dx * f dx

Following Eagleson (1966), the depth integrated, time averaged
conservation of momentum equation is integrated from O to Xy where the
limits of integration are independent of y by virtue of Eq. (4-29).
In view of Eq. (4-32), the resulting integrated linear longshore stress
balance balances the transport of longshore momentum through the break-
er line due to time averaged, wave and randomly fluctuating partitions,

p [T

OR y y _ AXY Xy Xy _
(ax + sw + Tf)dx AB + SB + TB (4-33)

[ B

against the bottom shear force and convective acceleration of the fluid

in the surf zone

*B
y = oA " y -
IO (5;—— + (rb)s)dx = xp <5 >+ xB<(rb)s> (4-34)

as indicated in Eq. (4-24).
The convection induced transport term A;y can be expressed in

terms of ¥ using conservation of mass considerations. Recalling

Eq. (2-20)
Xy v -
AB = p{vs[ush + (uwnw)s]}B (4-35)
where p[us(vwnw)s]B is ignored in accordance with the estimate of

Eq. (4-26). Introducing mass conservation via Eq. (4-28)
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v
Y o - -
AB p(vsx)B <h 5y > (4-36)

A§y is negative because the shoreward current at the breaker line car-
ies positive longshore momentum into the fluid slice under considera-

tion.

4.2.3 Reyman's (1976) similarity assumption

The longshore current must be further constrained in order for
the integrated linear longshore stress balance to yield a tractable
governing equation. Eagleson (1966), who derives Eq. (4-24) in the
absence of Reynolds stresses, proceeds to an analytical solution by
placing strong assumptions on the velocity field, one of which is the
constancy of the longshore current across the surf zone. The Linear
Longshore Current Model adopts Reyman's (1976) similarity assumption

instead by requiring

v, = v v ng (4-37)
The longshore current profile is assumed to be similar to the Modified
Longuet-Higgins Model profile of Eq. (3-76) with scaling reduced by
the convective current reduction factor Al’ and the energy transport
function ng. Al is less than unity since part of the integrated driv-
ing stress is spent on the convective acceleration of the longshore
current in the y direction; Al is a function of y which approaches
one with increasing longshore distance as fully developed conditions
are realized. As discussed in Section 4.1.4, the inclusion of n, re-

flects the decreased integrated driving stress due to the finite wave

height effect.
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In view of Eqs. (4-36) and (4-37), the integrated convective
stress term A§y becomes

dx
Xy _ 2 * * % 1
AB = -p(vchnB) tanA(vB <X v >)A1-E;~ (4-38)

where the characteristic shorenormal length and velocity scales of
Section 3.3.1 are employed. The remaining integrated convective stress

term is evaluated in a similar fashion; recalling Eq. (2-20),

2 d
vy Al

By = 2p(v x )ztanA(<x*v* Ay (4-39)
*B oy ¢ B'B 1 dy

where ZpVS(vwnw)s is ignored in accordance with the estimate of

yy
Eq. (4-26). Xp <8§ > is positive since it represents a net efflux

of positive longshore momentum from the fluid slice.
It is convenient to express the remaining terms of Eq. (4-24) in

terms of their fully developed counterpart

Xy Xy y = _
Sg. + [Tg” + xp<(rp) > =0 (4-40)

where S;y is given by its finite wave height value for near normal

incidence, i.e., n_ from Figure 4-2 is used in Eq. (3-37). The small

B

current and near normal incidence assumptions insure that T§y and
xB<(Tz)S> are linear in vS so that the downstream variation of these

terms if given by

xy Yy o = (XY y )
Ty +xg <(rp)g> = MI[Tp" + = <>l (4-41)

in view of the similarity assumption of Eq. (4-37). Combining Egs.

(4-40) and (4-41) then,
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Xy y _ ., XY _
TB + xB<(Tb)s> AlsB (4-42)

so that the integrated local driving, Reynolds and bottom shear stress-

es in Eq. (4-24) may be expressed as

Sxy + Txy

Yy 5 < eXV(1_ -
" 5+ xp<(r)) > = 537 (1-1) (4-43)

4.2.4 Convective current reduction factor
Combining Eqs. (4-38), (4-39) and (4-43) and changing signs,
the integrated linear longshore stress balance may be expressed in

terms of the convective current reduction factor

dx

1 - o
A -1+ 2y 0 (4-44)
dy

*
with the dimensionless longshore distance y defined by

y' = yly, (4-45)

where the characteristic longshore distance : is given by

2
2k
Ve = Gims ) 5™ (4-46)
with coseB n~ 1 in Eq. (4-46). Psz is implicit in the constant ¢
% %2 * K %
cg = 2% > =Vp<x Vv > (4-47)

and k is given by Eq. (3-65). S;y is given by Eq. (3-37).
The governing equation (4-44), which must obey a kinematic

boundary condition at the jetty

A =0 Gy = 0) (4-48)
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may be solved by separation of variables with the solution, Eofs s

Gradshteyn and Ryzhik (1965), given by

%
zn(l-xl) + Al = -y (4-49)

Model use is facilitated with Figures 4-5 and 4-6 which show
*
CS(Psz) and Al(y ), respectively. Recalling Eqs. (3-76) and (4-47)

and carrying out the integration, the former figure graphs the rela-

tionship
1-c 2 1-c
2 2 1 2 2
c. = 2¢c{( ) + i ) + .25}
5 1 c2—c3 2¢c.+2 c2—c3 +3
2
cl(l—c3) 1 c, 1
- o {(C o ) = + .33} (P z#0.4) (4-50)
cy=Cqy 973" € s
¢y = 0.068 (psz=o,4)

Figure 4-6 suggests that there is a strong longshore gradient of
the longshore current near the shorenormal jetty which induces a rela-
tively strong shoreward current by virtue of the conservation of mass
equation. The stronger shoreward current should accordingly be checked
for its influence on the shorenormal momentum equation. Solving
Eq. (4-28) for the time averaged shorenormal current at the breaker line,

(uwnw)s] _ 1
h B tanA

(u), = -[

3
Dy <3; (vsh)> (4-51)

Recalling Eqs. (3-2), (3-4), (4-37) and (4-44)- (4-46)

2
o a.f
_ 8 1/2 °p sz 1/2  * % 1
(u)g = —5— (ghp) ~ Smc tand (ghp) XY >(A1 - 1) (4-52)

where the last term is simplified using Eq. (3-65).
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The first term on the RHS of Eq. (4-52) is the mass transport
term discussed in Section 3.1.1 for waves of near normal incidence;
this seaward current is counteracted in Eq. (4-52) by the shoreward
flow induced by the evolving longshore current. Since the modified
bottom slope rests on the neglect of the mass transport induced cur-
rent, a plausible limit on the applicability of the Linear Longshore
Current Model is given implicitly by

2

a

B 1/2
luly < = Cenp) (4-53)

In view of Eq. (4-52), this may be expressed as

SﬂaBtanAc5 -1
A > [—-——-—;—;— + 1] (4-54)

/}f <y X >
sz

* %
where <x v > is given by

* % l-c2

XV = [(cz-c3)(c3+2)

+0.33]  (P_ #0.4)

* %
<xv > = 0.17 (Psz-O.d)

as sketched on Figure 4-5. Taking the flat, rough beach of Table 3-1
as a worst case and anticipating T < 0.01 in Eq. (3-70), Eq. (4-54)

yields a lower A limit of 0.4 in view of Figure 4-5. Consulting Fig-
ure 4-6 this limit corresponds to y* > 0.12 so that the Linear Long-

shore Current Model describes an appreciable portion of the evolving

longshore profile.

