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Abstract

Biological aging clocks estimate age from molecular data and provide insights into
age-related functional decline. While aging clocks based on bulk transcriptomic data
are well-studied, their single-cell counterparts remain limited and underexplored. In
this study, we replicate and enhance a recent single-cell RNA-seq aging clock for hu-
man immune cells using ElasticNet, improving its performance through refined pre-
processing, feature selection, and regularization. We also explore LightGBM to assess
nonlinear modeling potential. Our enhanced models reduce prediction error, gener-
alize better across external datasets, and identify biologically relevant genes through
SHAP analysis. These findings support the development of accurate, interpretable,
cell-type-specific aging clocks using single-cell data.

1 Introduction
Aging is a complex biological process characterized by progressive functional decline at
the cellular and molecular level, increasing vulnerability to disease and mortality. One
key goal of aging research is to quantify this process using estimates of "biological age",
which may better reflect functional status than chronological age. Aging clocks, which are
machine learning models trained on molecular data, are a promising approach for estimating
biological age. They can be trained on diverse data types, such as DNA methylation levels
(epigenetic clocks [1, 2]) or gene expression profiles (transcriptomic clocks[3], which are more
recent and the focus of our research), to capture systemic and stochastic aspects of aging.

Historically, most transcriptomic aging clocks have relied on bulk RNA sequencing
data [4, 5], which measures the average gene expression across large, mixed populations
of cells. This averaging masks cell-type-specific aging signatures (distinct patterns of gene
activity that differ between cell types) and limits the interpretability of model predictions.
To address this limitation, single-cell RNA sequencing (scRNA-seq) enables the development
of clocks that operate at single-cell resolution. A notable study by Zakar-Polyák et al. [6]
demonstrated that ElasticNet1-based clocks trained on over one million peripheral blood
mononuclear cells (PBMCs) from 508 human donors can predict donor age at the cell-type
level and capture meaningful biological variation.

While promising, these models were built using linear techniques (ElasticNet regres-
sion), which may fail to capture non-linear dependencies and interactions present in high-
dimensional gene expression data. Additionally, a major limitation of the reference study
is the lack of in-depth feature importance or interpretability analysis, leaving uncertainty
about which specific genes drive the age predictions. Moreover, their generalizability across
cell types and tissues remains an open question.

This thesis addresses the following core question: Can we improve on current models that
predict biological age using single-cell gene expression data, and can we determine which spe-
cific genes are most important for making accurate predictions? Building on the framework
established by Zakar-Polyák et al. [6], we replicate and validate their baseline ElasticNet
model using the approach outlined in their work, despite the lack of publicly available code.
We then enhance this model through improved data preprocessing, feature selection, reg-
ularization, and hyperparameter tuning. Our work extends prior research by addressing a
key limitation of the original study, namely the lack of feature importance analysis, through
the use of SHAP2-based interpretability methods. To assess model generalizability, we eval-

1https://en.wikipedia.org/wiki/Elastic_net_regularization
2https://shap.readthedocs.io/en/latest/
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uate both the replicated and enhanced linear models on four external scRNA-seq datasets,
analyzing differences in predictive accuracy across cell types. Additionally, we investigate
non-linear modeling approaches, specifically LightGBM3, to examine whether they outper-
form ElasticNet in predicting biological age. Finally, we apply interpretability techniques,
including SHAP values, and enrichment analysis, to identify genes that are most consistently
associated with transcriptomic aging and assess their potential biological relevance.

2 Methodology
In order to address the research question of this thesis, we build on the aging clock framework
proposed by Zakar-Polyák et al. [6], who trained ElasticNet regression models on scRNA-seq
data from the AIDA dataset to predict donor age from PBMCs. Their approach enabled
cell-type-specific age prediction via standardized gene expression and 5-fold cross-validation.

To assess and improve upon this work, we pursued three complementary directions.
First, we replicated their ElasticNet models per cell type using donor age as target, while
following the steps described the reference paper [6], since no code was provided for training
the models. Second, we enhanced the replicated models by refining variance-based gene se-
lection, enforcing donor-wise splits, and tuning ElasticNet hyperparameters (α and l1-ratio)
via nested cross-validation. We will refer to these models as “enhanced linear models“ for
the rest of the paper. Finally, we explored gradient boosted decision trees models (specifi-
cally LightGBM) to evaluate non-linear modeling potential. These models were optimized
using nested cross-validation and hyperparameter tuning via Optuna, with the goal of as-
sessing whether non-linear models could capture additional predictive signal beyond linear
ElasticNet models.

