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Abstract

Marchenko inversion is a new way to invert seismic or electromagnetic data recorded during
geophysical surveys. The inversion method uses Marchenko theory. This is a recent devel-
opment which enables the retrieval of Green’s functions at any place in the subsurface. A
non-recursive Marchenko inversion method has already been introduced but in this thesis a
recursive Marchenko inversion method is implemented and analysed. A recursive scheme lies
at the center of this new method. In this thesis, the new method is implemented and tested on
a 1D subsurface model. The recursive scheme is first validated. This is done by computing a
reflection response with it and comparing it with a reflection response resulting from forward
modeling. After this, the accuracy of retrieved local reflection coefficients from the recursive
inversion method is determined. This is done by comparison with exact reflection coefficients
of the subsurface model. After this, several different parameters of the used subsurface model,
data computation and the recursive inversion method itself are investigated for their influence
on the accuracy of the inversion method. In particular interest is the effect of interval time
errors because these result in errors that can build up rapidly through the recursion. How-
ever, the method has a big advantage. It is shown that the recursive Marchenko inversion
method has a way to retrieve the magnitude of made interval time errors and correct for
these when interval times are overestimated. In this way the error build up is stopped. In the
end, it is shown that the new method delivers high accuracy results and has an advantage
in computational expense compared to the existing recursive Marchenko inversion method.
It is concluded that the new method shows promising prospects and that it is worthwhile to
investigate the method further.
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Chapter 1

Introduction

1-1 Background

Seismic imaging is a subject of exploration geophysics in which seismic data is being
recorded at the surface of a medium with the goal to create an image of this medium.
The main goal of creating this image is to gain an understanding of the structure of the
earth and find resources such as hydrocarbons. Older methods of seismic imaging used
only direct arrivals that are present in recorded data. These are arrivals that come from
wave fields that traveled along the fastest path possible to the surface after being reflected
at a certain point in the subsurface. A point of reflection lies at a boundary between
geological layers in the subsurface, and it is this boundary that is also called a reflector.
Multiple arrivals are wave arrivals that after reflecting due to a reflector didn’t take the
fastest route up to the surface where measurement takes place. Instead, these reflected
wave fields have traveled a slower path due to reflection back into the subsurface taking place.

Studies have been done for a long time to be able to predict internal multiple ar-
rivals. For example, in the paper [Hubral et al., 1980], the pattern of primary and multiple
reflections that are observed after the addition of an extra reflector in the bottom of a series
of reflectors was investigated.
More recently, ways to eliminate multiple arrivals such that only direct arrivals can be
used have been found. One way of doing this, is by the use of a least-squares matching
filter, in which a minimum-energy criterion is used to subtract predicted internal multiple
data [Berkhout and Verschuur, 2005]. This has been shown to work on real data in numerous
studies [Griffiths et al., 2011], [King et al., 2013], [Song et al., 2013], [Cypriano et al., 2015].
Another way to subtract predicted internal multiple arrivals is by using the third and higher
order terms in the the inverse scattering series (ISS) [Weglein et al., 1997] and [Matson et al.,
1999].
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2 Introduction

Multiple arrivals can also be used but then complications arise. In this case it is necessary to
have receivers around the whole medium which illuminate it from all sides [Oristaglio, 1989]
and [Fleury, 2012]. This is not the case in practice. To solve this, Green’s functions can be
used. A Green’s function is the response of a medium to an illuminating point or point source
at a specified location [Stakgold and Holst, 2011]. A novel way of retrieving these Green’s
functions, is by using Marchenko redatuming.

In short, Marchenko redatuming is a process in which wavefields are focused at a specified
point in a medium. A 1D focused wavefield in an unknown medium has been retrieved by
solving the Marchenko Equation [Rose, 2002]. The focusing point can act as a virtual source
or as a virtual receiver. The focusing functions that are responsible for creating a focusing
point are computed using the Marchenko redatuming equations from the reflection response.

The Green’s function can be retrieved with the focusing functions and the reflection
response. It has been shown that a Green’s function can be retrieved by constructing a
virtual receiver in a medium [Broggini et al., 2012]. A data driven wavefield focusing method
to retrieve the Green’s function was shown in [Broggini et al., 2014] and [Wapenaar et al.,
2014]. The use of these Green’s functions, measured at a virtual receiver in the subsurface,
to create an image of the subsurface is called Marchenko Imaging. So, in Marchenko
imaging, two wavefields are retrieved from the total reflection response. These are the
focusing wavefield and the Green’s function. Several studies into extending the formula-
tion to include free-surface multiples were done like [Singh et al., 2015] and [Singh et al., 2017].

Marchenko inversion is the inversion of seismic or electromagnetic data after reflection
coefficients of reflectors in a medium have been retrieved using Marchenko theory. These
local reflection coefficients of the target zone are retrieved using the focusing functions.
These reflection coefficient values are then used to invert for medium density and velocity of
layers in a medium in the case of seismic data. Marchenko inversion has been proven to be
possible by using a non-recursive scheme before in [Slob and Wapenaar, 2014] in which 1D
electromagnetic data recorded using GPR was used.

The existing non-recursive method of Marchenko inversion consists of first determining
the upgoing and downgoing focusing functions by solving the coupled Marchenko equations.
For solving these coupled Marchenko equations an unconditionally convergent iterative
method like LSQR can be used. In this existing method, both the upgoing and downgoing
focusing functions are computed at a range of imaging times, going through the subsurface.
One limitation of this method is the computational cost involved in generating focusing
functions at all depth levels of the subsurface.
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1-2 Objective

In this thesis, a new method of Marchenko inversion is investigated. This method makes use
of a recursive scheme that can be used to determine the focusing functions. The new method
of recursive Marchenko inversion will retrieve the local reflection coefficients of reflectors in
a target zone. In short, the methodology behind the new method can be summarized as
follows. First the coupled Marchenko equations are solved to retrieve the focusing functions
above a target zone and then the recursive scheme is used for retrieving the local reflection
coefficients of the reflectors in the target zone. It is expected that this recursive Marchenko
inversion method will result in a decrease in computational cost in comparison with the
existing, non-recursive Marchenko inversion method. This is because instead of generating
focusing functions at each point in the subsurface with an equation to solve each time, this
new method retrieves focusing functions at each deeper reflector in a direct computation
procedure.

The objective of this thesis is to develop, implement, validate and assess the new
recursive Marchenko inversion method.

1-3 Outline

The set up of this thesis, consisting of 4 components, is shown in Figure 1-1. The first com-
ponent, consisting of the the subsurface model and data computation, provides the reflection
response. The second component, consisting of both the existing and new Marchenko in-
version method, provides local reflection coefficients and the computational time. The third
component consists of comparisons between the new Marchenko inversion method and both
the existing method (denoted with C) and the exact solution (denoted with B). Furthermore,
the new Marchenko method is validated by comparing reflection responses computed with
both data computation and the recursive scheme (denoted with A). The last component con-
sists of the assumptions for this set up. These assumptions are related to the parameters
of the subsurface model(denoted with a), the data computation(denoted with b) and the
methods (denoted with c).

