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ABSTRACT

Energy waste in buildings can range from 5% to 30% due to faults and inadequate
controls. To effectively mitigate energy waste and reduce maintenance costs, the
development of Fault Detection and Diagnosis (FDD) algorithms for building energy
systems is crucial. Diagnostic Bayesian Networks (DBNs), as graphical probability
models, are particularly useful in scenarios where high-quality data is not always
available. While many studies have focused on single fault detection using DBNs, the
occurrence of multiple simultaneous faults is common, yet the versatility of DBNs in
handling such cases is rarely explored. This study adapts a DBN, initially designed
for single fault diagnosis, to perform simultaneous fault diagnosis Experiments were
conducted on an air handling unit (AHU) in the Netherlands, using implemented
simultaneous faults to test the model. The results suggest that the DBN can detect both
single and multiple faults effectively.

KEYWORDS
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INTRODUCTION

Approximately 36% of the European Union’s greenhouse gas emissions are attributed
to the building sector, with 75% of existing structures considered energy inefficient
(IEA 2023). This highlights the urgent need to enhance energy efficiency to meet
climate targets. HVAC (Heating, Ventilation, and Air Conditioning) systems,
responsible for regulating temperature, air quality, and humidity, account for nearly
half of a building's energy consumption (Pérez-Lombard et al. 2008). Improving HVAC
system efficiency is crucial for reducing energy waste.

A key component of many HVAC systems, particularly in non-residential buildings, is
the Air Handling Unit (AHU), which regulates airflow and maintains optimal indoor
conditions. Inefficiencies or faults in the AHU can lead to energy waste, increased costs,
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and decreased occupant comfort. Consequently, the development of effective Fault
Detection and Diagnosis (FDD) methods for AHUs have attracted considerable
attention, with Lin et al. (Lin et al. 2020) reporting potential energy savings of 5-30%
in building energy systems through the application of FDD.

Current FDD techniques, including data-driven methods like machine learning, rely
heavily on large datasets for training, making them less adaptable to environments with
changing fault conditions (Yan et al. 2016, Cheng et al. 2021). These approaches often
require retraining, which can be time-consuming and resource-intensive. Furthermore,
many methods are limited to single fault detection, whereas in practice, AHUs also
experience multiple simultaneous faults, which complicates diagnosis.

To address these challenges, knowledge-based approaches, such as Bayesian networks,
offer a promising alternative to data-driven methods. Bayesian networks are graphical
probability models that represent the conditional dependencies between different
variables, making them well-suited for fault diagnosis in complex systems like AHUs
(Zhao etal. 2015, 2017). One of the key advantages of Bayesian networks is their ability
to incorporate expert knowledge and prior probabilities, allowing them to function
effectively even in cases where high-quality data is scarce or incomplete. This makes
them particularly useful in real-world building energy systems, where sensor data may
be noisy, missing, or limited.

This study focuses on the application of Diagnostic Bayesian Networks (DBNs) for
detecting and diagnosing multiple simultaneous faults in AHUs. While previous studies
have demonstrated the effectiveness of Bayesian networks in single fault detection
(Taal and Itard 2020a, b, Wang et al. 2024), their potential for diagnosing multiple
faults has remained largely unexplored. This research aims to explore the ability of
DBNSs to detect simultaneous faults using a model initially designed for single fault
detection, without modifying the parent or child nodes.

METHODOLOGY

This study applies a DBN to detect and diagnose both single and multiple faults in an
AHU, inspired by the four symptoms three faults (4S3F) approach from Taal et
al.(2020a), modified for the specific requirements of this research. The key stages in
building the DBN, as outlined by Wang et al. (2022), include analyzing the Pipe and
Instrumentation Diagram (P&ID), identifying faults and symptoms, constructing the
DBN, and validating it with simulated fault scenarios.

The P&ID of the AHU in Kropman (Fig. 1.), located in Breda, was reviewed. Then the

Heat Recovery Wheel (HRW), Heating Coil Valve (HCV), and fan were selected due
to their significant impact on the AHU's energy efficiency and operational stability.
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Figure 1. P&ID of AHU in Kropman

Following the 4S3F framework, key symptoms were mapped to the three selected faults
using BMS data, control documents, and expert knowledge. These symptoms derive
from deviations from predicted behavior, control setpoints, and physical imbalances.