Our methodology is motivated by prior work showing that ElasticNet provides sparse, in-
terpretable models well-suited for biological insight [1], while LightGBM, a gradient boosted
decision tree (GBDT) framework, can model complex nonlinear relationships. The reason
why we decided to use GBDTs for nonlinear models is because they are known for strong
performance on high-dimensional, sparse (which is the case for gene expression, single cell
data), structured biological datasets and often outperform deep neural networks in tabular
settings while remaining more interpretable [7]. We selected LightGBM over other GBDT
implementations (such as XGBoost) for its computational efficiency, scalability, and built-in
regularization [8], making it a practical choice for a limited resource, large-scale single-cell
RNA-seq analysis.

2.1 Datasets
Single-cell RNA sequencing data (which captures the gene expression profile of individual
cells) was used in this research, in the form of high-dimensional and sparse gene-by-cell
matrices. Each dataset can be formalized as a matrix X ∈ Rn×p, where n is the number
of cells and p the number of genes. Each row vector xi contains the expression levels of p
genes in a single cell i, and is associated with metadata such as cell type, donor ID, and
donor age.

The primary training dataset was the AIDA dataset, consisting of approximately 1 mil-
lion transcriptomes from PBMCs, collected from 508 healthy donors aged 19–75. Following

3https://en.wikipedia.org/wiki/LightGBM
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the approach of Zakar-Polyák et al., we trained separate predictive models per cell type, as
different immune cells may exhibit distinct aging signatures.

To evaluate generalizability, we tested our models on four independent external scRNA-
seq datasets: Yoshida, which captures single-cell multi-omics data from pediatric and adult
individuals; Liu, which includes PBMCs from individuals with continuous age labels across
a wide age range; eQTL, a PBMC dataset with continuous donor ages containing the largest
amount of samples ≈ 1.2 million; and Stephenson, which provides immune profiles of both
healthy and COVID-19 patients at different stages, from which we retained only the healthy
donors for analysis.

2.2 Preprocessing
For both model types, expression matrices were normalized using total-count scaling (10,000
counts per cell), followed by log-transformation to stabilize variance and reduce skewness due
to highly expressed genes. To ensure comparability across genes and datasets, expression
values were standardized per gene, using z-score normalization based on the training cells in
each cross-validation fold. Finally, to focus the models on informative features, we selected
the top 5,000 most variable genes per cell type for the linear models. This variance was
computed across all cells of a given cell type, prior to cross-validation. Moreover, many
of the ∼36,000 measured genes were not detectably expressed in PBMCs, and including
them would introduce additional sparsity and noise. For the non-linear models, we selected
a reduced set of the top 3,000 most variable genes. This smaller feature set was chosen
based on empirical performance. Tree-based models are often less sensitive to small feature
effects and can suffer from overfitting or inefficiency when trained on very high-dimensional
data [9]. Additionally, in preliminary experiments on the non-linear models (when training
models using default parameters) we noticed that the smaller input size substantially reduced
memory usage, which was a crucial consideration given our limited computational resources.

2.3 Models
For each cell type, we trained both linear and non-linear models to predict donor age. Linear
models consisted of separate ElasticNet regressors per cell type, trained using standardized
gene expression as input and donor age as target. We employed nested cross-validation
with donor-wise splitting: an outer 5-fold cross-validation loop to estimate generalization
performance, and an inner 5-fold cross-validation using ElasticNetCV to tune α and l1-ratio
hyperparameters.

Subsequently, we trained LightGBM models for each cell type to explore non-linear
modeling capacity. LightGBM models were optimized using nested cross-validation and
hyperparameter tuning with Optuna4, employing a similar outer 5-fold split. For each
outer fold, hyperparameters such as learning rate, number of leaves, and regularization
terms were tuned on an inner 3-fold cross-validation loop, compared to the 5-fold used by
ElasticNet. This choice reflects a trade-off between computational efficiency and robustness,
since tree-based models with such large hyperparameter spaces and high sample training
dataset would reach considerably high training times, as observed empirically. Finally,
models were then trained on the full training fold using the selected hyperparameters and
evaluated on the held-out outer fold, similarly to the linear models. Additionally, to support

4https://optuna.readthedocs.io/en/stable/
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reproducibility, all random seeds were fixed, donor splits were performed deterministically,
and model configurations were version-controlled.