The thesis is structured as follows. First, the theory used is given in chapter 2. This theory
consists of existing Marchenko theory and the recursive scheme. In Chapter 3, methods used
for Marchenko inversion will be explained. In chapter 4, numerical results will be given.
These numerical results will both validate the new method and assess the accuracy of the
new method. This assessment will be based on comparisons of the new method with both the
existing method and the exact solution. Finally, in Chapter 6, this thesis will be concluded.
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Figure 1-1: Set up of the thesis
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Chapter 2

Theory

2-1 The Focusing Wavefield

Finding expressions for the focusing wavefield can be done by looking at a simple 3 layer
medium with 2 reflectors as shown in Figure 2-1 from [Slob et al., 2014].

Figure 2-1: Reflection and transmission responses in a three layer model. In (a), no focusing
takes place. In (b), focusing does take place. [Slob et al., 2014]
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6 Theory

In Figure 2-1, the distance between z0 and z1 is given by d1 = z1−z0. The corresponding one-
way travel time is given by t1 = d1/c1. Local reflection and transmission coefficients are given
by ri, τ

+
i and −ri, τ−i in the case of downgoing and upgoing incident waves respectively. In

Figure 2-1 (a), a normal incidence plane downgoing acoustic pressure wave, δ(t), is sent in just
above z0. The resulting upgoing field just above z0 consists of an infinite number of events.
The first two are primary reflections followed by a series of multiples [Slob et al., 2014]. The
total upgoing field is called the impulse reflection response, R(z0, t) The downgoing wavefield
below z1 consists of a direct arrival followed by multiples. This is called the transmission
response T+(z1, z0, t)
In Figure 2-1 (b), it can be seen that a wavefield is created that does not have any multiple
arrival anymore at z0 and thus only one event at z1. For this, a second downgoing wave has
to be sent in to eliminate a second downgoing event below z0 from occurring. The amplitude
of this wave is r0r1 and it reaches z0 at t = t1 [Slob et al., 2014]. Also, the incident wave is
time advanced with the one-way travel time t1. The result of these actions is that Figure 2-1
(b) creates a focused wavefield just below z1 at time zero. The two downgoing waves together
form the downgoing focusing wavefield. The general expression for the downgoing focusing
wavefield is the inverse of the transmission response. The upgoing focusing wavefield is the
resulting reflection response. This is shown below in Equation 2-1 and Equation 2-2. The
individual waves that form the focusing wavefield can be distinguished on the most right hand
side of Equation 2-1 and Equation 2-2.

f+
1 (z0, z1, ω) =

1

T+(z1, z0, ω)
=
eiωt1 + r0r1e

−iωt1

τ+
0 τ

+
1

(2-1)

f−1 (z0, z1, ω) =
R(z0, ω)

T+(z1, z0, ω)
=
r0e

iωt1 + r1e
−iωt1

τ+
0 τ

+
1

(2-2)

Important in Marchenko inversion is the knowledge that the latest event of the upgoing
focusing wavefield has the amplitude of the reflection coefficient of the reflector just above
the focusing point if the initial downgoing focusing function is an impulse. A unit amplitude
focus can be constructed by sending in the inverse of the transmission response. In this case,
the latest event of the upgoing focusing wavefield has the amplitude of reflection coefficient
of the reflector just above the focusing point divided by the transmission coefficients of the
reflectors above it. It is this amplitude focus that is called a focusing wavefield in the strict
sense of Marchenko redatuming.

To focus a wavefield, a finite number of waves has to be sent in. The number of
waves in the upgoing and downgoing focusing functions equals 2 to the power i, with i being
the number of reflectors minus one [Slob et al., 2014]. Looking at the equations above, it
can be seen that the division of the upgoing and downgoing focusing functions equals the
measured reflection response as shown in Equation 2-3.

R(z0, ω) =
f−1 (z0, z1, ω)

f+
1 (z0, z1, ω)

(2-3)

Also important is the knowledge that the focusing functions for focusing at a certain depth
level will be part of the focusing functions for a deeper depth level. Only the timing of the
events is changed because focusing always takes place at zero time. This also means that

September 19, 2018



2-1 The Focusing Wavefield 7

when the focusing depth level changes from just below a reflector to a lower level that is still
above the next reflector, the amplitudes of the events in the focusing functions stay the same.
Only the timing of the events is changed as a result of the focusing taking place at zero time.
This can be illustrated as shown in Figure 2-2 below.

Figure 2-2: Focusing between 2 reflectors. Blue denotes downgoing ray paths. Orange denotes
upgoing raypaths.

When focusing ∆t ci+1 below a reflector zi, the zero time changes to the new focusing depth.
This results in a time shift of ∆t of the events in the focusing functions in the time domain.
In the frequency domain this means that the focusing functions can be represented as shown
in Equation 2-4 and Equation 2-5.

f+
1 (z0, z1+c2∆t, ω) =

1

τ+
0 τ

+
1

eiω(t1+∆t) +
r0r1

τ+
0 τ

+
1

e−iω(t1−∆t) (2-4)

f−1 (z0, z1+c2∆t, ω) =
r0

τ+
0 τ

+
1

eiω(t1+∆t) +
r1

τ+
0 τ

+
1

e−iω(t1−∆t) (2-5)

The fact that focusing always takes place at zero time also means that when focus at a reflector
zi is achieved, the first event in the downgoing focusing function is timed at t = −td(zi, z0)
and the last event in the upgoing focusing functions is timed at t = td(zi, z0). This means
that the focusing functions are zero valued after t = |td(zi, z0)|
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8 Theory

2-2 Green’s Function Representation

Till now, the focusing functions were retrieved by solving the coupled Marchenko equations.
Before the coupled Marchenko equations can be formed, first, two wavefield retrieval functions
have to be defined. These are shown in the frequency domain in Equation 2-6 and Equation 2-
7.

f−1 (z0, zi, ω) +Gp,+(z0, zi, ω) = R(z0, ω)f+
1 (z0, zi, ω) (2-6)

[f+
1 (z0, zi, ω)]∗ −Gp,−(z0, zi, ω) = R(z0, ω)[f−1 (z0, zi, ω)]∗ (2-7)

In Equation 2-6, the Green’s function is retrieved that equals the impulse response caused
by a downgoing wave at the focusing level zi and is received at z0. Equation 2-7 shows the
retrieval of a Green’s function that equals the impulse response caused by an upgoing wave
at focusing level zi and is received at z0.

After transforming these equations to the time domain and rewriting them such that on the
left hand side only the Green’s function is present, they can be written as shown below in
Equation 2-8 and Equation 2-9.

Gp,+(z0, zi, t) = −f−1 (z0, zi, t) +

∫ t

t
′
=−td(zi,z0)

R(z0, t− t
′
)f+

1 (z0, zi, t
′
) dt (2-8)

Gp,−(z0, zi, t) = f+
1 (z0, zi,−t)−

∫ t

t′=−td(zi,z0)
R(z0, t− t

′
)f−1 (z0, zi,−t

′
) dt (2-9)

The Green’s function and reflection response are causal functions while the up and downgoing
focusing functions are acausal. The Green’s function is zero valued for t < td(zi, z0). Since
the focusing functions are zero valued for |t| > td(zi, z0), the Green’s function and focusing
functions can be separated in time with the direct travel time to the focusing depth.
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2-3 Coupled Marchenko Equations 9

2-3 Coupled Marchenko Equations

The coupled Marchenko equations are now constructed as follows. First, the downgoing
focusing function can be written as an addition of a first arrival of the transmission response
and a multitude of arrivals after it which is called the coda. This is shown in Equation 2-10
and Equation 2-11.

