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Abstract
Intermittently-operating embedded computing platforms
powered by energy harvesting must frequently checkpoint
their computation state. Using non-volatile memory reduces
checkpoint size by eliminating the need to checkpoint volatile
memory but increases checkpoint frequency to cover Write
After Read (WAR) dependencies. Additionally, non-volatile
memory is significantly slower to access—while consuming
more energy than its volatile counterpart—suggesting the
use of a data cache. Unfortunately, existing data cache so-
lutions do not fit the challenges of intermittent computing
and often require additional hardware or software to detect
WARs. In this paper, we extend the data cache by integrating
it with WAR detection—dropping the need for an additional
memory tracker. This idea forms the basis of NACHO: a data
cache tailored to intermittent computing. NACHO, on aver-
age, reduces intermittent computing runtime overhead by
54% compared to state of the art cache-based systems. It also
reduces the number of non-volatile memory writes by 82%
compared to a data cache-less system, and 18% on average
compared to multiple state of the art cache-based systems.

CCS Concepts: •Computer systems organization→ Em-
bedded systems.

Keywords: intermittent computing, battery-free, cache, em-
bedded system
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1 Introduction
The growth of the Internet of Things (IoT) sector is causing
a surge in number of embedded devices globally [7], raising
sustainability concerns [12, 69]. Batteries powering these de-
vices require proper disposal [23], frequent replacement [19],
and pose fire hazards [40]. These issues can be mitigated by
using sustainable (super-)capacitors [62, 67] and powering
devices via ambient energy sources like sunlight, electro-
magnetic radiation, or vibrations [1, 3, 57].
Using harvested energy comes with the challenges of

(i) the ambient’s energy inherent unreliability [60] and (ii)
the low output energy due to IoT devices’ size constraints—
limiting energy storage element’s size. These factors force
random power failures [59], [14, Sec 8.1], causing the device
to completely lose power and reboot only when sufficient
energy is available again1.
To make forward progress, i.e., to continue a program

amidst intermittent power failures, the system must recover
the program state saved before the power failure and con-
tinue execution after a reboot [37, 61, 66], resulting in in-
termittent execution of the program [26, 42]. Despite these
difficulties, successful battery-free intermittently-powered
systems have emerged, including general-purpose [16, 20]
and dedicated [15] wireless sensors, cell phones [65], elec-
tronic prototyping [39], and gaming platforms [17].

1Consider a system [64, Section 3A] with 1 µJ energy consumption, an
energy harvesting source of 20 µW/cm2 and a 46 µF capacitor. It takes 22
seconds to charge a capacitor to perform computations, after which the
system turns off and recharges again.
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Reg1 = volatile a = non-volatile
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Figure 1. An example of a memory sequence in which a
read operation (R) is followed by a write (W) can result in
an inconsistent memory after a power failure.

Saving the intermediate state of the program executed in-
termittently can be done in Non-Volatile Memory (NVM) [44,
64]. Magnetoresistive Random Access Memory (MRAM) or
Ferroelectric RandomAccessMemory (FRAM) arewell suited
for intermittent computing due to their byte-addressability
and lower power consumption compared to traditional NVM
technologies such as FLASH. The persistence of NVM en-
ables it to checkpoint program states before power failures,
supporting actions like backups and rollbacks of volatile
components. However, copying and restoring volatile states
is inefficient and drains the already limited harvested en-
ergy. A recent approach [68] addresses this with a replay-
and-bypass method to recover without user-managed check-
points. Alternatively, the NVM can replace the volatile main
memory [37, 38, 46, 66], reducing the volatile state of the
complete system (in most cases) only to the registers. How-
ever, substituting Static Random Access Memory (SRAM)
with MRAM as the main memory in embedded devices is
not straightforward. This transition introduces memory con-
sistency challenges, particularly due to the re-execution of
WAR accesses after a reboot, which can lead to potential
memory corruption if not properly managed (see Figure 1).

One way to mitigate the problem caused by re-execution
is to create a checkpoint of the reigsters between the read and
write of all WAR dependencies. Checkpoints can be inserted
statically at compile time [37, 66], or dynamically during
execution by using dedicated hardware to track memory
accesses, triggering checkpoint insertion upon detecting a
WAR [27]. Unfortunately, using NVM as the main memory
in intermittently-powered devices introduces downsides that
degrade performance. WAR dependencies, common during
program execution, require numerous checkpoints to safe-
guard against power failures—significantly more than needed
to ensure forward progress. Moreover, any intermittent com-
puting framework must be incorruptible [37, 38, 46, 66, 71],
ensuring correct continuation from the last completed check-
point, even if power fails during checkpoint creation. Look-
ing at the results of a recent software-based approach [37,
Figure 4], even the most optimized solution has double the
execution time compared to native unmodified binaries with-
out checkpoints (while still using NVM as the main memory).
Using hardware detection of power failure, such as [27, 74],
results in less overhead, as the program does not require

to be over-instrumented with checkpoints by the compiler.
However, NVMs such as FRAM and MRAM are still consid-
erably slower and require more energy to access than their
volatile counterpart SRAM [22, Section 2], [30, Section 8.4].
Hence, intermittent systems would benefit from finding a
balance between using volatile and non-volatile memory.
System Assumptions: Intermittent computing targets

resource-constrained microcontrollers that operate under
severe power and computational limitations. These systems
rely on energy harvesting, leading to frequent power fail-
ures which necessitate carefully designed execution models.
Unlike high-performance and general-purpose architectures,
intermittent systems generally operate under the following
key constraints:

1 Devices use a simple in-order single-core processors with-
out advanced features such as out-of-order or speculative
execution pipelines.

2 The system works without a full scale OS or preemptive
multitasking which means that there is no context switch-
ing or thread scheduling. The applications typically run
in a bare-metal environment or in a lightweight runtime.

3 The memory model we use to propose a data cache fea-
tures simple cache hierarchies. Complex cache architec-
tures require energy that we argue is beyond the bound-
aries of intermittent deployment scenarios.

4 Due to unpredictable power failures being inherent to
the context of intermittent systems, real-time execution
guarantees are infeasible. Any system that requires strict
timing constraints must perform some form of timekeep-
ing [16, 34] to track critical sections during power failures,
which diverges from our contributions.

5 This work assumes that programs are compiled for simple,
embedded execution environments without advanced run-
time mechanisms such as shadow stacks or transactional
memory.

Within these constraints, our goal is to integrate a volatile
data cache with intermittent computing paradigm to im-
prove performance while ensuring correct execution under
power failures. Unlike traditional cache-based designs that
assume continuous power availability, our approach explic-
itly addresses the intermittency in its execution model. We
discuss limitations associated with the above assumptions
in Section 8.

ProblemStatement: Previousworks attempted to achieve
above balance by reducing the size of checkpoints while still
using volatile components, i.e., a mixed-memory model [48].
Another direction is using a volatile data cache in combina-
tion with non-volatile main memory. Adding a data cache
will decrease the cost of using non-volatile main memory
by allowing for faster access speeds and less NVM accesses.
However, integrating a data cache with intermittent systems
is not straightforward. The system still needs to address
WAR hazards, which become even more complicated in the
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presence of cache [11, 73, 75], as the cache delays the actual
writeback to NVM. Then, the cache eviction policy that de-
termines which cache block must be evicted to make space
for new data (i) must be aware of when the checkpoint will
happen and (ii) how to proceed whilst maintaining consis-
tency. Furthermore, since the cache is a volatile entity, it
must be written to NVM before a checkpoint. State of the art
cache-based systems ReplayCache [73] and SweepCache [75]
use a compiler-based approach to ensure this. This custom
compiler limits the use of legacy code, and specialized hard-
ware is required to leverage asynchronous write-back of
cache lines. This makes this approach complex and costly to
implement. Write-Light Cache [11] similarly requires extra
hardware for its implementation.
Our Fundamental Insight: We argue that simply ap-

plying existing data cache methods [25, Appendix B] to in-
termittent computing architectures is inefficient. We take a
different position and propose modifications to the cache’s
workings to better align with intermittent computing. We
found that by adding just two bits to the data cache lines
and using these to detect whether a writeback to the NVM
is safe, we can directly use the cache for WAR detection
and mitigation to break up WAR dependencies, instead of
relying on additional WAR detection hardware [27, 74] or
software systems [37]. Utilizing the cache as WAR detec-
tion should reduce the total number of required checkpoints,
NVM memory accesses, and execution time.

