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A novel discretization is presented for decoupled forward–backward stochastic differential equations
(FBSDE) with differentiable coefficients, simultaneously solving the BSDE and its Malliavin sensitivity
problem. The control process is estimated by the corresponding linear BSDE driving the trajectories of
the Malliavin derivatives of the solution pair, which implies the need to provide accurate Γ estimates.
The approximation is based on a merged formulation given by the Feynman–Kac formulae and the
Malliavin chain rule. The continuous time dynamics is discretized with a theta-scheme. In order to
allow for an efficient numerical solution of the arising semidiscrete conditional expectations in possibly
high dimensions, it is fundamental that the chosen approach admits to differentiable estimates. Two
fully-implementable schemes are considered: the BCOS method as a reference in the one-dimensional
framework and neural network Monte Carlo regressions in case of high-dimensional problems, similarly
to the recently emerging class of Deep BSDE methods (Han et al. (2018 Solving high-dimensional partial
differential equations using deep learning. Proc. Natl. Acad. Sci., 115, 8505–8510); Huré et al. (2020
Deep backward schemes for high-dimensional nonlinear PDEs. Math. Comp., 89, 1547–1579)). An error
analysis is carried out to show L

2 convergence of order 1/2, under standard Lipschitz assumptions and
additive noise in the forward diffusion. Numerical experiments are provided for a range of different
semilinear equations up to 50 dimensions, demonstrating that the proposed scheme yields a significant
improvement in the control estimations.

Keywords: backward stochastic differential equations; Malliavin calculus; deep BSDE; neural networks;
BCOS; gamma estimates.

1. Introduction

In this paper, we are concerned with the numerical solution of a system of forward–backward stochastic
differential equations (FBSDE) where the randomness in the backward equation (BSDE) is driven by a

© The Author(s) 2024. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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2 B. NEGYESI ET AL.

forward stochastic differential equation (SDE). These systems are written in the general form

Xt = x0 +
∫ t

0
μ(s, Xs) ds +

∫ t

0
σ(s, Xs) dWs, (1.1a)

Yt = g(XT)+
∫ T

t
f (s, Xs, Ys, Zs) ds −

∫ T

t

(
Zs dWs

)T , (1.1b)

where {Wt}0≤t≤T is a d-dimensional Brownian motion and μ : [0, T] × R
d×1 → R

d×1, σ : [0, T] ×
R

d×1 → R
d×d, g : Rd×1 → R

q×1 and f : [0, T] × R
d×1 × R

q×1 × R
q×d → R

q×1 are all deterministic
mappings of time and space, with some fixed T > 0. Adhering to the stochastic control terminology, we
often refer to Z as the control process. We shall work under the standard well-posedness assumptions of
Pardoux & Peng (1992), which require Lipschitz continuity of the corresponding coefficients in order to
ensure the existence of a unique solution pair {(Yt, Zt)}0≤t≤T adapted to the augmented natural filtration.
The main motivation to study FBSDE systems lies in their connection with parabolic, second-order
partial differential equations (PDE), generalizing the well-known Feynman–Kac relations to nonlinear
settings. Indeed, considering the semilinear, parabolic terminal problem

∂tu(t, x)+ 1

2
Tr{σσ T(t, x)Hessxu(t, x)} + ∇xu(t, x)μ(t, x)+ f (t, x, u, ∇xu(t, x)σ (t, x)) = 0

u(T , x) = g(x),
(1.2)

the Markov solution to (1.1) coincides with the solution of (1.2) in an almost sure sense, provided by the
nonlinear Feynman–Kac relations

Yt = u(t, Xt), Zt = ∇xu(t, Xt)σ (t, Xt). (1.3)

Consequently, the BSDE formulation provides a stochastic representation to the simultaneous solution
of a parabolic problem and its gradient, which is an advantageous feature for several applications in
stochastic control and finance, where sensitivities play a fundamental role. These relations can be
extended to viscosity solutions in case (1.2) does not admit to a classical solution—see Pardoux &
Peng (1992). Moreover, it is known—see Pardoux & Peng (1992); El Karoui et al. (1997); Hu et al.
(2011); Mastrolia et al. (2017)—that under suitable regularity assumptions the solution pair of the
backward equation is differentiable in the Malliavin sense Nualart (2006), and the Malliavin derivatives
{(DsYt, DsZt)}0≤s,t≤T satisfy a linear BSDE themselves, where the Z process admits to a continuous
modification provided by Zt = DtYt.

From a numerical standpoint, the main challenge in solving BSDEs stems from the approximation of
conditional expectations. Indeed, a discretization of the backward equation in (1.1b) yields a sequence of
recursively nested conditional expectations at each point in the discretized time window. Over the years,
several methods have been proposed to tackle the solution of the FBSDE system using: PDE methods in
Ma et al. (1994); forward Picard iterations in Bender & Denk (2007); quantization techniques in Bally &
Pagès (2003); chaos expansion formulas in Briand & Labart (2014); Fourier cosine expansions in Ruijter
& Oosterlee (2015, 2016) and regression Monte Carlo approaches in Bouchard & Touzi (2004); Gobet
et al. (2005); Bender & Steiner (2012). These methods have shown great results in low-dimensional
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THE ONE STEP MALLIAVIN SCHEME 3

settings; however, the majority of them suffers from the curse of dimensionality, meaning that their
computational complexity scales exponentially in the number of dimensions. Although, regression
Monte Carlo methods have been successfully proven to overcome this burden, they are difficult to apply
beyond d = 10 dimensions due to the necessity of a finite regression basis. The primary challenge
in the numerical solution of BSDEs is related to the approximation of the Z process. In particular, the
standard backward Euler discretization results in a conditional expectation estimate of Z, which scales
inverse proportionally with the step size of the time discretization—see Bouchard & Touzi (2004). This
phenomenon poses a significant amount of difficulty in least-squares Monte Carlo frameworks, as the
corresponding regression targets have diverging conditional variances in the continuous limit.

Recently, the field has received renewed attention due to the pioneering paper of Han et al. (2018),
in which they reformulate the backward discretization in a forward fashion, parametrize the control
process of the solution by deep neural networks and train the resulting sequence of networks in a global
optimization given by the terminal condition of (1.1b). Their method has enjoyed various modifications
and extensions, see, e.g., Beck et al. (2019); Fujii et al. (2019). In particular, Huré et al. (2020) proposed
an alternative where the optimization of the sequence of neural networks is done in a backward recursive
manner, similarly to classical regression Monte Carlo approaches. We refer to the class of these deep
learning based formulations as Deep BSDE methods, which have shown remarkable empirical results in
solving high-dimensional problems. Note, however, that the approach of Han et al. (2018) solely captures
the deterministic mapping connecting the forward diffusion in (1.1) to the solution pair of the BSDE at
t = 0. Even though the extension of Huré et al. (2020) gives such approximations at future time steps,
the accuracy of both methods degrades significantly in the Z part of the solution. The total approximation
errors of such Deep BSDE methods have been investigated in Han & Long (2020); Huré et al. (2020);
Germain et al. (2021). The results in Han & Long (2020) provide a posteriori estimate driven by the error
in the terminal condition, whereas the analyses in Huré et al. (2020); Germain et al. (2021) show that due
to the universal approximation theorem (UAT) of deep neural networks, the total approximation error of
neural network parametrizations is consistent with the discretization in terms of regression biases.

The main motivation behind the present paper roots in the observations above. In order to provide
more accurate solutions for the Z process, we exploit the aforementioned relation between the Malliavin
derivative of Y and the control process by solving the linear BSDE driving the trajectories of DY .
Hence, we are faced with the solution of one scalar-valued BSDE and one d-dimensional BSDE at each
point in time. This raises the need for a new discrete scheme, which we call the One Step Malliavin
(OSM) scheme. The discretization of the linear BSDE of the Malliavin derivatives is based on a merged
formulation of the Feynman–Kac formulae in (1.3) and the chain rule formula of Malliavin calculus
Nualart (2006). As we shall see, the resulting discrete time approximation of the Z process possesses the
same order of conditional variance as the ones of the Y process, making the scheme significantly more
attractive in a regression Monte Carlo framework compared to classical Euler discretizations. On the
other hand, our formulation carries an extra layer of difficulty, in that we are forced to approximate the
‘the Z of the Z, i.e. Γ processes’(Gobet & Turkedjiev, 2017, Pg.1184) in the Malliavin BSDE, which are,
in light of (1.3), related to the Hessian matrix of the solution of the corresponding parabolic problem (1.2).
In this regard, our setting shares similarities with second-order backward SDEs (2BSDEs) Cheridito
et al. (2007) and fully nonlinear problems Fahim et al. (2011). We analyze the discrete time approxima-
tion errors and show that under certain assumptions the new scheme has the same L

2 convergence rate
of order 1/2 as the backward Euler scheme of BSDEs (Bouchard & Touzi, 2004).

Two fully-implementable approaches are investigated to solve the resulting discretization. First, we
provide an extension to the BSDE-COS (BCOS) method (Ruijter & Oosterlee, 2015) and approximate
solutions to one-dimensional problems by Fourier cosine expansions. Ultimately, the presence of Γ
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4 B. NEGYESI ET AL.

estimates induces d2 many additional conditional expectations to be approximated at each point in time,
which makes the OSM scheme less tractable for classical Monte Carlo parametrizations when d is large.
Thereafter, inspired by the encouraging results of Deep BSDE methods in case of high-dimensional
equations, we propose a neural network least-squares Monte Carlo approach similar to the one of Huré
et al. (2020), where the Y , Z and Γ processes are parametrized by fully-connected, feedforward deep
neural networks. Subsequently, parameters of these networks are optimized in a recursive fashion,
backwards over time, where at each time step two distinct gradient descent optimizations are performed,
minimizing losses corresponding to the aforementioned discretization. Motivated by the UAT property of
neural networks in Sobolev spaces, similarly to Huré et al. (2020), we consider two variants of the latter
approach: one in which the Γ process is parametrized by a matrix-valued deep neural network; and one
in which the Γ process is approximated as the Jacobian of the parametrization of the Z process, inspired
by (1.3). The total approximation error is investigated similarly to Huré et al. (2020); Germain et al.
(2021) and shown to be consistent with the discretization under the assumption of perfectly converging
gradient descent iterations. We demonstrate the accuracy and robustness of our problem formulation
with numerical experiments. In particular, using BCOS as a benchmark method for one-dimensional
problems, we empirically assess the regression errors induced by gradient descent. We provide examples
up to d = 50 dimensions.

The rest of the paper is organized as follows. In Section 2, we provide the necessary theoretical
foundations, followed by Section 3 where the new discrete scheme is formulated. In Section 4, a discrete
time approximation error analysis is given, bounding the total discretization error of the proposed
scheme. Section 5 is concerned with the implementation of the discretization scheme, giving two fully-
implementable approaches for the arising conditional expectations. First, the BCOS method (Ruijter &
Oosterlee, 2015) is extended in case of one-dimensional problems, then a Deep BSDE (Han et al., 2018;
Huré et al., 2020) approach is formulated for high-dimensional equations. A complete regression error
analysis is provided, building on the universal approximation properties of neural networks. Our analysis
is concluded by numerical experiments presented in Section 6, which confirm the theoretical results and
showcase great accuracy over a wide range of different problems.

2. Backward stochastic differential equations and Malliavin calculus

In the following section, we introduce the notions of BSDEs and Malliavin calculus used throughout the
paper.

2.1 Preliminaries

Let us fix 0 ≤ T < ∞ and d, q, n, k ∈ N
+. We are concerned with a filtered probability space(

Ω ,F ,P, {F}0≤t≤T

)
, where F = FT and {F}0≤t≤T is the natural filtration generated by a d-dimensional

Brownian motion {Wt}0≤t≤T augmented by P-null sets of Ω . In what follows, all equalities concerning
Ft-measurable random variables are meant in the P-a.s. sense and all expectations—unless otherwise
stated—are meant under P. Throughout the whole paper, we rely on the following notations:

• |x| := [Tr xTx]1/2 for the Frobenius norm of any x ∈ R
q×d. In case of scalar and vector inputs this

coincides with the standard Euclidean norm. Additionally, we put 〈x|y〉 for the Euclidean inner
product of x, y ∈ R

d.

• S
p(Rq×d) for the space of continuous and progressively measurable stochastic processes Y : Ω ×

[0, T] → R
q×d such that E

[
sup0≤t≤T |Y|p] < ∞.
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THE ONE STEP MALLIAVIN SCHEME 5

• H
p(Rq×d) for the space of progressively measurable stochastic processes Z : Ω × [0, T] → R

q×d

such that E

[(∫ T
0

∣∣Zt

∣∣2 dt
)p/2]

< ∞.

• L
p
Ft
(Rq×d) for the space of Ft-measurable random variables ξ : Ω → R

q×d such that

E
[|ξ |p] < ∞.

• L2([0, T];Rq) for the Hilbert space of deterministic functions h : [0, T] → R
q such that∫ T

0 |h(t)|2 dt < ∞. Additionally, we denote its inner product by 〈h|g〉L2 := ∫ T
0 〈h(t)|g(t)〉 dt.

• ∇x f :=
(
∂f
∂x1

, . . . , ∂f
∂xd

)
for the gradient of a scalar-valued, multivariate function (t, x, y, z) 
→

f (t, x, y, z)with respect to x ∈ R
d, defined as a row vector, and analogously for ∇y f , ∇z f . Similarly,

we denote the Jacobian matrix of a vector-valued function ψ : Rd → R
q by ∇xψ ∈ R

q×d. For
notational convenience, we set the Jacobian matrix of row and column vector-valued functions in
the same fashion.

• Ck
b(R

d;Rq), Ck
p(R

d;Rq) for the set of k-times continuously differentiable functions ϕ : Rd → R
q

such that all partial derivatives up to order k are bounded or have polynomial growth, respectively.

• En [Φ] := E
[
Φ|Ftn

]
for conditional expectations with respect to the natural filtration, given a time

partition 0 = t0 < t1 < · · · < tN = T . We occasionally use the notation E
x
n [Φ] := E

[
Φ|Xtn = x

]
when the filtration is generated by a Markov process X.

• 1q,d, 0q,d for Rq×d matrices full of ones and zeros, respectively.

By slight abuse of notation, we put Sp(R) := S
p(R1×1), Hp(Rd) := H

p(R1×d), 1d := 11,d and
0d := 01×d.

We recall the most important notions of Malliavin differentiability and refer to Nualart (2006) for a
more detailed account on the subject. Consider the space of random processes W(h) := ∫ T

0 h(t) dWt

with h ∈ L2([0, T];R1×d). Let us now define the subspace R ⊆ L
2
FT

of smooth, scalar-valued
random variables, which are of the form Φ = ϕ(W(h1), . . . , W(hn)) with some ϕ ∈ C∞

p (R
n;R).

The Malliavin derivative of Φ is then defined as the R
1×d-valued stochastic process DsΦ :=∑n

i=1 ∂iϕ(W(h1), . . . , W(hn))hi(s). The derivative operator can be extended to the closure of R with
respect to the norm

‖Φ‖
D1,p :=

(
E

[
|Φ|p +

(∫ T

0

∣∣DsΦ
∣∣2 ds

)p/2])1/p

,

see Nualart (2006, Prop.1.2.1). We denote this closure as the space of Malliavin differentiable, R-valued
random variables by D1,p(R). For the space of vector-valuedΦ = (Φ1, . . . ,Φq)Malliavin differentiable

random variables, we put Φ ∈ D
1,p(Rq) when Φi ∈ D

1,p(R) for each i = 1, . . . , q. The Malliavin
derivative DsΦ ∈ R

q×d is then the matrix-valued stochastic process whose ith row is DsΦi. The
final result that extends the chain rule of elementary calculus to the Malliavin differentiation operator
is fundamental for the present paper, essentially enabling the formulation of the upcoming discrete
scheme.
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6 B. NEGYESI ET AL.

Lemma 2.1 (Malliavin chain rule lemma). Let ψ ∈ C1
b(R

d;Rq) and fix p ≥ 1. Consider F ∈ D
1,p(Rd).

Then ψ(F) ∈ D
1,p(Rq), furthermore for each 0 ≤ s ≤ T

Dsψ(F) = ∇xψ(F)DsF. (2.1)

The lemma can be relaxed to the case where ψ is only Lipschitz continuous—see Nualart (2006,
Prop.1.2.4).

2.2 Backward stochastic differential equations

We first provide the necessary theoretical foundations for the well-posedness of the underlying FBSDE
system in (1.1) guaranteeing the existence of a unique solution triple. Given the stronger assumptions
later required for their Malliavin differentiability, we restrict the presentation to standard Lipschitz
assumptions. For a more general exposure, we refer to Chassagneux & Richou (2016) and the references
therein.

It is well-known—see, e.g., Karatzas & Shreve (1998)—that the SDE in (1.1a) admits to a unique
strong solution {Xt}0≤t≤T ∈ S

p(Rd×1) whenever x0 ∈ L
p
F0
(Rd×1) and μ, σ are Lipschitz continuous in

the spatial variable, i.e.,

∣∣μ(t, x1)− μ(t, x2)
∣∣+ ∣∣σ(t, x1)− σ(t, x2)

∣∣ ≤ Lμ,σ

∣∣x1 − x2

∣∣ (2.2)

for all t ∈ [0, T], x1, x2 ∈ R
d×1, with some Lμ,σ > 0. Additionally, the solution {Xt}0≤t≤T satisfies the

following estimates for all p ≥ 1

E

[
sup

0≤t≤T

∣∣Xt

∣∣p] ≤ Cp, E
[∣∣Xt − Xs

∣∣p] ≤ Cp |t − s|p/2 , (2.3)

with constant Cp only depending on p, T , d. In case of the Arithmetic Brownian Motion (ABM) with
constant μ and σ , (1.1a) admits to the unique solution Xt = x0 + μt + σWt. In particular, the Malliavin
chain rule formula in Lemma 2.1 implies that DsXt = 1s≤tσ .

The well-posedness of the backward equation in (1.1b) is guaranteed—see, e.g., El Karoui et al.
(1997)—by the Lipschitz continuity of the driver, on top of the polynomial growth of the terminal
condition

∣∣f (t, x, y1, z1)− f (t, x, y2, z2)
∣∣ ≤ Lf ,g

(∣∣y1− y2

∣∣+ ∣∣z1− z2

∣∣) , |f (t, x, y, z)| + |g(x)| ≤ Lf ,g

(
1+ |x|p) ,

(2.4)

for any t ∈ [0, T], y1, y2 ∈ R
q, z1, z2 ∈ R

q×d, with some Lf ,g > 0 and p ≥ 2. These conditions,
combined with the ones for the SDEs above, imply the existence of a unique solution pair Y ∈ S

p(Rq),
Z ∈ H

p(Rq×d) satisfying (1.1b). Let us now fix q = 1 and restrict the further analysis to scalar-valued
backward equations. Thereafter, under the aforementioned conditions, the FBSDE system in (1.1) admits
to a unique solution triple {(Xt, Yt, Zt)}0≤t≤T ∈ S

p(Rd×1)× S
p(R)× H

p(R1×d).
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THE ONE STEP MALLIAVIN SCHEME 7

2.3 Malliavin differentiable FBSDE systems

This paper is focused on a special class of FBSDE systems such that the solution triple {(Xt, Yt, Zt)}0≤t≤T
is differentiable in the Malliavin sense. The Malliavin differentiability of the forward equation is
guaranteed by the following theorem due to Nualart in Nualart (2006, Thm.2.2.1).

Lemma 2.2 (Malliavin differentiability of SDEs, Nualart, 2006). Let x0 ∈ L
p
F0
(Rd×1),μ ∈ C0,1

b ([0, T]×
R

d×1;Rd×1), σ ∈ C0,1
b ([0, T]×R

d×1;Rd×d) andμ(t, 0), σ(t, 0) be uniformly bounded for all 0 ≤ t ≤ T .
Put {Xt}0≤t≤T for the unique solution of (1.1a). Then for all t ∈ [0, T], Xt ∈ D

1,p(Rd×1) and there exists
a continuous modification of its Malliavin derivative {DsXt}0≤s,t≤T ∈ S

p(Rd×d), which satisfies the
linear SDE

DsXt = 1s≤t

{
σ(s, Xs)+

∫ t

s
∇xμ(r, Xr)DsXr dr +

∫ t

s
∇xσ(r, Xr)DsXr dWr.