Ti =
i∏

j=0

τ+
j (2-10)

f+
1 (z0, zi, t) = T −1

i δ(t+ td(zi, z0)) +M+(z0, zi, t) (2-11)

Because M+(z0, zi, t) = 0 and f−1 (z0, zi, t) = 0 for |t| ≥ td(zi, z0) and G± = 0 for t <
td(z − i, z0) [Slob et al., 2014], Equation 2-8 and Equation 2-9 can be written as the coupled
Marchenko equations shown in Equation 2-12 and Equation 2-13.

f−1 (z0, zi, t) = T −1
i R(z0, t+ td(zi, z0)) +

∫ t

t′=−td(zi,z0)
M+(z0, zi, t

′
)R(z0, t− t

′
)dt
′

(2-12)

M+(z0, zi,−t) =

∫ t

t′=−td(zi,z0)
f−1 (z0, zi,−t

′
)R(z0, t− t

′
)dt
′

(2-13)

The focusing functions can be determined by solving the coupled Marchenko equations it-
eratively. In this thesis the focusing functions are generated by using LSQR which is an
unconditionally convergent iterative method.
This solver tries to solve a system of linear equations Ax = b if A is consistent and otherwise
attempts to solve the least squares solution x that minimizes ‖b−Ax‖2 In this system of
linear equations, x contains the upgoing focusing wavefield and the coda of the downgoing
focusing wavefield. A contains the reflection response. b contains the convolution of the first
arrival of the downgoing focusing wavefield and the reflection response. Since A and b are
known, x can be computed.
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10 Theory

2-4 Recursive Relations for Focusing Functions

A recursive scheme can be used to construct focusing functions for a focusing point at a
reflector. In a paper by [Robinson and Treitel, 1978], a similar recursive scheme was used to
find reflection coefficients.
The recursive scheme for constructing focusing functions is shown below in Equation 2-14

[
f+

1 (z0, zi, ω)
[f−1 (z0, zi, ω)]∗

]
=

1

τi

[
eiωti rie

−iωti

rie
iωti e−iωti

] [
f+

1 (z0, zi−1, ω)
[f−1 (z0, zi−1, ω)]∗

]
(2-14)

The recursive scheme can construct the focusing functions focused at a reflector given that the
focusing functions of the previous reflector are known. Also, the reflection and transmission
responses of the reflector have to be known together with the interval time of the reflector.
This means that this scheme is suitable for creating focusing functions for focusing points at
a reflector while the non-recursive method of solving the coupled Marchenko equations can
create focusing functions for a focusing point anywhere in the subsurface. It can be shown
that the recursive scheme results in correct focusing functions by for example looking at a two
layer model like in Figure 2-1. The starting focusing functions, f+

1 (z0, z0, ω) and f−1 (z0, z0, ω),
are given in Equation 2-15 and Equation 2-16.

f+
1 (z0, z0, ω) =

1

τ0
(2-15)

f−1 (z0, z0, ω) =
r0

τ0
(2-16)

This means that a unit amplitude focus will be achieved. The recursive scheme then results
in an upgoing and a downgoing focusing function focusing at z1 as shown in Equation 2-17
and Equation 2-18.

f+
1 (z0, z1, ω) =

1

τ+
0 τ

+
1

eiωt1 +
r0r1

τ+
0 τ

+
1

e−iωt1 (2-17)

f−1 (z0, z1, ω) =
r0

τ+
0 τ

+
1

eiωt1 +
r1

τ+
0 τ

+
1

e−iωt1 (2-18)

These equations are identical to Equation 2-1 and Equation 2-2. If now the model is extended
with one more layer and the focusing functions for depth level z2 were required to compute,
the previous retrieved focusing functions for depth level z1, Equation 2-17 and Equation 2-18,
can be substituted in the recursive scheme.
This results in the focusing functions shown in Equation 2-19 and Equation 2-20.

f+
1 (z0, z2, ω) =

1

τ2
eiωt2

[ 1

τ+
0 τ

+
1

eiωt1 +
r0r1

τ+
0 τ

+
1

e−iωt1
]

+
r2

τ2
e−iωt2

[ r0

τ+
0 τ

+
1

e−iωt1 +
r1

τ+
0 τ

+
1

eiωt1
]

=
eiω(t1+t2) + r0r1e

iω(t2−t1) + r0r2e
iω(−t1−t2) + r1r2e

iω(t1−t2)

τ+
0 τ

+
1 τ

+
2

=
1

T+(z2, z0, ω)
(2-19)
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f−1 (z0, z2, ω) =
r2

τ2
e−iωt2

[ 1

τ+
0 τ

+
1

e−iωt1 +
r0r1

τ+
0 τ

+
1

eiωt1
]

+
1

τ2
eiωt2

[ r0

τ+
0 τ

+
1

eiωt1 +
r1

τ+
0 τ

+
1

e−iωt1
]

=
r2e

iω(−t1−t2) + r0r1r2e
iω(t1−t2) + r0e

iω(t1+t2) + r1e
iω(t2−t1)

τ+
0 τ

+
1 τ

+
2

=
R(z0, ω)

T+(z2, z0, ω)
(2-20)

It is known that the reflection response recorded at the surface (z0) and the transmission
response for a source at z0 and a receiver at z2 generated by a unit amplitude plane wave are
given by [Goupillaud, 1961]. These are shown in Equation 2-21 and Equation 2-22.

R+(z0, ω) =
r + r1e

−2iωt1 + r2e
−2iω(t1+t2) + r0r1r2e

−2iωt2

1 + r0r1e−2iωt1 + r0r2e−2iω(t1+t2) + r1r2e−2iωt2
(2-21)

T+(z2, z0, ω) =
τ+

0 τ
+
1 τ

+
2 e
−iω(t1+t2)

1 + r0r1e−2iωt1 + r0r2e−2iω(t1+t2) + r1r2e−2iωt2
(2-22)

The general expression for the downgoing focusing wavefield is the inverse of the transmission
response and the upgoing focusing wavefield is the resulting reflection response. The focusing
functions Equation 2-19 and Equation 2-20 resulting from the recursive scheme can be used
to compute reflection and transmission responses (Equation 2-21 and Equation 2-22) that are
given in [Goupillaud, 1961].
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Chapter 3

Methods

3-1 Non-Recursive Method

The non-recursive method for Marchenko inversion can be schematically shown as in Figure 3-
1.

Figure 3-1: Schematic overview of the non-recursive Marchenko inversion method.