Our Contributions:We present NACHO, a data cache ar-
chitecture for intermittent computing systems. Specifically:
1 We define the requirements for a safe data cache in an

intermittent computing system with non-volatile main
memory. These requirements form the basis of NACHO;

2 NACHO, by adding only two extra bits per cache entry
combined with a novel algorithm, is able to detect if a
write back to memory is safe, i.e., not a read-dominated
WAR dependency;

3 NACHO reduces the checkpoint size by tracking the stack
of the executing program and avoid writing memory that
is no longer valid to the NVM.
Through these contributions, for an example 512 B cache,

we reduce an overhead introduced by supporting intermit-
tent computing compared to Clank [27], PROWL [28], and
ReplayCache [73]—all state of the art solutions relevant to
NACHO—by on average 53%, 65%, and 55%, respectively. NA-
CHO will be an open source project, see Appendix A.

2 Cache and Intermittency
The size of volatile and non-volatile memory components in
an embedded battery-free system greatly impacts the total
execution time and consumed energy [28, Table 1]. Finding
the right trade-off between the number of volatile and non-
volatile componentsmotivates using cache for fast and energy-
efficient intermittent system architectures.

2.1 Trade-off in Memory Persistency
In the case of completely non-volatile systems such as Non-
Volatile Processors (NVPs) [44], everything is in persistent
storage, and the need to create checkpoints and restore them
in case of power failure disappears. However, the energy con-
sumed to perform memory accesses increases, diminishing
the gains resulting from memory non-volatility. As we move
towards the opposite spectrum of fully volatile architectures,
the energy consumed per cycle decreases, but the size and
number of the checkpoints and the cost of re-execution in-
creases. Everything needs to be saved and restored to/from
a fully volatile system, again skewing the associated costs.
The desired solution is thus a balance between the volatile
and non-volatile system. That is, we should seek a solution
where a volatile SRAM-based data cache provides high access
speeds—while being small enough to ensure low checkpoint-
ing overheads—and where a persistent non-volatile main
memory ensures data retention across power failures.

2.2 Challenges of Intermittency and Cache
Integrating a cache into an intermittent system is not straight-
forward. Let us look at an example in Figure 2, where we
compare a traditional system supporting intermittent oper-
ation with a data cache-based system. In Figure 2, case ②,
because the checkpoint placement logic depends on when a
“write” to NVM is performed, having a cache that buffers the
memory accesses delays the write operation to NVM. This
is a runtime phenomenon that the compiler cannot predict,
thus rendering the checkpoint placement incorrect.
One might ask, why not use a more complex compiler-

directed cache-based system, like ReplayCache [73]. With
ReplayCache, compiler transformations create idempotent
regions in combination with a parallel cache writeback in-
struction, replaying cache modification after a failure. How-
ever, the ReplayCache-based method limits the use of legacy
code and adds a significant amount of complexity in addition
to a highly customized cache. One could use an extra dedi-
cated hardware, such as the memory tracker in Clank [27],
to be deployed in addition to a data cache. However, this ap-
proach also increases the cost and complexity of the system.

We state that integration between intermittent computing
systems using non-volatile main memory and a data cache
should not merely utilize an existing cache architecture but
rather tightly couple it with detecting WAR violations. Addi-
tionally, it should actively attempt to minimize the number of
NVM accesses by considering the behavior of the execution
flow of a program running on battery-free, intermittently
powered systems. Looking at Table 1, which compares the
most relevant systems for intermittent computation, no ex-
isting solution addresses all system requirements.
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Table 1. Features of state of the art intermittent computing systems focusing on ones with a data cache.

Clank COACH ReplayCache SweepCache WL-Cache NvMR PROWL NACHO
[27] [29] [73] [75] [11] [9] [28] (this work)

supports data cache ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓
low checkpoint count ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓
low NVM reads/writes ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓

incorruptible ✓ partially† partially† ✓ partially† ✓ ✓ ✓
no compiler transformations ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓
cache architecture-agnostic n/a ✓ ✗ ✓ ✓ ✓ ✗ ✓
no extra hardware required n/a ✗ ✓ ✗ ✗ ✗ ✓ ✓
tight data cache integration n/a ✗ ✗ ✗ ✗ ✗ ✗ ✓

considers program execution flow n/a ✗ ✗ ✗ ✗ ✗ ✗ ✓

Yes: ✓ , No: ✗ † The work relies on existing checkpointing strategies, thus it can be as incorruptible as the choice of strategy.

NVMcache
a 
a 
b

a 
a 
a

b 
b 
b

R(a) 
W(a) 
R(b)

NVM

a 
a 
a

b 
b 
b

R(a) 
W(a) 
R(b)

a

b

a

b
a

a

unmodified NVM
modified NVM

NVM read access checkpoint
NVM write access WAR violation

1 2
Traditional intermient

system without data cache
Intermient system 

with unsupported data cache

x
x

Figure 2.An example program performingmemory accesses
R(x) (a read operation at the memory location x) andW(x)
(correspondingwrite operation) on two variables, for two sys-
tems. System ① is a cache-less (de facto standard, e.g. [66]),
where read and write operations interact with NVM—note
a compulsory checkpoint at WAR of variable ‘a’ inserted at
compile time. System ② is based on a regular cache which
cannot support WAR tracking by design, i.e., a simple direct
mapped write-back [25, Appendix B] cache of two lines. In②,
checkpoints cannot be inserted at compile time because the
compiler will not know when the eviction of cache-located
variable ‘a’ back to NVM will take place.

3 Cache for Intermittent Systems
We propose a fundamentally different approach to overcome
the challenge mentioned in Section 2.2. Our data cache will
be tasked with (i) avoiding WAR (Section 3.1), (ii) optimizing
WAR detection (Section 3.2), and (iii) reducing the number
of NVM writes (Section 3.3).

3.1 Cache for Avoiding Write After Reads
First, we observe that a data cache delays the write to NVM,
until a cache eviction forces that write. A WAR violation
can only occur when a write is performed after a read at an
NVM location. Therefore, the cache effectively determines
when a WAR can occur by tracking the presence of such
access patterns in a given cache line. In other words, we take
advantage of the fact that a WAR violation is only possible

cache cache

 

 

 

 

 

  

  

  

  

  

 
c
d 
c 
c 
c 
c
c
d

 

c 
c 
c 
c 
c 
c 
c 
c 

a 
a 
a 
a 
a 
a 
a 
a 

b 
b 
b 
b 
b 
b 
b 
b 

d 
d 
d 
d 
d 
d 
d 
d 

Ø 
Ø 
Ø 
Ø 
a 
b 
b 
b 

c
d 
c 
c 
c 
c
c
d 

c

d

a,c

c 
c 
c 
c 
c 
c 
c 
c 

a 
a 
a 
a 
a 
a 
a 
a 

b 
b 
b 
b 
b 
b 
b 
b 

d 
d 
d 
d 
d 
d 
d 
d 

Ø 
Ø 
Ø 
Ø 
a 
b 
b 
b 

c

All dirty cache lines
are flushed during a
checkpoint

Only dirty lines that can
cause a WAR violation
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c
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a

d
c

R(c)
W(d)
R(c)
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W(b)
W(c)
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W(c)
W(a)
W(b)
W(c)
R(d)
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2Data cache with flush on checkpoint Data cache with detection bits
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x  dirty x

x

Checkpoints: 1 
NVM Reads:  2 
NVM Writes: 4

Checkpoints:  3 
NVM Reads:   2 
NVM Writes:  5

NVMNVM

set 1set 2 set 1set 2

Figure 3. Cache and NVM accesses for an example program.
A NVM access is a read from the NVM to the cache or a
cache eviction of a dirty block from the cache to the NVM.
The data cache here is direct associative with two sets. In
some cases, this can cause a checkpoint signal to be raised,
which is sent to the processor. In this case, all dirty cache
blocks are evicted to the NVM, but kept in the cache. There
are four arbitrary memory blocks a, b, c, d that are assigned
to two cache sets as follows: a, b→ set 1 and c, d→ set 2.

