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Abstract We solve the model for the flow of nitrogen, vapor, and water in a porous medium,
neglecting compressibility, heat conductivity, and capillary effects. Our choice of injection
conditions is determined by the application to clean up polluted sites. We study all mathe-
matical structures, such as rarefaction, shock waves, and their bifurcations; we also develop
a systematic method to find fundamental solutions for thermal compositional flows in porous
media. In addition, we unexpectedly find a rarefaction evaporation wave which has not been
previously reported in any other study.

Keywords Steam injection · Riemann problem · Multiphase flow · Hyperbolic systems ·
Bifurcation

1 Introduction

In this study, we are interested in capturing the waves and their bifurcations in a problem of
vapor and nitrogen injection in a porous medium that initially was partially saturated with
water. We present the model for the flow based on mass balance and energy conservation
equations as in Bruining and Marchesin (2006). An application of our study can be in clean-
ing sites polluted with oleic components. The advantage of adding nitrogen is that it reduces
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506 W. Lambert et al.

the temperature and can therefore be expected to leave a less severe ecological footprint of
the cleaning procedure.

The models for the three possible phase configurations, i.e., only single phase water, single
phase gas, or two phase water and gas subject to local thermodynamic equilibrium are given
by systems of three coupled equations of the type:

∂

∂t
G + ∂

∂x
uF = 0, (1)

supplemented by appropriate thermodynamical constraints between variables, such as the law
of Clausius-Clapeyron. Due to the thermodynamic constraints, we never need to define more
than two dependent variables, e.g., V1, V2. The variables V1, V2 are called the primary vari-
ables. Indeed (V1, V2) is a subset of the following variables: gas saturation sg , vapor composi-
tion ψgw, and temperature T ; (V1, V2) represents the unknowns in each phase configuration;
G := G(V1, V2) = (G1,G2,G3)(V1, V2) and F := F(V1, V2) = (F1, F2, F3)(V1, V2) are
the accumulation vector and the flux vector, respectively; u is a total velocity. In Lambert
and Marchesin (2009), we propose a general formalism for solving this class of equations;
see also Lambert and Marchesin (2008) for further details.

Systems of conservation equations of type (1) have the feature that the volumetric flow
rate u does not appear in the accumulation vector, rather it appears isolated in the flux vector,
so that there is an infinite speed mode associated to u. In these systems, the total volume is not
conserved, so the dependent variable u is not constant. An important result in our theory is
that we can obtain the variable u in terms of primary variables, which are unknowns of system
(1); we call this variable (u) “secondary variable”. In the standard theory of fractional flow,
this speed is constant and it is determined from the boundary conditions only. The feature of
variable u has appeared in previous studies of several authors, such as Dumoré et al. (1984);
however, here we propose a general fractional flow theory to deal with this variable u. We
combine a set of approximations in the physical model that greatly simplifies the analysis.

In this article, we extend the ideas presented in Bruining and Marchesin (2006) in several
ways. First, we consider all different phase configurations where chemical species can exist
under thermodynamic equilibrium. We solve the Riemann problem for states lying in the
following pair of phase configurations: the left state L is in the spg and the right state R is
in the spl, which was not considered in Bruining and Marchesin (2006). We study shocks
between different phase configurations, obtaining condensation shocks, which occur between
regions containing vapor and regions containing a mixture of water and nitrogen with vapor.
In Bruining and Marchesin (2006), only a condensation shock was found in the phase where
liquid water, vapor water, and nitrogen coexist under thermodynamic equilibrium.

Here, the methodology developed allows us to investigate the existence of rarefaction
waves; we observe an evaporation rarefaction wave, which occurs in regions containing a
mixture of water and nitrogen with vapor. We present an example of the Riemann solution for
data in two different phase configurations and also analyze the bifurcations in these solutions.
This model is an example of a general theory developed for compositional models with two
chemical species and two phases that can be applied for different thermal flows; see Lambert
and Marchesin (2009) for more mathematical details.

In Sect. 2, we present the model that describes the injection of vapor and nitrogen in
a one-dimensional horizontal porous rock initially filled with liquid water. In Sect. 3, we
obtain the fundamental waves (shock and rarefaction) for the Riemann solution in the three
phase configurations under thermodynamical equilibrium: spg, where there is water vapor
and nitrogen, Sect. 3.2; spl, composed only by liquid water, Sect. 3.3; tp, formed by liquid
water, water vapor, and nitrogen, Sect. 3.4, where we obtain the condensation shock and the

123



The Riemann Solution for the Injection of Steam and Nitrogen in a Porous Medium 507

newly found evaporation rarefaction wave. In Sect. 4, we present the Riemann solution for
the problem describing the injection of vapor and nitrogen in the spg configuration into a
porous medium filled with water. The conclusions are given in Sect. 5.

Equations numbered from (33) to (41) are in Appendix A; those from (42) to (59) are in
Appendix B.

2 The Model

Compositional models (1) in porous media are widely studied in Petroleum Engineering,
see Lake (1989). They describe flows where mass transfer of chemicals between phases and
possibly temperature changes, need to be tracked. In Lambert et al. (2005b), we have studied
the injection of vapor and water in several proportions into a porous medium containing vapor
(gaseous H2 O), water (liquid H2 O), or a mixture. Here, we consider the one-dimensional
horizontal flow resulting the injection of vapor and nitrogen in a porous rock cylinder, where
we disregard gravity effects and heat conductivity. The rock has constant porosity ϕ and
absolute permeability k; this flow was considered first in Bruining and Marchesin (2006).
We assume that the fluids are incompressible and that the pressure variations along the cyl-
inder are so small that they do not affect the physical properties of the fluids. The effect of
diffusive terms (related to capillary pressure, heat conductivity, etc.) is to widen the heat
condensation front as well as other shocks, while the convergence of the characteristics tries
to sharpen the front. The balance of these effects yields the front width, which is typically a
few tenth of centimeters; on the other hand, the distance between injection and production
wells is of the order of hundred m. Thus, this width is negligible, and we can set it to zero to
simplify our analysis. Darcy’s law for multiphase flows relates the pressure gradient with its
seepage speed:

uw = −kkrw

µw

∂p

∂x
, ug = −kkrg

µg

∂p

∂x
. (2)

The water and gas relative permeability functions krw(sw) and krg(sg) are considered to be
functions of their respective saturations (see Appendix Eq. 41);µw andµg are the viscosities
of the liquid and gaseous phases. The “fractional flows” for the liquid and gaseous phase are
saturation-dependent functions defined by:

fw = krw/µw

krw/µw + krg/µg
, fg = krg/µg

krw/µw + krg/µg
. (3)

