

Delft University of Technology

Toward operationally feasible railway timetables (PPT)

Bešinović, Nikola; Goverde, Rob

Publication date 2016 **Document Version** Final published version

Citation (APA) Bešinović, N., & Goverde, R. (2016). *Toward operationally feasible railway timetables (PPT)*. 2016 INFORMS Annual Meeting, Nashville, United States.

Important note To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

Delft University of

Introduction	Problem description	Methodology 000000000	Experimental results 00000000	Conclusions
Outline				

Problem description

3 Methodology

- 4 Experimental results
- 5 Conclusions

= 9Q@

- 一司

Introduction	Problem description	Methodology 000000000	Experimental results 00000000	Conclusions
Current sta	ate in railwav tr	affic		

- □ Constant growth of demand for passenger and freight railway transport
- Heavily congested networks
- Reaching maximum available infrastructure capacity
- Experiencing delays

Introduction	Problem description	Methodology 000000000	Experimental results 00000000	Conclusions
Current sta	ate in railway tr	affic		

- □ Constant growth of demand for passenger and freight railway transport
- Heavily congested networks
- □ Reaching maximum available infrastructure capacity
- Experiencing delays
- Existing need for better planning to satisfy a high level of service

(ERA, UIC, IMs, RUs...)

INPUT:

- □ Train line requests (OD, stops, frequencies, rolling stock)
- Track topology
- □ Rolling stock with dynamic characteristics
- □ Passenger connections and rolling stock turn-arounds

OUTPUT:

Timetable: arrival, departure and passing times at timetable points

T Delft Delft University of

ELE NOR

Introduction	Problem description	Methodology 000000000	Experimental results 00000000	Conclusions
Timetable	planning			

Goals:

- □ Efficiency short travel times and seamless connections
- Realizability scheduled RT > minimum RT
- **(Operational) Feasibility** no conflicts
- □ Stability acceptable capacity occupation in corridors and stations
- Robustness cope with system stochasticity

Introduction	Problem description	Methodology 000000000	Experimental results 00000000	Conclusions
Timetable	planning			

Goals:

- □ Efficiency short travel times and seamless connections
- Realizability scheduled RT > minimum RT
- **(Operational) Feasibility** no conflicts
- □ Stability acceptable capacity occupation in corridors and stations
- **Robustness** cope with system stochasticity

Operationally feasible timetable

An operationally feasible timetable has no conflicts on the microscopic level (block and track detection sections) between train's blocking times.

= 9QC

Introduction	Problem description	Methodology 000000000	Experimental results 00000000	Conclusions

Time-distance diagram

三日 のへの

イロト イヨト イヨト イヨト

Introduction	Problem description	Methodology	Experimental results	Concl

Blocking time diagram

= 990

Image: A matrix and a matrix

Introduction	Problem description	Methodology	Experimental results	Concl

Blocking time diagram

Question:

□ How to guarantee the operational feasibility in timetabling models?

Introduction	Problem description	Methodology 000000000	Experimental results 00000000	Conclusions
Minimum H	neadway time			

Minimum headway time (Hansen and Pachl, 2014)

A minimum headway time is the time separation between two trains at certain positions that enable conflict-free operation of trains.

Introduction	Problem description	Methodology 000000000	Experimental results 00000000	Conclusions
Minimum ł	neadway time			

Minimum headway time (Hansen and Pachl, 2014)

A minimum headway time is the time separation between two trains at certain positions that enable conflict-free operation of trains.

Minimum headway time L_{ij} depends on:

- □ infrastructure characteristics: block lengths
- signalling system
- □ train engine characteristics
- □ (scheduled) train running times

Introduction	Problem description	Methodology 000000000	Experimental results 00000000	Conclusions
Minimum ł	neadway time			

Minimum headway time (Hansen and Pachl, 2014)

A minimum headway time is the time separation between two trains at certain positions that enable conflict-free operation of trains.

Minimum headway time L_{ij} depends on:

- infrastructure characteristics: block lengths
- signalling system
- train engine characteristics
- □ (scheduled) train running times
- not a single value

Introduction	Problem description	Methodology 000000000	Experimental results 00000000	Conclusions
State-of-th	e-art			

So far:

- 🗆 Efficiency 🙂
- 🗆 Realizability 🙂
- 🗆 (Operational) Feasibility 😕
- 🗆 Stability 🙂 😕
- 🗆 Robustness 🙂

= 990

- 一司

Serafini & Ukovich (1989) Periodic timetable with cycle time TPeriodic events: arrival & departure times $\pi_i \in [0, T)$

= 9QC

Serafini & Ukovich (1989) Periodic timetable with cycle time TPeriodic events: arrival & departure times $\pi_i \in [0, T)$ Constraints:

$$lowerBound_{ij} \leq \pi_j - \pi_i + z_{ij}T \leq upperBound_{ij}$$

= nac

Image: Image:

