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Abstract—Agents in teamwork may be highly interdependent on each other, and the awareness
of interdependences is an important requirement for designing and consequently implementing
a multi-agent system. In this work, we propose a formal graphical and domain-independent
language that can facilitate the identification of comprehensive interdependences among the
agents in teamwork. Moreover, a formal semantics is also introduced to precisely express and
explain the properties of a graphical structure. The novel feature of the graphical language is
that it complements the Interdependence Analysis Color Scheme in a way that explicitly models
negative influences and, in addition, provides a visual-communication aid for developers. To
demonstrate the applicability and sufficiency of the graphical language in a variety of domains,
our case studies include a multi-robot scenario and a human-robot scenario.

OVER the past several decades, researchers
have put in a great deal of effort into devel-
oping various kinds of agents from single to
multiple, and significant achievements have been
made to propose and validate many ad hoc or
empirical mechanisms for designing a multi-agent
system.[1] In this work, we focus on the early de-
sign phase of a multi-agent system, with the aim

of producing a domain-independent formal lan-
guage as a modeling methodology for analyzing
and consequently facilitating the implementation
of a cooperative agent team.

The awareness of interdependences between
all the agents engaged in teamwork is an impor-
tant requirement for designing such a system be-
cause the activities performed by one agent may
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influence the activities of the others.[2] In many
applications, some tasks are beyond the capabili-
ties of an individual agent working alone, whereas
the others can be done by a single agent but
more members can improve team performance.
The use of multiple cooperative agents may yield
performance gains, but in order to realize such
gains the agents need to systematically coordinate
with each other. Otherwise, team performance
can be impaired due to potential interference
among members. Thus, the awareness of inter-
dependencies is helpful and must be taken into
consideration in a design of a cooperative agent
team.

The main contribution of our work is a for-
mal graphical and domain-independent language
for modeling comprehensive interdependences in
teamwork. Our work complements the Inter-
dependence Analysis Color Scheme (IACS)[3]
in a way that explicitly models negative in-
fluences among members and, moreover, intro-
duces a formal semantics to precisely express
and explain the properties of a graphical struc-
ture. As a graphical tool, it can be easily used
as a visual-communication aid like UML dia-
grams, Petri Nets[4], and other popular agent-
oriented methodologies (such as Tropos[5] and
Prometheus[6]), and in particular our graphical
language can facilitate the identification of both
positive (supporting) and negative (interfering)
interdependence relationships in the early design
phase of a multi-agent system for developers.

LANGUAGE SPECIFICATION
The overview of the elements of the proposed

language is shown in Figure 1. The upper part
of the figure lists all the basic elements, i.e.,
nodes and edges, while the lower part summarizes
the elements for modeling influences and inter-
dependences in teamwork. A resulting diagram,
depicted by the proposed language, is a graph
with various types of nodes and edges. The key
concepts of the graphical language are described
as follows.

Agent Concept
Agents, as usual, perform activities to change

environments or respond to teammates. We use
a circle node to represent the initial state of an
agent. If a diagram has a node of an agent’s initial

state, an activity flow must come out of it, point-
ing to an activity node. We use A to represent
a finite set of agents, and i as a variable denotes
some arbitrary agent. In a resulting diagram, each
node can be labeled so that we can distinguish
them. For instance, we put i into a circle node to
represent the initial state of the i-th agent.

States, Properties and Goals
In our language, a state means the state of

the environment, and we use Σ to represent
the set of all the states with typical element
σ ∈ Σ representing an arbitrary state. Properties
of states are indicated by P with typical element
p ∈ P . We assume an environmental relation
σ |= p, which defines when property p holds
in the environment. Goals indicate the desired
states of the environment that can be realized by
agents performing corresponding activities. We
use Φ ⊆ P to denote the set of goals, with typical
element ϕ ∈ Φ representing an arbitrary goal.

In our graphical language, we use a rounded
rectangle to represent an arbitrary state, and a
shaded rounded rectangle to denote a node of
goal state. If there is no confusion over a goal
state node, we call it a goal node for simplicity.
A goal node in a diagram can represent the team
goal or a sub-goal that contributes to the team
goal. Sometimes, a complex sub-goal can also be
divided into smaller sub-goals. In Tropos[5], ab-
stract goals need to be refined into more concrete
leaf-goals, so we also define two logic AND/OR
gates for goal aggregation (see Table 1):

Definition 1 (AND goal). If the goal ϕ is con-
nected to a set Γ of input goals by a logic AND
gate, the fulfillment of ϕ requires that all the input
goals must be satisfied, and we say that ϕ is an
AND goal:

AndG(ϕ,Γ)
def
= (∀ϕ′ ∈ Γ : σ |= ϕ′)⇒ σ |= ϕ.