The saturations sw and sg add to 1. By Eq. 3, the same is true for fw and fg.Using Darcy’s
law (2), the definitions (3) yield:

uw = u fw, ug = u fg, where u = uw + ug is the total or Darcy velocity. (4)

We write the equations for the conservation of total mass of water (liquid and gaseous
H2 O) and nitrogen (gaseous N2) as

∂

∂t
ϕ(ρW sw + ρgwsg)+ ∂

∂x
u(ρW fw + ρgw fg) = 0. (5)

∂

∂t
ϕρgnsg + ∂

∂x
uρgn fg = 0, (6)

where ρW is the liquid water density, which is assumed to be constant, ρgw (ρgn) denotes the
concentration of vapor (nitrogen) in the gaseous phase (mass per unit gas volume).
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In order to describe temperature variation, we formulate the energy conservation in terms
of enthalpies, see Beek et al. (1999); Bird et al. (2001), as we ignore adiabatic compression
and decompression effects. We neglect longitudinal heat conduction and heat losses to the
surrounding rock. We assume also that the temperature T in the water, solid, and gas phases
is the same. Thus the energy conservation is given by

∂

∂t
ϕ(Ĥr + HW sw + Hgsg)+ ∂

∂x
u(HW fw + Hg fg) = 0, (7)

here, Ĥr = Hr/ϕ and Hr , HW , and Hg are the rock, the liquid water, and the gas enthalpies
per unit volume; their expressions can be found in Eq. 35.

The unknowns on the system are a subset of sg, ψgw, T , and u; the phase of the flow deter-
mines which unknowns are used, as will be explained later. The quantity ψgw represents the
composition (molar fraction) of the H2 O in the gaseous phase; in Sect. 3.2, we derive the
system of equations where ψgw is an unknown.

3 Rarefaction and Shock Waves in Riemann Solutions

Here, we extend the method of characteristics (or fractional flow theory) for systems of
type (1), see Lake (1989); Smoller (1983). Mathematically, fluid injection is modeled by the
Riemann-Goursat problem associated to Eqs. 5–7 with initial data:{

(sg, ψgw, T, u)L if x = 0, t > 0,
(sg, ψgw, T, ·)R if x > 0.

(8)

The speed uL > 0 is specified at the injection point. The (·) (dot) denotes that the total
velocity u R is not specified at the right state. In the next sections, we show that u R can be
obtained in terms of uL , sg, ψgw , and T .

3.1 Phase Configurations in Thermodynamical Equilibrium

There are three different phase configurations: a single-phase liquid configuration, spl, in
which the pores contain only liquid water; a single-phase gaseous configuration, spg, with
vapor and nitrogen; and a two-phase configuration, tp, with a mixture of liquid water, gas-
eous nitrogen, and vapor. In the latter case, the temperature is specified by the concentration
of vapor in the gas through Clausius-Clapeyron law, as we will see. We assume that each
configuration is in local thermodynamical equilibrium, so we can use Gibbs’ phase rule,
f = c − p + 2 where f represents Gibb’s number of thermodynamical degrees of freedom,
c and p are the number of chemical species and phases, respectively. As in our thermody-
namical model the pressure is fixed, the remaining number of thermodynamical degrees of
freedom fP (under constant pressure) is rewritten as

fP = c − p + 1. (9)

Figure 1b shows the three-phase configurations in the variables (sw,ψgw, T ); we choose
sw instead of sg for convenience.

For each phase configuration, there are two important groups of variables. There are
“primary variables”; in the next sections, we will show that the primary variables are: in the
spl, T ; in the tp, sg , and T ; in the spg, ψgw , and T . The other variable u is called “secondary
variable” because it will be obtained from the primary variables. The remaining variables are
trivially obtained in terms of the primary ones.
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Fig. 1 a left: The physical region for the spg configuration of steam and nitrogen is formed by the pairs
(ψgw, T ) satisfying ψgw ≤ �(T ). The solid graph �(T ) represents the composition of a mixture of nitrogen
and steam in equilibrium with liquid water. b right: Phase space for (sW , ψgw, T ): single phase gaseous
(spg) configuration (Sect. 3.2), single phase liquid (spl) configuration (Sect. 3.3), and the two phase (tp)
configuration (Sect. 3.4)

3.2 Single-phase Gaseous Configuration—spg

There are two chemical species (N2 and H2 O) and one gaseous phase, i.e., c = 2 and p = 1,
so the number of thermodynamical degrees of freedom is fP = 2: temperature and gas com-
position. The other unknown is u. We define the steam and nitrogen gas compositions, ψgw

and ψgn , as follows, see Bruining and Marchesin (2006); Lambert and Marchesin (2008):

ψgw = ρgw/ρgW (T ), ψgn = ρgn/ρgN (T ), with ψgw + ψgn = 1, (10)

where ρgW and ρgN are the densities of pure steam and nitrogen given by Eq. 40. We assume
that in the nitrogen and vapor there are no volume contraction or expansions effects due to
mixing so that the volumes of the components are additive: hence Eq. 10c.

Using ρgw, ρgn given by Eqs. 10a, b, fw = sw = 0, fg = sg = 1, Eqs. 5–7 become:

∂

∂t
ϕρgWψgw + ∂

∂x
uρgWψgw = 0, (11)

∂

∂t
ϕρgNψgn + ∂

∂x
uρgNψgn = 0, (12)

∂

∂t
ϕ(Ĥr + ρgW hgWψgw + ρgN hgNψgn)+ ∂

∂x
u(ρgW hgWψgw + ρgN hgNψgn) = 0;

(13)

where the enthalpies per mass unit of pure steam and nitrogen hgW (T ) and hgN (T ) are used
to replace Hg (Eq. 35c), and they are given in Eqs. 33–34.

The spg configuration consists of a two-parameter set of triplets (sw = 0, ψgw, T ),
satisfying ψgw ≤ �(T ) ≡ ρgw(T )/ρgW (T ), see Eqs. 39a and 40a, Fig. 1 and Bruining
and Marchesin (2006); Lambert and Marchesin (2008). Here, (V1, V2) = (ψgw, T ) are the
primary variables, and sw = 0, ψgn = 1 − ψgw .

3.2.1 Characteristic Speed Analysis

Assuming that the solution is sufficiently smooth, we differentiate all equations in Eqs. 11–13
with respect to their variables (V1, V2, u). In the spg, V1 and V2 stand for ψgw and T ; in the
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tp, V1 and V2 stand for sg and T . For the spl the system, (5–7) reduces to a scalar transport
equation for the unknown T . The use of variables V1 and V2 is appropriate, because the
derivation that follows applies to systems of form (1) arising in regions where the solution is
smooth. Thus, in the next section, we employ the same derivation for the tp configuration;
however, we present only the final results.