Looking at Figure 3-1, it can be seen that the non-recursive method used for Marchenko
inversion consists of first solving the coupled Marchenko equations. In this research always the
unconditionally convergent iterative LSQR method is used. Solving of the coupled Marchenko
equations results in focusing functions for a specified time. A local reflection coefficient is
retrieved by storing the final amplitude of the upward focusing function. Since it is not known
where the layer boundaries/reflectors are, it is necessary to solve the coupled Marchenko
equations at a number of times listed in an array. This means that in contrast with the
new recursive Marchenko inversion method, the non-recursive Marchenko inversion method
consists of solving the coupled Marchenko equations multiple times in a loop, storing the
final amplitude of the upward focusing functions each time. Problems arise when the time
step used for focusing is too big, causing a reflector to be skipped. This is illustrated in
Figure 3-2. As can be seen in Figure 3-2, a too large time step between focusing times will
result in a local reflection coefficient that cannot be retrieved by storing the final amplitude
of the upgoing focusing function. This means that the local reflection coefficient of this
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14 Methods

Figure 3-2: Illustration of a too large time step used to retrieve a local reflection coefficient, using
the non-recursive Marchenko inversion method. The reflection coefficients retrieved
and not retrieved are shown in green and red respectively. Only the amplitudes of
the upgoing focusing functions are depicted.

reflector will not be retrieved. To mitigate this, a small enough time step for focusing has
to be chosen. In this thesis, the non-recursive Marchenko inversion method used an array of
focusing times from ∆t till the two-way time of the deepest reflector in time steps of ∆t. It is
expected that this results in a higher computational cost for this method in contrast with the
recursive Marchenko inversion method which automatically jumps from reflector to reflector
in non-fixed time steps.

3-2 Recursive Method

In this thesis, a new recursive Marchenko inversion method is developed and implemented
in which the coupled Marchenko equations are solved first by the unconditionally convergent
iterative LSQR method. This results in created focusing functions for a focusing point above
a zone of interest. Then, by substituting the new recursive scheme in the wavefield retrieval
equation, given again in Equation 3-1, and rewriting it, the local reflection coefficients of the
reflectors below are determined in a down going progression.
In Equation 3-1, the wavefield retrieval equation is shown again.

R(z0, ω)f+
1 (z0, zi+1, ω) = f−1 (z0, zi+1, ω) +Gp,+(z0, zi+1, ω) (3-1)

Now the focusing functions expressions from the recursive scheme are substituted in Equa-
tion 3-1. The result is shown in Equation 3-2.

R(z0, ω)
[
f+

1 (z0, zi, ω)eiωti+1 + ri+1/τi+1)e−iωti+1 [f−1 (z0, zi, ω)]∗
]

=

f−1 (z0, zi, ω)eiωti+1 + (ri+1)e−iωti+1 [f+
1 (z0, zi, ω)]∗ + τi+1G

p,+(z0, zi, ω)
(3-2)
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3-2 Recursive Method 15

By rearranging the above equation to find an expression for the local reflection coefficient of
reflector i+ 1, Equation 3-3 is found.

ri+1 =
f−1 (z0, zi, ω)eiωti+1 −R(z0, ω)f+

1 (z0, zi, ω)eiωti+1 + τi+1G
p,+(z0, zi, ω)

R(z0, ω)e−iωti+1 [f−1 (z0, zi, ω)]∗ − e−iωti+1 [f+
1 (z0, zi, ω)]∗

(3-3)

Notice in Equation 3-3 that the numerator and denominator are Green’s functions that have
been shifted in time. This is shown in Equation 3-4.

ri+1 = −G
p,+(z0, zi, ω)

Gp,−(z0, zi, ω)
e2iωti+1 + τi+1

Gp,+(z0, zi+1, ω)

Gp,−(z0, zi, ω)
e2iωti+1 (3-4)

From Equation 3-4 it can be seen that calculation of ri+1 equals 2 terms that are both a
division of Green’s functions.The Green’s function Gp,+(z0, zi+1, ω) is not known at the time
of computation of ri+1 so this term we would like to be able to take out of the equation. Equa-
tion 3-4 can also be written in a form α(ω) ri+1 = β(ω) by multiplication with Gp,−(z0, zi, ω),
as shown in Equation 3-5.

Gp,−(z0, zi, ω) ri+1 = −Gp,+(z0, zi, ω)e2iωti+1 + τi+1G
p,+(z0, zi+1, ω)e2iωti+1 (3-5)

In the time domain the term τi+1G
p,+(z0, zi, ω)e2iωti+1 will become zero for times lower than

the direct travel time to the focus depth i+ 1 because the Green’s function is zero valued for
earlier times. Using this property, Equation 3-5 is transformed to the time domain and a time
window of −td < t < td is applied. This yields the expression shown below in Equation 3-6
with T = t+ 2ti+1.

ri+1 =
f−1 (z0, zi, T )−

∫ T
t′=−td(zi,z0)R(z0, T − t

′
)f+

1 (z0, zi, t
′
) dt

−f+
1 (z0, zi,−T ) +

∫ T
t′=−td(zi,z0)R(z0, T − t′)f−1 (z0, zi,−t′) dt

(3-6)

In the implementation of the method, an approximation has been made. This approximation
is that the reflection response (R) used in Equation 3-3 has been changed. The entries of R
have been replaced with zeros after a time of 2td in the time domain before R was transformed
into the frequency domain. This R is from now on denoted with R

′
. This means that (3-3)

is now an approximation shown in (3-7). This is because there are errors made by using the
same cutoff for all of R when transforming R

′
to the frequency domain.

∼ ri+1 =
f−1 (z0, zi, ω)eiωti+1 −R′(z0, ω)f+

1 (z0, zi, ω)eiωti+1

R′(z0, ω)e−iωti+1 [f−1 (z0, zi, ω)]∗ − e−iωti+1 [f+
1 (z0, zi, ω)]∗

(3-7)

ri+1 will be called a reflection coefficient function from now. In contrast with Equation 3-
3, the numerator and denominator of equation Equation 3-7 are now a subset of Green’s
functions because of the use of R

′
. They are denoted with Gp,+′(z0, zi, ω) and Gp,−′(z0, zi, ω)

These subsets of Green’s functions contain the first arrival of the real Green’s functions.
Equation 3-7 will be called the recursive scheme + wavefield retrieval equation from now on.
The result is that the reflection coefficient function can now be shown as in Equation 3-8

∼ ri+1 = −G
p,+′(z0, zi, ω)

Gp,−′(z0, zi, ω)
e2iωti+1 (3-8)
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The maximum amplitude of Equation 3-8 will, provided that a correct interval time is found,
always lie at zero time because the right interval time will shift the first arrival of the division
of the subset Green’s functions to time zero. The reflection coefficient of the reflector at i+ 1
is this maximum amplitude.
The found interval time ti+1 is not only used for the time shift in Equation 3-8 but also for
the creation of R

′
. This is because entries in R are (in the time domain) replaced by zeros

after the 2-way travel time to reflector i + 1. This means that when an overestimation of
interval time ti+1 takes place, the subset Green’s functions still contain the correct maximum
amplitude arrival. However, they are shifted too far in Equation 3-8 which causes the
maximum amplitude to lie at a negative times instead of at zero time. The size of the time
shift from zero time into negative time equals the exact amount of overestimation of ti+1.
In the case of an underestimation an interval time ti+1, the consequences are more severe.
In this case the subset Green’s functions do not contain the first arrival from reflector i + 1
because the reflection response used for computing the subset Green’s functions (R

′
) does

not contain enough data to include the first arrival from reflector i+ 1.

The theory outlined above translates in a methodology explained now. The recursive
Marchenko inversion method is schematically shown, in Figure 3-3.

Figure 3-3: Schematic overview of the recursive Marchenko inversion method.

