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Abstract

The total electrical energy consumption by all the operational data centers (located all over
the world) is enormous (approx. 1% of the global electricity demand [20000𝑇𝑊ℎ][55]). This
electrical energy is required 24𝑥7 to operate and cool all the IT equipment present in the data
center. The electrical energy required to cool all the servers present in the white space can
range from as low as 10% to as high as 40%[19] of the total data center electrical consumption.
The server’s inlet temperature has to be within the ASHRAE recommended range (18∘𝐶 -
27∘𝐶), so that they can function correctly.

A simplified design of a raised floor white space with hot aisle / cold aisle configuration is
considered. The tile flow rate through the floor tiles influences the server’s inlet temperature.
To control the tile flow rate, 11 design variables of the data center white space are identified.
These are the position of the 4 perforated plates, the amount of perforations of each perforated
plates, the floor tiles perforation, the raised floor height, and the CRAH distance to the cabinet.
600 design samples of the white space are generated by applying the Latin Hypercube Sampling
(LHS) technique on these 11 design variables. A well-validated CFD software 6SigmaRoom
by Future Facilities is used to generate the CFD results. The standard 𝑘 − 𝜖 model is used to
model the turbulence in the CFD simulations, in a steady-state condition. A database of 600
samples is generated by recording the cabinet’s inlet temperature, flow rate of floor tiles from
the CFD simulations, and the corresponding changeable design parameters generated by the
LHS technique. The error due to CFD simulation is estimated at less than 4% for the tile flow
rate and 1.7∘𝐶 for the server inlet temperature[42].

Four Artificial Neural Networks (ANN) are trained on the data from the database to predict
the floor tile’s tile flow rate and the cabinet’s inlet temperature, respectively. The average 𝑅
prediction (testing) accuracy is 0.97 for the tile flow rate predictions and 0.92 for the cabinet’s
inlet temperature predictions. Their average prediction error is less than 5% for the tile flow
rate and less than 2∘𝐶 for the cabinet’s inlet temperature. The Non-dominated Sorting Genetic
Algorithm-II (NSGA-II), a variant of the genetic algorithm, is used to find the optimum values
of the 11 design parameters of the white space. These optimum values are going to ensure
the server’s inlet temperature to be within the ASHRAE recommended range. The genetic
algorithm optimizes the design variables based on the predictions made by the neural network
predicting the tile flow rate. The values of the optimized design parameters are verified using
the 6SigmaRoom software by comparing the server’s (mean) inlet temperature of the optimized
case with the non-optimized case. More number of servers have their (mean) inlet temperature
below 27∘𝐶 in the optimized case as compared to the non-optimized case. The electrical power
required by the CRAHs to cool the white space is reduced by 10% in the optimized case as
compared to the power which is required by the CRAHs in the non-optimized case. In this
study, a CFD simulation of the white space took 40 minutes. The neural networks took less
than a minute to make the predictions, and the NSGA-II algorithm took less than 10 minutes
to find the optimized design parameters of the white space.

Thus, in this thesis, it is shown that using an artificial neural network and a genetic algo-
rithm, in combination with computational fluid dynamics gives satisfying results in optimizing
the white space design, required to keep the server’s inlet temperature within the ASHRAE
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iv 0. Abstract

recommended range. The computational time required to find the optimum white space de-
sign is also reduced by using a neural network and a genetic algorithm. The prediction by
the neural network and the optimization performed by the genetic algorithm can be improved
further with the availability of more training data and in-depth knowledge of applying these
techniques (the neural network and the genetic algorithm) in predicting and optimizing the
solutions respectively.
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1
Introduction

1.1. Background
Data Centers form a vital part of our society and plays an essential role in the digital economy.
With the increased use of the internet and the advancement of electronics hardware technolo-
gies, a large amount of data gets stored in data centers, accessed and exchanged from them
daily. Data centers form the backbone of the internet. The size of a data center can be as
small as a room containing 10 to 100 racks of servers[35] to as large as a massive building
comparable to the size of aircraft carriers[55]. Generally, a data center consists of numerous
servers, stacked upon each other, spanning for rows down the windowless halls[55].

As more people start using the internet for accessing information, sending emails, social net-
working, video and voice calls, cloud computing services, scientific computing, the demand for
data centers increases. New data centers have to be constructed, or existing data centers need
to be scaled up to meet this demand. This is going to lead to more consumption of electrical
energy by the data centers. Data centers might receive its energy from renewable or non-
renewable sources. In figure 1.1a, it is seen that the ICT and data center electricity demand
is going to increase in the future. Figure 1.1b shows the increased usage of the internet over
the years which has lead to the increased access of data from data centers. The increased use
of IT and ICT equipment in data centers has led to more usage of electricity by data centers.

It is estimated that data centers consume around 200 terawatt-hours (𝑇𝑊ℎ) of energy each
year. It is more than the national energy consumption of certain countries like Iran, approx-
imately half of the electricity consumed in transportation all over the world, and 1% of the
global electricity demand which is around 20000𝑇𝑊ℎ[55]. Data Centers[55] contributes 0.3%
of the overall carbon emissions. It is estimated that the energy usage for cooling IT equipment
in the data center can go from as low as 10% to as high as 40% of the total energy consumed
by the data center[19]. The cooling energy required depends on the climatic conditions of the
region in which the data center is built, the cooling systems implemented, the cooling control
strategies used, and the utilization rate of the servers in the data center.
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2 1. Introduction

(a) Forecast of the energy consumption( ) (b) Global electricity demand and the internet explosion

Figure 1.1: (a) The forecast of energy consumption ( ) by networks, ICT, data center and consumer devices
against time(year).(b)The global electricity demand by the networks, ICT, data center, and consumer devices
and the growth of the internet traffic due to its increased usage[41]. The graphs forecast more energy usage in
data centers as the digital economy booms.

Thus, the data centers must operate optimally by consuming energy efficiently. One of the
main components of a data center are the cooling units and the cabinets containing servers.
The server dissipates heat, which needs to be removed and the inlet temperature of the servers
have to be maintained within the recommended temperature (dry bulb temperature) range
(18∘𝐶 − 27∘𝐶) according to American Society of Heating, Refrigeration and Air-Conditioning
Engineers (ASHRAE)[2]. In figure 1.2, is a plot between the Information Technology (IT) inlet
relative humidity on the y-axis and IT inlet temperature (in ∘𝐶) on the x-axis. The green zone
highlights the recommended temperature range, and the blue zone highlights the acceptable
temperature (dry bulb temperature) range (15∘𝐶 − 32∘𝐶), which is the extreme limit for the
inlet temperature of the servers. According to industry-standard, the server’s inlet temperature
cannot exceed the allowable range (in the worst-case scenario). But it is a choice of the client,
who is renting the data center spaces to decide in which range the server’s inlet temperature
should lie in. Mainly, the extreme inlet temperature of servers in data centers should fall within
the A1 class.

If the inlet temperature of the server exceeds the allowable range, the servers are going to be
overheated, and causing it to malfunction. This will lead to a shutdown of the IT services and
loss of revenue for the company providing these services. A data center needs to be sufficiently
cooled but not over-cooled, as it can lead to operational financial loss due to the cost associated
with over-cooling. The data center white space1 can be cooled either by air-based cooling or
by liquid-based cooling[4]. In air-based cooling, the servers in the white space are cooled using
cold air delivered by the air cooling units. In liquid-based cooling, the servers are cooled by
using cold water passing through the hot sides of the servers or by immersing the servers in
a dielectric material. The flow field determines the cooling in an air-cooled data center, and
Computational Fluid Dynamics (CFD) provides a suitable tool to determine these flow fields,

1The data center has an area designated as white space and another area as grey space. In a white space,
the IT equipments are placed. It consists of servers, storage, network gear, racks, air conditioning units, and
power distribution systems. Grey space is the area where the back-end equipment like the switch gear, UPS,
transformers, chillers and generators are located.
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temperature distributions[64] and is used to study the cooling problem in a data center.

Figure 1.2: Recommended and allowable operating temperature range according to ASHRAE classes A1/A2/A3
for IT product operation. Inlet temperature of the servers are mainly kept within the recommended (Green
Zone) range. The temperature range of the other Information Technology (IT) products are chosen among the
three (A1/A2/A3) classes based on client operational requirement[3].

1.2. Purpose/Goal of the Thesis
The purpose/goal of the present study is to find out the set of optimized design parameters of
the data center white space that will influence the temperature distribution and flow fields in
the white space. A new cooling concept is going to be tested. This goal is going to be achieved
by creating a database of CFD simulations, predictions of the flow/temperature field using a
neural network, and optimization using a genetic algorithm. The servers are assigned to be
running at full heat load capacity to simplify the constraints of the CFD model. In reality,
each server in a data center has a different heat dissipation rate based on its usage. Another
goal would be to reduce the power consumption of the cooling units, which are used to cool
the servers, and to reduce the computational time required to simulated the temperature and
flow fields by using a neural network and a genetic algorithm.

1.3. Thesis Outline
General structure of the thesis is presented as follows.

• Chapter 1- Consists of the background, and the purpose/goal of the study done in this
thesis.

• Chapter 2- Literature review of the data center white space design. It also contains a
review of the research done using CFD to analyze the thermal and flow field in a data
center. The use of a neural network for thermal and flow prediction and the genetic
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algorithm as an optimization tool in heat transfer application is also presented.

• Chapter 3- It contains the theory of the governing equation used in the CFD simulations,
and parameters required to design a neural network and a genetic algorithm.

• Chapter 4- Describes the methodology followed to generate the results from the CFD
simulation, Artificial Neural Network (ANN), and Genetic Algorithm (GA).

• Chapter 5- It contains the results of the CFD simulations, the ANN, and the GA, re-
spectively.

• Chapter 6- It provides a conclusion for the thesis and the recommendations for future
work.



2
Literature Survey

2.1. Data Center Cooling Infrastructure
The main cooling infrastructures of a data center are the cooling tower, chiller(s), pumps,
cooling units (CRAH/CRAC)1, and economizer(s). This is shown in figure 2.1.

Figure 2.1: The cooling infrastructure of a data center. It generally consists of a cooling tower, chiller(s), pumps,
cooling units (CRAH/CRAC), and economizer(s). The CRAC absorbs the hot air from the servers. This hot
air heats the cold water passing through it. The hot water from the CRAC is supplied to the chiller to be cooled
again. The chiller exchanges the heat internally with the cold water from the cooling tower. The cooling tower
reduces the temperature of the incoming warm water through an evaporative process. The heat is expelled to
the atmosphere. The pumps regulate the flow. The economizer reduces the energy consumption for cooling.[76].

1A cooling unit can either be a CRAH or a CRAC. The cooling unit consists of a cooling coil through which
the coolant/refrigerant is passed. The hot air is passed around the cooling coil to cool it down to the supply
temperature of the cooling unit. Computer Room Air Handler (CRAH) uses chilled water as a coolant in its
cooling coil. A Computer Room Air Conditioner (CRAC) uses a refrigerant as a coolant in its cooling coil.
The operational cost of a CRAC is more than a CRAH. The type of cooling unit to be used is decided by
the climatic condition of the region in which the data center is built. The CRAHs are usually preferred as a
cooling unit in the data centers which are built in places having a cold/temperate climatic condition, and the
CRACs in the data centers which are built in hot climatic regions.

5



6 2. Literature Survey

In figure 2.1, the hot air from the servers is pulled into the cooling unit (CRAH/CRAC).
This air is cooled in the cooling unit and passed back to the server room. The cold water
passing through the cooling units (CRAH/CRAC) is heated up from the exhausted hot air
and transported to the chillers. The water cools down in the chiller and is again used to cool
the server room through the cooling units. Heat is exchanged in the chiller between the hot
water coming from the cooling units and the cold water coming from the cooling tower. The
warm water from the chiller is cooled in the cooling tower, by letting it come in direct contact
with the air. As this process happens, a small volume of warm water is evaporated. This
reduces the temperature of the warm water and it is passed back to the chiller. The heat from
the cooling tower is generally expelled to the atmosphere. Nowadays, due to sustainability
goals, the heat from the data center can be used for district heating. One such research study
has been done in the masters’ thesis on "Data centers as residual heat source for district
heating in residential neighborhoods of Amsterdam"[60]. Amsterdam plans to replace the gas-
fired central heating system with district heating by 2050. Amsterdam’s district heating goal
is going to be boosted by utilizing the waste heat of the data center[17]. The pumps are used
to regulate the flow and the cooling rate in a data center. An economizer is used to reduce
the energy consumption for cooling. Waterside economizer can be used when the atmosphere
is cold, which can reduce the burden on the chiller. The waterside economizer can be used
to reduce the usage of a chiller in regions having a cold climatic condition and thus saving
cooling energy. In a waterside economizer, part of the heat is collected from the hot water
to heat-up the cold atmospheric air to a temperature required by the white space. Air-side
economizer facilitates the fresh air to flow directly into the white space if the temperature of
the atmospheric air is less than 32∘𝐶 directly.

2.2. Data Center Containment Strategy
Figure 2.2 shows the different kinds of containment strategies commonly used in data center
white space. A containment is required to separate the cold air from the hot air and prevent
them from mixing up. The cooling energy consumption for a white space having a containment
is less than a white space having no containment. This, in turn, saves the revenue required
for cooling the white spaces. Each containment strategy has its advantages and disadvantages.
The costs associated with implementing the different types of containment systems are differ-
ent. The type of containment system to be implemented depends on the construction budget
allocated to build it, the amount of maintenance required, safety factors like fire safety and
plug leakage measures implemented in the white space, temperature environment required for
personals working in the white spaces, and on the heat load of the servers in the white spaces.
Typically, a hot aisle or cold aisle containment strategy is used in a data center. Thus, con-
tainment strategy helps in the reduction of energy consumption required for cooling, as 60%
of the cooling energy can be wasted without containment strategies. A containment strategy
also helps in the construction of a high-density data center white space in a short duration of
time[16]. The cold air can flow from the cooling units into the data center white space through
a raised floor configuration or a hard floor configuration. In a raised floor configuration, the
cold air flows from the cooling unit into the raised floor, and it is then supplied to the white
space through the perforated tiles. In a hard floor configuration, the cold air flows directly into
the white space from the cooling unit. These two configurations are shown in figure 2.3. Usu-
ally, the raised floor configuration is preferred over the hard-floor configuration as it provides
flexibility in rearranging the racks in the white spaces[9].
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Figure 2.2: The different types of data center containment strategies used in white spaces. Containment is done
to separate the hot air from the cold air. This, in turn, saves revenue by reducing the consumption of cooling
energy. Each containment strategy has its advantages and disadvantages[15].

(a) Raised floor configuration (b) Hard floor configuration

Figure 2.3: The raised floor configuration shown in sub-figure (a) and hard floor configuration shown in sub-
figure (b) of the data center white space. In sub-figure (a), the cold air flows from the cooling unit (CRAC)
into the raised floor and then into the white space through the perforated floor tiles. In sub-figure (b), the cold
air flows directly into the white space from the cooling unit. A hot aisle containment system will be required in
a hard floor configuration, to prevent the mixing of hot and cold air[16].

2.3. Data Center CFD
Numerous Computational Fluid Dynamics studies have been done to analyze the thermal
and flow field in an air-cooled data center. Some of the studies are presented as follows.
Patankar[64] presents a holistic overview of the airflow distribution and cooling in a data
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center. Wibron et al.[80] have used Ansys CFX 16.0 to validate different turbulence models
against experiments performed in measuring the velocity fields and temperature in a data
center. CFD simulation of raised floor data center configuration has been performed in the
paper "Experimentally Validated Computational Fluid Dynamics Model for Data Center With
Active Tiles" by Athavale et al.[42]. In this paper, a CFD simulation of a raised floor data
center configurations is performed, employing active tiles and validated it against experiments
done in the data center lab at Georgia Institute of Technology.

2.4. Raised-Floor Data Center Design
2.4.1. General Arrangement
A typical cooling distribution working principle for data center white space with a raised floor
is shown in figure 2.4. The CRAC is placed on the raised floor. The cold air moves downward
from the CRAC2 into the raised floor and then through perforated tiles into the inlet of the
server racks. Heat exhausted from the rear of the server racks is drawn into the top face of the
cooling unit (CRAC)[64].

Figure 2.4: Data center with a raised floor configuration. Cold air from the CRAC is supplied through the
raised floor into the server racks. Hot air from the server racks moves toward the ceiling (due to lighter density)
and is then sucked into the CRAC[64].

2.4.2. Cold Aisle / Hot Aisle Arrangement
To reduce the possible mixing of exhausted hot air from the servers with the supplied cold
air, the racks of servers are arranged in the "Hot Aisle / Cold Aisle" configuration, as shown
in figure 2.5. This was suggested by Sullivan[11] and has now become a standard practice in
data centers. Perforated tiles are placed in the cold aisle. On both sides of the cold aisle,
it is surrounded by the inlet face of the server racks. There are no perforated tiles placed in
the hot aisle in order to prevent the mixing of hot and cold air. The hot air from the server
racks emerges in the hot aisle, which then rises towards the ceiling and returns to the inlet of
the cooling unit(s). A certain amount of leakage of hot air happens through the sides of the
cabinet (containing the servers), which is 5% of the blanked frontal surface of the cabinet3.

2This is a down-flow CRAC unit. There can also be an up-flow CRAC unit, ceiling unit, and other cooling
systems that regulate the airflow in the data center.

3Future Facilities have provided this information, the company developing the 6SigmaRoom CFD software.
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Figure 2.5: The hot aisle / cold aisle arrangement of server racks. The cold aisle supplies the cold air to the
server’s inlet. The hot aisle collects the hot air from the servers and returns it to the cooling units (CRACs).
This kind of aisle arrangement is done to prevent the mixing of hot and cold air[64].

2.4.3. The Airflow Requirement by the Servers in a Cabinet
A cabinet contains multiple servers stacked up upon each other. Each server has an internal fan
that draws in the cold air from the cold aisle. To maintain the servers within the recommended
temperature range and to prevent overheating, the server fans change the airflow rate required
by it.

To guarantee that the supplied cold air enters the cabinet (containing the servers), the airflow
rate of the tile present at the base of the cabinet has to be greater than or equal to the airflow
rate required by all the servers in the cabinet. This is illustrated in figure 2.6a and figure 2.6b.
In this example, in each case the cabinets dissipate heat of 2𝑘𝑊, and it requires an airflow
rate of 0.15𝑚 /𝑠, i.e., each floor tile should be able to provide this airflow rate to the cabinet.

In figure 2.6a, it is seen that the corresponding tile is meeting the airflow required by the
cabinet. Thus there is no recirculation of hot air (from the hot aisle) as the servers are
adequately cooled. In figure 2.6b, it is observed that the tile is incapable of providing the
required airflow. The lower half of the cabinet is adequately cooled but in the upper half,
mixing of hot air (46∘𝐶) and cold air (24∘𝐶) occurs before entering the inlet of the cabinet.
Thus the inlet temperature of the supplied air in the upper half of the cabinet increases, and
the servers start to overheat.

The effect of insufficient airflow through the floor tiles is shown in the CFD study of a data
center white space in the paper "Numerical study of thermal management of data center using
porous medium approach" by Saha et al.[69] (see figure 2.7). In this figure, the temperature
plot has been taken at four vertical locations from the floor. It starts from the bottom of the
cabinet (as shown in figure 2.7(d)) to the top of the cabinet (shown in figure 2.7(a)). There are
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recirculation effects near the corner of the last cabinet on the right, and it is more pronounced
near the top of the cabinet, causing hot-spot to appear in the servers present in this region. In
figure 2.8 the temperature plot has been taken in four horizontal locations, starting from the
cabinet present near the CRAC, as shown in figure 2.8(a) to the cabinet farthest away from
the CRAC (figure 2.8(d)). Another undesirable phenomenon is observed called the bypass or
short-circuiting of cold air. In this phenomenon, excess cold air is produced (more than what
is required by the servers), which flows directly into the exit vents present in the white space.
This leads to a wastage of energy required to produce the excess cold air and a decrease in the
performance of the cooling units (CRAH/CRAC).

(a) Sufficient airflow being supplied (b) Insufficient airflow being supplied

Figure 2.6: Comparison of cases with (a) sufficient cold airflow supplied from the raised floor to the cabinets,
and (b) insufficient airflow supplied from the raised floor to the cabinets. Scenario (b) leads to recirculation of
hot air into the top of the cabinets and rise in the inlet temperature at the top of the cabinet[64].

Figure 2.7: The contours of temperature (∘ ) at different horizontal cross-sections showing the extend of recircu-
lation of hot air into the inlet of the cabinet containing the servers. This leads to a rise in the inlet temperature
in the recirculation region[69]. The floor tiles are providing the cold air to the inlet of the cabinet. Cabinets are
modeled as a black box or lumped model approach.
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Figure 2.8: Contours of temperature (∘ ) at different vertical cross-sections showing the extend of bypass of
the excess cold air to the outlet vents, thus leading to inefficient cooling and wastage of cooling energy[69]. The
floor tiles are providing the cold air from the raised floor to the inlet of the cabinet. The cabinets are modeled
as a black box or lumped model approach.

2.4.4. The Distribution of Airflow through the Perforated Tiles
In figure 2.9, the tiles are positioned at different distances from the CRAC. The tile farthest
away from the CRAC gets the maximum airflow through it, and the one near it gets the
minimum airflow[64].

Figure 2.9: The uneven distribution of airflow through the floor tiles, due to the unequal velocity distribution
in the raised floor. The velocity decreases away from the CRAC, as the cold air escapes through the floor tiles.
According to Bernoulli’s equation, the pressure increases away from the CRAC. The pressure above the raised
floor is nearly uniform. Thus, the tile away from the CRAC has maximum airflow[64].

The reason for this maldistribution is explained as follows. In figure 2.9, if we consider the
velocity in the raised floor in the horizontal direction. It decreases since the air escapes from
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the perforated tiles[64]. Accordingly to Bernoulli’s equation, it implies as we move away from
the CRAC, the pressure should increase in the horizontal direction. The pressure above the
floor is nearly uniform. The pressure drop across the floor tile determines the airflow rate
through it. The tiles present towards the right (away from the CRAC) experience a more
significant pressure drop and thus delivers the highest airflow rate[64]. This is shown in figure
2.10. The region in the raised floor near the CRAC has a negative pressure region. This can
be explained with the concept of venturi effect[38]. The presence of the perforated tiles on the
raised floor, near the CRAC, acts like a constriction. This speeds up the airflow through the
tiles causing a negative pressure region to be formed under the floor. This effect can only be
seen near the CRAC as the velocity exiting the CRAC is very high as compared to the velocity
of the airflow in the other regions of the raised floor.

2.4.5. The Effect of Raised Floor Height and Floor Tile Perforations
As seen in figure 2.11a, the non-uniformity in the airflow is reduced on increasing the raised
floor height. Above a certain raised floor height, the reduction is not significant due to the
complexity of the flow and lateral spreading near the CRAC[64].

For a fixed layout and raised floor height, the non-uniformity in flow diminishes as the open
area of the tile is reduced (see the paper on "Airflow and Cooling in a Data Center"[64]) as
shown in figure 2.11b. It looks like the restrictive tiles are a preferred way to achieve a uniform
airflow distribution. This is not the case as the flow resistance, of the flow, through the tile,
becomes comparable to that of the openings around cables, pipes, and leakages (0.3% of floor
area in this case). Thus the cold air would be wasted, as it would leak into the hot aisle
(containing the exhausted hot air from the servers) from the raised floor, and the cold air is
going to mix with it. This would then reduce the temperature of the hot air and cause the
CRAC to perform at a lower efficiency.

(a) The base case consisting of the CRAC (in pink) and 15 cabinets
(containing the servers) in both side of the Cold Aisle.

(b) The raised floor horizontal pressure distribution and ve-
locity vectors; pressure in . (c) The air flow rate through the perforated tiles.

Figure 2.10: The pressure distribution in the raised floor (sub-figure (b)), and tile flow rate (sub-figure (c)) for
the base case (sub-figure (a)). The negative tile flow rate for the first tile is due to the negative pressure in the
raised floor near the CRAC. The pressure in the raised floor increases in the direction away from the CRAC[64].
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The flow resistance experienced by the CRAC at the tiles is smaller as compared to its internal
flow resistances. Thus the CRAC supplies almost the same flow rate for different configuration
of layout and tile perforation[64]. Thus the tiles need to have a optimum amount of perforations,
and not so less that its flow resistance becomes equivalent to the resistance provided by the
leakage in the raised floor.

(a) The variation of the tile flow rate with the raised floor
height.