The small current requirement of the Linear Longshore Current
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Model can be quantified by noting that v n

"3 is the reduced character-

istic velocity for uniform conditions so that recalling Eq. (3-64),
Kng provides a measure of the strength of the longshore current rela-
tive to the wave velocity for waves of finite height. Noting that the
Reynolds stress will reduce the longshore current peak magnitude by
smoothing out the profile, an arbitrary limit on the propriety of the

small current assumption may be stated as

Kng <1 (4-55)

4.3 Linear Longshore Sediment Transport Model

The Linear Longshore Sediment Transport Model predicts the time
averaged longshore mass flux of sediment per unit free surface area
induced by water waves of near normal incidence breaking over an in-
finite plane beach comprised of uniform cohesionless spheres in the
presence of a shorenormal jetty. The model follows Reyman's (1976)
application of the nonbreaking wave sediment transport relationship
of Madsen and Grant (1976a) to the surf zone. This sediment transport
formula relates longshore sediment transport and the longshore bottom
shear stress with the latter quantity described by the Linear Longshore
Current Model under the assumption that the bottom shear is unaffected
by the presence of a movable bed. The time averaged longshore sediment
transport qZ is given by Eqs. (4-59) and (4-69) as a function of the
longshore sediment transport coefficient; the integrated time averaged

longshore sediment transport, which is the integral of qz from x=0 to

x=w, is given by Eq. (4-75).
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4.3.1 Nonbreaking wave sediment transport

The Linear Longshore Sediment Transport Model rests heavily upon
the work of Madsen and Grant (1976a), who demonstrate the applicability
of steady flow sediment transport relationships to describe instantan-
eous sediment transport in a nonbreaking wave field, i.e., outside the
surf zone. Madsen and Grant (1976a) suggest that the dimensionless
instantaneous sediment transport E* due to oscillatory waves flowing

over a bed of uniform cohesionless spheres with or without bed forms is

given by
*
o = 40|95 (¥ > v
(4-56)
>
*
E =0 (le < wc)
where ? is the Shields parameter
->
T
1 b (4-57)

¥ = —
pgd_(s-1)

and the bottom shear stress is determined with Jonsson's wave friction
factor in the drag law expression

o 1 - =
Tb 2 e fwluwlb(uw)b (4-58)

As suggested by Eq. (4-56), Madsen and Grant (1976a) show that transport
occurs when the norm of the Shields' parameter exceeds a critical value
Yo The sediment transport-a, which is the mass flux of sediment per
unit width perpendicular to the flow, is nondimensionalized by the
product of the sediment density, Py fall velocity, Wi s and grain size
ds’
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>% ->
qa =a/lp wd_ (4-59)

B
Madsen and Grant (1976b) relate the dimensionless fall velocity w to

*
a dimensionless parameter S , where

w* = w‘;,/{gds(s—l)]l/2

(4-60)
* ds 1/2
s =, [8d (s-1)]

and v is the kinematic viscosity of the fluid. Their relationship is

approximated in the present investigation by the function

% * *
w = 0.22 8 (1 <S)
%* 2 % % *
w = 0.22 exp[-0.054 g¢n"S + 0.68 n S ] (1 <s < 150)
* *
w = 1.80 (s > 150) (4-61)

Madsen and Grant (1976a) note that Eq. (4-56) ignores the effects
of finite wave height, wave induced mass transport and bottom slope on

the sediment transport rate.

4.3.2 Time averaged longshore sediment transport in the surf zone
The Linear Longshore Sediment Transport Model adopts the nonbreak-

ing wave transport model of Madsen and Grant (1976a) by assuming

@)Y = |¥% (4-62)

where the longshore sediment transport coefficient ¢ must accommodate
the effects of wave breaking and a relatively small current. In view

of the approximate nature of Eq. (4-62), sediment transport is assumed
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to occur at all times and locations in the surf zone, or, effectively
y =0 (4-63)

The shorenormal sediment transport is discussed at the end of this
section. Eqs. (4-62) and (4-63) are similar to the longshore compon-
ent of the model put forth by Reyman (1976) who retains ¢ = 40 and uses
elliptic integrals to allow for a finite current under uniform long-
shore conditions with near normal incidence in the time averaging
process. The Linear Longshore Sediment Transport Model, which is based
on the Linear Longshore Current Model, retains the small current assump-
tion and relaxes the requirement of longshore uniformity instead on
the premise that finite longshore currents are usually generated by
waves with finite angles of incidence.

Recalling Eq. (4-58), with the friction factor given by the time
independent fsz of Section 3.1.2, the Shields parameter may be expressed

in terms of the near bottom wave and current velocities using Eq. (4-57),
V= __fEE____q @ +3 | G +1) (4-64)
[ngs(s-l) s T %Ip g T YWy

so that the dimensionless longshore sediment transport is given by

|~> + 3 |: (vs + vw) (4-65)

(@ = a2y
< Bl 2gd_(s-D) s T Yy

Following the analysis of Section 3.1.2, the small current and near

normal incidence assumptions yield

u

|KS -+ Gwlsb - (|3w|£)5(cosz¢ -2 +S| cosecos‘t’)sl2 (4-66)
u
w'b
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and a Taylor expansion results in

u

I3, + ::w|§ = <|§w|;,)5<lcos¢|5-5 =i cosbcost|cosp|?)  (4-67)
u
w'b

Multiplying by (vs + vw) and time averaging to leading order,
- + 5 N - 5 5
e = ' -
[(vs + vw)[us uw’bis (|uwlb) ]cos¢|svs (4-68)

Combining Eqs. (4-65) and (4-68), noting that |uw]é and v, are given
by Eqs. (3-2) and (4-37), respectively, the dimensionless time averaged

longshore sediment transport is given by

2
ckd,n,  f hB 3
*Y _ 1"8 “sz"B *5/2 * *
(a )s 607 [st(s—l)] X v x <1) (4-69)
KA n, f «a 2h 3
Yy o 1 sz B "B, _*-15/4 % *
(q )S 60T [st(s_l)] v (X > 1)

with v, expressed in terms of k as suggested by Eq. (3-66) and

lcose]? = 16/15 (4-70)

Eq. (4-69) is derived using linear wave height variation within the
breaker line and Green's Law beyond, i.e., Egs. (2-35) and (3-53).
The time averaged shorenormal sediment transport is neglected in

the present investigation,

X

*
(q )S

0 (4-71)

so that the developing longshore current erodes the bottom to accommo-

date the downstream increase of time averaged longshore sediment trans-
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port implied by Eq. (4-69). The rate of shore line erosion should de-
crease with increasing downstream distance as fully developed condi-
tions are achieved. As time passes, the erosion accordingly intro-
duces a longshore nonuniformity to the beach topography as has been
noticed experimentally by other investigators, e.g., Savage (1959).
The nonuniformity is in violation of the idealized environment of
Table 1-1, so that the Linear Longshore Current Model and the Linear
Longshore Sediment Transport Model describe only the initial response
of a plane movable bed to wave attack in the developing region down-
stream of a shorenormal jetty.

Eq. (4-69) improperly describes the time averaged longshore sedi-
ment transport in the immediate vicinity of the jetty where wave diffrac-
tion and a strong shoreward current invalidate the Linear Longshre
Current Model, so that the Linear Longshore Sediment Transport Model is
also constrained by Eq. (4-54). The presence of the shoreward curreﬂt,
which is deduced in Section 4.2.4, may also be inferred by the observed
accumulation of sediment in the downstream region immediately adjacent
to the shorenormal jetty, e.g., Savage (1959).

In defense of the postulated shorenormal transport, it should be
noted that Eq. (4-71) is satisfied identically in the fully developed
flow region far downstream of the jetty if the beach profile is in
equilibirum with the incident waves, as is the case with the laboratory

data of Section 1.4.
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4.3.3 Integrated time averaged longshore sediment transport
The total time averaged longshore sediment transport is obtained

*
on a dimensionless basis by integrating Eq. (4-69) from x =0 to <,

LA, n f o 2h 3

o ky % _ 1B . szB B
Jo (@05 4 =5 [a_GeD) (6 * 7 W=y
where
% %
Cg = <V X afZ,
(4-73)
© % %
c, = I vV X 15/4dx*
L 1

The dimensionless longshore current profile of Eq. (3-76) is now

invoked to compute the constants, i.e.,

1-c

. 2
6 - ©1 {(cz—c3)(c3+3.5) + 0. 22} (Psz*o'é)
(4-74)
ce = 0.09 (PSZ=O.4)
1-c e
. 3 1
c, (c2_c3)(2'75-c2) (Pz*0.4)
cy = 0.06 (p£=0.4)

The constants are also sketched on Figure 4-5. As suggested by the
relative size of 6 and o the importance of time averaged longshore
sediment transport occurring inside of the breaker line is inversely
proportional to the mixing parameter. Recalling Table 3-1 and Eq.
(3-70) and anticipating T 2 0.01, PSz varies between 0.01 and 1 so that

the amount of time averaged longshore sediment transport occurring with-
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in the breaker line is between 55% and 85% of the total transport.
Recalling Eqs. (3-57) and (4-59), the integrated time averaged
longshore sediment transport is given by

oo ¥ ) o *y #
Jo(q)sdx = Py wafdS Jo(q )de (4-75)

where the RHS integral is given by Eq. (4-72).