The HCV position (Uncpred) 1s predicted as a function of the setpoint temperature (7et),
related humidity at supply air distribution system (RHsad), exhaust air temperature (7ea),
absolute humidity at supply air distribution system (4Hsaq), outdoor air temperature
(Toa), and inlet air temperature (73a) as shown in Eq. (1):

Uhc,pred = f(Tsetr Tea) Toar RHsad' AHsad' Tia) (1)

One standard deviation (o) of the prediction model is used as a fault detection threshold.

Deviations between predicted and actual fan flowrate are used as an indicator of fan-
related faults, as outlined by Zhao et al. (2017), with the fan flowrate prediction (Qs preq)

expressed as a function of the supply fan pressure drop, as shown in Eq. (2):

Qs,pred = f(Pfa) (2)

Where (Pr) is the supply fan pressure drop.

Table 1. summarizes the faults and Table 2. and Table 3. are their associated symptoms
and variables used in symptom definition, based on the 4S3F methodology.

Table 1. Selected faults and prior probability

Fault Faulty probability Normal probability

HRW stuck 0.05 0.95
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HCV stuck 0.05 0.95

Fan stuck 0.05 0.95

Table 2. Variables used in symptoms definition

Name of variable Abbreviation Unit
Supply air temperature Tsa °C
Set point temperature Tset °C
Heating coil valve openness Unc %

Supply flowrate Qs m3/s
Supply filter pressure drop P Pa
supply pressure P, Pa
Set point pressure Pget Pa

Table 3. Symptoms associated with faults

Symptom Symptom description Faulty state definition

Difference of HCV position prediction &

AUhc,pred signal |Uhc - Uhc,pred' > Epc
AT sa Difference of setpoint & supply temperature |Tser — Tsal > &t
NHRW HRW efficiency Nhrw < Ehrw

AQsprea  Difference of flowrate & flowrate prediction |QS - Qs,pred| > g

AP Supply filter pressure drop Pr < &
AP 54 Difference of setpoint & supply pressure |Pset — Psal > &ps

Encr€q =0, &5 = 0.5°C, &pyy, = 0.7, &= 60 Pa

The DBN was constructed, based on the full AHU DBN initially designed for single
fault detection, to assess its ability to diagnose multiple simultaneous faults. The
extracted DBN includes nodes of HRW, fan, and HCV. Fig 2. illustrates the DBN
structure, highlighting the relationships between faults and symptoms.

Pyt Tt (HRW HCV | Fan 1 w1 Py | T | Il Faults
Symptoms
Other Nodes
Taptz ATin  Teo ATsapred 22! WIERWASURSSR TGS BN SABRAQEIR CO> Poppre Poo T AQspred
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Figure 2. DBN structure

The prior probability of each fault (HRW, HCV, and fan) was set to 5%, with a normal
operational probability of 95%. Table 1. outlines the prior fault probabilities.
Conditional probabilities were assigned using a Noisy-OR gate to simplify the process
(Chen et al. 2022a), assuming symptom independence given the parent faults (Taal and
Itard 2020a, Wang et al. 2022). The probability of a fault being absent when a symptom
is present was set to 5%, and a no-leak probability was applied.

To validate the DBN, faults were introduced in the AHU in Kropman, including six
groups of multiple faults, six single faults, and two normal operation days. The DBN’s
reliability was tested by comparing its diagnostics to actual faults in both single and
multiple fault scenarios.

RESULTS

Fig.2. illustrates the frequency of detection for each symptom across the implemented
fault cases. Each bar represents how often a particular symptom was detected, providing
an overview of the system’s behavior under different fault conditions.
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Figure 2. Symptom detection frequency of (a) HRW 30% & Fan 70%, (b) Fan 65% ;
(c) HRW 30% & Fan 40%, (d) HCV 30% & Fan 40%;, (e) HCV 70% & Fan 40%; (f)
HCV 30% & HRW 70%;, (g) Normal day 1; (h) HCV 30% & HRW 30%, (i) Normal
day 2; (j) HRW 30%; (k) HRW 50%, (1) HCV 40%;, (m) Fan40%, (n) HCV75%

Across multiple fault cases, AUp;preq Symptom was one of the most commonly
detected, particularly in the scenarios involving HCV stuck, such as those shown in Fig.
2. (d), (e), (1), This high detection rate indicates the sensitivity of the AUpcpreq to
faults affecting the valve openness. Similarly, AQs,req Symptom was frequently
detected in fan-related fault cases such as case in Fig. 2. (d), (m).
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Several anomalies in symptom detection were observed. For example, the 1y, was
inconsistently detected in some cases where valve faults were introduced, such as case
in Fig. 2. (c). This suggests that HRW-related symptoms may not be as prominent or
could be masked by other system behaviors.

