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A B S T R A C T   

In this paper, 871 data were collected from literature and trained by the 4 representative machine learning 
methods, in order to build a robust compressive strength predictive model for slag and fly ash based alkali 
activated concretes. The optimum models of each machine learning method were verified by 4 validation metrics 
and further compared with an empirical formula and experimental results. Besides, a literature study was carried 
out to investigate the connection between compressive strength and other mechanical characteristics. As a result, 
the gradient boosting regression trees model and several predictive formulas were eventually proposed for the 
prediction of the mechanical behavior including compressive strength, elastic modulus, splitting tensile strength, 
flexural strength, and Poisson’s ratio of BFS/FA-AACs. The importance index of each parameter on the strength 
of BFS/FA-AACs was elaborated as well.   

1. Introduction 

During the past decades, promoting the utilization of blast furnace 
slag and fly ash based alkali activated concretes (BFS/FA-AACs) has 
gained increasing attention because it can alleviate carbon dioxide 
footprint and reduce waste disposal [1–3]. Nowadays, BFS/FA-AACs 
using sodium hydroxide and sodium silicate as alkali activated solu
tion is the most widely investigated in the academic field. It maximizes 
the potential of all raw materials and creates concrete with the best 
overall performance [4–9]. 

Despite the advantages above, the compressive strength of BFS/FA- 
AACs approaches steady at 90 d with a probability of slightly chang
ing later, compared with the 28 d strength development period for 
Portland cement concrete (PC concrete)[10]. Since it takes a long time 
for BFS/FA-AACs to achieve stable mechanical properties, the impor
tance of strength prediction cannot be overemphasized. Accurate me
chanical properties predicted methods of BFS/FA-AACs could effectively 
avoid waste of time, labor, and raw materials during the mix design 
process. However, there is no literature report on it by far. Therefore, an 
urgent task is to put forward robust mechanical properties prediction 
models for BFS/FA-AACs. 

Studies have shown that the composition and concentration of alkali 

activators and components, as well as the quality of precursors, will 
affect the performance of slag and fly ash-based alkali-activated mate
rials (BFS/FA-AAMs) [11,12]. Ouyang et al. [13] found that increasing 
sodium silicate modulus from 0 − 1.5 can improve the compressive 
strength of slag and fly ash based alkali activated paste (BFS/FA-AAPs). 
However, further increases from 1.5 − 2 could result in a decrease in 
strength due to the inhibition of the reaction process. Ramagiri et al. 
[14] reported that increasing BFS content from 0− 50 % is associated 
with higher compressive strength of BFS/FA-AACs. Huseien et al. 
revealed that the splitting tensile strength and flexural strength of BFS/ 
FA-AACs are better with higher BFS content due to the formation of 
more hydration products [15]. Although the results cannot be directly 
compared due to the inconsistent parameters in different literature and 
the combined effect of a large number of factors, the continuous publi
cations make it possible to employ machine learning algorithms in 
compressive strength prediction. 

Machine learning algorithms can build a predictive method based on 
a big data set without understanding the complex physical mechanism, 
which still has good accuracy and generalization ability, e.g. the artifi
cial neural network, the support vector machine, the Gaussian regres
sion method, the regression tree, the random tree, and the gradient 
boosting regression tree [16,17] Among all machine learning methods, 
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the random tree, the regression tree, the artificial neural network, and 
the gradient boosting regression tree are effective methods in evaluating 
the compressive strength of PC concrete [18–22]. The three tree-based 
regression methods are adopted to show the increasing improvement 
of the performance of the tree-based regression methods from single tree 
regression model to the random tree model, then to the more advanced 
gradient boosting regression tree. It can also be regarded as a quanti
tative comparison among the three tree-based methods, as well as a 
proof of that a more advanced method can result in a better result. On 
the other hand, the artificial neural network can be adopted as a 
representative of the other nonlinear regression models, because it 
usually shows almost the best performance in the other methods or it has 
a strong performance for nonlinear regression. Note that many kinds of 
machine learning methods with different degrees of accuracy class can 
be adopted to model the mapping relationship between the inputs and 
the outputs. 

Given this, several machine learning studies have been done to 
establish the compressive strength predictive method of alkali-activated 
materials as well. For instance, Nazari et al. collected 399 data and 
developed a compressive strength predictive method for metakaolin- 
based alkali-activated concrete by artificial neural networks [23]. 
Nguyen et al. studied 355 data and proposed a compressive strength 
predictive method for fly ash-based alkali-activated materials based on a 
deep neural network and deep residual network [24]. Gomaa et al. built 
a compressive strength predictive method for fly ash-based alkali-acti
vated materials by random forest and regression tree with 180 data [25]. 
Although there have been some attempts, the selected input parameters 
were either too numerous or too complicated to be used as mix design 
factors, and the databases were not sufficient to provide a robust pre
dictive model. Regarding BFS/FA-AAMs, none of the existing studies 
investigated the compressive strength predictive method due to its un
clear decisive factors. 

The control factors have been extracted from the reaction mecha
nism point of view. It is revealed that these factors could also be the 
decisive parameters of BFS/FA-AAMs (including paste, mortar, and 
concrete) [26–28]. It provides a basis for machine learning and a 
guarantee of accuracy. Once a robust compressive strength prediction 
model of BFS/FA-AACs is built, the prediction models for the other 
mechanical properties (tensile strength, elastic modulus, etc.) of BFS/ 
FA-AACs will be achieved with relationships. With this concept, in 
addition to building up the compressive strength prediction model of 
BFS/FA-AACs, it is meaningful to clarify the connections between 
compressive strength and other mechanical behaviors of BFS/FA-AACs. 