The first iteration of the method makes use of the LSQR method to solve the coupled
Marchenko type equations and the recursive scheme + wavefield retrieval equation (Equa-
tion 3-7) to retrieve the first local reflection coefficient. The second till the final iteration will
create new focusing functions at a reflector with the recursive scheme (Equation 2-14) and
retrieve the local reflection coefficient of the next reflector by using Equation 3-7.

First the methodology in iterations 2 till N is explained. N is the total number of reflection
coefficients retrieved with the method. In these iterations, no coupled Marchenko equations
are solved. Only the recursive scheme (Equation 2-14), wavefield retrieval equation (Equa-
tion 3-1) and the recursive scheme + 1st wavefield retrieval equation (Equation 3-7) are used.
After a local reflection coefficient ri+1 is retrieved, the recursive scheme (Equation 2-14) is
used to compute focusing functions f+/− focused at zi+1. The wavefield retrieval function
(Equation 3-1) is used to compute the Green’s function after which it is transformed to the

September 19, 2018



3-2 Recursive Method 17

time domain resulting in Gp,+(z0 − c0t0, zi+1, t). The first arrival of the Green’s function is
picked with the pick 1st arrival algorithm. The interval time to the next reflector ti+2 is deter-
mined from the first arrival of the Green’s function. Finally the recursive scheme + wavefield
retrieval equation (Equation 3-7) is used to compute a new local reflection coefficient ri+1

and the next iteration is started.

The above explained iteration is visualized with ray paths shown in Figure 3-4. Also the next
iteration is shown, in Figure 3-5.

Figure 3-4: Second focusing point of the recursive Marchenko inversion Method. ’i’ equals
zero. Downgoing and upgoing focusing functions are depicted in blue and orange
respectively. The first arrival of the Green’s function is depicted in a blue dotted
line.

Figure 3-5: Third focusing point of the recursive Marchenko inversion method. ’i’ equals zero.
Downgoing and upgoing focusing functions are depicted in blue and orange respec-
tively. The first arrival of the Green’s function is depicted in a blue dotted line.

In these iterations, the focusing functions created with the recursive scheme do not need to

September 19, 2018



18 Methods

be shifted since each focusing point is situated at a reflector.

Now, the first iteration is explained. In this first iteration, there has been focused in
between two reflectors. Since the recursive scheme can only create focusing functions at a
reflector, this first iteration of the method is more complicated than iterations 2 till N as
explained before. First, the coupled Marchenko equations are solved with LSQR to retrieve
focusing functions for a focusing point at i + n∆t ci+1. This is a depth just above a target
zone. n is an integer that makes sure the point of focus is in between reflectors zi and zi+1

The focusing functions are substituted in equation Equation 3-1 to compute the Green’s
function (G+(z0 − c0t0, zi + n∆t ci+1)). From this Green’s function, the one-way travel time
from the focusing point at zi + n∆t ci+1 to the deeper lying reflector zi+1 is determined.
This is done with Equation 3-9.

ti+1 − n∆t =
tG+(first) − tfocus

2
(3-9)

In Equation 3-9 and Equation 3-10, tfocus denotes the focusing time, tG+(first) denotes the
time of the first arrival of the Green’s function and tf−(last) denotes the time of the last arrival
in the upgoing focusing function. From the upgoing focusingfunction, the one-way traveltime
from reflector zi to the focusingpoint at zi +n∆t ci+1 is determined. This is being done with
Equation 3-10.

n∆t =
tfocus − tf−(last)

2
(3-10)

The interval time ti+1 in the first iteration of the recursive method is now found by adding
the right hand sides of Equation 3-9 and Equation 3-10. Next, the up and downgoing focusing
functions for the focusing point zi + n∆t ci+1 are shifted back in time to level zi, using the
earlier found time of n∆t. This results in focusing functions for a focusing point at reflector
zi. The recursive scheme + 1st wavefield retrieval equation (Equation 3-7), is now used to
compute the reflection coefficient of reflector zi+1.

Figure 3-6: First focusing point of the recursive Marchenko inversion method. ’i’ equals zero.
Downgoing and upgoing focusing functions are depicted in blue and orange respec-
tively. The first arrival of the Green’s function is depicted in a blue dotted line.

The above explained first iteration is also shown in a visualization showing ray paths in
Figure 3-6.
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Chapter 4

Numerical Results

4-1 Processing Parameters

In this thesis, a 1D 11 layer model is used as a base subsurface model. The model properties
are shown in Table 4-1. Effectively it acts as a 10 layer model in simulations because the
11th layer is of a height representing infinity for the simulations. The subsurface model can
be changed by changing the heights, velocities and densities of the layers.

Layer 1 2 3 4 5 6 7 8 9 10 11

Velocity (m/s) 1500 1900 2100 1700 2100 2100 2100 2100 2500 2750 2900

Density (kg/m3) 1.5 2.25 1.75 1.43 1.75 1.93 1.7 2.11 2.11 2.25 2.30

Height (m) 75 117 99 85 111 75 123 151 163 221 8e7

Table 4-1: Base subsurface model parameters

The reflection coefficients of the layer boundaries, shown in Table 4-2, are computed as part
of a forward modeling step that only uses the subsurface model.

1 2 3 4 5 6 7 8 9 10

r -0.3103 0.0755 0.2037 -0.2037 -0.0489 0.0634 -0.1076 -0.0870 -0.0796 -0.0375

Table 4-2: Exact local reflection coefficients of the base subsurface model
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The equation for computing local reflection coefficients is shown in Equation 4-1.

r =
ρ2V2 − ρ1V 1

ρ2V2 + ρ1V 1
(4-1)

In Equation 4-1, ρ stands for the density in kg/m3 and V stands for the velocity in m/s of
a medium 1 and 2 with the reflector in between. This equation is only applicable in case
of waves hitting a reflector with normal incidence because then the relationship shown in
Equation 4-2 holds.

Z = ρV (4-2)

In Equation 4-2, Z stands for the acoustic impedance of a medium in Pa s/m3. The vertical
incidence assumption is used throughout this thesis as is the fact that the subsurface model
has piecewise constant acoustic impedances.
The total reflection response can be computed by forward modeling, taking into account the
subsurface model and data computation parameters. In this step there are several parameters
that can be changed. The geometry of the sources and receivers can be changed by setting
them at different heights in the subsurface, creating a free surface above in return. In this
case, the reflection coefficient of the free surface can be specified. The ghost effect can be
taken into account when simulating marine seismic surveys. The wavelet generated by the
sources can be changed with parameters such as the center frequency and the number of
frequencies sampling point. These parameters in turn also influence variables like the time
sampling interval ∆t. In the recursive Marchenko inversion method, created functions are
sometimes convolved with a Ricker wavelet. The base setting for these parameters assumed
no free surface effects and thus also no ghosting, meaning that the sources and receivers
were directly situated in the top of the first layer. A center frequency of 50Hz is chosen.
The number of frequency sampling points is set as 16*8192. The base settings for data
computation resulting in the total reflection response are shown in Table 4-3.