Additionally, AU preq Was detected in cases primarily involving HRW or fan faults,
such as case in Fig. 2. (a), (c), (d), and (j), even when no direct HCV stuck fault occurred.
This points to potential cross-influences between system components or issues within
the prediction model.

Discrepancies were noted between system documentation, expert knowledge and actual
symptom detection. For instance, in the case in Fig. 2. (a), APy symptom did not appear,
despite the implementation of a fan stuck fault. In cases in Fig. 2. () and (e), nyrw
symptom appeared, even though no HRW faults were introduced. This mismatch
suggests potential sensor issues or undocumented interactions between components,
complicating the accuracy of symptom detection.

Table 4 shows the DBN diagnosed faults correctly or partially. Faults detected with
probabilities over 15% were flagged (Chen et al. 20225), but some false positives and
negatives were observed and matched symptom detection results, where symptoms
were either over-detected or missed.

Table 4. Fault diagnostic result

Fault Case HRW HCV Fan Diagnostic result
HCV 30% & Fan 40% 0.024 0.37 0.89 Successful
HCV 70% & Fan 40% 0.30 0.35 0.84 Partially Successful
HRW 30% & Fan 40% 0.02 0.03 0.85 Partially Successful
HRW 30% & Fan 70% 0.37 0.01 0.02 Partially Successful
HCV 30% & HRW 30% 0.23 0.41 0.06 Successful
HCV 30% & HRW 70% 0.22 0.22 0.03 Successful
Fan 40% 0.01 0.03 0.88 Successful
Fan 65% 0.05 0.00 0.26 Successful
HRW 30% 0.31 0.05 0.04 Successful
HRW 50% 0.28 0.01 0.00 Successful
HCV 40% 0.24 0.33 0.00 Partially Successful
HCV 75% 0.08 0.26 0.00 Successful
Normal day 1 0.00 0.00 0.01 Successful
Normal day 2 0.00 0.00 0.06 Successful

For example, in the case shown in Fig. 2. (¢), the symptom nyzy, did not appear, despite
the HRW stuck. This can be attributed to the counteracting effect of the fan speed drop,
which decreased airflow and gave the HRW more time for heat exchange. Consequently,
HRW efficiency increased, masking the fault. This interaction led to only a partial
diagnosis, as the system did not detect the HRW’s efficiency drop due to the fan’s
influence.
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In some single fault cases, shown in Fig. 2. (n) and (m), the DBN successfully
diagnosed the faults with high accuracy, indicating that the DBN is able to identify both
HCV and fan issues individually. However, in more complex scenarios, particularly
those involving simultaneous faults like the case shown in Fig. 2. (e), a false positive
was observed. This could be due to the cross-influences between the system
components, leading to either false positives or negatives in the diagnosis.

DISCUSSION

This study explored the ability of the DBN to diagnose multiple simultaneous faults in
an AHU without modifying a model initially designed for single fault detection. In most
cases, the DBN correctly diagnosed faults or partially identified them. However,
challenges emerged when there were cross-influences between system components,
sensor inaccuracies, or undocumented interactions, which sometimes led to false
positives or false negatives. For example, in the case shown in Fig. 2. (¢), the fan's
reduced speed led to improved HRW efficiency, masking the fault and resulting in a
false negative. Potential sources of error include symptom overlap, sensor misreading,
and limitations within the DBN model itself. These factors affected the accuracy of the
fault diagnoses, requiring further attention in future work to enhance the model's
capability in dealing with complex fault interactions.

CONCLUSION

The results suggest that the DBN is capable of detecting both single and multiple faults
in AHUs without modifications, though improvements are necessary to handle more
complex interactions and cross-influences. Future work will focus on increasing
diagnostic accuracy by introducing model improvements that account for sensor issues,
cross influences, and performing additional experiments such as triple faults scenario
to refine the DBN.
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