2.4 Evaluation
Model performance was evaluated using mean absolute error (MAE) for datasets with con-
tinuous age labels, Pearson correlation (r) between true and predicted age, and Spearman
correlation (ρ) for datasets with categorical age labels (Yoshida and Stephenson). External
datasets were mapped to AIDA’s gene and cell-type space, and missing genes were imputed
using the average log-normalized expression of that gene across all cells of the corresponding
cell type from the AIDA training set.

2.5 Feature Importance
We computed feature importance for both linear and non-linear models to interpret the
learned aging signatures. For this, we applied SHAP analysis to compute per-fold mean
absolute SHAP values, which were visualized using heatmaps (gene-cell type matrices, in-
cluding top genes overall) and frequency counts (genes appearing in top-20 lists across cell
types), facilitating biological interpretation of the learned models.

3 Responsible Research

3.1 Ethical Considerations
This research utilizes publicly available single-cell transcriptomic datasets, such as the AIDA
dataset and external validation sets from previous studies, all of which were collected and
anonymized by their original authors. No personally identifiable information is included,
and all datasets are used strictly for academic purposes.

The focus of our study is the development of machine learning models to estimate bio-
logical age at the single-cell level. These models are not intended for clinical or diagnostic
use without rigorous validation. We are aware that the interpretation of “biological age” can
carry implications for individual health or longevity assessments, and we emphasize that
our findings should not be misused to make deterministic claims about health status at the
cellular or organismal level.

3.2 Reproducibility
To promote reproducibility, we designed our modeling pipeline to follow transparent and
standard practices. The datasets used are publicly accessible, and all preprocessing steps
(including normalization, filtering, and gene selection) are described in detail. We perform
5-fold cross-validation with donor-wise splitting to prevent data leakage, and we report
multiple evaluation metrics (MAE, Pearson, and Spearman correlation) to ensure robust
assessment.

We replicated baseline models from Zakar-Polyák et al. [6] despite the absence of publicly
available code, by interpreting their described methodology. Enhancements to these models,
such as improved regularization and feature selection, as well as the non-linear models we
trained, are reproducible through the detailed description we provided. Upon successful
completion of the research, we intend to publish our code on a public repository to support
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further research and verification. The code will be made available at: https://github.
com/Vlad13503/Aging-Clock.

3.3 Use of Generative AI
Generative AI tools were used in this project mainly to help reformulate and refine phrases
and ideas, clarify technical descriptions, optimize plot annotations, and, in some cases,
interpret or provide insight into the biological meaning of some results. These tools assisted
in improving the clarity and consistency of the presentation but did not generate scientific
content (code pipelines), results or influence the design or decisions taken throughout the
project. All scientific contributions are the result of our original work and all outputs from
generative tools were critically reviewed and adjusted. Example prompts that were used
are: "How could we group the attached images into a panel in Overleaf?" or "How could we
rephrase the following paragraph to use more scientific terms, without changing its meaning:
[...]?".

4 Results
We systematically evaluated two modeling approaches (enhanced linear models and non-
linear LightGBM models) for predicting biological age from single-cell transcriptomic data,
with the intention to see whether our enhancements can improve both accuracy and gener-
alizability. All models were trained on the AIDA dataset and assessed on four independent
external datasets. We first present an overview of the datasets used and their structure,
followed by an analysis of model performance and interpretability.

4.1 Data Overview
We analyzed five transcriptomic datasets: AIDA (used to train the models) and four ex-
ternal datasets (Yoshida, Liu, eQTL, and Stephenson) used for model validation. Figure 6
summarizes key characteristics of these datasets, including the number of cells, cell types,
donors, and age ranges.

The AIDA dataset contains over 1 million immune cells from 508 donors across 33 cell
types, covering an age range from 19 to 75 years. The external datasets vary considerably
in size and complexity. The eQTL dataset includes nearly 1.25 million cells and 981 donors,
making it the largest in terms of both number of samples and donor diversity. Yoshida
and Stephenson offer broader age ranges (up to 92 years), but noticeably fewer donors and
more heterogeneous age labeling, since they contain both continuous and categorical age
groups. Liu is smaller in scope, with only 14 cell types and 46 donors, ranking last on both
accounts. Together, these datasets span diverse populations and conditions, supporting
robust generalization analysis of our aging models.

4.2 Performance of Enhanced Linear Models
We begin by comparing our enhanced linear models to the published results reported by
Zakar-Polyák et al. [6]. Since the authors did not publish their code used for training the
linear models, we could not directly apply their exact models. Instead, we used their metrics
and evaluation results for reference and compared them to the performance of our enhanced
models.
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Figure 7 shows a scatter plot of mean absolute error (MAE) per cell type, comparing our
enhanced linear models to the reported performance from the original paper. Most points
(25 out of the 33) lie above the diagonal, indicating a lower error for our models. Similarly,
Figure 8 compares the Pearson correlation between true and predicted donor ages for each
cell type, again showing higher correlation for our models in many cases (21 out of the
33). Together, these comparisons confirm that our enhanced models match or exceed the
reported performance in the original study.