4.4 Nonlinear Longshore Current Model

The data base of Section 1 suggests that the typical flow field
consists of a relatively strong current response to breaking waves of
finite incidence in violation of the linearizing assumptions of a small
current and near normal wave incidence. The use of the Linear Long-
shore Current Model in this case underestimates the correlation of
IGS + Gﬁlb and (vS + vw) in the longshore bottom shear stress compon-
ent since terms neglected in the time averaging process of Section 3;1.2
are of significant magnitude. The low estimate in turn artificially
increases the size of fSZ since the longshore bottom shear stress com-
ponent must resist the driving stress with an effectively slower veloc-
ity.

The Nonlinear Longshore Current Model uses numerical integration
to account for the presence of a finite current and oblique wave in-
cidence in the longshore bottom shear stress component of the inte-

grated nonlinear longshore stress balance

sV 4+ 7 4+ 2

> -+
B B 2 pfsz <[|us 5 uw|b(vs * vw)]s> X =0 (4e76)

B
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As suggested by Eq. (4-76) the Nonlinear Longshore Current Model con-
siders uniform longshore conditions. As with the Linear Longshore
Current Model, Reyman's (1976) similarity assumption is adopted in the
Nonlinear Longshore Current Model so that the effects of a finite cur-
rent and oblique wave incidence on the bottom shear stress are modeled
by the nonlinear current reduction factor which reduces the scale of
the longshore current profile. Eq. (4-76) is recast as a numerical
iteration in the nonlinear current reduction factor; Eq. (4-93) is a
curve fitted approximation of the resulting solution.

The oblique wave incidence also reduces the integrated driving
stress; the factor cosGB is consequently included in the reduction of

the longshore current profile.

4.4.1 Numerical longshore bottom shear stress estimates
Recalling Eq. (2-23), the time averaged longshore bottom shear

stress component is given by

vy -1 * 2Z _
(Tb)s 2 pfsz [(vs + vw)blus * uwlb]s (4-77)

With the neglect of shorenormal current and the assumption of linear
long waves inside the breaker line, simplifications which are motivated
by discussions in Sections 3.1.1 and 3.4.4, respectively, the norm of

the near bottom velocity is

1/2

ne

2 Al L k1Y 2 -
(vs + 2vsluw|b sinfcos¢ + (|uw|b) cos ¢) (4-78)

Defining the local current strength § in accordance with
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§ = VS/|uw|b (4-79)

the time averaged longshore bottom shear stress may be expressed as

y 1 * 1y2, ¥\ ¥
(Tb)S 2 pfsz(luw|b) (t) (4-80)
where

2m
E%'J (6 + Sin9008¢)(62 + 28sinfcos¢ + cos2¢)l/2d¢
o

y*
(1) ¢
(4-81)
For small currents and near normal incidence, § << 1 and
Yo% v 28
sin® v 0 and Eq. (4-81) yields ('rb)S = = and the linear result of the
Modified Longuet-Higgins Model is obtained. For finite currents of
near normal incidence, the sin6 terms drop out of Eq. (4-8l) and the
elliptic integrals of Reyman (1976) and Jonsson et al. (1974) remain.
Liu and Dalrymple (1978), who derive a longshore current model for
relatively strong currents in the absence of Reynolds stresses, Tayldr

expand the square root term in the integrand of Eq. (4-81) to second

order for § > 1.25 to obtain

2
yy* _ 2 1+ sin“s )
(), =8+ x (4-82)

Liu and Dalrymple (1978) derive a second model for a relatively weak
longshore current and oblique wave incidence, again in the absence
of Reynolds stresses; the time averaged longshore bottom shear stress
term is approximated by a Taylor expansion for 8§ << 1 similar to that

of the Modified Longuet-Higgins Model, but with the addition of a sinze
term. The authors do not interpolate between their shear stress esti-

mates.
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Anticipating an approximate longshore current model wvalid for
any current strength and incident wave angle, the Nonlinear Longshore

Current Model evaluates Eq. (4-77) with the following expression

Eo (s > .50)
= (N (.50 > & > .125) (4-83)
b’s b’m : -
28/ (.125 > &)

*
where (TZ)S5 is a numerical integration using five point Gauss quad-

rature, Bathe and Wilson (1976), i.e.,

(hg = 118 [ 0 = 2.99) + (D6 = .147))
Ty ® ¥y *
+ 223907 = 2.42) + () (9 = .725)] (4-84)

y. *
+ .284(Tb) (¢ = 1.57)

*
and (Tg) is the integrand of Eq. (4-81). This numerical estimate lies
within 1% of Liu and Dalrymple's (1978) approximation, Eq. (4-82), for
§ > 1.0 and 8 5_400. Gauss quadrature works well for polynomials and

poorly for sinusoids so that an interpolation is used for small §

(TZ): = 0.0796 + (§ -.125)(2.671.  -.212) (4-85)

50

where Ts is the quadrature estimate at § = .50.
The surf zone integrated, time averaged nonlinear longshore bottom

shear stress component may accordingly be written as
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) 1
xg<()) > =-% of (% |g)§ X, J x*(TZ):dx* (4-86)
(o]

-)
since luw|g is given by the linear long wave theory of Eq. (3-2) and
fSz is independent of x. The spatial integral is approximated using

four point Gauss quadrature, i.e.,

1
Jo x*(Tg):dx* - .174[x*(TZ):(X* - .193) + x*(TZ):(X* = .069)]
(4-87)
+ .326[x*(r§):(x* = .670) + X*(TZ):(X* = .330)]

where (TZ):'iS obtained from Eq. (4-83). It should be noted that cur-
rent refraction is excluded from consideration.

The quadrature order of this and the pfior estimate is obtained
by studying estimate convergence as the order increases; the spatial
estimate is a better behaved function and may be approximated with a .

lower degree polynomial.

4.4.2 1Integrated nonlinear longshore stress balance
Following the Linear Longshore Current Model, the governing momen-
tum equation is simplified with Reyman's (1976) similarity assumption

which becomes

%

vy =V vcxancoseB (4-88)

in the Nonlinear Longshore Current Model where the A2 factor accounts
for the finite current and oblique wave incidence on the time averaged

longshore bottom shear stress, while np and cosB, reflect a reduced

B

integrated driving stress, as in Section 4.1.4.
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Substitution of Eq. (4-88) into Eq. (4-76) yields a governing

equation for A Recalling Eq. (4-86)

2
Bl [
B + P Sz |uw|b BxB o) * (Tb)sdx

Xy
Xy
B 255

1+

=0 (4-89)
S
where the integrated nonlinear longshore stress balance is nondimens--
ionalized with the finite wave height radiation stress term S:y. Using
Egqs. (3-37) and (3-2) to evaluate Sgy and (lz;lé)B, and noting that

pTa_tanA dv
Xy _ B 2 1/2,7 s
Ty =7 xg (8hp) ™ " (G )y (4-90)

upon integration of Eq. (3-56) from O to x,, the assumed similarity

B’
reduces Eq. (4-89) to

1
* y* *x
[Q X (Tb)sdx

SPszAZ dv* 57
1.0+ == T3 ~ % Tncoss ) =0 G812
dx B B

where k is given by Eq. (3-65). Since the integrand is a function of

8§, which may be expressed as

K).Zn cosd %
- 2B B _
§ = x*1/2 v (4-92)

AZ appears implicitly in the third term of Eq. (4-91) so that an iter-

ative solution is required, with A, emerging as a function of n_, 6_,

2 B B

P and k.
sz
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4.4.3 Nonlinear current reduction factor

The iterative solution to the dimensionless integrated nonlinear
longshore stress balance of Eq. (4-91) may be reasonably represented
by the following curve fit approximation of the nonlinear current re-

duction factor

= K
AZ = c82n > -+ Ac (x 3_1.0)
(4-93)
AZ = 1.00 + K(Ac —0.69c8 -1.00) (k < 1.0)
where
c. = (1 - 0.084p )(2=0085 4 18
8 sz ny

and Ac, which is simply AZ(GB = 200, k = 2.0), approximated by

% BT

with 2
c, = 0.00352n" (1000P )-0.30
9 sz
and

2
Ci0 = 0.00154%n (1000Psz) + 0.86

The Xz iteration of Eq. (4-91) converges to within 30% and 15%

accuracy when Eq. (4-93) is used for k < 16.0 and k < 4.0, respectively,

(o]

with N < 40", 0.16 < n, < 0.96, and 0.01 I < 10 for both cases.