when a cache block is written back to the NVM. We term
this event, i.e. a cache line being written back to the NVM,
as a Cache Write Back (CWB) (similar to Intel x86 CLWB
instruction [31, Page 744].) Upon detecting a CWB, the cache
generates a checkpoint signal and instructs the processor to
create a checkpoint. During the checkpoint, the processor
copies the registers the volatile data cache (otherwise, the
volatile data would be lost) to the NVM. To this end, all
modified, i.e., dirty, memory blocks are copied (i.e., flushed)
to the NVM during a checkpoint. By creating a checkpoint
in this way, we ensure that the system remains consistent. An
added advantage is clearing the cache of all dirty lines during
the checkpoint, which decreases the possibility of future
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WARs and thus reduces the number of created checkpoints
and NVM accesses. We illustrate this process in Figure 3 1 .

3.2 Cache for Optimizing WAR Detection
As explained above, a CWB can lead to WAR violations.
However, some CWBs may not. This can be understood
more formally as the memory being read-dominated or write-
dominated as introduced in [27, Section 3.1.1]. In a sequence
of memory instructions, if the first memory access is a write,
then that location is write-dominated. Conversely, if the first
memory access in a given sequence of instructions is a read,
then that location is read-dominated. An idempotency vi-
olation can then be defined as a write to a read-dominated
memory location. Any other form of access is safe andwill not
cause a WAR violation. Since any given memory sequence
can be read-dominated or write-dominated, this condition
bounds all possible idempotency violations. With this un-
derstanding, Clank [27] used dedicated hardware to track
whether memory accesses are read- or write-dominated. In
contrast, we use the cache to perform this same tracking,
eliminating the need for an additional hardware component.
Henceforth, we will denote write-dominated WARs as safe,
and read-dominated WARs as violations.

To help understand the above, we redefine read-dominated
and write-dominated sequences to track a cache line instead
of a memory address. A cache line is read-dominated when
the first access to the line is a read and write-dominated
when the first access is a write. If a CWB comes from a write-
dominated cache line, it does not result in a WAR violation,
and therefore does not require special action. We term this
write-back as a safe write. A CWB can only result in a viola-
tion if the associated cache line is read-dominated, which we
term as an unsafe write. We track these memory sequences
to all cache lines during program execution and create a
checkpoint only if an unsafe write is encountered. The exact
functionality of this tracking is discussed in Section 4.
The above process is shown in Figure 3 2 . Compared to

Figure 3 1 , we notice a reduction in the number of check-
points and NVM writes. An important thing to note is that
since the cache stores data based on a hash of the memory
address, the distinction between safe-write and unsafe-write is
also based on the hashed address. This implies that the WAR
detection is not exact, and although it can never contain
false negatives, it does lead to few false positives. This is a
trade-off in using the cache (and not a dedicated hardware
module, as in e.g. [74]) as a memory tracker. However, we
show later (Section 6) that this impact is mostly negligible.

3.3 Reducing Unnecessary NVMWrites
Not all memory in the system is still in use (live) during
a checkpoint. Consider a program’s stack memory, it is al-
located/deallocated constantly during execution when en-
tering/leaving functions. However, stack memory that is
no longer in use, i.e., has been deallocated, will never be

read first during execution but is still marked as dirty in
the data cache. This insight is based on the fact that unallo-
cated stack is always first written to when allocated. Hence
the unallocated stack does not need to be written to NVM
at a checkpoint, potentially reducing the number of WAR
violations and NVM writes during a checkpoint.

4 System Architecture
We present NACHO: an architecture based on the data cache
design presented in Section 3.

4.1 System Requirements
Along with intermittent computing, NACHO also supports
the following requirements.
Incorruptibility: NACHO ensures that the program’s

state is correct. As shown in Table 1, state of the art systems
do not always guarantee incorruptibility. Just In Time (JIT)
checkpointing used in past and recent systems, e.g. [58], is in-
herently unsafe in intermittent computing due to its reliance
on accurately predicting when power failures will occur [61,
Figure 1]. Misjudging the timing can lead to missed check-
points, resulting in inconsistent system states and potential
data loss. Additionally, JIT does not adequately handle sud-
den power drops, making it difficult to ensure reliable execu-
tion, particularly when dealing with critical tasks. Frequent
power fluctuations compound this issue, as the system may
not have enough time to create a valid checkpoint. By using
the data cache as a WAR detector, we guarantee memory
consistency without energy prediction to create checkpoints.
Cache Architecture Agnostic: Even though our sys-

tem incorporates a custom data cache, NACHO is agnostic
to the cache architecture (with any placement/replacement
policies). The core concept of NACHO relies solely on the
addition of two extra bits per cache line to track memory
accesses for efficient WAR detection. This mechanism has
no inherent dependency on the cache architecture, enabling
it to determine when a write-back to non-volatile memory
is safe, and thus when a checkpoint is necessary. This makes
NACHO a versatile solution that can be incorporated into
different types of caches in intermittent computing systems.

4.2 Data Cache Controller
The WAR violation detection mechanism introduced in Sec-
tion 3.2 glosses over real-world obstacles that prevent it from
working in a fully-functioning data cache. In this section,
we address the simplifications made and describe the exact
workings of the optimized WAR detector.

4.2.1 Cache Line Bits. In Section 3 we introduced the
concept of read-dominated and write-dominated memory in
the cache line in order to detect WAR violations. While we
continue tracking both memory patterns, we optimize their
representation to minimize the number of additional bits
required. Instead of introducing a dedicated write-dominated
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Figure 4. Six memory sequences and their corresponding
bit patterns, including their decimal representation (blue
circles). Every memory access above maps to the one shown
cache line. The data in the cache line is omitted. Only the
cache line’s three bits of interest are shown: pw (possible-
war), rd (read-dominated), and d (dirty). The figure depicts
all possible bit patterns. Note that configuration ➍ (only the
pw bit set) is invalid and can never occur.

bit, we infer write domination from the dirty bit (which
is already present in a standard data cache) and the read-
dominated bit. A memory access is thus classified as write-
dominated if the cache line was first read-dominated and
was later written to, which inherently sets the dirty bit. Ad-
ditionally, we introduce the possible-war bit to reduce the
conservativeness when detecting WAR violations by incor-
porating history information into the cache line. In total, this
results in just two additional bits compared to a standard
data cache line, possible-war and read-dominated. Figure 4
shows all the possible bit patterns and thememory sequences
required to reach them.

4.2.2 The Possible WAR Bit. The possible-war bit is set
when the cache line is read-dominated and the data in a cache
line is replaced. Multiple memory addresses are mapped to
the same cache line when using a cache. While the read-
dominated and write-dominated bits are a good start, they
fall short when considering a memory location that is read
into the cache, then evicted, and later written on to (scenario
“pw&write dominated w/WAR” in Figure 4). In this scenario,
the cache line would not be marked as read-dominated if the
possible-war was not set (scenario “pw & read dominated
w/ WAR”). Without the possible-war bit, all writes after a
read to the data cache must be marked as read-dominated,
leading to more checkpoints. However, this scenario could
never be a WAR violation, as the incoming write must be
to another memory address to evict the original entry. Thus

the possible-war bit functions as a one-bit history, recording
if there was a read-dominated cache entry in the block since
the last checkpoint. But since the possible-war bit is set last, it
will not be taken into consideration during the first transition
from a read-dominated to a write-dominated cache line.