(b) The variation of the tile flow rate with the tile Perfora-
tions

Figure 2.11: The effect of the variation of raised floor height (sub-figure (a)) and the change of the floor tile
perforations (sub-figure (b)) on the tile flow rate through the floor tiles[64]. The figure shows that above a certain
raised floor height, the tile flow rate becomes nearly uniform. Floor tiles having less amount of perforations has
a consistent tile flow rate through it.

2.4.6. Partitions in the Raised Floor
The presence of an obstruction in the raised floor can be used to regulate the airflow distribution
through the floor tiles. In figure 2.12a, vertically inclined partitions are used to regulate the
velocity distribution in the raised flow. As the vertical partitions act like a converging nozzle,
to maintain the continuity of flow, the velocity should increase. But as some of the airflow
escapes through the tiles, the horizontal velocity remains almost uniformly. Thus the pressure
in the raised floor remains almost uniform.

(a) Inclined partition in the raised floor. (b) Perforated partition in the raised floor.

Figure 2.12: The presence of inclined solid partitions (sub-figure (a)) and perforated partitions (sub-figure(b)) in
the raised floor to regulate the airflow rate through the floor tiles[64]. The inclined partition acts as a converging
section, which speeds up the airflow inside the raised floor and thus makes the pressure in the raised floor more
or less uniform. The perforated partitions can also regulate the tileflow rate through the tiles and do not suffer
from the disadvantages of solid partitions.

A comparison of the tile flow rate of a raised floor having inclined partitions with the base
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case without partitions is shown in figure 2.13. It is seen that the flow is almost uniform, and
there is no negative tile flow rate in the raised floor having inclined partitions as compared
to the raised floor having no partition. However, the presence of an inclined partition can be
detrimental if there is a failure in one of the CRACs. The cold airflow from the neighboring
CRAC(s) cannot be supplied to the row of cabinets provided usually by the failed CRAC, as
the inclined partition does not contain perforations in it. This can be a catastrophic event as
the server(s) can overheat and can shutdown.

Figure 2.13: The tile flow rate without and with inclined solid partitions[64]. negative tile flow rate is seen in
(sub-figure (a)) due to venturi effect near the CRAC.

Figure 2.14: The tile flow rate without and with perforated partitions[64]. As usual, there is a negative tile flow
rate in the raised floor without a partition(s) (sub-figure(a)), which is rectified by using perforated partitions in
the raised floor (sub-figure(b)).

A better alternative would be to use vertical perforated plates, as shown in figure 2.12b. The
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failure of a CRAC wouldn’t hinder the flow from the other CRAC(s) to the row of cabinets,
which is normally supplied by the failed CRAC. The airflow distribution can then be controlled
by determining the position of the plates and the amount of perforation, as shown in figure
2.14. Taking the inspiration of using a perforated partition(s) in the raised floor to control
the air flow rate through the floor tiles, it forms the basis for the new cooling technique. This
technique is going to be used to cool the servers in the white space. This is going to be
explained further in Chapter 4.

2.5. Sources of Error
A potential source of errors using CFD to model a data center white space can arise due to
incorrect modeling of the flow leaving the perforated tiles, modeling of the server racks, and
deficiency of the turbulence model. It can also arise due to boundary conditions, unaccounted
leakage effects, neglecting buoyancy, and coarseness of the mesh[53]. It has been investigated
that a simplified representation of the server rack as a "black-box" model (where the flow inside
it is not resolved) as compared to a detailed model, does not cause a significant difference in the
CFD result (see [81]). Thus, Using a black-box model for the server racks does not contribute
significantly to the source of error.

2.6. Turbulence Model
The 𝑘 − 𝜖 turbulence model is a well-established model used in CFD modeling of Data
Centers[81]. A potential source of error that has been further studied is the occurrence of
cold and hot spots due to incorrect modeling of buoyancy. Buoyancy should be included in the
CFD models, and its importance is shown in the paper "Improved CFD modeling of a small
data center test cell"[39]. The inclusion of buoyancy in the CFD model is explained in Chapter
3.

2.7. Neural Network and Genetic Algorithm
Designing and optimizing the cooling requirement of both existing and newly designed data
centers is essential[72]. Usually, CFD models are used to determine the temperature and
velocity fields, but it is impractical for real-time thermal management as it is computationally
expensive and time-consuming. Thus compact models are used. They can be divided into
reduced-order models and statistically based data-driven models[57]. Data-driven predictive
algorithms or meta-models can be sub-categorized into response surface methodology (RSM),
artificial neural networks, and kriging models[56].

The Response Surface Method is based on mathematical and statistical procedures applied
to smooth, continuous functions to build empirical models. The latter methods depend on
stochastic patterns, which are better suited to capture the complex, nonlinear behavior of
thermal transport by turbulent convection in large rooms[72]. Artificial Neural Network (ANN)
is widely used in this category. The ANN can be trained with data from experiments or
computational models. For instance, ANN has been applied to thermally manage the HVAC
system of buildings[47, 75]. They are also used for thermal management of cabinet containing
servers in data centers[42, 70–72, 79]. For example, Song et al.[72] used a neural network to
predict the flow rate of floor grills and the temperature of servers in a data center. A neural
network has also been used to predict the server temperature from temperature sensors present
in the data center[58].

ANNs can be well integrated with optimization techniques like GA. Optimization of air dis-
tribution system operation and design[82], and absorption chiller design optimization[44] are a
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few examples of application in the HVAC field. GA has also been used in a variety of heat
transfer applications[72, 78].

Proper Orthogonal Decomposition (POD) is a data-driven statistical method that has been
extensively applied for prediction of temperature in data centers[50, 65, 67]. But studies have
shown that POD is accurate for interpolating predictions but has a poor extrapolation accuracy,
i.e., it is not able to predict beyond the input parameter space[49]. Moreover, predictions for a
new set of data from the input space requires calculating fresh POD coefficients, which increases
the complexity if the input parameter space is more than or equal to two dimensions[42]. Given
these considerations, ANN is preferred over POD for developing the predictive model.



3
Theory

3.1. The Governing Equations of Fluid Flow
The conservation of mass, momentum, and energy can be used to derive the governing equations
of fluid mechanics. By applying these equations over a point or integrating them over a region
of the fluid, they can be stated in the differential or integral form, respectively. The fluid
point is considered to be infinitesimally small such that it is not smaller than the molecules of
the fluid, thus maintaining the continuum principle. All fluid properties are considered as a
function of space and time.

The continuity (equation 3.1), navier-stokes (equation 3.2) and energy equation (equation 3.3)
respectively for an in-compressible fluid form the conservation of mass, momentum and energy
equations[68].

𝛿
𝛿𝑥 (𝜌𝑢 ) = 0, (3.1)

𝛿
𝛿𝑡 (𝜌𝑢 ) +

𝛿
𝛿𝑥 (𝜌𝑢 𝑢 ) = −

𝛿𝑃
𝛿𝑥 +

𝛿𝜏
𝛿𝑥 + 𝜌𝑔, (3.2)

𝛿
𝛿𝑡 (𝜌𝑐 𝑇) +

𝛿
𝛿𝑥 (𝜌𝑢 𝑐 𝑇) = −

𝛿
𝛿𝑥 (𝐾

𝛿𝑇
𝛿𝑥 ) + 𝑆 (3.3)

There are five governing equations in total and seven unknown variables, namely the velocities
in the three directions, pressure, density, temperature, and enthalpy. The constitutive equation
of state is considered for enthalpy and density in order to close the system of equations. They
are presented in equation 3.4.

𝜌 = 𝜌(𝑃, 𝑇), ℎ = 𝑐 𝑇 = ℎ(𝑃, 𝑇) (3.4)

For an ideal gas, the ideal gas law is used to calculate the density and the specific heat capacity
as a function of temperature which is shown in equation 3.5.

𝜌 = 𝑛𝑃
𝑅 𝑇 , 𝑑ℎ = 𝑐 𝑑𝑇, 𝑐 = 𝑐 (𝑃, 𝑇) (3.5)
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For flows in which gravity plays a role, the buoyancy source term is included. Buoyancy is due
to the variation of density with respect to temperature. The boussinesq approximation is used
to model the variation in buoyancy. The boussinesq approximation states that the variation of
the density is only important in the buoyancy term i.e. △𝜌𝑔, and can be neglected in the other
terms of the momentum equation. Thus using Boussinesq approximation, the in-compressible
continuity equation is ∇.𝑢 = 0 and the momentum equation reduced to:

𝜌 ( 𝛿𝛿𝑡 (𝑢 ) +
𝛿
𝛿𝑥 (𝑢 𝑢 )) = −

𝛿𝑃
𝛿𝑥 +

𝛿𝜏
𝛿𝑥 + △𝜌𝑔 (3.6)

In equation 3.6, the buoyancy term △𝜌𝑔 term can be rewritten as (𝜌 − 𝜌 )𝑔, where 𝜌 is the
reference density. This buoyancy term can be further rewritten as (𝜌−𝜌 )𝑔 = −𝜌 𝛽(𝑇−𝑇 )𝑔,
where 𝛽 is the coefficient of thermal expansion and 𝑇 is the reference temperature. For an
ideal gas, 𝛽 = . Thus the buoyancy term becomes:

(𝜌 − 𝜌 )𝑔 = −𝜌 (𝑇 − 𝑇 )𝑔/𝑇 (3.7)

This is valid when the temperature and density variation is small (△𝑇 < 15∘𝐶). Buoyancy is
included as a source term in the vertical direction in the conservation of momentum equation.

For the flow to be laminar, the Reynolds number has to be below some critical value. At
values above the critical Reynolds number, the flow transitions into turbulent flow, which is
characterized by chaotic motion and random fluctuations. However, we are mostly interested
in the ensemble-averaged properties. This is obtained from the averaged Continuity equation
(3.8), Reynolds-Averaged Navier-Stokes (RANS) equation (3.9) and averaged energy equation
(3.10), by decomposing the variables in the continuity, momentum and energy equation into a
fluctuating and an average quantity. After decomposition, the average is taken over the whole
equation. We get the following equations for the averaged quantities 𝑢, 𝑣, 𝑤, and 𝑇:

𝛿𝑢
𝛿𝑥 = 0, (3.8)

𝛿𝑢 𝑢
𝛿𝑥 = −1𝜌

𝛿𝑝
𝛿𝑥 + 𝛿

𝛿𝑥 [𝜈(
𝛿𝑢
𝛿𝑥 +

𝛿𝑢
𝛿𝑥 ) − 𝑢 𝑢 ] − 𝑔 𝛽(𝑇 − 𝑇 ), (3.9)

𝑢 𝛿𝑇
𝛿𝑥 = 𝛿

𝛿𝑥 (𝛼
𝛿𝑇
𝛿𝑥 − 𝑢 𝑇 ) (3.10)

In equation 3.9, −𝜌𝑢 𝑢 is the Reynold’s stress term and in equation 3.10, −𝑢 𝑇 is the tur-
bulent temperature flux which has to be modelled using closure models, and 𝛼 is the thermal
diffusivity.

The turbulence models based on RANS equations focus on the mean flow. The 𝑘 − 𝜖 is a
two-equation turbulence model that solves additional transport partial differential equations
by solving for the turbulent kinetic energy and the rate of dissipation of the turbulent kinetic
energy. The 𝑘−𝜖 [59] is used as a turbulence model in this thesis as it is a widely validated model
for industrial and environmental flows. However its performance is bad for flows involving
adverse pressure gradient, rotating flows, and curved boundary layers to name a few. The
𝑘 − 𝜖 model assumes the turbulent viscosity to be isotropic and the turbulence is locally
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isotropic (i.e. 𝑢 = 𝑣 = 𝑤 ). Thus the Reynolds stress is assumed to be proportional to
the mean velocity gradients as shown in equation 3.11:

− 𝜌𝑢 𝑢 = 𝜇 (𝛿𝑢𝛿𝑥 +
𝛿𝑢
𝛿𝑥 ) −

2
3𝜌𝑘𝛿 (3.11)

The turbulent viscosity 𝜇 is modelled using the turbulent kinetic energy (𝑘 ) and the dissipa-
tion (𝜖 ) as shown in equation 3.14:

𝛿
𝛿𝑡 (𝜌𝑘 ) +

𝛿
𝛿𝑥 (𝜌𝑢 𝑘 ) =

𝛿
𝛿𝑥 ((𝜇 +

𝜇
𝜎 )𝛿𝑘𝛿𝑥 ) + 𝐺 + 𝐺 − 𝜌𝜖 , (3.12)
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𝛿
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𝛿
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𝜇
𝜎 )

𝛿𝜖
𝛿𝑥 ) + 𝐶

𝜖
𝑘 (𝐺 + 𝐶 𝐺 ) − 𝐶 𝜌

𝜖
𝑘 , (3.13)

where 𝐺 is the production of turbulent kinetic energy by the mean velocity gradient in the
formula 𝐺 = 𝜌𝑢 𝑢 ,𝐺 is the turbulent kinetic energy generated by buoyancy, where 𝐺 =
𝛽𝑔 , 𝑃𝑟 = 0.85 , 𝛽 = − ( ) is the expansion coefficient. The turbulent viscosity can
be modelled as shown in the equation 3.14:

𝜇 = 𝜌𝐶 𝑘
𝜖 (3.14)

The constant parameters in the standard 𝑘 − 𝜖 model can be determined by data fitting from
a wide number of experiments[77]. They are presented as follows:

𝐶 = 0.09, 𝜎 = 1.00, 𝜎 = 1.30, 𝐶 = 1.44, 𝐶 = 1.92, 𝐶 = 0 (3.15)

Similarly a closure model can be assumed for the turbulent temperature flux −𝑢 𝑇 , shown in
the equation 3.16:

− 𝑢 𝑇 = 𝛼 ( 𝛿𝑇𝛿𝑥 ), (3.16)

where 𝛼 =

3.2. Near Wall Modelling
Close to a solid wall, the velocity reduces to zero due to the no-slip boundary condition. Near
the wall, viscous force dominates over the inertial force. This means the flow can no longer
be turbulent as the viscosity effect dominates. The region where the viscous force is going to
be equal to or greater than the inertial force is called the viscous sub-layer. In this region the
dimensionless velocity profile is related to the dimensionless wall distance as follows:

𝑢 = 𝑢
𝑢 = 𝑢 𝑦

𝜈 = 𝑦 , (3.17)

where 𝑢 = (𝜏 /𝜌) / is the wall friction velocity. The viscous sub-layer is only valid for 𝑦 < 5
and is very thin. Outside the viscous sub-layer, there is a region where both the inertia force
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and viscous force are equally important. This layer is called the log-law layer and is valid for
30 < 𝑦 < 300. The dimensionless velocity profile of this layer is related to the dimensionless
wall distance as follows:

𝑢 = 1
𝜅 𝑙𝑛(𝑦 ) + 𝐵, (3.18)

where 𝜅 = 0.4 and 𝐵 = 2.0 for turbulent flow having smooth wall at high Reynolds number[77].
In the 𝑘 − 𝜖 model, the 𝑦 should be above 30 to apply the log-law profile to model the
boundary layer.

3.3. Discretization of Governing Equations
CFD models are used to solve the governing equations of fluid mechanics as they rarely have
analytical solutions. Differential equations are approximated by converting them into algebraic
equations. This is done by using the discretization method like Finite Element Method (FEM),
Finite Difference Method (FDM), and Finite Volume Method (FVM). 6SigmaRoom uses the
Finite Volume Method. The computational domain is discretized into small discrete control
volumes, and using the conservation of mass, momentum, and energy over these volumes. The
control volume is meshed with hexahedral elements. In general, over each control volume, the
governing equations are integrated to obtain discretized equations at the node, which is present
at the center of the control volumes. Then the resulting system of algebraic equations is solved.
Generally, the values of all the flow variables and properties are stored at the node[77].

In the 6SigmaRoom Software (to be used for CFD simulation of data center white space), the
pressure-based finite volume solution uses a proprietary SIMPLE-like solution methodology to
solve the governing equations which are discretized onto a structured or unstructured cartesian
grid. To avoid typical solution difficulties associated with a stair-step representation from the
Cartesian meshing of arbitrarily shaped objects, the Cartesian grid is supplemented with a
treatment of surfaces that do not align with the grid using a proprietary cut-cell-like approach
with proprietary enhancements, such as cell merging, to avoid small polyhedral cells creating
numerical difficulties. The variable storage is staggered to take advantage of solution simplicity.
The pressure and the scalar quantities are calculated and stored at the cell centers while the
velocities are stored at the cell faces making the derivation of pressure much simpler, avoiding
the need for the special interpolation scheme required when all the variables are stored at the
cell centers, as in a collocated approach. For most data center applications, it is reasonable to
assume that the flow is incompressible. The iterative solution procedure continues until the
sum of the numerical errors for each variable is less than a specified fraction of the estimated
incoming mass, momentum, energy, etc as appropriate. The default termination criteria is 10
times the incoming mass, momentum, and energy as appropriate for the particular equation,
but the user can specify any chosen value as appropriate for their problem. If a time-dependent
simulation is being undertaken, the solution uses an implicit time marching scheme, known as
the Backward Euler Method, with the responsibility of the user to choose a sufficiently small
time step for the solution to be time-step independent. The default settings for the solution
approach for a structured Cartesian grid used in this research include spatial discretization -
1 order upwind, the Algebraic Multi-Grid method is used to solve the energy equation, the
conjugate residual linear solver with 𝐼𝐿𝑈 (incomplete LU) preconditioner is used to solve the
pressure.
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3.4. Uncertainities and Errors
There is always some errors and uncertainty involved with CFD modeling. Numerical errors are
due to identifiable insufficiency in the CFD models. It consists of Round-off Errors, Iterative
Convergence Errors and Discretisation Errors. Round-off error is caused due to the representa-
tion of the real number with a finite number of significant digits. It can be controlled. Iterative
Convergence error is caused due to stopping of the iterative method after certain number of
iterations. This error can be controlled by stating how close the numerical value should be to
the exact value. In an iterative procedures,in steady-state simulations, the scaled/normalized
value of the residual of an equation at an iteration is compared with a user-specified value.
If the residual is below the user-specified value, then the equation is said to be converged.
Discretization Error occurs due to converting the continuous differential equation into discrete
algebraic equations in the discrete domain. Discretization Error can further be classified into
Spatial Discretization Error (SPD) and Temporal Discretization Error (TDE). SPD can be
controlled by doing a Grid Independence Test and TDE can be controlled by examining the
temporal convergence.

Uncertainties are insufficiency in the CFD models due to a lack of knowledge. Uncertainty
can be due to input uncertainty, which is due to the difficulty in representing the physical
domain, boundary conditions, and properties of the fluid. The other type of uncertainty is due
to physical models which are representing the fluid flow phenomena using empirical models
like turbulence models.

3.5. Latin Hypercube Sampling Technique (LHS)
The Latin Hypercube Sampling (LHS) technique generates a random sample of values that are
present in the multidimensional space[74]. Each variable in the LHS constitutes a dimension
in the multi-dimensional space. LHS distributes the samples evenly over the sample space. It
can be used to generate better sample results, with a lower standard error, and in less number
of trials[10].

A latin square is defined as a square grid containing sample points, such that there is only one
sample present in each row and each column of the square grid. A hypercube is defined as a
cube with more than three dimensions. A latin hypercube is a generalized version of the latin
square in multidimensional space.

When sampling 𝑁 variables using LHS, the range of each variable is divided into 𝑀 equally
probable intervals. The value of 𝑀 is determined by the number of sample points to be
generated. The size of each interval in a dimension is equal to each other. The advantage of
using LHS is that with the increase in more number of dimensions, it does not require more
number of sample points. The other advantage is that while choosing a sample point from an
interval, it remembers which samples were picked before.

LHS has its advantage over random sampling technique. In a random sampling technique,
new sample points are generated without considering the previously generated sample points.
This can lead to duplication of the samples, which can be avoided in LHS. Also, in a random
sampling technique, it is not required to know the total number of sample points needed to be
generated. Whereas, the number of sample points needed to be generated in LHS is required
to be known beforehand. This also prevents duplication of the samples generated.

Thus, the LHS is preferred as a sampling method as it has an unbiased representation of the
samples being generated[10].
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3.6. The Neural Network
The idea of an Artificial Neural Network (ANN) is inspired from the biological neural network
that is constituting the human brain. Artificial neural network is suitable to predict the
thermal model of data centers as they can establish a non-linear relationship between the
input design variables and the thermal variables (temperature and flow profile)[48, 54]. An
ANN consists of a time-consuming training process (which depends on the computational
resources available, the training data, and the complexity of the problem). Once it is trained
well and it can predict new unseen data accurately, the neural network can be deployed for
real-time prediction of the thermal quantities in a data center. It can later assist evolutionary
algorithms like genetic algorithm for optimization of design variables. Existing ANN can be
updated using more training data and can also be used to train new models using the concept
of transfer learning[36].

The structure of an artificial neural network is shown in figure 3.1. It consists of an input layer,
a hidden layer(s), and an output layer. Each layer may consist of multiple neurons. These
neurons behave similarly as the neurons found in the human nervous system.

Figure 3.1: The topology of a simple Artificial Neural Network[5]. It consists of an input layer, one or more
hidden layers, and an output layer. Each layer has more than one neurons and a bias neuron. There is no bias
neuron associated with the output layer. The value of the bias is a constant real number and maybe different
for each layer.

A simple neuron is also called a Perceptron. Each neuron in a layer is associated with the
neurons and bias unit present in the preceding layer, through weights connecting them. This
is shown in figure 3.1. The bias unit is represented as 𝑏1 and 𝑏2. The bias unit is like an extra
neuron added to all the layers except the output layer, and generally has a value of +1. They
are not connected to any previous layers. A bias unit is like an intercept of a linear equation.
It is used to adjust the output of the neuron. This improves the performance of the neural
network.

The value of a neuron is dependent on a transfer function 𝑓. The input for the transfer function
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is dependent on the weighted sum of the value of the neurons in the preceding layer and the
bias. This is shown in equation 3.19, where 𝑦 is the value of the 𝑘 neuron present in the
𝑚 layer, 𝑥 is the value of the 𝑙 neuron in the (𝑚 − 1) layer, assuming there are 𝑛
neurons present in the (𝑚−1) layer. 𝑤 is the weight connecting the 𝑘 neuron in the 𝑚
layer to all the 𝑙 neuron in the (𝑚 − 1) layer. 𝑏 is the weight of the bias connecting
the 𝑘 neuron in the 𝑚 layer to the value of the bias unit in the (𝑚 − 1) layer

𝑦 = 𝑓(Σ 𝑤 𝑥 + 𝑏 ∗ (𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝐵𝑖𝑎𝑠 𝑈𝑛𝑖𝑡)) (3.19)

There can be various transfer functions[12] that can be used based on the type of the problem
being predicted i.e. regression or classification problem1. An example of a transfer function is
the hyperbolic tangent (sigmoid) function given in equation 3.20 and shown in figure 3.2. The
output of this function is between −1 and +1.

𝑡𝑎𝑛ℎ(𝑛) = 2
1 + 𝑒 − 1 (3.20)

Figure 3.2: The hyperbolic tangent activation function[12]. It is one of the transfer function used to bring
non-linearity in a neural network. The value of the tanh function (vertical axis) is between and .

The way these weights are calculated is though backpropogation[66] technique which employs
the gradient descent method to minimize a cost function in order to find the appropriate
values of these weights. One example of cost function is the Mean Square Error (MSE) given
by equation 3.21

In a neural network, there are certain parameters which the neural network cannot learn
by itself, i.e., by gradient descent. These parameters are called the hyperparameters. The
values of the hyper-parameters have to be specified before the network starts the training
process. The hyperparameters determine the structure of the neural network. The training
of the neural network model is affected by the hyperparameters, like the number of neurons,
number of hidden layers, the activation function(s), type of training algorithm, etc. One way
to find these hyperparameters is through trial and error, or through an automated algorithms

1A regression problem is when the output consists of continuous values, like for example predicting the price of
a house. A Classification problem is when the output consists of discrete values, like for example to predict if
a image contain a cat or a dog.
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like HyperOpt[24] or genetic algorithm. A Dense Neural Network (DNN) is a kind of neural
network where each neuron in a layer (except the input layer) is connected to all the neurons
in the previous layer (densely connected). A simplified representation of a DNN is shown in
figure 3.1.

A neural network learns to identify the underlying pattern from a given distribution of the
output data by updating its weights after seeing a part of the training data. In order to make
the neural network models learn efficiently and quickly, the values of hyper-parameters have
to be specified. The hyper-parameters influences the behavior of a neural network heavily, and
randomly setting the hyper-parameters may lead to less accurate model. Before diving into
the various hyper-parameters, a few other concepts have to be introduced.

Error Function - The error between the predicted result and the actual result is calculated using
an error function. In regression problems, Mean Squared Error (MSE) and Mean Absolute
Error (MAE) are generally used. In equation 3.21, it is seen in MSE that the square of the
error is taken, which makes the more significant error more pronounced, penalizing them more.
𝑦 is used to represent the output variable(s).