}
, (2.5)

where ∇xσ denotes aRd×d×d-valued tensor with
[∇xσ
]

ijk = ∂k [σ ]ij. Furthermore, there exists a constant
Cp, only depending on p, T , d, such that

sup
s∈[0,T]

E

[
sup

t∈[s,T]

∣∣DsXt

∣∣p] ≤ Cp, E
[∣∣DsXr − DsXt

∣∣p] ≤ Cp |r − t|p/2 , ∀r, t ≥ s. (2.6)

The main implication of the proposition above is that under relatively mild assumptions on the
bounded continuous differentiability of the coefficients in (1.1a), the Malliavin derivative of the solution
satisfies a linear SDE, where the random coefficients depend on the solution of the SDE itself.
Intriguingly, a similar assertion can be made about the solution pair of the backward equation in (1.1b),
which—on top of establishing their Malliavin differentiability—also creates a connection between the
Malliavin derivative DY and the control process. This is stated by the following theorem originally
from Pardoux & Peng (1992), which we state under the loosened conditions of El Karoui et al. (1997,
Prop.5.9).

Theorem 2.3 (Malliavin differentiability of BSDEs, El Karoui et al., 1997). Let the coefficients of
(1.1a) satisfy the conditions of Lemma 2.2 and assume f ∈ C0,1,1,1

b ([0, T] × R
d×1,R,R1×d;R),

g ∈ C1
b(R

d×1;R). Fix p ≥ 2. Put {(Yt, Zt)}0≤t≤T for the unique solution pair of (1.1b). Then for all
t ∈ [0, T] Yt ∈ D

1,2(R), Zt ∈ D
1,2(R1×d) and there exist modifications of their Malliavin derivatives

{DsYt}0≤s,t≤T ∈ S
p(R1×d), {DsZt}0≤,s,t≤T ∈ H

p(Rd×d), which satisfy the following linear BSDE:

DsYt = ∇xg(XT)DsXT

+
∫ T

t
∇x f (r, Xr, Yr, Zr)DsXr + ∇y f (r, Xr, Yr, Zr)DsYr + ∇z f (r, Xr, Yr, Zr)DsZr dr

−
∫ T

t

(
(DsZr)

TdWr

)T , 0 ≤ s ≤ t ≤ T , (2.7)

DsYt = 0d, DsZt = 0d,d, 0 ≤ t < s ≤ T .
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8 B. NEGYESI ET AL.

Furthermore, there exists a continuous modification of the control process such that Zt = DtYt almost
surely for all 0 ≤ t ≤ T .

We emphasize the linearity of (2.7) and remark that the corresponding random coefficients of the
linear equation depend on the solution of (1.1). Henceforth, in light of Lemma 2.2 and Theorem 2.3, we
define {DsXt}0≤s,t≤T and {DsYt}0≤s,t≤T , {DsZt}0≤s,t≤T as the versions of the corresponding Malliavin
derivatives satisfying (2.5) and (2.7), respectively. For the rest of the paper, in order to ease the
presentation, we introduce the notations Xt := (Xt, Yt, Zt), DsXt := (DsXt, DsYt, DsZt) and
f D(t, Xt, DsXt) := ∇x f (t, Xt)DsXt + ∇y f (t, Xt)DsYt + ∇z f (t, Xt)DsZt for all 0 ≤ s, t ≤ T .

Path regularity and Hölder continuity. For {Xt}0≤t≤T ∈ S
p(Rd×1), we have that the solution of the

forward SDE is a continuous Rd×1-valued random process, which is bounded in the supremum norm.
Similar statements can be made about its Malliavin derivative {DsXt}0≤s,t≤T . In particular, the Hölder
regularity estimates in (2.3) and (2.6) ensure that the corresponding processes are not just continuous,
but also have a modification admitting to α-Hölder continuous trajectories of order α ∈ (0, 1/2)
provided by the Kolmogorov–Chentsov theorem—see, e.g., Karatzas & Shreve (1998). Since the 1/2-
Hölder regularity of (Y , Z) plays a crucial role in the convergence analysis of the discrete scheme—
see Theorem 4.3 in particular—we elaborate on the conditions under which the continuous parts of
the solutions to (1.1b) and (2.7) admit to similar estimates. Indeed, one can show that if the solutions
(Y , Z) ∈ S

p(R)× H
p(Rd×1) of (1.1b) satisfy the condition sup0≤t≤T E

[∣∣Zt

∣∣p] < ∞ then there exists a
constant Cp such that

E
[∣∣Yt − Ys

∣∣p] ≤ Cp |t − s|p/2 , (2.8)

see Hu et al. (2011, Corollary 2.7). In particular, the Y process admits to an α-Hölder continuous
modification of order α ∈ (0, 1/2 − 1/p). Under the conditions of Theorem 2.3, this is naturally
guaranteed, and for p = 2 it implies the mean-squared continuity of the Y process. Moreover, the Z
process admits to a continuous modification solving (2.7), which guarantees Z ∈ S

p(R1×d) and, in
particular, boundedness in the supremum norm. Under stronger assumptions, one can also establish a
similar path regularity result of the control process. Imkeller & Dos Reis (2010, Thm.5.5) show that with
additional conditions, essentially requiring second-order bounded differentiability of the corresponding
coefficients μ, σ , f and g, the following also holds for all p ≥ 2

E
[∣∣Zt − Zs

∣∣p] ≤ Cp |t − s|p/2 . (2.9)

Hu et al. prove a similar result in (Hu et al., 2011, Thm.2.6) under slightly different assumptions in
the general non-Markovian framework. We omit the explicit presentation of the necessary conditions
for (2.9) to hold, nevertheless emphasize that Assumption 4.1 of the convergence analysis in Sec-
tion 4 ensures the path regularity of the Z process and in particular implies mean-squared continuous
trajectories.

3. The discrete scheme

In the following section, the proposed discretization scheme is introduced. The objective of the
discretization is to simultaneously solve the pair of FBSDE systems given by (1.1) and the FBSDE system
of its Malliavin derivatives provided by Lemma 2.2 and Theorem 2.3. Therefore, we are concerned with
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THE ONE STEP MALLIAVIN SCHEME 9

the solution to the following pair of FBSDE systems:

Xt = x0 +
∫ t

0
μ(r, Xr) dr +

∫ t

0
σ(r, Xr) dWr, (3.1a)

Yt = g(XT)+
∫ T

t
f (r, Xr) dr −

∫ T

t
Zr dWr, (3.1b)

DsXt = 1s≤t

[
σ(s, Xs)+

∫ t

s
∇xμ(r, Xr)DsXr dr +

∫ t

s
∇xσ(r, Xr)DsXr dWr

]
, (3.1c)

DsYt = 1s≤t

[
∇xg(XT)DsXT +

∫ T

t
f D(r, Xr, DsXr) dr −

∫ T

t

(
(DsZr)

T dWr

)T]
. (3.1d)

The solution is a pair of triples of stochastic processes {(Xt, Yt, Zt)}0≤t≤T and {(DsXt, DsYt, DsZt)}0≤s,t≤T

such that (3.1) holds P almost surely. Consider a discrete time partition πN := {t0, . . . , tN} with 0 = t0 <
t1 < · · · < tN = T and set ΔWn := Wtn+1

− Wtn , Δtn := tn+1 − tn, |π | := max0≤n≤N−1 tn+1 − tn. We
denote the discrete time approximations by Xπ

n := (Xπn , Yπn , Zπn ) and DnXπ
m := (DnXπm , DnYπm , DnZπm)

for each 0 ≤ n, m ≤ N.
The forward component in (3.1a) is approximated by the classical Euler–Maruyama scheme, i.e.,

Xπ0 := x0, Xπn+1 := Xπn + μ
(
tn, Xπn
)
Δtn + σ

(
tn, Xπn
)
ΔWπ

n , (3.2)

for each n = 0, . . . , N − 1. It is well-known—see, e.g., Kloeden & Platen (1992)—that under standard
Lipschitz assumptions on the drift and diffusion coefficients, these estimates admit to

lim sup
|π |→0

1

|π |E
[∣∣Xtn − Xπn

∣∣2] < ∞. (3.3)

Classically, the backward component in (3.1b) is approximated in two steps. In order to meet the neces-
sary adaptivity requirements of the solution pair (Y , Z), one takes appropriate conditional expectations of
(3.1b) and the same equation multiplied with the Brownian increment ΔWT

n . Using standard properties
of stochastic integrals, Itô’s isometry and a theta-discretization of the remaining time integrals with
parameters ϑy,ϑz > 0 subsequently give—see, e.g., Ruijter & Oosterlee (2015)

YπN = g
(
XπN
)

, ZπN = ∇xg
(
XπN
)
σ(tN , XπN ), (3.4a)

Zπn = −1 − ϑz

ϑz
En

[
Zπn+1

]+ 1

Δtnϑz
En

[
ΔWT

n Yπn+1

]+ 1 − ϑz

ϑz
En

[
ΔWT

n f (tn+1, Xπ
n+1)
]
, (3.4b)

Yπn = Δtnϑy f
(
tn, Xπn , Yπn , Zπn

)+ En

[
Yπn+1

]+Δtn(1 − ϑy)En

[
f
(
tn+1, Xπ

n+1

)]
. (3.4c)

In case ϑy = ϑz = 1, this scheme is called the standard Euler scheme for BSDEs.
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10 B. NEGYESI ET AL.

3.1 The OSM scheme

The novelty of the hereby proposed discretization is that on top of solving (3.1b), we also solve the
linear BSDE in (3.1d) driving the Malliavin derivatives of the solution pair. Exploiting the relation
between DY and Z established by Theorem 2.3, we set the control estimates according to the discrete time
approximations of the Malliavin BSDE. As in the case of the forward component itself, the Malliavin
derivative in (3.1c) is approximated by an Euler–Maruyama discretization, giving estimates

DnXπm :=

⎧⎪⎨⎪⎩
1m=nσ

(
tn, Xπn
)

, 0 ≤ m ≤ n ≤ N,

DnXπm−1 + ∇xμ
(
tm−1, Xπm−1

)
DnXπm−1Δtm−1

+ ∇xσ
(
tm−1, Xπm−1

)
DnXπm−1ΔWm−1, 0 ≤ n < m ≤ N.

(3.5)

Unlike in the case of Xπn , the convergence of these approximations is not straightforward due to the fact
that the initial condition DnXπn = σ

(
tn, Xπn
)

already depends on the discrete approximation Xπn provided
by (3.2). Nonetheless, as we shall soon see, our discretization of the linear BSDE in (3.1d) only relies on
the approximations DnXπn+1 for each n = 0, . . . , N −1. This is a significant relaxation of the convergence
criterion, as it can be shown that under relatively mild assumptions on the coefficients in (3.1a), DnXπn+1
defined by (3.5) inherits the convergence rate of (3.3)—see Appendix A for details.

The discretization of the backward component in (3.1d) is done as follows. For any n = 0, . . . , N −1

Dtn Ytn = Dtn Ytn+1
+
∫ tn+1

tn
f D (r, Xr, Dtn Xr

)
dr −
∫ tn+1

tn

( (
Dtn Zr

)T dWr

)T , (3.6)

subject to the terminal condition. Multiplying this equation withΔWn from the left, Itô’s isometry implies

En

[∫ tn+1

tn
Dtn Zr dr

]
= En

[
ΔWn

(
Dtn Ytn+1

+
∫ tn+1

tn
f D (r, Xr, DtnXr

)
dr

)]
,

Dtn Ytn = En

[
Dtn Ytn+1

+
∫ tn+1

tn
f D (r, Xr, Dtn Xr

)
dr

]
.

(3.7)

In order to avoid implicitness on Y , we approximate the continuous time integrals with the left and right
rectangle rules, respectively, and obtain discrete time approximations

DnZπn = 1

Δtn
En

[
ΔWn

(
DnYπn+1 +Δtn f D (tn+1, Xπ

n+1, DnXπ
n+1

) )]
, (3.8)

DnYπn = En

[
DnYπn+1 +Δtn f D (tn+1, Xπ

n+1, DnXπ
n+1

)]
. (3.9)

At this point, to make the scheme viable, one relies on estimates DnYπm , DnZπm on top of the Euler–
Maruyama approximations of DX given by (3.5). This is done by a merged formulation of the Feynman–
Kac formulae in (1.3) and the Malliavin chain rule in Lemma 2.1. Indeed, given the Markov nature of the
FBSDE system, the solutions of (3.1b) can be written as Yt = y(t, Xt), Zt = z(t, Xt) for some sufficiently
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THE ONE STEP MALLIAVIN SCHEME 11

smooth deterministic functions y : [0, T] × R
d×1 → R, z : [0, T] × R

d×1 → R
1×d. Moreover, the

Malliavin chain rule implies that

Dtn Yr = ∇xy(r, Xr)Dtn Xr, DtnZr = ∇xz(r, Xr)Dtn Xr =: γ (r, Xr)Dtn Xr, (3.10)

for some deterministic functions y : [0, T]×R
d×1 → R and z : [0, T]×R

d×1 → R
1×d, where we defined

γ : [0, T] ×R
d×1 → R

d×d as the Jacobian matrix of z(r, Xr), and similarly Γt := γ (t, Xt). Furthermore,
due to the Feynman–Kac relations, we also have z(r, Xr) = ∇xy(r, Xr)σ (r, Xr) and therefore

Dtn Yr = z(r, Xr)σ
−1(r, Xr)Dtn Xr, DtnZr = γ (r, Xr)DtnXr. (3.11)

Motivated by these relations, we approximate the discretized Malliavin derivatives in (3.8) according to

DnYπm := Zπmσ
−1 (tm, Xπm

)
DnXπm , DnZπm := Γ π

m DnXπm , 0 ≤ n, m ≤ N. (3.12)

Henceforth, the discrete approximations of the Y process driven by (3.1b) are given in an identical fashion
to (3.4c) with ϑy ∈ [0, 1] as a free parameter of the discretization. Moreover, in order to be able to

control the L
2 projection error of DnZπm with discrete Grönwall estimates—see Step 1 of Theorem 4.3

in particular—we make the ∇z f part of f D implicit in DnZπn , and introduce the notation DnXπ
n+1,n :=(

DnXπn+1, DnYπn+1, DnZπn
)
. Subject to the terminal conditions in (3.1b) and (3.1d), on top of the Malliavin

chain rule estimates in (3.12), this leads to the following discrete scheme, which we shall call the One
Step Malliavin (OSM) scheme

YπN = g
(
XπN
)
, ZπN =∇xg

(
XπN
)
σ
(
tN , XπN
)
, Γ π

N = [∇x(∇xgσ)]
(
tN , XπN
)
, (3.13a)

Γ π
n σ
(
tn, Xπn
)=DnZπn = 1

Δtn
En

[
ΔWn

(
DnYπn+1+Δtn f D (tn+1, Xπ

n+1, DnXπ
n+1,n

) )]
, (3.13b)

Zπn = En

[
DnYπn+1 +Δtn f D (tn+1, Xπ

n+1, DnXπ
n+1,n

) ]
, (3.13c)

Yπn = ϑyΔtn f
(
tn, Xπn , Yπn , Zπn

)+En

[
Yπn+1+(1−ϑy)Δtn f

(
tn+1, Xπ

n+1

)]
. (3.13d)

The scheme is made fully implementable by an appropriate parametrization to approximate the arising
conditional expectations.

Remark 3.1 (Comparison of discretizations). There are two key differences between the standard Euler
discretization in (3.4) and the OSM scheme in (3.13). First, unlike in the former, the OSM scheme’s
solution is a triple of discrete random processes, including an additional layer of Γ estimates. Moreover,
it can be seen that the estimate in (3.13c) exhibits a better conditional variance than that of (3.4b). In
case of the standard Euler discretization, the Z process is approximated through Itô’s isometry and the
corresponding discrete time approximations include a 1/Δtn factor—second term in (3.4b)—which leads
to a quadratically exploding conditional variance of the resulting estimates. Several variance reduction
techniques have been proposed to mitigate this problem—we mention Alanko & Avellaneda (2013);
Gobet & Turkedjiev (2017). On the other hand, within the OSM scheme, the Z process is approximated
by the continuous solution of the Malliavin BSDE in (3.1d) and therefore it carries the same conditional
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12 B. NEGYESI ET AL.

variance behavior as the Y estimate. In case of a fully-implementable regression Monte Carlo setting,
this explains why the OSM scheme may provide more accurate control approximations.

Alternative formulations. (3.13) is not the first approach to the BSDE problem building on Theorem 2.3.
Turkedjiev (2015) proposed a discrete time approximation scheme, where the Z process is estimated by
an integration by parts formula stemming from Malliavin calculus and discovered in Ma & Zhang (2002,
Thm.3.1). Hu et al. (2011) proposed an explicit scheme in the case of non-Markovian BSDEs, where
the control process is estimated using a representation formula implied by the linearity of the Malliavin
BSDE (3.1d)—see El Karoui et al. (1997, Prop.5.5). Briand & Labart (2014) offer a different approach to
BSDEs, where building on chaos expansion formulas, the Z process is taken as the Malliavin derivative
of Y given by Theorem 2.3. The difference between these formulations and (3.13) is mostly twofold. The
OSM scheme is concerned with solving the entire pair of FBSDE systems (3.1) and not just the backward
component in (3.1b). This means that, unlike in Hu et al. (2011); Briand & Labart (2014); Turkedjiev
(2015), discrete time approximations give Γ estimates as well. Additionally, one important difference in
the OSM scheme compared to the approaches (Hu et al., 2011; Turkedjiev, 2015) is that the conditional
expectations in (3.13) project Ftn+1

-measurable random variables onto Ftn , whereas in the case of those
works the arguments of the conditional expectations are FT -measurable. An important implication of
this difference is that—unlike Hu et al. (2011); Turkedjiev (2015)—in order to simulate the arguments
of the arising conditional expectations in (3.13), one does not rely on discrete time approximations of the
Malliavin derivatives DnXπm over the whole time window (n ≤ m ≤ N), but only in between adjacent time
steps DnXπn+1. This is an advantage from the convergence analysis perspective whenever one does not
have analytical access to the trajectories of {DsXt}0≤s,t≤T . In fact, ensuring the convergence of the Euler–
Maruyama scheme for the Malliavin derivative in (3.5) for any n ≤ m ≤ N is known to be nontrivial,
see Hu et al. (2011, Remark 5.1). On the other hand, as shown in Appendix A, under suitable regularity
assumptions, DnXπn+1 converges in the L2-sense with a rate of 1/2, which renders the convergence of the
discrete time approximations of the OSM scheme possible.

4. Discretization error analysis

Having introduced the discrete scheme simultaneously solving the FBSDE system itself and the FBSDE
system of its solutions’ Malliavin derivatives, we investigate the errors induced by the discretization of
continuous processes in (3.13). It is known—see Bouchard & Touzi (2004)—that the L

2 discretization
errors of the backward Euler scheme in (3.4) admit to

max
0≤n≤N

E
[∣∣Ytn − Yπn

∣∣2]+ E

[
N−1∑
n=0

∫ tn+1

tn

∣∣Zr − Zπn
∣∣2 dr

]
≤ C
(
E
[∣∣g(XT)− g

(
XπN
)∣∣2]+ εZ(|π |)+ |π | ),

(4.1)

where εZ(|π |) := E
[∑N−1

n=0

∫ tn+1
tn

∣∣Zr − Z̄n+1
n

∣∣2 dr
]

with Z̄n+1
n := 1/ΔtnEn

[ ∫ tn+1
tn

Zr dr
]

according to
Zhang (2004). The purpose of the following section is to show a similar result for the proposed OSM
scheme and prove that it is consistent in the L

2-sense, i.e., the discrete time approximations errors
converge to zero as the mesh size of the time partition |π | vanishes. In particular, we shall see that
under standard Lipschitz assumptions on the driver f of the BSDE (3.1b) and the driver f D of the
linear Malliavin BSDE (3.1d), and additive noise in the forward diffusion, the convergence is of order
O(|π |1/2).
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THE ONE STEP MALLIAVIN SCHEME 13

Assumption 4.1 The following assumptions are in place.