4.2.3 PossibleWARandCacheAssociativity. When ap-
plying cache bits to track WAR violations, we must consider
the data cache associativity, i.e., the number of “ways” in
the cache. Assuming a 𝑛-way cache, the cache controller can
map a memory location to 𝑛 different cache lines. The place-
ment of memory address in a cache line depends on the cache
replacement policy, e.g., least recently used. Now, consider a
memory read to location𝑚, marking the cache block as read-
dominated. Next, the line containing𝑚 is evicted, removing
it from the cache. Finally, memory location𝑚 is written to;
however, this time, the data is written to another cache block
for the same hash (which is possible when 𝑛 is greater than
one, i.e., the cache is not directly mapped). If this final cache
line does not have its possible-war bit set, it will be marked
write-dominated. Because the same memory location𝑚 was
read before—but was not detected because it occurred in a
different cache line—this can lead to a WAR violation since
the cache line is mismarked aswrite-dominated. To avoid this
incorrect write-domianted marking, we must slightly change
our approach to set the possible-war bit. Instead of consider-
ing the possible-war bit of only the cache line to which data
is moved, we must consider all the 𝑛 cache lines in the set
when deciding if it can be marked as write-dominated.

4.2.4 StackTracking. To both improve the execution time
and lower the energy consumption, writing to the NVM
should be avoided as much as possible. One situation where
data in the cache is written back to NVM without it ever
being read again is when a deallocated stack frame, i.e., a
stack frame no longer in use because the function completed,
is written back to NVM. To avoid writing this data back to
NVM, we need to track the stack movement of the program.
This can be straightforward, as the top of the stack is con-
stantly being tracked by the Central Processing Unit (CPU)’s
stack pointer sp. By also tracking sp𝑚𝑖𝑛 , i.e., the lowest ad-
dress the stack pointer reaches between two checkpoints
(assuming the stack memory grows downwards in memory),
we can discard all memory between sp and sp𝑚𝑖𝑛 . By ap-
plying this technique, we avoid writing a dirty cache line to
NVM during a checkpoint or cache eviction.

4.2.5 Data Cache Controller Algorithm. Algorithm 1
shows the manipulation of the two extra bits introduced
by this work: possible-war (pw) and read-dominated (rd),
in addition to the dirty bit (d), for each memory request.
The other cache line-related bits (e.g., valid) and function-
ality (e.g., details regarding the ReplacementPolicy) are not
shown in Algorithm 1 for the sake of brevity. We will now go
through this algorithm, discussing each procedure in detail.
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MemoryAccess: During a memory request (Line 1), the
default data cache behavior is first to check if the request is
a miss (Line 3). If the request results in a miss, an existing
cache line must be evicted to make room for the new request.
If the request is a hit, the memory location requested already
resides in the cache. When a hit occurs, we introduce one
special case. If this is the first hit for this cache line after a
checkpoint was created, the cache line bits must be updated
using the UpdateLine procedure (Line 20). We can identify
this is the first hit by checking if all the considered flags are
cleared (Line 5). If the cache line has been visited before, no
bit changes are needed, and the cache hit continues as usual.

CacheMiss: When a cache miss occurs (Line 8), we use a
standard cache replacement policy, e.g., least recently used,
to select the line that must be evicted to make room for the
new request (Line 9). If the current line is not dirty, i.e., it
was only read and never written to (Line 10), we can safely
discard the data in the cache line and finish the request by
updating the bits (Line 18). Later we update the cache line
with data from the NVM (Line 7). If the cache line to be
evicted is dirty, we cannot simply write the current content
of the line to NVM, as this could cause a WAR violation.
Instead, we first check if we can ignore the data because it
is in a region of the stack that is no longer live (Line 11), in
which case we can reset the cache line (Line 17). After all,
the data does not need to be written back to NVM.
If the memory might still be in use, we check whether

the memory accesses could have been read-dominated by
checking the rd flag associated with the cache line (Line 12).
If the cache line could be read-dominated, writing the mem-
ory back to NVM could cause a WAR violation, so we must
create a checkpoint (Line 13). However, if we know for sure
that the cache line is write-dominated, which must be the
case if the cache line is dirty and not read-dominated, we
can safely write (evict) the data directly to the NVM without
creating a checkpoint (Line 15). Finally, we can continue the
cache miss as usual by updating the cache line (Line 18) and
returning the updated line to the MemoryAccess procedure.

UpdateLine: If the cache line is currently read-dominated
then the possible-war bit must be set after updating the other
bits to indicate that the next access could be read-dominated
even if the request is a write (Line 33). If the request is a read
(Line 22), only the read-dominated flag has to be set. How-
ever, if the request is instead a write (Line 24), we consider
if any of the lines in the set has their possible-war bit set
(Line 29), or the size of the requrest is not equal to the size
of the cache line (four bytes), in which case we must mark
the current line as read-dominated (Line 32). Otherwise the
read-dominated bit is cleared, marking it as write-dominated.
The size requirement is introduced because a write request
smaller than the cache line will first read from the NVM,
which could lead to a WAR violation.

Algorithm 1: Data cache controller
1 Algorithm MemoryAccess(address, type, value, size) :
2 line, miss← CacheLine(address)
3 if miss is true then
4 line = CacheMiss(address, type, size)
5 else if (linepw is false) and (linerd is false) and (linedirty is false)

then
6 UpdateLine(line, type, size) // 1st hit after checkpt

7 UpdateData(line, value) // Fill cache line with data

8 Procedure CacheMiss(address, type, size) :
9 line← ReplacementPolicy(address) // Evicting line

10 if linedirty is true then
11 if InUnusedStack(address) is false then
12 if linerd is true then
13 Checkpoint()

14 else
15 Evict(line) // Writeback without a checkpoint

16 else
17 ResetLine(line) // No need for a writeback

18 UpdateLine(line, type, size) // Update new cache line

19 return line

20 Procedure UpdateLine(line, type, size) :
21 was-read-dominated← linerd
22 if type is Read then
23 linerd ← true // Mark line as read-dominated

24 else if type is Write then
25 possible-WAR← false
26 Set = GetSet(line) // Get set associated with line

27 for line in Set do // For each line in the set
28 possible-WAR← (possible-WAR or linepw)

29 if (possibe-WAR is false) and (size is 4) then
30 linerd ← false // Mark line as write-dominated

31 else
32 linerd ← true // Mark line as read-dominated

33 if was-read-dominated then
34 linepw ← true // Mark line as possible WAR

35 Procedure Checkpoint() :
36 for line in Cache do // For each line in the cache
37 if linedirty then
38 if InUnusedStack(address) is false then
39 SafeEvict(line) // Double buffered evict

40 ResetLine(line) // Clear all the bits in the line

41 CheckpointRegisters() // Checkpoint CPU registers

Checkpoint: The Checkpoint procedure (Line 35) per-
forms a double-buffered [43, Sec. 4.2 “Checkpointing”] write-
back to NVM for all the dirty bits in the cache (abstracted
for brevity as SafeEvict, Line 39) that are in use (Line 38).
After the checkpoint is completed, the data still resides in the
cache, but the WAR detection bits are cleared (Line 40) be-
cause the detection must be performed from one checkpoint
to the next.
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5 Implementation
We employ 32-bit RISC-V [32] as the target Instruction Set
Architecture (ISA) of NACHO, due to RISC-V’s configurabil-
ity and open-source nature.