In this paper, four representative machine learning methods are used 
to fit the 871 data collected from the existing literature and build pre
dictive models. By validation and comparison, a robust compressive 
strength predictive model for BFS/FA-AAMs has been developed. The 
connections between compressive strength and other mechanical char
acteristics (Poisson’s ratio, splitting tensile strength, elastic modulus, 
and flexural strength) have been quantitatively clarified, and the pre
dictive formulas for the other mechanical behaviors of BFS/FA-AACs 
were proposed. Moreover, the importance index of each model param
eter on the compressive strength of the BFS/FA-AAMs is derived, which 
contributes to the mix design approaches of BFS/FA-AAMs. 

2. Machine learning procedure 

2.1. Collection of the BFS/FA-AAM database 

A large database with significant variations in both input (control 
factors) and output (compressive strength) was built from the literature. 
In total, 871 data (871 mix proportions of BFS/FA-AAMs and their 
corresponding compressive strength) were collected [10,14,15,30–51]. 
Literature characterizing geopolymers and alkali-activated materials 
were studied. Concrete, paste, and mortar are all included in the data. 
The chosen mix proportion ranges in compressive strength from 0.34 to 

117.26 MPa, in Na2O/b ratio from 1.3 % to 14.41 %, in SiO2/Na2O ratio 
from 0 to 2.63, in w/b ratio from 0.22 to 0.73, in curing time from 1 to 
180 days, and in ambient curing temperature. The 5 input parameters 
have been proven of the control factors of the compressive strength of 
BFS/FA-AAM [26–28]. It is worth noting that the compressive strength 
of BFS/FA-AAM is predominated by the strength of paste as it is the 
weakest region. The interfacial transition zone BFS/FA-AAM is reported 
to be denser, more cohesive, and uniform because the bonding of 
aggregate and paste is improved by the soluble Si and expansive Al-free 
gels are less generated [52–58]. 

The objective is to learn and analyze the data with 4 machine 
learning models, to examine all the possible effective machine methods 
reported in the literature, and to filter out the most accurate method. 
Specifically, the compressive strength of BFS/FA-AAMs was set as the 
target (output Y), which is a function of the following five input pa
rameters: Na2O/b (input X1), SiO2/Na2O (input X2), w/b (input X3), 
BFS/b (input X4), and curing time (input X5). Among these parameters, 
the Na2O/b ratio refers to the mass of the Na2O component to the mass 
of the BFS and FA ratio; the SiO2/Na2O ratio refers to the mass of the 
SiO2 component to the mass of the Na2O component ratio; the w/b ratio 
refers to the mass of water to the mass of BFS and FA ratio; the BFS/b 
ratio refers to the mass of BFS to the mass of BFS and FA ratio. 

According to previous research, the input parameters of BFS/FA- 
AAMs (curing in ambient temperature) are the most representative 
factors of compressive strength [26,27]. Although different studies re
ported different mix design parameters (eg: NaOH/Na2SiO3 ratio, l/b 
ratio, w/Na2O, Na2SiO3/b ratio, curing time, etc.) and different chem
ical compositions of raw materials (eg: the molar ratio of Na2SiO3 and 
NaOH concentration,), all the mix proportions were eventually trans
ferred to the 5 control factors by calculation. The variable statistical 
information and the distributions are presented in Table 1 and Fig. 1, 
respectively. 

2.2. Gradient boosting regression tree 

The gradient boosting decision tree, as an individual learning algo
rithm, is one of the widely used boosting approaches [59–62]. The 
concept behind boosting ensemble learning is to integrate several inef
fective weak learners into one powerful strong learner for prediction. At 
each step, a subsequent model (weak learner) related to an individual 
learning algorithm is created to boost training cases that are not well 
predicted by the previous weak learner. Through the continuous revi
sion of the model, a strong learner could be eventually formed by the 
aggregation of the weak learners. In this research, the decision tree al
gorithm was adopted as the weak learners, The gradient boosting 
regression trees model (GBRT) was utilized for regression, and the 
negative gradient of the loss function was applied. The procedure con
cerning the GBRT model is illustrated in Fig. 2. 

Generally, GBRT could predict the output value (compressive 
strength) for a given input (control factors) by Eq. (1). 

Y ≈ Ŷ = FM(X) =
∑M

m=1
hm(X, θm) (1) 

In which: Y is the target output value, X is the given input, hm is an 
estimator (or a weak learner), ̂I¸ is the fixed size of the regression tree, M 
is the total number of weak learners. 