(Aμ,σ ) SDE

(Aμ,σ
1 ) the forward equation has constant drift and diffusion coefficients (Arithmetic Brownian

motion);

(Aμ,σ
2 ) the forward SDE has a uniformly elliptic diffusion coefficient, i.e., for any ζ ∈ R

1×d there
exists a β > 0 such that ζσσ Tζ T > β |ζ |2 1 ;

(Af ,g) BSDE

(Af ,g
1 ) g ∈ C2+α

b (R) with some α > 0, furthermore g is also bounded;

(Af ,g
2 ) f ∈ C0,2,2,2

b (R);

(Af ,g
3 ) f and its partial derivatives ∇x f , ∇y f , ∇z f are all 1/2-Hölder continuous in time.

The conditions above are not minimal—see also Subsection 4.2. Nevertheless, for the sake of the present
analysis they are sufficient. In particular, since bounded continuous differentiability implies Lipschitz
continuity due to the mean-value theorem, by Theorem 2.3 we have that under Assumption 4.1 the
FBSDE (3.1a)–(3.1b) is Malliavin differentiable, and the Malliavin derivatives of its solutions satisfy the
FBSDE (3.1c)–(3.1d). Additionally, due to Delarue & Menozzi (2006, Thm. 2.1), we can also exploit
the following useful result from the theory of parabolic PDEs.

Lemma 4.2 (Delarue & Menozzi, 2006). Under Assumption 4.1, the parabolic PDE in (1.2) admits to a
unique solution u ∈ C1,2

b (R).

Thereafter, provided by Lemma 4.2, one can use the merged formulation of the Malliavin chain
rule lemma Lemma 2.1 and the nonlinear Feynman–Kac relations given by (3.11), in order to get the
explicit formulas for the solutions of (3.1d) depending only on time and the state variable. We remark
that in our setting σ ∈ R

d×d, the existence of the inverse is guaranteed by the uniform ellipticity
condition set on σ in Assumption 4.1. In case the Brownian motion and the forward diffusion have
different dimensions, similar statements can be made about right inverses—see Turkedjiev (2015).
Another important implication of the estimate above is that Assumption 4.1, through Lemma 4.2, also
implies that the driver of the Malliavin BSDE f D is Lipschitz continuous in its spatial arguments within
the bounded domain. Indeed, the mean-value theorem for f ∈ C0,2,2,2

b (R) implies that f and all its first-
order derivatives in (x, y, z) are Lipschitz continuous, consequently for any uniformly bounded argument
(DX, DY , DZ) the following holds:∣∣f (t1, x1)− f (t2, x2)

∣∣ ≤ Lf

( ∣∣t1−t2
∣∣1/2+∣∣x1−x2

∣∣+∣∣y1−y2

∣∣+∣∣z1−z2

∣∣ ),∣∣ξ1

∣∣ , ∣∣η1

∣∣ , ∣∣ζ1

∣∣≤Lf D :
∣∣f D(t1, x1, ξ1)−f D(t2, x2, ξ2)

∣∣ ≤ Lf D

( ∣∣t1−t2
∣∣1/2+∣∣x1−x2

∣∣+∣∣y1−y2

∣∣+∣∣z1−z2

∣∣
+ ∣∣ξ1 − ξ2

∣∣+ ∣∣η1 − η2

∣∣+ ∣∣ζ1 − ζ2

∣∣ ),
(4.2)

1 We remark that this condition is equivalent to A = σσT being a positive definite matrix.
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14 B. NEGYESI ET AL.

with xi = (xi, yi, zi

)
, ξ i := (ξi, ηi, ζi

)
, i = 1, 2; for all ti ∈ [0, T], xi ∈ R

d×1, yi ∈ R, zi, ηi ∈ R
1×d and

ξi, ζi ∈ R
d×d, where Lf , Lf D > 0. Here we also used the assumption of Hölder continuity established

by (Af ,g
3 ).

Given the usual time partition, it is clear that the discrete approximations (3.13) are deterministic
functions of Xπn and thereupon we put Yπn =: yπ

(
tn, Xπn
) =: yπn

(
Xπn
)

, Zπn =: zπ
(
tn, Xπn
) =: zπn

(
Xπn
)

,
Γ π

n =: γ π
(
tn, Xπn
) =: γ πn

(
Xπn
)
. In light of (3.12), we use the approximations

DnYπn+1 = Zπn+1σ
−1 (tn+1, Xπn+1

)
DnXπn+1, DnZπn = Γ π

n DnXπn . (4.3)

We introduce the short-hand notations ΔXπn := Xtn − Xπn , ΔYπn = Ytn − Yπn ,ΔZπn = Ztn − Zπn ,
ΔDnXπn+1 := Dtn Xtn+1

− DnXπn+1, ΔDnYπn+1 := Dtn Ytn+1
− DnYπn+1 and ΔΓ π

n := Γtn − Γ π
n . Under

the conditions of Assumption 4.1, provided by Lemma 2.2 and Theorem 2.3, we have that the processes
(X, Y , Z, DX, DY) are all mean-squared continuous in time, i.e., there exists a general constant C such
that for all s, t, r ∈ [0, T]

E
[∣∣Xt − Xr

∣∣2] ≤ C |t − r| , E
[∣∣Yt − Yr

∣∣2] ≤ C |t − r| , E
[∣∣Zt − Zr

∣∣2] ≤ C |t − r| ,

E
[∣∣DsYt − DsYr

∣∣2] ≤ C |t − r| , E
[∣∣DsXt − DsXr

∣∣2] ≤ C |t − r| , ∀r, t ≥ s.
(4.4)

Finally, we use

DZ
n+1
n := 1

Δtn
En

[∫ tn+1

tn
Dtn Zr dr

]
(4.5)

for the L
2-projection of the corresponding Malliavin derivative with respect to the Ftn σ -algebra, with

which we can define the L
2(Rd×d)-regularity of DZ as follows:

εDZ(|π |) :=
N−1∑
n=0

E

[∫ tn+1

tn

∣∣∣Dtn Zr − DZ
n+1
n

∣∣∣2 dr

]
. (4.6)

Under the condition of constant diffusion coefficients in Assumption 4.1, we have that Dtn Zr = Dtm Zr =
Γrσ for any tn, tm < r. Thereafter, exploiting the fact that due to Assumption 4.1 the terminal condition
of the Malliavin BSDE (3.1d) is also Lipschitz continuous, one can apply Zhang (2004, Thm.3.1)
and get

lim sup
|π |→0

1

|π |ε
DZ(|π |) < ∞. (4.7)
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THE ONE STEP MALLIAVIN SCHEME 15

4.1 Discrete-time approximation error

The main goal of this section is to give an upper bound for the discrete time approximation errors
defined by

Eπ (|π |) := max
0≤n≤N

E
[∣∣ΔYπn
∣∣2]+ max

0≤n≤N
E
[∣∣ΔZπn
∣∣2]+ E

[
N−1∑
n=0

∫ tn+1

tn

∣∣(Γr − Γ π
n

)
σ
∣∣2 dr

]
≤ C |π |.

(4.8)

This is established by the following theorem.

Theorem 4.3 (Consistency of the OSM scheme). Under Assumption 4.1, the scheme defined by (3.13)
for any ϑy ∈ [0, 1] has L2-convergence of order 1/2, i.e.,

lim sup
|π |→0

1

|π |E
π (|π |) < ∞. (4.9)

Proof. Throughout the proof, C denotes a constant independent of the time partition, whose value may
vary from line to line. We proceed in steps and prove estimates for each component of the discretization
error.
Step 1. Estimate for DZ. First, we establish an estimate for the corresponding discretization error of the

DZ-component with respect to the L
2-projection DZ

n+1
n . Let us fix n = 0, . . . , N − 1. Comparing (3.7)

with (4.5), we find

ΔtnDZ
n+1
n = En

[
ΔWnDtn Ytn+1

]+ En

[
ΔWn

∫ tn+1

tn
f D (r, Xr, DtnXr

)
dr

]
. (4.10)

Combining this with the definition of the discrete scheme ((3.13b)) gives

Δtn
(
DZ

n+1
n − DnZπn

) = En

[
ΔWn

(
ΔDnYπn+1 − En

[
ΔDnYπn+1

])]
+ En

[
ΔWn

(∫ tn+1

tn
f D (r, Xr, Dtn Xr

)− f D (tn+1, Xπ
n+1, DnXπ

n+1,n

)
dr

)]
,

(4.11)

using the tower property of conditional expectations. In Frobenius norm, the conditionalL2(Rd)Cauchy–
Schwarz inequality subsequently implies

Δtn
∣∣DZ

n+1
n −DnZπn

∣∣ ≤ (dΔtn)
1/2
(
En

[ ∣∣ΔDnYπn+1 − En

[
ΔDnYπn+1

]∣∣2 ])1/2
+ (dΔtn)

1/2

(
En

[∣∣∣∣∫ tn+1

tn
f D(r, Xr, Dtn Xr

)−f D(tn+1, Xπ
n+1, DnXπ

n+1,n

)
dr

∣∣∣∣2
])1/2

,

(4.12)
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16 B. NEGYESI ET AL.

by the independence of Brownian increments. Hence, due to the L2([0, T];Rd) Cauchy–Schwarz
inequality, we gather

Δtn
∣∣DZ

n+1
n −DnZπn

∣∣ ≤ (dΔtn)
1/2(

En

[ ∣∣ΔDnYπn+1 − En

[
ΔDnYπn+1

]∣∣2 ])1/2
+ d1/2Δtn

(
En

[∫ tn+1

tn

∣∣f D (r, Xr, Dtn Xr

)−f D (tn+1, Xπ
n+1, DnXπ

n+1,n

)∣∣2 dr

])1/2

.

(4.13)

Using the inequality a, b ∈ R : (a + b)2 ≤ 2(a2 + b2), we collect the following L
2(Rd×d) upper bound:

ΔtnE
[∣∣DZ

n+1
n − DnZπn

∣∣2] ≤ 2d
(
E
[∣∣ΔDnYπn+1

∣∣2]− E
[∣∣En

[
ΔDnYπn+1

]∣∣2])
+ 2dΔtnE

[∫ tn+1

tn

∣∣f D (r, Xr, Dtn Xr

)− f D (tn+1, Xπ
n+1, DnXπ

n+1,n

)∣∣2dr

]
.

(4.14)

According to (4.2), the uniform boundedness of Dtn Xr implies that f D is Lipschitz continuous in all its
spatial arguments and 1/2-Hölder continuous in time, with a universal constant Lf D . This, combined with
the mean-squared continuities of the X, Y , Z, Dtn X and DtnY in (4.4), implies

ΔtnE
[∣∣DZ

n+1
n − DnZπn

∣∣2] ≤ 2d
(
E
[∣∣ΔDnYπn+1

∣∣2]− E
[∣∣En

[
ΔDnYπn+1

]∣∣2])
+ 14dL2

f DΔtn

{
CΔt2n+ 2Δtn

(
E
[∣∣ΔXπn+1

∣∣2]+E
[∣∣ΔYπn+1

∣∣2]+E
[∣∣ΔZπn+1

∣∣2])
+ 2Δtn

(
E
[∣∣ΔDnXπn+1

∣∣2]+ E
[∣∣ΔDnYπn+1

∣∣2])
+ E

[∫ tn+1

tn

∣∣Dtn Zr − DnZπn
∣∣2 dr

]}
, (4.15)

where we again used (a + b)2 ≤ 2(a2 + b2) for a, b ∈ R. By the definition of DZ
n+1
n in (4.5), the last

term can be split as follows:

E

[∫ tn+1

tn

∣∣Dtn Zr − DnZπn
∣∣2 dr

]
= E

[∫ tn+1

tn

∣∣Dtn Zr − DZ
n+1
n

∣∣2 dr

]
+ΔtnE

[∣∣DZ
n+1
n − DnZπn

∣∣2].
(4.16)
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THE ONE STEP MALLIAVIN SCHEME 17

Plugging this back in (4.15) yields

ΔtnE
[∣∣DZ

n+1
n − DnZπn

∣∣2] ≤ 2d
(
E
[∣∣ΔDnYπn+1

∣∣2]− E
[∣∣En

[
ΔDnYπn+1

]∣∣2])
+ 14dL2

f DΔtn

{
CΔt2n + 2ΔtnE

[∣∣ΔXπn+1

∣∣2]
+ 2Δtn

(
E
[∣∣ΔYπn+1

∣∣2]+ E
[∣∣ΔZπn+1

∣∣2])
+ 2Δtn

(
E
[∣∣ΔDnXπn+1

∣∣2]+ E
[∣∣ΔDnYπn+1

∣∣2])
+ E

[∫ tn+1

tn

∣∣Dtn Zr − DZ
n+1
n

∣∣2 dr

]
+ΔtnE

[∣∣DZ
n+1
n − DnZπn

∣∣2]}. (4.17)

For sufficiently small time steps satisfying 14dL2
f DΔtn ≤ 1/2, we can therefore gather the estimate

ΔtnE
[∣∣DZ

n+1
n − DnZπn

∣∣2] ≤ 4d
{
E
[∣∣ΔDnYπn+1

∣∣2]− E
[∣∣En

[
ΔDnYπn+1

]∣∣2]}
+ 28dL2

f DΔtn

{
CΔt2n + 2ΔtnE

[∣∣ΔXπn+1

∣∣2]
+ 2Δtn

(
E
[∣∣ΔYπn+1

∣∣2]+ E
[∣∣ΔZπn+1

∣∣2])
+ 2Δtn

(
E
[∣∣ΔDnXπn+1

∣∣2]+ E
[∣∣ΔDnYπn+1

∣∣2])
+ E

[∫ tn+1

tn

∣∣Dtn Zr − DZ
n+1
n

∣∣2 dr

]}
. (4.18)

Step 2. Estimate for Z. With the above result in hand, we give an estimate for the control process.
Under Assumption 4.1, provided by Theorem 2.3, we identify the control process Z by its continuous
modification given by DY and establish pointwise estimates. Indeed, from (3.7) and the definition of the
discrete scheme in (3.13c), it follows

ΔZπn = En

[
ΔDnYπn+1

]+ En

[∫ tn+1

tn
f D (r, Xr, DtnXr

)− f D (tn+1, Xπ
n+1, DnXπ

n+1,n

)
dr

]
. (4.19)

Applying the Young inequality of the form (a + b)2 ≤ (1 + ρΔtn)a
2 + (1 + 1

ρΔtn
)b2 with any ρ > 0;

using the Jensen and L2([0, T];Rd) Cauchy–Schwarz inequalities gives

E
[∣∣ΔZπn
∣∣2] ≤(1 + ρΔtn)E

[∣∣En

[
ΔDnYπn+1

]∣∣2]
+ 1

ρ
(1 + ρΔtn)E

[∫ tn+1

tn

∣∣f D (r, Xr, Dtn Xr

)− f D (tn+1, Xπ
n+1, DnXπ

n+1,n

)∣∣2 dr

]
. (4.20)
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18 B. NEGYESI ET AL.

Exploiting the Lipschitz and Hölder continuity of f D in (4.2) and using the mean-squared continuities of
X, Y , Z, Dtn X and Dtn Y in (4.4), we subsequently gather

E
[∣∣ΔZπn
∣∣2] ≤ (1 + ρΔtn)E

[∣∣En

[
ΔDnYπn+1

]∣∣2]
+

7L2
f D

ρ
(1 + ρΔtn)

{
CΔt2n + 2Δtn

(
E
[∣∣ΔXπn+1

∣∣2]+ E
[∣∣ΔYπn+1

∣∣2]+ E
[∣∣ΔZπn+1

∣∣2])
+ 2Δtn

(
E
[∣∣ΔDnXπn+1

∣∣2]+ E
[∣∣ΔDnYπn+1

∣∣2])
+ E

[∫ tn+1

tn

∣∣Dtn Zr − DnZπn
∣∣2 dr

]}
.

(4.21)

Splitting the last term according to (4.16), substituting the upper bound (4.18) and choosing ρ∗ :=
28dL2

f D then yields

E
[∣∣ΔZπn
∣∣2] ≤ (1 + ρ∗Δtn)E

[∣∣ΔDnYπn+1

∣∣2]
+ 1+ρ∗Δtn

2

{
CΔt2n+(1+28dL2

f DΔtn
)
Δtn
(
E
[∣∣ΔXπn+1

∣∣2]+E
[∣∣ΔYπn+1

∣∣2]+E
[∣∣ΔZπn+1

∣∣2])
+ (1 + 28dL2

f DΔtn
)
Δtn
(
E
[∣∣ΔDnXπn+1

∣∣2]+ E
[∣∣ΔDnYπn+1

∣∣2])
+

1 + 28dL2
f DΔtn

2
E

[∫ tn+1

tn

∣∣Dtn Zr − DZ
n+1
n

∣∣2 dr

]}
, (4.22)

for any sufficiently small Δtn < 1. At this point, we can make use of the fact that due to (Aμ,σ
1 ) in

Assumption 4.1 Xπn = σWtn = Xtn and DnXπn+1 = σ ≡ DtnXtn+1
, which in particular implies Xtn −Xπn ≡

0, Dtn Xtn+1
− DnXπn+1 ≡ 0 and

ΔDnYπn+1 = ΔZπn+1, Dtn Ztn − DnZπn = ΔΓ π
n σ , (4.23)

in light of (4.3). Plugging these estimates back in (4.22) subsequently gives

E
[∣∣ΔZπn
∣∣2] ≤ (1 + CzΔtn)E

[∣∣ΔZπn+1

∣∣2]
+ Cz

{
Δt2n +ΔtnE

[∣∣ΔYπn+1

∣∣2]+ E

[∫ tn+1

tn

∣∣Dtn Zr − DZ
n+1
n

∣∣2 dr

]}
. (4.24)

Step 3. Estimate for Y . Given f ’s Lipschitz continuity in (x, y, z) and 1/2-Hölder continuity in t by (4.2),
the mean-squared continuities of X, Y and Z in (4.4); through subsequent applications of the Young–,
Jensen– and Cauchy–Schwarz inequalities analogously to the previous steps, we derive the following

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/drad092/7613646 by D
elft U

niversity of Technology user on 06 M
arch 2024



THE ONE STEP MALLIAVIN SCHEME 19

inequality from the dynamics of Y in (3.1b) and the discrete scheme in (3.13d):

E
[∣∣ΔYπn
∣∣2] ≤ (1 + βΔtn)E

[∣∣ΔYπn+1

∣∣2]
+ 8L2

f

β
(1 + βΔtn)

{
CΔt2n + 2ϑ2

yΔtn
(
E
[∣∣ΔYπn
∣∣2]+ E

[∣∣ΔZπn
∣∣2])

+ 2(1 − ϑy)
2Δtn
(
E
[∣∣ΔYπn+1

∣∣2]+ E
[∣∣ΔZπn+1

∣∣2])}, (4.25)

with any β > 0.
Step 4. Combined estimate for Y and Z. Combining the estimates in (4.24) and (4.25) gives

(
1 − 16L2

f (1+β)ϑ2
y

β
Δtn

) (
E
[∣∣ΔYπn
∣∣2]+ E

[∣∣ΔZπn
∣∣2]) ≤(1 + CyΔtn)

(
E
[∣∣ΔYπn+1

∣∣2]+ E
[∣∣ΔZπn+1

∣∣2])
+ C

{
Δt2n + E

[∫ tn+1

tn

∣∣Dtn Zr−DZ
n+1
n

∣∣2 dr

]}
,

(4.26)

with Cy = β + 16L2
f (1+β)
β

(1 − ϑy)
2 + Cz. Then, for any given β > 0 and sufficiently small time step

admitting to
16L2

f (1+β)ϑ2
y

β
Δtn < 1, we derive

E
[∣∣ΔYπn
∣∣2]+ E

[∣∣ΔZπn
∣∣2] ≤ (1 + CΔtn)

(
E
[∣∣ΔYπn+1

∣∣2]+ E
[∣∣ΔZπn+1

∣∣2])
+ C

{
Δt2n + E

[∫ tn+1

tn

∣∣Dtn Zr − DZ
n+1
n

∣∣2 dr

]}
. (4.27)

Thereupon, the discrete Grönwall lemma implies that

max
0≤n≤N

E
[∣∣ΔYπn
∣∣2]+ max

0≤n≤N
E
[∣∣ΔZπn
∣∣2] ≤ C

{
E
[∣∣g(XT)− g

(
XπN
)∣∣2]

+ E
[∣∣∇xg(XT)σ (tN , XT)− ∇xg

(
XπtN
)
σ(tN , XπN )

∣∣2]
+ εDZ(|π |)+ |π |

}
,

(4.28)

where we also used the definition in (4.6). The proclaimed estimate for the (Y , Z) part then follows from
the observation that under Assumption 4.1 the terminal conditions of both the BSDE in (3.1b) and the
Malliavin BSDE in (3.1d) are analytically observed; and the fact that, according to (4.7), εDZ(|π |) is
also O(|π |).
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20 B. NEGYESI ET AL.