B
This accuracy is judged to be acceptable in view of the approximate
nature of the assumptions underlying the integrated nonlinear longshore
surf zone stress balance and the utility of an analytical expression
for Az. Xc is sketched on Figure 4-7 to aid in model usage.

124



T T 1 I 1 | I |
1.0 |—
0.9
0.8 |—
Ac
3T 0.10 —]
0.032\
0.01
0.6 |— Psz/'
4
O.Sﬁ 1 I 1 l ] l ] |
0 0.2 0.4 0.6 0.8

ng

Figure 4-7: Characteristic Current Reduction Factor
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With nB, SB and tanA known from the breaking wave iteration of
Section 4.1.3, «, Psz and Az may be computed when the two parameters
fsz and I are specified; PSz in turn determines v* by virtue of
Eq. (3-76) and Figure 3-1, and‘)\2 scales the longshore current profile

in accordance with Eq. (4-88). The process is illustrated in Appen-

dix I.
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5  MODEL CALIBRATION AND TESTING
5.1 Model Calibration

The model parameters fsz’ ' and ¢ are presently unspecified and
consequently may be calibrated with the most appropriate data of
Section 1.

Transect 6 of the GE data base calibrates fsz and T which deter-
mine the scale and form of the longshore current profile, respectively.
These data are selected since the fixed bed experiments most nearly
represent the idealized environment and neglected stresses and acceler-
ations of Tables 1-1 and 1-2; Galvin and Eagleson (1965) are the only
investigators to measure longshore current profiles across a transect
and the relatively strong longshore current at transect 6 is observed
to be reasonably uniform in the longshore direction. Shay and Johnson's
(1951) longshore sediment transport data calibrates £; the laboratory
movable bed data is judged to be more applicable than the field data
since the wave conditions are better defined in the laboratory, and the
small current assumption of the Linear Longshore Sediment Transport
Model is better satisfied with the Shay and Johnson (1951) data than with

the data of Saville (1949, 1950).

5.1.1 Surf zone friction factor
The surf zone friction factor calibration consists of a good fit
analysis of each of the 28 runs comprising the GE transect 6 data. The

analysis searches through all reasonable combinations of fSz and T to

find the pair of values yielding the smallest error for a given run;
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the resulting 28 fsz values are examined in order to establish a phys-

ically plausible predictor of the surf zone friction factor. The quan-

tity that is minimized in the calibrating runs in Qcal’ defined by
vs(measured) -vs(predicted)

Q =1 (5-1)
el vs'(predicted)

where the summation is over all stations in a run; calculations indicate
that Qcal has a single minimum within the range of interest of the two
parameters for both analyses. The search procedure consists of the
Golden Section Method, e.g., Carnahan and Wilkes (1968), which reduces
the search interval to a prescribed width, and a Lagrangian locator,
which computes the point of zero slope of a parabola through the points
of the reduced search interval.

Figure 5-1 shows the results of the good fit analysis of fsz values

plotted as a function of KnBcosenk Recalling Eqs. (3-64) and (4-88),

9
the independent variable is the ratio of the reduced characteristic
velocity to the maximum near bottom wave velocity at the breaker line
and as such provides a measure of the relative strength of the long-
shore current. The distribution of the good fit fsz values on this graph
suggests that fSz decreases as the relative longshore current magnitude
increases in agreement with the behavior postulated by Jonsson et al.
(1974). The use of the 28 run average Jonsson (1966a) wave friction
factor?w and 28 run average Darcy-Weisbach type current friction factor

?; as a vertical intercept and a horizontal asymptote becomes physically

plausible when the average values of these parameters for the 28 runs
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evaluated midway through the surf zone are plotted on Figure 5-1; un-
fortunately the predictor would be iterative since k appears implicitly
in AZ as indicated by Eq. (4-93). The simpler approach of using «k as
the ordinate is adopted as sketched in Figure 5-2.

The predictor is a branch of a hyperbola with specified rotation,
intercept and asymptote, so that only the constant governing horizontal

translation is free to vary, i.e.,

. fw + clles
fsz T 1+ c, .« (5-2)
11
A good fit analysis of 1 yields
c,, = 0.148 (5-3)

11

Eq. (5-2) closely approximates an expression put forth by Jonsson
(1966b) for waves and currents outside the surf zone. Since, as sug-

gested by Eq. (3-65), fSz appears in k, Eq. (5-2) may be rearranged to

yield
_ 2 1/2
fsz = [cp t (c12 —4c13) 1/2 (5-4)
where
Cyp = .58 tanAsinBB —fw
and
cy3 = -.58(tanA81neB)fS

In the computation of fs and fW the flow is assumed to be turbu-
lent, with smooth and rough regimes determined in accordance with

Jonsson's (1966a) "SR" line, which is represented by
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wn . > .86 an Rw -2.74 (smooth turbulent)
s
(5-5)
<Ab>
Ln - < .86 &n Rw -2.74 (rough turbulent)
s

where <Ab> is the near bottom horizontal excursion amplitude, evaluated
mid-way through the surf zone. fw and fs for both regimes are sketched
in Figure 5-3 as functions of appropriate Reynolds numbers and relative

roughnesses and computed in accordance with
Smooth Turbulent Regime

f = exp(.0184 lnz Rw -.66 n R,w + .462)

w
-.25
f = .0559 R (R < 25,000) (5-6)
S S s —
£ =.027 R -17° (R > 25,000)
S S S

and
Rough Turbulent Regime

2 <Ab> <Ab>

fw = exp(.0371 &n " -.791 &n k. -.97)
s (5-7)
£ = (1.74 o0 <2 4 4.32)72
s
where the relative roughness ratios are given by
<b> _Mp
kg 2ks
(5-8)
<Ab> h
_ B
s .113 apYy (_2k )
s s
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while the Reynolds numbers are

2

_ apshy
Rw ~ 8wv
(5-9)
thB(ghB)I/Z
R = .177
S Vv

The longshore current Reynolds number is for simplicity based on the
wave velocity since v is not known in advance and is of comparable
magnitude to |uw|£; however, iteration is of course possible, although
tedious. The wave friction factor expressions of Eqs. (5-6) and (5-7)
are three point polynomials through the Jonsson (1966a) diagram, while
the current friction factor expressions are from Chow (1959) and
Henderson (1966).

A sample determination of fsz is contained in the numerical example

in Appendix I.

5.1.2 Lateral mixing coefficient and Battjes' correlation constant
The surf zone friction factor predictor of Egs. (5-4) through
(5-9) eliminates one free parameter from the Nonlinear Longshore Cur-
rent Model so that a second good fit analysis searches through T values
to minimize Qcal’ with the results indicated in Table 5-1. A single
value is judged to be appropriate, and a good fit analysis on all runms

yields
r=.013 (5-10)

As indicated by Egs. (3-29) and (3-55), T may be regarded as a

function of Battjes' correlation constant M, tanB and o Consequently,

B
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Table 5-1

Good Fit I' Values with fsz Predictor

r

0
.005
.010
.015
.020
.025
.030
.035
.040
.045
.050
.055
.060

2-4  2-5 3-4*

-6 2-2 2-3 2-7 2-8 2-10 3-3 3-9 3-10
-4 1-5 1-8 1-9 2-1 3-1 3-12

1-2 1-3 1-10 3-2 3-7 3-8

1-7

1-1  3-5

%
I-J of GE run

noting that tang = 0.109 and ap does not vary appreciably from a value
of 1.1 for the GE-6 data base, the good fit analysis may be taken as a

search for M and Eq. (5-10) used to generate a calibrated estimate of

M= 0.31 (5-11)

Battjes' correlation constant is assumed valid for beaches of other
slopes, thus introducing a slope dependency into T' by virtue of

Eq. (3-55)

P o= 0.42(tan4A/aB)l/3 (5-12)
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The primary motive for this assumption is the fact that a constant M
yields slightly more accurate test results; it should be noted, however,
as discussed in Section 3.2.2, that there are valid physical reasons

for this interpretation of the longshore Reynolds stress as well.