We next evaluate the performance of our enhanced linear models trained on the AIDA
dataset by comparing them to a reimplementation of the ElasticNet aging clocks proposed
by Zakar-Polyák et al. [6]. These reimplementation models, referred to as “replication mod-
els” (shown in red in Figure 1), were trained according to the process described in the
original publication (so using the same gene selection and preprocessing steps), without our
enhancements.

Figure 1 summarizes the results across three datasets. On the AIDA dataset (panel a),
the enhanced models consistently outperformed replication models across almost all cell
types, with median MAE reductions ranging between 0.5 and 1 year and relative improve-
ments reaching up to 10% in some subsets. This indicates that careful enhancements to
preprocessing and even light model tuning can visibly improve the accuracy of transcrip-
tomic aging clocks.

To assess the generalizability of our models, the same enhanced models that were trained
on the AIDA dataset were applied (without retraining) to four external scRNA-seq datasets,
two of which are displayed in figure 1: the eQTL (panel b) and Liu (panel c) datasets.
For each cell type, the model trained on AIDA was applied to matching cell types in the
eQTL and Liu datasets. Expression profiles from the external datasets were normalized
and log-transformed in the same way as for AIDA, and missing genes were imputed using
average expression values from the AIDA training data, following the pipeline described in
the reference paper [6] to facilitate comparison of results. The enhanced models yielded
substantial MAE improvements over replication models on eQTL (average reduction of
2 years) and more variable but still favorable results on Liu (average reduction of 2–3
years). These findings demonstrate that relatively simple enhancements to model training
and preprocessing not only improve performance on the training dataset, but also lead to
even greater accuracy and generalizability on external datasets.
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Figure 1: Mean absolute error (MAE) comparison between replication models (red) and
enhanced linear models (blue) across three datasets. (a) MAE on AIDA (training set)
using nested cross-validation. (b) External evaluation on the eQTL dataset. (c) External
evaluation on the Liu dataset. Each pair of blue and red bars represents a distinct immune
cell type with lower values indicating better performance.

To interpret the biological relevance of our enhanced models, we analyzed feature im-
portance using SHAP values. Figure 2 displays a heatmap of the top 30 genes based on
their SHAP importance across cell types. We chose the top 30 genes to provide sufficient
granularity for identifying both shared and cell-type-specific aging markers while keeping
the heatmap readable. The figure reveals that some genes show consistently high impor-
tance across many immune cell types, while others are more cell-type-specific. Additionally,
the all cells column represents the mean SHAP importance of each gene averaged across all
individual cell types, providing a global summary of feature relevance. This suggests that
transcriptomic aging signatures comprise both shared and cell-type-specific components.
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Figure 2: SHAP importance heatmap for the top 30 genes (ranked by global mean SHAP
value across all cell types). Each cell shows the mean absolute SHAP value of a gene for
a specific cell type, with brighter colors indicating higher importance. Empty (white) cells
indicate that the gene was not selected during model training for that specific cell type, and
thus no SHAP value is available. The all cells column represents the mean SHAP value of
each gene across all cell types, serving as a global summary of gene relevance.
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Finally, Figure 9 quantifies the prevalence of SHAP-important genes across cell types.
For each cell type, we identified the top 20 genes based on the highest mean absolute SHAP
values. We selected the top 20 genes per cell type to balance interpretability and focus, since
we noticed (after also trying other amounts) that 20 was the choice that captured a relevant
amount of both high and low frequency genes. We then ranked genes by how often they ap-
peared in these cell-type-specific top-20 lists. Genes with high appearance frequency (such as
ENSG000001106515–CD816, ENSG00000067082–KLF6, ENSG00000087460–GNAS, and
ENSG00000141582–CBX4) are consistently important across diverse immune contexts (they
were present in the top-20 lists for more than 20 of the 33 cell types), suggesting they may be
robust, cell-type-agnostic biomarkers of aging. In contrast, genes with low frequency (such
as ENSG00000173020–GRK2, ENSG00000142327–RNPEPL1, and ENSG00000213145–
CRIP1) may reflect specialized aging processes within specific immune compartments, since
they were present in less than 7 out of the 33 cell types.