The differentiated version of a system of form (1) is written compactly as(
B(V1, V2)

∂

∂t
+ A(V1, V2, u)

∂

∂x

)
(V1, V2, u)T = 0, (14)

where the matrices B and A are the derivatives of G = G(V1, V2) and uF(V1, V2) with
respect to the variables V1, V2, and u. Since G does not depend on u, the last column in the
matrix B is zero. The matrices B and A for the spg configuration are:

B = ϕ

⎛
⎜⎝

ρgW ρ′
gWψgw 0

−ρgN ρ′
gNψgn 0

HgW − HgN Ĉr + ψgwH ′
gW + ψgn H ′

gN 0

⎞
⎟⎠ (15)

A = ϕ

⎛
⎝ uρgW uρ′

gWψgw ρgWψgw

−uρgN uρ′
gNψgn ρgNψgn

u(HgW − HgN ) u(ψgwH ′
gW + ψgn H ′

gN ) ψgwHgW + ψgn HgN

⎞
⎠ (16)

We are interested in obtaining the characteristic speeds λi := λi (V1, V2, u) and the corre-
sponding characteristic vectors r i := r i (V1, V2, u), (here i is the label of each characteristic
family). For the system (14), each pair λi , r i is obtained as:

Ari = λi Br i where λi is obtained by solving det (A − λi B) = 0. (17)

After substitution of B and A given by Eqs. 15 and 16 in Eq. 17b, we notice that (u − ϕλ)
is repeated in the first column, so one of eigenpairs is:

λc = u/ϕ, rc = (1, 0, 0)T, (18)

which corresponds to fluid transport; one can prove that ∇λc · rc = 0, so its associated wave
is a contact discontinuity. The speed and the temperature are constant, only the composition
ψgw changes, thus we denote this eigenvalue by λc where the subindex c indicates varying
composition.

We find the other characteristic speed λ and eigenvector in Eq. 17 for ψgw �= 0 as

λT = (1 − Ĉr T /F)u/ϕ, rT = (0,F, uĈr )
T, (19)

where F := F(T ) = (ψgwρgW (T )h
′
gW (T )+ ψgnρgN (T )h

′
gN (T )+ Ĉr )T . The first compo-

nent of vector rT given by Eq. 19b is zero, so the associated rarefaction wave has constant
compositionψgw . Notice thatλT < λc in the physical range of interest;ρgW , ρgN , h′

gW , h′
gN ,

and Ĉr are positive, ψgw and ψgn are non-negative, so that F(T ) is always positive.
From the characteristic pair, λT , rT , we obtain the thermal rarefaction curves in the

(ψgw, T, u) space as solutions of the following ODE with increasing ξ :
(

dψgw

dξ
,

dT

dξ
,

du

dξ

)
= (0,F, uĈr ) with ξ = x

t
= λT = (1 − Ĉr/F)u/ϕ. (20)

Notice from Eq. 19b that we can solve the ordinary differential equation first for T and
ψgw because the rarefaction curves that parametrize rarefaction waves in (x, t) space do not
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Fig. 2 a Left: The single-phase gaseous physical region �, and inflection locus. b Right: Rarefaction curves.
The horizontal rarefaction curves are associated with λT ; the arrow indicates the direction of increasing
speed. The vertical line is a contact discontinuity curve associated with λc , in which ψgw changes, T and u
are constant

depend on u. Thus, we can substitute (ψgw, T ) in the equation for the third component of
(20a) to obtain u(ξ), which is very simple in the spg:

u(ξ) = u−exp

⎛
⎜⎝

ξ∫
ξ−

Ĉr dς

⎞
⎟⎠ = u−exp(Ĉr (ξ − ξ−)). (21)

Here u− is the “leftmost” value for u on this rarefaction wave, and ξ− = λ(ψ−
gw, T −, u−).

It is a general feature for systems of form (1) that u appears isolated in the eigenvalues and
that u appears only in the last component of the eigenvectors, see Lambert and Marchesin
(2008).

From a state (ψ∗
gw, T ∗), the states on the rarefaction curve can be drawn with increasing

speeds, i.e., satisfying ∇T λ · rT > 0. Thus, the locus where ∇T λ · rT = 0 is very important
in state space, as it represents the end points of rarefaction curves. For the scalar equation
st + f (s)x = 0, it corresponds to the state s satisfying f ′′(s) = 0, hence the name inflection
locus. After a lengthly calculation, we obtain

∇λT · rT = (Cr T 2	(ψgw, T ))u/ϕ, where 	 = ψgwρgW h′′
gW + (1 − ψgw)ρgN h′′

gN .

(22)

As u is positive, we need to study the sign of 	; it vanishes at the gas thermal inflection
locus, which is denoted IT . We plot the physical region and IT in Fig. 2a, showing the signs
of 	. In Fig. 2b, we plot the horizontal rarefaction lines associated with λT and the vertical
rarefaction lines associated with λc, see Eq. 19.

3.2.2 Shocks and Contact Discontinuities

We assume thermodynamical equilibrium in each phase configuration. There exist infinites-
imal regions where abrupt changes occur, giving rise to discontinuities. They are shocks in
the flow, that satisfy the Rankine-Hugoniot relationships:

v[G] = u+F+ − u−F−, (23)

where W − = (V −
1 , V −

2 , u−) and W + = (V +
1 , V +

2 , u+) are the states on the left and the
right side of the discontinuity; in the spg configuration, V1 and V2 stand for ψgw and T .
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The discontinuity speed is v = v(W −; W +); the accumulation G− = G(V −
1 , V −

2 ), (G
+ =

G(V +
1 , V +

2 )) and flux functions F− = F(V −
1 , V −

2 )(F
+ = F(V +

1 , V +
2 )), at the left (right)

of the discontinuity; [G] = G+ − G−. For a fixed W −, the set of W + states satisfying Eq. 23
defines the Rankine-Hugoniot curve (RH curve) of W −, which is denoted RH(W −). We
call the shock curve the W + that satisfy Eq. 23 and an admissibility criterion, where we
assume that the shock speed is decreasing from the (−) state, which is Liu’s criterion, see
Liu (1974, 1975). The admissibility criterion selects discontinuities that are physical and
lead to a unique Riemann solution. We denote the shock state pair between V − and V + by
(V −; V +).

