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ABSTRACT  
Energy waste in buildings can range from 5% to 30% due to faults and inadequate 
controls. To effectively mitigate energy waste and reduce maintenance costs, the 
development of Fault Detection and Diagnosis (FDD) algorithms for building energy 
systems is crucial. Diagnostic Bayesian Networks (DBNs), as graphical probability 
models, are particularly useful in scenarios where high-quality data is not always 
available. While many studies have focused on single fault detection using DBNs, the 
occurrence of multiple simultaneous faults is common, yet the versatility of DBNs in 
handling such cases is rarely explored.  This study adapts a DBN, initially designed 
for single fault diagnosis, to perform simultaneous fault diagnosis Experiments were 
conducted on an air handling unit (AHU) in the Netherlands, using implemented 
simultaneous faults to test the model. The results suggest that the DBN can detect both 
single and multiple faults effectively. 
 
KEYWORDS 
Fault Detection and Diagnosis, Diagnostic Bayesian Networks, Multiple Faults 
Detection 
 
INTRODUCTION 
Approximately 36% of the European Union’s greenhouse gas emissions are attributed 
to the building sector, with 75% of existing structures considered energy inefficient 
(IEA 2023). This highlights the urgent need to enhance energy efficiency to meet 
climate targets. HVAC (Heating, Ventilation, and Air Conditioning) systems, 
responsible for regulating temperature, air quality, and humidity, account for nearly 
half of a building's energy consumption (Pérez-Lombard et al. 2008). Improving HVAC 
system efficiency is crucial for reducing energy waste. 

A key component of many HVAC systems, particularly in non-residential buildings, is 
the Air Handling Unit (AHU), which regulates airflow and maintains optimal indoor 
conditions. Inefficiencies or faults in the AHU can lead to energy waste, increased costs, 
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and decreased occupant comfort. Consequently, the development of effective Fault 
Detection and Diagnosis (FDD) methods for AHUs have attracted considerable 
attention, with Lin et al. (Lin et al. 2020) reporting potential energy savings of 5-30% 
in building energy systems through the application of FDD. 

Current FDD techniques, including data-driven methods like machine learning, rely 
heavily on large datasets for training, making them less adaptable to environments with 
changing fault conditions (Yan et al. 2016, Cheng et al. 2021). These approaches often 
require retraining, which can be time-consuming and resource-intensive. Furthermore, 
many methods are limited to single fault detection, whereas in practice, AHUs also 
experience multiple simultaneous faults, which complicates diagnosis. 

To address these challenges, knowledge-based approaches, such as Bayesian networks, 
offer a promising alternative to data-driven methods. Bayesian networks are graphical 
probability models that represent the conditional dependencies between different 
variables, making them well-suited for fault diagnosis in complex systems like AHUs 
(Zhao et al. 2015, 2017). One of the key advantages of Bayesian networks is their ability 
to incorporate expert knowledge and prior probabilities, allowing them to function 
effectively even in cases where high-quality data is scarce or incomplete. This makes 
them particularly useful in real-world building energy systems, where sensor data may 
be noisy, missing, or limited.  
 
This study focuses on the application of Diagnostic Bayesian Networks (DBNs) for 
detecting and diagnosing multiple simultaneous faults in AHUs. While previous studies 
have demonstrated the effectiveness of Bayesian networks in single fault detection 
(Taal and Itard 2020a, b, Wang et al. 2024), their potential for diagnosing multiple 
faults has remained largely unexplored. This research aims to explore the ability of 
DBNs to detect simultaneous faults using a model initially designed for single fault 
detection, without modifying the parent or child nodes. 
 
METHODOLOGY 
This study applies a DBN to detect and diagnose both single and multiple faults in an 
AHU, inspired by the four symptoms three faults (4S3F) approach from Taal et 
al.(2020a), modified for the specific requirements of this research. The key stages in 
building the DBN, as outlined by Wang et al. (2022), include analyzing the Pipe and 
Instrumentation Diagram (P&ID), identifying faults and symptoms, constructing the 
DBN, and validating it with simulated fault scenarios. 
 
The P&ID of the AHU in Kropman (Fig. 1.), located in Breda, was reviewed. Then the 
Heat Recovery Wheel (HRW), Heating Coil Valve (HCV), and fan were selected due 
to their significant impact on the AHU's energy efficiency and operational stability. 
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Figure 1. P&ID of AHU in Kropman 

 
Following the 4S3F framework, key symptoms were mapped to the three selected faults 
using BMS data, control documents, and expert knowledge. These symptoms derive 
from deviations from predicted behavior, control setpoints, and physical imbalances. 