A classic GBRT in the academic field is a regularization technique 
that scales each weak learner’s contribution, as shown in Eq. (2) [63]. 
This formula adds a learning rate to adjust the gradient descent pro
cedure’s step size. Generally, The total number of weak learners needed 
to maintain a steady training error and a low test error increases with 
decreasing learning rate and decreases test error [61]. It has been rec
ommended to choose the total number of weak learners by early halting 
and to set the learning rate lower than 0.1 [63]. 
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Fm(X) = Fm-1(X)+ Î½hm(X, Î¸m) = Ŷ (2) 

In which: ν is the learning rate; 
In this research, a newly add weak learner hm is fitted at each iter

ation until the regression times reach the total. To minimize a sum of 
losses regarding the prior ensemble prediction value, hm is fitted ac
cording to Eq. (3) [62]. By default, the initial predictive value (F0) is 

chosen as a constant that minimizes the loss. For a least-squares loss, it is 
given by the mean of the compressive strength of BFS/FA-AAMs. 

hm = Y-Fm-1(X) = argmin
hm

Lm = argmin
hm

∑n

i=1
l(yi, Fm-1(xi)+ Î½hm(xi, Î¸m) )

(3) 

In which: Lm is the sum of the loss, l(yi, F(xi)) is the least-squares loss. 
By using a first-order Taylor approximation at Fm-1(xi), the least- 

squares loss can be approximately calculated (see Eq. (4)).  

Considering Eq. (3) and Eq. (4), the hm could be eventually calculated 
with Eq. (5) 

Table 1 
Statistical information of the collected data.  

Variable Name Unit Min. Max. 

Input X1 Na2O/b % 1.30 [38] 14.41 [30] 
Input X2 SiO2/Na2O – 0.00 [45] 2.63 [46] 
Input X3 w/b – 0.22 [32] 0.73 [48] 
Input X4 BFS/b – 0.00 [10,14,29,32,34,35,38] 1.00 [10,36,37,39,43–46,48] 
Input X5 Curing time days 1.00 [10,29,31] 180.00 [32,50] 
Output Y Compressive strength MPa 0.34 [34] 117.26 [10] 

Note: the Na2O/b ratio refers to the mass of the Na2O component to the mass of the BFS and FA ratio; the SiO2/Na2O ratio refers to the mass of the SiO2 component to 
the mass of the Na2O component ratio; the w/b ratio refers to the mass of water to the mass of BFS and FA ratio; the BFS/b ratio refers to the mass of BFS to the mass of 
BFS and FA ratio. 

Fig. 1. Statistical distributions of both input and output variables.  

l(yi,Fm− 1(xi) + hm(xi, θm) ) ≈ l(yi,Fm− 1(xi) )+ νhm(xi, θm)[∂l(yi,F(xi) )/∂F(xi) ]F=Fm− 1
(4)   
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hm ≈ argmin
hm

∑n

i=1
{l(yi,Fm− 1(xi) ) + νhm(xi, θm)gi } (5) 

The quantity gi = [∂l(yi, F(xi) )/∂F(xi) ]F=Fm− 1 
is the derivative of the 

loss concerning its second parameter at Fm-1(X). For any given Fm-1(X) in 
a closed form, it could be calculated since the loss is differentiable. When 
the constant terms are removed in Eq. (5), a simplified calculation of hm 
could be obtained (see Eq. (6)). 

hm ≈ argmin
hm

∑n

i=1
νhm(xi, θm)gi (6) 

The weak learner hm is fitted to anticipate the negative gradients of 
the samples at each iteration. If hm(xi, Î¸m) at each iteration is fitted to 
predict a value that proportionates to the negative gradient -gi, the weak 
learner could be minimized. Each iteration involves updating the gra
dients, which is known as gradient descent in a function space. A 
regression tree can partition the X region into disjoint regions Rk,m (k =
1, 2, …, K) at each iteration m. This is presuming the weak learner 
hm(xi, Î¸m) is a K terminal node regression tree. A separate constant 
value could be predicted for each region based on a least-squares split
ting criterion and a top-down, best-fit method [58]. Therefore, 
hm(xi, Î¸m) could be calculated by Eq. (7). 

hm(xi, θm) =
∑K

k=1
ŷk,mI

(
X ∈ Rk,m

)
(7) 

In which: ŷk,m is the mean fitted values of each region Rk,m, I is the 
indicator function. 

For the kth leaf region, the optimized value for ŷk,m could be calcu
lated by Eq. (8). 

ŷk,m = argmin
ŷ

∑

xi∈Rk,m

l
(
yi,Fm− 1(xi) + ŷk,m

)
(8) 

Accordingly, an updated stronger learner at the mth iteration could be 
expressed by Eq. (9). 

Fm(X) = Fm− 1(X)+ νhm(X, θm) = Fm− 1(X)+ ν
∑K

k=1
ŷk,mI

(
X ∈ Rk,m

)
(9) 

After M iteration, the GBRT model can be obtained, as shown in Eq. 
(10). 

Ŷ = FM(X) =
∑M

m=1

∑K

k=1
νŷk.mI

(
X ∈ Rk,m

)
(10) 

Based on the above algorithm, a Python module called Scikit-learn 
[64] was used in this research to create the GBRT model. It integrates 
various methods for medium-scale applications [64]. The implementa
tion of the GBRT model can be summed up as follows:  

1) To divide the collected database into a training set (80 % of the data) 
for developing the model, and a testing set (the rest 20 % of the data) 
for evaluating the model [59,60,65].  

2) To train the weak learners (regression trees) with the training set. To 
assess the effectiveness of the trained model with the testing set. 
Eventually, to obtain the GBRT model with an ensemble of amounts 
of weak learners.  

3) To apply the GBRT model into practice. 