Step 5. Final estimate for Γ . It remains to show the consistency of the Γ estimate. From (4.14) and
(4.16), we get

E

[ ∫ tn+1

tn

∣∣Dtn Zr − DnZπn
∣∣2 dr

]
≤ E

[∫ tn+1

tn

∣∣DtnZr − DZ
n+1
n

∣∣2 dr

]
+ 2d
{
E
[∣∣ΔDnYπn+1

∣∣2]− E
[∣∣En

[
ΔDnYπn+1

]∣∣2]}
+ 2dΔtnE

[∫ tn+1

tn

∣∣f D (XπtN ) (r, Xr, DtnXr

)− f D (XπtN ) (tn+1, Xπ
n+1, DnXπ

n+1,n

)∣∣2 dr

]
.

(4.29)

Summation from n = 0, . . . , N − 1 thus gives

E

[ N−1∑
n=0

∫ tn+1

tn

∣∣Dtn Zr − DnZπn
∣∣2 dr

]

≤ E

[
N−1∑
n=0

∫ tn+1

tn

∣∣Dtn Zr − DZ
n+1
n

∣∣2 dr

]
+ 2dE
[∣∣ΔDN−1YπN

∣∣2]

+ 2d
N−1∑
n=1

{
E
[∣∣ΔDn−1Yπn

∣∣2]− E
[∣∣En

[
ΔDnYπn+1

]∣∣2]}

+ 2d
N−1∑
n=0

ΔtnE

[∫ tn+1

tn

∣∣f D (r, Xr, Dtn Xr

)− f D (tn+1, Xπ
n+1, DnXπ

n+1,n

)∣∣2 dr

]
, (4.30)

where we changed the summation index for the first part of the third term. Using the relations in (4.23)
implied by Assumption 4.1, we can upper bound the summation term by the estimate (4.20)

E

[
N−1∑
n=0

∫ tn+1

tn

∣∣Dtn Zr − DnZπn
∣∣2 dr

]

≤ E

[
N−1∑
n=0

∫ tn+1

tn

∣∣Dtn Zr − DZ
n+1
n

∣∣2 dr

]
+ 2dE
[∣∣ΔDN−1YπN

∣∣2]

+ 2d�
N−1∑
n=1

ΔtnE
[∣∣En

[
ΔDnYπn+1

]∣∣2]

+ 2d
N−1∑
n=0

(1/� + 2Δtn)E

[∫ tn+1

tn

∣∣f D(r, Xr, DtnXr)− f D(tn+1, Xπ
n+1, DnXπ

n+1,n)
∣∣2 dr

]
, (4.31)
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THE ONE STEP MALLIAVIN SCHEME 21

for any � > 0. Similar steps as in (4.21) subsequently give

E

[ N−1∑
n=0

∫ tn+1

tn

∣∣Dtn Zr − DnZπn
∣∣2 dr

]

≤ E

[
N−1∑
n=0

∫ tn+1

tn

∣∣Dtn Zr − DZ
n+1
n

∣∣2 dr

]
+ 2dE
[∣∣ΔDN−1YπN

∣∣2]

+ 2d�
N−1∑
n=1

ΔtnE
[∣∣En

[
ΔDnYπn+1

]∣∣2]

+ 14L2
f D d

N−1∑
n=0

(1/� + 2Δtn)

{
CΔt2n + 2ΔtnE

[∣∣ΔXπn+1

∣∣2]+ 2ΔtnE
[∣∣ΔYπn+1

∣∣2]
+ 2ΔtnE

[∣∣ΔZπn+1

∣∣2]+ 2ΔtnE
[∣∣ΔDnXπn+1

∣∣2]
+ 2ΔtnE

[∣∣ΔDnYπn+1

∣∣2]+ E

[∫ tn+1

tn

∣∣Dtn Zr − DnZπn
∣∣2 dr

]}
.

(4.32)

By choosing �∗ = 56L2
f D d, we have that for any sufficiently small |π | satisfying 28L2

f D d |π | < 1/4

E

[ N−1∑
n=0

∫ tn+1

tn

∣∣Dtn Zr − DnZπn
∣∣2 dr

]

≤ 2E

[
N−1∑
n=0

∫ tn+1

tn

∣∣DtnZr − DZ
n+1
n

∣∣2 dr

]
+ 4dE
[∣∣ΔDN−1YπN

∣∣2]

+ 4d�∗
N−1∑
n=1

ΔtnE
[∣∣En

[
ΔDnYπn+1

]∣∣2]

+
N−1∑
n=0

(
1/2 + 56L2

f D dΔtn
){

CΔt2n + 2ΔtnE
[∣∣ΔXπn+1

∣∣2]+ 2ΔtnE
[∣∣ΔYπn+1

∣∣2]
+ 2Δtn

(
E
[∣∣ΔZπn+1

∣∣2]+ E
[∣∣ΔDnXπn+1

∣∣2]+ E
[∣∣ΔDnYπn+1

∣∣2])}.
(4.33)

Once again applying the relations in (4.23), Jensen’s inequality, the convergence of the L
2-regularity of

DZ in (4.7) and the estimate (4.28) proven in the previous step now shows the proclaimed convergence
of the Γ estimates.

This concludes the proof. �
The final result in (4.9) expresses that the L

2 convergence rate of the discrete time approximations
induced by (3.13) is of order O(|π |1/2) under the conditions imposed in Assumption 4.1. Comparing
the convergence bound of Theorem 4.3 to that of the classical backward Euler discretization in (4.1),
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22 B. NEGYESI ET AL.

three observations need to be made. First, in contrast to the backward Euler discretization, the OSM
scheme admits to a bound where the Z process is controlled by the maximum error over the discrete time
steps—see (4.8). This is due to the fact that under the OSM formulation, Theorem 2.3 guarantees a
continuous version of the control process bounded in the supremum norm, and thus allows for pointwise
estimates. Additionally, we see that even though the hereby proposed discretization solves a larger
problem by incorporating Γ estimates, it exhibits the same, optimal rate of convergence well-known
for the classical backward Euler discretization of BSDEs in (4.1). At last, unlike in the aforementioned
case, our final estimate does not include the strong discretization errors of the terminal conditions of the
BSDEs (3.1b) and (3.1d). This is merely due to the fact that under Assumption 4.1 we assumed constant
diffusion coefficients, which led to the corresponding terms canceling in (4.28). Similarly, we exploited
that under our conditions the Malliavin BSDE’s terminal condition is Lipschitz continuous, leading to
an O(|π |1/2) convergence of the L

2-regularity of DZ according to (4.7). In case of irregular terminal
conditions and nonanalytical forward diffusions, it is expected that the corresponding terms would also
contribute to the final estimate.

4.2 Assumptions revisited

In order to conclude the discussion on the discrete time approximation errors, we elaborate on the
conditions set in Assumption 4.1. Key aspects of their relevance are highlighted and potential ways
to generalize the results are pointed out in order to encourage further research.

Not surprisingly, compared to classical discretizations excluding the Malliavin components, neces-
sarily stricter conditions need to be posed in order to ensure Malliavin differentiability of the original
FBSDE system in (3.1a)–(3.1b). The differentiability requirements on the coefficients f and g in (Af ,g

1 )–

(Af ,g
2 ) are inherently linked to the Malliavin differentiability of the FBSDE in (3.1). However, the

Malliavin differentiability of the solution pair holds under significantly milder assumptions. We refer to
Mastrolia et al. (2017) for a recent account on the subject, where it is shown that first-order continuous
differentiability, with not necessarily bounded ∇xg, ∇x f is sufficient.

The reason why we nonetheless decided to restrict the assumptions to second-order bounded
differentiability is mostly related to Lemma 4.2 and the Lipschitz continuity of f D in (4.2). Although
the Lipschitz continuity of ∇x f , ∇y f , ∇z f are all guaranteed by the C0,2,2,2

b assumption, the same cannot

be said about the Malliavin derivative arguments DsXt of f D. More precisely, in order to have Lipschitz
continuity in all spatial arguments, one—on top of the boundedness of the partial derivatives of f —
also needs to have the uniform boundedness of all the Malliavin derivatives (DX, DY , DZ). Due to the
Malliavin chain rule estimates in (3.11), under the assumption of constant diffusion coefficients in (Aμ,σ

1 ),
the uniform boundedness of the Malliavin derivatives is implied by the twice bounded differentiability of
the solution of the parabolic problem in (1.2). This is guaranteed by Lemma 4.2, requiring the conditions
in (Af ,g

1 )–(Af ,g
2 ) to be satisfied. In case the uniform boundedness of (DY , DZ) is not readily available,

one can truncate the corresponding arguments of f D similarly to Chassagneux & Richou (2016), and
discretize the truncated Malliavin problem accordingly. Thereafter, the total discrete time approximation
error can be decomposed into a truncation and discretization component, which guarantee convergence
for an appropriately chosen, adaptive truncation range. A detailed presentation of this argument will be
part of our future research.

Throughout the analysis, we also often relied on the assumption that the underlying forward diffusion
admits to constant drift and diffusion coefficients due to (Aμ,σ

1 ). In particular, this assumption allowed

us to neglect the contribution of error terms such as E
[∣∣Xtn − Xπn

∣∣2] and E
[∣∣Dtn Xtn+1

− DnXπn+1

∣∣2]—see,
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THE ONE STEP MALLIAVIN SCHEME 23

e.g., (4.23). However, it is well-known that the strong convergence of Euler–Maruyama approximations
is of order 1/2—see (3.3)—carrying the same order of convergence as the rest of the terms in our
estimates. The convergence of the Malliavin derivative DnXπn+1 with respect to an Euler–Maruyama
discretization in (3.5) is more troublesome. In fact, as highlighted by related works in the literature—see
Hu et al. (2011, Remark 5.1)—it is difficult to guarantee the convergence of DsX

π over the whole time
horizon. It is important to highlight that the OSM scheme in (3.13) does not require approximations of
the corresponding Malliavin derivative over the whole time window, but only in between adjacent time
steps DnXπn+1. This is a major relieve in terms of convergence as one can easily show that within this
one time stepping (OSM) scheme, DnXπn+1 inherits the convergence properties of the forward diffusion
under mild assumptions—see Appendix A.

The main difficulty with respect to general forward diffusions is related to the Malliavin chain rule
approximations given by (3.11). In fact, when DnXπn+1 �= Dtn Xtn+1

, one needs to deal with product terms
such as

Dtn Ytn+1
− DnYπn+1 = [Ztn+1

σ−1(tn+1, Xtn+1

)− Zπn+1σ
−1 (tn+1, Xπn+1

)]
DtnXtn+1

+ Zπn+1σ
−1 (tn+1, Xπn+1

) [
Dtn Xtn+1

− DnXπn+1

]
. (4.34)

These pose a significant amount of difficulty when one—unlike in the case of (Aμ,σ
1 )—does not have

the uniform boundedness of σ−1 and {DsXt}0≤s,t≤T . Additionally, in order to ensure the boundedness of
the discrete estimates Zπn+1, a certain truncation procedure would be required, further complicating the
analysis. Therefore, we decided to restrict the assumptions to constant diffusion coefficients and to leave
the general case for future research.

Remark 4.4 (Nonconstant drift and Girsanov’s theorem).We remark that the assumption of a constant
drift coefficient is mostly a matter convenience. Indeed, with a straightforward change of measure
argument via the Girsanov theorem, one can merge the corresponding nonconstant drift contribution onto
the driver of the BSDE and—as long as the drift itself satisfies the continuously bounded differentiable
assumptions posed on ∇x f —the same analysis holds.

5. Fully implementable schemes with differentiable function approximators and neural networks

Having established a convergence result for the discrete time approximation’s error induced by (3.13), we
now turn to fully-implementable schemes where the appearing conditional expectations are numerically
approximated by a certain machinery. In other words, we are concerned with the following modification
of the discrete scheme in (3.13):

ŶπN =g
(
XπN
)

, ẐπN =∇xg
(
XπN
)
σ
(
tN , XπN
)

, Γ̂ π
N = [∇x(∇xgσ)](tN , XπN ), (5.1a)

qΓ π
n σ
(
tn, Xπn
) = Dn

qZπn = 1

Δtn
En

[
ΔWn

(
DnŶπn+1 +Δtnf D(tn+1, X̂

π

n+1, Dn
qX
π

n+1,n

))]
, Γ̂ π

n ← P( qΓ π
n ),

(5.1b)
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24 B. NEGYESI ET AL.

qZπn =En

[
DnŶπn+1+Δtn f D(tn+1, X̂

π

n+1, DnX̂
π

n+1,n)
]
, Ẑπn ←P(qZπn ), (5.1c)

qYπn = ϑyΔtn f
(

tn, Xπn , qYπn , Ẑπn
)

+ En

[
Ŷπn+1 + (1 − ϑy)Δtn f

(
tn+1, X̂

π

n+1

)]
, Ŷπn ← P(qYπn ), (5.1d)

with the notations X̂
π

n+1 := (X̂πn+1, Ŷπn+1, Ẑπn+1

)
, Dn

qX
π

n+1,n := (DnXπn+1, DnŶπn+1, Dn
qZπn ) and

DnX̂
π

n+1,n := (DnXπn+1, DnŶπn+1, DnẐπn
)
, where DnŶπn+1 := Ẑπn+1σ

−1(tn+1, Xπn+1)DnXπn+1 and DnẐπn :=
Γ̂ π

n DnXπn —similarly as in (3.12). The final approximations are denoted by (Ŷπn , Ẑπn , Γ̂ π
n ) andP denotes a

machinery, which, given approximations at future time steps, estimates the true conditional expectations
(qYπn , qZπn , qΓ π

n ). It is worth to notice that (5.1c) is explicit, whereas (5.1b) and (5.1d) are both implicit
when ϑy > 0. Due to the Markov feature of the corresponding problem, we can write all estimates

as deterministic functions of the state process qYπn =: qyπn
(
Xπn
)
, qZπn =: qzπn

(
Xπn
)
, qΓ π

n =: qγ πn
(
Xπn
)

and
Ŷπn =: ŷπn

(
Xπn
)
, Ẑπn =: ẑπn

(
Xπn
)
, Γ̂ π

n =: γ̂ πn
(
Xπn
)

at each time instance.
In the literature there exist several techniques to numerically approximate conditional expectations,

see, e.g., Bally & Pagès (2003); Bouchard & Touzi (2004); Briand & Labart (2014). In what follows, we
investigate two specific approaches in the context of the OSM scheme. We first give an extension to the
BCOS method (Ruijter & Oosterlee, 2015), which shall later be used as a benchmark method for one-
dimensional problems. Our main approximation tool is based on a least-squares Monte Carlo formulation
similar to those of the Deep BSDE methods (Han et al., 2018; Huré et al., 2020), where the functions
parametrizing the solution triple are fully-connected, feedforward neural networks. Due to the universal
approximation properties of neural networks in Sobolev spaces, this will allow us to distinguish between
two variants. In the first one, the Γ process is parametrized by a matrix-valued neural network whose
parameters are optimized in a stochastic gradient descent iteration. In the second, this parametrization
is circumvented and, in light of (1.3), the Γ estimates are directly calculated as the Jacobian of the Z
process. However, such directly linked estimates induce an additional source of error, which shall be
addressed in Theorem 5.2, where we give an error bound for the complete approximation error of the
fully-implementable OSM scheme, given the cumulative regression errors of neural network regressions,
similarly to the ones proven in Han & Long (2020); Huré et al. (2020).

5.1 The BCOS method

We recall the most fundamental notions of the BCOS method (Ruijter & Oosterlee, 2015). In order to
keep the presentation concise, for the sake of this section, we restrict ourselves to the one-dimensional
case. BCOS is an extension of the COS method (Fang & Oosterlee, 2009) to the setting of FBSDE
systems, whose main idea is to recover the probability densities of certain random variables given that
their characteristic function is available. The key idea of the BCOS method can be summarized as follows.
In general, for a Markov problem, conditional expectations are of the form

I(x) := E
[
v
(
tn+1, Xπn+1

)|Xπn = x
] = ∫

R

v(tn+1, ρ)p(ρ|x) dρ, (5.2)

where p(ρ|x) is the conditional transition density function from state (t, x) to state (tn+1, ρ). Assuming
that the integrand above decays in the infinite limit, one can truncate the integration range to a
sufficiently wide finite domain [a, b]. Thereafter, the Fourier cosine expansion of the deterministic

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/drad092/7613646 by D
elft U

niversity of Technology user on 06 M
arch 2024



THE ONE STEP MALLIAVIN SCHEME 25

mapping v(tn+1, ·) : [a, b] → R reads as2

v(tn+1, ρ) =
∞∑′

k=0

Vk(tn+1) cos
(

kπ
ρ − a

b − a

)
, (5.3)

where the series coefficients are given by Vk(tn+1) := 2
b−a

∫ b
a v(tn+1, ρ) cos(kπ ρ−a

b−a ) dρ. Plugging these
estimates back in the conditional expectation, with an additional truncation of the Fourier expansion to
a finite number of K coefficients, gives the approximation (Fang & Oosterlee, 2009)

I(x) ≈ Î(x) :=
K−1∑′

k=0

Vk(tn+1)�{Φ(k|x)}, (5.4)

where Φ(k|x) := φ( kπ
b−a |x)eikπ x−a

b−a and φ(u|x) is the conditional characteristic function of the Markov
transition. In case the underlying Markov process is an Euler–Maruyama approximation of the solution
to a forward SDE, the conditional characteristic function is given by φ(u|x) = exp(iuμ(tn, x)Δtn −
1
2 u2σ 2(tn, x)Δtn). Using an integration by parts argument—see Ruijter & Oosterlee (2015, Appendix
A.1) and Appendix B—similar results can be constructed for conditional expectations of the forms

J(x) := E
x
n

[
v
(
tn+1, Xπn+1

)
ΔWn

] ≈ Ĵ(x) := Δtnσ(tn, x)
K−1∑′

k=0

− kπ

b − a
Vk(tn+1)�{Φ(k|x)}, (5.5)

K(x) := E
x
n

[
v
(
tn+1, Xπn+1

)
(ΔWn)

2
]

≈ K̂(x) := Δtn

K−1∑′

k=0

Vk(tn+1)�{Φ(k|x)}

−Δt2nσ
2(tn, x)

K−1∑
k=0

(
kπ

b − a

)2

Vk(tn+1)�{Φ(k|x)}. (5.6)

Built on these approximations, the BCOS method goes as follows. One first needs to recover the
coefficients of the terminal conditions either analytically or via Discrete Cosine Transforms (DCT).
These coefficients are plugged into conditional expectations of the form (5.4), (5.5) and (5.6), providing
estimates for the solutions at tN−1. In order to make the scheme fully-implementable, one also relies
on a machinery that recovers these coefficients while going to time step n, from time step n + 1 in a
backward recursive algorithm. This step can either be done by Fast Fourier Transforms (FFT) (Ruijter
& Oosterlee, 2015) when the coefficients of the SDE are constant, or with DCT when they are not
(Ruijter & Oosterlee, 2016). When one is faced with an implicit conditional expectation (ϑy > 0)
Picard iterations are performed, which—under Lipschitz assumptions and sufficiently small time steps—
converge exponentially fast to the unique fixed point solution.

2 We adhere to the standard notation where
∑′K−1

k=0
ak := a0/2 +∑K−1

k=1 ak , i.e., the first element is multiplied by 1/2.
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26 B. NEGYESI ET AL.