𝑀𝑆𝐸 = 1
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑁)Σ (𝑦 − 𝑦 ) , (3.21)

𝑀𝐴𝐸 = 1
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑁)Σ |𝑦 − 𝑦 | (3.22)

Metrics - It is a function that is used to judge the performance of the model. Usually, MSE or
MAE is not enough to judge the performance. Thus the so-called R-Squared (𝑅 ) value is used
to judge the performance of the neural network in regression problems. The 𝑅 is calculated as
shown in equation 3.23. The value of 𝑅 can range from −∞ to 1. A 𝑅 of 1 indicates that the
prediction model is performing accurately and is able to predict all the ground truth values.
−∞ indicates the worst possible performance. It is preferred to have the 𝑅 value close to 1.

𝑅 = 1 −
(𝑦 − 𝑦 )
(𝑦 − 𝑦 ) , (3.23)

where 𝑦 is the actual value of a output in the set of outputs, 𝑦 is the predicted
value corresponding to the actual value of the output, and 𝑦 is the average of all the actual
value of the outputs.

A dataset, is split into a training dataset and a testing dataset. The training dataset consist
of data on which the neural network trains, i.e., it adjusts the weights of each neuron to match
the ground truth values from the training dataset. The weights of each neuron are adjusted
based on the gradient descent of the cost function (Error function). The neural network then
checks its performance on the testing dataset. A testing dataset consists of data that the neural
network has never seen before. Usually, the train-test split is set in the ratio 80%−20% (i.e.,
80% of the original dataset is used for training, and 20% is used for testing) for a limited size
of the dataset, and 90% − 10% for large dataset.

The goal of the neural network is to generalize well, i.e., the neural network model should be
able to predict with high accuracy on the unseen data points. During training a model, most
commonly encountered problems are overfitting and underfitting of data, which is also known
as the bias-variance problem.
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Over-fitting is due to the neural network learning too much from the training dataset and
being unable to predict the test dataset sensibly. This occurs due to high variance, i.e., the
NN model becomes sensitive to small fluctuations in the training dataset. The model captures
all the trends in the training dataset and not the dominant trend.

Under-fitting is due to the neural network unable to learn from the training dataset, resulting in
unreliable predictions for the test dataset. Underfitting occurs due to high bias in the training
data causing it to miss relevant relation between the input features and the output variables.

ANN model can be checked if it has generalized well if the metrics for the training dataset
and testing dataset are almost equal to each other, and there is little difference between them.
This is shown in the figure 3.3[14].

Figure 3.3: The predictions of the neural network plotted on the Y-axis vs. its input features on the X-axis.
The red line is used to fit the data points. The graph on the left shows that the model is overfitting (high
variance), which means the model is susceptible to small changes in the training dataset. The graph in the
middle shows that the model is underfitting (high bias), suggesting that the model is not able to learn from the
training dataset. The graph on the right has a good balance (low bias, and low variance), i.e., it can sensibly
predict from the training dataset (Generalized)[14].

Qualitatively, a neural network is said to have a high bias if it has low training accuracy and
low testing accuracy. A neural network is said to have high variance if it has a high training
accuracy and a low testing accuracy.

The hyper-parameters used in the neural network are described as follows.

1. Train-Test Split - This is used to split the dataset into training and testing data set.
Usually, the 80% − 20% ratio of the split is followed.

2. Batch Size - It is the number of samples used for training the neural network per gradient
update. If the batch size is 1, then the training time increases, and the accuracy of the
model is affected, i.e., it might overfit or underfit the data. If the batch size is equal to
the size of the training dataset, then the model starts learning the pattern in the training
data and is going to lead to overfitting. Thus a mini-batch size of a power of 2 (because
some hardware like the Graphics Processor Unit (GPU) achieves better run time when
the batch size is of a power of 2) is chosen, which is less than the training dataset size.
Generally, a batch size of 32 or 64 is chosen.

3. Learning Rate - It defines how quickly a neural network can learn from the training
dataset. The learning rate determines the step size required while moving towards re-
ducing the cost (error) function during gradient descent. If the learning rate is too low
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then the training time is increased, and if it is too large, then the NN model misses the
global minimum of the cost function. This is shown in figure 3.4.

Figure 3.4: The graph shows the influence of the learning rate while reaching the global minima of a convex
shaped cost (error) function. If the learning rate is big (indicated by the red arrow), the NN model misses the
minima of the cost function (shown on the left graph) and if the learning rate is too low, then longer time is
required to reach the minima [27].

4. Epochs - A epoch is the length of the training dataset. The number of epochs is how
many numbers of times the whole training dataset is shown to the neural network while
training. Usually, the models are trained to a certain epoch, after which the model starts
to overfit.

5. Number of Hidden Layers - The number of hidden layers has to be chosen such that the
model does not overfit or underfit.

6. Neurons in each Hidden Layer - This determines the number of neurons required in each
of the hidden layer(s), such that the neural network model trains without any overfitting
or underfitting.

7. Dropout Layer - This is a regularization method for neural networks proposed by Sri-
vastava et al.[73] to prevent overfitting. In this technique, neurons in the layer where
dropout is applied are randomly ignored during the forward pass, and their weights are
not updated in the backward pass. This results in a network being less reliant on specific
weights of neurons, which leads to the network being well generalized. The value of a
dropout ranges from 0 to 1. Values close to zero indicates that fewer neurons in a layer
have to be randomly dropped out, and 1 indicates that all the neurons of the layer have
to be dropped out. Dropout is applied only to the pre-output layers.

8. Activation Function - An activation function is a mathematical equation which deter-
mines the output of a neuron. Each neuron is associated with an activation function. An
activation function introduces non-linearity in the neural network model. It determines if
the neuron’s input is important to the prediction or not. Traditionally, a Tanh or Sigmoid
activation function was used to train the neural network. But these two activation func-
tions suffer from the vanishing gradient problem[37], where during the back-propagation
and gradient descent, the gradient of the error function w.r.t the current weight becomes
increasing small such that the weights of the neuron do not change anymore and the
model stops learning from the training dataset. On the other hand, activation function
whose derivatives are too large would lead to an Exploding Gradient problem. Recently,
the Rectified Linear Unit (ReLU) activation function or a variant of ReLU was used for
the neurons in the input layer and the hidden layers[32] and a Linear activation function
is used for the neurons in the output layer. ReLU suffers less from the vanishing gradient
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problem[33].

9. Optimizer - Optimizers are algorithms required to change the weights and learning rate
of the neural network to reach the global minimum of the error function. The weights are
updated using the optimizers, and the error function guides the optimizer in reaching the
global minimum of the error function. Optimizers are generally variants of the gradient
descent algorithm. Various optimizers are available to train a neural network[29]. The
three most commonly used optimizers in a neural network are Adagrad, RMSprop, and
Adam. ADAM[1] is a popular gradient descent optimizer. It is generally used because it
is robust, computationally efficient, requires less computational memory than the other
optimizers, and can effectively solve practical problems. Another reason why ADAM is
used as an optimizer is because of its dynamic momentum calculation process[13]. This
speeds up the training process, and the neural network arrives at the global minima
quickly.

3.7. Genetic Algorithm
A Genetic Algorithm is a kind of evolutionary algorithm, which is a heuristic search technique
inspired by Charles Darwin’s theory of natural selection and evolution. Like the process of
natural selection, it selects the fittest individuals for reproduction, to produce offspring for
the next generation. John Holland introduced this concept in 1960 based on the concept of
Darwin’s theory of evolution, and later his student David E. Goldberg[22] further extended it
in 1989[21].

The natural selection process starts with the selection of the fittest individual from a popu-
lation. The offspring inherits the characteristics of the parents and is then added to the next
generation. The fitness of the offspring depends on its parents (individuals from the previous
generation). Offspring of the current generations with better fitness values are selected to
produce offspring for the next generation. This process continues until we get the required
fitness value or reach a particular generation.

A Genetic Algorithm consists of five phases.

Phase one is the Initial Population. This phase consists of a set of individuals of fixed size, and
fixed population size. An Individual consists of a set of parameters called Genes. The genes
are joined together to form a Chromosome, which can equivalently be called as an individual.
The objective function assesses the genes of the individual and then assigns a fitness value to
the individual. For example, an objective function can be to maximize or minimize the value
of an individual. This is shown in figure 3.5.

Phase two is the Fitness Function. It is an objective function (for example, a maximization or
a minimization function) that determines how to fit an individual is. A fitness score is assigned
to each individual. The value of the fitness score determines if the individual is going to be
selected for reproducing offsprings for the next generation.

Phase three is the Selection. It is used to select individuals for reproduction and pass on their
genes to the offsprings. The offsprings, along with the individuals in the previous generation
whose fitness is above a specific threshold value, form the population of the next generation.
The selection is based on the fitness scores of the individuals. Individuals with higher fitness
have a higher probability of getting selected.
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Figure 3.5: The representation of gene, chromosome and population, which are used to implement a genetic
algorithm. A gene is the basic element of a chromosome. A collection of genes (more than two) forms a
chromosome (Individual). A collection of chromosomes (more than one) is called population. In this figure a
gene consists of binary values[8].

(a) Randomly placing the crossover point in the
parent individuals.

(b) Gene exchange between parents until the
crossover point.

(c) The offspring produced after crossover oper-
ation.

Figure 3.6: The crossover phase to produce two offspring[8]. The crossover point is placed randomly. The gene
exchange happens between the parent chromosome till the crossover point. This produces offspring, with genes
inherited from its parents chromosomes.

Phase four is the Crossover. It is the most important phase. A crossover point is placed
randomly within the genes present in the two parents to be mated, as shown in figure 3.6a.
The genes are exchanged between the parents until the crossover point is reached, as shown in
figure 3.6b. Thus the new set of offspring is produced as shown in figure 3.6c, which are then
added to the population.
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Figure 3.7: Mutation of the genes of the offspring[8]. In this case, it is done by flipping a bit. Mutation is done
to maintain diversity in the population and not create a bias

Phase five is the Mutation. In certain offspring, some of their genes are subjected to a random
probabilistic change. In the diagram shown in figure 3.7, it means that a random bit in the
string of bits is chosen and flipped. The mutation operation is done to maintain diversity in
the population and prevent early convergence.

Figure 3.8: The flow chart for the implementation of a genetic algorithm. It consist of five phases namely initial
population, fitness, selection, crossover, and mutation[63]. Algorithm is terminated on reaching a certain fitness
value or certain generation.
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Finally, the algorithm ends if the required fitness has been reached by an individual, or no
change in the fitness value is being observed for each successive generation, or a particular
generation number has been reached. A flow chart of the whole process is shown in figure 3.8.

A simple genetic algorithm can optimize a single objective function. If more than two objective
functions have to be optimized simultaneously, then a multi-objective evolutionary algorithm
has to be used.

Multi-objective Evolutionary Algorithm (MoEA), has to deal with multiple objective functions
that are conflicting with each other. Let’s take an example where there are two objective
functions, and we want to minimize both of them simultaneously. During the optimization
process, it is observed that if the value of one objective function is increasing, then the value
of the other is decreasing. This does not lead to a global optimum solution (in this case the
global minima), as both the objective function cannot be minimized simultaneously due to the
trade-off between the objective functions. This gives us a set of possible solutions that might
be considered as the set of best possible solutions. In MoEA, a set of solutions that satisfies
all the constrain functions and variables, form the Feasible Region (𝑅). Before diving into how
the algorithm is going to be used, there are a few other concepts to be defined.

1. Domination - A solution "𝑎" is said to dominate solution "𝑏" if "𝑎" is not worse than 𝑏
for all the objective functions and "𝑎" is strictly better than "𝑏" in one of its objective
function.

2. Non-Dominated Set - From the feasible region "𝑅", a non-dominated set of solutions
"𝑅 " refer to the subset of 𝑅, such that any member in this subset 𝑅 does not dominate
over each other. For example, if we consider two solutions "ℎ" and "𝑚" from the region
"𝑅 ", each of them having two objective functions. Both the objective functions have to
be minimized simultaneously. Solutions "ℎ" and "𝑚" can form a non-dominated set, if
one of the objective function of "ℎ" is greater than its counterpart in solution "𝑚" and
the other objective function of "ℎ" is less than its corresponding counterpart in solution
"𝑚".

3. Pareto-optimal Set - The non-dominated set (𝑅 ) of the feasible space (𝑅) forms the
Pareto Optimal Set. An example is shown in figure 3.9. In this figure, the objective
functions are the deflection and weight of the beam. Both the objective functions have
to be minimized simultaneously. The variables deciding the values of these two objective
functions are the length and diameter of the beam. It is observed in this figure that a
global solution, i.e., a global minimum, cannot be achieved. The global minimum can
be achieved by minimizing the two objective functions simultaneously. As seen in figure
3.9, if the deflection is minimized, then the weight of the beam is maximized. A trade-off
has to be made between the deflection and the weight of the beam, which leads to a set
of non-dominated solutions forming the Pareto front.
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Figure 3.9: The graph shows the Pareto Optimal Front for the deflection of the beam on the vertical axis and the
weight of the beam on the horizontal axis. Both the deflection and the weight of the beam have to be minimized.
A trade-off has to be made between the deflection and weight of the bean, which results in a Non-Dominated
Set. This forms the Pareto Front. A global solution cannot be achieved. Five possible solutions (A/B/C/D/E)
of the Pareto Front is shown which is obtained by changing the length and diameter of the beam[30].

Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is an evolutionary algorithm devel-
oped by Deb et al.[46] to solve a multi-objective optimization problem. NSGA-II follows the
elitist principle, i.e., the best of the population are provided the opportunity to carry forward
to the next generation. It also preserves the diversity of the population by calculating the
crowding distance. Crowding distance is a mechanism to rank the members in a Pareto front.
In the procedure for calculating the crowding distance, members of the Pareto front, present in
a less dense region are preferred over members present in a more dense region. The following
procedure is followed by NSGA-II to find the best Pareto front.

1. First, it performs the non-dominated sorting of the combination of parent and offspring
population. It then categorizes them into fronts, ranking them in descending levels of
non-domination. Offsprings are produced by crossover and mutations operations.

2. Secondly, it fills in the new population from the Pareto fronts based on their ranks.

3. If one of the Pareto fronts is partially taken, it selects the members of that front using
crowding distance, i.e., populations present in the less dense regions of the front are
selected.

4. It again creates the offspring population from this new population via tournament selec-
tion, crossover, and mutation. Tournament selection refers to generating a new popula-
tion by fronts ranking. If the front ranks are equal, then selection of the population is
done by applying the crowding distance. These steps are looped till a particular genera-
tion has been reached or a certain termination criterion has been reached. The process
is shown in the figure 3.10[28].
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Figure 3.10: The Schematics of an NSGA-II procedure. It first creates the Parent Population ( ) and the
Offspring Population ( ). Then using a non-dominated sorting technique, it selects the various fronts ( , , )
in descending order of their ranks. The population of the partially selected front ( ) is selected using the
crowding distance. Thus a new population ( ) is created which then produces the Offspring by Crossover
and Mutation[46].
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Methodology

4.1. Outline of the Steps taken to Obtain the Optimum Design Pa-
rameters of Data Center White Space

The final goal of this research is to find the optimum set of design parameters of the data
center white space required to maintain the servers below a certain temperature. To achieve
this, first using a random sampling technique, i.e., Latin Hypercube Sampling (LHS) technique,
a set of random samples are generated for the design variables, which is explained further in
section 4.3. Then using the randomly generated values of the design variables, numerous CFD
models are designed and simulated in the CFD software 6SigmaRoom to obtain the required
results as explained in section 4.4. Using the results (tile flow rate of the floor tiles and
maximum cabinet inlet temperature of the cabinets) obtained from the CFD simulations, and
the randomly generated values of the design parameters from the LHS technique, an Artificial
Neural Network (ANN) is trained on these values to predict the tile flow rate and the cabinet
temperature. ANN is programmed in Python using the Keras[25] and Scikit[34] Learn library.
This is explained in section 4.5. Finally, using the GA and the ANN, the optimum value of
the design parameters are found, which are required to maintain the servers inlet temperature
below the maximum limit of the Recommended ASHRAE Temperature, i.e., below 27∘𝐶. The
GA is also programmed in Python using the DEAP[18] library. This is shown in section 4.6.
The results of the Genetic Algorithm are verified by running CFD simulations using the values
of the optimized design parameter of the white space. Then the best result among all of the
optimized cases is chosen. In this study, the genetic algorithm was used for two purposes.
One, it was used to find the parameters required to obtain the hyperparameters of the neural
networks and, two a variant of GA (NSGA-II) was used to find the optimized design parameters
of the data center white space. The flow diagram of the methodology is shown in figure 4.1

33
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Figure 4.1: The flow-diagram of the methodology followed in this thesis.

4.2. The Data Center White Space Model Setup
A white space of a data center consist of the area where the IT equipments are placed. A
white space mainly houses the servers, network gears, cabinets, air-conditioning units, Power
Distribution Units (PDUs), cable trays, and cooling ducts. In this study, a simplified model
of a raised floor data center white space is created containing only the cabinets, the servers,
the floor tiles, the air-conditioning units (CRAHs), and the perforated plates. This is done to
simplify the modeling of the data center white space. There is no containment strategy used
in the study.



4.2. The Data Center White Space Model Setup 35

(a) An isometric view of the white space. (b) The height (h) of the raised floor and positions of the
perforated plates (P1 to P4) in the raised floor.

(c) The positions of the CRAHs, floor tiles and cabinets
(containing servers) in the white space.

(d) The perforated plates placed below the raised floor.

Figure 4.2: A simplified representation of the data center white space, housing the IT equipments. The di-
mensions of the white space is shown in (sub-figure (a)); the height of the raised floor in (sub-figure (b)); the
position of the four CRAHs, 90 floor tiles and 90 cabinets in (sub-figure (c)) and positions of the four plates
(P1, P2, P3, and P4) in (sub-figure (b)) and (sub-figure (d)).

In figure 4.2a, an isometric view of the white space is shown. X-Z is the horizontal plane,
and the Y-axis is in the vertical direction. The dimensions (𝐿, 𝑊, 𝐻) of the white space are
shown in the table 4.2. In figure 4.2c, giving a top view of the white space, it is seen that there
are four CRAHs, rows of floor tiles to provide cooling air to the inlet of the servers and rows
of cabinets containing the servers present in the white space. In total, there are 90 cabinets
and 90 tiles present ,i.e., one floor tile for each cabinet. In figure 4.2d and figure 4.2b, the
perforated rectangular plates (𝑃1, 𝑃2, 𝑃3, and 𝑃4) are positioned in the underfloor. Each
plate has numerous circular perforations, each with a diameter of 0.003𝑚. The amount of
perforation of each perforated plate is different. The position of each perforated plate is also
different in the Z-direction. In figure 4.3, the dimensions of a plate is shown. The length (𝑃 )
of the plate spans across the room in the X-direction. The height (𝑃 ) of the perforated plate
is determined by the height (ℎ) of the raised floor.
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Figure 4.3: The dimensions of the rectangular perforated plate which is placed below the raised floor.

Length
L (m)

Width
W (m)

Height
H (m)

15.6 13.8 5.8

Table 4.1: The dimensions of a simplified data center white space.

In figure 4.4, it is shown how the rows of cabinets in the white space are placed in Hot Aisle
(highlighted in red) / Cold Aisle (highlighted in blue) arrangement to reduce the mixing of the
hot air with the cold air.

(a) The isometric view of the Hot Aisle / Cold Aisle ar-
rangement.

(b) The top view of Hot Aisle / Cold Aisle arrangement.

Figure 4.4: The Hot Aisle (blue) / Cold Aisle (red) arrangement of the cabinets in the data center white space.
The cold air emerges from the raised floor through the tiles (present in the Cold Aisle) into the inlet of the
servers. The Hot Aisle collects all the hot air from the outlets of the servers and directs it to the CRAHs.
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In figure 4.5, we see the standard dimensions of the cabinet, CRAH, server, and floor tile present
in the data center white space. These dimensions are determined mainly by the standard
components used in the white space. In the white space we study, each cabinet consists of 50
slots of height 𝑈 (1𝑈 = 0.044𝑚). The values of these dimensions are presented in the table
4.2. Each floor tile has squared shaped perforations, each of the holes of size 0.035𝑚.

(a) The dimensions of a cabinet. (b) The dimensions of a CRAH.

(c) The dimensions of a server. (d) The dimensions of a perforated floor tile.

Figure 4.5: The dimensions of the various components of the white space. The value of these dimensions is
shown in the table 4.2
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Cabinet Dimensions Server Dimensions
Width
𝐶 (m)

Depth
𝐶 (m)

Height
𝐶 (m)

Width
𝑆 (m)

Depth
𝑆 (m)

Height
𝑆 (m)

0.6 1.2 2.4 0.45 0.6
2U

(1U = 0.044)
CRAH Dimension Floor Tile Dimension

Width
𝐶𝑅 (m)

Depth
𝐶𝑅 (m)

Height
𝐶𝑅 (m)

Width
𝑇 (m)

Depth
𝑇 (m)

Height
𝑇 (m)

2.55 1.04 2.4 0.6 0.6 0.041

Table 4.2: The dimensions of the cabinet, server, CRAH and floor tile. These dimensions are constant in all
the CFD Simulations.

To create a database of CFD simulations, the combination of the 11 parameters (positions of
the 4 perforated plates in the raised floor, amount of perforation in the 4 perforated plates in
the raised floor, the height of the raised floor, amount of perforation in the floor tile, and the
distance of the CRAH from the first cabinet) presented in the table 4.3, are randomly varied
between its lower and upper limit (close bounds). The bounds for these parameters except the
position of the perforated plates in the raised floor and its amount of perforation is decided
based on industry-standard followed in designing a data center white space1. This is further
explained in section 4.3.

Parameters Lower Bound Upper Bound

Position of Perforated Plates
inside the Raised Floor (Z-direction)

(m)

Plate 1 (P1) 3.6 5.4
Plate 2 (P2) 5.4 7.2
Plate 3 (P3) 7.2 9
Plate 4 (P4) 9 10.8

Height of the Raised Floor (Y- direction)
h (m) 0.8 1

CRAH Distance to the 1 Cabinet
of the Row

D (m)
1.2 2.4

Amount of Plate Perforation
(%)

Plate 1 (P1) 20 100
Plate 2 (P2) 20 100
Plate 3 (P3) 20 100
Plate 4 (P4) 20 100

Floor Tile Perforation
(%) 50 100

Table 4.3: The range of the changeable parameters of the white space. A random combination of these parame-
ters would determine the design of the white space, for the CFD simulations. All distances are considered from
the origin except the CRAH distance which is considered between the CRAH and the first cabinet of the row.

1The bounds for the design parameters were decided based on a discussion with the Lead Mechanical Engineer
for Data Center design at RHDHV
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4.3. Latin Hypercube Sampling Technique (LHS)
The Latin Hypercube Sampling technique is used to generate the 600 input samples of the 11
design parameters, as shown in table 4.3. These input samples will determine the design of
the white space in the CFD simulations. Also, these input samples will constitute the input
features of the neural network. The code for LHS is written in Python using the pyDOE[31]

library. It is shown in Appendix A.

4.4. Computational Fluid Dynamics (CFD) Simulations of theWhite
Space

4.4.1. Validation of CFD Software
The software to be used for CFD simulations is called 6SigmaRoom (Version R13). Future
Facilities[20] has developed this software, which facilitates the creation of 3-Dimensional (3D)
data center models and simulate the cooling process in it.

Athavale et al.[42] used the 6SigmaRoom software to experimentally validate a white space CFD
model for a raised floor data center having active tiles. Active tiles are perforated floor tiles
with integrated local fans, which increases the volume flow rate locally. They found that the
average overall difference between the numerical prediction and experimental measurements is
less than 4% for the tile flow rate and 1.7∘𝐶 for the server inlet temperature. Alissa et al.[40]

used 6SigmaRoom to model the important physical parameters like, for example, raised floor
jack hydraulic resistance, the exact location of supply vents, rack detail structure, momentum
transfer through the perforated tiles, etc, which affects the accuracy of the simulation. The
CFD modeling results were compared with the measurements of the tile flow rate from the
floor tiles for different experimental conditions. The numerical and measured tile flow results
were in good agreement with each other and had an overall average error of ∼ 3%.

Apart from the above two validation studies done by the respective authors, two validation
studies have been done in this thesis to validate the software. The following two studies have
been chosen for validation study as they involved heat transfer in the domain in turbulent con-
dition. Following the paper on Ventilation of a Room with a Vertical Temperature Gradient[83],
a CFD model of forced convection in a cubical room of size 1𝑚∗1𝑚∗1𝑚 with a single inlet and
a single outlet is analyzed and verified with measurements of the velocities taken in the room
along the lines X1 and X2 (see figure 4.6). The lines X1 and X2 are at a different distance
from the YZ-Plane. The results were also compared with simulations done in Ansys Fluent 16
by the author (see figure 4.6).