The HCV position (Uhc,pred) is predicted as a function of the setpoint temperature (Tset), 
related humidity at supply air distribution system (RHsad), exhaust air temperature (Tea), 
absolute humidity at supply air distribution system (AHsad), outdoor air temperature 
(Toa), and inlet air temperature (Tia) as shown in Eq. (1): 

𝑈!",$%&' = 𝑓(𝑇(&), 𝑇&*, 𝑇+*, 𝑅𝐻(*', 𝐴𝐻(*', 𝑇,*)         (1) 

One standard deviation (σ) of the prediction model is used as a fault detection threshold. 

Deviations between predicted and actual fan flowrate are used as an indicator of fan-
related faults, as outlined by Zhao et al. (2017), with the fan flowrate prediction (𝑄-,./01) 
expressed as a function of the supply fan pressure drop, as shown in Eq. (2): 

𝑄(,$%&' = 𝑓(𝑃2*)                   (2) 

Where (Pfa) is the supply fan pressure drop. 

Table 1. summarizes the faults and Table 2. and Table 3. are their associated symptoms 
and variables used in symptom definition, based on the 4S3F methodology. 

Table 1. Selected faults and prior probability 
Fault  Faulty probability Normal probability 

HRW stuck  0.05 0.95 
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HCV stuck  0.05 0.95 
Fan stuck 0.05 0.95 

 
Table 2. Variables used in symptoms definition 

 
Table 3. Symptoms associated with faults 

Symptom  Symptom description Faulty state definition 

∆𝑈!",$%&' Difference of HCV position prediction & 
signal 

.𝑈!"  −  𝑈!",pred.  >  𝜀34 

∆𝑇(,(*			 Difference of setpoint & supply temperature	 |𝑇(&) − 𝑇(*| > 𝜀6-	

𝜂789	 HRW efficiency	 𝜂!%: < 𝜀!%:	

∆𝑄(,$%&'			 Difference of flowrate & flowrate prediction	 .𝑄-  −  𝑄-,pred.  >  𝜀? 	

∆𝑃2			 Supply filter pressure drop	 P2 < 𝜀2	

∆𝑃(,(*			 Difference of setpoint & supply pressure	 |𝑃(&) − 𝑃(*| > 𝜀.-	

𝜀34 , 𝜀? =	σ, 𝜀6- = 0.5	°𝐶, 𝜀3/@ = 0.7, 𝜀2= 60 Pa 	

 
The DBN was constructed, based on the full AHU DBN initially designed for single 
fault detection, to assess its ability to diagnose multiple simultaneous faults. The 
extracted DBN includes nodes of HRW, fan, and HCV. Fig 2. illustrates the DBN 
structure, highlighting the relationships between faults and symptoms. 

 

Name of variable Abbreviation Unit 
Supply air temperature 𝑇(* °𝐶 
Set point temperature 𝑇(&) °𝐶 

Heating coil valve openness 𝑈!" % 
Supply flowrate  Q( m³/s 

Supply filter pressure drop P2 Pa 
supply pressure 𝑃(* Pa 

Set point pressure 𝑃(&) Pa 
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Figure 2. DBN structure 
 
The prior probability of each fault (HRW, HCV, and fan) was set to 5%, with a normal 
operational probability of 95%. Table 1. outlines the prior fault probabilities. 
Conditional probabilities were assigned using a Noisy-OR gate to simplify the process 
(Chen et al. 2022a), assuming symptom independence given the parent faults (Taal and 
Itard 2020a, Wang et al. 2022). The probability of a fault being absent when a symptom 
is present was set to 5%, and a no-leak probability was applied. 
 
To validate the DBN, faults were introduced in the AHU in Kropman, including six 
groups of multiple faults, six single faults, and two normal operation days. The DBN’s 
reliability was tested by comparing its diagnostics to actual faults in both single and 
multiple fault scenarios. 
 
RESULTS 
Fig.2. illustrates the frequency of detection for each symptom across the implemented 
fault cases. Each bar represents how often a particular symptom was detected, providing 
an overview of the system’s behavior under different fault conditions. 
 

 
Figure 2. Symptom detection frequency of (a) HRW 30% & Fan 70%; (b) Fan 65% ; 
(c) HRW 30% & Fan 40%; (d) HCV 30% & Fan 40%; (e) HCV 70% & Fan 40%; (f) 
HCV 30% & HRW 70%; (g) Normal day 1; (h) HCV 30% & HRW 30%; (i) Normal 
day 2; (j) HRW 30%; (k) HRW 50%; (l) HCV 40%; (m) Fan40%; (n) HCV75% 
 
Across multiple fault cases, ∆𝑈34,./01  symptom was one of the most commonly 
detected, particularly in the scenarios involving HCV stuck, such as those shown in Fig. 
2. (d), (e), (f), This high detection rate indicates the sensitivity of the ∆𝑈34,./01  to 
faults affecting the valve openness. Similarly, ∆𝑄-,./01			 𝑠𝑦𝑚𝑝𝑡𝑜𝑚 was frequently 
detected in fan-related fault cases such as case in Fig. 2. (d), (m). 
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Several anomalies in symptom detection were observed. For example, the 𝜂ABC was 
inconsistently detected in some cases where valve faults were introduced, such as case 
in Fig. 2. (c). This suggests that HRW-related symptoms may not be as prominent or 
could be masked by other system behaviors. 
 