In particular, the BCOS approximations for (5.1) read as follows—for a more detailed derivation,
see Appendix C

ŷπN(x) = g(x), ẑπN(x) = ∂xg(x)σ (T , x), γ̂ πN (x) = ∂x

(
∂xgσ
)
(T , x), (5.7a)

γ̂ πn (x)σ (tn, x) =
K−1∑′

k=0

D̂Zk(tn+1) cos
(

kπ
x − a

b − a

)
, (5.7b)

ẑπn (x) = σ(tn, x)(1 + ∂xμ(tn, x)Δtn)
K−1∑′

k=0

Wk(tn+1)�{Φ(k|x)} (5.7c)

− σ 2(tn, x)∂xσ(tn, x)Δtn

K−1∑′

k=0

kπ

b − a
Wk(tn+1)�{Φ(k|x)}

+Δtnγ̂
π
n (x)σ (tn, x)

K−1∑′

k=0

F z
k(tn+1)�{Φ(k|x)},

ŷπn (x) =
K−1∑′

k=0

Ŷk(tn) cos
(

kπ
x − a

b − a

)
, (5.7d)

where we defined

hπn+1

(
Xπn+1

)
:= ŷπn+1

(
Xπn+1

)+ (1 − ϑy)Δtn f
(
tn+1, Xπn+1, ŷπn+1

(
Xπn+1

)
, ẑπn+1

(
Xπn+1

))
,

wπn+1

(
Xπn+1

)
:= (1 + ∂y f

(
tn+1, X̂

π

n+1

))̂
zπn+1

(
Xπn+1

)
σ−1 (tn+1, Xπn+1

)+Δtn∂x f
(
tn, X̂

π

n+1

) (5.8)

for the explicit parts of the discrete approximations (5.1d) and (5.1c), respectively. The coefficients

Wk(tn+1) := 2

b − a

∫ b

a
wπn+1(ρ) cos

(
kπ
ρ−a

b−a

)
dρ, Hk(tn+1) := 2

b − a

∫ b

a
hπn+1(ρ) cos

(
kπ
ρ−a

b−a

)
dρ,

F z
k(tn+1) := 2

b − a

∫ b

a
∂z f (tn+1, ρ) cos

(
kπ
ρ − a

b − a

)
dρ

(5.9)

are approximated by their DCT counterparts Ŵk(tn+1), Ĥk(tn+1), F̂ z
k(tn+1), respectively. D̂Zk(tn+1) is

recovered with DCT on the approximationsEx
n

[
Δt−1

n ΔWnwπn+1

(
Xπn+1

)
DnXπn+1

]
/
(
1−E

x
n

[
ΔWn∂z f (tn+1,

X̂
π

n+1)
])

. Thereafter, the BCOS formulas in (5.4), (5.5) and (5.6), together with the Euler–Maruyama
estimates (3.5), imply the estimates for Γ and Z. The Z estimates are plugged into the approximation
of the Y process in (5.1d). The coefficients Ŷk(tn) are recovered from the estimates yP,π

n (x) =
ϑyΔtn f (tn, x, yP−1,π

n (x), ẑπn (x)) + E
x
n

[
hπn+1

]
after a sufficient number of P Picard iterations are taken.

This completes the BCOS algorithm for the OSM scheme.
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For a detailed account on the contributions of the corresponding truncation and approximation errors
of the BCOS method, we refer to Fang & Oosterlee (2009); Ruijter & Oosterlee (2015, 2016) and the
references therein. Although the method can be extended to higher-dimensional diffusion processes,
it suffers from the curse of dimensionality through the inevitable spatial discretization required in the
Fourier frequency domain.

5.2 Neural networks

In recent years, neural networks have shown excellent empirical results when deployed in a regression
Monte Carlo framework for BSDEs (Han et al., 2018; Fujii et al., 2019; Huré et al., 2020). In
what follows, we are concerned with the class of feedforward, fully-connected deep neural networks,
particularly in the context of approximating high-dimensional conditional expectations. This family of
functions Ψ (·|Θ) : Rd×1 → R

q×d can be described as a hierarchical sequence of compositions

Ψ (x|Θ) := aout ◦ AL+1(·|θL+1) ◦ a ◦ AL(·|θL) ◦ a ◦ · · · ◦ a ◦ A1(·|θ1) ◦ x. (5.10)

The affine transformations Al, l = 1, . . . , L are called hidden layers and are of the form Al(y|θl :=
(Wl

l−1, bl)) := Wl
l−1y + bl, with Wl

l−1 ∈ R
Sl×Sl−1 being a matrix of weights and bl ∈ R

Sl×1, Sl−1, Sl ∈ N

the biases. Furthermore, a : R → R describes a nonlinear activation function, which is applied element-
wise on the output of each affine transformation. The size Sl denotes how many neurons are contained
in the given layer. The output layer is defined by AL+1(y|θL+1 := (WL+1

L , bL+1)) := WL+1
L y + bL+1

with WL+1
L ∈ R

q×d×SL , bL+1 ∈ R
q×d. The complete parameter space of such an architecture is

therefore given by Θ := (θ1, . . . , θL+1

) ∈ R
q×d×(SL+1)+∑L

l=1 Sl−1×Sl+Sl . Widely common choices for
the nonlinearity include: Rectified Linear Units (ReLU), sigmoid and the hyperbolic tangent activations.
The optimal parameter space Θ∗ is usually approximated by first formulating a loss function, which
measures an abstract distance from the desired behavior, and then iteratively minimizing this loss
through a stochastic gradient descent (SGD) type algorithm. For more details, we refer to Goodfellow
et al. (2016).

The use of deep learning is often motivated by the so-called Universal Approximation Theorems
(UAT), which establish that neural networks can approximate a wide class of functions with arbitrary
accuracy. The first version of the UAT property was proven by Cybenko (1989). However, as in the
applications of this paper derivative approximations play an important role, we present the following
extension of Hornik et al. (1990), which extends the UAT property to Sobolev spaces. In what follows,
we use the common notations for Wk,p(U) := {f ∈ Lp(U) : ‖f ‖Wk,p := (

∑
|α|≤k

∫
U |Dαf |p dλ)1/p < ∞}

for Sobolev spaces, where α denotes a multi-index, Dα is the differentiation operator in the weak sense
and λ is the Lebesgue measure. In particular, we use Hk(U) := Wk,2(U). Then the UAT in Sobolev
spaces can be stated as follows—for a proof see Hornik et al. (1990, Corollary 3.6).

Theorem 5.1 (Universal Approximation Theorem in Sobolev Spaces, Hornik et al., 1990). Let a : R →
R be an �-finite activation function, i.e., a ∈ Cl(R) and

∫
R

∣∣D�a
∣∣ < ∞. Let U ⊆ R

d×1 be a compact
subset. Denote the class of single hidden layer neural networks by Σ(a) := {ψ : R

d×1 → R
1×q :

ψ(x|Θ = (W1
0 , b1, W2

1 , b2)) = W2
1 a(W1

0 x + b1) + b2, W1
0 ∈ R

S1×d, b1 ∈ R
S1×1, W2

1 ∈ R
1×q×S1 , b2 ∈

R
1×q, S1 ∈ N}. ThenΣ(a) is dense in Wm,p(U) for each 0 ≤ m ≤ �, i.e., for any ε > 0 and f ∈ Wm,p(U)

there exists a ψ ∈ Σ(a) such that ‖ψ − f ‖Wm,p < ε.
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In particular, we have that for any � = 1-finite activation a, f ∈ H1(U) and ε > 0, there exists a
ψ ∈ Σ(a) such that ∫

U
|ψ − f |2 dλ+

∫
U

∣∣∇xψ − Df
∣∣2 dλ < ε. (5.11)

The main implication of the UAT property is that given a compact domain on R
d and an appropriate

activation function, one can approximate any Sobolev function by shallow neural networks3 with
arbitrary accuracy. It is worth highlighting that in the context of a regression Monte Carlo application,
this does not establish an implementable regression bias due to the lack of bounds on the width of the
hidden layer. We remark that the above version is not a state of the art result and refer to Pinkus (1999)
for a classical survey on the subject.

Layer Normalization. Normalization is a standard tool to enhance the convergence of stochastic
gradient descent like algorithms (Goodfellow et al., 2016). In standard examples (Han et al., 2018),
this is usually done by a so-called batch normalization technique. However, as we shall see, in our
setting, batch normalization is computationally intensive as it ruins batch independence and implies
quadratic dependence of the Jacobian tensor on the chosen batch size. Hence, we instead deploy layer
normalization (Ba et al., 2016), where normalization takes place across the output activations of a
given hidden layer. Therefore, the final network architecture considered in Section 6 is described by
the sequence of compositions

Ψ (x|Θ̄) := aout ◦ AL+1(·|θL+1) ◦ a ◦ AL(·|θL) ◦ n̄ ◦ a ◦ · · · ◦ n̄ ◦ A1(·|θ1) ◦ x, (5.12)

with n̄(·|βl) and Θ̄ := (Θ ,β1, . . . ,βL−1), where βl denotes the lth normalization layer’s parameters—see
Ba et al. (2016).

5.3 A Deep BSDE approach

In what follows, we formulate a Deep BSDE approach similar to Huré et al. (2020), which scales well in
high-dimensional settings and tackles the fully-implementable scheme (5.1) in a neural network least-
squares Monte Carlo framework. The main difference between our approach and that of Huré et al.
(2020) is that, unlike in the discretization problem (3.4), we solve the d-dimensional linear BSDE of the
Malliavin derivatives in (3.1d)—on top of the scalar BSDE (3.1b). We separate the solutions of these two
BSDEs and perform two distinct neural network regressions at each time step. We distinguish between
two approaches. The first involves an additional layer of parametrization in which the matrix-valued Γ
process is approximated by an R

d×d-valued neural network. In the second, we take advantage of neural
networks being dense function approximators in Sobolev spaces provided by Theorem 5.1, circumvent
parametrizing the Γ process and instead obtain it as the direct derivative of the Z process via automatic
differentiation—in a way very similar to the second scheme (DBDP2) of Huré et al. (2020). In doing
so, we require a so-called Jacobian training where the loss is dependent of the derivative of the neural
network involved.

3 It is clear that the above statement generalizes to deep neural networks containing multiple hidden layers.
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In order to motivate the merged problem formulation, notice that by Assumption 4.1 on the
coefficients of the BSDE, the arguments of the conditional expectations in (5.1) are all L2-integrable
random variables. Consequently, (5.1c), combined with the martingale representation theorem, implies
the existence of a unique random process DnZ̃r such that

DnŶπn+1 +Δtn f D(tn+1, X̂
π

n+1, Dn
qX
π

n+1,n

) = qZπn +
∫ tn+1

tn

((
DnZ̃r

)TdWr

)T. (5.13)

Itô’s isometry implies that the L
2-projection of DnZ̃r coincides with Dn

qZπn in (5.1b)

Dn
qZπn = 1

Δtn
En

[∫ tn+1

tn
DnZ̃r dr

]
. (5.14)

Thereupon, qZπn + ((Dn
qZπn )

TΔWn)
T is, not just the best L2-projection of the left-hand side of (5.13),

but also of the arguments of the conditional expectations on the right-hand side of (5.1b). Hence, it
simultaneously solves the discretization problems (5.1b) and (5.1c).

Motivated by these observations the Deep BSDE approach then goes as follows—the complete
algorithm is collected in Algorithm 1. We set ŶπN = g

(
XπN
)
, ẐπN = ∇xg

(
XπN
)
σ(T , XπN ) and Γ̂ π

N =
∇x(∇xgσ)(T , XπN ). Thereafter, each time step’s Y , Z and Γ are parametrized by three independent
fully-connected feedforward neural networks ϕ(·|θy) : R

d×1 → R, ψ(·|θ z) : R
d×1 → R

1×d and
χ(·|θγ ) : Rd×1 → R

d×d of the type (5.12). The parameter sets (θ z, θγ ) and θy are trained in two separate
regressions. First, in light of (5.13), we define the loss function of the regression problem corresponding
to (5.1b)–(5.1c) by

Lz,γ
n (θ z, θγ ) := E

[∣∣∣(1 +Δtn∇y f
(
tn+1, X̂

π

n+1

))
DnŶπn+1 +Δtn∇x f

(
tn+1, X̂

π

n+1

)
DnXπn+1

− ψ
(
Xπn |θ z)+Δtn∇z f

(
tn+1, X̂

π

n+1

)
χ
(
Xπn |θγ ) σ (tn, Xπn

)
− ((χ (Xπn |θγ ) σ (tn, Xπn

))T
ΔWn

)T ∣∣∣2], (5.15)

where we approximate DnZπn by χ
(
Xπn |θγ )DnXπn , according to the Malliavin chain rule. We gather an

approximation of the minimal parameter set (θ z,∗
n , θγ ,∗

n ) ∈ arg min(θ z,θγ )Lz
n(θ

z, θγ ) after minimizing an
empirically observed version of the loss function through a stochastic gradient descent optimization,
resulting in approximations θ̂ z

n and θ̂ γn —see Algorithm 1. The final approximations are given by Ẑπn :=
ψ(Xπn |θ̂ z

n) and Γ̂ π
n := χ(Xπn |θ̂ γn ).

Similarly to the second scheme in Huré et al. (2020), an alternative formulation can be given, which
avoids parametrizing the Γ process, and instead approximates it as the direct derivative of the Z process
provided by the Malliavin chain rule lemma Lemma 2.1. Eventually, this implies the direct connection
χ
(
Xπn |θγ ) ≡ ∇xψ

(
Xπn |θ z
)
, with which the corresponding loss function becomes

Lz,∇z
n (θ z) := E

[∣∣∣(1 +Δtn∇y f
(
tn+1, X̂

π

n+1

))
DnŶπn+1 +Δtn∇x f

(
tn+1, X̂

π

n+1

)
DnXπn+1

− ψ
(
Xπn |θ z)+Δtn∇z f

(
tn+1, X̂

π

n+1

)∇xψ
(
Xπn |θ z) σ (tn, Xπn

)
− ((∇xψ

(
Xπn |θ z) σ (tn, Xπn

))T
ΔWn

)T ∣∣∣2], (5.16)
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30 B. NEGYESI ET AL.

where we exploited the relation between the Γ and Z processes, provided by the Malliavin chain rule,
and set DnẐπn = ∇x̂zπn

(
Xπn
)

DnXπn . The SGD approximation of the optimal parameter space θ z,∗
n ∈

arg minθ zLz,∇z
n (θ z) is denoted by θ̂ z

n, and the final approximations are of the form Ẑπn := ψ(Xπn |θ̂ z
n) and

Γ̂ π
n := ∇xψ(X

π
n |θ̂ z

n).
Subsequently, these approximations are plugged into the regression problem of (5.1d). This step,

apart from the additional theta-discretization, is identical to that of Huré et al. (2020) and the loss function
reads as

Ly
n(θ

y) := E

[∣∣∣̂Yπn+1 + (1 − ϑy)�tn f
(

tn+1, X̂
π

n+1

)
− ϕ
(

Xπn |θy
)

+ϑy�tn f
(
tn, Xπn ,ϕ

(
Xπn |θy), Ẑπn

)− Ẑπn �Wn

∣∣∣2] . (5.17)

The stochastic gradient descent approximation of the optimal parameter space θy,∗
n ∈ arg minθyLy

n(θ
y)

is denoted by θ̂y
n and the final approximation is given by Ŷπn := ϕ(Xπn |θ̂y

n). At last, motivated by the
continuity of the processes {(Yt, Zt)}0≤t≤T in the Malliavin framework, we initialize the parameters of
the next time step’s parametrizations according to

θ z = θ̂ z
n, θγ = θ̂ γn , θy = θ̂y

n . (5.18)

Such a transfer learning trick guarantees a good initialization of the SGD iterations for qYπn−1, qZπn−1, qΓ π
n−1,

simplifying the learning problem and reducing the number of iteration steps required for convergence.
For an empirical assessment on the efficiency of this transfer learning trick, we refer to Chen & Wan
(2021, Sec.5.3).

Dimensionality, linearity and vector-Jacobian products. The main reason why no numerical scheme
has been proposed to solve the Malliavin BSDE in (3.1d) is related to dimensionality. Since theΓ process
is an R

d×d-valued process, its computational complexity in a least-squares Monte Carlo method has a
quadratic dependence on the number of dimensions d. Indeed, a least-squares Monte Carlo approach for
the BSDE (1.1b) essentially comes down to the approximation of d+1-many conditional expectations. If,
in addition, one would also like to solve the Malliavin BSDE (3.1d) this leads to d2 additional conditional
expectations to be approximated, induced by the Γ process. This observation justifies the use of deep
neural network parametrizations, which enable good scalability in high-dimensions. Moreover, notice
that the training of the loss function (5.16) through an SGD optimization requires differentiating the loss
with respect to the parameters θ z in each step. With the loss already depending on the Jacobian of the
mapping ψ(·|θ z), this in particular implies that in each SGD step one needs to calculate the Hessian
of a vector-valued mapping ψ with respect to the parameters θ z. Consequently, for high-dimensional
problems, the training of (5.16) becomes excessively intensive from a computational point of view.
Nonetheless, what makes the Deep BSDE approach corresponding to (5.16) efficiently implementable
is the linearity of the Malliavin BSDE (3.1d). In fact, due to linearity, one can circumvent explicitly
calculating the Jacobian matrix of Z as it suffices to calculate the vector-Jacobian product

∇z f
(
tn+1, X̂

π

n+1

)∇xψ
(
Xπn |θ z) = ∇x

〈
v|ψ (Xπn |θ z)〉 , v := ∇z f

(
tn+1, X̂

π

n+1

)
, (5.21)

which boils down to computing a gradient instead. This mitigates the computational costs of minimizing
the automatic differentiated loss function in (5.16) in an SGD iteration.
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THE ONE STEP MALLIAVIN SCHEME 31

Algorithm 1: One-Step Malliavin Algorithm (OSM)
Input: π(N), ϑy ∈ [0, 1] – discretization parameters
Input: B ∈ N+, I ∈ N, η : N → R – training parameters
Result: {(Ŷπn , Ẑπn , �̂πn )}n=0,...,N – discrete time approximations over π
ŶπN ← g(XπN ), ẐπN ← ∇xg(XπN )σ (tN , XπN ), �̂πN ← ∇x(∇xgσ)(tN , XπN ) – collect terminal

conditionϕ(·|θy) : Rd×1 → R, ψ(·|θ z) : Rd×1 → R1×d , χ(·|θγ ) : Rd×1 → Rd×d – neural network
parametrizationsfor n = N − 1, . . . , 0 do

if n = N − 1 then
θ z,(0), θy,(0) – initialize parameter sets, according to [19]

else
θ z,(0) ← θ̂ z

n+1, θy,(0) ← θ̂
y
n+1 – transfer learning initialization

end

Solve Equation 5.1c–Equation 5.1b.
for i = 0, . . . , I − 1 do

{{Xπm(b)}0≤m≤N}B
b=1 – Euler-Maruyama simulations by Equation 3.2{DnXπn+1(b)}B

b=1 –
Euler-Maruyama approximations by Equation 3.5calculate empirical loss of Equation 5.15 or
Equation 5.16

L̂z,γ
n (θ z,(i), θγ ,(i)) = 1

B

B∑
b=1

|(1 +�tn∇yf (tn+1, X̂πn+1(b)))DnŶπn+1(b)

+�tn∇xf (tn+1, X̂πn+1(b))DnXπn+1(b)− ψ(Xπn (b)|θ z,(i))

+�tn∇zf (tn+1, X̂πn+1(b))χ(X
π
n (b)|θγ ,(i))σ (tn, Xπn )

− ((χ(Xπn (b)|θγ ,(i))σ (tn, Xπn (b)))
T�Wn(b))

T |2

(5.19)

(θ z,(i+1), θγ ,(i+1)) ← (θ z,(i), θγ ,(i))− η(i)∇(θ z,θγ )L̂z
n(θ

z,(i), θγ ,(i)) – stochastic gradient descent
update

end
θ̂ z

n ← θ z,(I), θ̂ γn ← θγ ,(I) – collect optimal parameter estimationŝzπn (·) ← ψ(·|θ̂ z
n), γ̂ πn (·) ← χ(·|θ̂ γn )

– collect approximations Ẑπn , �̂πn

Solve Equation 5.1d.
for i = 0, . . . , I − 1 do

{{Xπm(b)}0≤m≤N}B
b=1 – Euler-Maruyama simulations by Equation 3.2calculate empirical loss of

Equation 5.17

L̂y
n(θ

y,(i)) = 1

B

B∑
b=1

|̂Yπn+1(b)+ (1 − ϑy)�tnf (tn+1, X̂πn+1(b))− ϕ(Xπn (b)|θy,(i))

+ ϑy�tnf (tn, Xπn (b),ϕ(X
π
n (b)|θy,(i)), Ẑπn (b))− Ẑπn (b)�Wn(b)|2

(5.20)

θy,(i+1) ← θy,(i) − η(i)∇θ L̂y
n(θ

y,(i)) – stochastic gradient descent step
end
θ̂

y
n ← θy,(I) – collect optimal parameter estimationŝyπn (·) ← ϕ(·|θ̂y

n) – collect approximations Ŷπn
end
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32 B. NEGYESI ET AL.