The fluid in the room is air, and the airflow into the room is turbulent. The temperature of the
walls and ceiling is kept at 293𝐾. The floor is kept at a temperature of 308𝐾. The velocity of
the air flowing through the inlet vent is 0.5𝑚/𝑠. The measurement of velocity is taken along the
line X1 and X2. The model is simulated in a steady-state condition using the Standard 𝑘 − 𝜖
model. Buoyancy is included in the model by using Boussinesq approximation. From figure
4.7, it is seen that the numerical results from 6SigmaRoom are in near agreement with the
measurements done in the room and also with the results from Ansys Fluent 16. The difference
in the numerical results from the two software is due to the different turbulence models used in
the software. The RNG 𝑘−𝜖 model being used in Fluent by the author to model the turbulent
flow, and the Standard 𝑘 − 𝜖 model in used in 6SigmaRoom as this is the default model used
by most users in the 6SigmaRoom software. Also, a difference in the solver setting in both the
software accounts for the difference in the numerical result. In 6SigmaRoom, the default solver
setting is used, which cannot be changed by standard users of the software without special
privileges. This is going to be explained in section 4.4.4. The number of grid cells is nearly
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the same in both the numerical models.

Figure 4.6: The dimensions of the cubical room ( ∗ ∗ ). The inlet vent provides an airflow of . /
and the outlet vent extracts an airflow of . / [83].The velocities were measured along line X1 (x = . , y
= , z = . ) and X2 (x = . , y = , z = . ) and compared with the numerical results from
Fluent and 6SigmaRoom (see figure 4.7).

(a) X-velocity along the line X1 at location x = . , y =
, z = .

(b) X-velocity along line X2 at location x = . , y =
, z = .

Figure 4.7: The comparison of simulated and measured X-velocity along the line X1 (sub-figure (a)) and the line
X2 (sub-figure (b)). The numerical result from 6SigmaRoom software matches quite well with the result from
Ansys Fluent and the measured values. The difference in the numerical results are due to different turbulence
model used in respective software. The RNG turbulence model is used in Fluent by the author[83], and
Standard turbulence model in 6SigmaRoom. Also a difference in the solver settings in both the software
accounts for the difference in the numerical result. Given, the limited availability of measurement points in the
high velocity gradient zone, it looks like the velocity plot from the 6SigmaRoom gives a better match with the
measurements.

The other validation study done in this thesis is on the Turbulent Natural Convection in a
Thin Enclosed Channel[43], as shown in figure 4.8. The dimensions of this cavity are 𝐻 =
2.18𝑚,𝑊 = 0.076𝑚,𝐷 = 0.52𝑚 and the temperature of the cold (left) wall is 15.1∘𝐶 and the
hot (right) wall is 34.7∘𝐶. The other walls and ceiling are adiabatic. The property variation of
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the fluid with temperature is comparatively small. The flow in the core of the cavity is fully
turbulent based on the Rayleigh number (𝑅𝑎 = 𝐺𝑟𝑃𝑟 = 0.86 ∗ 10 ), which is calculated based
on the width of the cavity and greater than 10 for the flow to be in the turbulent regime[45].

The model is simulated in 6SigmaRoom using the steady-state condition and the standard 𝑘−𝜖
model. The ideal gas law is used to calculate the density. The temperature and velocity profile
is plotted at mid-height (𝑦 = 1.09𝑚) across the width of the cavity, which is shown in figure
4.9. The temperature and velocity field are almost 2D and do not vary in the z-direction for
95% of the core of the cavity. The simulated results for the velocity and temperature match
the experimental values, as shown in figure 4.9.

Figure 4.8: The dimensions ( . , . , . ) of the thin enclosed tall cavity. In the test
case, the front and back wall are adiabatic. The cold wall is at . ∘ and the hot wall is at . ∘ . The flow
in the core of the cavity is fully turbulent ( ). Property variation of the fluid with temperature is
comparatively small.
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(a) The velocity profile across the width ( ) of the cavity
at a height . .

(b) The temperature profile across the width ( ) of the
cavity at a height . .

Figure 4.9: The comparison of velocity profile (sub-figure (a)) and temperature profile (sub-figure (b)) along
the width ( ) of the cavity and at a height ( . ) from the ground. The temperature of the walls is
. ∘ and . ∘ . The Rayleigh number is . ∗ , suggesting a fully turbulent region in the core

of the cavity. The temperature and the velocity fields do not vary in the z-direction respectively and can be
considered as two dimensional.

Thus, it can be concluded that the 6SigmaRoom software is a well-validated software that can
be used for the CFD simulation of the data center white space.

4.4.2. Geometry of the CFD Domain and Meshing
The main components in the simplified data center white space are: the four CRAHs, 90
cabinets, each cabinet containing 25 Servers, 90 perforated floor tiles, and 4 perforated plates
placed inside the raised floor. This is shown in figure 4.2a. The geometries are created using the
standard objects (IT equipment) available in the software, which populate the domain for the
CFD simulation. The dimensions of the white space are (𝑊 = 13.8𝑚, 𝐿 = 13.8𝑚,𝐻 = 5.8𝑚).
The dimensions of the various IT components are shown in the table 4.2. It is assumed there
are no cable trays (containing cables), Power Distribution Units (PDUs), and cooling pipes
present in the white space to simplify the design. The flow in the servers and CRAHs is not
resolved, and they are modeled as "black boxes". The server inlet temperature is calculated
by resolving the energy equation 3.3. From equation 4.1, the temperature difference (△𝑇) in
the server can be found, and thus the outlet temperature of the server can be calculated by
adding the temperature difference to the server inlet temperature2.

△𝑇 = 𝑄
�̇�𝑐 , (4.1)

where 𝑄 is the heat dissipated by the server, �̇� is the mass flow rate through the server, which
is determined by the speed at which the fan in the server is running at, and 𝑐 is the specific
heat capacity at constant pressure. The inlet velocity of the server is calculated by solving the
RANS equation 3.9. The outlet velocity of the server is calculated from the pressure drop in
the server and the inlet velocity. The pressure drop depends on the mass flow rate provided
by the fan present in the server.

Modelling of the CRAH is sophisticated as it involves specifying the settings of some internal
parameters like mass flow rate of the coolant passing through the CRAH, the temperature of

2The inlet temperature of the server is calculated from the energy equation 3.10.
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the coolant, maximum sensible cooling curve, airflow control strategy, etc. Most of the options
are kept at the default settings.

There is leakage of hot air from the hot aisle through the gaps present in the cabinets. This
is assumed to be 5% of the blanked frontal area of the cabinets (see figure 4.10). This means
some amount of hot air from the hot aisle would leak into the cold aisle and vice versa. The
unrecoverable pressure drop for floor tiles is calculated using the empirical relationships from
the Handbook of Hydraulic Resistance[52]. The floor tile is modeled as a thin surface resistance,
aligned with the top surface of the tile. According to Future Facilities, "To account for the
fact that the tile has many small apertures rather than being one open hole, in addition to
the unrecoverable pressure drop, the correct momentum (due to higher velocity) is convected
into the cells above the tile. This results in a recoverable pressure drop above the tile that
disappears as the jets coalesce, and the jet slows down, or as air is entrained from around
the tile by the low pressure. This approach is sometimes referred to as a porous jump model.
Another consideration is the impact of the tile on the turbulence in the air stream. Currently,
the turbulence in the air is simply convected through the perforated tile, and no additional
turbulence is added. To date, there is no research available indicating how turbulence should
be addressed". Appropriate boundary conditions are applied ,which is going to be explained
further in sub-section 4.4.3.

A structured mesh is generated using the hexahedral element. The meshing is shown in figure
4.12. The computational domain is first divided into rectangular blocks, which are then divided
into small hexahedral cells. The aspect ratio of the cells is kept close to one.

Figure 4.10: The leakage of hot air from the hot aisle to the cold aisle through the side of the cabinets, as seen
in this temperature plot taken at the inlet surface of the cabinets in the YZ plane. Due to gaps in the cabinets,
the hot air leaks into the cold aisle and mixes with the cold air. This increases the temperature of the supplied
cold air and reduces the effectiveness of the supplied cold air provided to the servers. In reality, gaps of % of
the blanked frontal area of the cabinets are present in the cabinet.

A grid independence study is conducted to ensure that the CFD results are independent of
the number of grid cells, as shown in figure 4.11. The termination criteria for the residual is
1. The tile flow rate is considered as the variable for the grid independency test because the
temperature in the white space and the servers depends on the tile flow rate provided by the
floor tiles. Also, the optimization of the design parameters of the white space is going to be
done using the tile flow rate of the floor tiles. The total number of cells required to simulate
the flow in the domain is varied from 1.6 Million to 4.8 Million. From the figure 4.11, after 3.0
million cells in the domain, it is seen that the average tile flow rate (average of two adjacent
tiles in the X-direction) do not change with the increase in the number of cells in the domain.
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Thus it can be concluded that the numerical results become independent from the size of the
grid higher than 3.0 million cells.

Figure 4.11: The Grid Independency Study to determine the number of cells required to make the numerical
solution independent from the size of the grid. The average of the tile flow rate for each tile present in Row X
& Row Y (see figure 4.16) is plotted on the y-axis vs. the tile number. Tile number is near the CRAHs and
tile number is away from the CRAH. The numerical solution for the tile flow rate becomes Grid Independent
after . million cells.

(a) The meshing of the white space shown along the X-Y
plane.

(b) The meshing shown along the X-Z plane.

Figure 4.12: The meshing of the domain of the white space shown along the X-Y plane (sub-figure (a)) and
along the X-Z plane (sub-figure(b)). Structured meshing is done using hexahedral elements, because of its
simplicity. The CRAHs and cabinets are not meshed, as the flow inside them is not resolved. Thus the CRAHs
and cabinets are modeled as "Black Boxes". The maximum size of the cell is . and . million cells are
generated in the domain (after performing the grid independence study).

In a CFD simulation of data center white space, the 𝑘 − 𝜖 turbulence model with standard
wall function requires the dimensionless wall distance (𝑦 ) to be within the range 11 to 3003,
i.e., the dimensionless first grid cell height from the wall should be within this range to apply
the log-law profile. If the 𝑦 value is below 11, then the laminar stress-strain relationship is
3This is the range of the value required to apply the log-law wall function in the 6SigmaRoom software. The
upper limit of the is controlled to be below by automatic grid rules implemented in the software.
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applied. From figure 4.13, the 𝑦 value has been plotted in the X-Y plane. It is seen that at
the boundary of the solid interface, i.e., the cabinets, raised floor, walls, and ceiling, the 𝑦 is
in the range of 11 to 300 to apply the log-law wall function.

Figure 4.13: The plotted in the X-Y plane. At the boundary of the cabinets, walls, ceiling, and raised floor,
it is seen from the plot that the is within the range to , to apply the log-law profile in order to model
the boundary layer.

4.4.3. Boundary Conditions and Assumptions
The floor, walls, and ceiling are adiabatic. It is assumed that there are no cracks/holes through
them. Heat loss by radiation is negligible as compared to convection and conduction. The
CRAH has two temperature sensors, one of which is placed at its base where the cold air is
being supplied and the other at the top of the CRAH where it sucks in the hot air. The CRAHs
operate on a return temperature control strategy, as shown in the figure 4.14. It supplies the
cold air through the fans present at the base of the CRAH at 25∘𝐶 and is programmed to have
a maximum return temperature of 37∘𝐶 while providing a maximum cooling power of 150𝑘𝑊.
The cooling power provided by the CRAH is adjusted based on the return temperature sensed
by the CRAH, and the mass flow rate of the cold air provided by the CRAH. The boundary
condition of the inlet and outlet of the CRAH is at variable flow condition (depending on
the return temperature sensed by the CRAH), i.e., it is a velocity inlet and velocity outlet
boundary condition. The mass flow rate of the supplied cold air can vary, and it can provide
a maximum flow rate of 10.4𝑚 /𝑠. This can be controlled by changing the fan (placed at the
bottom of the CRAH) speed of the CRAH. The fans can consume a maximum power of 6.6𝑘𝑊.
The coolant used in the CRAH is chilled water, which runs through it at 20∘𝐶. Technically,
the CRAH is programmed to provide a maximum cooling power of 150𝑘𝑊 at 37∘𝐶, but it can
operate beyond this limit for safety reasons, i.e., to provide more cooling power to the white
space if it heats up further. But this trade-off comes at a price of smaller operational lifetime
of the CRAH.

The flow rate of the server is controlled by the EnergyStar Flow Rate Ratio Curve, as shown in
figure 4.15. It is seen that the flow rate through the server remains constant till 27∘𝐶, and then
it shoots up linearly as the temperature increases beyond 27∘𝐶 and then reaches a constant
value of 100𝑙/𝑠/𝑘𝑊.

A server acts as a heat source and dissipates 0.266𝑘𝑊 of heat. This value has been calculated
based on the heat dissipation per unit floor area of 2.78𝑘𝑊/𝑚 (based on industry standards4)

4This value for the heat dissipation per unit floor area was decided based on a discussion with the Lead
Mechanical Engineer for Data Center design at RHDHV
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in the white space of the data center.

Figure 4.14: The maximum sensible cooling curve of the CRAH. It shows the max. cooling power provided by
the CRAH vs. the return temperature (∘ ) of the CRAH. The return temperature is measured by the return
temperature sensor placed on the top of the CRAH. The CRAH is programmed to have a maximum return
temperature of ∘ . The cooling power provided by the CRAH is adjusted based on the return temperature
sensed by the CRAH and the mass flow rate of the cold air provided by the CRAH. The blue dots indicate the
maximum cooling power provided by the CRAH at certain return temperatures. In this figure, the CRAH is
operating at , . ∘ (shown by the red dot). The red dot can move anywhere in the region below the
blue curve. If it reaches the region above the blue curve, it is going to violate the CRAH control strategy.

Figure 4.15: The EnergyStar flow rate ratio curve. It shows the flow rate per unit power (l/s/kW) consumed
by a server vs. the mean inlet temperature (∘ ) of the server. This determines the flow rate of the air going
through the server. The flow rate remains constant at / / until mean inlet temperature reaches ∘

and then it shoots up linearly as the temperature increases beyond ∘ , and then reaches a constant value of
/ / . In this figure, the server is operating at a mean inlet temperature of ∘ , and the flow rate of

. / per unit heat dissipated by the server. The blue points indicate the flow rate per unit power provided
by the server at the particular mean inlet temperature.

4.4.4. Setup of the CFD Simulation
To confirm if the flow in the white space is in the turbulent region, the average Reynolds
number has been calculated based on the floor tile pore size and velocity of airflow through
the tile. This is shown in the equation 4.2:
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𝑅𝑒 =
𝜌 𝑈 𝐷

𝜇 , (4.2)

where 𝑈 is the velocity through the pores of the tiles, 𝐷 is the pore size. Based on the
average velocity of 1.3𝑚/𝑠 (found from simulations) through the pore and pore diameter of
0.035𝑚, the Reynolds number turns out to be around 3000 which is more than the critical
Reynolds Number (𝑅𝑒 = 1000), for the flow to be in the turbulent regime as suggested by
Miller[61]. Thus it can be stated that the flow in the white space is in the turbulent regime.

To determine the type of heat transfer, the Richardson Number (𝑅𝑖) gives the relative impor-
tance of extend of natural convection, mixed convection, and forced convection. It is shown in
the equation 4.3:

𝑅𝑖 = 𝑔𝛽(𝑇 − 𝑇 )𝐿
𝑉 = 𝐺𝑟

𝑅𝑒 , (4.3)

where 𝛽 is the thermal expansion coefficient, 𝐿 the characteristic length, 𝑉 the characteristic
velocity, 𝑇 is the average temperature of the outlet of all the servers, and 𝑇 is the bulk
temperature in the white space (excluding the cold aisle). Based on a characteristic velocity of
1.3𝑚/𝑠 (velocity of airflow from the floor tiles) and characteristic length scale of 2.4𝑚 (height
of the cabinet), temperature difference of 8.1∘𝐶, and 𝛽 = 0.003𝐾 the 𝑅𝑖 in the white space
is around 0.33. This indicates that the convection in the room is mixed convection, mainly
dominated by forced convection, as suggested my Mills(1992)[62].

The buoyancy effect is included in the momentum equation by using the Boussinesq approx-
imation as the term −𝛽(𝑇 − 𝑇 ) << 1, where 𝑇 is the temperature in a region and 𝑇 the
reference temperature, for all the CFD simulation of the white space.

The CFD simulation was made to run in steady-state condition, and turbulence is modeled
using the Standard 𝑘 − 𝜖 model, and Standard Wall Function is used to model the boundary
layers. The maximum number of iterations is set to 1000. The Hybrid Cells option is se-
lected5. The grid refinement ratio limit is set to 2. The energy equation is solved by selecting
the Algebraic MultiGrid (AMG) structured linear solver[68]. The buoyancy term in the RANS
equation is modeled using the boussinesq approximation. The default discretization schemes
specified in section 3.3 is used. The use of 1 order upwind scheme for space discretization is
justified by the grid independency test, as the numerical diffusion is minimized. The termina-
tion strategy for a simulation is set using the "residuals only" option. The residual termination
criteria is based on a termination factor. A termination factor of 1 indicates that the governing
equations have converged.

The reference density of air is set to 1.19𝑘𝑔/𝑚 , laminar viscosity to a constant value of
1.8∗10 𝑘𝑔/𝑚𝑠, the conductivity of air to a constant value of 0.026𝑊/𝑚−𝐾, specific heat to
a constant value of 1005𝐽/𝑘𝑔−𝐾, and expansivity of air to 0.0033𝐶 . The reference pressure
is 1.01 ∗ 10 𝑃𝑎.

5A computational cell can be marked as solid, fluid, or hybrid. A cell is considered solid if its center is within
the solid object, and fluid if its center is outside the solid object. A cell which contains both solid and fluid
properties are marked as hybrid[68]



48 4. Methodology

4.5. Prediction of the CFD Results using an Artificial Neural Net-
work (ANN)

In this thesis, four separate neural networks are constructed. The input of each of these neural
networks consists of 11 parameters as described in the table 4.3. These input neurons are
called the input features. The input features are scaled between 0 and 1. Data scaling of the
input features is an essential pre-processing step before starting to train the neural network.
It speeds up the training process and improves the accuracy of the network. The data (input
features) obtained from the Latin Hypercube Sampling (LHS) method contains unscaled values
as each input feature has a different range of values. These values are scaled in the range of
0 to 1 before the training of the network starts. The scaling of the input features is shown in
equation 4.4

𝑋 = 𝑋 − 𝑋.𝑚𝑖𝑛
𝑋.𝑚𝑎𝑥 − 𝑋.𝑚𝑖𝑛

, (4.4)

where 𝑋 is one of the unscaled input feature, 𝑋 is the scaled variable of the input feature,
𝑋 is the corresponding unscaled variable, 𝑋.𝑚𝑖𝑛 is the minimum value of the unscaled input
feature, and 𝑋.𝑚𝑎𝑥 is the maximum value of the unscaled input feature. The output layer of
each neural network consists of 15 neurons. The 4 neural networks are used to predict the 4
rows highlighted in the figure 4.16. Each row consists of 15 IT components, i.e., row X and
row Y consist of 15 floor tiles each and row W and row Z consist of 15 cabinets each. Only
the middle row of cabinets and floor tiles are being considered for prediction by the neural
network because predicting the temperature of all the cabinets and tile flow rate of all the
floor tiles present in the white space would increase the complexity of the neural network. It
would require more training time to reach a generalized6 solution and the neural network is
going to require a large amount of training data. Also, the flow in the white space is not
symmetrical (will be explained in section 5.2). Therefore, it is not possible to replace the other
rows of cabinets and floor tiles with a symmetry boundary condition in the YZ plane. Thus
the other rows of cabinets and floor tiles are put into the domain of the simulation, beside
the rows highlighted. The values for the input feature are obtained from the Latin Hypercube
Sampling Method, and the corresponding output (tile flow rate and cabinet temperature) of
these input features are obtained from generating 600 CFD simulations of the white space.

In order to reduce the complexity in designing the neural networks, 4 separate neural networks
are used to predict each of the 4 rows, instead of 1 single neural network to predict all the
variables. Every row (row W/X/Y/Z) is assigned a neural network to predict its output
variable, i.e., the tile flow rate of the floor tiles in row X and row Y respectively and maximum
cabinet inlet temperature of the cabinets in row W and row Z respectively. Since the output of
these neural networks consist of continuous real values (i.e., floating numbers) and not discrete
value (i.e., ones and zeros), this neural network falls under the category of regression and not
classification.

6A neural network is said to be generalized if it is able to predict accurately on new unseen data, which is drawn
from the same distribution used to train the neural network.
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Figure 4.16: The top view of the data center white space. The rows highlighted in green (row W and row Z),
are the cabinets ( cabinets in each row). The row highlighted in red (row X), and yellow (row Y) are the
floor tiles ( in each row). These rows are going to provide the output data, which the neural networks are
going to predict.

A dataset, consisting of the 11 input features and the ground truth values (tile flow rate and
max. cabinet inlet temperature) is created. Before the neural networks start training on the
dataset, the hyper-parameters of the neural network have to be specified. Mean Squared Error
(see equation 3.21) is used for all the four neural networks to calculate the prediction error, as
it is easier to compute the gradient of the error function of the neural network as compared to
using MAE (see equation 3.22). The train test split used here is 80% − 20% as the dataset
size is limited to 600 samples. LeakyRelu[26, 33] is used as an activation function for the input,
and the hidden layers (as it does not suffer from the vanishing gradient problem) and Linear
Activation function is used for the output layer.

There are many ways to find the hyper-parameters of a neural network. They are Hit and Trial
Method (Manual Search), Grid Search, Random Search, Bayesian Optimization (HyperOpt),
and Genetic Algorithm[23, 51]. Using the Keras library[25], the structure of the neural network
is created. A genetic algorithm is used to find the optimum hyper-parameters of the neural
network to achieve a high testing accuracy. The fitness function of the genetic algorithm is
set to the testing accuracy of the neural network, which has to be maximized. The crossover
probability and the mutation probability is set to 0.25 and 0.05 respectively. The population
size is kept to 20 neural network model, and the maximum number of generations is 10. The
termination criteria for the genetic algorithm is triggered when the testing accuracy is more
than a 𝑅 of 0.99. Two genetic algorithm models are created, one to find the hyper-parameters
of the neural network predicting the tile flow rate and the other to find the hyper-parameters
of the neural network predicting the cabinet temperature. The python code for finding the
hyper-parameters using the genetic algorithm is shown in Appendix B and C. After the hyper-
parameters are found for the respective neural networks, the neural networks are trained on
the training dataset to predict the tile flow rate of row X and row Y and the maximum cabinet
inlet temperature of row W and row Z respectively. This is shown in Appendix D, E, F, and
G respectively.
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4.6. Optimization of Design Parameters of the white space using
NSGA-II (Genetic Algorithm)

Each server requires an airflow rate of approximately 60𝑙/𝑠/𝑘𝑊, to maintain its mean inlet
temperature below 27∘𝐶 (see figure 4.15). In each cabinet (in the white space of the CFD
simulation), there are 25 servers present in it. Thus, in order to maintain the mean inlet
temperature of all the servers present in a cabinet below 27∘𝐶, a cabinet would require at-
least 1500𝑙/𝑠/𝑘𝑊 (see equation 4.5) of cold air (from 25∘𝐶 to 27∘𝐶) at its inlet. Each server
dissipates 0.266𝑘𝑊 of heat. Thus each cabinet would then require 0.4𝑚 /𝑠 of cold air at its
inlet surface (see equation 4.6 for calculation).

�̃� = �̃� ∗ 𝑛 = 60 𝑙/𝑠𝑘𝑊 ∗ 25

= 1500 𝑙/𝑠𝑘𝑊 ,
(4.5)

�̇� = �̃� ∗ 𝑄 ∗ 0.001𝑚 /𝑠
𝑙/𝑠

= 1500 𝑙/𝑠𝑘𝑊 ∗ 0.266𝑘𝑊 ∗ 0.001𝑚 /𝑠
𝑙/𝑠

= 0.4𝑚𝑠 ,

(4.6)

where, �̃� is the flow-rate rate required by a cabinet per unit heat dissipated, �̃� is the flow-rate
required by a server per unit heat dissipated, 𝑛 is the number of servers in a cabinet, and 𝑄
is the heat dissipated by a server.