5.1.3 Longshore sediment transport coefficient

The longshore sediment transport coefficient is the remaining un-
specified model parameter once fsz and T are assumed valid for surf
zones over movable beds. It is a simple matter to convert total time
averaged longshore sediment transport measurements into estimates of ¢
using Eqs. (4-72) and (4-75) and the Shay and Johnson (1951) laboratory
data of Table 1-10. This exercise yields ¢ wvalues of 790, 960 and 240.
Taking the arithmetic mean of these estimates, the calibrated long-

shore sediment transport coefficient is given by

r = 660 (5-13)
The calibrated ¢ value is an order of magnitude larger than the
nonbreaking wave value of ¢ = 40 put forth by Madsen and Grant (1976a),

a difference which may reflect the higher transport capability of break-

ing wave induced turbulence in the surf zone.

5.2 Model Testing
The calibrated models of the present investigation are tested with
appropriate data of Section 1 as cited in Table 5-2.
' This data is checked in Table 5-3 against the requirement of trans-

itional spilling-plunging breakers as quantified in Eq. (2-24). As
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Table 5-2

Model Test Data

NONLINEAR LONGSHORE CURRENT MODEL

Galvin and Eagleson (1965) - Transects 5, 6*
Putnam, Munk and Traylor (1949)
Brebner and Kamphuis (1963)

LINEAR LONGSHORE CURRENT MODEL

Galvin and Eagleson (1965) - I =1, J = 4-8
Saville (1949, 1950)
Komar (1969)

LINEAR LONGSHORE SEDIMENT TRANSPORT MODEL

*
Shay and Johnson (1951)
Saville (1949, 1950)
Komar (1969)

*
Calibrating data

indicated in the table the majority of the data falls within the sug-
gested constraints; the PMT data is the only set with an appreciable
number of plunging breakers, while strongly spilling breakers are ex-
cluded from all the data.

The data testing the linear models of the present investigation
are also checked in Table 5-3 against the small current requirement of
the Linear Longshore Current Model, which is discussed in Section 4.2.4
and quantified in Eq. (4-55). The majority of the data falls around
the suggested upper kng limit of 1.0, thus underscoring the need for a
more safely linear data base or nonlinear models describing longshore

sediment transport and an evolving longshore current. 1In the absence
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Table 5-3

Data Applicability

BREAKER TYPE

gB 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
*

GE 0 0 28 61 11 0 0
PMT 3 31 16 19 9 9 13
BK 7 43 38 12 0 0 0
SJ 0 0 33 67 0 0 0
SV 0 29 42 29 0 0 0
KO 0 33 67 0 0 0 0
RELATIVE CURRENT STRENGTH

Kng 0.0 0.2 0.4 0.6 0.8 1.0 1.2
GE -I-1, J=4-8 0 0 20 0 80 0
SJ 0 67 33
A 0 0 0 0 43 57
KO 0 33 33 33 0 0

*
Percentage of experiments in category

of either alternative, the data testing the linear models is assumed to
represent linear conditions; it is anticipated that the resulting linear
longshore current predictions will overestimate the measured values due

to nonlinear effects.

5.2.1 Linear Longshore Current Model testing
Linear Longshore Current Model accuracy is assessed by using each

data set to generate a sample of size n, of the variable Qv’ defined by

Q
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vs(measured) -vs(predicted)

Qv - vs(predicted) (5-14)

Two sample statistics are computed: the sample mean 6; and the sample
standard deviation SQ' 6; is computed in accordance with Eq. (4-14);
recalling Eq. (5-14), a positive 6; implies that the prediction under-

estimates the observed current. SQ is given by, e.g., Benjamin and

Cornell (1970),

"q "o Qii —2..1/2
S¢ = G=1 (Zg— -] (5-15)
" i=1"q v

1if Qv is assumed to be normally distributed, about two-thirds of the

sample points fall within 100S_. percent of 6&.

Q
Caution must accompany the selection of nQ and the interpretation
of the sample statistics: systematic errors within a given sample nQ
will not appear in the sample statistics and the use of predicted
velocity as a normalizing variable makes serious overpredictions appear
to be more accurate than serious underpredictions. To illustrate the
first point, consider the PMT data base analyzed in the following sec-
tion; the systematic error in slope and lack of systematic error in ks
may only be deduced when the entire data base is broken down into
smaller samples. To illustrate the second point consider the two sample
points Va1 (predicted) = 0.5 vsl(measured) and vsz(predicted) ~ l.5vSZ
(measured): the underprediction has Qvl =+ 1.0, while the overpredic-
tion, which is off by the same absolute amount, has sz = -0.67. 1In

defense of Eq. (5-14) it should be noted that this normalization permits

direct comparison between estimates of currents of varying strength.
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With these warnings, then, Linear Longshore Current Model testing may
proceed.

The predicted downstream development of the longshore current is
tested against the appropriate fixed bed measurements of Galvin and
Eagleson (1965) with the results indicated in Table 5-4. As anticipated,
the Linear Longshore Current Model predictions overestimate the measure-
ments somewhat due presumably to the finite size of the current. The
uniformity of the error with downstream distance which, as discussed in
Section 1.3.1 increases with increasing K, suggests that the Linear
Longshore Current Model provides a reasonable estimate of the form of
the longshore dependency. The SQ values show that roughly two-thirds
of the data lie within 40% of their predictions.

The movable bed longshore current data provide the second test of
the Linear Longshore Current Model as summarized in Table 5-5. The
Linear Longshore Current Model overestimates the SV and KO data by 332

and 5%, respectively; an error which may be attributed to the nonlinear-

ity displayed in Table 5-3 and to the presence of a movable bed. The

Table 5-4

Linear Longshore Current Model

Tests in y GEI =1, J = 4-8
K 2 3 4 5 6
a4 18 23 23 23 23
Ev -0.29 -0.19 -0.15 -0.17 -0.19
Sq 0.26 0.38 0.38 0.36 0.32
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Table 5-5
Linear Longshore Current Model

Movable Bed Tests

Study n

O
[%2]

Q v Q
SV Laboratory 7 -0.33 0.09
KO Field 3 -0.05 0.42

latter suggestion is purely speculative since the effect of suspended
sediment on the much simpler uniform steady flow field velocity pro-
file is still undetermined, e.g., Raudkivi (1976). 1In any event, the
Linear Longshore Current Model does provide at least an order of mag-
nitude estimate of a relatively small longshore current over a movable

bed under laboratory and field conditionms.

5.2.2 Nonlinear Longshore Current Model testing

The Nonlinear Longshore Current Model is tested for systematic
errors in bottom slope, roughness and shorenormal distance using the
random variable Qv of Eq. (5-14). All the data listed in Table 5-2
are run to investigate tanf errors, while the PMT 0.10 < tanB < 0.15
data are examined for roughness errors and the GE transect 6 data is
used to identify systematic errors in the form of the velocity profile.

Table 5-6 lists the sample statistics for the entire data base
used to test the Nonlinear Longshore Current Model. The overall
accuracy is judged to be of good quality, particularly for bottom

UV
slopes near the calibrating value tanf = 0.10.
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Table 5-6
Nonlinear Longshore Current Model

Tests in tanB and kS

Study

tanp ks(cm) nQ 6; SQ
BK 0.050 0.03 47 0.11 0.24
PMT 0.066 0.10 7 0.02 0.22
BK 0.100 0.03 94 -0.14 0.11
PMT 0.10-0.15 0.03 9 ; -0.14 0.07
PMT 0.10-0.15 0.10 3 -0.13 0.18
PMT 0.10-0.15 0.63 9 -0.13 0.28
GE-5 0.109 0.03 130 -0.07 0.31
GE—6* 0.109 0.03 136 -0.02 0.29
PMT 0.24 0.10 4 -0.34 0.20

%
Calibrating data

6; for the GE data uses <vs> as the normalizing velocity. The
Nonlinear Longshore Current Model predicts its calibrating transect,
GE-6, reasonably well as one would expect while the greater overpredic-
tion of transect 5 suggests that the current may still be accelerating
in this region. The relative size of the sample standard deviations
reflects the fact that both form and scale of the longshore current
profile are tested by the GE data.