Serafini & Ukovich (1989) Periodic timetable with cycle time TPeriodic events: arrival & departure times $\pi_i \in [0, T)$ Constraints:

$$lowerBound_{ij} \leq \pi_j - \pi_i + z_{ij}T \leq upperBound_{ij}$$

Period shift: z_{ij} - define the order of trains

= 9QC

Serafini & Ukovich (1989) Periodic timetable with cycle time TPeriodic events: arrival & departure times $\pi_i \in [0, T)$ Constraints:

$$lowerBound_{ij} \leq \pi_j - \pi_i + z_{ij}T \leq upperBound_{ij}$$

Period shift: z_{ii} - define the order of trains

= 990

Introduction	Problem description ⊙●	Methodology 000000000	Experimental results 00000000	Conclusions
Solving Pl	ESP			

$$(PESP - N)$$
 Min $f(\pi, z)$

such that

$$egin{aligned} & I_{ij} \leq \pi_j - \pi_i + z_{ij} \, T \leq u_{ij} & & orall (i,j) \in A \\ & 0 \leq \pi_i < T, & orall i \\ & z_{ij} \, \, binary \end{aligned}$$

三日 のへで

イロン イ理ト イヨト イヨト

Introduction	Problem description	Methodology	Experimental results 00000000	Conclusions
Computing	operationally	feasible time	tables	

Solving PESP-N:

- □ Fixed minimum headways
- □ Can be violated when scheduled running time increases

ELE NOR

Image: Image:

Introduction	Problem description	Methodology	Experimental results 00000000	Conclusions
Computing	operationally	feasible time	tables	

Solving PESP-N:

- Fixed minimum headways
- □ Can be violated when scheduled running time increases

How to include microscopic details in timetable planning models?

- Iterative approach
- Integrated approach

Micro model (Comp-aided Civil and Inf. Eng., 2016):

- □ Compute operational train speed profiles
- Conflict detection
- Update headways

Introduction	Problem description	Methodology ○●○○○○○○○○	Experimental results 00000000	Conclusions
Integrated	approach			

Can we add microscopic details directly to the macroscopic level?

Introduction	Problem description	Methodology ○●00000000	Experimental results 00000000	Conclusions
Integrated	approach			

Can we add microscopic details directly to the macroscopic level? Yes.

Introduction	Problem description	Methodology ○●00000000	Experimental results 00000000	Conclusions
Integrate	d approach			

Can we add microscopic details directly to the macroscopic level? Yes.

Introduce flexible minimum headways in PESP

Introduction	Problem description	Methodology ○○●○○○○○○	Experimental results 00000000	Conclusions
Integrated	approach			

$$(PESP - N)$$
 Min $f(\pi, z)$

such that

$$\begin{split} I_{ij} &\leq \pi_j - \pi_i + z_{ij} \cdot T \leq u_{ij} & \forall (i,j) \in A \\ 0 &\leq \pi_i < T, \quad \forall i \\ z_{ij} \text{ binary} \end{split}$$

三日 のへで

イロン イ理ト イヨト イヨト

Introduction	Problem description	Methodology ○○○●○○○○○○	Experimental results 00000000	Conclusions
Integrated	approach			

(PESP - FlexHeadways) Min $f(\pi, z)$

such that

$$\begin{split} I_{ij} &\leq \pi_j - \pi_i + z_{ij} \cdot T \leq u_{ij} & \forall (i,j) \in A_{run} \cup A_{dwell} \\ L_{ij} &\leq \pi_j - \pi_i + z_{ij} \cdot T \leq U_{ij} & \forall (i,j) \in A_{headway} \\ 0 &\leq \pi_i < T, \quad \forall i \\ z_{ij} \text{ binary} \end{split}$$

 $L_{ii} = F(\text{running times of two trains})$

ELE NOR

Image: Image:

For each train pair at each timetable point:

- \Box vary running speeds = amount of time supplements
- □ compute minimum headway time for each trains-speeds variations
- $\hfill\square$ get functional relationship between given time supplements and minimum headways $\rightarrow L_{ij}$

I= nan

For each train pair at each timetable point:

- \Box vary running speeds = amount of time supplements
- □ compute minimum headway time for each trains-speeds variations
- $\Box\,$ get functional relationship between given time supplements and minimum headways $\rightarrow L_{ij}$

Expected: bigger speed difference \rightarrow bigger minimum headway time

- \Box more homogenized running times \rightarrow smaller minimum headway time
- \Box second train faster \rightarrow minimum headway increases

EL OQO

 run_{ik} - running time supplement of the first train (in %) run_{jl} - running time supplement of the second train (in %) R_{ij} - relative difference between time supplements of two trains (in %)

ELE SQC

 run_{ik} - running time supplement of the first train (in %) run_{jl} - running time supplement of the second train (in %) R_{ij} - relative difference between time supplements of two trains (in %)

$$run_{ik} = r_{ik}/\overline{r}_{ik} - 1$$
 $run_{jl} = r_{jl}/\overline{r}_{jl} - 1$

November 17, 2016

N.Besinovic (n.besinovic@tudelft.nl)