5.4 Regression error analysis

In order to conclude the discussion on fully-implementable schemes for (5.1), we extend the dis-
cretization error results established by Theorem 4.3, so that it incorporates the approximation errors
of the arising conditional expectations. Even though we focus on the Deep BSDE approach, our
arguments naturally extend to the BCOS estimates. We consider shallow neural networks, with S1-many
hidden neurons and a hyperbolic tangent activation. While distinguishing between the parametrized
and automatic differentiated Γ variants—see Equation 5.15 and (5.16), respectively—we rely on the
following subclass of shallow neural networks introduced in Theorem 5.1

ΣC2
b
(tanh) :=

⎧⎨⎩ψ(x|θ z(S1)) ∈ Σ(tanh) :
d∑

i=1

S1∑
j=1

∣∣[W2
1 (S1)
]

1,i,j

∣∣+ ∣∣[W1
0 (S1)
]

j,i

∣∣ ≤ Υ (S1)

⎫⎬⎭, (5.22)

for some dominating sequence Υ : N+ → R. Then, due to the boundedness of the hyperbolic
tangent function and its first two derivatives, the following upper bounds are in place for any ψ(·|θ z) ∈
ΣC2

b
(tanh)

sup
x∈Rd×1

∣∣ψ(x|θ z)
∣∣ ≤ Υ (S1), sup

x∈Rd×1

∣∣∇xψ(x|θ z)
∣∣ ≤ Υ 2(S1), sup

x∈Rd×1

∣∣Hessxψ(x|θ z)
∣∣ ≤ Υ 3(S1).

(5.23)

In light of Theorem 5.1, the hyperbolic tangent function is � = 1-finite. Subsequently, the family of
shallow networks of the form (5.12) is dense in H1(U) for any compact subset U ⊂ R

d×1.
The final approximations are denoted by Ŷπn := ŷπn

(
Xπn
) =: ϕ(Xπn |θ̂y

n), Ẑπn := ẑπn
(
Xπn
) =: ψ(Xπn |θ̂ z

n)

and Γ̂ π
n := γ̂ πn

(
Xπn
) =: χ(Xπn |θ̂ γn ). We introduce the notations ΔqYπn := Ytn − qYπn , ΔqZπn := Ztn − qZπn ,

Δ qΓ π
n := Γtn − qΓ π

n and ΔŶπn := Ytn − Ŷπn , ΔẐπn := Ztn − Ẑπn , ΔΓ̂ π
n := Γtn − Γ̂ π

n . In light of the UAT
property in Theorem 5.1, we define the regression biases

εy
n := inf

θy
E
[∣∣

qyπn (X
π
n )− ϕ

(
Xπn |θy)∣∣2],

εz
n := inf

θ z
E
[∣∣

qzπn
(
Xπn
)− ψ
(
Xπn |θ z)∣∣2], εγn := inf

θγ
E
[∣∣(

qγ πn
(
Xπn
)− χ
(
Xπn |θγ )) σ (tn, Xπn

)∣∣2],
εz,∇z

n := inf
θ z

E
[∣∣

qzπn
(
Xπn
)− ψ
(
Xπn |θ z)∣∣2 +Δtn

∣∣(∇xqz
π
n

(
Xπn
)− ∇xψ

(
Xπn |θ z)) σ (tn, Xπn

)∣∣2].
(5.24)

The goal is to establish an upper bound for the total approximation error defined by

Êπ (|π |) := max
0≤n≤N

E
[∣∣ΔŶπn
∣∣2]+ max

0≤n≤N
E
[∣∣ΔẐπn
∣∣2]+ E

[
N−1∑
n=0

∫ tn+1

tn

∣∣Γr − Γ̂ π
n

∣∣2 dr

]
, (5.25)

depending on, not just the discretization, but also the regression errors arising from the approximations
of the conditional expectations in (5.1).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/drad092/7613646 by D
elft U

niversity of Technology user on 06 M
arch 2024



THE ONE STEP MALLIAVIN SCHEME 33

Theorem 5.2 Let the conditions of Assumption 4.1 be in place. Assume the time partition satis-
fies NΔtn ≥ c for each 0 ≤ n ≤ N − 1, with some constant c. Then, for sufficiently small
|π |, the total approximation error of the OSM scheme defined by the loss function Equation 5.15
admits to

Êπ (|π |) ≤ C

(
|π | + N

N−1∑
n=0

{
εy

n + εz
n

}+ N−1∑
n=0

εγn

)
. (5.26)

Furthermore, in case the Γ process is taken as the direct derivative of the Z process, as in (5.16), the total
error can be bounded by

Êπ (|π |) ≤ C

(
|π | + N

N−1∑
n=0

{εy
n + εz,∇z

n } + Υ 6(S1)

N

)
, (5.27)

where C is a constant independent of the time partition πN .

Proof. Throughout the proof, C denotes a constant independent of the time partition, whose value
may vary from line to line. We only highlight arguments that significantly differ from the ones of
Theorem 4.3.
Step 1. Regression errors induced by the loss functions. Using (5.13), the relation (5.14) and the total
law of probability, the loss function in Equation 5.15 can be rewritten as follows:

Lz,γ
n (θ z, θγ ) = E

[∣∣qZπn − ψ
(
Xπn |θ z)+Δtn∇z f

(
tn+1, X̂

π

n+1

) (
χ
(
Xπn |θγ )− qΓ π

n

)
σ
(
tn, Xπn
)∣∣2]

+ΔtnE

[∣∣∣( qΓ π
n − χ

(
Xπn |θγ )) σ (tn, Xπn

)∣∣∣2]+ E

[∫ tn+1

tn

∣∣∣DnZ̃r − Dn
qZπn

∣∣∣2 dr

]

+ 2ΔtnE

[
∇z f (tn+1, X̂

π

n+1)
(
χ
(
Xπn |θγ )− qΓ π

n

)
σ
(
tn, Xπn
)

×
∫ tn+1

tn

(
DnZ̃r − χ

(
Xπn |θγ ) σ (tn, Xπn

))T
dWr

]
=: L̃z,γ

n (θ z, θγ )+ E

[∫ tn+1

tn

∣∣∣DnZ̃r − Dn
qZπn

∣∣∣2 dr

]
+ Ĩγn (θ

γ ).

(5.28)

The inequality (a + b)2 ≤ (1 + �1Δtn)a
2 + (1 + 1/(�1Δtn))b

2, on top of the bounded differentiability
of f provided by Assumption 4.1, implies

L̃z,γ
n (θ z, θγ ) ≤ (1 + �1Δtn)E

[∣∣∣qZπn − ψ
(
Xπn |θ z)∣∣∣2]

+
[

L2∇f

ρ1
(1 + �1Δtn)+ 1

]
ΔtnE

[∣∣∣( qΓ π
n − χ

(
Xπn |θγ )) σ (tn, Xπn

)∣∣∣2]. (5.29)
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34 B. NEGYESI ET AL.

By the inequality (a + b)2 ≥ (1 − �2Δtn)a
2 + (1 − 1/(�2Δtn))b

2, the following also holds:

L̃z,γ
n (θ z, θγ ) ≥ (1 − �2Δtn)E

[∣∣∣qZπn − ψ
(
Xπn |θ z)∣∣∣2]

+
(

1 + L2∇f

�2
(�2Δtn − 1)

)
ΔtnE

[∣∣∣( qΓ π
n − χ

(
Xπn |θγ )) σ (tn, Xπn

)∣∣∣2]. (5.30)

The Cauchy–Schwarz inequality, (5.14) and the ε-Young inequality ab ≤ a2/(2ε) + εb2/2, with
ε = 4L2∇f , yield

∣∣̃Iγn (θγ )∣∣ ≤ (1/4 + 4L2∇fΔtn
)
ΔtnE

[∣∣∣( qΓ π
n − χ

(
Xπn |θγ )) σ (tn, Xπn

)∣∣∣2]
+ 4L2∇fΔtnE

[∫ tn+1

tn

∣∣∣DnZ̃r − Dn
qZπn

∣∣∣2 dr

]
. (5.31)

Implied by (5.28), minimizing Lz,γ
n (θ z, θγ ) is equivalent to minimizing L̄z,γ

n := L̃z,γ
n (θ z, θγ )+ Ĩγn (θγ ).

Assuming that (θ̂ z
n, θ̂ γn ) is a perfect approximation—see Remark 5.3—of the minimal parameter space

(θ z,∗
n , θγ ,∗

n ) ∈ arg minθ z,θγL
z,γ
n (θ z, θγ ), we have L̄z,γ

n (θ̂ z
n, θ̂ γn ) ≤ L̄z,γ

n (θ z, θγ ) for any (θ z, θγ ). Combined
with (5.29), (5.30), the triangle inequality and (5.31), this implies

(1 − �2Δtn)E

[∣∣∣qZπn − Ẑπn

∣∣∣2]+ (3/4 − L2∇f /�2 − 3L2∇fΔtn
)
ΔtnE

[∣∣∣( qΓ π
n − Γ̂ π

n

)
σ
(
tn, Xπn
)∣∣∣2]

≤ (1 + �1Δtn)E

[∣∣∣qZπn − ψ
(
Xπn |θ z)∣∣∣2]

+
[

L2∇f

�1
(1 + �1Δtn)+ 5/4 + 4L2∇fΔtn

]
ΔtnE

[∣∣∣( qΓ π
n − χ

(
Xπn |θγ )) σ (tn, Xπn

)∣∣∣2]

+ 8L2∇fΔtnE

[∫ tn+1

tn

∣∣∣DnZ̃r − Dn
qZπn

∣∣∣2 dr

]
, (5.32)

for any (θ z, θγ ), �1, �2 > 0. In particular, choosing �∗
2 := 8L2∇f , for any sufficiently small Δtn such that

3L2∇fΔtn < 1/8 and �∗
2Δtn ≤ 1/2, we derive

E

[∣∣∣qZπn − Ẑπn

∣∣∣2]+ΔtnE

[∣∣∣( qΓ π
n − Γ̂ π

n

)
σ
(
tn, Xπn
)∣∣∣2]

≤ C
(
εz

n +Δtnε
γ
n

)+ 16L2∇fΔtnE

[∫ tn+1

tn

∣∣∣DnZ̃r − Dn
qZπn

∣∣∣2 dr

]
, (5.33)
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THE ONE STEP MALLIAVIN SCHEME 35

recalling the definitions in (5.24). Through analogous steps to Huré et al. (2020, Thm. 4.1, steps 3–4), a
similar estimate can be established for the loss function (5.17), ultimately giving

E

[∣∣∣qYπn − Ŷπn

∣∣∣2] ≤ C inf
θy

E

[∣∣∣qYπn − ϕ
(
Xπn |θy)∣∣∣2] =: Cεy

n. (5.34)

Step 2. L2-regularity of DnZ̃r. In what follows, we will need an estimate controlling the so-called L
2-

regularity of the stochastic integrand DnZ̃r, corresponding to the last term in (5.33). This term admits to
the following bound:

E

[∫ tn+1

tn

∣∣∣DnZ̃r − Dn
qZπn

∣∣∣2 dr

]
≤ 3E

[∫ tn+1

tn

∣∣DnZ̃r − Dtn Zr

∣∣2 dr

]
+ 3E

[∫ tn+1

tn

∣∣Dtn Zr − DZ
n+1
n

∣∣2dr

]
+ 3ΔtnE

[∣∣DZ
n+1
n − Dn

qZπn
∣∣2] =: 3(R1 + R2 + R3). (5.35)

The second term of the right-hand side corresponds to the L
2-regularity of DZ given by (4.6). For the

first term, notice that by Itô’s isometry, (5.13) and (3.6), we have

R1 = E

[∣∣∣∣ΔqZπn −ΔDnŶπn+1 +
∫ tn+1

tn
f D(tn+1, X̂

π

n+1, Dn
qX
π

n+1,n

)− f D (r, Xr, Dtn Xr

)
dr

∣∣∣∣2
]

. (5.36)

(5.1c) implies an identity similar to (4.19). Then, by the law of total probability, the L2([0, T];Rd)

Cauchy–Schwarz and Jensen inequalities, it follows that

R1 ≤ 2E
[∣∣ΔDnŶπn+1

∣∣2 − ∣∣En

[
ΔDnŶπn+1

]∣∣2]
+ 4ΔtnE

[∫ tn+1

tn

∣∣f D(tn+1, X̂
π

n+1, Dn
qX
π

n+1,n

)− f D (r, Xr, Dtn Xr

)∣∣2 dr

]
. (5.37)

Notice that the second term above implicitly depends on R3. Similarly to step 1 in Theorem 4.3—see
(4.15) in particular—we also gather the following estimate:

R3 := ΔtnE
[∣∣DZ

n+1
n − Dn

qZπn
∣∣2] ≤ 4d

(
E
[∣∣ΔDnŶπn+1

∣∣2]− E
[∣∣En

[
ΔDnŶπn+1

]∣∣2])
+ 28dL2

f DΔtn

{
CΔt2n + 2ΔtnE

[∣∣ΔXπn+1

∣∣2]
+ 2Δtn

(
E
[∣∣ΔŶπn+1

∣∣2]+ E
[∣∣ΔẐπn+1

∣∣2])
+ 2Δtn

(
E
[∣∣ΔDnXπn+1

∣∣2]+ E
[∣∣ΔDnŶπn+1

∣∣2])
+ E

[∫ tn+1

tn

∣∣Dtn Zr − DZ
n+1
n

∣∣2 dr

]}
, (5.38)
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36 B. NEGYESI ET AL.

for any sufficiently small time step satisfying 14dL2
f DΔtn ≤ 1/2. Plugging the combined estimate

resulting from (5.37) and (5.38) into (5.35) subsequently gives

E

[∫ tn+1

tn

∣∣∣DnZ̃r − Dn
qZπn

∣∣∣2 dr

]
≤ 3(2 + 8d)

(
E
[∣∣ΔDnŶπn+1

∣∣2]− E
[∣∣En

[
ΔDnŶπn+1

]∣∣2])
+ 84L2

f D(1 + 2d)Δtn

{
CΔt2n + 2ΔtnE

[∣∣ΔXπn+1

∣∣2]
+ 2Δtn

(
E
[∣∣ΔŶπn+1

∣∣2]+ E
[∣∣ΔẐπn+1

∣∣2])
+ 2ΔtnE

[∣∣ΔDnXπn+1

∣∣2]
+ 2ΔtnE

[∣∣ΔDnŶπn+1

∣∣2]}
+ CE

[∫ tn+1

tn

∣∣Dtn Zr − DZ
n+1
n

∣∣2 dr

]
, (5.39)

establishing an upper bound for the L
2-regularity of DnZ̃r.

Step 3. Approximation error bound in the parametrized case. The total approximation errors can be
decomposed into discretization and regression errors as follows:

ΔtnE
[∣∣DZ

n+1
n − DnẐπn

∣∣2] ≤ 2ΔtnE
[∣∣DZ

n+1
n − Dn

qZπn
∣∣2]+ 2ΔtnE

[∣∣∣Dn
qZπn − DnẐπn

∣∣∣2], (5.40)

(1 − βzΔtn)E
[∣∣ΔẐπn
∣∣2] ≤ E

[∣∣∣ΔqZπn

∣∣∣2]+ 1

βzΔtn
E

[∣∣∣qZπn − Ẑπn

∣∣∣2], (5.41)

(1 − βyΔtn)E
[∣∣ΔŶπn
∣∣2] ≤ E

[∣∣∣ΔqYπn

∣∣∣2]+ 1

βyΔtn
E

[∣∣∣qYπn − Ŷπn

∣∣∣2], (5.42)

for any βz,βy > 0. Combined with (5.33), (5.41) leads to the following estimate:

(1−βzΔtn)E
[∣∣ΔẐπn
∣∣2]≤E

[∣∣∣ΔqZπn

∣∣∣2]+ C

βzΔtn

(
εz

n+Δtnε
γ
n

)+ 16L2∇f

βz
E

[∫ tn+1

tn

∣∣∣DnZ̃r − Dn
qZπn

∣∣∣2 dr

]
,

(5.43)

for any βz > 0. Similar arguments as in step 2 in Theorem 4.3 subsequently give

(1 − βzΔtn)E
[∣∣ΔẐπn
∣∣2]

≤ (1 + �Δtn)E
[∣∣En

[
ΔDnŶπn+1

]∣∣2]

+
7L2

f D

�
(1 + �Δtn)

{
CΔt2n + 2Δtn

(
E

[∣∣ΔXπn+1

∣∣2 + ∣∣ΔŶπn+1

∣∣2 + ∣∣ΔẐπn+1

∣∣2])
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+ 2Δtn

(
E

[∣∣ΔDnXπn+1

∣∣2 + ∣∣ΔDnŶπn+1

∣∣2])
+ΔtnE

[∣∣Dn
qZπn − DZ

n+1
n

∣∣2]
+ E

[∫ tn+1

tn

∣∣Dtn Zr − DZ
n+1
n

∣∣2 dr

]}

+ C

βzΔtn

(
εz

n +Δtnε
γ
n

)+ 16L2∇f

βz
E

[∫ tn+1

tn

∣∣∣DnZ̃r − Dn
qZπn

∣∣∣2 dr

]
, (5.44)

for any � > 0. Plugging in the estimates established by (5.38) and (5.39), choosing �∗ = 56dL2
f D and

β∗
z = 96(2 + 8d)L2∇f , we derive

(1 − β∗
z Δtn)E

[∣∣ΔẐπn
∣∣2] ≤ (1 + CzΔtn)E

[∣∣ΔDnŶπn+1

∣∣2]
+ Cz

{
CΔt2n + 2Δtn

(
E

[∣∣ΔXπn+1

∣∣2 + ∣∣ΔŶπn+1

∣∣2 + ∣∣ΔẐπn+1

∣∣2])
+ 2Δtn

(
E

[∣∣ΔDnXπn+1

∣∣2 + ∣∣ΔDnŶπn+1

∣∣2])
+ E

[∫ tn+1

tn

∣∣Dtn Zr − DZ
n+1
n

∣∣2 dr

]

+ εz
n +Δtnε

γ
n

β∗
z Δtn

}
. (5.45)

By analogous computations for Y , similar arguments as in Theorem 4.3 imply

(1 − β∗Δtn)
(
E

[∣∣ΔŶπn
∣∣2]+ E

[∣∣ΔẐπn
∣∣2]) (1 + CΔtn)

(
E

[∣∣ΔŶπn+1

∣∣2]+ E

[∣∣ΔẐπn+1

∣∣2])
+ C

{
Δt2n + E

[∫ tn+1

tn

∣∣Dtn Zr − DZ
n+1
n

∣∣2 dr

]

+ ε
y
n + εz

n +Δtnε
γ
n

Δtn

}
, (5.46)

with some β∗ > 0, depending on both β∗
z ,β∗

y . Thereafter, for any sufficiently small time step admitting
to β∗Δtn < 1, an application of the discrete Grönwall lemma implies the total approximation error of Y
and Z in (5.26).