The tests conducted with the PMT data base indicate a systematic

Nonlinear Longshore Current Model error in tanf, in that the model
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underpredicts longshore currents over flat slopes and overpredicts
longshore currents over steeper beaches. One possible untested ex-
planation for the underprediction lies in the fact that, as discovered
in the laboratory data of Horikawa and Kuo (1966) for example, H/h < ap
inside the surf zone for spilling breakers which will occur on flatter
beaches. Accordingly the Nonlinear Longshore Current Model overesti-
mates the contribution of the wave motion to the bottom shear force so
that the longshore current will be underpredicted. For the steeper
slopes, there lies the possibility that the actual longshore current

is not fully developed, so that part of the driving stress is accelera-
ting the current. As indicated by Eq. (4-46), ¥, increases with in-
creasing k, hence tang, so that currents flowing over the steeper slopes
require more distance to develop. In any event, the discussion of Sec-
tion 6 notes that the formulation of AZ loses physical validity as the
bottom slope becomes steep.

As discussed in Section 1.3.3, the ks value assigned to the beach
of the BK data ignores the presence of artificial roughness so that the
predicted velocity, which flows over a smoother beach than is actually
present, is likely to be too high. It is not surprising then, that 6;
is negative for the tanB = 0.10 runs, a higher roughness would bring
6; up to zero. The BK data show the same systematic error in tanB as
is observed in the PMT data.

The salient feature of the PMT tests shown in Table 5-6 is the

equivalence of 6; for the three different surfaces of the 0.10 < tang

< 0.15 runs which suggest that the fsz predictor is properly responsive
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to different relative roughnesses. Indeed, the reasonable accuracy of
nearly all the tests indicates that the scale of the longshore current,
which is sensitive to fsz’ is properly determined, and it should be
noted that in applications where spatial average is required, the pro-
per scale is sufficient.

The 6 samples presented in Table 5-7 correspond to measurements
made at 6 stations across GE transect 6 with a higher X value indicat-
ing a larger distance from shore. Station 4 is in the general vicinity
of the breaker line. The 6; values show that the Nonlinear Longshore
Current Model significantly overpredicts the observed velocity sea-
ward of the breaker line, and immediately casts doubt on the validity
of the horizontal eddy viscosity estimate beyond the breaker line; the
present estimate allows for too much Reynolds stress through the breaker
line. Future estimates would do well to retain more of the driving
stress within the breaker line; in this regard vy would be forced tov

increase in order to resist the added stress.

Table 5-7
Longshore Current Model

Tests in x GE-6

X 1 2 3 4 5 6
1, 28 28 28 28 16 8
Ev +.08 +.13 0 -.11 -.25 - 32
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5.2.3 Linear Longshore Sediment Transport Model testing
Linear Longshore Sediment Transport Model testing proceeds with

samples of the random variable Qq defined by

00 0

I quX(measured) —J qux(predicted)

o o
Q = = (5-16)
J qux(predicted)
o

Sample means and standard deviations for the three data sets cited in
Table 5-2 are presented in Table 5-8. The Linear Longshore Sediment
Transport Model matches its calibrating data as is to be expected,
while slightly overpredicting the Saville (1949, 1950) laboratory
data and substantially overestimating the Komar (1969) field data. 1In
this regard, the sample mean error for the Komar (1969) data implies
that the predicted transport is about 5 times greater than the measured
transport.

The strong overestimation of the field data suggests that the
Linear Longshore Sediment Transport Model be viewed with caution and

that more modeling and experimental work is needed on the problem.

Table 5-8

Linear Longshore Sediment Transport Model Tests

Study nQ Qq SQ
SJ* 3 0.00 0.70
SV 7 -0.20 0.54
KO 3 -0.78 0.18

*
Calibrating data
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6  CONCLUSIONS

The present investigation models the steady longshore current and
time averaged longshore sediment transport induced by two dimensional,
monochromatic, gravity waves breaking on a plane, impermeable, gently
sloping beach in the absence of winds and tides. Three new calibrated
momentum based models are tested: the Linear Lonshore Current Model,
the Linear Longshore Sediment Transport Model and the Nonlinear Long-
shore Current Model.

The Linear Longshore Current Model, represented by Egs. (3-76),
(4-37) and (4-49) describes the growth of a relatively small longshore
current downstream of a shorenormal jetty for waves of near normal
incidence. The Linear Longshore Current Model provides a reasonable
estimate of the measured form of thellongshore dependency although the
predicted longshore current scale exceeds the measurements by about 20%,
presumably due to the finite size of the current. The latter finding
underscores the need for a nonlinear nonuniform longshore current model.
Movable bed tests suggest that the Linear Longshore Current Model, whose
parameters fsz and T are calibrated with fixed bed data, yields at least
an order of magnitude estimate of the longshore current flowing over a
movable bed in laboratory and field conditions.

The Linear Longshore Current Model, with its small current and near
normal wave incidence assumptions, forms the basis for the Linear Long-
shore Sediment Transport Model which is represented by Eqs. (4-71),
(4-72) and (4-75). The Linear Longshore Sediment Transport Model pre-

dicts the initial nonuniform longshore response of a plane, movable bed
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downstream of a shorenormal jetty and is valid at all times for uniform
longshore conditions provided the beach is at equilibrium with the waves.
The model slightly overpredicts the laboratory data and overpredicts

the field data by a factor of 5. 1In view of this model inaccuracy,
along with the restrictive nature of the model assumptions and the un-
certainties of the data base, the time averaged longshore sediment
transport process should be considered an unsolved problem. The Linear
Longshore Sediment Transport Model should therefore be regarded as a
simple first step towards a physically plausible model describing time
averaged longshore sediment transport.

The Nonlinear Longshore Current Model, represented by Egs. (3-76),
(4-88) and (4-93), relaxes the small current and near normal incidence
assumptions and predicts fully developed longshore currents over fixed
beds with considerable success; the general model accuracy is of the
order 15%. There are systematic model errors in shorenormal distance
and in bottom slope, but not in relative roughness; the latter finding
suggests that the Nonlinear Longshore Current Model properly determines
the time averaged longshore bottom shear stress over a fixed bed with
the physically plausible surf zone friction factor calibration of
Eq. (5-4). Since the surf zone friction factor is correctly estimated,
the scale of the longshore current is correctly estimated as well and
the Nonlinear Longshore Current Model may accordingly be used with some
confidence to compute the surf zone averaged longshore current flowing
over a fixed bed.

A logical next step in the modeling of longshore transport proces-
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ses is to investigate the systematic Nonlinear Longshore Current Model
errors in shorenormal distance and bottom slope. In this regard, the
Nonlinear Longshore Current Model tends to overpredict measured values

beyond the breaker line, so that the longshore Reynolds stress is over-

estimated in this region and a different formulation of the horizontal

eddy viscosity may be in order. As
noted that the integrated nonlinear
Longshore Current Model, as well as
the Linear Longshore Current Model,

longshore Reynolds and bottom shear

determining the appropriate current

for the tanf error, it should be
stress balance of the Nonlinear

the linear counterpart governing
does not consider the balance of
stresses beyond the breaker line in

reduction factor, and this latter

balance deals with a larger amount of stress for steeper slopes. In-
deed the surf zone of very steep beaches may be better treated, in view
of the discussion of Section 2.4, as a constant stress boundary so tbat
all attention must be given to the region seaward of the breaker line.
Once the systematic errors for the fixed bed Nonlinear Longshore
Current Model are explained or eliminated, the model should be extended
to cover the longshore evolution of a finite current downstream of a
shorenormal jetty; the resulting extension should approach the Linear
Longshore Current Model for progressively smaller currents. Upon
completion of this modeling effort, the extended longshore current model
should be tested against all available movable bed laboratory and field

data to verify the ability of the model, which rests on a fixed bed

calibrated surf zone friction factor and a plane bottom assumption, to
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describe longshore currents over a movable bed. Once the longshore
current model matches the movable bed data, the longshore sediment
transport problem may be readdressed; hopefully, better sediment
transport data in laboratory and field will be available for model

calibration and testing at this time.
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APPENDIX I NUMERICAL EXAMPLES
I.1 Linear Longshore Current Model

The Linear Longshore Current Model computes vs(x,y) for given
wave (H, h, 6)G,T and beach tanB, ks conditions in four steps:
(1) determination of breaker line conditions (H, h, 6, n)B by itera-
tion, (2) estimation of fsz’ (3) computation of v, and b and (4)
determination of V- The process is best described by an example;
accordingly the longshore current for a station (I=1, J=5, K=4, X=3)

of the GE data is calculated below.