Parameter Value

Height of sources (m) 0

Height of receivers (m) 0

Reflection coefficient, Free Surface (-) 0

Wavelet center frequency (Hz) 50

Number of frequency sampling point (-) 16*8192

Table 4-3: Base data computation parameters

The result of these parameters is that the time step used for numerical modelling, ∆t, is of
size 8.3333e-04 seconds.
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4-1 Processing Parameters 21

The base recursive method parameters are selected to ensure that correct first arrivals in
the Green’s functions are picked. To ensure this, the pick first arrival algorithm, as shown
in Figure 3-3 is constructed with 6 conditions that have to be met for an amplitude in the
Green’s function to be picked as first arrival. Because the Green’s function has been convolved
with a Ricker wavelet, each amplitude arrival consists of a main lobe with side lobes. The
characteristics of these lobes is dependent on the Ricker wavelet chosen. The first condition
is that the side lobes must be less than 50 time samples away from each other. The second is
that the distances from the main lobe to the side lobes should not differ more than 30 percent.
The third condition is that the side lobes should have the same sign. The 4th condition is
that the side lobes have an opposite sign compared to the main lobe. The fifth condition is
that the side lobes should not differ more than 30 percent in amplitude. The sixth and final
condition is that the earliest main lobe with side lobes fulfilling the previous 5 conditions is
chosen as first arrival of the Green’s function. The parameters of the recursive Marchenko
inversion method can be summarized as shown in Table 4-4.

Parameter Value

Distance between side lobes (time samples) 50

Difference between side lobe to main lobe distances (percent) 30

Amplitude difference between side lobes (percent) 30

Table 4-4: Base recursive method parameters
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4-2 Validation of Recursive Scheme

In this section, the recursive scheme is used for generating focusing functions and the reflection
response as a result. This reflection response is then compared with the reflection response
from data computation.
The goal behind this is to numerically validate the recursive scheme, introduced in equation
Equation 2-14. As shown in the theory section, Equation 2-3, the total reflection response
equals the division of the downgoing and upgoing focusing functions. Computing this total
reflection response numerically by using the recursive scheme should yield the same function
as forward modeling of the reflection response. The base subsurface model and base data
computation parameters as shown before in table Table 4-1 and table Table 4-3, were used.
This means that no free surface was used, resulting in receivers and sources that are placed
on the first layer boundary. The starting focusing functions put into the recursive scheme
were specified as shown in Equation 4-3 and Equation 4-4.

f+
1 (z0 − c0t0, z0) =

1

τ0
eiωt0 (4-3)

[f−1 (z0 − c0t0, z0)]∗ = [
r0

τ0
e−iωt0 ]∗ (4-4)

Figure 4-1: Starting focusing functions for recursion with as goal to validate the recursive scheme.

From Equation 4-3 and Equation 4-4, it can be seen that the receivers and sources are located
on top of the first layer which is at a height of reflector z0 − c0t0. z0 is the height of the first
reflector and t0 is the one-way travel time through the first layer. This is shown in Figure 4-1.
In Figure 4-2, both the total reflection response created by forward modeling and the total
reflection response created with the new recursive scheme are shown. In Figure 4-2, it can be
seen that indeed, the two created total reflection responses are the same. After this validation
and demonstration it was concluded that the recursive scheme is suitable for creating focusing
functions and thus for implementation in the recursive Marchenko inversion method.
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4-3 Demonstration of Recursive Method 23

Figure 4-2: Total reflection response created by recursive scheme and data computation, shown
in red and dotted black lines respectively. Lower half is a zoomed in version of the
upper half.

4-3 Demonstration of Recursive Method

The new recursive Marchenko inversion method is demonstrated in two areas. These are
retrieved Green’s functions and reflection coefficient functions, with as objective to show
that the recursive method is working sufficiently.
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A figure showing a gather of all retrieved Green’s functions is shown in Figure 4-3.
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Figure 4-3: Gather of all retrieved Green’s functions by the recursive Marchenko inversion
method.

As can be seen in Figure 4-3, a clear relationship is visible in which each time there has
been focused at a deeper lying reflector, the retrieved Green’s function has it’s first arrival
at a later time which is to be expected since the travel time from the virtual source in the
subsurface to the surface level becomes longer. Also note that the final retrieved Green’s
function seems to contain only one arrival, the primary arrival, with no multiple arrivals
after it. In reality there are later arrivals but these have such small amplitudes that they are
not visible in the above figure.

Now, the reflection coefficient function plots that contain the retrieved reflection coef-
ficients are demonstrated. In Figure 4-4, the second retrieved reflection coefficient function
is shown. This is the reflection coefficient function containing the reflection coefficient of
reflector z2. As can be seen in Figure 4-4, the maximum absolute amplitude of the function
lies at time zero. This means that for this recursion, the correct interval time t2 was retrieved.
From the reflection coefficient function in Figure 4-4, the local reflection coefficient of 0.2
was retrieved for reflector z2.

September 19, 2018



4-3 Demonstration of Recursive Method 25

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Recording time (s)

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

R
e

fl
e

c
ti
o

n
 a

m
p

lit
u

d
e

X: 0

Y: 0.2

Figure 4-4: Second retrieved reflection coefficient function, containing the local reflection coef-
ficient of reflector z2.

Now, the influence of an interval time error on the created reflection coefficient function is
demonstrated. For this, the interval time t2 is being contaminated with either an over or an
underestimation of 4∆t. In Figure 4-5, the reflection coefficient function of reflector z2 is
plotted when the interval time t2 is contaminated with an overestimation of 4∆t. As can be
seen in the reflection coefficient function shown in Figure 4-5, the maximum amplitude has
been shifted away from time zero to a time of -0.00333 seconds. This is exactly 4∆t.

In Figure 4-6, the reflection coefficient function of reflector z2 is plotted when the in-
terval time t2 is contaminated with an underestimation of 4∆t. As can be seen in the
reflection coefficient function shown in Figure 4-6, there is no arrival present anymore that
has the value of the local reflection coefficient of z2 as amplitude.

September 19, 2018



26 Numerical Results

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Recording time (s)

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

R
e

fl
e

c
ti
o

n
 a

m
p

lit
u

d
e

X: -0.003333

Y: 0.203

Figure 4-5: Second retrieved reflection coefficient function, containing the local reflection coef-
ficient of reflector z2. Interval time t2 has been overestimated with 4∆t.
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Figure 4-6: Second retrieved reflection coefficient function, containing the local reflection coef-
ficient of reflector z2. Interval time t2 has been underestimated with 4∆t.
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4-4 Comparison between Recursive Method and Exact Solution

4-4-1 Base Model, Base Data Computation and Base Method Parameters

The local reflection coefficients retrieved with the recursive Marchenko inversion method
are compared with the exact local reflection coefficients from the subsurface model. This is
done under base subsurface model, data computation and recursive method parameters as
specified in Table 4-1, Table 4-3 and Table 4-4.
In Table 4-5, the picked first arrival times of the Green’s function retrieved by the pick first
arrival algorithm are shown.

1 2 3 4 5 6 7 8 9

time(s) 0.1592 0.2058 0.2583 0.3150 0.3333 0.4150 0.5008 0.5592 0.6542

Table 4-5: Picked first arrivals of the Green’s functions. Base subsurface model, data computa-
tion and recursive method parameters are used.

The found times in Table 4-5, correspond with each first arrival in the Green’s function
gather in Figure 4-3.