Additionally, ∆𝑈34,./01 was detected in cases primarily involving HRW or fan faults, 
such as case in Fig. 2. (a), (c), (d), and (j), even when no direct HCV stuck fault occurred. 
This points to potential cross-influences between system components or issues within 
the prediction model. 

Discrepancies were noted between system documentation, expert knowledge and actual 
symptom detection. For instance, in the case in Fig. 2. (a), ∆𝑃D		symptom did not appear, 
despite the implementation of a fan stuck fault. In cases in Fig. 2. (l) and (e), 𝜂ABC 
symptom appeared, even though no HRW faults were introduced. This mismatch 
suggests potential sensor issues or undocumented interactions between components, 
complicating the accuracy of symptom detection. 

Table 4 shows the DBN diagnosed faults correctly or partially. Faults detected with 
probabilities over 15% were flagged (Chen et al. 2022b), but some false positives and 
negatives were observed and matched symptom detection results, where symptoms 
were either over-detected or missed. 
 
Table 4. Fault diagnostic result 

Fault Case HRW HCV Fan Diagnostic result 
HCV 30% & Fan 40% 0.024 0.37 0.89 Successful  
HCV 70% & Fan 40% 0.30 0.35 0.84 Partially Successful 
HRW 30% & Fan 40% 0.02 0.03 0.85 Partially Successful 
HRW 30% & Fan 70% 0.37 0.01 0.02 Partially Successful 

HCV 30% & HRW 30% 0.23 0.41 0.06 Successful 
HCV 30% & HRW 70% 0.22 0.22 0.03 Successful 

Fan 40% 0.01 0.03 0.88 Successful 
Fan 65% 0.05 0.00 0.26 Successful 

HRW 30% 0.31 0.05 0.04 Successful 
HRW 50% 0.28 0.01 0.00 Successful 
HCV 40% 0.24 0.33 0.00 Partially Successful 
HCV 75% 0.08 0.26 0.00 Successful 

Normal day 1 0.00 0.00 0.01 Successful 
Normal day 2  0.00 0.00 0.06 Successful 

 
For example, in the case shown in Fig. 2. (c), the symptom 𝜂ABC	did not appear, despite 
the HRW stuck. This can be attributed to the counteracting effect of the fan speed drop, 
which decreased airflow and gave the HRW more time for heat exchange. Consequently, 
HRW efficiency increased, masking the fault. This interaction led to only a partial 
diagnosis, as the system did not detect the HRW’s efficiency drop due to the fan’s 
influence. 
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In some single fault cases, shown in Fig. 2. (n) and (m), the DBN successfully 
diagnosed the faults with high accuracy, indicating that the DBN is able to identify both 
HCV and fan issues individually. However, in more complex scenarios, particularly 
those involving simultaneous faults like the case shown in Fig. 2. (e), a false positive 
was observed. This could be due to the cross-influences between the system 
components, leading to either false positives or negatives in the diagnosis. 

DISCUSSION 
This study explored the ability of the DBN to diagnose multiple simultaneous faults in 
an AHU without modifying a model initially designed for single fault detection. In most 
cases, the DBN correctly diagnosed faults or partially identified them. However, 
challenges emerged when there were cross-influences between system components, 
sensor inaccuracies, or undocumented interactions, which sometimes led to false 
positives or false negatives. For example, in the case shown in Fig. 2. (c), the fan's 
reduced speed led to improved HRW efficiency, masking the fault and resulting in a 
false negative. Potential sources of error include symptom overlap, sensor misreading, 
and limitations within the DBN model itself. These factors affected the accuracy of the 
fault diagnoses, requiring further attention in future work to enhance the model's 
capability in dealing with complex fault interactions. 
 
CONCLUSION 
The results suggest that the DBN is capable of detecting both single and multiple faults 
in AHUs without modifications, though improvements are necessary to handle more 
complex interactions and cross-influences. Future work will focus on increasing 
diagnostic accuracy by introducing model improvements that account for sensor issues, 
cross influences, and performing additional experiments such as triple faults scenario 
to refine the DBN. 
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