¢ = 1.15 ft, o, = 10°,

0.001 ft, tanB = 0.109 X = 11 ft x

Given: H 0.105 ft, h T = 1.5 sec,

G

k
s

Required: Compute ¥

0.38 ft

Solution:

(1) Determination of breaker line conditions

*
The breaking wave predictor requires (sin6/c )G and ¢, as input.
Recalling Eqs. (2-27) and (2-28), Yo = 7.9 and as = .091 so that

(&4

c = .11 and n, = .82 from Figures 4-1 and 4-2, respectively, and,

*
in view of Eq. (4-15), c, = 36 while sinGG/c ¢~ 1.6. The breaking
wave iteration of Table 4-2 may now begin.

An initial estimate of vy, = 15 yields a_, = 1.1 from Figure 4-3

B B

*
since tanB = 0.109; Figure 4-1 gives c_, = 0.087, while Snell's Law

B

shown in Figure 4-4 provides the breaker angle estimate g, = 8° using

B
*

the offshore (sinf/c )G as input. The energy transport function esti-

mate from Figure 4-2 is ng = 0.50, hence, in view of Eq. (4-17), the

second estimate of Yg obtained from radiation stress constancy is

Yg = 23
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A recommended revision of the initial estimate is as follows

YB(initial) + 4YB(second estimate)
yB(revised) = (1-1)
5

so that a new value Ii = 22 should be used in the iteration. The re-

vised YB value yields breaking conditions op = 1.14, n, = .35,

o ;
BE 6~ and a second Yg estimate of 20 which is judged to be suffici-

ently close to the revised Yg value. Recalling Eq. (2-27) h_, = 0.15 ft.

(2) Determination of fsz

The first order of business is to determine the flow regime by

using Eq. (5-5) which requires the wave Reynolds number and relative

<Ab>

k
-5 _.2 o

where v = 1.2 x 10 ~ ft"/sec. Thus, using Eq. (5-5), the flow in the

roughness. Recalling Eqs. (5-8) and (5-9) = 212 and Rw = 16000,

GE experiment is taken as rough turbulent, so that fw and fs are func-

< >
and . respectively, with L1
kg kg kg

tions of relative roughness
in view of Eq. (5-8).

From Eq. (5-7), fw = 0.016 and fs = 0.007 so that fSz may be
computed from Eq. (5-4) with tanA and sinGB known. The former is
‘given by Eq. (3-29) in terms of ag and tanB; for this problem,
tanA = 0.073. The constants P and c,q are equal to -0.0116 and
-3.1 x 10—5 respectively, so that £s = 0.014.

(3) Determination of v, and)lc

Kk may be evaluated once fsz is known and Eq. (3-65) yields
k = 2.1. The propriety of the small current assumption should be

checked at this point; Kkng = 0.75 so that the GE run is properly
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linear by virtue of Eq. (4-55). It is a simple matter to compute v
c

from Eq. (3-66); v_= 2.63 fps.
—C

¥ evaluation requires c5 which is presented as a function of
Psz in Figure 4-5. Recalling Eq. (3-70) PSz = .21 where T = .013 by
virtue of Eq. (3-55) with the calibrated value of M = .31 from Sec—
tion 5.1.2. In view of Figure 4-5, cg = .11 so that y = 6.8 ft from
Eq. (4-46), where the breaker distance X = 2.1 ft, using the modified
bottom slope of Eq. 3-30.

(4) Determination of v
-

The dimensionless longshore distance is obtained by dividing Ym
by Yos with the result y* = 1.6. Accordingly\ 1= .92 from Figure
4-6 and the station is far enough downstream io justify use of the
Linear Longshore Current Model since the value satisfies the constraint
of Eq. (4-54), Al > .07.

With PSZ and the various scaling factors determined, the dimen-
sionless velocity profile appears as a member of the family of curves
on Figure 3-1 so that, with the scale given by Eq. (4-37), the long-
shore current at any shorenormal location is known for the given Yor
In particular, noting that X for this problem refers to the still
water shore line, x* = (xm -+ xs)/xB, where x, = .67 ft from Eq. (3-34).

i *
Thus, x = .5 so that v = .43 from Figure 3-1 and, finally,

v_= 0.36 fps recalling Eq. (4-37). The prediction compares favorably

=]

with the measured value of 0.38 fps.
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I.2 Linear Longshore Sediment Transport Model

Most of the computation associated with the Linear Longshore
Sediment Transport Model is identical to that of the Linear Long-
shore Current Model described above; only the additional work is
illustrated here. The numbers correspond to the I = 1 run of the SJ

data and are reported as if the breaker conditions were known.

Given: hB = 4.6 cm eB = 5.7 degrees T = 1.08 sec
tanf = .116 Py = 2.69 gm/cm3 ds = 0.3 mm
v=1.2x 10—2 cm2/sec s = 2.69 Al = 1.0

Required: Compute J qZ dx
Solution: The relatise wave length parameter at breaking may be
computed from Eq. (2-27) with the result Yg = 16 and the empirical
breaking criterion on Figure 4-3 consulted to obtain ap = 1.09. The
relative wave length and relative wave height then determine the
breaking wave energy transport function from Figure 4-2, hence
ng = 0.48. Following the method of the prior example, it is straight-
forward to compute tanA = 0.08, Xp = 58 ecm, k = 2.0, fsz = ,016 and
PSz - 2%

Recalling Eq. (4-72), the dimensionless integrated time averaged

©

longshore sediment transport is given by J (q*)de* = .0035c(c6 + c7).
In view of the calibration of Section 5.1.3, z = 660 while (c6 + c7)
= .18 from Figure 4-5, so that J (q*)de* = .42,

The dimensionless parameteroS* = 4.3 from Eq. (4-60) so that the

*
dimensionless and dimensional fall velocities are w = .53 and

Wy, = 3.7 cm/s as obtained from Eqs. (4-61) and (4-60) respectively.
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Thus, in view of Eq. (4-75) the integrated time averaged longshore

-]

sediment transport is estimated as J ﬂde = 7.2 gm/sec. Recalling
o
Table 1-10, the corresponding measured transport is 8.2 gm/sec.

I.3 Nonlinear Longshore Current Model

The Nonlinear Longshore Current Model computes LA using the four
steps described in the Linear Longshore Current Model example; the
calculation of the first three steps is similar in both models so that
only the final step of v, determination in the Nonlinear Longshore
Current Model is discussed. v for station 3, transect 6 of the

Galvin and Eagleson (1965) run I = 3, J = 9 is computed below.

. o
Given: GG = 51", T = 1.25 sec, HG = 4.0 cm hG = 35 cm

tanf = .109, k = 0.3 mm, x =40 cm
s m

Required: Compute LA

Solution: Using the method of Section I.1l, the computed values

follow: ng = 0.43, GB = 28°, ag

£ = .010, « = 12.6, P__ = ,28. Noting that x = 22 cm and
sz sz s

= 1.12, hB = 5.1 cm, tanA = .074,

Xp = 69 cm by virtue of Eqs. (3-34) and (3-30) respectively, the
dimensionless distance to the measuring station is

x* = 0.90, so that with Psz = .28, v* = 0.35. The nonlinear current
reduction factor is computed next using Eq. (4-93). With PSz and ng
known, Ao = 0.82 from Figure 4-7 while cg = -0.16 so that AZ = 0.53.
In view of Eq. (3-66) v, = 500 cm/sec, thus recalling Eq. (4-88),

v, = 35 cm/sec. The measured value is 28 cm/sec.
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APPENDIX II COMPUTER SUBROUTINES

Table II-1 lists input and output variables for subroutines used
to computerize the breaking wave iteration and the calibrated surf
zone friction factor of the present investigation. Table II-1 cites

called subroutines as well, and is followed by a FORTRAN IV listing

of the subroutines.
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Table II-1

Subroutine Input, Output and Calls

€91

SUBROUTINE INPUT OUTPUT CALLS COMMENT
ALPH YB,tanB ag DISTRA Modified Madsen empirical
breaking criterion
BWIL (v, a, e)G, tanp (y, a, 6, n)B ALPH Breaking wave iteration
DISTRA
SIN2
*
CELT o Cop CNOIDj, Dimensionless transitional
STOKES phase speed
*
CNOIDL Y0 n,c None Cnoidal dispersion and energy
transport function
*
DISTRA Y,0 n;c CELT Stokes-transitional-Cnoidal
CNOIDL dispersion and éenergy trans-
STOKES port function
<h>
FSURF Rw, Rs’ ks " fsz’fs’fw FWC Surf zone friction factor
< >
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Table II-1 (Continued)