Using Eqs. 11–13 in the RH condition, Eq. 23, we obtain:

vϕ(ρ+
gWψ

+
gw − ρ−

gWψ
−
gw) = u+ρ+

gWψ
+
gw − u−ρ−

gWψ
−
gw, (24)

vϕ(ρ+
gNψ

+
gn − ρ−

gNψ
−
gn) = u+ρ+

gNψ
+
gn − u−ρ−

gNψ
−
gn, (25)

vϕ(H+
r + ψ+

gwH+
gW + ψ+

gn H+
gN − (H−

r + ψ−
gwH−

gW + ψ−
gn H−

gN ))

= u+(ψ+
gwH+

gW + ψ+
gn H+

gN )− u−(ψ−
gwH−

gW + ψ−
gn H−

gN ). (26)

In Appendix B.1, we present a general expression to calculate the RH curve based on equa-
tions of type (24–26). Using Eqs. 44, 45, we calculate the shock and Darcy speeds in any
problem of type (1). The Darcy speed u usually will not appear in figures because, as proved
in Lambert and Marchesin (2008), u can be obtained in terms of (V1, V2) in each wave (shock
or rarefaction). Indeed, from Eq. 23, u+ and v are proportional to u−.

One branch of the RH curve for Eqs. 24–26 parametrizes compositional contact discon-
tinuities Cψ with T and u constant and speed vψ = u−/ϕ, see Eq. 18; this type of branch is
represented by vertical line in Fig. 2b.

The other branch of the RH curve has constant ψgw; it parametrizes thermal shocks with
speed vT and Darcy speed u+; see the full expressions in Eqs. 46, 47. The thermal shock ST

and rarefaction RT are contained in the horizontal lines in Fig. 2b.

3.3 Single-phase Liquid Configuration—spl

There is one chemical species (H2 O) and one phase, so there is only fP = 1 thermodynam-
ical degree of freedom, which is the temperature. Since sw = 1 and sg = 0, using Eqs. 3
and 41 we have fw = 1 and fg = 0. The liquid is incompressible and composition changes
have no volumetric effects, so that the total Darcy velocity u is independent of position. As
we assume that rock and water enthalpies depend linearly on temperature, Eqs. 5 and 6 are
satisfied trivially and Eq. 7 reduces to (see Lambert et al. (2005a))

∂

∂t
T + λW

T
∂T

∂x
= 0, where λW

T = uW
ϕCW

ϕCW + Cr
, (27)

where we use uW to indicate that the velocity u is spatially constant in the spl water config-
uration; here, CW and Cr are the water and rock heat capacities. All quantities are given in
Appendix A.

Equation 27a is linear in the spl, so that there is a contact discontinuity CW
T associated

with λW
T , given by Eq. 27b. It is a cooling discontinuity between states with temperature T −

and T +. For the corresponding Riemann data, the solution is T − if x/t < λW
T and T + if

x/t > λW
T .
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3.4 Two-phase Configuration—tp

There are two chemical species (N2 and H2 O), c = 2, and two phases (liquid water, and gas),
p = 2; so fP = 1, and we choose the temperature as free thermodynamical variable. As the
pressure is given, the boiling temperature of water is specified by the composition of vapor
in the gaseous phase. The system is (5–7), and the compositions depend on temperature.
When pure vapor is injected, the condensation temperature is the constant T b = 373.15. We
have three variables to be determined: temperature, saturation, and total Darcy velocity. The
compositions ρgw and ρgn are functions of temperature only, which can be obtained from
Eq. 39. The tp state space is composed by the pairs (T, sg) such that 290K ≤ T ≤ T b and
0 ≤ sg ≤ 1. The value 290K is chosen arbitrarily, but it is a reasonable temperature for our
physical problem.

3.4.1 Characteristic Speed Analysis

With a procedure similar to that in Sect. 3.2.1, we obtain two eigenpairs in the tp. One of
them is similar to Buckley-Leverett (BL), and its eigenpair is

λs = u

ϕ

∂ fg

∂sg
, rs = (1, 0, 0)T, (28)

We use the subscript s in λs and rs because T and u are constant, and only sg changes. We
denote the rarefaction waves by RBL as vertical lines in Fig. 4a. The wave curves associated
with the eigenpair λs, rs are called tie lines in compositional flow theory, see Helfferich
(1981); Hirasaki (1981), because on these waves the phase compositions are constant.

The other eigenpair occurs for non-constant T :

λe = u

ϕ

fg − f ∗
g

sg − s∗
g

and re = (−
1, γ̄1,−u
3)
T. (29)

The quantities f ∗
g , s∗

g ,
1, γ̄1, and 
3 are given in Eqs. 56–57. We utilize the subscript e to
indicate that this eigenpair is associated with an evaporation wave. Evaporation rarefaction
waves are denoted by Re; the rarefaction wave curves have arrows in Fig. 4a. The arrows
indicate the direction of increasing characteristic speed.

In Fig. 3 (as well as 4a), we see that in the region where λs > λe, the temperature, gas
saturation, and u increase along the rarefaction waves; and in the region where λs < λe, the
temperature and u increase while the gas saturation decreases along the rarefaction waves.

The coincidence locus between λe and λs is denoted Cs,e; it consists of two curves, see
Fig. 3a. In Sect. 5.1 of Lambert and Marchesin (2008), we prove that ∂λe/∂sg vanishes on
Cs,e, i.e., the coincidence between eigenvalues occurs where λe is stationary. In Fig. 3a, at
the lower curve, λe has a minimum and at the higher curve it has a maximum.

In order to obtain the endpoints of evaporation rarefaction curves, we need to study the
sign of ∇λe · re, and since this full expression of this quantity is not crucial to determine the
solution, we do not exhibit it in this article; however, we refer to Sect. 5.3 of Lambert and
Marchesin (2008) for the expression. The inflection locus Ie consists of the points where
∇λe · re vanishes; one can show that they satisfy:

λe = λs or
fg

sg
= ϕCW

ϕCW + Cr
. (30)

We define the locus Ie as the states in the tp configuration, which satisfy Eq. 30b, so the
inflection locus Ie is formed by union of coincidence locus Cs,e and Ie.
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Fig. 3 a Left: Coincidence locus Cs,e . Relative sizes of λs and λe in a piece of the tp state space. The almost
horizontal coincidence locus λe = λs is not drawn to scale, because it is very close to the axis sg = 0 and
we want to represent the relative size below this locus. b Right: A zoom of the region below the coincidence
locus. In both figures, all the curves belong to inflection locus Ie , Eq. 22, subdividing the tp configuration in
four parts; the point P is the intersection of Ie with the boundary of the (T, s) domain at the water boiling
temperature

Fig. 4 a Left: Rarefaction curves (with arrows) Re in the tp configuration. The thin curves without arrows
are Cs,e . The bold curve separating solutions that are invariant under the evolution of evaporation rarefactions
is a rarefaction curve reaching the point P in Fig. 3b. b Right: The RH curves for SC shocks for the (−) states
marked

In Fig. 3a, we draw Cs,e; in Fig. 3b, we draw Ie and the lower branch of Cs,e; in both
figures, we also plot the sign of ∇λe · re. In Fig. 4a, we draw Re in the tp.