Linear dependency between run_{ik} and run_{il}

$$L_{ij} = \alpha_{ij} \cdot R_{ij} + I_0$$

 α_{ij} - slope of L_{ij}

 R_{ij} - relative difference between time supplements of two trains (in %) l_0 - minimum headway time for $run_{ik} = run_{jl}$

ELE NOR

Introduction	Problem description	Methodology ○○○○○○○○●	Experimental results 00000000	Conclusions
Integrated	l approach			

(PESP - FlexHeadways) Min $f(\pi, z)$

such that

$$\begin{split} l_{ij} &\leq \pi_j - \pi_i + z_{ij} \cdot T \leq u_{ij} & \forall (i,j) \in A_{run} \cup A_{dwell} \\ \alpha_{ij} \cdot R_{ij} + l_0 &\leq \pi_j - \pi_i + z_{ij} \cdot T \leq u_{ij} & \forall (i,j) \in A_{headway} \\ R_{ij} &= run_{ik} - run_{jl} \\ 0 &\leq \pi_i < T, \quad \forall i \\ z_{ij} \text{ binary} \end{split}$$

三日 のへの

Introduction	Problem description	Methodology ೦೦೦೦೦೦೦೦೦	Experimental results ●0000000	Conclusions
Case studi	es			

Case network: Utrecht - Eindhoven network (two intersecting corridors)

- □ 15 stations and junctions
- □ 40 trains/h
- □ 96 events and 148 activities

Minimum running time supplement: 5% Maximum running time supplement: 20% Minimum dwell times: 60-120 s

Test: Iterative micro-macro and integrated PESP-FlexHeadway models

Introduction Problem description Methodology Experimental results Conclusions

Case 1: Utrecht-Eindhoven network

Figure: Line plan

Introduction	Problem description	Methodology 0000000000	Experimental results 0000000	Conclusions
Computed	timetables			

Model	# of conflicts	Total time	Scheduled time
	[train pairs]	in conflicts [s]	supplements [s]
Iterative micro-macro*	4	160	10
Integrated PESP-FlexHeadway	0	0	382

*After first iteration

1= 9QC

Introduction	Problem description	Methodology 0000000000	Experimental results 0000000	Conclusions
Computed	timetables			

Model	# of conflicts	Total time	Scheduled time
	[train pairs]	in conflicts [s]	supplements [s]
Iterative micro-macro*	4	160	10
Integrated PESP-FlexHeadway	0	0	382

*After first iteration

Iterative micro-macro framework finished after 10 iterations

Image: Image:

Introduction	Problem description	Methodology 000000000	Experimental results 00●00000	Conclusions
Computed	timetables			

Model	<pre># of conflicts [train pairs]</pre>	Total time in conflicts [s]	Scheduled time supplements [s]
Iterative micro-macro*	4	160	10
Integrated PESP-FlexHeadway	0	0	382

*After first iteration

Iterative micro-macro framework finished after 10 iterations PESP-FlexHeadway allocated more time supplements to satisfy new headways

Introduction	Problem description	Methodology 000000000	Experimental results 00●00000	Conclusions
Computed	timetables			

Model	<pre># of conflicts [train pairs]</pre>	Total time in conflicts [s]	Scheduled time supplements [s]
Iterative micro-macro*	4	160	10
Integrated PESP-FlexHeadway	0	0	382

*After first iteration

Iterative micro-macro framework finished after 10 iterations PESP-FlexHeadway allocated more time supplements to satisfy new headways

CPU times are comparable

24 / 31

N.Besinovic (n.besinovic@tudelft.nl)

1= 990

• • • • • • • •

ъ.

Introduction Problem description Methodology Experimental results Co

Integrated framework: PESP-FlexHeadway

= nar

Image: A matrix

Introduction	Problem description	Methodology ೦೦೦೦೦೦೦೦೦೦	Experimental results 000000●0	Сог

Integrated framework: PESP-FlexHeadway

ъ.

- 一司

Introduction

Problem description

Methodology 000000000 Experimental results

Conclusions

Some more headways...

Introduction	Problem description	Methodology 000000000	Experimental results 00000000	Conclusions
Conclusior	າຣ			

Main observations:

- □ We can compute operationally feasible timetables
- □ Iterative approach solves within a limited number of iterations
- Minimum headway times as a function of running times
- Macroscopic Flexible minimum headway model formulation generates (almost) operationally feasible solutions

Introduction	Problem description	Methodology 000000000	Experimental results 00000000	Conclusions
Conclusior	າຣ			

Main observations:

- We can compute operationally feasible timetables
- □ Iterative approach solves within a limited number of iterations
- Minimum headway times as a function of running times
- Macroscopic Flexible minimum headway model formulation generates (almost) operationally feasible solutions
- Pursuing the (passenger) happiness
 - □ Is linear approximation always good? Piecewise linear?
 - Include stability and robustness in the objective function
 - □ Test the model on bigger instances

Iterative micro-macro framework