The hyper-parameters for the GBRT model, which may significantly 
affect its performance, cannot be directly learned in the training process. 
These hyper-parameters include the number of weak learners, the 
learning rate, the maximum depth of the tree, the maximum number of 
leaf nodes, the minimum number of samples needed to be at a leaf node, 
and the minimum number of samples needed for splitting an internal 
node. Nonetheless, they could be tuned through the application of the 
grid search method. Specifically, the ranges of these hyper-parameters 

Fig. 2. Illustration of the GBRT model.  

Fig. 3. 10-fold cross-validation.  
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could be predefined and the optimal parameter in the grid of the ranges 
could be further selected with a 10-fold cross-validation approach, 
which is known for evaluating the model effectiveness (see Fig. 3). In 
this research, the following ranges were predefined for the hyper- 
parameters concerning the GBRT model: the number of weak learners 
[2:2:500], the learning rate [0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5], the 
maximum depth of the tree [1:1:10], the maximum number of leaf nodes 
[2:1:20], the minimum number of samples required to be at a leaf node 
[1:1:20], and the minimum number of samples needed for splitting an 
internal node [2:1:20]. The training set was further divided evenly into 
10 subsets, in which 9 subsets were utilized to train the model, and the 
last subset was used for validation. As each lop, 10 GBRT models were 
obtained, and the average of the validation values was calculated and 
reported as an output. By comparison, the optimal hyper-parameters 
were selected and further combined to build the best GBRT model. 

2.3. Random forests 

An ensemble method called random forests (RF) fits numerous de
cision trees and addresses both classification and regression issues on 
diverse sub-samples of the dataset. To increase the forecast accuracy and 
prevent over-fitting, the individual tree’s averaged prediction is 
employed. Previous researchers have shown that RF is an effective 
machine learning technique for prediction without over-fitting based on 
the law of large numbers [60,66–68]. Compared with the boosting 
technique of GBRT, the bagging technique is adopted in RF [68]. 

To develop an RF model for predicting the compressive strength of 
BFS/FA-AAMs, 80 % of the data (training set) was utilized to train the RF 
model, while the rest 20 % of the data (testing set) was adopted for 
validation. Scikit-learn [64] was used to develop and tune the RF model. 
To tune the hyper-parameters in the training stage, the grid search 
method combined with 10-fold cross-validation was adopted. In total 
five hyper-parameters were tuned including the number of regression 
trees, the maximum depth of the tree, the maximum number of leaf 
nodes, the minimum number of samples required to be at a leaf node, 
and the minimum number of samples needed for splitting an internal 
node. The predefined grids for these five parameters were set as 
[2:2:200], [1:1:10], [2:1:20], [1:1:20] and [2:1:20], respectively. 

2.4. Regression tree 

A non-parametric supervised learning technique known as an indi
vidual regress tree (RT) is conceived of as a piecewise constant 
approximation [67,69,70]. In this research, 80 % of the data (training 
set) was adopted for training the RT model, while the rest 20 % of the 
data was used as the testing set. Scikit-learn [64] was used to create an 
RT model. The grid search method was used in conjunction with 10-fold 
cross-validation to fine-tune the hyper-parameters in the training stage. 
Four parameters were tuned, which include: the maximum depth of the 
tree, the maximum number of leaf nodes, the minimum number of 
samples required to be at a leaf node, and the minimum number of 
samples needed for splitting an internal node. The predefined grids for 
the four parameters were set as [1:1:10], [2:1:20], [1:1:20] and 
[2:1:20], respectively. 

2.5. Artificial neural network 

Artificial neural network (ANN) is an approach for tackling complex 
problems through the use of nonlinear data-driven models [60,71–73]. 
The ANN toolbox in MATLAB (nftool) was adopted in this research 
[73,74]. To resolve multi-dimensional mapping issues, a feed-forward 
network with two layers which has sigmoid hidden neurons and linear 
output neurons was fitted. The Levenberg-Marquardt backpropagation 
algorithm was adopted to adjust the connection weights and bias values 
during training. 80 % of the data were applied for training (training set), 
10 % were employed for validation (validating set), and the rest 10 % 

were utilized for testing (testing set). 

2.6. Model validation 

To determine the predictive effectiveness of the models, the four 
widely used metrics were adopted to quantify their performance, 
including coefficient of determination (R2), root mean squared error 
(RMSE), mean absolute percentage error (MAPE), mean absolute error 
(MAE), as presented in Eqs. (11)–(14) [60,68]. 

R2 = 1-
∑N

i=1

(
yPredicted, i-yTested, i

)2/∑N

i=1

(
yTested, i-yTested

)2 (11)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1

(
yPredicted, i-yTest, i

)2/N

√
√
√
√ (12)  

MAPE =
100\%

N
∑N

i=1

⃒
⃒yPredicted, i-yTested, i

⃒
⃒
/

yTested, i (13)  

MAE =
∑N

i=1

⃒
⃒yPredicted, i-yTested, i

⃒
⃒
/

N (14) 

In which: yPredicted, i is the predictive value, yTested, i is the experi
mental value,yTested is the average value of the experimental value, and N 
is the total number of samples. 