In this study, we focus on 30 cabinets, i.e. 15 in row W and 15 in row Z (see figure 4.16).
Each cabinet requires a total airflow of 0.4𝑚 /𝑠, to maintain the mean inlet temperature of
all the servers present in it below 27∘𝐶. Each of the cabinets (in consideration) requires an
airflow rate of 0.4𝑚 /𝑠. Thus, the distribution of this airflow rate is uniform. The average
value of this airflow distribution is 0.4𝑚 /𝑠, and the standard deviation of this distribution is
0𝑚 /𝑠 (as the distribution is uniform). For two distributions to be the same, their average and
standard deviation should be the same. The 30 floor tiles present in row X and row Y should
be able to provide the airflow required by all the 30 cabinets present (15 in row W and 15 row
Z), in order to maintain the mean inlet temperature of the servers present in a cabinet below
27∘𝐶. In other words, the average and the standard deviation of the tile flow rate distribution
of the 30 floor tiles, i.e., 15 in row X and 15 in row Y (see figure 4.16), has to match with the
average and standard deviation of the airflow rate distribution, required by the 30 cabinets.
This leads to a multi-objective optimization problem. The objective functions are presented
in equation 4.7 and equation 4.8:

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = |�̇� − �̇� |, (4.7)

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = |𝜎 ̇ − 𝜎 ̇ |, (4.8)

where, �̇� is the average of the tile flow rate distribution, �̇� is the average of the cabinet
airflow rate distribution, 𝜎 ̇ is the standard deviation of the tile flow rate distribution, and
𝜎 ̇ is the standard deviation of the cabinet airflow rate distribution. In both objectives, the
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absolute difference is calculated. In order to match both the distributions, objective and
objective have to be minimized to zero simultaneously. In other words, the difference between
the averages of these two distributions, and the difference between the standard deviations of
these two distributions have to be reduced to zero simultaneously. This is going to require a
multi-objective optimization algorithm to solve it.

The average and the standard deviation of the tile flow rate distribution of the 30 floor tiles
(15 in row X and 15 in row Y) are calculated from the neural networks predicting the tile
flow rates. The average and the standard deviation of the ideal airflow rate distribution of the
30 cabinets (15 in row W and 15 in row Z) is known. The absolute difference of the average
and standard deviation, respectively, of the two distributions (tile flow rate distribution and
cabinet airflow requirement distribution) are found. This is done multiple number of times
for several runs of the neural network. This then forms the solution space for the NSGA-II
algorithm. The absolute difference of the average and the absolute difference of the standard
deviation respectively have to be minimized to zero, which then forms the fitness (objective)
function. Initially, a parent population size of 2000 and an offspring population size of 1000
is formed by running the neural networks for the tile flow rate 3000 number of times. The
crossover probability is set to 0.8, and the mutation probability is set to 0.01. The maximum
number of generations until which the NSGA-II algorithm is run is till 500.
The NSGA-II algorithm gives us the optimized values of the 11 design variables, namely po-
sitions of four perforated plates, amount of perforation of these four perforated plates, tile
perforation, raised floor height, and CRAH distance. These optimized values of the design
variables are going to ensure that a maximum number of servers have their mean inlet tem-
perature below 27∘𝐶. The python code for the implementation of the NSGA-II algorithm is
applied using the DEAP Library[18]. This is shown in Appendix H.
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Results

5.1. Residuals of the CFD Simulation
The residual of the temperature, turbulent kinetic energy (𝐾𝐸), turbulent dissipation rate
(𝐸𝑃), X velocity, Y velocity, Z velocity, and pressure equation in the CFD simulation of the
white space is shown in the figure 5.1. The residual1 is plotted on the vertical axis and the
no. of iterations on the horizontal axis. A residual of 1 indicates that the termination criteria
has been achieved, meaning the sum of the residual errors for the variable has fallen below
the termination criteria, which by default is the 10 times the incoming mass, momentum,
energy, etc. as appropriate. A user-set termination factor is multiplied with the termination
criteria to give the user control. It is seen that the residual decreases with an increase in the
number of iterations. The CFD simulation of the white space continues until the residual for
the temperature, turbulent kinetic energy, turbulent dissipation rate, X velocity, Y velocity,
Z velocity, and pressure reaches 1, as shown in the figure 5.1. The CFD solution converges
before reaching the maximum iteration number of 1000. Reducing the termination factor to
0.5 changes the tile flow rate of the floor tiles by less than 1% of the original value. This is not
a significant change. Keeping the termination criteria to a termination factor of 0.5 requires
more computational time for the solutions to converge.

1The vertical axis should be labeled as normalized residual errors. It is labeled as residuals purely for the
simplicity for most users. This information is provided by Future Facilities

53
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Figure 5.1: The plot of the residual (the vertical axis should be labeled as normalized residual) of the CFD
simulation on the vertical axis vs. the number of iterations on the horizontal axis. The termination factor is
multiplied with the default termination criteria. A residual of indicates that the termination criteria has been
achieved, i.e., the sum of the residual errors for the variable has fallen below the termination criteria, which by
default is the times the incoming mass, momentum, energy, etc. as appropriate. The cross ( ) on the pink
curve is indicating that the residual for Z velocity at iteration is . .

5.2. Non-Symmetrical Flow Domain
If we look at a server from the inlet side, i.e., in the direction of the red arrow, as shown in the
figure 5.2, the outlet of the server is located towards the left side of the server. Each server has
a fan located internally, which regulates the airflow through it. This can be verified using the
velocity plot in the XZ plane, as shown in the figure 5.2. In this figure, we focus our attention
on the middle two rows of cabinets (highlighted by the yellow dotted box). The inlet of all
the servers is facing the cold aisle. In this yellow box, the row of cabinets present on the right
(highlighted by the black dotted box) contains the servers expelling their heat from their left-
back portion (indicated by the red arrows which are shifted towards the CRAH). Similarly, the
row of cabinets present on the left (highlighted by the white dotted box) contains the servers
expelling their heat from their left-back portion too (indicated by the red arrows which are
shifted away from the CRAH). This can also be verified through the magnitude of the velocity
plot at the outlet of the server, as seen in figure 5.2. At the outlet of the server, the magnitude
of the velocity is relatively higher towards the left side of the server (if we look in the direction
of the red arrow) as compared to the right side of the server. Similar phenomena are taking
place in the other rows present in the white space. From this, we can conclude that although
there is a geometrical symmetry in the YZ plane passing through the middle of the yellow box,
the flow is asymmetrical along this plane. Thus a symmetrical boundary condition cannot be
applied to simulate the flows in the data center. The flow in a server is not resolved (see section
4.4.2). The outlet of the server is shifted towards the left side (as viewed from the inlet of the
server). Thus the velocity of air is higher near the left side of the server (as indicated by the red
arrow in figure 5.2). This location of the outlet vents of the server causes a non-symmetrical
flow in the data center white space.
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Figure 5.2: The demonstration of the non-symmetrical flow field shown by the velocity plot in the X-Z plane
taken at the mid-height of the cabinet. The server’s inlet are facing the cold aisle. In the rows present in the
middle of the white space (highlighted in yellow), the row of cabinets present on the right (highlighted by the
black), contains the servers expelling theirs heat from their left-back portion (indicated by the red arrows which
are shifted towards the CRAH). Similarly, for the row of cabinets present on the left (highlighted by the white
dotted box) it contains the servers which are expelling their heat from their left-back portion too (indicated
by the red arrows which are shifted away from the CRAH). A similar flow field can be seen in the other rows
present in the white space. Thus there is geometrical symmetry along the plane (parallel to the YZ Plane) and
passing through the middle of the yellow box, but the flow symmetry is not present along the XZ plane.

5.3. Neural Network Predictions
The results of scaling the input features are shown in figure 5.3. In this figure, the frequency
of occurrence of the variable is shown on the y-axis and the value of the input feature on the
x-axis. From this figure, the 11 input features are almost uniformly distributed (see figure
5.3), which indicates that there is no bias in the range of these input features.

The output variables to be predicted by the neural network are obtained from the CFD sim-
ulations. They consist of the tile flow rate of the floor tiles present in row X and row Y,
respectively, and the maximum cabinet inlet temperature of the cabinets present in row W
and row Z (see figure 4.16). The output variables are unscaled as the neural network does not
require them to be scaled. The distribution of these variables is shown in figure 5.4.
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Figure 5.3: The distribution of the input features of the neural network. The plot for each feature shows the
frequency of occurrence on the Y-axis and the value of the feature on the X-axis. The input features have been
scaled in the range of to . The input features show a uniform distribution.

The genetic algorithm is applied to find the optimal set of hyper-parameters of the neural
network predicting the tile flow rate of row X. Then the neural network is trained to predict
the tile flow rate of row X. This same set of hyper-parameters are used for training the neural
network to predict the tile flow rate of row Y. This is done because the distribution of the
tile flow rate in row X and row Y is nearly the same. Similarly, the genetic algorithm is
applied to find the optimal set of hyper-parameters of the neural network predicting the max.
cabinet inlet temperature of row W. These hyper-parameters are then used to train the neural
networks. predicting variables in row W and row Z respectively, as their distribution is also
nearly the same. The optimal set of hyper-parameters are shown in table 5.1. The neural
networks runs for 10000 epochs.

Using the input features obtained from the LHS method and its corresponding output from
the 600 CFD simulations, these values are fed to the neural network to predict the output
values (tile flow rate and maximum cabinet inlet temperature). The whole dataset is split into
the training and testing dataset in the ratio of 4 ∶ 1.
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(a) The ground truth (actual values) of tile flow rate
(Row X).

(b) The ground truth (actual values) of tile flow rate
(Row Y).

(c) The ground truth (actual values) of maximum cabinet
inlet temperature (Row W).

(d) The ground truth (actual values) of maximum cabinet
inlet temperature (Row Z).

Figure 5.4: The ground truth (actual values) obtained from the CFD simulations, corresponding to the input
features obtained from LHS. The distribution of the tile flow rate of row X and row Y are shown in sub-figure
(a) and (b) respectively. The distribution of the maximum cabinet inlet temperature of row W and row Z are
shown in sub-figure (c) and (d). The variables are unscaled as the neural network do not require the output
variables to be scaled. There are no outliers present in the distribution.

The training and testing 𝑅 accuracy (eq. 3.23) and the corresponding MSE (eq. 3.21) loss of
the neural networks predicting the tile flow rate of the floor tiles present in row X and row Y
is shown in the figure 5.5. It is observed in this figure that the 𝑅 accuracy of the networks
increases rapidly and then becomes asymptotic to 1. Similarly, the 𝑀𝑆𝐸 loss decreases rapidly
and then becomes asymptotic to 0. There is no overfitting and underfitting of the training
data as the testing accuracy/loss matches the training accuracy/loss almost completely. Thus
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the neural nets are well generalized2.

Hyperparameters Row X & Row Y Row W & Row Z
Batch Size 128 128
Learning Rate 0.0005 0.0005
No. of Hidden Layers 2 3
No. of Neurons per Hidden Layers 236, and 188 236, 250, and 300
Dropout 0.297 and 0.005 0.297, 0.1, and 0.1

Table 5.1: The hyper-parameters used by the neural networks to predict the output variables. The neural
networks predicting the tile flow rate of the floor tile present in row X, and row Y uses the same set of hyper-
parameters. This is done as the distribution of the variable in row X and row Y are nearly similar. Similarly,
the neural networks predicting the max. cabinet inlet temperature of the cabinets present in row W and row Z
is using another similar set of hyper-parameters

(a) The accuracy of the tile flow rate prediction (Row
X).

(b) The loss of the tile flow rate prediction (Row X).

(c) The accuracy of the tile flow rate prediction (Row
Y).

(d) The loss of the tile flow rate prediction (Row Y).

Figure 5.5: The performance of the neural networks predicting the tile flow rate of row X and row Y respectively.
The accuracy and loss is plotted for row X in sub-figure (a) and (b) respectively and row Y in sub-figure
(c) and (d) respectively. From the graph, it is seen that the training and testing accuracy and its loss are almost
equal to each other. The neural nets are well generalized. The training of the networks can be stopped at
epoch as there is no significant improvement in the performance henceforth. The accuracy reaches almost .

The training and testing 𝑅 accuracy and the corresponding MSE loss for the neural networks
2A neural network is said to be generalized if it can predict accurately on new unseen data, which is drawn from
the same distribution used to train the neural network.
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predicting the maximum cabinet inlet temperature of the cabinets present in row W and row
Z are shown in the figure 5.6. It is observed in this figure that the 𝑅 accuracy of the networks
increases rapidly, becomes asymptotic near to 1 and then starts to overfit. Similarly, the 𝑀𝑆𝐸
loss decreases rapidly and then becomes asymptotic closer to 0. There is overfitting of the
training data after 12000 epochs as the testing accuracy starts to diverge after 12000 epochs.
The possible cause of this overfitting is due to the limited size of the training dataset. The
training of the model should be stopped at 12000 iterations.

(a) Accuracy of maximum cabinet inlet
temperature (Row W)

(b) Loss of maximum cabinet inlet
temperature (Row W)

(c) Accuracy of maximum cabinet inlet
temperature (Row Z)

(d) Loss of maximum cabinet inlet
temperature (Row Z)

Figure 5.6: The performance of the neural networks predicting the max. inlet temperature of cabinets of row
X and row Y respectively. The accuracy and loss is plotted for row X in sub-figure (a) and (b) and
row Y in sub-figure (c) and (d). From the the training and testing accuracy graphs, the neural nets starts to
overfit after epochs. The neural networks are not generalizing well. The training of the networks should
be stopped at epochs.

In figure 5.7, the regression plot for the predicted vs. the actual tile flow rate for row X and
row Y is plotted. It is seen that the points lie close to the line (𝑌 = 𝑋), which indicates that
the predicted values almost resemble the real ones. The absolute error for these two rows is
also shown in the same figure. It is observed that the mean of the absolute error is centered
at 0𝑚 /𝑠, and most of the error is occurring around it. This indicates that most of the error
is around zero. The range of the majority of these errors is within −0.2𝑚 /𝑠 to 0.2𝑚 /𝑠.
The performance of the neural network (𝑅 accuracy and𝑀𝑆𝐸 loss) predicting the row W/X/Y/Z
is shown in the table 5.2.
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(a) The regression plot for predicted vs actual
tile flow rate (Row X).

(b) The error histogram of tile flow rate (Row X).

(c) The regression plot for predicted vs actual
tile flow rate (Row Y).

(d) The error histogram of tile flow rate (Row Y).

Figure 5.7: The regression plot for the predicted vs the actual tile flow rate is shown in sub-figures (a) and (c).
It is seen in these sub-figures that most of the points lie close to the line ( ), highlighted in red. This
indicates that the predicted results are close to the actual ones. The error histogram of row X and row Y in
sub-figures (b) and (d) shows that the mean of the absolute error is centered at / . The spread of majority
of this errors is narrow and centered around / , indicating the neural network is well trained.
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𝑅 Accuracy 𝑀𝑆𝐸 Loss
Training Testing Training Testing

Row W 0.933 0.910 1.574 1.709
Row X 0.978 0.962 0.0013 0.0022
Row Y 0.981 0.965 0.0013 0.0021
Row Z 0.936 0.904 1.63 1.858

Table 5.2: The accuracy and loss of the neural networks predicting the variables in row W/X/Y/Z.
The tile flow rate of the floor tiles present in row X and row Y is being predicted by the neural net. Similarly,
the max. cabinet inlet temperature of the cabinets present in row W and row Z is being predicted.

In figure 5.8, the regression plot for the predicted vs. the actual max. cabinet inlet temperature
for row W and row Z is plotted. It is seen that the points are spread out around the line
(𝑌 = 𝑋), which indicates that the predicted values don’t quite well resemble the actual ones.
The absolute error for these two rows is also shown in the same figure. It is observed that
the mean of the absolute error is centered at 0∘𝐶, and most of the error is occurring around
it. This indicates that most of the error is around zero. The spread of the absolute error
is wider than the errors from the neural nets predicting the tile flow rate. Thus the neural
nets predicting the cabinet temperature have to be trained further with more training data to
reduce this spread of the absolute error of the max. cabinet inlet temperature. The range for
the majority of these errors is within −5∘𝐶 to 5∘𝐶, with a maximum frequency of occurrence
of these errors centered around 0∘𝐶. The neural network is going to need more training data
to improve the accuracy of the cabinet temperature prediction and thus reduce the spread of
the absolute error around 0∘𝐶.

The error statistics of the tile flow rate of each floor tiles present in row X and row Y, and
for the cabinet inlet temperature of each cabinet present in row W and row Z are shown in
Appendix I respectively. It is seen in figure I.1 and figure I.2, that the individual floor tiles
and the individual cabinets contribute unequally to the total absolute error in predicting the
respective quantities. This means that the individual errors are all centered at 0 units, but
the spread of the error for each quantity is different.
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(a) The regression plot for the predicted vs the actual max.
cabinet inlet temperature (Row W).

(b) The error histogram of the max. cabinet inlet tempera-
ture (Row W).

(c) The regression plot for the predicted vs the actual max.
cabinet inlet temperature (Row Z).

(d) The error histogram of the max. cabinet inlet tempera-
ture (Row Z).

Figure 5.8: The regression plot for the predicted vs the actual max. cabinet inlet temperature is shown in
sub-figure (a) and (c). It is seen in these sub-figures that the point are spread out around the line ( ),
highlighted in red. This indicates that the predicted results are not representing the actual ones with good
accuracy. The error histogram of row W and row Z in sub-figure (b) and (d) shows that the mean of the
absolute error is centered at / and it is having a wider spread around the mean. The range of majority of
these error is within ∘ to ∘ .

In figure 5.9 and figure 5.10, few validation of the prediction results from the testing dataset
is shown. For the tile flow rate prediction of row X and row Y, it is seen that the predicted
results follow the trend set by the actual values, and the neural network predicts them quite
accurately. For the max. cabinet inlet temperature prediction of row W and row Z, the pre-
dicted results follow the trend from the actual values, but it does not predict them accurately.
The performance of the max. cabinet inlet temperature prediction can be improved further
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by exposing the neural network to more training dataset or improving the architecture of the
neural networks.

(a) The NN prediction of the tile flow rate (Row X). (b) The NN prediction of the tile flow rate (Row X).

(c) The NN prediction of the tile flow rate (Row Y). (d) The NN prediction of the tile flow rate (Row Y).

Figure 5.9: The Neural network (NN) predictions of the tile flow rate of the floor tiles present in row X (sub-
figure (a)) and (sub-figure (b)), and the floor tiles present in row Y (sub-figure (c)) and (sub-figure (d)) from
the testing dataset. The samples are picked randomly from the testing dataset. The tile flow rate [ / ] is
plotted on the vertical axis and the tile number on the horizontal axis. Tile no. is near the CRAH and tile
no. away from the CRAH. The predicted results matches with the actual result except in (sub-figure (b)).
Overall, the prediction result follows the trend of the actual result.
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(a) The NN prediction of the max. cabinet inlet
temperature (Row W).

(b) The NN prediction of the max. cabinet inlet
temperature (Row W).

(c) The NN prediction of the max. cabinet inlet
temperature (Row Z).

(d) The NN prediction of the max. cabinet inlet
temperature (Row Z)

Figure 5.10: The Neural Network (NN) predictions of the max. cabinet inlet temperature of the cabinets present
in row W (sub-figure (a)) and (sub-figure (b)), and the cabinets present in row Z (sub-figure (c)) and (sub-figure
(d)) from the testing dataset. The cabinet temperature [∘ ] is plotted on the vertical axis and the cabinet
number on the horizontal axis. Cabinet no. is near the CRAH and cabinet no. away from the CRAH. The
predicted results follows the trend of the actual results, but do not predict it quite accurately.

5.4. The Optimized Design Parameters of the White Space using
NSGA-II Algorithm

The NSGA-II algorithm (see section 4.6) is used to find the 11 optimum design parameter
of the white space. This is shown in the figure 5.11. In this graph, for each generation the
Pareto front (containing the non-dominated solutions) with the highest rank is plotted. The
highest rank is 1 and in this case it is assigned to the Pareto front which contains the best
set of non-dominated solutions in each generations i.e. the set of non-dominated solutions
which are present more towards the origin (0,0). In figure 5.11, it is seen that as the number
of generations increases, the population of each Pareto front increases and moves towards the
origin (0, 0). This shows that the objectives are being minimized. After the 300 generation ,
there is no significant change in the Pareto front and thus the algorithm can be terminated at
the 300 generation . The set of non-dominated solutions from the Pareto front at the 300
generation is obtained. This will give the optimum value of the 11 design parameters of the
white space.
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(a) The Pareto fronts of gen. and . (b) The Pareto fronts of gen. , , and .

(c) The Pareto fronts of gen. , , , and . (d) The Pareto fronts of gen. , , , ,
and .

Figure 5.11: The graph shows the Pareto fronts of each generations till the generation. The absolute
difference of the mean of the two distributions is plotted on the vertical axis and the absolute difference of the
standard deviation of the two distributions is plotted on the horizontal axis. For each generation, the Pareto
front with the highest rank is shown. Both the objectives, i.e. the mean and the standard deviation are being
minimized as indicated by the convex shape of the Pareto front as viewed from the origin ( , ) . After the

generation, the minimization of the objectives are not significant anymore as the Pareto front for the
generation starts to overlap with the generation. The optimal set of design parameters is obtained

from the Pareto front of the generation.

A comparison of the performance of the NSGA-II algorithm (which itself is relying on the
tile flow rate neural network to create the solution space) against the tile flow rate neural
network to find the optimum design solution of the white space is shown in the figure 5.12.
The data-points for the neural network have been obtained from the testing dataset. It is seen
that the NSGA-II algorithm performs well in finding the optimum solution of the 11 design
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parameters of the white space as compared to the neural network. But it would be unfair to
make this comparison, as the task of the neural network is to predict the ground truth value
and not to find the optimal solution. In the process of predicting the ground truth values, the
neural network might find the optimal solutions by luck, and it might perform better than the
genetic algorithm. But the chances of this happening are meager.

Figure 5.12: The comparison of NSGA-II with the tile flow-rate neural network. The Pareto front (in blue) of
generation obtained from the GA is compared with the predictions (in red) from the neural net. The

absolute difference of the mean of the two distributions (Tile Flow Rate Distributions and Cabinet Airflow
Requirement Distribution) is plotted on the vertical axis, and the absolute difference of the standard deviation
of the two distributions is plotted on the horizontal axis. The NSGA-II performs better in obtaining the optimal
design space solutions as compared to the neural net. The neural network is primarily tasked to predict the
ground truth values. But in the process, it may find the optimal solution. The points highlighted (by the black,
orange and green oval shapes) in the Pareto front are the set of solutions taken to decide the best optimal design
solution.

In figure 5.12, the Pareto Front is highlighted by the black, orange, and green zones. These
are the zones from which optimized sample points are taken to be compared with each other.
From each zone, the best sample point is chosen. This is shown in figure 5.13. In this figure,
the range of the mean inlet temperature of the servers is kept from 25∘𝐶 to 32∘𝐶. The upper
limit has been chosen to be 32∘𝐶 as we are interested in limiting the server temperature to
less than 32∘𝐶. Thus this is going to give us an indication of how many servers have an inlet
temperature greater than or equal to 32∘𝐶. It is not suitable to have the server mean inlet
temperature above 32∘𝐶, as the servers start to overheat. In figure 5.13, the contour, which is
indicating a temperature of more than 32∘𝐶, indicates that it is better not to put the server
in that location. It is seen in this figure that the solution on the Pareto front from the orange
zone (figure 5.13c and figure 5.13d), has a better mean server inlet temperature, i.e., most of
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the servers have their inlet temperature lower than 27∘𝐶 and very few of them beyond 32∘𝐶,
as compared to the solutions on the Pareto front from the black zone and green zone. The
actual range of temperatures of these servers is shown in Appendix J.

(a) Mean server inlet temperature of row W
(Black Zone)

(b) Mean server inlet temperature of row Z
(Black Zone)

(c) Mean server inlet temperature of row W
(Orange Zone)

(d) Mean server inlet temperature of row Z
(Orange Zone)

(e) Mean server inlet temperature of row W
(Green Zone)

(f) Mean server inlet temperature of row Z
(Green Zone)

Figure 5.13: The plot of mean server inlet temperature present in row W and row Z respectively. Solution points
from the Pareto front is taken from the black, orange and green zones and the best solution out of these zones
is taken for comparison. The range of the mean inlet temperature of the servers is kept from ∘ to ∘ .
The upper limit has been chosen to be ∘ as we are interested in limiting the server temperature to less than

∘ . It is seen that the solution from the orange zone gives the better optimal solution as most of the server
has a mean inlet temperature below ∘ and very few beyond ∘ . Thus the solution shown in (sub-figure
(c)) and (sub-figure (d)) can be considered as an optimal solution.