SUBROUTINE

FWC

PWR
SIN2

STOKES

INPUT OUTPUT
R > £, f
w’s’” k ’ k s’ Tw
s s
X,y Xy
8 (deg) sin26
%
Y kh,c ,n

CALLS

PWR

None

None

None

COMMENT

Wave and current friction
factors

Power function
Trigonometric function

Linear dispersion and energy
transport function




PUNCTION ALPH(GANMB, TANB)
C ALPH IS THE EMPIRICAL BREAKING CRITERION
IF (GAMMB.LE.3.5) GO TO 10
IF (TANB.GE.0.10)GO TO 11
A=TANB
G0 TO 12
11 A=0.12
12 ALP=C.72%(1.046.4%A)
DO 14 I=1,1"
CALL DISTRA (GAMMB,ALP,
1 EN,CEL)
B=C ET*GAMMB*GA MMB
C= (0.80+5.0%A) *6.283/B
ASTO=) . 14*TA NH (C) *B
TAL=ABS(ASTO-ALP) /ALP
IF (TAL.LE.0.001)GO TO 15
14 ALP=ASTO
ALP=100.0
GO TC 15
10 ALP=0.0223%GANNB*GAMMB
15  ALPH=ALP
RETURN
END

SUBROUTINE BWI (GAMMG, ALPHG, TAN B, THG
1 GAMMB,ALPHB,THB, ENB)

C BWI IS THE BREAKING WAVE ITERATION
CALL DISTRA(GAMMG, ALPHG,
1 ENG,CELG)
B=SIN (THG* 0. 01745) /CELG
A=ALPHG*ALPHG *E NG *SI N2 (THG)
CU4=GAMMG/PWR (A, 0.25)
GAMNB=15.0
DO 12 I=1,10
ALPHB= ALPH (GAMMB,TANB)
CALL DISTRA (GAMMB, ALPHB,
1 ENB,CELB)
THB=57. 3*ARSIN (CELB*B)
A= ENB* SIN2 (THB)
STOR=SQRT (ALPHB) *C 4*PWR(A,0. 25)
TAL=AB S( (STOR-GAMMB) /G ANMB)
IF (TAL.LE.0.901)GO TO 15

10 GAMMB=(GAMMB +4.0*STOR) /5.0
GAMME=100.0

1S  RETURN
END

’
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FUNCTION CELT(ALPHA)
C CRLT COMPUTES TRA NSITIONAL DISPERSION
GAMMT=7.0+1.6/ALPHA
po 10 I=1,10
CALL STOKES (GAMMT,
1 HK,CELS,ENS)
CALL CNOIDL(GAMMT, ALPHA,
1 CELC,ENC)
TAL=ABS (ENC-ENS) /ENS
IF (TAL.LE.0.001)GO TO 11
1T GAMMT=GAMMT*ENC/ENS

CELT=100.0
GO TO 12 .
1 CELT=CELC
12 RETURN
END

SUBROUTINE CNOIDL (GAMMA,ALPHA,
1 CELC,ENC)
C CNOIDL ESTIMATES CELERTTY AND ENERGY TRANSPORT FUNCTION
C USING CNOIDAL THEORY
US=GAMMA *GAMMA *ALPHA
IF (US.LE.50.0) GO TO 10
C FIND UESELL NUMBER BY ITERATION ON A
A=0.50
DO 11 I=1,10
U=US#*(1.0+ALPHA*A)
C=ALOG (U)
D=C *C *C
E=C%C :
AST=0.00718493#%D-0. 175838%E+ 1. 5063 7#C~-3. 60339
UST=US* (1. 0+AL PHA*AST)
TAL=ABS ( (UST-U) /UST)
IF(TAL.LE. 0.091)GO TO 12
11 A=AST
ENC=100.0
CELC=100.0
GO TC 13
C CCMPUTE DISPERSION AND ENERGY TRANSPORT FUNCTIONS BY CURVE FITTING
12 CELC=SQRT (1.0+ALPAA*A) /GAMMA
ENC=8.0%* (0.00088233*%D-0.0144948%E+0.053364%C+0.075144)
GO TO 13
C SHMALL URSELL APPRCXIMATION
10  ENC=1.0-0.0016%US
CELC=1.0/GAMMA
13 RETUERN
END
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SUBROUTINE DISTRA (GAMMA,ALPHA,
1 EN,CEL)
C DISTRA COMPUTES CELERITY AND ENERGY TRA NSPORT
C USING STOKES-TRANSI TIONAL-CNOIDAL THEORY
CALL STOKES (GAMMA,
1 HK,CELS,ENS)
CALL CNOIDL(GAMMA, ALPHA,
1 CELC,ENC)
IF (ENS.GT.ENC) GO TO 10
EN=ENS
IF (GAMMA.LE.4.N".OR.ALPHA.LT.0.2)GO TO 11
A=CELT (ALPHA)
IF (A.GT.CELS)GO TO 13
11 CEL=CELS
GO TO 12
13 CEL=A
GO TO 12
10 EN=ENC
CEL=CFLC
12 RETURN
END

SUBROUTINE FSURF(BS,BW,RS,RW,TAND,THB,
1 PSZ,PW,PS)
C FSORF ESTIMATES SURF ZONE PRICTION FACTOR
CALL FWC(BS, BW,RS,RW,
1 PFW,FS)
C12=0, 52% TAN D* SIN (THB*0.01745) -FW
C13==1.0%),58%TAND*SIN (THB*0.0 1745) *F5
A= SQRT (C12%#C12-4 . 0%C13)
FSZ= (-1.0%C12+¢1) /2.0
RETURN
END
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SUBROUTINE FWC (BS,BW, RS, RW,
1 FW,FS)
C FWC COMPUTES JONSSON FK AND DARCY-WEISBACH FPS FOR TURBULENT FLOW
XW=ALOG (RW)
YW=ALOG (BW)
XC=A LOG (RS)
YC=ALOG (BS)
C DITERMINE FLOW REGIME
C=0. 863%XW-2.74
IF (YW.GE.C)GC TO 10
C POYGH TURBULENT
A=1. TU*YC+ 4. 32
FS=1.0/ (A*A)
A= 0. 037 1% Y W YW
B=0.79 1¢YW
FW=EXP (A-B-0.97)
G0 TO 11
C SMOOTH TURBULENT
10 A=0.018B4%XW*XW
B=0.66 *XW
FW=EXP (A-B+0.462)
IF (RS.GE.25007.0)GO TO 24
FS=0.0559/PWR(RS, 0.25)
GO TO 11
24 FS=0.027/PWR(RS,0.179)
11 CONTINUE
RETURN
END

FUNCTION PWR (X,Y)

C PWR RAISES X TO THE Y POWER
PWR=EXP (Y* ALOG (X))
RETURN
END
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PONCTION SIN2(TH)

C SIN2 COMPUTES SINE OF 2%TH
STH=SIN (TH*0.017453)
CTH=COS (TH *0 .0 1745 3)
SIN2=2.0%STH#CTH
RETURN
END

SUBROUTINE STOKES(GAMMA,
1 HK,CELS,ENS)
C STOKES ESTIMATES CISPERSION AND ENERGY TRANSPORT FUNCT ION
C USING LINFAR THEORY
A=GAMMA *GAMMA
IF (GAMMA.GT. 3. 54)GO TO 10
C DFEP WATER
HK=39. 48/A
CELS=7.159
ENS=0.50
GC TO 14
10 IF(GAMMA.3T.5.91)GO0 TO 11
C FIRST POWER KEGIUN
HK=).251+436.4/A
GO TO 13
11 IF (GAMMA.GT.20.5)GO TO 12
C SECOND POWER REGION
HK=5.8U4/GAMMA+ 10. 6/
GO TO 13
C SHALLOW WATER
12 HK=6.283/GAMMA
13 D=TANH (HK)
A=SQRT (D/HK)
CELS=A/GAMMA
B=0.5/ (A*A)
ENS=0.504B*(1.0~D*D)
14  RETURN
END
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