The coefficient of determination (R2) is a measurement of how well 
the regression line approaches the actual data. A higher value between 
0 and 1 is associated with the stronger explanatory power of the 
regression model. The discrepancy between the predictive value and the 
experimental value is represented by the sample standard deviation as 
the root mean square error (RMSE). The disparity between them in
creases as the RMSE value increases. Due to its intuitive interpretation 
with regard to relative error, mean absolute percentage error (MAPE) is 
frequently employed as a loss function for regression issues. The error 
between two observations reflecting the same occurrence is measured by 
mean absolute error (MAE). A high-precision model is normally asso
ciated with low MAPE and MAE values. 

3. Results and discussions 

3.1. Compressive strength prediction 

3.1.1. Machine learning models 

3.1.1.1. Compressive strength prediction by the GBRT model. Regarding 
the GBRT model, the following optimized hyperparameters were 
determined by the grid search method: the number of weak learners is 
500, the learning rate is 0.1, the maximum depth of the tree is 4, the 
maximum number of leaf nodes is 6, the minimum number of samples 
required to be at a leaf node is 11, and the minimum number of samples 
needed for splitting an internal node is 9. It is known that a GBRT model 
can reach better performance if more weak learners are incorporated. As 
indicated in Fig. 4(a), the RMSE values during the training stage (loss 
function) decrease with the addition of more weak learners (individual 
regression tree), which represents a better prediction. However, the 
increase in performance is negligible after the number of weak learners 
reaches 400. Therefore, the final optimized hyper-parameter for the 
number of weak learners was selected as 400. The R2, RMSE, MAPE, and 
MAE of the testing set are 0.94, 5.58, 14.2, and 3.97, respectively. The 
values for R2 are approaching unity and the values for RMSE, MAPE, and 
MAE are small, reflecting a satisfied performance of the GBRT model. A 
highly linear positive correlation could be observed between predictive 
strength and actual strength in both the training set and the testing set, 
which further illustrates the robustness of the GBRT model (see Fig. 4(b, 
c)). It also demonstrated how the model parameters primarily affect the 
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compressive strength of BFS/FA-AAMs. 

3.1.1.2. Compressive strength prediction by the RF model. Regarding the 
RF model, the hyper-parameters: the number of regression trees, the 
maximum depth of the tree, the maximum number of leaf nodes, the 
minimum number of samples required to be at a leaf node, and the 
minimum number of samples needed for splitting an internal node were 
tuned and selected to be 200, 5, 17, 2, and 2, respectively. As shown in 
Fig. 5(a), when the number of trees surpasses 80, the performance of the 
RF model is only slightly improved. Consequently, the optimal value for 
the number of trees is 80. The values of R2, RMSE, MAPE, and MAE 
values of the testing set are 0.85, 8.10, 34.0, and 6.43, respectively. The 
predicted compressive strength values and the experimental 

compressive strength values exhibit a strong linear positive correlation 
in both training and testing sets (see Fig. 5(b, c)). 

3.1.1.3. Compressive strength prediction by the RT model. According to 
the tuning results of the RT model, the optimized hyper-parameters: the 
maximum depth of the tree, the maximum number of leaf nodes, the 
minimum number of samples required to be at a leaf node, and the 
minimum number of samples needed for splitting an internal node are 6, 
19, 1, and 2, respectively. The values of R2, RMSE, MAPE, and MAE for 
the testing set are 0.73, 11.00, 36.4, and 8.57, respectively. Similarly, 
there is a positive linear correlation between predictive strength and 
experimental strength (see Fig. 6). 

Fig. 4. Results of GBRT.  

Fig. 5. Results of RF.  

Fig. 6. Results of RT.  
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3.1.1.4. Compressive strength prediction by the ANN model. The only 
parameter required to be set for the ANN model is the number of neurons 
in the hidden layer. To optimize this parameter, ANN models with 
different numbers of neurons in the hidden layer were trained and the 
corresponding root means squared errors on the testing set are presented 
in Fig. 7. (a). It shows that the RMSE first decreases with the increasing 
number of neurons in the hidden layer and then stabilizes after the 
number of neurons surpasses 25. Therefore, the optimized hyper- 
parameter for the ANN model is 25. The comparison between the cor
responding predicted values using the ANN model and the experimental 
values on both the training set and the testing set are presented in Fig. 7 
(b, c). The values of R2, RMSE, MAPE, and MAE on the testing set are 
0.90, 6.56, 20.7, and 4.61, respectively. 

3.1.1.5. Comparison of compressive strength prediction by the four mod
els. For comparison, 4 performance metrics were used for evaluating the 
efficiency of the above machine learning models. As displayed in 
Table 2, the results indicate that the GBRT model has the highest ac
curacy among all predictive models. A second-best performance is 
observed for the ANN model. Among the three tree-based methods, the 
tree-based methods (GBRT and RF) have a better performance than the 
individual tree-based method (RT). 

From the above validation, it can be seen that the accuracy of the 
above machine learning models is high, indicating the compressive 
strength of BFS/FA-AAMs is significantly influenced by the model pa
rameters. Each parameter varies in its contribution to the compressive 
strength of BFS/FA-AAMs, depending on the corresponding effect 
mechanism [26,27]. 