3.4.2 Shock Analysis

From Eqs. 5–7 and Eq. 23, we obtain the RH relationship, see Appendix B.1.3. The straight
line T = T + is the isothermal branch of the RH curve; the shock speeds are vBL =
[( fw(s+

w , T ) − fw(s−
w , T ))/(s+

w − s−
w )]u−/ϕ, and the Darcy speed is constant. These are

BL shocks, denoted by SBL .
The R H curves for SBL and rarefaction curves RBL associated with λs lie in the same

straight lines with constant T in the tp configuration, see Eq. 28 and Fig. 4b.
The other branch of the RH curve represents non-isothermal condensation shocks, see

Bruining and Marchesin (2006). They are denoted by SC , see Fig. 4b. The speed of these
shocks is denoted by vC . The full expressions for vC and u+ are given by Eqs. 50, 51.
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3.5 Shocks Between Configurations

The R H relationship for states between distinct configurations is given also by Eq. 23. Notice,
however, that the accumulation and flux terms now have different expressions at each shock
side.

For the condensation shock SGT between the spg and the tp configurations, we specify
the vapor composition ψ−

gw , the temperature T −, and the Darcy speed u− as the left state.
For the right state, we specify the temperature T +; the vapor composition is a function of
temperature (see Eq. 10). The RH expression is given in Sect. B.1.4.

There are also condensation shocks connecting the tp and spl configurations; however,
we do not discuss them here because they do not appear in the example of Riemann solution
presented in next section. The full expression is given in Sect. 5.4 of Lambert and Marchesin
(2008).

4 The Riemann Solution for the Clean-up Problem

We show an example of Riemann solution. We consider the injection of a mixture of vapor
(gaseous H2 O) and nitrogen in the spg configuration into a rock containing water at a tem-
perature TR < T b (in our examples, we fix TR = 300 K) in the spl configuration:{

(1, ψ, T, u)L if x = 0 (the injection point),with uL > 0,
(0, ψ(T ), T, ·)R if x > 0.

(31)

There are also minute amounts of contaminant N AP L in the rock; the solution of the Riemann
problem determines if the N AP L vaporizes to the gaseous phase.

4.1 Bifurcation Boundaries and Regions in the Riemann Solution

1. The double contact. It is composed by the states (−) = (V −
1 , V −

2 ) in the spg and
(+) = (V +

1 , V +
2 ) in the tp satisfying the RH condition, Eq. 23, and the speed equalities

(recall Sect. 3.5):

λT (−) = vGT (−;+) and vGT (−;+) = λBL(+). (32)

It is formed by (−) states in the spg (DS PG ) and (+) in the tp (DT P ). Notice that the
double contact locus is defined by four unknowns and three equations, so it is a curve in
(−), (+) space, see Fig. 5a for DS PG and 5b for DT P . This locus has an important role
in the determination of the Riemann solution, see Sect. 5.2 in Lambert and Marchesin
(2008).

2. The curve EH L . Extension of physical boundary. It is possible to consider any temper-
ature in the spg; however, very low temperatures lack physical sense. As we consider
injection temperatures above 300 K, we take the temperature T = 290 K as a lower
“physical boundary” in the tp configuration.
The curve EH L is formed by the states V − = (ψ−

gw, T −) in the spg connected through
a shock SGT to V + = (s+

g , T + = 290 K) in the tp satisfying Eq. 32a, see Fig. 5a. This
curve is important because it isolates the states V − in spg, such that SGT between V −
in spg reaches states V + in tp below 290K, which we want to exclude.

3. The curve E . This curve is formed by the states V − = (ψ−
gw, T −) in the spg connected

through a shock SGT to any V + = (s+
g , T + = 300K ) in the tp satisfying Eq. 32b, see

Fig. 5a. There is a bifurcation in the Riemann solution structure at E .
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Fig. 5 a Left: The (−) projection of the double contact in the spg, denoted by DS PG , defined in Sect. 4.1.1.
The curves EH L and E are described in Sect. 4.1.2 and 4.1.3. The horizontal lines represent the rarefaction
with the speed increasing, indicated by the arrows. For a state VL in the region Li for i = 1, 2, 3, 4, defined in
Sect. 4.1.4, the Riemann solution has the same sequence of waves. b Right: The (+) projection of the double
contact in the tp, denoted DT P , defined in Sect. 4.1.1. Notice that this locus lies above the coincidence locus
Cs,e . The locus DT P is the (+) projection of the double contact in the tp configuration. It does not reach the
physical boundary T = 290 K, because DT P is asymptotic to ψgw = 0 (only nitrogen) when it reaches the
spg configuration. The (+) projection DT P has an end point in the tp configuration in a state in the interior
of the tp configuration

Fig. 6 a Left: Projection of the RS in the spg configuration for L in L1, see Sect. 4.2.1. There is a thermal
rarefaction in the spg connecting R to A. b Right: Wave sequence in the tp configuration, see Fig. 9a for the
solution on the fractional flow curves

4. Regions Li for i = 1, 2, 3, 4 in the tp configuration. See Fig. 5a. These regions are
separated by the curves DS PG , EH L , and E just defined, and the thermal inflection curve
IT defined in Sect. 3.2.1. The region L1 corresponds to the states on the right of DS PG ;
the region L2 lies between DS PG and IT ; the region L3 lies between IT and E ; the
region L4 is formed by states between E and EH L .

4.2 The Riemann Solution

We fix a state given in the second equation in (31) in the spl configuration. We will obtain
the Riemann solution for left states L in each subregion Li of spg, i = 1, 2, 3, 4, which
are shown in Fig. 5a. We shorten notation, and we use L for the left state, A, B, etc, for the
intermediate states, and R for the right state.

1. Case L1. The solution for L in this region is shown in Figs. 6, 7, and 9a.

123



The Riemann Solution for the Injection of Steam and Nitrogen in a Porous Medium 517

Fig. 7 a Left: Riemann solution in phase space for L in L1, see Sect. 4.2.1 and Figs. 6 and 9a. We omit the
tp surface of Fig. 1. b Right: The saturation, temperature, and gas composition profiles for some t > 0. In a,
b the letters A to E indicate intermediate states

Fig. 8 a left: Two examples of states P1 and P2. States P1 lie on the RBL curve; sweeping all possible P1,
we describe the LC SC , see Sect. 4.2.1. Any state P1 in LC SC has a corresponding state P2 at TR ; (P1; P2)
is a shock which precedes the last BL wave to R. b right: An example of states P1 and P2. Notice that P1
belongs to a RBL , with speed given by Eq. 28a. From P1 there is a shock SC up to a state P2, which satisfies
λBL(P1) = vC (P1; P2). Note that the temperature of P1 is higher than the temperature of P2

See Fig. 6a; notice that for L in L1, we have that λT (L)< vGT (L; V +) for any V + in SGT .
Here, we use the fact that the wave speeds must increase from L to R states; this statement
is called geometrical compatibility of the waves. So from L there is a thermal rarefaction
RT up to the double contact DS PG at a state A. From the state A, there is a SGT shock
between the spg and the tp configurations up to a state B, Fig. 6b. This state B belongs both
to DT P and SGT (A) (this means the SGT shock curve starting at the state A); B satisfies
λT (A) = vGT (A; B) = λBL(B).