5.1 Processor Emulation
To evaluate NACHO, we use ICEmu [55], a cycle-accurate
emulator introduced byWARio [37] and specifically designed
for intermittent computing frameworks. ICEmu is built on
Unicorn [53] CPU instruction set simulator, which in turn
is based on QEMU [52]. ICEmu enables the collection of
performance metrics as well as the verification of execu-
tion correctness, particularly in detecting WAR hazards, for
which neither QEMUnor Gem5 [56] is optimized. This makes
ICEmu the ideal choice for our evaluation of NACHO along
with other state-of-the-art systems (see Section 6.1.) Further-
more, we extended ICEmu to closely represent the SiFive E21
standard core processor [63]—by modeling its pipeline [63,
Section 3.3]—as this is a basic 32-bit embedded processor.

We chose emulation instead of hardware-based implemen-
tation of NACHO. The emulation enables us to evaluate the
correctness of NACHO and other systems (introduced in
Section 6.1.2), which will be hard to accomplish with a Mi-
crocontroller Unit (MCU) implementation. This correctness
evaluation is done as follows. As the first safety measure, the
emulator duplicates the same access to a shadowmemory for
every memory access generated by the processor. This way,
a correct memory access request handled by NACHO must
return the same value as contained in the shadow memory.
As the second safety measure, the emulator performs WAR
detection to verify the absence of anyWAR violation, as done
in [49, Section 5.2] and [37, Section 5.1.1] by using read- and
write-specific address lists and observing memory access pat-
terns. Additionally, emulation allows us to collect detailed
metrics without interfering with the program’s execution.

5.2 Memory Access Cost Model
For the purpose of this evaluation, we assume a processor
speed of 50MHz. We also assume an access latency of a
common onboard NVM of 125 ns [28, Table 1], [22, Section
2]. Furthermore, we assume that a data cache hit induces a
two-cycle latency to the pipleline [63, Section 3.1] and aNVM
access induces a six-cycle latency (rounded down). Note that
all the above values are chosen conservatively2, as a higher
processor speed results in larger differences between the data
cache latency and the NVM latency, leading to an even better
performance of NACHO than evaluated (see Section 6).

5.3 Cache Controller
We extend ICEmu with non-volatile main memory, and im-
plement NACHO’s cache controller as an ICEmu memory

2For example, the current state of the art MCUs targetting ultra-low-power
applications often operate at speeds over 100MHz, e.g. [5].

subsystem. Within this subsystem, we implement a data
cache with least recently used replacement policy and four
bytes of data per cache line. Moreover, we enable config-
uring the data cache size and associativity. The additional
bits introduced in Section 4 are implemented together with
existing data cache bits to emulate a fully functional cache.
On every memory access, the algorithm outlined in Algo-
rithm 1 is executed, and the execution pipeline is updated
using the cost model given in Section 5.2 to maintain ac-
curate cycle count. To enable stack tracking (Section 4.2.4)
the stack pointer is tracked during execution, storing the
minimum address since the last checkpoint.

6 Evaluation
We compare NACHO against existing prior works and show
that NACHO reduces the number of NVM and cache ac-
cesses, thus ensuring energy-efficient execution of intermit-
tently powered applications. We further dissect NACHO’s
performance to show that NACHO’s energy-efficient design
choices incur very low computational overhead.

6.1 Evaluation Setup
We compare NACHO against reference systems using multi-
ple benchmark applications and record various performance
metrics to show the benefit of NACHO. We begin with the
outline of our setup.

6.1.1 Benchmarks. We use CoreMark [18], an industry-
grade benchmark for measuring embedded systems’ CPU
performance, to evaluate NACHO. Additionally, we use the
CRC, SHA,Dijkstra and adpcm benchmarks from theMiBench
suite [24], towers [41] benchmark, and a quicksort algo-
rithm [50]. Finally, we use TinyAES [35] and picojpeg [21]
to represent two real-life embedded applications. All bench-
marks are compiled using version 16.0.2 of the clang [54]
compiler on the RISC-V ISA with optimization level -Os.

6.1.2 Systems. We compare NACHO against intermittent
computing systems employing NVM as main memory. We
ensure that our choice of systems covers both software and
hardware support to solve the challenges arising from NVM
main memory, as it would help establish the benefit of our
system. All of the following systems use double-buffered
checkpointing mechanism similar to that of NACHO, to
make the comparison as fair as possible.
▶ Clank [27]: A memory-tracking hardware module that

detects data inconsistencies during execution time. Our im-
plementation is an ideal version of Clank, as it does not
utilize any memory buffers that can fill up during the WAR
detection [27, Section 3.1], nor does it count any memory
access cost to these buffers. We considered implementing
a version of Clank with a write-through cache to provide
more accurate comparison with NACHO. However, the core
assumptions of Clank conflict with this idea. Clank relies on
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immediate memory updates to accurately track WARs, but a
cache obfuscates the timing when writes are actually prop-
agated to main memory, delaying the updates that Clank
monitors. The presence of a cache fundamentally disrupts
the direct memory access assumptions on which Clank’s
tracking mechanism is based. Since NACHO also performs
WAR detection (but using just the data cache), we use Clank
without any cache to compare it with NACHO.
▶ PROWL [28]: A cache implementation reducing NVM

accesses, which avoids frequent checkpoints due to WARs
by employing a custom cache replacement policy that delays
the eviction of a dirty cache block. We include PROWL as a
reference, as it relates most closely to NACHO, as they both
introduce data cache modifications for intermittent systems.
▶ ReplayCache [73]: Uses a non-blocking cache to asyn-

chronously write cache lines back to NVM. We include Re-
playCache as a reference for its JIT-checkpointing strategy.
Unfortunately, ReplayCache source code was not made pub-
lic and was refused to be shared by its authors. Therefore we
have reverse engineered the ReplayCache implementation
based on (i) the sparse data provided in the ReplayCache
paper and (ii) numerous email conversations with the Replay-
Cache authors. As a result of our re-implementation efforts
we found limiting features of ReplayCache that were not
mentioned in the original RepalyCache paper [73]. Firstly,
RepalyCache uses miss status/handler registers for coalescing
stores in the write-back queue. This makes any real-world
implementation of ReplayCache more complex since it re-
quires specialized cache hardware. Secondly, although Re-
playCache’s original implementation is based on Advanced
RISC Machines (ARM) architecure, it cannot be imple-
mented on a real ARM system. This is because ARM
architecure does not allow adding custom flags to instruc-
tions, resulting in the original ReplayCache implementation
storing all region boundaries in the simulator. In our im-
plementation of ReplayCache—to make a fair comparison
between ReplayCache and NACHO—we use RISC-V architec-
ture instead of ARM. As result of our efforts we release the
source code of our ReplayCache implementation together
with the NACHO source code [50].
▶ Naive NACHO: A basic version of NACHO, as de-

scribed in Section 3.1, that does not have a WAR detector
and no stack tracking support. The use of naive NACHO
helps us dissect the performance gains achieved by each
component of the complete NACHO implementation.
▶ Oracle NACHO: An ideal version of NACHO that

acts as its theoretical lower bound. The key difference be-
tween Oracle NACHO and NACHO lies in the detection of
WARs based on the cache line addresses. While NACHO de-
tects WAR using read/write-dominated cache lines, Oracle
NACHO makes this detection using exact addresses, thus
making it a perfect WAR violation detector. However, im-
plementing such a system increases the hardware cost and
complexity, thus making it impractical to implement.

6.1.3 Metrics. We consider four evaluation metrics: (1)
Execution time: the time required to complete a given bench-
mark; (2) Checkpoints: the number of times the device had
to checkpoint its state; (3) Number of NVM transfers: the
number of bytes read/written from/to NVM during program
execution; (4) Intermittent (re-execution) execution overhead:
the percentage of computational overhead incurred when
running on an intermittent energy system compared to a
fully volatile system.