3.1.2. Importance of parameters 

3.1.2.1. Model inspection technique. In this research, a model inspection 
technique was used to further assess how much influence each param
eter has on the compressive strength of BFS/FA-AAMs. By breaking the 
relationship between the output variable and each input variable 
(randomly shuffling the input variable) [64], and successively applying 
the best-trained GBRT model, 5 descended R2 scores could be obtained. 
The difference between them and the reference score is considered the 
importance score of each input variable, which represents how depen
dent the model is on the input variable. The implemented algorithm is 

listed as follows:  

1) The reference score S (R2) of the fitted GBRT model on the training 
set D=(X, Y) was first computed: S = 0.99; 

2) For each input variable j (j = 1,2,…, the total number of model pa
rameters) from the training set D, and for each repetition r (r = 1,2, 
…, total repeat times), a corrupted version of the data Dr,j was pre
pared by randomly shuffle column j. Afterwards, the reference score 
Sr,j of the GBRT model on corrupted data Dr,j was calculated.  

3) The importance score Sj for the input variable j was calculated as Eq. 
(15): 

Sj = S-
1
c
∑R

r=1
Sr,j (15) 

According to the model inspection results, the importance scores for 
the model parameters of BFS/FA-AAMs are illustrated in Fig. 8(a). The 
comparisons between the predictive values and the experimental values 
of the training set are demonstrated in Fig. 8(b–f) concerning different 
model parameters (X1-X5). The more discrete the data, the more sig
nificant the factor can affect the compressive strength. 

With the highest importance score of 1.20, it shows that the BFS/b 
ratio (X4) is a key parameter of the compressive strength of BFS/FA- 
AAMs. The curing time (X5) is the second most important parameter 
of the compressive strength, with an importance score of 0.75. The 
importance score for the Na2O/b ratio (X1) and SiO2/Na2O ratio (X2) is 
0.32 and 0.24, respectively. The importance score for the w/b ratio (X3) 
is the lowest, indicating that the formation of compressive strength is 
least affected by water, which is the opposite of cement-based materials. 

The above observation is consistent with the previous research 
[26,27]. Regarding compressive strength, the dominant effect of the 
BFS/b ratio is associated with the composition of chemicals in pre
cursors. A higher content of BFS in the reaction systems can lead to a 
faster dissolution rate due to introducing a higher amount of Ca. 
Therefore, BFS/FA-AAMs exhibit higher compressive strength as the 
BFS/b ratio rises. The effect of curing time is of great importance since it 
is decisive for microstructure development. Despite that BFS/FA-AAMs 
featuring a low BFS/b ratio typically requires a longer curing time, the 
90 days of curing time is revealed to be sufficient for the compressive 
strength of BFS/FA-AAMs to achieve stability. The growth of the Na2O/b 
ratio will enhance the mechanical behavior of BFS/FA-AAMs because of 
the formation of an intenser alkali condition which stimulates the 
dissolution of precursors. Nonetheless, excessive Na2O content can 
hinder further dissolution in a short period with the generation of a 
calcium hydroxide layer on the surface of precursors, which causes the 
reduction of the compressive strength. The increase in the SiO2/Na2O 
ratio benefits the strength of BFS/FA-AAMs because the soluble Si can 
absorb the dissolved reaction ions. Microstructure with less porosity can 
be produced with higher content of NCASH gels occupying the solution. 
However, the mechanical properties can be hindered as the SiO2/Na2O 

Fig. 7. Results of ANN.  

Table 2 
Performance metrics.  

Performance metrics R2 (-) RMSE (MPa) MAPE (%) MAE (kN) 

GBRT  0.94  5.58  14.2  3.97 
RF  0.85  8.10  34.0  6.43 
RT  0.73  11.00  36.4  8.57 
ANN  0.90  6.56  20.7  4.61  
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ratio exceeds a particular value. This is caused by the surface of the 
precursor particle being covered by Si layer. Water content has a less 
substantial influence on compressive strength than other parameters 
since water merely performs as a carrier of alkali elements during the 
polymerization process. 

3.1.3. Validation 
For BFS/FA-AAPs, previous research has proposed a predictive for

mula (PF) for predicting compressive strength, as listed in Eq. (16) [27]. 
This formula is the result of a methodical examination of the parameters 
that affect the compressive strength of it. Polynomial surface fitting and 
curve fitting based on least-squares were combined to derive the pre
dictive formula. Its efficiency has also been validated on BFS/FA-AACs 

by experiments because the interfacial zone is no longer the weakest 
link in alkali-activated materials [28]. 

Y =
(

- 1.33 + 12.3X1 + 42.68X2 - 1.04X2
1 + 2.37X1X2 - 17.05X2

2

)

⋅( − 1.37X3 + 1.04X4 + 1)⋅0.2ln(X5 + 11.31) (16) 

To verify the validity of Eq. (15) on BFS/FA-AAMs with a larger 
database, the collected data were used as the testing set. According to 
the results, the values of R2, RMSE, MAPE, and MAE on the testing set 
are 0.56, 14.58, 78.16, and 12.13, respectively. The relatively low 
predictive accuracy is because a large part of the samples was cured at 
the unsealed condition, which lead to remarkably fluctuating compres
sive strength. Besides, some of the mixture proportions in the testing set 

Fig. 8. The importance scores and ranking of model parameters.  
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surpass the application limitation of Eq. (16). It is worth pointing to the 
condition of Eq. (16): the BFS/b ratio between 0 and 1, the SiO2/Na2O 
ratio between 0 and 2, the Na2O/b ratio between 2 % and 10 %, the w/b 
ratio between 0.3 and 0.5, sealed and cured at room temperature. Sealed 
curing has been proven of promising for preventing possible efflores
cence [27]. The data selected in this research includes both sealed and 
unsealed specimens because the current database on sealed curing is 
limited. It is suggested to further study the compressive strength model 
with sealed specimens when there is sufficient research. 