These first arrival times are then used to retrieve the interval times. They are shown
in Table 4-6, together with the exact interval times from forward modeling and percentage
errors.

t1 t2 t3 t4 t5 t6 t7 t8 t9

time exact (s) 0.0616 0.0471 0.0500 0.0529 0.0357 0.0586 0.0719 0.0652 0.0804

time approx(s) 0.0608 0.0471 0.0496 0.0529 0.0354 0.0583 0.0721 0.0650 0.0800

error(percent) 1.2 0.13 0.83 0.11 0.83 0.41 0.25 0.31 0.45

Table 4-6: Retrieved interval times, exact interval times and percentage errors. Base subsurface
model, data computation and recursive method parameters are used.

In Table 4-6, it can be seen that the retrieved intervaltimes t1 till t9 approximate the exact
interval times well. The percentage errors lie between 0.11 and 1.2 percent.

With these intervaltimes the local reflection coefficients are retrieved. In Figure 4-7
the retrieved approximated local reflection coefficients are shown together with the exact
local reflection coefficients. In Table 4-7, the approximated local reflection coefficients are
shown together with the exact reflection coefficients, absolute errors and percentage errors.

In Table 4-7, it can be seen that the retrieved local reflection coefficients approximate the
exact local reflection coefficients well. The relative errors lie between 0.15 and 5.2 percent
with a mean relative error of 3.0 percent and a standard deviation of 1.95. The absolute
errors lie between 0.0003 and 0.0039 with a mean absolute error of 0.0022 and a standard
deviation of 0.0012. This means that the spread in absolute errors is less than the spread of
percentage errors. This is due to the fact that the made absolute errors do not vary as much
as the sizes of the reflection coefficients that have to be retrieved.
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Figure 4-7: Approximated and exact local reflection coefficients. Base subsurface model, data
computation and recursive method parameters are used. Reflectors 1 till 10 on the
X-axis correspond to reflectors z0 till z9 respectively.

z1 z2 z3 z4 z5 z6 z7 z8 z9

r exact 0.0755 0.2037 -0.2037 -0.0489 0.0634 -0.1076 -0.0870 -0.0796 -0.0375

r approx 0.0715 0.2000 -0.2040 -0.0516 0.0649 -0.1067 -0.0842 -0.0771 -0.0395

abs error (-) 0.0039 0.0037 0.0003 0.0027 0.0015 0.0009 0.0027 0.0025 0.0019

error (percent) 5.2 1.8 0.15 5.5 2.4 0.86 3.1 3.1 5.1

Table 4-7: Approximated local reflection coefficients, exact local reflection coefficients and ab-
solute errors and percentage errors. Base subsurface model, data computation and
recursive method parameters are used.

4-4-2 Subsurface Model Parameter Variation

The recursive method is being compared with the exact solution while only varying subsurface
model parameters. The parameter variation of the subsurface model is specified as shown in
Table 4-8. Base data computation and base recursive method parameters are used.
As can be seen in Table 4-8, first the height of the layers is being varied by multiplying the
heights of the base subsurface model with factors 1 till 5. Then the density of the layers will
be varied by multiplying the densities of the base model with factor 0.75, 1 and 1.25.
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Parameters Subsurface Model Values

Heights of the model (m) 1 till 5 multiplied with the heights of the base model

Densities of the model (kg/m3) 0.75,1,1.25 multiplied with the densities of the base model.

Table 4-8: Subsurface model parameter variation

In Figure 4-8, a plot of the RMS error of the 9 retrieved local reflection coefficients is shown
for each factor that the heights of the base model have been multiplied with.
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Figure 4-8: RMS error of the 9 retrieved local reflection coefficients for base subsurface model
heights multiplied with factors 1 till 5. Base data computation and recursive method
parameters are used.

In Figure 4-8, it can be seen that increasing the model heights results in a stable horizontal
trend of RMS errors for the 9 retrieved local reflection coefficients. The RMS error value of
this horizontal trend is 0.0064 with a standard deviation of 0.0028. This is to be expected
since the recursive Marchenko inversion method is not sensitive to increasing times between
arrivals in the reflection response.
When multiplying the base model heights with a factor lower than 1, resolution problems
arise causing the method to not be able to retrieve any reflection coefficients. This is due
to the fact that the decreased distance between reflectors causes sampling problems when
the wavelength of the wavelet is too high to sample the shallow distance between reflectors
correctly.
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RMS errors of the 9 retrieved local reflection coefficients for each factor that the densities of
the base model have been multiplied with, are given in Table 4-9.

Factor multiplied with densities of the base model 0.75 1 1.25

RMS error of the retrieved 9 reflection coefficients 0.0025 0.0025 0.0024

Table 4-9: RMS error of the 9 retrieved local reflection coefficients for base subsurface model
densities multiplied with factors 0.75, 1 and 1,25. Base data computation and recur-
sive method parameters are used.

In Table 4-9, it can be seen that changing the densities of the base model by multiplying them
with factors 0.75, 1 and 1.25 results in stable RMS errors of the 9 retrieved local reflection
coefficients.
The factors 0.75 till 1.25 have been chosen to keep realistic density values for the different
layers of the model.

4-4-3 Data Computation Parameter Variation

The recursive method is being compared with the exact solution while only varying data
computation parameters. The parameter variation of the data computation is specified as
shown in Table 4-10. Base subsurface model and base recursive method parameters are used.

Parameters Measurement Values

center wavelet frequency (Hz) 20,30,40,50,60,70,80,90,100

Table 4-10: Data computation parameter variation

The wavelet center frequency is being varied from 20Hz to 100Hz in steps of 10Hz as
shown in Table 4-10

In Figure 4-9, the RMS error of the 9 retrieved local reflection coefficients is shown
for each different wavelet center frequency used for data computation.
In Figure 4-9, it can be seen that the center wavelet frequency does influence the RMS errors
for the 9 retrieved local reflection coefficients. After a center frequency wavelet of 40Hz
and higher is used, the RMS error stabilizes. For lower frequencies, the RMS error quickly
rises because of the too low frequency used to accurately sample the reflectors of the base
subsurface model.
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Figure 4-9: RMS error of the 9 retrieved local reflection coefficients for central wavelet frequen-
cies of 20 till 100 Hz. Base subsurface model and recursive method parameters are
used.

4-4-4 Recursive Method Parameter Variation

The influence of the recursive method parameters on the accuracy of the recursive Marchenko
inversion method compared to the exact solution is investigated now. Base subsurface model
and base data computation parameters are used. The parameter variation of the recursive
method is specified as shown in Table 4-11.

Parameters method Values

First focusing level of the method is located below reflector (-) z0 till z8

Time subtracted or added to second interval time (s) -10 till 10 times ∆t

Table 4-11: Recursive method parameter variation

Instead of changing the the parameters (Table 4-4), that the recursive method uses to find first
arrivals of the retrieved Green’s function, a timing error is added to the second interval time
t2 without being compensated and then the RMS error of the found 9 reflection coefficients is
computed. This is being done because the result of changing the parameters of the recursive
method is that an error is added to an interval time. It is the influence of one interval time
error on the RMS error of all the retrieved local reflection coefficients that is investigated.
In Figure 4-10, the RMS errors of the retrieved 9 local reflection coefficients are shown for
different errors of the second interval time, t2.
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The errors are being induced by either adding or subtracting a number of ∆t timing errors
to interval time t2.
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Figure 4-10: RMS error of the 9 retrieved local reflection coefficients for an over or an underes-
timation of the second interval time by 1 till 10 ∆t. Base subsurface model and
data computation parameters are used.