To further explore the biological relevance of the top-ranked genes, we performed func-
tional enrichment analysis using Enrichr7 on the top 30 SHAP genes (namely those shown
in Figure 2), using the top 5,000 genes based on variance selected during model training as
background (Figure 5 a,b). The KEGG 2021 Human analysis (Figure 5 a) showed that the
top SHAP-selected genes were strongly associated with key immune and signaling pathways,
including those involved in T cell differentiation (Th1/Th2 and Th17), IL-17 signaling, and
serotonin-related processes. Some pathways also pointed to links with immune-related dis-
eases, such as Chagas disease and T-cell leukemia. Similarly, the GO Biological Process
2025 results (Figure 5 b) highlighted processes like T cell activation, immune cell growth,
and antibody production, along with broader functions like gene regulation and skeletal
development. Together, these findings indicate that the genes identified by the model are
biologically meaningful and reflect immune system changes commonly seen with aging.

4.3 Performance of Nonlinear Models
To complement our analysis of linear models, we continue with the LightGBM nonlinear
models we trained and evaluated on the same data splits and cell types as the enhanced
linear models, using the same plots (allowing for direct comparison), for which figure 3
compares the predictive performance of the enhanced linear models (green) and nonlinear
models (orange) across three datasets. On AIDA (panel a), the nonlinear models manage
to achieve a slightly lower MAE values on most cell types (improved with 0.3–0.5 years on
average), suggesting potential gains from modeling interactions and nonlinear effects within
the training domain.

However, when applied to the external datasets eQTL (panel b) and Liu (panel c),
the nonlinear models exhibited higher MAE in most cases, which outweighed the few cell
types in which we noticed some improvements (such as regulatory T cell, platelet, innate
lymphoid cell etc. in the eQTL dataset). This reduction in generalization performance
may be due to overfitting to AIDA-specific distributions, or more likely due to domain
shift effects that nonlinear models are more sensitive to, since the four external datasets
were significantly different in structure and distribution from AIDA. These findings suggest
that while nonlinear models offer flexible modeling capacity, their utility in cross-dataset

5ENSG identifiers refer to Ensembl gene IDs, which are unique identifiers assigned to genomic features
(in this case to genes).

6Gene symbols in bold represent their common gene names (standardized abbreviations).
7https://maayanlab.cloud/Enrichr/
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generalization remains limited without further regularization, tuning or domain adaptation
strategies.

For completeness, we also include in the Appendix some additional plots we obtained
(Figure 11 and Figure 12) summarizing cell-type-specific correlation metrics (between pre-
dicted and actual age) for both linear and nonlinear models across all four external datasets.
Compared to their nonlinear counterparts, the enhanced linear models demonstrated more
stable and broadly positive correlation values across external datasets (Figure 11). While
the nonlinear models (Figure 12) occasionally achieved higher peak correlations in specific
cell types (such as monocytes in the Stephenson dataset), their performance was more vari-
able in less abundant or noisier data populations. These observations reinforce the trade-off
between flexibility and generalizability in aging clock model design.

Figure 3: Mean absolute error (MAE) comparison between enhanced linear models (green)
and nonlinear LightGBM models (orange) across three datasets. (a) MAE on AIDA (train-
ing set) using nested cross-validation. (b) External evaluation on the eQTL dataset. (c)
External evaluation on the Liu dataset. Each pair of green and orange bars represents a
distinct immune cell type with lower values indicating better performance.

We next examined feature importance in the nonlinear models using SHAP, which is
well-suited for interpreting tree-based models [10]. Figure 4 presents a SHAP heatmap of
the top 30 genes across all cell types. The top genes were selected based on their global
mean SHAP values across cell types.

In this plot, brighter colors represent higher SHAP importance, while empty (white) cells
indicate that the gene was not selected by the model for that specific cell type. The all cells
column shows the average SHAP value across all individual cell types, serving as a global
summary. Compared to the linear model heatmap, the nonlinear version highlights more
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extreme differences in gene importance across cell types (with noticeably more green and
yellow cells, so importance scores between 1 and 2), consistent with the higher flexibility
and sparsity of LightGBM models.

Notably, several genes were consistently important across both model types. In the non-
linear models, top-ranked genes included ENSG00000130522 (JUND), ENSG00000170345
(FOS), and ENSG00000067082 (KLF6), which also appeared prominently in the linear
models. This overlap highlights a robust set of aging-associated genes that are recoverable
across different model types.