The limitation is eliminated by the GBRT model. With the machine 
learning method, a larger database with a wider range can be added to 
re-evaluate the aforementioned empirical predictive formula. The best 
machine learning model (GBRT) and the empirical predictive formula 
(PF) were tested for accuracy and further validated by the experimental 
results of a previous study [28]. The comparison between the test value, 
formula predicted value, and model-predicted value of BFS/FA-AACs for 
various parameter combinations are shown in Fig. 9. All the samples are 
within the using condition of both predictive models. Moreover, a Wil
coxon signed-rank test was conducted using statistical product and 
service solutions (SPSS) for statistically assessing the effectiveness of the 
two models. Wilcoxon signed-rank test is suitable for pairwise compar
ison, while a symmetric distribution is needed, not a normal distribu
tion, for the difference of paired data. It determines whether a 
population processing an average of 0 is responsible for the discrepancy 
between paired observations. 

As demonstrated in Fig. 9(b–d) and Table 3, for prediction of over 7 
d, good performance is observed for both the PF and the GBRT model. 
The P values (a parameter used to assess the significant difference of the 
compared samples) of both models were higher than 0.05 suggesting the 
differences are statistically insignificant. However, The median of the 
difference (the test value was subtracted from the predicted value) of the 
PF model is 4 times higher than that of the GBRT model. 

The PF and the GBRT model show different performances in the 1 
d prediction, as presented in Fig. 9(a) and Table 3. Both of them have 
some noticeable differences from the test value, though the predictive 
result by the GBRT model could be preferable in general. According to 

the results, the median difference between the test value and the PF 
model predicted value is about 3 times larger than that of the test value 
and the GBRT predicted value. The P-value of both models is 0, indi
cating statistically significant differences among them. It is consistent 
with previous research, which reports that the BFS/FA-AAPs mixture 
could need longer than three days for the compressive strength to begin 
growing [27]. 

Although the methods and concepts of PF and GBRT models are 
different, both of them are capable of determining the compressive 
strength of BFS/FA-AACs with a curing time of longer than 7 d. The PF 
model predicts the compressive strength by understanding how and to 
what extent the parameters affect it, while the applying scale is rela
tively smaller than the GBRT model. Specifically, the applying scale of 
the GBRT model is: the Na2O/b ratio between 1.3 % and 14.4 %, the 
SiO2/Na2O ratio between 0 and 2.6, the w/b ratio between 0.22 and 
0.73, the BFS/b ratio between 0 and 1, and cured at room temperature. 
The GBRT model is predictive of the compressive strength by learning 
from big data and numerical approximation, while the adjusting method 
of mixture composition according to the compressive strength is 
agnostic. By comparison, the GBRT model exhibits greater accuracy than 
the PF model. 

3.2. Other mechanical properties prediction 

Besides the compressive strength, the other mechanical behaviors of 
of BFS/FA-AACs, such as: splitting tensile strength, flexural strength, 

Fig. 9. Comparison between test value, PF predicted value and GBRT predicted value.  

Table 3 
Wilcoxon signed-rank test results.  

Predictive 
model 

Median value 
(MPa) 

Median of the difference with test 
value (Mpa) 

P- 
value 

PF (1d) 27  13.02 0 
GBRT (1d) 17  4.37 0 
PF (>7d) 38  − 0.78 0.77 
GBRT (>7d) 40  0.17 0.82  
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elastic modulus, and Poisson’s ratio also play crucial parts in the engi
neering application. The accurate determination of compressive 
strength facilitates the estimation of the other mechanical properties 
since there is a close relationship between them. Due to the database 
difference, it is worth striking that the GBRT model is applicable for 
concrete, paste, and mortar, while the proposed predictive formulas in 
section 3.2 are applicable for concrete. 

3.2.1. Splitting tensile strength 
Through collecting correlated data from the existing literature and 

fitting, the connection between splitting tensile strength and compres
sive strength of BFS/FA-AACs is presented in Fig. 10 
[7,33,42,44,75–86]. It is revealed that splitting tensile strength increase 
with the higher compressive strength of BFS/FA-AACs. The functional 
relationships between compressive strength (f′

c) and the splitting tensile 
strength (fsp) of BFS/FA-AACs are similar to the relationships of PC 
concrete in both American Concrete Institute standard (ACI standard) 
[87] (see Eq. (18)) and European standard (Eurocode) [88] (see Eq. 
(19)–(20)), though the parameters could be slightly different. Specif
ically, the splitting tensile strength of BFS/FA-AACs can be predicted by 
Eq. (17). The fitted curve of BFS/FA-AACs and the curve of PC concrete 
from the American standard have the highest similarity, which is almost 
identical. While the splitting tensile strength of BFS/FA-AACs can be 
slightly overestimated by the European standard of PC concrete. The 
standard error is 0.01 and the R2 value is 0.61. 

fsp = 0.58
̅̅̅̅

f′
c

√

(17)  

fsp = 0.56
̅̅̅̅

f ′
c

√

(18)  

fsp = 0.33f ′23
c , f ′

c⩽50 MPa (19)  

fsp = 2.36ln[1 + (f′
c + 8)/10], f ′

c > 50 MPa (20) 

In which: fsp is the splitting tensile strength of BFS/FA-AACs (MPa),f′
c 

is the compressive strength of BFS/FA-AACs (MPa). 