Definition 2 (OR goal). If the goal ϕ is con-
nected to a set Γ of input goals by a logic OR
gate, the fulfillment of ϕ requires that at least one
of input goals must be satisfied, and we say ϕ is
an OR goal:

OrG(ϕ,Γ)
def
= (∃ϕ′ ∈ Γ : σ |= ϕ′)⇒ σ |= ϕ.

2 IEEE Intelligent Systems
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Figure 1. Overview of the formal graphical specification of elements.

Activity Concept
Activities are performed by agents to change

the environments. A hexagon node represents
an arbitrary activity, and we use Ac to denote
the set of activities that the agents can perform,
with typical elements of α or β. In order to
distinguish which agent performs what activity,
we use, for example, αi to express that agent
i performs activity α. If there is no confusion
over an activity, we drop the agent’s index for
simplicity throughout this work.

State Transition. The transitional model of
performing activities is abstracted from the ex-
ternal environment, and structured in the form
of σ α−→ σ′ expressing that performing activity
α at state σ leads to state σ′ (see Table 1).
We define reliability and efficiency to describe
the fulfillment of a goal and the efficiency of
achieving a goal, respectively.

Definition 3 (Reliability). If activity α has the
reliability to achieve the goal ϕ at state σ, then
σ

α−→ σ′ ⇒ σ′ |= ϕ.

Definition 4 (Efficiency). If activity α is more
efficient than activity β in achieving goal ϕ , then

Effic(σ
α−→ σ′) > Effic(σ

β−→ σ′′), such that σ′ |=
ϕ, σ′′ |= ϕ, Effic(σ

α−→ σ′) ∈ R and Effic(σ
β−→

σ′′) ∈ R.

Activity Composition. The activities that the
agents can perform include action execution, de-
cision making and communication. If α, β ∈ Ac
are activities, the following expressions are also
activities:

• (α;β) ∈ Ac expresses that activity α is
followed by activity β,

• (α||β) ∈ Ac expresses that activity α is
performed in parallel with activity β, and

• (α|β) ∈ Ac expresses that either activity α or
β will be performed.

As in Table 1, arbitrary state nodes can be put
before and after an activity node to highlight state
transitions. For simplicity, we can drop them. In
this work, if performing an activity influences the
execution of the other activity, we assume that
those activities are performed in parallel. Thus,
we use σ

α||β−−→ σ′ to express that performing
activity α and β concurrently at state σ leads
to state σ′. In Table 1, we do not depict the

September/October 2019 3
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Table 1. Graphical diagrams and semantics for goal aggregation, composed activities and communication.

Graphical Diagrams Expressions
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composed parallel activities, i.e., (α||β), which
will be discussed for teamwork.

Decision Activity. We use a diamond (or
rhombus) to represent a decision activity that
indicates a test condition in which the agent
needs to evaluate its current situation to make
choices on what to do next. One way of using
a decision activity node is the same as in flow
charts, where a decision is necessary, and usually
two arrows of activity flow coming out of it (i.e.,
Yes/No questions or True/False tests). More than
two arrows of activity flow are also allowed. If
there is a decision activity node in a diagram, the
corresponding agent needs to make a decision.

Communication Activity. Performing activity
α by agent i will affect decision δ of agent j via
communication is expressed by (comm(αi); δj).
If there is a communication activity in a diagram,

an arrow of information flow comes out of it,
pointing to a decision activity node of another
agent. A connecting edge of information flow
goes to a decision activity node because such
a structure can directly express what decisions
will be affected. Mutual communication is also
allowed between two decision activity nodes.

Activity Leads to Achieving a Goal. When
an agent performs an activity for the achievement
of a goal, the reliability or efficiency of the
activity may be influenced by other activities. The
influences can be positive or negative. A positive
influence improves the reliability or efficiency of
the activity, while a negative one impairs its reli-
ability or efficiency. In order to model stochastic
effects, the influences can be definite or potential.

Definition 5 (Solid activity). Activity α is con-
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sidered as a solid activity for the fulfillment of
goal ϕ at a state, if any other activities cannot
impair its reliability:

SoliAc(α,ϕ)
def
= ∀β ∈ Ac,∀σ, σ′ ∈ Σ :

σ
β||α−−→ σ′ ⇒ σ′ |= ϕ.

A solid activity can always achieve its intended
goal regardless of what happens, but its efficiency
can be influenced by other activities.