Figure 4: SHAP importance heatmap for the top 30 genes (ranked by global mean SHAP
value across all cell types) in the nonlinear LightGBM models. Each cell shows the mean
absolute SHAP value of a gene for a specific cell type, with brighter colors indicating higher
importance. Empty (white) cells indicate that the gene was not selected during model
training for that specific cell type, and thus no SHAP value is available. The all cells
column represents the mean SHAP value of each gene across all cell types, serving as a
global summary of gene relevance.

Finally, figure 10 presents the frequency of SHAP-important genes across cell types.
Similar to the linear models, for each cell type we identified the top 20 genes with the highest
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mean SHAP values. We then ranked genes by how many times they appeared in these per-
cell-type top-20 lists. Many of the top-ranked genes—such as ENSG00000087460 (GNAS),
ENSG00000067082 (KLF6), ENSG00000170345 (FOS) and ENSG00000129824 (RPS4Y1)
again overlapped with the linear model’s top features, underscoring their robustness and
consistency of top contributing features across models.

We applied the same enrichment strategy (as we did for the linear models) to the top 30
SHAP genes from the nonlinear models, using the top 3,000 genes based on variance selected
during model training as background (Figure 5 c,d). Notably, the enriched KEGG pathways
included strong immune signatures such as allograft rejection, autoimmune thyroid disease,
T-cell leukemia, and Th1/Th2 and Th17 differentiation, the last two overlapping with the
results for the linear models. The GO results again highlighted transcriptional regulation
and immune activation terms, with substantial thematic overlap with the linear model’s
enrichments. This convergence across modeling approaches suggests that shared functional
programs underlie the most robust transcriptomic aging markers.

(a) KEGG 2021 Human enrichment results (lin-
ear models)

(b) GO Biological Process 2025 enrichment re-
sults (linear models)

(c) KEGG 2021 Human enrichment results (non-
linear models)

(d) GO Biological Process 2025 enrichment re-
sults (nonlinear models)

Figure 5: Enrichment analysis results for the top 30 SHAP genes derived from linear (panels
a and b) and nonlinear models (panels c and d). Shown are the top 10 enriched terms (by
adjusted p-value) in KEGG and GO Biological Process categories for each model type.

12



5 Discussion
Our enhanced linear models consistently outperformed the replicated models across the
AIDA dataset and external validation sets. The observed reductions in MAE (such as up to
∼0.7 years for naive thymus-derived CD4+ T cells in AIDA and ∼5–6 years for certain cell
types, such as erythrocytes, in the eQTL and Liu datasets, as shown in Figure 1) demon-
strate that careful feature selection, standardized preprocessing, and parameter tuning can
significantly enhance predictive accuracy. Importantly, these results support prior claims
that linear models (ElasticNet) are well-suited for scRNA-seq aging clocks [6], while showing
that performance remains sensitive to pipeline design and implementation choices, such as
hyperparameter tuning.

When comparing our enhanced models with those reported in the reference study (Fig-
ures 7 and 8), we observe that our models replicate the core findings, achieving lower MAE
(typically improved by ≈0.5 year) and Pearson correlations between true and predicted age
(r values around 0.2–0.3 for the top-performing cell types). This confirms the robustness of
single-cell aging signatures and supports the reproducibility of transcriptomic clocks under
standardized reimplementation.

Regarding model generalizability, our results are aligned with the original study’s obser-
vations: the clocks generalized well to external PBMC datasets such as Yoshida and Liu, but
less so to the eQTL dataset (although we still saw noticeable improvements), where reduced
gene expression variability contributed to lower performance [6]. This highlights a known
limitation of current single-cell clocks, namely that they remain sensitive to dataset-specific
biases, also noted by Hongming Zhu et al. [11] and others.

We further explored nonlinear models using LightGBM with hyperparameter optimiza-
tion and nested cross-validation. As shown in Figure 3, these models slightly outperformed
the enhanced linear models (and implicitly the replication models) on the AIDA training
data, suggesting some benefit from capturing nonlinear interactions. However, their per-
formance declined when evaluated on external datasets, likely due to increased sensitivity
to domain shift, which is understandable due to the high discrepancy between the external
datasets’ distribution6. This performance gap underscores a key tradeoff: while nonlinear
models are more expressive, they may generalize less effectively unless regularized, tuned
properly or adapted to mitigate dataset-specific biases.

In terms of interpretability, SHAP analysis revealed that both linear and nonlinear mod-
els prioritize a mixture of globally predictive and cell-type-specific genes (Figures 2 and 4).
Interestingly, several genes were consistently ranked highly in both model types, including
JUND (ENSG00000130522), FOS (ENSG00000170345), GNAS (ENSG00000087460), and
KLF6 (ENSG00000067082), suggesting that these may represent robust, cell-type-agnostic
biomarkers of immune aging.