The Γ estimate then follows in a similar manner to step 5 in Theorem 4.3 using (5.40), (5.38), (5.33),
(5.45); and observing that (1 + CΔtn)/(1 − β∗Δtn)− 1 is O(|π |) given β∗Δtn < 1. This completes the
total approximation error of (5.26).
Step 4. Derivative representation error of Z and Γ . In order to prove (5.27), we need to establish an error
estimate bounding the difference between the spatial derivative of (5.1c) and the target of (5.1b). Notice
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38 B. NEGYESI ET AL.

that, under the conditions of Assumption 4.1 and (5.23), the arguments of the conditional expectations
are all C2

b in x. Then, formal differentiation of (5.1c) with the Leibniz rule and the integration-by-parts
formula in (B.5) applied on (5.1b) gives(∇xqz

π
n

(
Xπn
)− qγ πn

(
Xπn
))
σ = Δtn[

(
γ̂ πn
(
Xπn
)− qγ πn

(
Xπn
))
σ ]T

En

[∇x∇z f (tn+1, X̂
π

n+1)
]
σ

+ΔtnEn

[∇z f (tn+1, X̂
π

n+1)
]∇xγ̂

π
n

(
Xπn
)
σ 2. (5.47)

By the bounded differentiability conditions in (Af ,g
2 ), we have that

E

[∣∣(∇xqz
π
n

(
Xπn
)− qγ πn

(
Xπn
))
σ
∣∣2] ≤ 2Δt2nL2

∇2f |σ |2 E
[∣∣(γ̂ πn (Xπn )− qγ πn

(
Xπn
))
σ
∣∣2]

+ 2Δt2nL2∇f |σ |4 E
[∣∣∇xγ̂

π
n

(
Xπn
)∣∣2] . (5.48)

Splitting the first term according to γ̂ πn
(
Xπn
)−qγ πn
(
Xπn
) = γ̂ πn

(
Xπn
)−∇xqz

π
n

(
Xπn
)+∇xqz

π
n

(
Xπn
)−qγ πn
(
Xπn
)
,

using the direct estimate γ̂ πn
(
Xπn
) ≡ ∇x̂zπn

(
Xπn
)

implied by (5.16) and recalling the bounds in (5.23)
subsequently yields

E

[∣∣(∇xqz
π
n

(
Xπn
)− qγ πn

(
Xπn
))
σ
∣∣2] ≤ C

(
E

[∣∣(∇xqz
π
n

(
Xπn
)− ∇x̂zπn

)
σ
∣∣2]+ Υ 6(S1)

)
, (5.49)

for small enough time steps admitting to 4Δt2nL2
∇2f

|σ |2 < 1. Combining this estimate with the upper

bound (5.32), recalling the definition of εz,∇z
n in (5.24), we gather

E

[∣∣∣qZπn − Ẑπn

∣∣∣2]+ΔtnE

[∣∣∣( qΓ π
n − ∇xẐπn

)
σ
(
tn, Xπn
)∣∣∣2]

≤ C
(
εz,∇z

n +Δt3nΥ
6(S1)
)+ 16L2∇fΔtnE

[∫ tn+1

tn

∣∣∣DnZ̃r − Dn
qZπn

∣∣∣2 dr

]
, (5.50)

for small enough time steps Δtn < 1 and diverging Υ (S1). The total approximation error estimate in
(5.27) then follows in a similar manner, combining (5.50) with (5.34), (5.46) and the discrete Grönwall
lemma, as in the previous step.

This completes the proof. �
Theorem 5.2 establishes the convergence of the Deep BSDE approach to (5.1), given the UAT

property of neural networks provided by Theorem 5.1. The first terms in both (5.26) and (5.27)
correspond to the discrete time approximation errors in Theorem 4.3. The second terms correspond
to the approximations of the neural network regression Monte Carlo approach. Provided by Theo-
rem 5.1, the corresponding regression biases defined by (5.24) can be made arbitrarily small with the
choice of shallow neural networks already. In exchange, to avoid the parametrization in the automatic
differentiation approach in (5.16), one needs to restrict the parametrization to the case of ΣC2

b
(tanh)

neural networks and subsequently deal with an additional error term in (5.27), which depends on the
increasing sequence Υ (S1), controlling the magnitude of the parameters. If this dominating sequence
is such that Υ 6(S1)/N → 0 while S1, N → ∞, this ensures the existence of neural networks
ϕ(·|θy),ψ(·|θ z) ∈ ΣC2

b
(tanh) such that the total approximation error converges. We shall, however,
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THE ONE STEP MALLIAVIN SCHEME 39

notice that the claim above guarantees nothing more, and in fact does not guarantee the convergence of
the final approximations including regression errors, which we highlight in the remark below.

Remark 5.3 (Limitations of Theorem 5.2). In the proof of Theorem 5.2, we neglected the presence of
three additional error terms. These are the following.

1. First, the definitions in (5.24) only express the regression biases due to the choice of a finite
number of parameters. The actual regression errors also incorporate the approximation error of

the optimal parameter space θ̂ z
n and induce a term E

[∣∣ϕ(Xπn |θy,∗
n )− ϕ(Xπn |θ̂y

n)
∣∣2], which stems

from the fact that, unlike in a linear regression method—see, e.g., Bender & Steiner (2012)—
one does not have a closed-form expression for the true minimizers (θ z,∗

n , θγ ,∗
n ), θy,∗

n , but can
only gather an approximation of them with a stochastic gradient descent (SGD) optimization. The
present understanding of this term is poor, mainly due to the nonconvexity of the corresponding
target function—see Jentzen et al. (2021) and the references therein. Currently, there exists no
theoretical guarantee that would ensure the convergence of SGD iterations in the FBSDE context.
Furthermore, the second term at the right-hand side of (5.26) (respectively, (5.27)) implies that,
in order to preserve the convergence of the total approximation error Êπ (|π |), one needs εy

n + εz
n

(εy
n + εz,∇z

n ) to be at least O(N−2) for each n = 0, . . . , N − 1. In case of the regression biases
defined by (5.24), this can be achieved by the UAT property in Theorem 5.1. Establishing a similar
theoretical guarantee for the regression errors stemming from SGD approximations is currently not
possible due to the aforementioned reasons. Nonetheless, in Fig. 3, we provide empirical evidence
that suggests that this condition may indeed be satisfied in practice, encouraging further research
in this direction.

2. The second term arises due to the fact that in practice one can only calculate an empirical version
of the expectations in Ly

n,Lz,γ
n ,Lz,∇z

n . This induces a Monte Carlo simulation error of finitely
many samples. However, as we shall see in the upcoming numerical section, thanks to the soft
memory limitation of a single SGD step, one can pass so many realizations of the underlying
Brownian motion throughout the optimization cycle that the magnitude of the corresponding error
term becomes negligible compared to other sources of error.

3. The final observation that needs to be highlighted is the compactness assumption on the domain in
Theorem 5.1. This error term can be dealt with in a similar fashion to Huré et al. (2020, Remark
4.2), where a localization argument is constructed in such a way that—under suitable truncation
ranges—convergence is ensured.

6. Numerical experiments

In order to show the accuracy and robustness of the proposed scheme, we present results of numerical
experiments on three different types of problems. We distinguish between the two Deep BSDE
approaches for the OSM scheme, based on whether the Γ process is parametrized with an R

d×d-valued
neural network—see Equation 5.15—or it is obtained as the direct Jacobian of the parametrization
of the Z process via automatic differentiation—as in (5.16). We label these variants by (P) and (D),
respectively. As a reference method, we compare the results of the OSM scheme to the first scheme
(DBDP1) of Huré et al. (2020), which corresponds to the Euler discretization of (3.4) when ϑy = ϑz = 1.
In accordance with their findings, we found the parametrized version (DBDP1) more robust than the
automatic differentiated one (DBDP2) in high-dimensional settings.
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40 B. NEGYESI ET AL.

Each BSDE is discretized with N equidistant time intervals, givingΔtn =T/N for all n=0, . . . , N−1.
For the implicit ϑy parameter of the discretization in (3.13), we choose values ϑy ∈ {0, 1/2, 1}. In all
upcoming examples, we use fully-connected, feedforward neural networks of L = 2 hidden layers with
Sl = 100+d neurons in each layer. In line with Theorem 5.2, a hyperbolic tangent activation is deployed,
yielding continuously differentiable parametrizations. Layer normalization (Ba et al., 2016) is applied in
between the hidden layers. For the stochastic gradient descent iterations, we use the Adam optimizer with
the adaptive learning rate strategy of Chen & Wan (2021)—see η(i) in Algorithm 1. The optimization is
done as follows: in each backward recursion we allow I = 215 SGD iterations for the N − 1th time step.
Thereafter, we make use of the transfer learning initialization given by (5.18), and reduce the number
of iterations to I = 211 for all preceding time steps. In each iteration step, the optimization receives
a new, independent sample of the underlying forward diffusion with B = 210 sample paths, meaning
that in total the iteration processes 225 and 221 many realizations of the Brownian motion at time step
n = N − 1 and n < N − 1, respectively. In order to speed up normalization, neural network trainings
were carried out with single floating point precision. For the implementation of the BCOS method, we
choose K = 29 Fourier coefficients, P = 5 Picard iterations and truncate the infinite integrals to a finite
interval of [a, b] = [x0 + κμ − L

√
κσ , x0 + κμ + L

√
κσ ], where κμ = μ(0, x0)T , κσ = σ(0, x0)T . As in

Ruijter & Oosterlee (2016), we fix L = 10.
The OSM method has been implemented in TensorFlow 2. In order to exploit static graph efficiency,

all core methods are decorated with tf.function decorators. The library used in this paper will be
publicly accessible under github. All experiments below were run on a Dell Alienware Aurora R10
machine, equipped with an AMD Ryzen 9 3950X CPU (16 cores, 64Mb cache, 4.7GHz) and an Nvidia
GeForce RTX 3090 GPU (24Gb). In order to assess the inherent stochasticity of both the regression
Monte Carlo method and the SGD iterations, we run each experiment 5 times and report on the mean
and standard deviations of the resulting independent approximations. L2-errors are estimated over an
independent sample of size M = 210 produced by the same machinery as the one used for the simulations.
Hence, the final error estimates are calculated as

Ê
[ ∣∣ΔŶπn

∣∣2 ] = 1

M

M∑
m=1

∣∣ΔŶπn (m)
∣∣2 , Ê

[ ∣∣ΔẐπn
∣∣2 ] = 1

M

M∑
m=1

∣∣ΔẐπn (m)
∣∣2 ,

Ê
[ ∣∣ΔΓ̂ π

n

∣∣2 ] = 1

M

M∑
m=1

∣∣ΔΓ̂ π
n (m)
∣∣2 ,

(6.1)

where ΔYπn (m) corresponds to the m’th path of test sample, and similarly for other error measures.

6.1 Example 1: reaction-diffusion with diminishing control

The first, reaction-diffusion type equation is taken from Gobet & Turkedjiev (2017, Example 2). Such
equations are common in financial applications. The coefficients of the BSDE (1.1) are as follows:

μ = 0d, σ = Id, f (t, x, y, z) = ω(t, λx)

[1+ω(t, λx)]2

[
λ2d(y−γ )−1− λ2

2
d

]
, g(x)=γ+ ω(T , λx)

1 + ω(T , λx)
,

(6.2)
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THE ONE STEP MALLIAVIN SCHEME 41

(a) BCOS and Deep BSDE, d = 1. From left to right: maximum mean-squared approximation errors of Y and

Z; average mean-squared approximation error of Γ. Lines correspond to BCOS estimates, scattered error bars

to the means and standard deviations of 5 independent neural network regressions.

(b) Deep BSDE, d = 10. From left to right: maximum mean-squared approximation errors of Y and Z;

average mean-squared approximation error of Γ. Means and standard deviations are calculated over

5 independent runs of the algorithm.

Fig. 1. Example 1 in (6.2). Convergence of approximation errors. Mean-squared errors are calculated over an independent sample
of M = 210 realizations of the underlying Brownian motion.

where ω(t, x) = exp(t +∑d
i=1 xi). These parameters satisfy Assumption 4.1. The driver is independent

of Z and f D does not depend on the Y process. Consequently, the solutions of (3.1b) and (3.1d) can be
separated into two disjoint problems. The analytical solutions are given by

Xt =Wt, y(t, x)= ω(t, λx)

1+ω(t, λx)
, z(t, x)=λ ω(t, λx)

(1+ω(t+λx))2
1d, γ (t, x)=λ2ω(t, λx)(1−ω(t, λx))

(1+ω(t, λx))3
1d,d.

(6.3)

We choose T = 0.5, γ = 0.6, λ = 1 and fix x0 = 1d. We consider d ∈ {1, 10} with ϑy ∈ {0, 1}.
In Fig. 1, the convergence of the two fully-implementable schemes is assessed. Figure 1a depicts the

convergence for d = 1. The BCOS estimates, drawn with lines, show the same order of convergence
as in Theorem 4.3, confirming the theoretical findings of the discretization error analysis. The Deep
BSDE approximations, depicted with scattered error bars, exhibit higher error figures, showcasing the
presence of an additional regression component. Nevertheless, the complete approximation error of
the corresponding regression estimates admit to the same order of convergence as in Theorem 5.2.
The Γ approximations corresponding to the parametrized (P) and automatic differentiated (D) cases,
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42 B. NEGYESI ET AL.

demonstrate the difference between the bounds in (5.26) and (5.27). Indeed, we observe an extra
error stemming from the bounded differentiability component of the neural networks—see (5.23). The
convergence of the regression approximations flattens out for the finest time partition N = 100—see the
regression error of Y in particular—at a level of ∼ O(10−7), indicating the presence of a regression bias
induced by the restriction on a finite number of parameters. In Fig. 1b, the same dynamics are depicted
for d = 10, where we observe the same order of convergence, in accordance with Theorem 5.2. Note that
the regression estimates of the Z process converge until, and including, the finest time partition N = 100
in case of the OSM discretization. On the other hand, with the approach of Huré et al. (2020) the decay
stops at N = 50, indicating the impact of diverging conditional variances, as anticipated in Remark 3.1.
Table 1 contains the means and standard deviations of a collection of error measures with respect to 5
independent runs of the same regression Monte Carlo method. It can be seen that—regardless of the
value of ϑy—the OSM scheme yields an order of magnitude improvement in the approximation of the Z
process, while showing identical error figures in the Y process. Errors under the automatic differentiated
case (D) with (5.16) are slightly better than in the parametrized approach (P). The Γ approximations
show comparable accuracies. The total runtime of the OSM regressions is approximately double of
that of Huré et al. (2020), which is intuitively explained by the fact that (5.1) solves two BSDEs at
each point in time. Execution times under the automatic differentiated variant are slightly higher than in
the parameterized case, confirming the extra computational complexity of Jacobian training in (5.16).
The neural network regression Monte Carlo method yields sharp, robust estimates with small standard
deviations over independent runs of the algorithm, in particular corresponding the Z process.
6.2 Example 2: Hamilton–Jacobi–Bellman with LQG control

The Hamilton–Jacobi–Bellman (HJB) equation is a nonlinear PDE derived from Bellman’s dynamic
programming principle, whose solution is the value function of a corresponding stochastic control
problem. In what follows, we consider the linear-quadratic-Gaussian (LQG) control, which describes
a linear system driven by additive noise (Han et al., 2018). The FBSDE system (1.1), associated with the
HJB equation has the following coefficients:

μ = 0d, σ = √
2Id, f (t, x, y, z) = |z|2 , g(x) = xTAx + vTx + c, (6.4)

where A ∈ R
d×d, v ∈ R

d×1, c ∈ R. Unlike in Han et al. (2018), the hereby considered terminal condition
is a quadratic mapping of space. This choice is made so that we have access to semianalytical, pathwise
reference solutions {(Yt, Zt,Γt)}0≤t≤T . Indeed, considering the associated parabolic problem (1.2), it is
straightforward to show that the solution is given by

Xt = σWt, y(t, x) = xTP(t)x + QT(t)x + R(t),

z(t, x) = σ
([

P(t)+ PT(t)
]
x + Q(t)

)
, γ (t, x) = σ

[
P(t)+ PT(t)

]
,

(6.5)

where the purely time dependent functions P : [0, T] → R
d×d, Q : [0, T] → R

d×1, R : [0, T] → R

satisfy the following set of Riccati type ordinary differential equations (ODE)

Ṗ(t)− [P(t)+ PT(t)
]2 = 0, Q̇(t)− 2

[
P(t)+ PT(t)

]
Q(t) = 0, Ṙ(t)+TrP(t)+ PT(t)− |Q(t)|2 = 0,

P(T) = A, Q(T) = v, R(T) = c,
(6.6)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/drad092/7613646 by D
elft U

niversity of Technology user on 06 M
arch 2024



THE ONE STEP MALLIAVIN SCHEME 43

Ta
bl

e
1

E
xa

m
pl

e
1

in
(6

.2
),

d
=

10
,

N
=

10
0.

Su
m

m
ar

y
of

D
ee

p
B

SD
E

es
ti

m
at

es
.

M
ea

n-
sq

ua
re

d
er

ro
rs

ar
e

ca
lc

ul
at

ed
ov

er
an

in
de

pe
nd

en
ts

am
pl

e
of

M
=

210
re

al
iz

at
io

ns
of

th
e

un
de

rl
yi

ng
B

ro
w

ni
an

m
ot

io
n.

M
ea

ns
an

d
st

an
da

rd
de

vi
at

io
ns

(i
n

pa
re

nt
he

se
s)

ob
ta

in
ed

ov
er

5
in

de
pe

nd
en

t
ru

ns
of

th
e

al
go

ri
th

m
.B

es
te

st
im

at
es

w
it

hi
n

on
e

st
an

da
rd

de
vi

at
io

n
hi

gh
li

gh
te

d
in

gr
ay

.Γ
es

ti
m

at
es

fr
om

H
ur

é
et

al
.

(2
02

0)
ar

e
ob

ta
in

ed
vi

a
au

to
m

at
ic

di
ffe

re
nt

ia
ti

on

O
SM

(ϑ
y
=

0)
O

SM
(ϑ

y
=

1)
H

ur
é

et
al

.(
20

20
)

(P
)

(D
)

(P
)

(D
)

|Δ
Ŷ
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with Ṗ = dP/dt, Q̇ = dQ/dt and Ṙ = dR/dt. The reference solution is then obtained by integrating
(6.6) over a refined time grid of NODE = 104 intervals.4 We take A = Id, v = 0d, c = 0, T = 0.5 and fix
x0 = 1d. An interesting feature of the FBSDE system defined by (6.4) is that the driver is independent
of Y meaning that the Malliavin BSDE in (3.1d) can be solved separately from the backward equation.
Consequently, the discrete time approximations of Z and Γ in (3.13) do not depend on ϑy. Moreover, the
driver is quadratically growing in Z, in particular, it is only Lipschitz continuous over compact domains.
Nevertheless, we include this problem to show promising results beyond Assumption 4.1. We pick ϑy =
1/2 and investigate the solution in d ∈ {1, 50}.

In Fig. 2, the regression errors of the Deep BSDE approach are assessed in d = 1. The true
regression targets in (5.1) are benchmarked according to BCOS. In fact, at time step n, the corresponding
cosine expansion coefficients are recovered by means of DCT, given neural network approximations
Ŷπn+1, Ẑπn+1, Γ̂ π

n+1. These coefficients are subsequently plugged in (5.7) to gather BCOS estimates. For
large enough Fourier domains and sufficiently many Picard iterations, the COS error becomes negligible
compared to the discretization component and the resulting estimates approximate the true regression
labels qYπn , qZπn , qΓ π

n . Hence, they can then be used to assess the regression errors induced by the Monte
Carlo method. Figure 2a depicts these regression errors over time for N = 100. As it can be seen, the
model of Huré et al. (2020) and the OSM scheme result in similar regression error components for the Y
process. However, the regression errors of the Z process are three orders of magnitude worse in case of
the reference method (Huré et al., 2020), and in fact, dominate the total approximation error at n = N−1.
In contrast, the OSM estimates—middle plot of Fig. 2a—exhibit the same order of regression error as for
the Y process. This demonstrates the advantageous conditional variance behavior of the corresponding
OSM estimates, as pointed out in Remark 3.1. The regression errors of the Γ process show comparable
figures. The cumulative regression errors, corresponding to the second term in Theorem 5.2, are collected
in Fig. 3b. In case of the model in Huré et al. (2020), the cumulative regression error of the Z process
blows up as the mesh size |π | = T/N decreases. On the contrary, the cumulative regression errors in all
processes (Y , Z,Γ ) are at a constant level of O(10−5) for the OSM scheme. In light of Remark 5.3, this
indicates that the chosen, finite network architecture incorporates a regression bias that cannot be further
reduced. In our experiments, we found that it is difficult to decrease this component by changing the
number of hidden layers L or neurons per hidden layer Sl. Assessing this phenomenon requires a better
understanding of both narrow UAT estimates and the convergence of SGD iterations.