Thus, the optimal values of the 11 design parameters of the white space required to keep most
of the servers below the mean inlet temperature of 27∘𝐶 are as follows.

• Position of Perforated Plate 1 (P1) = 3.79𝑚
• Position of Perforated Plate 2 (P2) = 6.42𝑚
• Position of Perforated Plate 3 (P3) = 8.81𝑚
• Position of Perforated Plate 4 (P4) = 10.8𝑚
• Height of the Raised Floor (h) = 0.97𝑚
• CRAH Distance = 2.4𝑚
• Percentage of Perforation of Plate 1 (P1) = 84.4%
• Percentage of Perforation of Plate 2 (P2) = 68.19%
• Percentage of Perforation of Plate 3 (P3) = 96.53%
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• Percentage of Perforation of Plate 4 (P4) = 33.66%
• Floor Tile Perforation = 50.16%

The position of the perforated plates and CRAH distance is calculated perpendicular to the
X-axis in the positive Z-direction (see figure 4.4 for alignment of the axis). The height of the
raised floor is calculated perpendicular to the X-axis in the positive Y-direction. From the
values of these 11 parameters shown above, a small conclusion can be made that the presence
of perforated plate 1 and plate 3 would not be required under the raised floor as they are
highly perforated. A proper conclusion can be made by finding the interaction effect of these
plates with each other on the flow distribution and the temperature field in the white space.
The CRAH should be placed as close as possible (2-floor tiles away from the wall) to the first
cabinet of the row but not too close to cause a suction effect in the raised floor. The height
of the raised floor is around 1𝑚, which is in alignment with the plot shown in figure 2.11a.
The value of the floor tile perforation suggests having a higher perforation as compared to the
plot shown in figure 2.11b. From figure 2.11b, it is suggested to have a tile perforation around
15% − 20%. A higher floor tile perforation would lead to non-uniform flow across the floor
tiles present in the raised floor. But this non-uniformity of the tile flow can be counteracted
by the higher height of the raised floor and presence of perforated plates in the raised floor.

A comparison of the optimized case has also been made with a non-optimized case (with plates)
and the white space without the perforated plates in the raised floor. This is shown in the
following figures. In figure 5.14, a comparison of the tile flow rate has been made among the
optimized case, one of the non-optimized case, and the case without the perforated plates in the
underfloor. It is seen that in the optimized case (figure 5.14a), there is a uniform distribution
of the tile flow rate of the floor tile around the value of 0.42𝑚 /𝑠. In the non-optimized case
(figure 5.14b), there is a variation of the value of the tile flow rate. In the case without the
perforated plates (figure 5.14c) in the raised floor, there is a negative tile flow rate for the
floor tiles present near the CRAH, and it increases (the pressure drop across the floor tile
increases as we move away from the CRAH) as the distance from the CRAH increases. Thus
the optimized case achieves the requirement of a uniform tile flow rate necessary to keep as
many servers below the mean inlet temperature of 27∘𝐶.

The effect of the distribution of the tile flow rate on the supply (cold) temperature through the
floor tile is shown in the figure 5.15. In the optimized case (figure 5.15a), the distribution of
the floor tile’s temperature is uniform and around (25∘𝐶), as required by the cabinets. In the
non-optimized case figure 5.15b, there is a slight variation in this temperature, more towards
the floor tiles present near the CRAH. This too can be attributed to the entry of the hot air
from the surroundings into the cold aisle from the sides of the rows containing the floor tiles.
This can lead to an increase in the supply temperature of the airflow provided to the cabinets.
In the case without the plates in the raised floor (figure 5.15c, the variation of the supply
temperature is significant and more pronounced in the floor tiles present near the CRAH. This
is due to the negative tile flow rate (see figure 5.14c) of the floor tiles present near the CRAH.
This negative tile flow rate causes the hot air from the surrounding to be pulled into the raised
floor and thus raising the supply temperature.
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(a) The tile flow rate of the floor tiles in the optimized design
condition.

(b) The tile flow rate of the floor tiles in the non-optimized
design condition.

(c) The tile flow rate of the floor tiles in the white space
without perforated plates.

Figure 5.14: The contour of the tile flow rate of the floor tiles present in the white space. In the optimized case
(sub-figure (a)), the tile flow rate is nearly uniform at around . / . In the non-optimized case (sub-figure
(b)) there is a variation in the tile flow rate as we move away from the CRAH. In the case without perforated
plates in the raised floor (sub-figure (c)), there is a negative tile flow rate in the floor tiles present near the
CRAH, and then the tile flow rate increases.
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(a) The supply air temperature of the floor tiles in the op-
timized design condition.

(b) The supply air temperature of the floor tiles in the non-
optimized design condition

(c) The supply air temperature of the floor tiles in the white
space without perforated plates.

Figure 5.15: The contour of the supply air temperature of floor tiles present in the white space. In the optimized
case (sub-figure (a)), the supply air temperature is nearly uniform around ∘ . In the non-optimized case (sub-
figure (b)), there is a slight variation in the supply air temperature of floor tiles. The tiles present near the
CRAH have a higher temperature due to end-effects (hot air entering into the cold aisle from the edge of the
aisle). In the case without perforated plates in the raised floor (sub-figure (c)), there is a significant variation
of the floor tile temperature present near the CRAH. This is also due to the negative tile flow rate, which sucks
in the hot air from the surroundings.

In figure 5.16, the mean server inlet temperature is shown for the servers present in row W
and row Z. It is seen in the optimized case (figures 5.16a and 5.16b) most of the servers are
within the temperature of 27∘𝐶 and very few above 32∘𝐶. In the non-optimized case (figures
5.16c and 5.16d) and the case without the perforated plates in the raised floor (figures 5.16e
and 5.16f), more number of the servers inlet temperature lies above the temperature of 32∘𝐶 as
compared to the optimized case. The non-optimum case with the perforated plates in it, does
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not seem to perform better than the case without the perforated plates. The actual ranges of
the temperature of the servers in the different cases (optimized, non-optimized, and without
plates) are shown in Appendix J.2.

(a) The mean server inlet temperature of row W (Opti-
mized).

(b) The mean server inlet temperature of row Z (Opti-
mized).

(c) The mean server inlet temperature of row W (Non-
Optimized).

(d) The mean server inlet temperature of row Z (Non-
Optimized).

(e) The mean server inlet temperature of row W (Without
Perforated Plates).

(f) The mean server inlet temperature of row Z (Without
Perforated Plates).

Figure 5.16: The plot of mean server inlet temperature present in row W and row Z, respectively, and shown
for the optimized case (sub-figure (a)) and (sub-figure (b)), non-optimized case (sub-figure (c)) and (sub-figure
(d)), and without plates (sub-figure (e)) and (sub-figure (f)). For the servers present in the optimized case,
most of them are within the temperature of ∘ and very few above ∘ . In the non-optimized case, most of
the server temperatures are above ∘ , and in the case without the perforated plates, the server temperature
lies within ∘ . However, in the servers present in the corner cabinets, the temperature exceeds ∘ . Thus
servers in case (sub-figure (a)) and (sub-figure (b)) have a better mean server inlet temperature.

The effect of the optimization of the design parameters of the white space can be seen through
the temperature plots in figure 5.17 and figure 5.18. In these two figures, the temperature
plot for the optimized case with the perforated plates in the raised floor has been plotted in
the left column, the non-optimized case with plates in the raised floor in the middle column
and the case without plates in the right column. In figure 5.17, the temperature plot is taken
along the height of the cabinet in which the supplied cold air is being optimally provided till
the top of the cabinet, whereas in the non-optimized case and case without the perforated
plates, there is infiltration of hot air from the side of the row and presence of re-circulation
regions. This causes the inlet temperature of the airflow provided to the server to increase.
In figure 5.18, the temperature plots are taken along the length of the row of cabinets (in the
Z-direction) starting from the cabinets present near the CRAH. In this figure it is seen that in
the optimized case, the supplied cold air is being optimally utilized by all the servers in the
cabinets. There is no wastage of the cold air to the surroundings. In the non optimized case
and the case without the perforated plates, there is wastage of cold air to the surrounding at
certain distance away from the CRAH and presence of re-circulation regions at other distances
causing an increase in the supply airflow temperature.
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(a) (OC)-0.1m (b) (NOC)-0.1m (c) (NOCw/oP)-0.1m

(d) (OC)-1.02m (e) (NOC)-1.02m (f) (NOCw/oP)-1.02m

(g) (OC)-1.94m (h) (NOC)-1.94m (i) (NOCw/oP)-1.94m

(j) (OC)-2.39m (k) (NOC)-2.39m (l) (NOCw/oP)-2.39m

Figure 5.17: The figures shows the temperature contours of three cases. The first one is the Optimized Case
(OC) shown in the first column from the left, Non-Optimized Case (NoC) shown in the second column, and
the Non-Optimized Case without perforated Plates (NOCw/oP) shown in the third column. The result planes
are taken at several distances from the raised floor, starting from the raised floor. In OC, as all the design
parameters are optimized, there is not much infiltration of hot air from the sides and sufficient amount of cold
air is supplied till the top of the cabinet (sub-figure (j)). In NOC, there is infiltration of hot air from the sides
and prominent presence of re-circulation regions as the distance increases from the raised floor. Similarly in
NOCw/oP, there is more infiltration of hot air from the sides as compared to the other cases.
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(a) (OC)-5.8m (b) (NOC)-5.8m (c) (NOCw/oP)-5.8m

(d) (OC)-6.8m (e) (NOC)-6.8m (f) (NOCw/oP)-6.8m

(g) (OC)-7.8m (h) (NOC)-7.8m (i) (NOCw/oP)-7.8m

(j) (OC)-8.8m (k) (NOC)-8.8m (l) (NOCw/oP)-8.8m

(m) (OC)-10.8m (n) (NOC)-10.8m (o) (NOCw/oP)-10.8m

(p) (OC)-11.8m (q) (NOC)-11.8m (r) (NOCw/oP)-11.8m

(s) (OC)-12.8m (t) (NOC)-12.8m (u) (NOCw/oP)-12.8m

(v) (OC)-13.79m (w) (NOC)-13.79m (x) (NOCw/oP)-13.79m

Figure 5.18: The figures shows the temperature contours of three cases. The first one is the Optimized Case
(OC) shown in the first column from the left, Non-Optimized Case (NoC) shown in the second column, and the
Non-Optimized Case without perforated Plates (NOCw/oP) shown in the third column. The result planes are
taken at several distance from the wall which is parallel to XY plane, starting from the cabinets present near
the CRAH and till the last cabinet. In OC, the supplied cold air is being optimally used by the cabinets and
there is no wastage of it to the surrounding. In NOC, there is a slight wastage of cold air to the surrounding
and presence of re-circulation regions. In NOCw/oP there is significant amount of cold air being wasted to the
surroundings.
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Thus, it can be stated that the NSGA-II algorithm, along with the neural network are a useful
tool to obtain the optimal set of design parameters of the white space. These tools can be
used to maintain as many servers as possible within the temperature limit of 27∘𝐶. Better
solutions than the stated optimized case can be obtained with the help of these tools (genetic
algorithm and neural networks) by modifying the hyper-parameters of these tools, generating
more training data, and designing a better optimization tool.



6
Conclusion and Recommendations

6.1. Conclusion
The ultimate goal of the study performed in this thesis is to find out the optimized design
parameters of the data center white space, which are required to maintain the server’s inlet
temperature within the ASHRAE recommended temperature range, for a fixed cooling load.
The task of finding these optimum values is done by using CFD simulations, neural networks,
and a genetic algorithm. In the process of finding the optimized design variables, we are going
to check if there is a reduction of the electrical power consumption by the CRAHs for cooling
the servers in the white space. A comparison in terms of the required computational time is
made between the CFD simulations and the combination of a neural network and a genetic
algorithm to find the optimum solution.

Each floor tile should be able to provide the required airflow rate in a specific temperature
range of 25∘𝐶 to 27∘𝐶, needed by a cabinet (containing servers) to maintain the server’s inlet
temperature within the ASHRAE recommended temperature range. It is assumed that a
sufficient uniformly distributed tile flow rate, with the tile airflow supply temperature at 25∘𝐶,
is going to maintain all the server’s inlet temperature in the ASHRAE temperature range.
Perforated plates are introduced in the raised floor to control the tile flow rate. 11 design
variables are considered, which influences the tile flow rate. These are the four perforated
plates in the raised floor, the amount of perforation of these four perforated plates, the distance
of the CRAH from the cabinets, the raised floor height, and the floor tile perforation. It is
assumed that these variables affect the tile flow rate.

The Latin Hypercube Sampling (LHS) technique is used to generate a random combination
of values for the 11 design variables. The corresponding tile flow rates and cabinet inlet
temperatures, for each sample of the 11 design variables, are found from CFD simulations.
6SigmaRoom, a customized CFD software for data center white space simulations, is used.
A simple design of the white space is considered for the CFD simulations. Using the data
obtained from the LHS and CFD simulations, a database is created, which is used to train
the neural networks. The artificial neural network is used to predict the tile flow rate of the
floor tiles and the cabinet’s inlet temperature separately. The results of the neural networks
predicting the tile flow rate are used by the NSGA-II (a variant of the genetic algorithm)
algorithm to find the optimized value of the 11 design variables of the data center white space.

The LHS technique generates a uniform distribution for all the 11 design variables. The CFD
simulations provide a converged solution. In this thesis, the verification of the CFD simulations
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cannot be done as the experimental setup for the same is not available. In order to estimate
the numerical error, a conclusion can be made based on the study done by Athavale et al.
in the paper "Artificial Neural Network Based Prediction of Temperature and Flow Profile
in Data Centers"[42]. The authors used the 6SigmaRoom software to verify their white space
model with their experimental setup. They found that the error for the tile flow rate is less
than 4% and 1.7∘𝐶 for the server inlet temperature. Thus, the errors for the tile flow rate and
server inlet temperature in the white space model, used in this study, can be estimated around
these values.

The predictions by the neural networks for the tile flow rates are with an average 𝑅 accuracy
of 0.97 and prediction error of less than 5%. For the cabinet inlet temperature, it is with
an average 𝑅 accuracy of 0.92 and an prediction error of less than 2∘𝐶. The errors from
the CFD simulation and the neural networks are comparable. Thus, if the neural network
were to predict from experimental data, then it would give nearly the same amount of error as
given by the CFD simulations. The neural network quite accurately predicts the data obtained
from the CFD simulation. The errors of the neural networks can be reduced further if it is
trained on more training data. The tile flow rate neural network is used to create the sample
space for the NSGA-II algorithm as its accuracy is higher than the neural network predicting
the cabinet temperature. The optimized values of the 11 design variables obtained from the
NSGA-II algorithm are verified by plugging in these values into the 6SigmaRoom software and
running the CFD simulation. The distribution of the tile flow rate is obtained from the CFD
simulation and compared with the distribution from the neural network. The error for this
distribution is around 5%.

From the CFD simulation, it is seen in the optimized case that the tile flow rate distribution
is nearly uniform, and more number of servers have their mean inlet temperature between
25∘𝐶 to 27∘𝐶 (within the ASHRAE temperature range), as compared to the non-optimized
cases. There is no wastage of cold air and recirculation zones in the optimized case. From
the 6SigmaRoom software, it is also possible to find the power required to run the fans of the
CRAHs. There is a reduction of electrical power consumed by the CRAHs to cool the white
space, by 10% for the optimized case as compared to the power consumed by the CRAHs in
the non-optimized case.

A HP mobile workstation, with processor specification Intel(R) Core(TM) i7-6820HQ CPU @
2.70GHz and 32.0GB RAM, is used for the running the CFD simulations, the neural networks,
and the genetic algorithm. The CFD software used 4 physical cores. It took on an average of 40
minutes to obtain the converged CFD results. Once the neural network was well trained, it took
less than 1 minute to predict the CFD results. The genetic algorithm took around 10 minutes
to find the optimal solution. Thus in terms of computational time required, the combination
of a neural network and a genetic algorithm takes less time for prediction and optimization,
respectively, as compared to the time required to perform repeated CFD simulations. This
provides an advantage but comes at the cost of the prediction and optimization accuracy.
There is a possibility to use these tools (a neural network and a genetic algorithm) for real-
time prediction and optimization of the temperature and flow fields if their accuracy can be
improved further.

The research performed in this study is preliminary and a proof of concept of the applications
of the neural network and the genetic algorithm in predicting and optimizing the temperature
distribution and flow fields of a data center white space. A more in-depth study needs to
be done to determine how these tools can be implemented at the industry level and work in
synergy with the CFD software.
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6.2. Recommendations
Using the CFD simulation, the neural network, and a genetic algorithm, a study can be done
to find out the optimum number of perforated plates required in the raised floor to maintain
a uniform tile flow rate distribution. A similar study can be done using the CFD, the neural
network, and the genetic algorithm to see the effect of CRAH/CRAC failure on the tile flow
distribution in the white space having perforated plates in the raised floor. An interesting
CFD study can be done to see the effect of the vertically inclined perforated partitions in the
raised floor on the floor tile’s tile flow rate. The prediction accuracy of the neural network
can be improved with more training data and by finding better algorithms to find the hyper-
parameters of the neural network. Sensitivity analysis can be performed to find the relative
importance of the 11 design parameters on the tile flow rate and cabinet temperature. This
can improve the performance of the neural network model. The power consumption by the fans
of the CRAH can also be considered as one of the design parameter for future studies. This
can help in the optimization process and also in the prediction by the neural network. In this
thesis, Python was used to design the neural network using the available libraries. The "Deep
Learning" toolbox in MATLAB can also be used to design the neural network to compare
which software (Python/MATLAB) gives a better design of the neural network. Several other
variants of the genetic algorithm can be explored to obtain the optimized design parameter of
the white-space. In this study, the optimization of the white space layout is done based on
the tile flow rate of the floor tiles. The optimization can also be done depending on the server
inlet temperatures. In this study, the white space modeling was simplified. The complexity
of the white space modeling should be increased by including objects like ducts, cable trays,
power distribution units, etc, which are usually found in the data center white space. Thus
by increasing the complexity of the model, a realistic representation of the data center white
space can be achieved.
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Python Script for Latin Hypercube Sampling Technique
1

2 #Import required Librarys
3 from smt.sampling_methods import LHS
4

5 import pandas as pd
6 from pandas import ExcelWriter
7 import numpy as np
8 from openpyxl import load_workbook
9

10

11 #Load Excel File
12 wb = load_workbook(’./Calculation_for_heat_load.xlsx’)
13 #print(wb.get_sheet_names())
14

15

16 #Load Worksheet from Excel
17 sheet = wb.get_sheet_by_name(’NN_Input_Para’)
18 #sheet.title
19

20

21 #Get Parameter Maximum and Minimum values from Excel
22 Pow_min = sheet[’C4’].value
23 Pow_max = sheet[’D4’].value
24

25 Pos_P1_min = sheet[’C5’].value
26 Pos_P1_max = sheet[’D5’].value
27 Pos_P2_min = sheet[’C6’].value
28 Pos_P2_max = sheet[’D6’].value
29 Pos_P3_min = sheet[’C7’].value
30 Pos_P3_max = sheet[’D7’].value
31 Pos_P4_min = sheet[’C8’].value
32 Pos_P4_max = sheet[’D8’].value
33

34 HP_min = sheet[’C10’].value
35 HP_max = sheet[’D10’].value
36

37 CRAH_dist_min = sheet[’C11’].value
38 CRAH_dist_max = sheet[’D11’].value
39

40 Perf_P1_min = sheet[’C12’].value

79



80 A. Appendix-A

41 Perf_P1_max = sheet[’D12’].value
42 Perf_P2_min = sheet[’C13’].value
43 Perf_P2_max = sheet[’D13’].value
44 Perf_P3_min = sheet[’C14’].value
45 Perf_P3_max = sheet[’D14’].value
46 Perf_P4_min = sheet[’C15’].value
47 Perf_P4_max = sheet[’D15’].value
48 #Perf_P5_min = sheet[’C16’].value
49 #Perf_P5_max = sheet[’D16’].value
50

51 Tile_Perf_min = sheet[’C17’].value
52 Tile_Perf_max = sheet[’D17’].value
53

54

55 # Execute Lattice Hypercube Sampling Method
56 # [Pow_min, Pow_max],
57 xlimits = np.array([[Pos_P1_min, Pos_P1_max],
58 [Pos_P2_min, Pos_P2_max],
59 [Pos_P3_min, Pos_P3_max],
60 [Pos_P4_min, Pos_P4_max],
61 [HP_min, HP_max],
62 [CRAH_dist_min, CRAH_dist_max],
63 [Perf_P1_min, Perf_P1_max],
64 [Perf_P2_min, Perf_P2_max],
65 [Perf_P3_min, Perf_P3_max],
66 [Perf_P4_min, Perf_P4_max],
67 [Tile_Perf_min, Tile_Perf_max]])
68 sampling = LHS(xlimits = xlimits)
69 print(xlimits)
70

71 print(’*********’)
72 N = 500 #Number of Samples
73 x = sampling(N)
74 x = np.round(x,2)
75 print(’*********’)
76 print(x.shape)
77 print(’*********’)
78

79

80 a = 215.28 # Area of the floor in m^2
81 Total_Load = x[:,0]*a # Total IT Load
82 R = 6 # Number of rows
83 Row_Load = np.round((Total_Load/R),2) # IT Load per row
84 Cabinet = 15 # Number of Cabinets
85 Cabinet_Load = np.round((Row_Load/Cabinet),2) # IT Load per Cabinet
86 Servers = 25 # Number of 2U Servers
87 Server_Load = np.round((Cabinet_Load/Servers),2)*1000 # IT Load per Server
88 Height_plate = x[:,4]-0.04 # Height of Plate (mm)
89 Height_plate = Height_plate*1000
90 CRAH_Dist_Origin = 4.8 - 1.04 - x[:,5] # CRAH Distance from Origin
91

92 #Store data in a Excel File
93 # ’Load per Cabinet (kW)’: Cabinet_Load,
94 # ’Load per Server (W)’: Server_Load,
95 # ’Power Dissipation per floor area (kW/m^2)’:x[:,0],
96 # ’CRAH Distance (m)’:x[:,6],
97 df = pd.DataFrame({’Serial Number’:np.linspace(1,N, N),
98 ’Position Plate 1 (m)’:x[:,0],
99 ’Position Plate 2 (m)’:x[:,1],

100 ’Position Plate 3 (m)’:x[:,2],
101 ’Position Plate 4 (m)’:x[:,3],
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102 ’Height of Plenum (m)’: x[:, 4],
103 ’Height of Plates (mm)’: Height_plate,
104 ’Perforation Plate 2 (%)’: x[:, 7],
105 ’Perforation Plate 3 (%)’: x[:, 8],
106 ’Perforation Plate 4 (%)’: x[:, 9],
107 ’Perforation Plate 1 (%)’: x[:, 6],
108 ’Tile Perforation (%)’: x[:, 10],
109 ’ÇRAH Distance from Origin (m)’: CRAH_Dist_Origin,
110 })
111

112 writer = ExcelWriter(’Input499to998.xlsx’) #Latin_Hypercube_Sampling(LHS)
113 df.to_excel(writer,’Sheet1’,index=False)
114 writer.save()

Listing A.1: Latin Hypercube Sampling Technique
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Python Script to find the Neural Network Architecture for Tile Flow
Rate using Genetic Algorithm1

1

2 # Import Libraries
3 from sklearn.model_selection import train_test_split
4 from sklearn.preprocessing import MinMaxScaler
5

6 import numpy as np
7 import pandas as pd
8

9 from keras.models import Sequential
10 from keras.layers import Dense, Dropout
11 from keras.layers import LeakyReLU
12

13 import random
14

15 print(”Passed”)
16

17 #Load Dataset
18 dataset = pd.read_csv(’LessFeatureAnalysis.csv’, sep=’,’)
19

20 # Input Varaibles
21 X = dataset.iloc[: ,0: 11]
22 dataset.iloc[: ,11:41] = dataset.iloc[: ,11:41 ] *0.000472
23

24 # Output Variable
25 Y = dataset.iloc[: ,11:26]
26

27 X_data_columns = X.columns
28 Y_data_columns = Y.columns
29

30

31 test_split = 0.2
32 X_train, X_test, Y_train, Y_test = train_test_split(X, Y , shuffle=True,
33 random_state=9 ,test_size=

test_split)
34

35 Scaler = MinMaxScaler(feature_range=(0, 1))

1The procedure to implement the genetic algorithm to find the hyper-parameters of the neural network is
inspired from the following references [6] and [7].
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36 X_Scaler = Scaler.fit(X_train)
37 X_train1 = X_Scaler.transform(X_train)
38 X_test1 = X_Scaler.transform(X_test)
39