To complement our SHAP-based interpretation, we conducted enrichment analysis on
the top 30 SHAP-ranked genes for both linear and nonlinear models (Figure 5). In the lin-
ear models, the strongest KEGG enrichments included parathyroid hormone signaling and
Th cell differentiation, which were linked to key immune and regulatory genes like FOS,
GNAS, CD3E, and HLA-DQA2. GO terms also highlighted transcriptional control (no-
tably through genes like JUND, KLF6, and CBX4) and T cell activation, reinforcing
the relevance of immune and regulatory mechanisms in aging. In the nonlinear models, en-
richment results were even more pronounced for immune-related KEGG pathways including
allograft rejection, autoimmune thyroid disease, and Epstein-Barr virus infection, many in-
volving HLA genes and CD3E. Likewise, transcriptional regulation and immune activation
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remained top GO enrichments, with genes like ZNF683, FOS, and JDP2 consistently con-
tributing. These findings provide evidence that the most influential genes identified by our
models are consistently associated with known aging-related and immune-regulatory func-
tions. They suggest that immune remodeling and transcriptional shifts are central themes
in transcriptomic aging and that the models, despite their small architectural differences,
converge on biologically meaningful signals.

In a broader context, our work contributes to the growing field of single-cell aging clocks
by demonstrating that enhancements in preprocessing and model tuning can yield mean-
ingful performance gains even within the widely used ElasticNet framework. This supports
the call from recent reviews [12, 2] for increased focus on model interpretability and repro-
ducibility in aging biomarker research.

Together, these results suggest that transcriptomic aging signatures are at least partially
robust to modeling assumptions, with key aging genes recoverable across both linear and
nonlinear paradigms. Nevertheless, cross-cohort generalization remains a challenge, par-
ticularly when training and test populations differ in donor composition, size, sequencing
depth, or preprocessing protocols. Prior work has shown that single-cell RNA-seq data
is often plagued by batch effects and similar cohort-specific biases that can impair model
transferability unless corrected [13].

Despite the strengths of our approach, several limitations should be acknowledged. First,
the lack of publicly available training code from Zakar-Polyák et al. [6] required us to in-
dependently reimplement their ElasticNet models (to be able to improve them), potentially
introducing deviations despite our best efforts to replicate the original methodology. Sec-
ond, hyperparameter tuning for both our linear and nonlinear models was constrained by
computational resources: the Delft Blue Supercomputer (which we used due to our local
infrastructure lacking the necessary memory requirements) imposed a limit of 200 GB mem-
ory, a maximum of four concurrent jobs, and a considerable waiting time for each job, which
significantly slowed the training process. As a result, our current optimization was lim-
ited in depth and scope. More exhaustive tuning may further improve model performance,
especially for nonlinear architectures. Third, the external validation datasets differed sub-
stantially from the AIDA training data in terms of cell type composition, donor count, and
age distributions (Figure 6), which likely contributed to reduced cross-cohort generalization.
Finally, our current imputation strategy for missing genes for the external datasets may not
fully capture dataset-specific gene expression differences, as it relies on average expression
values from the AIDA training data.

Overall, our study contributes to the growing literature on single-cell aging clocks by
demonstrating that enhanced preprocessing and hyperparameter tuning can yield substantial
improvements in ElasticNet-based models, while highlighting the complementary strengths
and limitations of nonlinear tree-based alternatives. These findings motivate future research
into hybrid and domain-adaptive models that combine the interpretability of linear clocks
with the flexibility of nonlinear architectures.

6 Conclusions
This study addressed the research question: Can we improve on current models that predict
biological age using single-cell gene expression data, and can we determine which specific
genes are most important for making accurate predictions?

We demonstrated that enhanced linear models based on ElasticNet regression can ro-
bustly predict transcriptomic age across a wide range of immune cell types. By carefully
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replicating and improving the models of Zakar-Polyák et al. [6], we achieved consistent re-
ductions in mean absolute error (MAE) on the AIDA training set as well as on external
validation datasets, with typical improvements of 1–2 years and up to 5–6 years in certain
cell types. These gains were made possible by systematic enhancements to preprocessing,
feature selection, and cross-validation strategies.