6.1.4 Changing parameters. We consider two variable
parameters to evaluate the execution time metric:
▶ Power failures: periodic power failures at intervals

of 5ms, 10ms, 50ms and 100ms. Power failure experiments
are only discussed in Section 6.2.4, all other results do not
use intermittent power failures.
▶ Cache: 2-way caches of size 256 and 512 bytes (as used

in [28]) are considered for the evaluation of execution time.
For the cache design space exploration, an additional size of
1024 bytes is used, and all different cache sizes are evaluated
using 4-way caches as well.

6.2 Evaluation Results
We now proceed with the evaluation of NACHO. Of note is
that, for Figures 6 and 7, the adpcm and quicksort bench-
marks are not included because their result is very similar to
SHA and CRC respectively, while towers is not included be-
cause Clank and Oracle NACHO do not generate any check-
points in that benchmark.

6.2.1 Execution Time. Figure 5 shows the execution time
of all systems for each of the benchmarks considered for two
different cache configurations, normalized to a system with
fully volatile memory of the respective benchmark. Note that
this volatile memory system does not support intermittent
computing and assumes the same memory technology for
the main memory as used for the data cache. We can see
that the mean normalized execution time for NACHO is
76% and 79% lower compared to Clank when using a 256 B
and 512 B data cache, respectively. When compared against
PROWL, NACHO’s execution time is 46% and 38% lower
for, respectively, 256 B and 512 B data cache (using the same
cache size for both systems). The mean execution time for
NACHO compared to ReplayCache is 18% and 28% lower
for cache sizes 256 B and 512 B, again using the same cache
sizes for both systems. We note that ReplayCache is faster
on towers for a 256 B data cache by a small margin, because
of fewer accesses to NVM compared to NACHO. Excluding
the towers outlier, NACHO is, on average, within 4% and 2%
of Oracle NACHO’s execution time when using a 256 B and
512 B cache, respectively. The difference between NACHO
and Oracle NACHO in the towers benchmark occurs because
Oracle NACHO does not generate any checkpoints.
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Figure 5. Execution time for all benchmarks for Clank [27], PROWL [28], ReplayCache (RC) [73], NACHO, and Oracle NACHO
(Oracle). All results are normalized to the execution time of a system without non-volatile main memory and intermittent
computing support. Oracle NACHO is shown as the hypothetical lower bound that NACHO could reach if NACHO utilized
perfect memory tracking. The cache configuration used is a 2-way set-associative for two cache sizes: 256 B and 512 B. Note
that Clank is a cacheless system and is thus not affected by cache configuration.

If we further dissect the numbers by removing the base-
line program execution cost from all benchmarks, the over-
head becomes even more apparent. Compared to PROWL,
NACHO’s average overhead is 65% lower with 512 B cache,
with a maximum overhead reduction of 95% (CoreMark).
NACHO’s average overhead is also 55% lower than Replay-
Cache with 512 B cache, and a maximum overhead reduction
of 96% (TinyAES). Lower execution times for 512 B cache size
are due to the cache’s ability to retain more addresses, thus
delaying the eviction, as explained in Section 6.2.2.

6.2.2 Number of Checkpoints. Figure 6 shows a signifi-
cant decrease in the number of checkpoints of both PROWL
and NACHO compared to Clank. ReplayCache is excluded
since it does not generate checkpoints when there are no
intermittent power failures. It must be noted that a check-
point in Clank only consists of the registers, whereas in
both PROWL and NACHO, the cache has to be written back
to the NVM in a double-buffered manner during a check-
point, making it significantly more costly. In other words,
even though NACHO had a larger update size at the time of
checkpoint, NACHO is able to significantly reduce the need
for checkpoints due to its efficient detection of idempotence
violations. Additionally, we can see a decrease in the number
of checkpoints for a larger cache size for all the systems. This
is primarily because of the ability of the cache to retain more
data, thus reducing the need for eviction and, in turn, the
checkpoint. We evaluate this effect further in Section 6.2.6.

6.2.3 Number of NVM Transfers. Figure 7 shows the
number of bytes transferred during read and write opera-
tions normalized to the numbers reported for Clank (which
exclusively uses NVM). We can observe that NACHO sig-
nificantly reduces the number of NVM transfers for almost
all benchmarks compared to Clank and PROWL, with 99%
reduction for TinyAES being the maximum and the trend
holds for most benchmarks. On average, NACHO reduces
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Figure 6. Number of checkpoints created, normalized to
Clank with configurations identical to Figure 5. ReplayCache
is excluded because it did not generate any checkpoints.

the number of NVM transfers by 82% and 50% compared to
Clank and PROWL, respectively. This shows the efficiency
gain of NACHO compared to Clank and PROWL, as NVM
transfers are typically energy-demanding. While this trend
holds for most benchmarks, Dijkstra is an extreme outlier as
NACHO has 23% more NVM transfers than PROWL, most
likely caused by an unfortunate cache access pattern that
causes many checkpoints in NACHO, so benefiting from
the PROWL cache relocation strategy. We also observe that
the number of transfers in ReplayCache is smaller for pico-
jpeg, Dijkstra and SHA benchmarks compared to NACHO,
because NACHO transfers more bytes to NVM due to the
checkpoints that it generates.

6.2.4 Re-execution Overhead. An important metric to
evaluate for any intermittently powered device is the cost
of re-execution, i.e., the cost associated with a power failure.
On every power failure, checkpointed system state must be
restored whenever energy is available to resume application
execution. Resuming execution incurs an additional cost as
the data cache loses its content after a power failure, resulting
in cache misses. Furthermore, checkpoints are not created
precisely before a power failure occurs, so there is a limited
amount of code re-execution that adds to the computational
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Figure 7. Number of non-volatile memory byte transfers.
All results are normalized to Clank. PROWL, ReplayCache
and NACHO are configured with a 512 B data cache.

Table 2. Re-execution overhead of NACHO, running at
50MHz, compared to NACHO without intermittent power
failures. The overhead consists of periodic checkpoints with
half the period of the on-duration (to guarantee forward
progress) and the re-execution cost of power failures. Some
benchmarks are excluded because the overhead in those
cases is smaller than that of the benchmarks in the table.

On-duration CoreMark picojpeg Tiny AES SHA adpcm

5ms 9.68% 0.95% 16.15% 0.86% 4.35%
10ms 2.47% 0.42% 5.54% 0.73% 4.35%
50ms 0.14% 0.11% 1.06% 0.19% 0.99%
100ms 0.00% 0.07% 0.74% 0.13% 0.17%

overhead. Lastly, to ensure forward progress, the system
must introduce periodic checkpoints to guarantee that at
least one checkpoint is created during the on-duration.

Table 2 shows the re-execution cost with different power
interruption intervals (on-duration). The shorter the power
interruption interval, the higher the cost of re-execution to
complete the workload. For every on-duration 𝑛, we config-
ure a periodic checkpoint to occur every 𝑛/2ms to guarantee
forward progress. We observe that even with the shortest
power interruption interval, the additional cost is less than
4% on average for all benchmarks (including those not shown
in Table 2), with CoreMark and TinyAES being the outliers.
With more reasonable interruption intervals, such as a power
failure every 50ms, we can see that the average additional
cost is less than 1.1%. The low overhead can be attributed
to 50ms being still a considerable amount of clock cycles
and memory accesses, masking the cost of some additional
periodic checkpoints, refilling the cache, and re-execution.

6.2.5 NACHO’sComponents Evaluation. Table 3 shows
the percentage reduction achieved by WAR violation detec-
tion (PW) and stack-tracking approaches (ST) individually
as well as the NACHO (N) overall. We see that for all bench-
marks and considered metrics, the overall improvement of

CoreMark picojpeg Tiny AES CRC Dijkstra SHA
0

1

2

3

no
rm

al
iz

ed
ex

ec
ut

io
n

ti
m

e 256 B 512 B 1024 B 2-way 4-way2-way 4-way

Figure 8. Cache configurations design space exploration of
NACHO normalized to a system with only volatile memory.