3.2.2. Flexural strength 
The connection between flexural strength and compressive strength 

collected from the existing literature on BFS/FA-AACs is shown in 
Fig. 11 [44,75,77–79,89–91]. It is observed that higher flexural strength 
(fr) is associated with higher compressive strength. This is consistent 
with that of PC concrete, according to the ACI standard (see Eq. (22)) 
and Eurocode (see Eq. (23)–(24)). The fitted curve of BFS/FA-AACs is 
significantly lower than the curve of PC concrete in the American 
standard, which emphasizes the necessity of establishing the mechanical 

properties relationship of BFS/FA-AACs itself. Based on the fitting result, 
the flexural strength of BFS/FA-AACs can be predicted by Eq. (21). The 
standard error is 0.03 and the R2 value is 0.35. 

fr = 0.83
̅̅̅̅

f′
c

√

( 21)  

fr = 0.94
̅̅̅̅

f ′
c

√

22)  

fr = 0.45f ′23
c , f ′

c⩽50 MPa (23)  

fr = 3.18ln(1 + (f′
c + 8)/10), f ′

c > 50 MPa (24) 

In which: fr is the flexural strength of BFS/FA-AACs (MPa),f′
c is the 

compressive strength of BFS/FA-AACs (MPa). 

3.2.3. Elastic modulus 
The connection between elastic modulus and compressive strength 

collected from the existing literature on BFS/FA-AACs is illustrated in 
Fig. 12 [6,7,33,76,77,79–82,85,89–102]. According to the results, the 
elastic modulus (E) and the compressive strength of BFS/FA-AACs are 
positively correlated despite some fluctuations. The discreteness is 
mainly due to the aggregate difference in the data. It is discovered that 
aggregates have a more substantial effect on the elastic modulus of 
concrete than on the compressive strength of concrete [103]. Compared 

Fig. 10. Relationship between splitting tensile strength and compressive strength of BFS/FA-AACs.  

Fig. 11. Relationship between flexural strength and compressive strength of 
BFS/FA-AACs. 
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with the other mechanical properties, the elastic modulus of concrete 
depends on the stiffness of paste, aggregate, and their interfacial prop
erties. The pronounced influence of aggregate types on the elastic 
modulus of concrete has been detected [104–106]. In general, the elastic 
modulus of concrete increases with higher stiffness aggregate [107]. 
Nevertheless, the fitted trend of BFS/FA-AACs resembles the trend of PC 
concrete in the ACI standard (see Eq. (26)) and the Eurocode (see Eq. 
(27)). The elastic modulus of BFS/FA-AACs can be predicted by Eq. (25). 
The standard error is 0.07 and the R2 value is 0.22. 

E = 4.25
̅̅̅̅

f′
c

√

(25)  

E = 3.32
̅̅̅̅

f′
c

√

+ 6.9 (26)  

E = 20(
f ′
c

10
)

0.3

(27) 

In which: E is the elastic modulus of BFS/FA-AACs (GPa),f′
c is the 

compressive strength of BFS/FA-AACs (MPa). 

3.2.4. Poisson’s ratio 
The relationship between Poisson’s ratio and the compressive 

strength of BFS/FA-AACs is demonstrated in Fig. 13 
[76,77,81,89,91,92,94,102]. It is observed that Poisson’s ratio (v) of 
BFS/FA-AACs is identical to Poisson’s ratio of PC concrete, which is 

approximately 0.2. It reflects that Poisson’s ratio of BFS/FA-AACs has 
little relationship with its mix design. 

4. Conclusions 

In this paper, the compressive strength predictive model of BFS/FA- 
AAMs was established by machine learning, and the other mechanical 
properties predictive formulas of BFS/FA-AACs were derived by data 
fitting. In general, the compressive strength of BFS/FA-AAM above 7 
d can be predicted with high accuracy by the GBRT model and other 
mechanical properties can be evaluated by the proposed formulas.The 
following conclusions can be drawn from the results presented:  

1) The compressive strength of BFS/FA-AACs is strongly related to the 
model parameters, each of which contributes to a different degree. 
The influencing rank of the 5 parameters is BFS/b ratio > Curing 
time > Na2O/b ratio > SiO2/Na2O ratio > w/b ratio.  

2) All four machine learning methods are generally able to predict the 
compressive strength of BFS/FA-AAMs. Among them, GBRT and 
AAN show the best performance, with R2 above 0.90. The effective 
rank of the 5 machine learning predictive models is GBRT > ANN >
RF > RT 

3) The compressive strength of BFS/FA-AACs above 7 d can be pre
dicted with good accuracy using the GBRT model.  

4) The elastic modulus, flexural strength, and splitting tensile strength 
of the BFS/FA-AACs are closely related to the compressive strength 
of the BFS/FA-AACs and can be calculated using the predicted for
mulas given in this paper. BFS/FA-AACs have a similar Poisson’s 
ratio to PC concrete, which is approximately 0.2. 

5) More data are required in future studies in order to modify the pre
dictive model and formulas. In addition, when evaluating the elastic 
modulus of BFS/FA-AAC, special attention should be paid to the type 
and content of aggregates. 
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