In addition to linear models, we explored nonlinear age predictors based on LightGBM
with hyperparameter optimization. These models slightly outperformed linear models on
the AIDA training set, suggesting they can capture more complex patterns. However, non-
linear models showed reduced generalizability on external datasets, likely due to increased
sensitivity to distributional shifts and computational constraints that limited deeper hyper-
parameter tuning. This illustrates the trade-off between model expressiveness and robustness
when applied to new cohorts.

To interpret the biological relevance of our predictions, we used SHAP to identify both
globally predictive and cell-type-specific aging genes. Notably, genes such as JUND, FOS,
KLF6, and GNAS emerged as highly important across both linear and nonlinear models,
consistently ranking among the most predictive genes. Enrichment analysis revealed that
these genes were significantly associated with immune system regulation (such as T cell
activation, Th cell differentiation), transcriptional control, and aging-related signaling path-
ways. These biological functions are widely implicated in immune aging and inflammaging
(chronic, low-grade inflammation that typically develops as people age), further validating
the relevance of our gene signatures.

Overall, our findings underscore the importance of methodological rigor in developing
transcriptomic aging clocks and demonstrate that interpretable, high-performance models
are attainable through careful optimization. Future work could address the computational
challenges we met and build upon our findings and models in several ways. First, more
extensive and parallelized hyperparameter optimization could be applied for both model
types (nonlinear models are more sensitive to tuning) to obtain more precise predictions,
for instance by replacing fixed categorical grids with log-scaled continuous search spaces for
hyperparameters. Second, future work could focus on developing hybrid (linear and non-
linear) or domain-adaptive (improving generalization across datasets) modeling strategies
to improve cross-cohort transferability. Third, training and validation should be expanded
to include tissue-specific and disease-specific datasets to assess the generalizability of aging
signatures across biological contexts. Finally, future work should explore external valida-
tion on larger single-cell datasets that are more similar in structure and composition to the
training data (in terms of donor count, cell type representation, and donor diversity), to
enable more comparable and generalizable model evaluations across cohorts. These efforts
could enable more robust and generalizable single-cell aging clocks for biomedical research.
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Supplementary Figures

Figure 6: Overview of the five single-cell transcriptomic datasets used in this study. (a)
Number of cells per dataset. (b) Number of distinct annotated immune cell types in each
dataset. (c) Number of unique donors represented in each dataset. (d) Range of donor ages
(in years), based on metadata from the development stage field of each dataset.
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Figure 7: Scatter plot comparing the MAE of our enhanced linear models to the MAE
reported in the published results from the original paper, across cell types. Each point
represents a specific cell type, where the y-axis shows the MAE from the original paper and
the x-axis shows the MAE of our enhanced model. Points above the diagonal line (y = x)
indicate improved performance (lower error) in our models compared to the paper.
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Figure 8: Scatter plot comparing the Pearson correlation between true and predicted donor
ages for our enhanced linear models versus the values reported in the original paper, across
cell types. Each point represents a specific cell type, with the y-axis showing the original
model’s correlation and the x-axis showing that of our enhanced model. Points below the
diagonal line (y = x) reflect higher correlation (stronger age prediction accuracy) in our
models.
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Figure 9: Frequency of appearance of genes in cell-type-specific top-20 SHAP lists for the
linear models. For each cell type, we selected the 20 genes with the highest mean absolute
SHAP values, then counted how many cell types each gene appeared in. The top 20 genes
by appearance frequency are shown.
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Figure 10: Frequency of appearance of genes in cell-type-specific top-20 SHAP lists for
the nonlinear models. For each cell type, we selected the 20 genes with the highest mean
absolute SHAP values, then counted how many cell types each gene appeared in. The top
20 genes by appearance frequency are shown.
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(a) Yoshida dataset (linear models) (b) Liu dataset (linear models)

(c) eQTL dataset (linear models) (d) Stephenson dataset (linear models)

Figure 11: Cell-type-specific model performance (Spearman or Pearson correlation between
predicted and actual age) across all external datasets for enhanced linear models. Higher
values represent higher correlation, so stronger age prediction accuracy. Liu and eQTL
(panels b and c) have the MAE displayed as an additional metric, since these two datasets
contain only numerical age labels.
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(a) Yoshida dataset (nonlinear models) (b) Liu dataset (nonlinear models)

(c) eQTL dataset (nonlinear models) (d) Stephenson dataset (nonlinear models)

Figure 12: Cell-type-specific model performance (Spearman or Pearson correlation between
predicted and actual age) across all external datasets for nonlinear LightGBM models.
Higher values represent higher correlation, so stronger age prediction accuracy. Liu and
eQTL (panels b and c) have the MAE displayed as an additional metric, since these two
datasets contain only numerical age labels.
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