NACHO over Naive NACHO is significant, with an aver-
age overhead reduction of 18% and an average reduction in
the number of NVM writes of 19%. It must be noted that
the reduction achieved by each component individually can
not be summed to the overall reduction achieved, as both
techniques (WAR violation detection and stack-tracking) can
target similar memory access patterns.

6.2.6 Design Space Exploration. Figure 8 shows NA-
CHO’s execution time in different cache configurations.

Cache Size: As we have shown, increasing the data cache
size improves NACHO performance as a larger data cache
can store more dirty blocks, effectively increasing the time
between WARs and, therefore, checkpoints. Also, a larger
data cache creates smaller mappings between cache lines and
program memory, which gives higher accuracy to per-line
WAR detection. However, as can be seen in Figure 8, for most
considered benchmarks, the jump in performance between a
data cache size of 512 B and 1024 B is not as significant as the
jump from 256 B to 512 B, suggesting diminishing returns as
the cache size increases.
Cache Associativity: A higher cache associativity im-

plies that the cache can store more blocks before it evicts
to make space. Similar to cache size, the cache associativity
also improves NACHO’s performance as increasing the cache
associativity decreases the probability of a cache collision.
However, the increase in performance due to the increase in
associativity is not as significant as it is with the change in
size (it even reduced the performance in the case of SHA).
This is because NACHO must consider all blocks associated
with a hash, reducing the benefits of higher associativity.

We conclude that, with NACHO, a 2-way set associative
data cache is preferred over a more complicated 4-way cache
implementation. Themarginal increase in performancewhen
utilizing a 4-way cache does not outweigh the additional
complexity. Hence, during our evaluation, we configured
NACHO with a 2-way set associative data cache3.

3Another reason is to aid comparisons against PROWL, which only provides
hashing functions for a 2-way set associative data cache.
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Table 3. Percental reduction of selected metrics compared to Naive NACHO for the two individual NACHO components,
possible war (PW) and stack-tracking (ST), and finally the complete system—NACHO (N).

CoreMark picojpeg Tiny AES CRC Dijkstra SHA
Metric PW ST N PW ST N PW ST N PW ST N PW ST N PW ST N
overhead 12% 4% 16% 3% 6% 7% 0% 9% 9% 12% 22% 22% 2% 0% 2% 39% 33% 52%
checkpoints 20% 0% 20% 3% 3% 4% 0% 0% 0% 25% 25% 25% 4% 0% 4% 41% 21% 41%
NVM reads 9% 3% 12% 3% 5% 6% 0% 4% 4% 10% 17% 17% 1% 0% 1% 34% 28% 44%
NVM writes 13% 4% 17% 3% 6% 7% 0% 5% 5% 13% 24% 24% 4% 0% 4% 42% 36% 57%

7 Related Work
Tasks/Threads: A volatile system requires frequent check-
points during program execution to cross periods of energy
unavailability [2, 10, 61]. Checkpointing is an energy-hungry
operation and adds to the execution time of an application.
An alternative to checkpoints, a task- or thread-based pro-
gramming model [8, 13, 43, 45, 68, 71, 72], reduces the cost of
checkpointing by employing a mixed volatility memory sys-
tem. It exposes Application Programming Interfaces (APIs),
allowing the programmer (or a compiler) to divide a pro-
gram into a set of atomic tasks and perform lightweight
checkpoints at the end of each task to ensure a persistent
application state across reboots.

Energy-efficient Program Execution: Work of [4] pro-
poses a dynamic voltage and frequency scaling. This reduces
the cost of program execution by allowing an intermittent
system to dynamically regulate its operating voltage based
on the changing energy conditions.
Static Volatile Memory Mapping: A virtual memory

manager maps data either to volatile or non-volatile memory
during compilation [48]. However, this approach allows only
a limited number of accesses to be made volatile.

8 Discussion and Future Work
Limitations and Mitigations: While NACHO is designed
to operate within the constraints of batteryless, energy har-
vesting intermittent systems, certain limitations arise from
the assumptions outlined earlier in Section 1. These lim-
itations define the scope of applicability of NACHO and
highlight potential challenges on extending this approach
to systems with different deployment constraints and cache
configurations. By defining these limitations and potential
approaches to address them, we provide a foundation for
future research directions in intermittent computing. Firstly,
NACHO is cache agnostic in terms of WAR detection, but
its implementation assumes a write-back cache model. For
write-through caches, the implementation needs to be mod-
ified to adjust cache eviction policies to align with check-
pointing behavior. Secondly, our assumption of cache sizes
and associated energy consumption might falter with the
high pace of cache architecture innovation [33]. As cache

size increases, the potential checkpoint size also grows, in-
creasing the energy required to persist cache state before
power failure. To mitigate this, adaptive checkpointing poli-
cies [6, 51] could be explored, where a system dynamically
decides when to flush based on an upper-bound threshold of
dirty cache lines. Such designs could also implement cache-
aware energy budgeting mechanisms, ensuring that place-
ment of checkpoints account for both cache occupancy and
available energy capacity.
Integration with Other Systems: NACHO takes a dif-

ferent approach than, e.g., PROWL [28], ReplayCache [73],
SweepCache [75],WL-Cache [11] andNvMR [9]. Even though
all these systems utilize a data cache, their cache is not tightly
integrated with WAR violation detection. PROWL, Sweep-
Cache, WL-Cache and ReplayCache do not use WAR vio-
lation detection, and NvMR focuses on renaming NVM ac-
cesses to avoid WAR violations as much as possible and uses
a detection mechanism similar to Clank [27]. These systems
could benefit from incorporating NACHO’s WAR detection
techniques into the existing data cache, although this is not
trivial and requires further research.

Energy andAreaCosts:BecauseNACHO is implemented
as a memory subsystem in an emulator, precise and accurate
assessments of area and energy overheads are challenging.
Nonetheless, we discus the relevant parameters that influ-
ence the power, energy, and area costs of NACHO. Energy
Overhead: While NACHO minimizes non-volatile memory
writes, which are the most energy consuming operations,
NACHO does introduce extra power consumption and area
overheads. The primary energy overhead arises from cache
accesses, where the additional two bits per cache line track
WAR dependencies. However, this is a minor cost compared
to the significant energy savings achieved by avoiding un-
necessary NVM writes. Cache Area: The area overhead is
minimal as the additional bits integrate into existing cache
metadata that eliminates the need for separateWAR tracking
hardware. Larger caches may lead to higher checkpointing
energy requirements, but this can be managed by adjust-
ing capacitor size or implementing adaptive checkpointing
strategies as discussed earlier. Finally we recall that our ex-
periments generate additional statistics (see Appendix A.5
and Appendix A.6 for steps to reproduce and evaluate our
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results) on various metrics such as checkpointing frequency,
average size of a checkpoint, and cache utilization. Our eval-
uation in Section 6.2 already accounts for the differences
in memory accesses and can be further extended to these
additional metrics to construct a rough energy model.
Energy Prediction: NACHO is incorruptible through

double buffering. However, if the system can guarantee that
enough energy is available to complete the cache writeback
and register checkpoint, double buffering is not needed, halv-
ing the number of NVM writes during a checkpoint.
Peripherals: NACHO does not focus on supporting pe-

ripherals or other input/output operations needed to commu-
nicate with sensors and actuators. Integrating prior works
such as [36, 47, 70] into NACHO is a nontrivial topic and
requires further research.