40 X_train1 = pd.DataFrame(data =X_train1, columns = X_data_columns)
41 X_test1 = pd.DataFrame(data =X_test1, columns = X_data_columns)
42

43 #Round to 2 decimal place
44 X_train1 = X_train1.round(2)
45 X_test1 = X_test1.round(2)
46

47 Y_train = Y_train.round(2)
48 Y_test = Y_test.round(2)
49

50 population = 20 # Population of each generation
51 generations = 10 # Number of Generations
52

53 threshold = 0.99 # Validation accuracy threshold
54 epochs = 10000
55 chance_to_mutate = 0.05 # Chances of mutation
56 fit_chromosomes = 0.25 # Number of fit chromosomes to take
57 feable_chromosomes = 0.15 # Number of unfit chromosomes to take
58 chromosomes_to_mutate = 1 - fit_chromosomes - feable_chromosomes
59

60

61 def r_square(y_true, y_pred):
62 from keras import backend as Ks
63 SS_res = Ks.sum(Ks.square(y_true - y_pred))
64 SS_tot = Ks.sum(Ks.square(y_true - Ks.mean(y_true)))
65 return (1 - SS_res / (SS_tot + Ks.epsilon()))
66

67

68 def serve_model( units1, dr1, units2, dr2,
69 xtrain, ytrain, xtest, ytest,
70 batch_size, summary=False):
71

72 print(” Units1: ”+str(units1)+” Dr1: ”+str(dr1)+
73 ” Units2: ”+str(units2)+” Dr2: ”+str(dr2)+
74 ” Batch_size: ”+str(batch_size))
75 #adam = optimizers.adam(lr=lr)
76 model = Sequential()
77 model.add(Dense(units1, input_shape=[11,]))
78 model.add(LeakyReLU())
79 model.add(Dropout(dr1))
80 model.add(Dense(units2))
81 model.add(LeakyReLU())
82 model.add(Dropout(dr2))
83 model.add(Dense(15, activation=’linear’))
84 model.compile(loss=’mean_squared_error’, optimizer=’adam’, metrics=[r_square])
85 if summary:
86 model.summary()
87

88 model.fit(xtrain, ytrain, batch_size=batch_size, epochs=epochs,
89 validation_data=(xtest, ytest), shuffle=True, verbose=0)
90

91 return model
92

93 class Network():
94 def __init__(self):
95

96 #self._layers = np.random.choice([1,2,3,4,5])
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97 self._units1 = np.random.randint(1, 500)
98 self._units2 = np.random.randint(1, 500)
99 self._dr1 = np.random.random()

100 self._dr2 = np.random.random()
101

102 #self._lr = random.choice([0.001, 0.0001, 0.00001])
103 self._batch_size = random.choice([4,8,16,32, 64, 128])
104 self._accuracy = 0
105

106 def init_hyperparams(self):
107 hyperparams = {
108 #’layers’ :self._layers
109 ’units1’ : self._units1,
110 ’dr1’ : self._dr1,
111 ’units2’ : self._units2,
112 ’dr2’ : self._dr2,
113 #’lr’ : self._lr,
114 ’batch_size’: self._batch_size
115 }
116 return hyperparams
117

118 def init_networks(population):
119 print(”initialize”)
120 return [Network() for _ in range(population)]
121

122 def fitness(networks):
123 print(”fitness”)
124 for network in networks:
125 hyperparams = network.init_hyperparams()
126 #layers = hyperparams[’layers’]
127 units1 = hyperparams[’units1’]
128 dr1 = hyperparams[’dr1’]
129 units2 = hyperparams[’units2’]
130 dr2 = hyperparams[’dr2’]
131 #lr = hyperparams[’lr’]
132 batch_size = hyperparams[’batch_size’]
133 try:
134 model = serve_model( units1, dr1, units2, dr2,
135 X_train1, Y_train, X_test1,
136 Y_test, batch_size)
137 accuracy = model.evaluate(X_test1, Y_test, verbose=0)[1]
138 network._accuracy = accuracy
139 print(’Accuracy: {}’.format(network._accuracy))
140 except:
141 network._accuracy = 0
142 print(’Build failed.’)
143

144 return networks
145

146 def selection(networks):
147 print(”Selection”)
148 networks = sorted(networks, key=lambda network: network._accuracy, reverse=

True)
149 temp = networks
150 networks = networks[:int(fit_chromosomes * len(networks))]
151 print(”Top Selection: ”, len(networks))
152

153 lower_rank = random.sample(population=temp[int(fit_chromosomes * len(temp)):],
k=int(feable_chromosomes*len(temp)))

154 networks.extend(lower_rank)
155 print(”Low Selection: ”, len(networks))
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156 return networks
157

158 def crossover(networks):
159 print(”crossover”)
160 offspring = []
161 print(”Number of babies to produce: ”, int((population - len(networks))))
162 while len(offspring) < int((population - len(networks))):
163 length = len(networks)-1
164 male = random.randint(0, length)
165 female = random.randint(0, length)
166

167 if male !=female:
168 male = networks[male]
169 female = networks[female]
170

171 child1 = Network()
172 child2 = Network()
173

174 child1._units1 = male._units1
175 child1._dr1 = female._dr1
176 child1._units2 = male._units2
177 child1._dr2 = female._dr2
178 #child1._lr = female._lr
179 child1._batch_size = male._batch_size
180 offspring.append(child1)
181

182 child2._units1 = female._units1
183 child2._dr1 = male._dr1
184 child2._units2 = female._units2
185 child2._dr2 = male._dr2
186 #child2._lr = male._lr
187 child2._batch_size = female._batch_size
188 offspring.append(child2)
189

190 networks.extend(offspring)
191 print(”crossover: ”, len(networks))
192 return networks
193

194 def mutate(networks):
195 print(”mutate”)
196

197 mutate_network = random.sample(population=list(enumerate(networks[int(
chromosomes_to_mutate * len(networks))-1:])),

198 k=int(chance_to_mutate * len(networks)))
199 for index, network in mutate_network:
200 print(”Index: ”, index)
201 print(”****************************************************************”)
202 print(network)
203 print(”****************************************************************”)
204 hyperpara = network.init_hyperparams()
205 mutation = random.choice(list(hyperpara.keys()))
206

207 if mutation == ’units1’:
208 print(”units1”)
209 network._units1 = hyperpara[mutation]
210 elif mutation == ’dr1’:
211 print(”dr1”)
212 network._dr1 = hyperpara[mutation]
213 elif mutation == ’units2’:
214 print(”units2”)
215 network._units2 = hyperpara[mutation]
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216 elif mutation == ’dr2’:
217 print(”dr2”)
218 network._dr2 = hyperpara[mutation]
219 # elif mutation == ’lr’:
220 # print(”lr”)
221 # network._lr = hyperpara[mutation]
222 elif mutation ==’batch_size’:
223 print(”batch_size”)
224 network._batch_size = hyperpara[mutation]
225

226 networks[index+8] = network
227 print(networks[index])
228 return networks
229

230 def main():
231 networks = init_networks(population)
232

233 for gen in range(generations):
234 print(’Generation {}’.format(gen + 1))
235

236 networks = fitness(networks)
237 networks = selection(networks)
238 networks = crossover(networks)
239 networks = mutate(networks)
240

241 for network in networks:
242 if network._accuracy > threshold:
243 print(’Threshold met’)
244 print(network.init_hyperparams())
245 print(’Best accuracy: {}’.format(network._accuracy))
246 exit(0)
247

248 networks = sorted(networks, key=lambda network: network._accuracy, reverse=
True)

249 for network in networks:
250 print(”****************************************************************”)
251 print(”Hyperparameters: ”)
252 print(network.init_hyperparams())
253 print(”Accuracy : {}”.format(network._accuracy))
254 print(”****************************************************************”)
255

256 if __name__ == ’__main__’:
257 main()

Listing B.1: Neural Network Architecture for Tile Flow Rate using Genetic Algorithm.
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Python Script to find the Neural Network Architecture for Cabinet
Temperature using Genetic Algorithm1

1

2 # Import Libraries
3

4 from sklearn.model_selection import train_test_split
5 from sklearn.preprocessing import StandardScaler
6 from sklearn.preprocessing import MinMaxScaler
7

8 import numpy as np
9 import pandas as pd

10

11 from keras.models import Sequential
12 from keras.layers import Dense, Dropout
13 from keras import optimizers
14 from keras.layers import LeakyReLU
15

16 import random
17

18 print(”Passed”)
19

20 #Load Dataset
21 dataset = pd.read_csv(’LessCabinetTemp-II.csv’, sep=’,’)
22

23 # Input Varaibles
24 X = dataset.iloc[: ,0: 11]
25 dataset.iloc[: ,11:41] = dataset.iloc[: ,11:41 ] *0.000472
26

27 # Output Variable
28 Y = dataset.iloc[: ,56:71]
29

30 X_data_columns = X.columns
31 Y_data_columns = Y.columns
32

33 Scaler = MinMaxScaler(feature_range=(0, 1))
34 # X_Scaler = Scaler.fit(X_train)
35 # X_train1 = X_Scaler.transform(X_train)
36 X1 = Scaler.fit_transform(X)

1The procedure to implement the genetic algorithm to find the hyper-parameters of the neural network is
inspired from the following references [6] and [7].

89



90 C. Appendix-C

37 #Y1 = Scaler.fit_transform(Y)
38

39 test_split = 0.2
40 X_train, X_test, Y_train, Y_test = train_test_split(X1, Y , shuffle=True,
41 random_state=9 ,test_size=

test_split)
42

43 # Scaler = MinMaxScaler(feature_range=(0, 1))
44 # X_Scaler = Scaler.fit(X_train)
45 # X_train1 = X_Scaler.transform(X_train)
46 # X_test1 = X_Scaler.transform(X_test)
47

48 #Normalize Y
49 # Standard_Scaler = StandardScaler()
50 # Y_Standard = Standard_Scaler.fit(Y_train)
51 # Y_train1 = Y_Standard.transform(Y_train)
52 # Y_test1 = Y_Standard.transform(Y_test)
53

54 X_train1 = pd.DataFrame(data =X_train, columns = X_data_columns)
55 X_test1 = pd.DataFrame(data =X_test, columns = X_data_columns)
56

57 Y_train1 = pd.DataFrame(data=Y_train, columns=Y_data_columns)
58 Y_test1 = pd.DataFrame(data=Y_test, columns=Y_data_columns)
59

60 #Round to 2 decimal place
61 # X_train1 = X_train1.round(2)
62 # X_test1 = X_test1.round(2)
63

64 # Y_train = Y_train.round(2)
65 # Y_test = Y_test.round(2)
66

67 population = 20 # Population of each generation
68 generations = 10 # Number of Generations
69

70 threshold = 0.95 # Validation accuracy threshold
71 epochs = 5000
72 chance_to_mutate = 0.05 # Chances of mutation
73 fit_chromosomes = 0.25 # Number of fit chromosomes to take
74 feable_chromosomes = 0.15 # Number of unfit chromosomes to take
75

76 # Choose from the set to child population for mutation
77 chromosomes_to_mutate = 1 - fit_chromosomes - feable_chromosomes
78

79

80 def r_square(y_true, y_pred):
81 from keras import backend as Ks
82 SS_res = Ks.sum(Ks.square(y_true - y_pred))
83 SS_tot = Ks.sum(Ks.square(y_true - Ks.mean(y_true)))
84 return (1 - SS_res / (SS_tot + Ks.epsilon()))
85

86

87

88 def serve_model( units1, dr1,units2, dr2, units3, dr3,units4, dr4,
89 lr, xtrain, ytrain, xtest, ytest, batch_size, summary=False):
90

91 print(” Units1: ”+str(units1)+” Dr1: ”+str(dr1)+” Units2: ”+str(units2)+”
Dr2: ”+str(dr2)+

92 ” Units3: ”+str(units3)+” Dr3: ”+str(dr3)+” Units4: ”+str(units4)+”
Dr4: ”+str(dr4)+

93 ” Lr: ”+str(lr)+” Batch_size: ”+str(batch_size))
94 adam = optimizers.adam(lr=lr)
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95 model = Sequential()
96 model.add(Dense(units1, input_shape=[11,]))
97 model.add(LeakyReLU())
98 model.add(Dropout(dr1))
99 model.add(Dense(units2))

100 model.add(LeakyReLU())
101 model.add(Dropout(dr2))
102 model.add(Dense(units3))
103 model.add(LeakyReLU())
104 model.add(Dropout(dr3))
105 model.add(Dense(units4))
106 model.add(LeakyReLU())
107 model.add(Dropout(dr4))
108 model.add(Dense(15, activation=’linear’))
109 model.compile(loss=’mean_squared_error’, optimizer=adam, metrics=[r_square])
110 if summary:
111 model.summary()
112

113 model.fit(xtrain, ytrain, batch_size=batch_size, epochs=epochs,
114 validation_data=(xtest, ytest), shuffle=True, verbose=0)
115

116 return model
117

118

119 class Network():
120 def __init__(self):
121

122 #self._layers = np.random.choice([1,2,3,4,5])
123 self._units1 = np.random.randint(1, 500)
124 self._units2 = np.random.randint(1, 500)
125 self._units3 = np.random.randint(1, 500)
126 self._units4 = np.random.randint(1, 500)
127

128 self._dr1 = np.random.random()
129 self._dr2 = np.random.random()
130 self._dr3 = np.random.random()
131 self._dr4 = np.random.random()
132

133 self._lr = random.choice([0.001, 0.0005, 0.0001, 0.00001])
134 self._batch_size = random.choice([4, 8, 16, 32, 64, 128, 256])
135

136 self._accuracy = 0
137

138 def init_hyperparams(self):
139 hyperparams = {
140 #’layers’ :self._layers
141 ’units1’ : self._units1,
142 ’dr1’ : self._dr1,
143 ’units2’ : self._units2,
144 ’dr2’ : self._dr2,
145 ’units3’ : self._units3,
146 ’dr3’ : self._dr3,
147 ’units4’ : self._units4,
148 ’dr4’ : self._dr4,
149 ’lr’ : self._lr,
150 ’batch_size’: self._batch_size
151 }
152 return hyperparams
153

154

155 def init_networks(population):
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156 print(”initialize”)
157 return [Network() for _ in range(population)]
158

159

160 def fitness(networks):
161 print(”fitness”)
162 for network in networks:
163 hyperparams = network.init_hyperparams()
164 #layers = hyperparams[’layers’]
165 units1 = hyperparams[’units1’]
166 dr1 = hyperparams[’dr1’]
167 units2 = hyperparams[’units2’]
168 dr2 = hyperparams[’dr2’]
169 units3 = hyperparams[’units3’]
170 dr3 = hyperparams[’dr3’]
171 units4 = hyperparams[’units4’]
172 dr4 = hyperparams[’dr4’]
173 lr = hyperparams[’lr’]
174 batch_size = hyperparams[’batch_size’]
175 try:
176 model = serve_model( units1, dr1, units2, dr2,
177 units3, dr3, units4, dr4,
178 lr, X_train1, Y_train1,
179 X_test1, Y_test1, batch_size)
180 accuracy = model.evaluate(X_test1, Y_test1, verbose=0)[1]
181 network._accuracy = accuracy
182 print(’Accuracy: {}’.format(network._accuracy))
183 except:
184 network._accuracy = 0
185 print(’Build failed.’)
186

187 return networks
188

189

190 def selection(networks):
191 print(”Selection”)
192 networks = sorted(networks, key=lambda network: network._accuracy, reverse=

True)
193 temp = networks
194 networks = networks[:int(fit_chromosomes * len(networks))]
195 print(”Top Selection: ”, len(networks))
196

197 lower_rank = random.sample(population=temp[int(fit_chromosomes * len(temp)):],
k=int(feable_chromosomes*len(temp)))

198

199 networks.extend(lower_rank)
200 print(”Low Selection: ”, len(networks))
201 return networks
202

203

204 def crossover(networks):
205 print(”crossover”)
206 offspring = []
207 print(”Number of babies to produce: ”, int((population - len(networks))))
208 while len(offspring) < int((population - len(networks))):
209 length = len(networks)-1
210 male = random.randint(0, length)
211 female = random.randint(0, length)
212

213 if male !=female:
214 male = networks[male]
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215 female = networks[female]
216

217 child1 = Network()
218 child2 = Network()
219

220 child1._units1 = male._units1
221 child1._dr1 = male._dr1
222 child1._units2 = male._units2
223 child1._dr2 = male._dr2
224 child1._units3 = male._units3
225

226 child1._dr3 = female._dr3
227 child1._units4 = female._units4
228 child1._dr4 = female._dr4
229 child1._lr = female._lr
230 child1._batch_size = female._batch_size
231 offspring.append(child1)
232

233 child2._units1 = female._units1
234 child2._dr1 = female._dr1
235 child2._units2 = female._units2
236 child2._dr2 = female._dr2
237 child2._units3 = female._units3
238

239 child2._dr3 = male._dr3
240 child2._units4 = male._units4
241 child2._dr4 = male._dr4
242 child2._lr = male._lr
243 child2._batch_size = male._batch_size
244 offspring.append(child2)
245

246 networks.extend(offspring)
247 print(”crossover: ”, len(networks))
248 return networks
249

250 def mutate(networks):
251 print(”mutate”)
252

253 mutate_network = random.sample(population=list(enumerate(networks[int(
chromosomes_to_mutate * len(networks))-1:])),

254 k=int(chance_to_mutate * len(networks)))
255 for index, network in mutate_network:
256 print(”Index: ”, index)
257 print(”****************************************************************”)
258 print(network)
259 print(”****************************************************************”)
260 hyperpara = network.init_hyperparams()
261 mutation = random.choice(list(hyperpara.keys()))
262

263 if mutation == ’units1’:
264 print(”units1”)
265 network._units1 = hyperpara[mutation]
266 elif mutation == ’dr1’:
267 print(”dr1”)
268 network._dr1 = hyperpara[mutation]
269 elif mutation == ’units2’:
270 print(”units2”)
271 network._units2 = hyperpara[mutation]
272 elif mutation == ’dr2’:
273 print(”dr2”)
274 network._dr2 = hyperpara[mutation]
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275 elif mutation == ’units3’:
276 print(”units3”)
277 network._units3 = hyperpara[mutation]
278 elif mutation == ’dr3’:
279 print(”dr3”)
280 network._dr3 = hyperpara[mutation]
281 elif mutation == ’units4’:
282 print(”units4”)
283 network._units4 = hyperpara[mutation]
284 elif mutation == ’dr4’:
285 print(”dr4”)
286 network._dr4 = hyperpara[mutation]
287 elif mutation == ’lr’:
288 print(”lr”)
289 network._lr = hyperpara[mutation]
290 elif mutation ==’batch_size’:
291 print(”batch_size”)
292 network._batch_size = hyperpara[mutation]
293

294 networks[index+8] = network
295 print(networks[index])
296 return networks
297

298 def main():
299 networks = init_networks(population)
300

301 for gen in range(generations):
302 print(’Generation {}’.format(gen + 1))
303

304 networks = fitness(networks)
305 networks = selection(networks)
306 networks = crossover(networks)
307 networks = mutate(networks)
308

309 for network in networks:
310 if network._accuracy > threshold:
311 print(’Threshold met’)
312 print(network.init_hyperparams())
313 print(’Best accuracy: {}’.format(network._accuracy))
314 exit(0)
315

316 networks = sorted(networks, key=lambda network: network._accuracy, reverse=
True)

317 for network in networks:
318 print(”****************************************************************”)
319 print(”Hyperparameters: ”)
320 print(network.init_hyperparams())
321 print(”Accuracy : {}”.format(network._accuracy))
322 print(”****************************************************************”)
323

324

325 if __name__ == ’__main__’:
326 main()

Listing C.1: Neural Network Architecture for Cabinet Temperature using Genetic Algorithm
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Python Script for the Neural Network Predicting the Tileflow Rate
of Row X

1

2 # Import Libraries
3

4 from sklearn.model_selection import train_test_split
5 from sklearn.preprocessing import MinMaxScaler
6

7 import pandas as pd
8 import matplotlib.pyplot as plt
9

10 from keras.models import Sequential
11 from keras.layers import Dense, Dropout
12 from keras import optimizers
13 from keras.layers import LeakyReLU
14 from keras.callbacks import ModelCheckpoint
15 print(”Passed”)
16

17 #Load Dataset
18 dataset = pd.read_csv(’LessFeatureAnalysis.csv’, sep=’,’)
19

20 # Input Varaibles
21 X = dataset.iloc[: ,0: 11]
22 dataset.iloc[: ,11:41] = dataset.iloc[: ,11:41 ] *0.000472
23

24 # Output Variable
25 Y = dataset.iloc[: ,11:26]
26

27 X_data_columns = X.columns
28 Y_data_columns = Y.columns
29

30 Scaler = MinMaxScaler(feature_range=(0, 1))
31 X1 = Scaler.fit_transform(X)
32

33 test_split = 0.2
34 X_train, X_test, Y_train, Y_test = train_test_split(X1, Y , shuffle=True,
35 random_state=9 ,test_size=

test_split)
36

37

38 X_train1 = pd.DataFrame(data =X_train, columns = X_data_columns)
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39 X_test1 = pd.DataFrame(data =X_test, columns = X_data_columns)
40

41 Y_train1 = pd.DataFrame(data =Y_train, columns = Y_data_columns)
42 Y_test1 = pd.DataFrame(data =Y_test, columns = Y_data_columns)
43

44 # coefficient of determination (R^2) for regression
45 def r_square(y_true, y_pred):
46 from keras import backend as Ks
47 SS_res = Ks.sum(Ks.square(y_true - y_pred))
48 SS_tot = Ks.sum(Ks.square(y_true - Ks.mean(y_true)))
49 return (1 - SS_res / (SS_tot + Ks.epsilon()))
50

51 n_batchsize = 128 # Size of each batch 64
52 lr = 0.0005 # Learning rate for optimizer
53

54 epochs = 100000 # No. of each epochs
55 verbose = 2 # Type of display of the accuracy and loss of the

network
56

57 def NN_baseline(epochs, lr):
58 adam = optimizers.adam(lr=lr)
59

60 model = Sequential([
61

62 Dense(236, input_shape=(11,)),
63 LeakyReLU(),
64 Dropout(0.29780690374246566),
65 Dense(188),
66 LeakyReLU(),
67 Dropout(0.0054370255928052336),
68

69 Dense(15, activation=’linear’)
70 ])
71

72 model.compile(loss=’mean_squared_error’, optimizer=adam, metrics=[r_square])
73

74 # Checkpoint
75 filepath = ”Tile-X.best.hdf5”
76 checkpoint = ModelCheckpoint(filepath, monitor=’val_r_square’, verbose=1,

save_best_only=True, mode=’max’)
77 callbacks_list = [checkpoint]
78 history = model.fit(X_train1, Y_train1, epochs=epochs, batch_size=

n_batchsize,
79 validation_data=(X_test1, Y_test1), shuffle=True,

verbose=verbose,
80 callbacks=callbacks_list)
81

82 return model, history
83

84

85 model, history = NN_baseline(epochs, lr)
86 print(model.summary())
87

88 plt.figure(1)
89 plt.plot(history.history[’r_square’])
90 plt.plot(history.history[’val_r_square’])
91 plt.title(’Accuracy (Row X)- Tile Flow Rate $[m^3/s]$’)
92 plt.ylabel(’Accuracy $[R^2]$’)
93 plt.xlabel(’Epochs’)
94 plt.ylim(0, 1)
95 plt.legend([’Train’, ’Test’], loc=’lower right’)
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96 plt.grid()
97

98 plt.figure(2)
99 plt.plot(history.history[’loss’])

100 plt.plot(history.history[’val_loss’])
101 plt.title(’Loss (Row X)- Tile Flow Rate $[m^3/s]$’)
102 plt.ylabel(’Loss $[MSE]$’)
103 plt.xlabel(’Epochs’)
104 plt.legend([’Train’, ’Test’], loc=’upper right’)
105 plt.grid()
106 plt.show()

Listing D.1: (Row X) - Tile Flow Rate Prediction





E
Appendix-E

Python Script for the Neural Network Predicting the Tileflow Rate
of Row Y

1

2 # Import Libraries
3 from sklearn.model_selection import train_test_split
4 from sklearn.preprocessing import MinMaxScaler
5

6 import pandas as pd
7 import matplotlib.pyplot as plt
8

9 from keras.models import Sequential
10 from keras.layers import Dense, Dropout
11 from keras import optimizers
12 from keras.layers import LeakyReLU
13 from keras.callbacks import ModelCheckpoint
14 print(”Passed”)
15

16 #Load Dataset
17 dataset = pd.read_csv(’LessFeatureAnalysis.csv’, sep=’,’)
18

19 # Input Varaibles
20 X = dataset.iloc[: ,0: 11]
21 dataset.iloc[: ,11:41] = dataset.iloc[: ,11:41 ] *0.000472
22