Error of the second interval time in ∆t -2 -1 0 1 2

RMS error of the retrieved 9 reflection coefficients 0.17 0.0041 0.0025 0.0033 0.16

Table 4-12: RMS error of the 9 retrieved local reflection coefficients for an over or underes-
timation of second interval time by 1 or 2 ∆t. Base subsurface model and data
computation parameters are used.

As can be seen in Figure 4-10 and Table 4-12, the RMS error of the 9 retrieved local
reflection coefficients quickly rises after an overestimation of more than 1∆t is being used
for the second interval time t2. Also it can be seen that the RMS error of the 9 retrieved
local reflection coefficients quickly rises after an underestimation of more than 1∆t is being
used for the second interval time t2. The lowest RMS error of the 9 retrieved local reflection
coefficients is achieved when there is no under or overestimation of t2 at all.

It can be concluded that since the recursive Marchenko inversion method uses a re-
cursive scheme, it is prone to error buildup with increasing focusing depth. This could easily
lead to a high error buildup if one interval time contaminated with an error is used.
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In the next part, it is investigated how the number of recursion loops influences the accuracy
of the retrieved reflection coefficients by the recursive method. This is being done by focusing
at increasingly deeper reflectors by solving the coupled Marchenko equations before recursion
takes place.
Changing the focusing level has as a result that less reflection coefficients can be retrieved
with the recursive method. This means that an ever smaller number of reflection coefficients
is retrieved. This means that the RMS error is being calculated of an increasingly smaller
number of absolute errors.

In Table 4-13, the RMS errors of the retrieved local reflection coefficients are shown
for a lowering of the first focusing level. Also the number of local reflection coefficients
retrieved by the recursive Marchenko inversion method is shown.

First focusing level z0 z1 z2 z3 z4 z5 z6 z7 z8

Number of r 9 8 7 6 5 4 3 2 1

RMS error 0.0025 0.0022 0.0028 0.0037 0.0037 0.0031 0.0035 0.0037 0.0030

Table 4-13: RMS errors of the retrieved reflection coefficients depending on first focusing level.
For clarification also the number of reflection coefficients that are used for RMS error
calculation is shown. This number of reflection coefficients equals the number of
recursion loops done by the method. Base subsurface model and data computation
parameters are used.

In Table 4-13, it can be seen that less recursion iterations result in stable RMS errors of the
retrieved local reflection coefficients. RMS errors stay lower than 0.0037. It can be concluded
from Table 4-13 that the recursive Marchenko inversion method retrieves low error results
independent of the number of recursion loops done. This is only true however, if the right
first arrival times of the Green’s function are found resulting in correct retrieved interval
times.
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4-5 Comparison between Recursive Method and Non-Recursive
Method

In this section, the local reflection coefficients that are retrieved by using the non-recursive
Marchenko inversion method are compared with the local reflection coefficients that are
retrieved by using the recursive Marchenko inversion method. Also the computational cost of
both methods will be compared. This will be done by running both inversion methods with
the base subsurface model, base data computation and base recursive method parameters.
Then the runtime of each method and the RMS errors of the 9 retrieved reflection coefficients
will be compared.

First, the RMS error of the retrieved reflection coefficients of reflector z1 till z9 from
the recursive Marchenko inversion method and the non-recursive Marchenko inversion
method, are being compared. The RMS errors are shown in Table 4-14. In Table 4-14, it

Recursive method Non-recursive method

RMS error of the retrieved 9 reflection coefficients 0.0025 0.0057

Table 4-14: RMS error of the 9 retrieved local reflection coefficients for both recursive and non-
recursive Marchenko inversion methods. Base subsurface model, data computation
and method parameters are used.

can be seen that the RMS error of the 9 retrieved reflection coefficients from the recursive
method are lower than the RMS error of the 9 retrieved reflection coefficients from the
non-recursive method.

The computational cost of both recursive and non-recursive Marchenko inversion methods
is also compared. This is done by running the 2 methods 3 times and comparing their run
times. The runtimes are shown in Table 4-15.

Run 1 2 3

Runtime non-recursive method (s) 123.0196 118.1946 112.3449

Runtime recursive method (s) 2.3006 2.4075 2.3432

Table 4-15: Runtimes of both recursive and non-recursive Marchenko inversion methods. Base
subsurface model, data computation and method parameters are used.

In Table 4-15 it can be seen that, as expected, the recursive Marchenko inversion method
has a much lower computational cost than the non-recursive Marchenko inversion method.
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Chapter 5

Conclusions

In this thesis, a recursive Marchenko inversion method has been successfully implemented
and analysed. This Marchenko inversion method uses a recursive scheme to focus at ever
deeper reflectors and retrieve reflection coefficients of these reflectors. It has been shown that
the method delivers high accuracy results. It has also been shown that the recursive method
has an advantage in computational expense compared with the existing, non-recursive
Marchenko inversion method. Certain assumptions have been made though for this new
recursive Marchenko inversion method. Among these are normal incidence of waves and
piecewise constant impedances through the subsurface model.

Since the recursive Marchenko inversion method uses a recursive scheme, error buildup is a
risk of this method. Error buildup will occur when a wrong interval time is found and used
for the recursion to move the level of focus to a deeper reflector.

To mitigate this risk of error buildup, it is important to have an algorithm that can
accurately pick first arrivals of the retrieved Green’s functions. This is since the first arrival
of the retrieved Green’s functions is the controlling factor in generating correct interval times.

However, the recursive Marchenko inversion method has a big advantage. It has been
proven that the recursive method can retrieve overestimations of interval timing errors and
then compensate these accordingly. This can be done by looking at the reflection coefficient
function. This is a new function found in this thesis. An overestimation of an interval time
results in a time shift of the highest amplitude of this function away from zero time into
negative times. This time shift has the exact magnitude of the overestimation of the interval
time. It is this knowledge that is used to compensate for overestimations of the interval
times. This in turn prevents errors to build up through the recursion. Because of the fact
that only overestimation magnitudes can be found in the reflection coefficient function, the
recursive Marchenko inversion method always uses an overestimation of the interval times
and uses the reflection coefficient function to correct these interval times when necessary.
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In the numerical results of this thesis, it has been shown that the absolute errors of the
retrieved local reflection coefficients do not vary as much as the magnitude differences
between the reflection coefficients that are being approximated. This results in a smaller
spread in exact errors compared to the spread in percentage errors made by the recursive
method.

It has also been shown that the accuracy of the found local reflection coefficients by
the recursive Marchenko inversion method is stable under subsurface model variability
and data computation variability as long as resolution is sufficient for the sampling of the
subsurface model.

Finally and most importantly, the accuracy of the recursive Marchenko inversion method was
tested under recursive method variability. In this section, the influence of not compensated
interval timing errors on the RMS error of the found reflection coefficients has been analysed.
It has been found that over and underestimations of the interval time used for recursion
result in rapid error build up through the recursion.

For the future it may be interesting to implement the recursive Marchenko inversion
method in a more realistic data computation environment in which a free surface of
acquisition is modeled. Also the method can be implemented in 2D. A third possibility that
can be explored is the implementation of the method on electromagnetic GPR data.
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