From the state B there exists an isothermal rarefaction RBL up to a state C , with the same
temperature TB of the state B. The state C is obtained using the auxiliary “left characteris-
tic condensation shock curve” (LC SC), see Fig. 8a. This curve is formed by the auxiliary
states P1 on RBL , such that there is an auxiliary state P2 that belongs both to the evapo-
ration shock curve SC (P1) and to the vertical line T = TR; SC must satisfy the equality
λBL(P1) = vC (P1; P2), see Fig. 8. Thus, the state C belongs both to the LC SC and to
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Fig. 9 See Appendix B.3. for the definition of M and N . a Left: L in L1. Solution of Sect. 4.2.1 and Figs. 6
and 7, with fractional flow curves. In both figures, there are two fractional flow curves; one for TR and the other
for TB > TR . The dashed curves represent shocks and the bold curves represent BL rarefactions. The state
L lies in the spg configuration. From L there is SGT (L; B); the point M is obtained from the RH condition
such that the shock is tangent to the fractional flow curve at B; from this state, there is a BL rarefaction up to
a state C and then SC (C; D), which is tangent at the state C ; from the state D, there is a BL rarefaction up
to a state E and then a BL shock to R. b Right: L in L2. Solution of Sect. 4.2.2 and Figs. 10a and 11. Notice
that this solution is similar to the previous one

Fig. 10 a Left: Wave sequence in the tp configuration for L in L2 (Sect. 4.2.), see Fig. 9b for the solution with
fractional flow curves. b Right: Wave sequence in the tp configuration for L in E , see Sect. 4.2a and Fig. 12a
for the solution on fractional flow curves

the vertical line of BL rarefaction to the right state R, see Fig. 6b. The state C is the basic
unknown in the determination of the solution of the Riemann problem. The state C in the tp
configuration has two coordinates to be found; one is determined from the left state L and
the other from the right state R.

The state D belongs both to the SC through the state C and to the vertical line from the
right state R. From the state D there is an isothermal BL rarefaction up to E . The state E is
succeded by a BL shock to R, with λBL(E) = vBL(E; R). Condensation of steam occurs in
the shocks SGT (A; B) and SC (C; D).

2. Case L2. The solution for L in this region is shown in Figs. 9b, 10a and 11.

The Riemann solution for L can be found as in Case L1, except that RT is absent and
from L there is a SGT shock up to a state B; this state B belongs both to the curve λBL(B) =
vGT (L; B) and to SGT (L). Notice that λT (L) > vGT (L; B).

From state B, the sequence is the same as in case L1, described in Sect. 4.2.1.
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Fig. 11 a Left: Riemann solution for L in L2, see Sect. 4.2.2 and Figs. 9b and 10a. b Right: The saturation,
temperature, and gas composition profiles for fixed t > 0

Fig. 12 See Appendix B.3 for the definition of O and P . a Left: L in E . Solution of Sect. 4.2.2a and Figs. 10b
and 13 with fractional flow curves for TR . The dashed curves represent shocks and the bold curves represent
BL rarefactions. From L there is SGT (L; D) the point O is the point obtained from the RH condition such
that the shock is tangent to the fractional flow curve at the state D; there is a BL rarefaction up to a state E
and then BL shock to R. b Right: L in L3. Solution of Sect. 4.2.3 and Figs. 14 and 15. Here, there are two
fractional flow curves; one for TR and the other for TB < TR . From L there is SGT (L; B); the point O is
obtained from the RH condition such that the shock is tangent to the state B; from B there is a rarefaction up
to a state C ; from C there is a Re connecting fractional flow at TD and TR in a state D; from D there is a BL
rarefaction to a state E and then a BL shock to R

2.a Case E . The solution is shown in Figs. 10b, 12a, and 13. From L there is a SGT shock
between the spg and the tp configurations up to a state D, which belongs both
to the curve λBL(D) = vGT (L; D) and to SGT (L), with λT (L) > vGT (L; D).

Since the temperatures of the state D and of the right state are equal, there is now only a
sequence of isothermal BL waves. From the state D there is an isothermal rarefaction up to
a state E , with λBL(E) = vBL(E; R).

3. Case L3 . The solution for L in this region is shown in Figs. 12b, 14, and 15.
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Fig. 13 a Left: Riemann solution in phase space for L in E , see Sect. 4.2.2a and Figs. 10b and 12a. b Right:
Saturation, temperature, and gas composition profiles for fixed t > 0

Fig. 14 a Left: Wave sequence in tp configuration, L in L3. Notice the existence of a evaporation rarefaction
Re , Sect. 4.2.3, see Fig. 12.b. b Right: A zoom around the state B

From L there is a SGT shock between the spg and the tp configurations up to a state
B, which belongs both to the curve λBL(B) = vGT (L; B) and the SGT (L), with λT (L) >
vGT (L; B).

Notice that at B the temperature is below the temperature of the preceding state R. This
happens because we inject a mixture with high nitrogen concentration and a small quantity
of water, so that the enthalpy of the mixture is very low. From the state B there exists an
isothermal rarefaction RBL up to a state C , with temperature TB . The state C is obtained
from the coincidence locus between the RBL rarefaction and the (newly found) evaporation
rarefaction that crosses the coincidence locus Cs,e. From the state B there is an evaporation
rarefaction Re up to a state D, obtained from the coincidence locus between Re and Cs,e.
From the state D there is an isothermal rarefaction up to a state E . The state E is obtained
so as to satisfy the equality λBL(E) = vBL(E; R). The solution is summarized in Figs. 14
and 15.
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Fig. 15 a Left: Riemann solution in phase space for L in L3, see Sect. 4.2.3 and Figs. 12b and 14. b Right:
The saturation, temperature, and gas composition profiles for some t > 0

5 Summary

We have described the solution of the Riemann problem for the injection of a mixture of
nitrogen and vapor into a porous rock filled with water and sketched a systematic theory
for the Riemann solution for systems of form (1); these systems encompass compositional
problems where the Darcy speed is not constant. The set of solutions depends continuously
in the integral sense on the Riemann data. We have generalized the thermal fractional flow
theory to deal with variable velocity u. This is a step toward obtaining a general method
for solving Riemann problems for a wide class of thermal compositional models with phase
changes, Lambert (2006).