Definition 6 (Sufficient activity). Activity α is
considered as a sufficient activity for the ful-
fillment of goal ϕ at a state, if it is sufficient
to achieve the goal, but its reliability can be
impaired by other activities:

SuffAc(α,ϕ)
def
= ∀σ, σ′ ∈ Σ :

σ
α−→ σ′ ⇒ σ′ |= ϕ and

∃β ∈ Ac,∃σ′′ ∈ Σ : σ
β||α−−→ σ′′ ⇒ σ′′ 6|= ϕ.

A sufficient activity can be interrupted by other
activities and become impossible for achieving
the goal. Thus, when we draw a sufficient activity,
there is a closed switch along the arrow linking
the activity to its intended goal. It means that
there are some other activities that can definitely
or potentially open the switch, implying that
performing the activity may not achieve the goal
any more due to such negative influences.

Definition 7 (Needy activity). An activity α is
considered as a needy activity for the fulfillment
of goal ϕ at a state, if it cannot achieve the goal
by performing the activity alone:

NeedAc(α,ϕ)
def
= ∃β ∈ Ac,∀σ, σ′, σ′′ ∈ Σ :

σ
α−→ σ′ ⇒ σ′ 6|= ϕ and σ

β||α−−→ σ′′ ⇒ σ′′ |= ϕ.

A needy activity is insufficient to achieve a goal
alone, but it can become possible with the help
of other activities. Thus, an open switch is placed
along the arrow linking the activity to its intended
goal, which means that the activity cannot directly
lead to the fulfillment of the goal, but the switch
can be closed with the help of other activities.

INTERDEPENDENCE MODELING
Interdependencies are inherent in teamwork,

where one agent may affect the ability of the other

to achieve a goal or execute a plan.[7] A sim-
ple interpretation of interdependence is given by
Malone and Crowston[8], where interdependence
means mutual dependence, and coordination for
multi-agent teamwork is considered as the pro-
cess of dealing with dependencies among the ac-
tivities of the agents in a team. Interdependencies
are analyzed in terms of roles.[9] A more compre-
hensive definition of interdependence, called In-
terdependence Analysis Color Scheme (IACS)[3],
is presented to model how one agent support the
other in teamwork. However, it is still hard to
identify what needs to be done for each agent in
a resulting color table.

Due to the presence of multiple agents in a
team, one agent’s activity may also hamper the
reliability or efficiency of another agent’s activ-
ity. In order for designers to identify potential
interference in teamwork, our graphical language,
additionally, intends to explicitly model the neg-
ative interdependences (see Table 2). In IACS,
interdependences are categorized into “hard” (ab-
solutely necessary for carrying out the joint activ-
ity) or “soft” (defining possible opportunities for
improving joint activity), but in our work hard
and soft interdependences are characterized by
the reliability and efficiency of achieving a goal,
respectively.

Hard Interdependence

Hard interdependences are associated with a
sufficient or a needy activity, concerning the re-
liability of achieving a goal. To be more specific,
performing a sufficient activity can achieve a goal
alone, but the fulfillment can be interrupted by
other activities. In contrast, performing a needy
activity cannot achieve a goal alone, but it can
become possible with the help of other activities.
In a diagram, hard interdependences always exert
positive or negative influences on a switch that is
associated with a sufficient or a needy activity.
In this work, we categorize four types of hard
interdependences.

Definition 8 (Definitely disable). If performing
β exerts a definitely negative effect on the re-
liability of performing a sufficient activity α in
achieving goal ϕ at a state, we say that activity
β will definitely disable the sufficient activity α
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Table 2. Graphical diagrams and expressions for interdependences.

Graphical Diagrams Expressions Meanings
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for the fulfillment of the goal ϕ:

DefDis(β, α, ϕ)
def
= SuffAc(α,ϕ) and

∀σ, σ′ ∈ Σ : σ
β||α−−→ σ′ ⇒ σ′ 6|= ϕ.

For example, if two same sized robots push a
box in opposite directions, they will get stuck
because one robot’s action may definitely disable
the action execution of the other.

Definition 9 (Potentially disable). If performing
β exerts a potentially negative effect on the
reliability of performing a sufficient activity α in
achieving goal ϕ at a state, we say that activity
β will potentially disable the sufficient activity α
for the fulfillment of the goal ϕ:

PotDis(β, α, ϕ)
def
= SuffAc(α,ϕ) and

∀σ, ∃σ′ ∈ Σ : σ
β||α−−→ σ′ ⇒ σ′ 6|= ϕ.

For instance, if two unmanned cars are driving
on a highway in parallel at a very close distance,
one car may potentially disable the driving of the
other.