In Fig. 3, the d = 50 dimensional case is depicted. In order to have dimension independent scales,
relative mean-squared errors are reported. Figure 3a collects the relative approximation error over the
discretized time window when N = 100. Compared to Huré et al. (2020), the OSM estimates yield a
significant improvement in each part of the solution triple. In particular, the approximation errors of the Z
process are three orders of magnitude better with both the parametrized (P) and automatic differentiated
(D) approaches. In case of the Γ process, two observations can be made. First, the corresponding
curve demonstrates that naive automatic differentiation of the Z approximations in Huré et al. (2020)
does not provide reliable Γ s. Moreover, it can be seen that the parametrized version (P) of the Deep
BSDE approach given by Equation 5.15 provides an order of magnitude better average Γ errors. The
convergence of the total approximation errors is depicted in Fig. 3b. The neural network regression
estimates converge for both the parametrized (P) and the automatic differentiated (D) loss functions
until N = 50, when the regression bias becomes apparent. Additionally, the convergence of the Γ

4 This is done using scipy.integrate.odeint.
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THE ONE STEP MALLIAVIN SCHEME 45

(a) Regression errors over time, d = 1, N = 100. From left to right: mean-squared regression errors of the Y,

Z and Γ approximations over the discrete time window.

(b) Convergence of cumulative regression errors, d = 1. From left to right: cumulative regression errors of

the Y, Z and Γ approximations over the number of time steps N.

Fig. 2. Example 2 in (6.4). Neural network regression errors in d = 1. The true regression targets of (5.1) are identified by BCOS
estimates. Mean-squared errors are calculated over an independent sample of M = 210 realizations of the underlying Brownian
motion. Means and standard deviations are obtained over 5 independent runs of the algorithm.

approximations is significantly better in the parametrized case, suggesting that for such a quadratically
scaling driver the last term of (5.27) is a driving error component.

In Table 2, means and standard deviations of a collection of error measures are gathered, with
respect to 5 independent runs of the same regression Monte Carlo method, for both d = 1 and
d = 50. The numbers are in line with the observations above. In particular, we highlight that the
error terms corresponding to the Z and Γ approximations are four orders of magnitude better than
in case of the reference method (Huré et al., 2020). The parametrized version (P) of the Deep BSDE
shows consistently better convergence. The total runtime of the neural network regression Monte Carlo
approach is moderately increased between d = 1 and d = 50. In fact, the average execution time
of a single SGD step for the parametrized (P) case in Equation 5.15 increases from 2.8e − 3(4e − 4)
to 3.3e − 3(4e − 4) seconds in between d = 1 and d = 50. The same numbers for the automatic
differentiated formulation (D) in (5.16) are 3.8(4e − 4) and 4.4e − 3(5e − 4) seconds. These figures
demonstrate the aforementioned methods’ scalability for high-dimensional FBSDE systems. Finally, we
point out that the OSM estimates are robust over independent runs of the algorithm as showcased by the
small standard deviations in Table 2.
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(a) Relative approximation errors over time, d = 50, N = 100. From left to right: relative mean-squared

approximation errors of Y, Z and Γ over the discrete time window.

(b) Convergence of relative approximation errors, d = 50. From left to right: maximum relative mean-squared

error of the Y, Z approximations; average relative mean-squared error of the Γ approximations.

Fig. 3. Example 2 in (6.4). d = 50. Relative approximation errors. Mean-squared errors are calculated over an independent sample
of M = 210 realizations of the underlying Brownian motion. Means and standard deviations are obtained over 5 independent runs
of the algorithm. Γ estimates from Huré et al. (2020) are obtained via automatic differentiation.

6.3 Example 3: space-dependent diffusion coefficients

Our final example is taken from Milstein & Tretyakov (2006); Ruijter & Oosterlee (2016) and it is meant
to demonstrate that the conditions in Assumption 4.1 can be substantially relaxed. The FBSDE system
(1.1) is defined by the following coefficients:

μi(t, x) =
(
1 + x2

i

)(
2 + x2

i

)3 , σij(t, x) = 1 + xixj

2 + xixj
δij,

f (t, x, y, z) = 1

λ(t+τ) exp
(
− xTx

λ(t+τ)
)[

4
d∑

i=1

x2
i

(
1+x2

i

)(
2+x2

i

)3 +
d∑

i=1

(
1+x2

i

)2(
2+x2

i

)2
(

1−2
x2

i

λ(t + τ)

)
−

d∑
i=1

x2
i

t+τ

]

+

√√√√1 + y2 + exp
(
− 2xT x
λ(t+τ)
)

1 + 2y2

d∑
i=1

zixi(
2 + x2

i

)2 , g(x) = exp
(

− xTx

λ(T + τ)

)
.

(6.7)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/drad092/7613646 by D
elft U

niversity of Technology user on 06 M
arch 2024



THE ONE STEP MALLIAVIN SCHEME 47

Table 2 Example 2 in (6.4). Summary of Deep BSDE estimates. Mean-squared errors are calculated
over an independent sample of M = 210 realizations of the underlying Brownian motion. Means and
standard deviations (in parentheses) obtained over 5 independent runs of the algorithm. Best estimates
within one standard deviation highlighted in gray. Γ estimates from Huré et al. (2020) are obtained via
automatic differentiation

(a) d = 1, N = 100.
OSM(ϑy = 1/2) Huré et al. (2020)

(P) (D)

|ΔŶπ0 |/|Y0| 1.1e − 03 (5e − 04) 2e − 03 (1e − 03) 1.5e − 03 (3e − 04)
|ΔẐπ0 |/|Z0| 1.3e − 04 (9e − 05) 8e − 05 (9e − 05) 1e − 03 (1e − 03)
|ΔΓ̂ π

0 |/|Γ0| 1.0e − 04 (5e − 05) 2e − 04 (1e − 04) 1.05e + 00 (7e − 02)
maxn Ê[|ΔŶπn |2] 8e − 06 (2e − 06) 8e − 06 (3e − 06) 1.1e − 04 (1e − 05)
maxn Ê[|ΔẐπn |2] 8e − 07 (3e − 07) 1.4e − 06 (6e − 07) 6.4e − 03 (3e − 04)∑N−1

n=0 ΔtnÊ[|ΔΓ̂ π
n |2] 8e − 07 (4e − 07) 2.8e − 06 (9e − 07) 5.5e − 03 (7e − 04)

runtime (s) 1.18e + 03 (4e + 01) 1.41e + 03 (3e + 01) 5.7e + 02 (4e + 01)

(b) d = 50, N = 100.
OSM(ϑy = 1/2) Huré et al. (2020)

(P) (D)

|ΔŶπ0 |/|Y0| 8e − 04 (5e − 04) 1e − 03 (1e − 03) 1.7e − 01 (8e − 02)
|ΔẐπ0 |/|Z0| 5.0e − 03 (5e − 04) 1.4e − 02 (3e − 03) 2.8e − 01 (7e − 02)
|ΔΓ̂ π

0 |/|Γ0| 3.1e − 02 (2e − 03) 4.9e − 02 (7e − 03) 3.5e + 00 (1e − 01)
maxn Ê[|ΔŶπn |2] 2.7e + 00 (1e − 01) 2.5e + 00 (3e − 01) 7e + 01 (4e + 01)
maxn Ê[|ΔẐπn |2] 3.4e − 02 (1e − 03) 3.1e − 02 (3e − 03) 2.8e + 02 (1e + 01)∑N−1

n=0 ΔtnÊ[|ΔΓ̂ π
n |2] 4.1e − 04 (6e − 05) 3.3e − 03 (2e − 04) 2.9e + 00 (2e − 01)

runtime (s) 1.36e + 03 (1e + 01) 1.62e + 03 (4e + 01) 6.16e + 02 (1e + 01) 6.16e + 2 (1e + 1)

The analytical solutions are given by

y(t, x) = exp
(

− xTx

λ(t + τ)

)
, zj(t, x) = −1 + x2

j

2 + x2
j

2 exp
(
− xT x
λ(t+τ)
)

λ(t + τ)
xj, γij(t, x) = ∂jzi(t, x). (6.8)

We use T = 10, λ = 10, τ = 1, d = 1 and fix x0 = 1d. Notice thatμ and σ are both C2
b. In conjecture with

Appendix A, this implies that the Euler–Maruyama schemes in (3.2) and (3.5) have an L
2 convergence

rate of order 1/2. Additionally, by Itô’s formula, the unique solution of the SDE is given by the closed
form expression (Milstein & Tretyakov, 2006)

Xt = Λ(x0 + arctan(x0)+ Wt), (6.9)

whereΛ : R → R is defined implicitlyΛ(r)+arctan(r) := r for any r ∈ R, and applied element-wise.

It is straightforward to check that Λ ∈ C1
b(R;R), in particular Λ

′
(r) = 1+Λ2(r)

2+Λ2(r)
implying that Λ is a
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48 B. NEGYESI ET AL.

Fig. 4. Example 3 in (6.7). Convergence of approximation errors for d = 1. From left to right, top to bottom: maximum mean-
squared errors of Euler–Maruyama approximations of X and DX; maximum mean-squared approximation errors of Y and Z;
average mean-squared approximation error of Γ . Lines correspond to BCOS estimates, scattered error bars to the means and
standard deviations of 5 independent neural network regressions. The mean errors are obtained over an independent sample of
M = 210 trajectories of the underlying Brownian motion.

bijective. In light of the Malliavin chain rule formula in Lemma 2.1, we then also have

DsXt = 1 +Λ2(x + arctan(x)+ Wt)

2 +Λ2(x + arctan(x)+ Wt)
1s≤t. (6.10)

We assess the convergence of the Euler–Maruyama estimates in (3.2)–(3.5) by solving the nonlinear
equation in (6.9) for each realization of the Brownian motion.5 The results of the numerical simulations
in d = 1 are given in Fig. 4 for the parametrized Deep BSDE case and ϑy = 0, 1/2, 1. We
see that, in line with Appendix A, DnXπn+1 inherits the convergence rate of Xπn . The convergence
rates of (Ŷπn , Ẑπn , Γ̂ π

n ) are of the same order as in Theorem 5.2. The BCOS estimates and the Deep
BSDE approach exhibit coinciding error figures until a magnitude of O(10−6) is reached, when
the regression bias becomes apparent. Similar convergence behavior is observed in high-dimensions.
The results suggest that the convergence of the OSM scheme can be extended to the nonadditive
noise case.

5 This is done by scipy.optimize.root’s df-sane algorithm, which deploys the method in La Cruz et al. (2006).
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7. Conclusion

In this paper, we introduced the OSM scheme, a new discretization for Malliavin differentiable FBSDE
systems where the control process is estimated by solving the linear BSDE driving the Malliavin
derivatives of the solution pair. The main contributions can be summarized as follows. The discretization
in (3.13) includes Γ estimates, linked to the Hessian matrix of the associated parabolic problem. In
Theorem 4.3, we have shown that under standard Lipschitz assumptions and additive noise in the forward
diffusion, the aforementioned discrete time approximations admit to an L

2 convergence of order 1/2. We
gave two fully-implementable schemes. In case of one-dimensional problems, we extended the BCOS
method (Ruijter & Oosterlee, 2015), and gathered approximations via Fourier cosine expansions in (5.7).
For high-dimensional equations, similarly to recent Deep BSDE methods (Han et al., 2018; Huré et al.,
2020), we formulated a neural network regression Monte Carlo approach, where the corresponding
processes of the solution triple are parametrized by fully-connected, feedforward neural networks. We
carried out a complete regression error analysis in Theorem 5.2 and showed that the neural network
parametrizations are consistent with the discretization, in terms of regression biases controlled by the
universal approximation property. We supported our theoretical findings by numerical experiments and
demonstrated the accuracy and robustness of the proposed approaches for a range of high-dimensional
problems. Using BCOS estimates as benchmarks for one-dimensional equations, we empirically assessed
the regression errors induced by stochastic gradient descent. Our findings with the Deep BSDE approach
showcase accurate approximations for each process in (5.1), and in particular exhibit significantly
improved approximations of the Z process for heavily control dependent equations.
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Appendix A. Convergence of DnXπn+1

We show the convergence of DnXπn+1 estimates of the Euler–Maruyama discretization (3.5) under the
assumptions

(Ã
σ ,μ
1 ) σ is uniformly bounded;

(Ã
σ ,μ
2 ) μ ∈ C0,1

b (Rd×1;R), σ ∈ C0,1
b (Rd×1;Rd×d). In particular, both of them are Lipschitz

continuous in x.

From the estimation (3.5) and the linear SDE of the Malliavin derivative in (3.1c)—using the
inequality (a + b + c)2 ≤ 3(a2 + b2 + c2), on top of the L2([0, T];Rd×d) Cauchy–Schwarz inequality
and Itô’s isometry—it follows

E

[∣∣Dtn Xtn+1
− DnXπn+1

∣∣2] ≤ 3E
[∣∣σ (tn, Xtn

)− σ
(
tn, Xπn
)∣∣2]

+ 3ΔtnE

[∫ tn+1

tn

∣∣∇xμ(r, Xr)Dtn Xr − ∇xμ
(
tn, Xπn
)
σ
(
tn, Xπn
)∣∣2 dr

]
+ 3E

[∫ tn+1

tn

∣∣∇xσ(r, Xr)Dtn Xr − ∇xσ
(
tn, Xπn
)
σ
(
tn, Xπn
)∣∣2 dr

]
. (A.1)

Bounded continuous differentiability in (Ã
σ ,μ
2 ), in particular, implies Lipschitz continuity. Furthermore,

by the uniform boundedness of the diffusion coefficient and the mean-squared continuity of DtnX in
(2.6), we gather

E

[∣∣Dtn Xtn+1
− DnXπn+1

∣∣2] ≤ 3L2
σE

[∣∣Xtn − Xπn
∣∣2]+ CΔtn, (A.2)

for any Δtn < 1. Then, due to the discretization error of the Euler–Maruyama estimates given by (3.3),

we conclude lim sup|π |→0
1

|π |E
[∣∣DtnXtn+1

− DnXπn+1

∣∣2] < ∞.
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Appendix B. Integration by parts formulas

For the formula in (5.5), we refer to Ruijter & Oosterlee (2015, A.1). In order to prove (5.6), let v :
[0, T] × R → R and consider

E
x
n

[
v
(
tn+1, Xπn+1(ΔWn)

)
ΔW2

n

] = E
x
n

[
1√

2πΔtn

∫
R

v
(
tn+1, Xπn+1(ν)

)
ν2e− 1

2Δtn
ν2

dν

]
, (B.1)

with the Euler–Maruyama approximations Xπn+1(ΔWn) = x + μ(tn, x)Δtn + σ(tn, x)ΔWn. For a
sufficiently smooth v, integration by parts implies

E
x
n

[
1√

2πΔtn

∫
R

v
(
tn+1, Xπn+1(ν)

)
ν2e− 1

2Δtn
ν2

dν

]

= 1√
2πΔtn

E
x
n

[
−Δtn
[
νv
(
tn+1, Xπn+1(ν)

)
e−ν2/(2Δtn)

]+∞
−∞ +Δtn

∫
R

v
(
tn+1, Xπn+1(ν)

)
e− 1

2Δtn
ν2

dν

+Δtnσ(tn, x)
∫
R

∂xv
(
tn+1, Xπn+1(ν)

)
νe− 1

2Δtn
ν2

dν

]
.

(B.2)
For a v with sufficient radial decay, we therefore conclude that

E
x
n

[
v
(
tn+1, Xπn+1

)
ΔW2

n

] = ΔtnE
x
n

[
v
(
tn+1, Xπn+1

)]+Δt2nσ
2(tn, x)Ex

n

[
∂2

xxv
(
tn+1, Xπn+1

)]
, (B.3)

by the estimate in (5.5).

Thereupon, given a cosine expansion approximation v(tn+1, ρ) ≈
∑′K−1

k=0
Vk(tn+1) cos(kπ ρ−a

b−a ), the

corresponding spatial derivative approximations are given by ∂xv(tn+1, ρ) ≈
∑′K−1

k=0
−Vk(tn+1)

kπ
b−a

sin(kπ ρ−a
b−a ), ∂

2
xxv(tn+1, ρ) ≈

∑′K−1

k=0
−Vk(tn+1)

(
kπ

b−a

)2
cos(kπ ρ−a

b−a ). Then (5.5)–(5.6) follow from the

expressions Ex
n

[
sin
(
kπ

Xπn+1−a
b−a

)] = �{Φ (k|x)}, E
x
n

[
cos
(
kπ

Xπn+1−a
b−a

)] = �{Φ (k|x)}, where Φ(k|x) is
defined as in Section 5.1.

Multi-dimensional extensions. In case the underlying forward process is an R
d×1-dimensional

Brownian motion, the following extension can be given. Let v : [0, T] × R
d×1 → R be a scalar-valued.

Then reasoning similar to Ruijter & Oosterlee (2015, A.1) shows that En

[(
ΔWn

)
i1 v(tn+1, Xπn+1)

] =∑d
k=1 ΔtnEn

[
∂kv(tn+1, Xπn+1)

] (
σ(tn, Xπn )

)
ki. In matrix notation

(
En
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ΔWnv(tn+1, Xπn+1)

])T = ΔtnEn

[∇xv(tn+1, Xπn+1)
]
σ(tn, Xπn ). (B.4)

Alternatively, for a vector-valued mappingψ : [0, T]×R
d×1 → R

1×d, similar arguments give the follow-
ing, component-wise formula En

[(
ΔWn

)
i1

(
ψ(tn+1, Xn+1)

)
1j

] = ∑d
k=1 ΔtnEn

[
∂k

(
ψ
(
tn+1, Xπn+1

))
1j

](
σ(tn, Xπn )

)
ki. In matrix notation

(
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(
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)]
σ
(
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)
, (B.5)

where ∇xψ is the Jacobian matrix of ψ .
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Appendix C. BCOS estimates

Let us fix d = 1. The BCOS approximations of the OSM scheme in (5.7) can be derived as follows.
Using the definition in (5.8) and the Euler–Maruyama estimates in (3.5), the Γ estimates in (5.1b) can
be written according to

Dn
qZπn = qγ πn (x)σ (tn, x) = 1

Δtn
σ(tn, x)

(
1 +Δtn∂xμ(tn, x)

)
E

x
n

[
ΔWnwπn+1

(
X̂
π

n+1

)]
+ 1

Δtn
σ(tn, x)∂xσ(tn, x)Ex

n

[
ΔW2

n wπn+1

(
X̂
π

n+1

)]
+ E

x
n

[
ΔWn∂z f

(
tn+1, X̂

π

n+1

)]
qγ πn (x)σ (tn, x). (C.1)

A cosine expansion approximation for wπn+1(X̂
π

n+1) and ∂z f (tn+1, X̂
π

n+1) can be obtained by means of
DCT, yielding approximations {Ŵk(tn+1)}k=0,...,K−1, {F̂ z

k(tn+1)}k=0,...,K−1, respectively. Consequently,
plugging these approximations combined with the integration by parts formulas in (5.5)–(5.6) in the
estimate above yields

γ̂ πn (x)σ (tn, x) = − σ 2(tn, x)(1 + ∂xμ(tn, x)Δtn)
K−1∑′

k=0

kπ

b − a
Ŵk(tn+1)�{Φ(k|x)}

+ σ(tn, x)∂xσ(tn, x)
K−1∑′

k=0

Ŵk(tn+1)�{Φ(k|x)}

−Δtnσ
3(tn, x)∂xσ(tn, x)

K−1∑′

k=0

(
kπ

b − a

)2

Ŵk(tn+1)�{Φ(k|x)}

− γ̂ πn (x)Δtnσ
2(tn, x)

K−1∑′

k=0

kπ

b − a
F̂ z

k(tn+1)�{Φ(k|x)}. (C.2)

The approximation DnẐπn = Γ̂ π
n σ
(
tn, Xπn
)

subsequently follows. The coefficients {D̂Zk(tn+1)}k=0,...,K−1
are calculated by DCT and subsequently plugged into the approximations of the Z process, which follows
analogously using the formulas in (5.4)–(5.5). The approximation of the Y process in (5.1d) is identical
to Ruijter & Oosterlee (2015) and therefore omitted.
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