The Riemann solution agrees with the wave sequence described qualitatively by Davis
(1998, 1997). A new structure appears in the solution, an evaporation rarefaction Re. Practi-
cally, this study can be used to find optimal injection strategies to clean up NAPL’s from soil
with a mixture of nitrogen and vapor. The main advantage of using nitrogen is that operating
conditions are below the boiling temperature of water.

Appendix

A Physical Quantities; Symbols and Values

The steam enthalpy hgW [J/kg] as a function of temperature is approximated by

hgW (T ) = −2.20269 × 107 + 3.65317 × 105T − 2.25837 × 103T 2 + 7.3742T 3

−1.33437 × 10−2T 4 + 1.26913 × 10−5T 5 − 4.9688 × 10−9T 6 − hw.

(33)

The nitrogen enthalpy hgN [J/kg] as a function of temperature is approximated by

hgN (T ) = 975.0T + 0.0935T 2 − 0.476 × 10−7T 3 − hgN . (34)
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The constants hw and hgN are chosen so that hw(T ), hgN (T ) vanish at a reference temper-
ature T = 293K . In the range [290K , 500K ], hgW and hgN are almost linear.

The rock enthalpy Hr , Ĥr , water, and gaseous enthalpies per mass unit HW and Hg are
given by:

Hr = Cr (T − T̄ ), Ĥr = Hr/ϕ, HW = ρW hw and Hg = ρgwhgW + ρgnhgN . (35)

The temperature dependent liquid water viscosity µw[Pas] is approximated by

µw = − 0.0123274 + 27.1038

T
− 23527.5

T 2 + 1.01425 × 107

T 3 − 2.17342 × 109

T 4

+ 1.86935 × 1011

T 5
. (36)

We assume that the viscosity of the gas is independent of the composition.

µg = 1. 826 4 × 10−5(T/T b)0.6. (37)

The water saturation pressure as a function of temperature is given as

psat = 103(−175.776 + 2.29272T − 0.0113953T 2 + 0.000026278T 3

− 0.0000000273726T 4 + 1.13816 × 10−11T 5)2 (38)

The graph of this function looks like a growing parabola.
From the ideal gas law, the corresponding concentrations ρgw(T ), ρgn(T ) are:

ρgw(T ) = MW psat/(RT ), ρgn(T ) = MN (pat − psat )/(RT ), (39)

where the gas constant R = 8.31[J/mol/K ]. The pure phase densities are:

ρgW (T ) = MW pat/(RT ), ρgN (T ) = MN pat/(RT ). (40)

Here, MW and MN are the nitrogen and water molar masses.
The relative permeability functions krw and krg are considered to be quadratic functions of

their respective reduced saturations. Quadratic functions are often employed for immiscible
two-phase flow in porous media as they capture the main behavior of relative permeability
functions. More complicated relative permeability functions such as Brooks-Corey could
also be used. The form of relative permeability functions for quadratic functions are:

krw =
⎧⎨
⎩ 0.5

(
sw − swc

1 − swc − sgr

)2

0
, krg =

⎧⎨
⎩ 0.95

(
sg − sgr

1 − swc − sgr

)2

1

for swc ≤ sw ≤ 1,
for sw < swc.

(41)
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A.1 Summary of physical quantities

Table 1 Summary of physical input parameters and variables

Physical quantity Symbol Value Unit

Water, steam fractional functions fw, fg Eq. 3 [m3/m3 ]

Pressure pat 1.0135 × 105 [Pa]

Water Saturation Pressure psat Eq. 38 [Pa]

Water, steam phase velocity uw , ug Eq. 2 [m3 /(m2 s)]

Total Darcy velocity u uw + ug , Eq. 4 [m3 /(m2 s)]

Effective rock and water heat capacities Cr and CW 2.029 × 106 and 4.018 × 106. [J/(m3 K)]

Steam and nitrogen enthalpies hgW , hgN Eqs. 34a, 34b [J/m3 ]

Water enthalpy hW hW = CW T/ρw [J/m3 ]

Rock enthalpy Hr Eq. 35 [J/m3 ]

Water, steam saturations sw, sg Dependent variables [m3 /m3 ]

Connate water saturation swc 0.15 [m3 /m3 ]

Temperature T Dependent variable [K]

Water, steam viscosity µw , µg Eq. 36, 37 [Pa s]

Steam and nitrogen densities ρgw , ρgn Eq. 39a, 39b [kg/m3]

Constant water density ρW 998.2 [kg/m3 ]

Steam and nitrogen gas composition ψgw , ψgn Dependent variables [−]
Nitrogen and water molar masses MN ,MW 0.28, 0.18 [kg/mol ]

Rock porosity ϕ 0.38 [m3/m3]

B Analytical Expressions for the Model

Here, we compile the auxiliary expressions appearing in this article, for further details see
Lambert and Marchesin (2008).

B.1 Shock Structures in the spl, or tp Configurations and Between Phase Configurations

1. General theory for shocks. To obtain shocks, by using appropriate G and F , we rewrite
the system (24–26) in the form:

⎛
⎝ [G1] −F+

1 F−
1

[G2] −F+
2 F−

2
[G3] −F+

3 F−
3

⎞
⎠

⎛
⎝ v

u+
u−

⎞
⎠ = 0, which requires det

⎛
⎝ [G1] −F+

1 F−
1

[G2] −F+
2 F−

2
[G3] −F+

3 F−
3

⎞
⎠ = 0

(42)

to have a non-trivial solution. Eq. 42b yields the implicit expression H = 0 with:

H := [G1](F+
3 F−

2 − F−
3 F+

2 )+ [G2](F+
1 F−

3 − F−
1 F+

3 )+ [G3](F+
2 F−

1 − F−
2 F+

1 ).

(43)

Since we obtain the RH locus first in the variables (V +
1 , V +

2 ) by solving H = 0 for fixed
(V −

1 , V −
2 ), it is useful to denote this locus in the variables V by RH(V −

1 , V −
2 ).
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Once R H(V −
1 , V −

2 ) is determined, we obtain v and u+ as functions of (V −
1 , V −

2 ), (V
+
1 ,

V +
2 ) and u− by solving Eq. 42a obtaining:

v = u− F+
2 F−

1 − F+
1 F−

2

F+
1 [G2] − F+

2 [G1]
= u− F+

3 F−
2 − F+

2 F−
3

F+
2 [G3] − F+

3 [G+
2 ] = u− F+

1 F−
3 − F+

3 F−
1

F+
3 [G1] − F+

1 [G3]
,

(44)

u+ = u− F−
1 [G2] − F−

2 [G1]
F+

1 [G2] − F+
2 [G1]

= u− F−
2 [G3] − F−

3 [G2]
F+

2 [G3] − F+
3 [G2]

= u− F−
3 [G1] − F−

1 [G3]
F+

3 [G1] − F+
1 [G3]

.