Definition 10 (Definitely enable). If perform-
ing β exerts a definitely positive effect on the
reliability of performing a needy activity α in
achieving goal ϕ at a state, we say that activity
β will definitely enable the needy activity α for
the fulfillment of the goal ϕ:

DefEna(β, α, ϕ)
def
= NeedAc(α,ϕ) and

∀σ, σ′ ∈ Σ : σ
β||α−−→ σ′ ⇒ σ′ |= ϕ.

For example, a robot that cannot push a heavy
box alone can do so with the help of a teammate.

Definition 11 (Potentially enable). If perform-
ing β exerts a potentially positive effect on the
reliability of performing a needy activity α in
achieving goal ϕ at a state, we say that activity
β will potentially enable the needy activity α for
the fulfillment of the goal ϕ:

PotEna(β, α, ϕ)
def
= NeedAc(α,ϕ) and

∀σ, ∃σ′ ∈ Σ : σ
β||α−−→ σ′ ⇒ σ′ |= ϕ.

For example, robot A does not have the ability to
open a door so as to go through it, but can achieve

6 IEEE Intelligent Systems
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this by closely following robot B that performs
the open activity.

Soft Interdependence
Soft interdependences are associated with a

solid or a sufficient activity, concerning the effi-
ciency of achieving a goal. As mentioned above,
a solid activity is always robust to achieve its
intended goal, but its efficiency can be influenced.
In Table 2, we do not list the cases for sufficient
activities because soft interdependences always
exert positive or negative influences on the con-
necting line behind an arrow (not on a switch).
In this work, we categorize four types of soft
interdependences.

Definition 12 (Definitely inhibit). If performing
β exerts a definitely negative effect on the effi-
ciency of performing activity α in achieving goal
ϕ at a state, we say that activity β will definitely
inhibit activity α for the fulfillment of goal ϕ:

DefInh(β, α, ϕ)
def
= ∀σ, σ′, σ′′ ∈ Σ :

Effic(σ
β||α−−→ σ′) < Effic(σ

α−→ σ′′).

For example, although a small robot cannot stop a
large robot from pushing a box, it can slow down
the movement and increase the execution time.

Definition 13 (Potentially inhibit). If perform-
ing β exerts a potentially negative effect on the
efficiency of performing activity α in achieving
goal ϕ at a state, we say that activity β will
potentially inhibit the activity α for the fulfillment
of the goal ϕ:

PotInh(β, α, ϕ)
def
= ∀σ, ∃σ′, σ′′ ∈ Σ :

Effic(σ
β||α−−→ σ′) < Effic(σ

α−→ σ′′).

For example, when robot A navigates towards
its destination, the existence of robot B may
potentially increase the path cost of robot A.

Definition 14 (Definitely enhance). If perform-
ing β exerts a definitely positive effect on the effi-
ciency of performing activity α in achieving goal
ϕ at a state, we say that activity β will definitely
enhance the activity α for the fulfillment of the

goal ϕ:

DefEnh(β, α, ϕ)
def
= ∀σ, σ′, σ′′ ∈ Σ :

Effic(σ
β||α−−→ σ′) > Effic(σ

α−→ σ′′).

For example, one robot can help another to speed
up the task execution.

Definition 15 (Potentially enhance). If perform-
ing β exerts a potentially positive effect on the
efficiency of performing activity α in achieving
goal ϕ at a state, we say that activity β will po-
tentially enhance the activity α for the fulfillment
of the goal ϕ:

PotEnh(β, α, ϕ)
def
= ∀σ, ∃σ′, σ′′ ∈ Σ :

Effic(σ
β||α−−→ σ′) > Effic(σ

α−→ σ′′).

For example, one robot broadcasts its current
locations and intended locations may potentially
help another robot to optimize collision-free paths
in congested situations.

To analyze a design of a multi-agent sys-
tem, we can depict a diagram using the pro-
posed graphical language. Hard and soft inter-
dependencies can facilitate the identification of
positive (supporting) and negative (interfering)
relationships, and a resulting diagram can point
out what kinds of interdependences happen to
what elements. Afterwards, when implementing
the system, the developers can pay more attention
to those elements so as to improve the resilience
(i.e., the stability and adaptability[3], [10]) of the
system.

CASE STUDIES
Multi-robot Foraging

Multi-robot foraging is a canonical task that
can be motivated by many practical applications
such as search and rescue, hazardous waste clean-
up, and automated warehouse systems. Here we
use a simple scenario for illustration, where a
red, a green and a blue box are dispersed in an
unknown environment, and two robots, named 1
and 2, have to explore the environment so as
to find and deliver them back to a home base.
To design such a multi-agent system, developers
can produce a goal-oriented or an action-oriented
solution, according to their preferences.

September/October 2019 7
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Figure 2. Goal-oriented design VS action-oriented design for multi-robot foraging.