9 Conclusions
We presented NACHO system, where a data cache is cou-
pled with the intermittent computing paradigm. NACHO,
with the cache as a WAR violation detection entity, removes
the need for additional memory tracking. NACHO achieves
better performance than the state of the art solutions by
reducing both the number of required checkpoints and ac-
cesses to slow, non-volatile memory.
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A Artifact Appendix
A.1 Abstract
The NACHO artifact provides a comprehensive and auto-
mated framework for evaluating the proposed data cache
integration into intermittent computing systems. It leverages
the ICEmu Emulator (https://github.com/tudssl/ICEmu/),
which supports customizable plugins to simulate various
caching mechanisms, as well as perform comparisons. The
artifact integrates a specific version of LLVM (16.0.2) for com-
piling benchmarks tailored to the NACHO architecture. The
benchmarking suite includes diverse workloads designed to
evaluate the performance of NACHO across multiple config-
urations. To streamline the user experience, the artifact is
encapsulated in a Docker container that bundles all depen-
dencies, tools, and configurations required to reproduce the
results.

A.2 Artifact Check-List (Meta-Information)
• Algorithm: Cache controller algorithm proposed in Algo-
rithm 1 of the main paper.
• Program: CoreMark, MiBench, towers benchmark, a quick-
sort algorithm, TinyAES, and picojpeg.
• Compilation: LLVM, ICEmu, ReplayCache, benchmarks
• Output: Comparison graph
• Experiments: Bash scripts and manual actions
• How much disk space required (approx)?: 20 GB
• How much time is needed to prepare workflow (ap-
prox.)?: 1 hour
• How much time is needed to complete experiments
(approx.)?: 1 hour
• Publicly available?: Yes
• Code licenses (if publicly available)?: MIT License
• Archived (provide DOI)?: [To be added]

A.3 Description
A.3.1 How to Access. The code for conducting the exper-
iment and evaluating the results presented in the paper is
hosted publicly at

https://github.com/TUDSSL/intermittent-risc-v/

at nacho-artifact-release branch.

A.3.2 Hardware Dependencies. No hardware dependen-
cies are present as we use an emulated setup.

A.3.3 Software Dependencies. NACHO is set up and
executed within a Docker container based on Ubuntu 22.04.
The container provides a fully configured environment that
includes all required dependencies:
• ICEmu Emulator: NACHO relies on the ICEmu em-
ulator, an extension of Unicorn (https://www.unicorn-
engine.org), to simulate execution with custom plugins
that support intermittent computing experiments.
• LLVM (version 16.0.2): The system uses a customized
LLVM version for compilation, integrating necessary

transformations and optimizations specific to imple-
menting ReplayCache’s (system thatwe compare against)
execution model.
• ICEmu Plugins: A set of plugins extends ICEmu’s ca-
pabilities, enabling additional cache simulation, mem-
ory access tracking, and execution analysis.
• Benchmarking Suite: NACHO includes a collection
of benchmarks designed to evaluate different configu-
rations of intermittent execution and cache behavior.
• Jupyter Notebook for Plotting: The framework pro-
vides Jupyter notebooks to analyze and visualize ex-
perimental results.
• Additional Dependencies: The Docker image pre-
installs all necessary libraries, avoiding manual con-
figuration.

We recommend aminimum of 20GB of free storage to hold
all the Docker container images, toolchains and evaluation
results. We also recommend that a computer executing the
NACHO artifacts should have a minimum of 16GB of main
memory. This is needed as buildingNACHO from scratch and
running all the experiments is time- andmemory-consuming.
That is, the complete process from building NACHO to get-
ting all the results can take up to two hours.

A.4 Installation
The following steps define the basic flow of experimentation.
This flow ensures that everything is compiled, the emulator
is set up, the experiment is run, the results are collected,
and the final plots are generated, allowing for the evaluation
of results presented in the paper. While this is the recom-
mended approach, users can customize the workflow based
on their requirements. For instance, to verify different cache
configurations, Section A.5 provides an example of running
a single benchmark with specific settings.

1. Clone the repository:This retrieves the project source
code, including all required configurations and scripts.

git clone git@github.com:TUDSSL/

intermittent -risc -v.git -b nacho

-artifact -release

Note that we are using a specific branch customized
for ease of artifact evaluation.

2. Source environment setup scripts: These scripts
set up the necessary environment variables and paths
required for proper compilation and execution.

source setup.sh

source sourceme.sh

3. Build the Docker image: The docker build script
builds the Docker container with all necessary depen-
dencies pre-installed. This ensures a consistent envi-
ronment for running the experiments.

cd docker/development

./build.sh
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4. Start the Docker container: Running docker-start
launches the container, setting up the environment for
executing the experiments.

docker -start

5. Attach to the running container: Using docker
-attach, you get a shell prompt inside the container,
allowing you to interact with the environment.

docker -attach

6. Setup docker environment: The docker environ-
ment needs to be setup before performing the build.

cd intermittent -risc -v

source setup.sh

source sourceme.sh

7. Run the full build Inside the Docker container, ex-
ecuting make all builds all necessary components,
including LLVM, ICEmu, and its plugins. A fresh new
compilation can take upwards of one hour to complete.

make all

8. Run the experiments: After a full build is done, the
experiments can be run from inside the benchmarks
directory. This runs all the experiments and generates
the results (please refer to Section 6).

cd benchmarks

make run

Please note that the docker container and the storage
associated with it are not cleaned up automatically and need
manual cleaning after evaluation is done.

A.5 Experiment Workflow
The steps given in Section A.4 takes care of everything and
should be enough for evaluation purpose. In this section we
provide methods to run specific aspects of the experiment
and show how to customize various aspect of our proposal.

Users can run specific benchmarks using a custom ICEmu
plugin for a specific system. The script benchmark.sh in the
repository automates the execution of benchmarks for the
selected system.

A.5.1 Running Experiment. The benchmark.sh script
allows users to execute a specific benchmark with a chosen
system and optimization level. This script assumes that all re-
quired components, including LLVM, ICEmu, and necessary
plugins, have already been built.

Usage:
./ benchmark.sh <benchmark > <

optimization_level > <system >

A.5.2 Available Benchmarks. The following benchmarks
are available in the benchmarks directory:
adpcm , aes , coremark , crc , dijkstra ,

picojpeg , quicksort , sha , towers

A.5.3 Available Systems.
• NACHO (nacho): Proposed system
• ReplayCache (replaycache): Comparison system

A.5.4 Customization. Along with the command line ar-
guements passed to the script benchmark.sh, it can also be
modified to test different cache configurations by changing
the following parameters within the script:
• cache-size: Cache size in bytes (must be power of 2).
• cache-lines: Number of cache lines (2, 4, or 8).
• on-duration: Period for the simulated power trace.

A.5.5 Example workflow. To run NACHO with bench-
mark AES with optimization level O1
./ benchmark.sh aes O1 nacho

To run ReplayCache with benchmark coremark with opti-
mization level O0
./ benchmark.sh coremark O0 replaycache

Each experiment generates results in CSV format, stored
in the benchmarks/logs directory.

A.6 Evaluation and Expected Results
Once make all or benchmark.sh is run, logs are generated
and stored in the benchmarks/logs directory. Each log file
is named based on the benchmark, system configuration, and
cache parameters. Users can inspect the results manually or
use the provided plotting tools for analysis.

A.6.1 Generating Plots. To visualize the results, Jupyter
notebooks located in the plotting directory can be used.
The key notebooks are:
• BenchmarkPlots: Generates performance compari-
son graphs across different benchmarks.
• CacheVariation: Analyzes the effect of varying cache
configurations.
• PowerFailures: Investigates the impact of power fail-
ures on execution.

Plots generated from these notebooks are stored in:
plotting/plots/

By running these notebooks, users can obtain graphical
insights into the experimental results and compare the per-
formance of NACHO with ReplayCache across different con-
figurations. The plots generated here are used in the paper
for our evaluation.

A.7 Experiment Customization
The experiment can be customized by passing different ar-
guments to the cache plugin to change the cache design
space and enable/disable certain features as mentioned in
Section A.5.4.
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