(45)

2. Thermal shock in the spg configuration. Using Eqs. 44, 45, after some algebra we obtain
the thermal shock speed vT described in Sect. 3.2.2:

vT = u−

T − {ϒ(T −; T +)(T + − T −)+ T +} and u+ = u−

ϕ
ϒ(T −; T +), where

(46)

ϒ = ψgw(H
+
gW − H−

gW )+ (1 − ψgw)(H
+
gN − H−

gN )

Ĥ+
r − Ĥ−

r + ψgw(H
+
gW − H−

gW )+ (1 − ψgw)(H
+
gN − H−

gN )
. (47)

3. The condensation shock in the tp configuration. Defining G− = G(V −), F− = F(V −),
G+ = G(V +) and F+ = F(V +), where:

G = (ϕ(swρW + sgρgw), ϕsgρgn, Hr + ϕ(swHw + sg Hg))
T, (48)

F = ( fwρW + fgρgw, fgρgn, Ĥr + fwHw + fg Hg)
T, (49)

one obtains the R H condition, substituting G−, · · · , F+ in Eq. 23. The RH locus is obtained
by solving H given by Eq. 43 with the definitions above. The isothermal branch of the RH
curve is a Buckley-Leverett shock described in Sect. 3.4.2. The non-isothermal RH branch
is obtained after a lengthly calculation. We fix the left state (−) and the temperature T + of
the right state, with T + �= T −. Using Eq. 45, we obtain the speed of the condensation shock,
denoted by vC , as well as the Darcy speed u+:

vC = u−

ϕ

f +
g f −

g (ρ
+
gn(ρ

−
gw − ρW )− (ρ+

gw − ρW )ρ
−
gn)− ρW ( f +

g ρ
+
gn − f −

g ρ
−
gn)

f +
g s−

g (ρ
+
gn(ρ

−
gw − ρW )− (ρ+

gw − ρW )ρ
−
gn)− ρW (s

+
g ρ

+
gn − s−

g ρ
−
gn)

, (50)

u+ = u− f −
g s+

g (ρ
+
gn(ρ

−
gw − ρW )− (ρ+

gw − ρW )ρ
−
gn)− ρW (s+

g ρ
+
gn − s−

g ρ
−
gn)

f +
g s−

g (ρ
+
gn(ρ

−
gw − ρW )− (ρ+

gw − ρW )ρ
−
gn)− ρW (s

+
g ρ

+
gn − s−

g ρ
−
gn)
. (51)

4. The condensation shock between the tp the spg configurations. We proceed as above,
but remember that F and G have different expressions on the left and right, given by

G− = (ϕρ−
gWψ

−
gw, ϕρ

−
gNψ

−
gn, H+

r + ϕ(ρ−
gW h−

gWψ
−
gw + ρ−

gN h−
gNψ

−
gn))

T, (52)

F− = (ρ−
gWψ

−
gw, ρ

−
gNψ

−
gn, Ĥ+

r + ρ−
gW h−

gWψ
−
gw + ρ−

gN h−
gNψ

−
gn)

T, (53)

G+ = (ϕ(s+
wρW + s+

g ρ
+
gw), ϕ s+

g ρ
+
gn, H+

r + ϕ(s+
w H+

w + s+
g H+

g ))
T, (54)

F+ = ( f +
w ρW + f +

g ρ
+
gw, f +

g ρ
+
gn, Ĥ+

r + f +
w H+

w + f +
g H+

g )
T. (55)

One can obtain the RH condition, substituting G−, F−,G+ and F+ in Eq. 23. The RH
locus is obtained by solving H given by Eq. 43 with the definitions above; the shock and
Darcy speeds vGT and u+ are obtained by from Eqs. 44, 45.
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B.2 Auxiliary Quantities for Rarefaction Wave in the tp

In Sect. 3.4.1, we have obtained the eigenpair (λe, re) by using the auxiliary quantities:

f ∗
g (T ) = −CWρW

ς
, s∗

g(T ) = − (CW + Cr/ϕ)ρW

ς
, 
3 = γ̄1γ̄4(ρ

′
gwρgn − ρ′

gnγ2)

ρWρgn

(56)


1 = γ̄4

(
ρ′

gnρW − fg(ρ
′
gwρgn − ρ′

gnγ2)

ρgnρW

)
+ ∂ fg

∂T
, γ̄1 = ∂ fg

∂sg
− fg − f ∗

g

sg − s∗
g
. (57)

where:

ς(T ) = [(γ ′
3 − (ρ′

gn/ρgn)γ3)ρW − HW (ρ
′
gw − (ρ′

gn/ρgn)γ2)], γ̄4 = f ∗
g sg − fgs∗

g

sg − s∗
g

,

(58)

γ2 := γ2(T ) = ρgw − ρW , and γ3 := γ3(T ) = Hg − HW . (59)

B.3 Obtaining the Points M, N , O , and P in Figs. 9, 12

The points M, N , O , and P are auxiliary obtained from the SGT . Substituting the the second
coordinate of F± and G±, given by (52–55), in (23), we obtain:

vGTϕ(ρ+
gns+

g − ψ−
gnρ

−
gN ) = u+ρ+

gn f +
g − u−ψ−

gnρ
−
gN , (60)

which gives u− in terms of V −, V +, u+ and vGT as

u− = −vGTϕ(ρ+
gns+

g − ψ−
gnρ

−
gN )+ u+ρ+

gn f +
g

ψ−
gnρ

−
gN

. (61)

Substituting u− in the equation obtained by substituting the first coordinate of F± and G±,
given by (52–55) in (23), we obtain vGT in terms of V −, V +, u+:

vGT = u+
ϕ

fg − f †
g

sg − s†
g

, where f †
g = s†

g = ρWψ
−
gnρ

−
gN

(ρW − ρ+
gw)ψ

−
gnρ

−
gN + ψ−

gwρ
−
gWρ

+
gn
. (62)

Given the left state L , from the wave sequence, see Sect. 4.2.1, we obtain the state A in
DS PG . The point M = (s†

g, f †
g ) is obtained noticing that the shock between A e B has speed

equal to the BL characteristic speed, i.e., the shock is tangent to the fractional flow, that
satisfies:

fg − f †
g

sg − s†
g

= ∂ fg

∂sg
. (63)

An alternative form to obtain the state V + = (s+
g , T +) is by solving (43) (using G± and F±

given by (52–55)) and (63).
The points N = (s†

g, f †
g ), O = (s†

g, f †
g ) and P = (s†

g, f †
g ) are obtained similarly.

see Appendix Table 1.
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