23 # Output Variable
24 Y = dataset.iloc[: ,26:41]
25

26 X_data_columns = X.columns
27 Y_data_columns = Y.columns
28

29 Scaler = MinMaxScaler(feature_range=(0, 1))
30 X1 = Scaler.fit_transform(X)
31

32 test_split = 0.2
33 X_train, X_test, Y_train, Y_test = train_test_split(X1, Y , shuffle=True,
34 random_state=9 ,test_size=

test_split)
35

36

37 X_train1 = pd.DataFrame(data =X_train, columns = X_data_columns)
38 X_test1 = pd.DataFrame(data =X_test, columns = X_data_columns)
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39

40 Y_train1 = pd.DataFrame(data =Y_train, columns = Y_data_columns)
41 Y_test1 = pd.DataFrame(data =Y_test, columns = Y_data_columns)
42

43 # coefficient of determination (R^2) for regression
44 def r_square(y_true, y_pred):
45 from keras import backend as Ks
46 SS_res = Ks.sum(Ks.square(y_true - y_pred))
47 SS_tot = Ks.sum(Ks.square(y_true - Ks.mean(y_true)))
48 return (1 - SS_res / (SS_tot + Ks.epsilon()))
49

50 n_batchsize = 128 # Size of each batch 64
51 lr = 0.0005 # Learning rate for optimizer
52

53 epochs = 100000 # No. of each epochs
54 verbose = 2 # Type of display of the accuracy and loss of the

network
55

56 def NN_baseline(epochs, lr):
57 adam = optimizers.adam(lr=lr)
58

59 model = Sequential([
60

61 Dense(236, input_shape=(11,)),
62 LeakyReLU(),
63 Dropout(0.29780690374246566),
64 Dense(188),
65 LeakyReLU(),
66 Dropout(0.0054370255928052336),
67

68 Dense(15, activation=’linear’)
69 ])
70

71 model.compile(loss=’mean_squared_error’, optimizer=adam, metrics=[r_square])
72

73 # Checkpoint
74 filepath = ”Tile-Y.best.hdf5”
75 checkpoint = ModelCheckpoint(filepath, monitor=’val_r_square’, verbose=1,

save_best_only=True, mode=’max’)
76 callbacks_list = [checkpoint]
77 history = model.fit(X_train1, Y_train1, epochs=epochs, batch_size=

n_batchsize,
78 validation_data=(X_test1, Y_test1), shuffle=True,

verbose=verbose,
79 callbacks=callbacks_list)
80

81 return model, history
82

83 model, history = NN_baseline(epochs, lr)
84 print(model.summary())
85

86 plt.figure(1)
87 plt.plot(history.history[’r_square’])
88 plt.plot(history.history[’val_r_square’])
89 plt.title(’Accuracy (Row Y)- Tile Flow Rate $[m^3/s]$’)
90 plt.ylabel(’Accuracy $[R^2]$’)
91 plt.xlabel(’Epochs’)
92 plt.ylim(0, 1)
93 plt.legend([’Train’, ’Test’], loc=’lower right’)
94 plt.grid()
95
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96 plt.figure(2)
97 plt.plot(history.history[’loss’])
98 plt.plot(history.history[’val_loss’])
99 plt.title(’Loss (Row Y)- Tile Flow Rate $[m^3/s]$’)

100 plt.ylabel(’Loss $[MSE]$’)
101 plt.xlabel(’Epochs’)
102 plt.legend([’Train’, ’Test’], loc=’upper right’)
103 plt.grid()
104 plt.show()

Listing E.1: (Row Y) - Tile Flow Rate Prediction
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Python Script for the Neural Network Predicting the Cabinet Tem-
perature of Row W

1

2 # Import Libraries
3 from sklearn.model_selection import train_test_split
4 from sklearn.preprocessing import MinMaxScaler
5

6 import pandas as pd
7 import matplotlib.pyplot as plt
8

9 from keras.models import Sequential
10 from keras.layers import Dense, Dropout
11 from keras import optimizers
12 from keras.layers import LeakyReLU
13

14 from keras.callbacks import ModelCheckpoint
15

16 print(”Passed”)
17

18 #Load Dataset
19 dataset = pd.read_csv(’LessFeatureAnalysis.csv’, sep=’,’)
20

21 # Input Varaibles
22 X = dataset.iloc[: ,0: 11]
23 dataset.iloc[: ,11:41] = dataset.iloc[: ,11:41 ] *0.000472
24

25 # Output Variable
26 Y = dataset.iloc[: ,41:56]
27

28 X_data_columns = X.columns
29 Y_data_columns = Y.columns
30

31 Scaler = MinMaxScaler(feature_range=(0, 1))
32 X1 = Scaler.fit_transform(X)
33

34 test_split = 0.2
35 X_train, X_test, Y_train, Y_test = train_test_split(X1, Y , shuffle=True,
36 random_state=9 ,test_size=

test_split)
37

38 X_train1 = pd.DataFrame(data =X_train, columns = X_data_columns)
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39 X_test1 = pd.DataFrame(data =X_test, columns = X_data_columns)
40

41 Y_train1 = pd.DataFrame(data=Y_train, columns=Y_data_columns)
42 Y_test1 = pd.DataFrame(data=Y_test, columns=Y_data_columns)
43

44 # coefficient of determination (R^2) for regression
45 def r_square(y_true, y_pred):
46 from keras import backend as Ks
47 SS_res = Ks.sum(Ks.square(y_true - y_pred))
48 SS_tot = Ks.sum(Ks.square(y_true - Ks.mean(y_true)))
49 return (1 - SS_res / (SS_tot + Ks.epsilon()))
50

51 n_batchsize = 128 # Size of each batch
52 lr = 0.0005 # Learning rate for optimizer
53 epochs = 50000 # No. of each epochs
54 verbose = 2 # Type of display of the accuracy and loss of the

network
55

56 def NN_baseline(epochs, lr):
57 adam = optimizers.adam(lr=lr)
58 adamax = optimizers.adamax(lr=0.002)
59 model = Sequential([
60

61 Dense(236, input_shape=(11,)),
62 LeakyReLU(),
63 Dropout(0.29780690374246566),
64 Dense(250),
65 LeakyReLU(),
66 Dropout(0.1),
67 Dense(300),
68 LeakyReLU(),
69 Dropout(0.1),
70 Dense(15, activation=’linear’)
71 ])
72

73 model.compile(loss=’mean_absolute_error’, optimizer=adam, metrics=[r_square])
74

75 # Checkpoint
76 filepath = ”Cabinet-W.best.hdf5”
77

78 checkpoint = ModelCheckpoint(filepath, monitor=’val_r_square’, verbose=1,
save_best_only=True, mode=’max’)

79 callbacks_list = [checkpoint]
80 history = model.fit(X_train1, Y_train1, epochs=epochs, batch_size=

n_batchsize,
81 validation_data=(X_test1, Y_test1), shuffle=True,

verbose=verbose,
82 callbacks=callbacks_list)
83

84 return model, history
85

86 model, history = NN_baseline(epochs, lr)
87 print(model.summary())
88

89 plt.figure(1)
90 plt.plot(history.history[’r_square’])
91 plt.plot(history.history[’val_r_square’])
92 plt.title(’Accuracy (Row W)- Cabinet Temperature $[^o C]$’)
93 plt.ylabel(’Accuracy $[R^2]$’)
94 plt.xlabel(’Epochs’)
95 plt.ylim(0, 1)
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96 plt.legend([’Train’, ’Test’], loc=’lower right’)
97 plt.grid()
98

99 plt.figure(2)
100 plt.plot(history.history[’loss’])
101 plt.plot(history.history[’val_loss’])
102 plt.title(’Loss (Row W)- Cabinet Temperature $[^o C]$’)
103 plt.ylabel(’Loss $[MSE]$’)
104 plt.xlabel(’Epochs’)
105 plt.legend([’Train’, ’Test’], loc=’upper right’)
106 plt.grid()
107 plt.show()

Listing F.1: (Row W) - Cabinet Temperature Prediction
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Python Script for the Neural Network Predicting the Cabinet Tem-
perature of Row Z

1

2 # Import Libraries
3 from sklearn.model_selection import train_test_split
4 from sklearn.preprocessing import MinMaxScaler
5

6 import pandas as pd
7 import matplotlib.pyplot as plt
8

9 from keras.models import Sequential
10 from keras.layers import Dense, Dropout
11 from keras import optimizers
12 from keras.layers import LeakyReLU
13

14 from keras.callbacks import ModelCheckpoint
15

16 print(”Passed”)
17

18 #Load Dataset
19 dataset = pd.read_csv(’LessFeatureAnalysis.csv’, sep=’,’)
20

21 # Input Varaibles
22 X = dataset.iloc[: ,0: 11]
23 dataset.iloc[: ,11:41] = dataset.iloc[: ,11:41 ] *0.000472
24

25 # Output Variable
26 Y = dataset.iloc[: ,56:71]
27

28 X_data_columns = X.columns
29 Y_data_columns = Y.columns
30

31 Scaler = MinMaxScaler(feature_range=(0, 1))
32 X1 = Scaler.fit_transform(X)
33

34 test_split = 0.2
35 X_train, X_test, Y_train, Y_test = train_test_split(X1, Y , shuffle=True,
36 random_state=9 ,test_size=

test_split)
37

38 X_train1 = pd.DataFrame(data =X_train, columns = X_data_columns)
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39 X_test1 = pd.DataFrame(data =X_test, columns = X_data_columns)
40

41 Y_train1 = pd.DataFrame(data=Y_train, columns=Y_data_columns)
42 Y_test1 = pd.DataFrame(data=Y_test, columns=Y_data_columns)
43

44 # coefficient of determination (R^2) for regression
45 def r_square(y_true, y_pred):
46 from keras import backend as Ks
47 SS_res = Ks.sum(Ks.square(y_true - y_pred))
48 SS_tot = Ks.sum(Ks.square(y_true - Ks.mean(y_true)))
49 return (1 - SS_res / (SS_tot + Ks.epsilon()))
50

51 n_batchsize = 128 # Size of each batch
52 lr = 0.0005 # Learning rate for optimizer
53 epochs = 50000 # No. of each epochs
54 verbose = 2 # Type of display of the accuracy and loss of the

network
55

56 def NN_baseline(epochs, lr):
57 adam = optimizers.adam(lr=lr)
58 adamax = optimizers.adamax(lr=0.002)
59 model = Sequential([
60

61 Dense(236, input_shape=(11,)),
62 LeakyReLU(),
63 Dropout(0.29780690374246566),
64 Dense(250),
65 LeakyReLU(),
66 Dropout(0.1),
67 Dense(300),
68 LeakyReLU(),
69 Dropout(0.1),
70 Dense(15, activation=’linear’)
71 ])
72

73 model.compile(loss=’mean_absolute_error’, optimizer=adam, metrics=[r_square])
74

75 # Checkpoint
76 filepath = ”Cabinet-Z.best.hdf5”
77

78 checkpoint = ModelCheckpoint(filepath, monitor=’val_r_square’, verbose=1,
save_best_only=True, mode=’max’)

79 callbacks_list = [checkpoint]
80 history = model.fit(X_train1, Y_train1, epochs=epochs, batch_size=

n_batchsize,
81 validation_data=(X_test1, Y_test1), shuffle=True,

verbose=verbose,
82 callbacks=callbacks_list)
83

84 return model, history
85

86 model, history = NN_baseline(epochs, lr)
87 print(model.summary())
88

89 plt.figure(1)
90 plt.plot(history.history[’r_square’])
91 plt.plot(history.history[’val_r_square’])
92 plt.title(’Accuracy (Row Z)- Cabinet Temperature $[^o C]$’)
93 plt.ylabel(’Accuracy $[R^2]$’)
94 plt.xlabel(’Epochs’)
95 plt.ylim(0, 1)
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96 plt.legend([’Train’, ’Test’], loc=’lower right’)
97 plt.grid()
98

99 plt.figure(2)
100 plt.plot(history.history[’loss’])
101 plt.plot(history.history[’val_loss’])
102 plt.title(’Loss (Row Z)- Cabinet Temperature $[^o C]$’)
103 plt.ylabel(’Loss $[MSE]$’)
104 plt.xlabel(’Epochs’)
105 plt.legend([’Train’, ’Test’], loc=’upper right’)
106 plt.grid()
107 plt.show()

Listing G.1: (Row Z) - Cabinet Temperature Prediction
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Python Script for Non-Dominated Sorting Genetic Algorithm-II to
find the Optimum Input Design Parameters

1

2 !pip install deap
3

4 # Import Libraries
5 import random as rn
6 import numpy as np
7 import pandas as pd
8

9 from deap import algorithms
10 from deap import base
11 from deap import creator
12 from deap import tools
13 #import history
14 import copy
15

16 from keras.models import load_model
17

18 from sklearn.model_selection import train_test_split
19 from sklearn.preprocessing import StandardScaler
20 from sklearn.preprocessing import MinMaxScaler
21

22 import matplotlib.pyplot as plt
23 import seaborn
24

25 IND_SIZE = 11 # Individual size
26

27 creator.create(”FitnessMin”, base.Fitness, weights=(-1.0,-1.0))
28 creator.create(”Individual”, list, fitness=creator.FitnessMin)
29

30 toolbox = base.Toolbox()
31 toolbox.register(”attr_float”, rn.uniform, 0, 1)
32

33 toolbox.register(”individual”, tools.initRepeat, creator.Individual, toolbox.
attr_float, n=IND_SIZE)

34

35 toolbox.register(”population”, tools.initRepeat, list, toolbox.individual)
36

37 indii = toolbox.individual()
38
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39

40 toolbox.register(”mutate1”, tools.mutGaussian,mu=0,sigma=0.1, indpb=0.1)
41 toolbox.mutate1(indii)
42

43 i = toolbox.population(2)
44

45 def r_square(y_true, y_pred):
46 from keras import backend as Ks
47 SS_res = Ks.sum(Ks.square(y_true - y_pred))
48 SS_tot = Ks.sum(Ks.square(y_true - Ks.mean(y_true)))
49 return (1 - SS_res / (SS_tot + Ks.epsilon()))
50

51 modelX = load_model(’Tile-X.best.hdf5’, custom_objects={”r_square”: r_square})
52 modelY = load_model(’Tile-Y.best.hdf5’, custom_objects={”r_square”: r_square})
53 print(”Passed”)
54

55 def evaluate(individual):
56

57 for i in range(0, len(individual)):
58 if individual[i]<0 or individual[i]>1:
59 print(’True’)
60 individual[i]=rn.random()
61

62 indi = np.transpose(individual)
63 indi = pd.DataFrame(indi)
64 indi = indi.T
65

66 predictX = modelX.predict(indi)
67 predictY = modelY.predict(indi)
68

69 X_avg = np.average(predictX)
70 Y_avg = np.average(predictY)
71

72 X_std = np.std(predictX)
73 Y_std = np.std(predictY)
74

75

76

77 Average_diff = abs(((X_avg + Y_avg)/2) - 0.4011553325) # In m^3/s (850cfm)
78

79 a = []
80 a.append(X_std)
81 a.append(Y_std)
82

83 Standard_diff= abs(np.max(a) - 0.0) # In m^3/s 0.014766
84

85 return Average_diff, Standard_diff
86

87 toolbox.register(”evaluate”, evaluate)
88 toolbox.register(”mate”, tools.cxOnePoint)
89 toolbox.register(”mutate”, tools.mutGaussian,mu=0.5,sigma=0.2, indpb=0.01)
90 toolbox.register(”select”, tools.selNSGA2)
91 toolbox.parent_size = 2000
92 toolbox.child_size = 1000
93 toolbox.max_gen = 1
94 toolbox.mut_prob = 0.01
95 toolbox.crx_prob = 0.8
96

97 def main(toolbox, stats=None):
98 rn.seed(64)
99
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100 pop = toolbox.population(n=toolbox.parent_size)
101 pop = toolbox.select(pop, len(pop))
102

103 hof = tools.ParetoFront()
104 stats = tools.Statistics(lambda ind: ind.fitness.values)
105

106 stats.register(”avg”, np.mean, axis=0)
107 stats.register(”std”, np.std, axis=0)
108 stats.register(”min”, np.min, axis=0)
109 stats.register(”max”, np.max, axis=0)
110

111

112

113 POP, STATS = algorithms.eaMuPlusLambda(pop, toolbox, mu=toolbox.parent_size,
114 lambda_=toolbox.child_size,
115 cxpb=toolbox.crx_prob,
116 mutpb=toolbox.mut_prob,
117 ngen=toolbox.max_gen,
118 stats=stats,
119 verbose=True,
120 halloffame=hof)
121

122 return POP, STATS, hof
123

124 toolbox.max_gen = 1
125

126 toolbox.max_gen = 100
127

128 toolbox.max_gen = 200
129

130 toolbox.max_gen = 300
131

132 toolbox.max_gen = 400
133

134 toolbox.max_gen = 500
135

136 toolbox.max_gen = 600
137

138

139 fronts1 = tools.emo.sortNondominated(HOF1, len(HOF1))
140

141 fronts100 = tools.emo.sortNondominated(HOF100, len(HOF100))
142

143 fronts200 = tools.emo.sortNondominated(HOF200, len(HOF200))
144

145 fronts300 = tools.emo.sortNondominated(HOF300, len(HOF300))
146

147 fronts400 = tools.emo.sortNondominated(HOF400, len(HOF400))
148

149 fronts500 = tools.emo.sortNondominated(HOF500, len(HOF500))
150

151 fronts600 = tools.emo.sortNondominated(HOF600, len(HOF600))
152

153 len(HOF600)
154

155 plot_colors = seaborn.color_palette(”Set1”, n_colors=15)
156 fig, ax = plt.subplots(1, figsize=(10,10))
157

158 for i, inds in enumerate(fronts1):
159 par = [toolbox.evaluate(ind) for ind in inds]
160 df = pd.DataFrame(par)
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161 df.plot(ax=ax, kind=’scatter’, label=’Generation 1 ’,
162 x=df.columns[0], y=df.columns[1],
163 color=plot_colors[0], marker=’o’)
164

165

166 plt.grid()
167 plt.xlabel(”Difference of Average of TFR $[m^3/s]$”)
168 plt.ylabel(”Difference of Standard Deviation of TFR $[m^3/s]$”)
169

170 plt.show()
171 plt.savefig(’GenerationParetoFront-1.png’)
172

173 hp1 = pd.DataFrame(HOF1)
174 hp100 = pd.DataFrame(HOF100)
175 hp200 = pd.DataFrame(HOF200)
176 hp300 = pd.DataFrame(HOF300)
177 hp400 = pd.DataFrame(HOF400)
178 hp500 = pd.DataFrame(HOF500)
179 hp600 = pd.DataFrame(HOF600)
180

181

182

183 hpv1= np.ones((hp1.shape[0],2))
184 hpv100= np.ones((hp100.shape[0],2))
185 hpv200= np.ones((hp200.shape[0],2))
186 hpv300= np.ones((hp300.shape[0],2))
187 hpv400= np.ones((hp400.shape[0],2))
188 hpv500= np.ones((hp500.shape[0],2))
189 hpv600= np.ones((hp600.shape[0],2))
190

191 hpv1[0] = np.array(HOF1[0].fitness.values)
192 hpv100[0] = np.array(HOF100[0].fitness.values)
193 hpv200[0] = np.array(HOF200[0].fitness.values)
194 hpv300[0] = np.array(HOF300[0].fitness.values)
195 hpv400[0] = np.array(HOF400[0].fitness.values)
196 hpv500[0] = np.array(HOF500[0].fitness.values)
197 hpv600[0] = np.array(HOF600[0].fitness.values)
198 # hpv600
199

200 for i in range(1,hp1.shape[0]):
201 hpv1[i,:] = HOF1[i].fitness.values
202

203 for i in range(1,hp100.shape[0]):
204 hpv100[i,:] = HOF100[i].fitness.values
205

206 for i in range(1,hp200.shape[0]):
207 hpv200[i,:] = HOF200[i].fitness.values
208

209 for i in range(1,hp300.shape[0]):
210 hpv300[i,:] = HOF300[i].fitness.values
211

212 for i in range(1,hp400.shape[0]):
213 hpv400[i,:] = HOF400[i].fitness.values
214

215 for i in range(1,hp500.shape[0]):
216 hpv500[i,:] = HOF500[i].fitness.values
217

218 for i in range(1,hp600.shape[0]):
219 hpv600[i,:] = HOF600[i].fitness.values
220

221
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222 hpv1 = pd.DataFrame(hpv1)
223 hpv100 = pd.DataFrame(hpv100)
224 hpv200 = pd.DataFrame(hpv200)
225 hpv300 = pd.DataFrame(hpv300)
226 hpv400 = pd.DataFrame(hpv400)
227 hpv500 = pd.DataFrame(hpv500)
228 hpv600 = pd.DataFrame(hpv600)
229 # hpv600
230

231 hpv1.to_csv(’Fitness1.csv’)
232 hp1.to_csv(’population1.csv’)
233

234 hpv100.to_csv(’Fitness100.csv’)
235 hp100.to_csv(’population100.csv’)
236

237 hpv200.to_csv(’Fitness200.csv’)
238 hp200.to_csv(’population200.csv’)
239

240 hpv300.to_csv(’Fitness300.csv’)
241 hp300.to_csv(’population300.csv’)
242

243 hpv400.to_csv(’Fitness400.csv’)
244 hp400.to_csv(’population400.csv’)
245

246 hpv500.to_csv(’Fitness500.csv’)
247 hp500.to_csv(’population500.csv’)
248

249 hpv600.to_csv(’Fitness600.csv’)
250 hp600.to_csv(’population600.csv’)

Listing H.1: NSGA-II Algorithm to find the Optimum Input Design Parameters
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Absolute Error Statistics of Tile FlowRate of each Floor Tiles present
in Row X and Row Y

(a) Absolute Prediction Error in Row X (b) Absolute Prediction Error in Row Y

Figure I.1: Absolute Tile Flow Rate Prediction Error [ / ] of each Floor Tiles present in Row X and Row Y.
Each Floor Tile Prediction contribute by a Different Amount to the Total Prediction Error. The Frequency of
the Error is shown on the Vertical Axis vs the Absolute Error on the Horizontal Axis.
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Absolute Error Statistics ofMax. Cabinet Inlet Temperature of each
Cabinets present in Row W and Row Z

(a) Absolute Prediction Error in Row W (b) Absolute Prediction Error in Row Z

Figure I.2: Absolute Max. Cabinet Temperature Prediction Error [∘ ] of each Cabinets present in Row W
and Row Z. Each Floor Tile Prediction contribute by a Different Amount to the Total Prediction Error. The
Frequency of the Error is shown on the Vertical Axis vs the Absolute Error on the Horizontal Axis.
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Comparison of Unbounded Server Mean Inlet Temperature from
Pareto Front

(a) Mean Server Inlet Temperature of row W (Black Zone)

(b) Mean Server Inlet Temperature of row Z (Black Zone)
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(c) Mean Server Inlet Temperature of row W (Orange Zone)

(d) Mean Server Inlet Temperature of row Z (Orange Zone)

(e) Mean Server Inlet Temperature of row W (Green Zone)

(f) Mean Server Inlet Temperature of row Z (Green Zone)

Figure J.1: The plot of mean server inlet temperature present in row W and row Z respectively. Solution points
from the Pareto Front are taken from the black, orange and green zones and the best solution out of these
Zones is taken for comparison. The actual mean inlet temperature of the servers is shown here. It is seen
that the solution from the orange zone gives the better optimal solution as most of the server has a mean inlet
temperature below ∘ and very few beyond ∘ as compared to the other Cases. Thus the solution shown
in (c) and (d) can be considered as an optimal solution.
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Comparison of Actual Mean Inlet Temperature of Servers in Opti-
mized and Non-Optimized Cases

(a) Mean Server Inlet Temperature of row W (Optimized)

(b) Mean Server Inlet Temperature of row Z (Optimized)

(c) Mean Server Inlet Temperature of row W (Non-Optimized)

(d) Mean Server Inlet Temperature of row Z (Non-Optimized)
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(e) Mean Server Inlet Temperature of row W (Without Plates)

(f) Mean Server Inlet Temperature of row Z (Without Plates)

Figure J.2: The plot of mean server inlet temperature present in row W and row Z respectively and shown for
the optimized case (a) and (b), non-optimized case (c) and (d), and without perforated plates (e) and (f). For
the servers present in the optimized case, most of them are within the temperature of ∘ and very Few above

∘ . In the non-optimized case, most of the server temperatures are above ∘ and in the case without the
perforated plates, most of the server temperature exceeds ∘ . Thus servers in case (a) and (b) have a better
server inlet temperature.
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