Figure 2(a) demonstrates a goal-oriented de-
sign based on teamwork models, depicting the
result of a task allocation mechanism that gen-
erates plan-based actions. In order to achieve the
team goal GRGB , the depicted solution instructs
robot 1 and 2 to first perform FG and DG (i.e.,
find and deliver the green box) at the same time.
Developers can easily notice that the two paths
are only sufficient to achieve the sub-goal GG

because the robots can definitely disable each
other’s sub-goal (as the environment only has one
green box). As a result, they cannot continue with
the subsequent sub-goals (i.e., GR or GB ). In
addition, developers can get an insight that the
task allocation mechanism should avoid allocat-
ing a sub-goal to more than one robot in such a
scenario.

Figure 2(b) shows an action-oriented design,
in which each robot performs reactive actions
to search and find boxes without having any
specific intended goal. Specifically, if a robot
finds a box at a place, then it will deliver it to
achieve a sub-goal. Developers can get a general
impression that both of the robots are solid to
complete the team goal alone, but two robots
may potentially enhance team performance (i.e.,
reduce the completion time) by performing the
task in a fully decentralized manner.

DARPA Robotics Challenge (DRC)
The DRC is a robotic competition, aiming at

developing ground robots that can assist humans
to perform complex tasks in dangerous human-
engineered environments. The DRC is divided
into several tracks, and we take a slice of the Vir-

tual Robotics Challenge (VRC) track for demon-
stration. In the task, an operator needs to remotely
control a simulated humanoid robot to find the
hose and pick it up. We take this task as an exam-
ple for case studies because the Interdependence
Analysis Color Scheme (IACS)[3] also uses this
task for evaluation, so we can make a direct
comparison.

Figure 3 shows how the IACS analyzes the
task by a color table. The colors of the “per-
former” columns describe the capacity of the
performer, while the colors of the “supporting
team members” columns are an assessment of
team member’s potential to support the performer.
In the color table, green means the robot/human
can do the task; yellow means the robot/human
can do it but less than perfect reliability; orange
means the robot/human can contribute but need
assistance; red means the robot/human cannot do
it. Although such a color pattern can express
the required capacities for each subtask, it is
still hard to specify the respective activities that
the robot/human has to perform in teamwork.
Moreover, the color table cannot concisely de-
scribe how one supports the other, e.g., the four
columns are all yellow in the row “position the
hand for grasping”. To do this, the IACS needs
supplementary paragraphs for further explanation
in the paper [3].

Comparatively, as shown in Figure 4, our
graphical language can straight-forwardly depict
what the human/robot has to do, which functions
are automated for the robot to perform by itself,
as well as how the human remotely controls
the robot in teamwork. For example, in order
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Figure 3. Interdependence analysis for VRC subtask using the Color Scheme[3].
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Figure 4. Interdependence analysis for VRC subtask using the graphical language.

to achieve the sub-goal “locate the hose”, the
robot can sense the hose but need the human’s
assistance in recognizing the hose. Thus, the
resulting diagram indicates that hose recognition
algorithm should be developed for the robot in the
future. We can also find that the robot is sufficient
to position the hand for grasping (occasionally it
fails to achieve this), but the operator’s activity
of remotely control the hand joints can potential
enhance efficiency (here “potential” indicates that
occasionally the robot can do better by itself). By
investigating the resulting diagram, the developers
can easily notice the elements related to hard or
soft interdependences, and then identify which

functions still need to be developed and refined so
as to realize higher levels of autonomy in future.

CONCLUSION
In this paper, we introduced a formal graphical

and domain-independent language for modeling
comprehensive interdependences of a multi-agent
system in the early design phase. As a modeling
tool, it allows developers to analyze various de-
sign choices to improve development efficiency in
building highly interdependent systems. The ben-
efits of higher levels of autonomy cannot be real-
ized without addressing interdependence through
cooperation and collaboration among agents. For
example, before a fully autonomous car is de-
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veloped, several levels of the automated driving
system have to be designed to assist the driver. At
each level, the developers should identify who is
in control/assistance in what situations or who is
assigned to what tasks, so they can deftly make
appropriate trade-offs in allocating tasks to either
the driver or the automated driving system.

In future work, we will apply our proposed
graphical modeling tool to design sophisticated
multi-robot human systems, e.g., unmanned sur-
face/ground vehicles, in which various levels of
unmanned systems have to work together with
their operators. The use of our graphical modeling
tool can facilitate the uncovering of the system
requirements and detailed specifications. More-
over, we also would like to prove properties of
example designs using formalism and investigate
the scalability and composition of a design.
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