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Abstract

A vital aspect of managing inflation risk is the use of inflation-indexed
derivatives. Currently, inflation-indexed bonds and swaps are the primary
instruments purchased by institutions. Inflation options (also known as infla-
tion caps/floors) are also available in the market. Risk-neutral pricing of these
derivatives is a difficult challenge due to the connection between inflation and
interest rates.

In this thesis, the Heston model and its extensions to stochastic interest
rates are investigated in the context of inflation-indexed derivatives. First,
existing analytical pricing formulas and simulation methods are summarized.
Then the multilevel Monte Carlo (MLMC) method is applied as a potent vari-
ance reduction technique. For the standard Heston model, the MLMC method
reduces the computation costs by a factor of 10 to 50 for short maturities. The
Python code implementing the applied methods is also published.
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1 Introduction
Inflation-indexed derivatives play a vital role in modern financial markets, offering
investors and institutions tools to hedge against inflation risk and manage their
portfolios. Since their introduction in the 1980s, following the period of high inflation
in the previous decades, these derivatives have become increasingly important as
inflation spikes continue to occur in global economies. KPMG has a vested interest
in making sure that its clients are sufficiently aware of inflation risk, the ways they
can hedge themselves, and the models they can use.

Currently, insurers and pension funds invest most of their money in stocks, bonds,
and real estate [40]. Due to volatility in the capital markets, the value of investments
is uncertain over time. Inflation rates and interest rates, in particular, significantly
impact the ability of pension funds to cover their future liabilities. As a result,
pension funds have a high ambition and are required by law to understand the risks
associated with inflation. Inflation-indexed derivatives, such as inflation-indexed
bonds and options, offer solutions that let them manage inflation risk.

The risk-neutral pricing of inflation-indexed derivatives poses significant challenges
due to the complex structure between inflation rates, interest rate, and model param-
eters. Various models and methodologies have been developed to address these chal-
lenges, including the famous Black-Scholes model. Extensions of the Black-Scholes
[4] model have become very important in capturing essential properties, such as the
Heston model [27] which models the variance process with a Cox-Ingersoll-Ross[15]
process. While this model allows for efficient and exact pricing, further extensions
in the context of inflation-indexed derivatives require potentially undesirable as-
sumptions to obtain closed-form solutions. Fourier-based methods, such as the COS
method [19], are challenging to apply to models like the Heston Hull-White model
due to the complex expressions required for its characteristic function.

Many papers have focused on the use of simulation techniques to obtain the solutions
instead. For example, Glasserman [24], a classic book on Monte Carlo methods in
finance, Broadie and Kaya [9], Lord et al. [34], and Giles [23]. These papers show
that certain discretization methods can significantly improve the computation speed
of prices of financial derivatives. Furthermore, improved estimators in the general
Monte Carlo simulation framework result in even faster algorithms. Although much
attention has been paid to applying these techniques to stochastic variance such as
the Heston model, little attention has been given to the application of simulation
methods to a combination of stochastic variance and stochastic interest rates.

1.1 Objectives of the thesis

The primary objective of this thesis is to develop accurate and efficient methods for
pricing inflation-indexed derivatives. Achieving high accuracy in derivative pricing
involves minimizing errors associated with the numerical approximation of stochastic
models. In this context, accuracy is increased by:

• Reducing the discretization error introduced by discretization of a continu-
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ous process. Advanced discretization schemes are explored to achieve better
convergence.

• Minimizing the statistical error in the Monte Carlo estimators, either by in-
creasing the number of samples or employing variance reduction techniques.

To start with, the Heston model [27] is a well-researched model for assets and inter-
est rates, on which many of the techniques can be applied in the context of inflation
derivatives. Subsequently, more complex models, such as the Heston Hull-White
model[43], will be analyzed. Currently, the pricing structures are complicated and
highly model dependent. This thesis aims to propose a broadly applicable simula-
tion framework that can be extended to future developments, and different payoff
structures.

The objectives of this thesis are as follows:

• Investigate techniques for pricing inflation-indexed derivatives, particularly in
the context of multi-factor models.

• Review the state of the art methods for simulating stochastic processes used
in derivative pricing.

• Compare the existing discretization schemes, with a focus on balancing com-
putational efficiency and accuracy.

• Demonstrate the applicability of multilevel Monte Carlo[23] as a flexible and
efficient method for handling path-dependent payoffs, with an emphasis on
reducing statistical error.

• Deliver an extensible Python implementation of the described methods to fa-
cilitate reproducibility and further research.

1.2 Organisation of the thesis

Firstly, in Chapter 2 some context on inflation, inflation-indexed derivatives, and
the pricing thereof.

Chapter 3 will give a complete overview of existing research on models related to
inflation-indexed derivatives. This involves the Black-Scholes model, the Jarrow-
Yildirim model, the (extended) Heston model, and LIBOR market models.

In Chapter 4 several simulation methods are discussed, which are applicable to the
models observed in Chapter 3. Several of the existing discretization schemes from
the literature are introduced. The focus of the chapter is on a variance reduction
technique called multilevel Monte Carlo introduced by Giles [23]. Particular at-
tention is given to the application of multilevel Monte Carlo to inflation-indexed
derivatives.

Chapter 5 contains the numerical results obtained from the application of the tech-
niques in Chapter 4. The simulation techniques are tested on the Heston model for
which an exact solution is known in closed form.
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Finally, the last chapter contains the conclusion and discussion.
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2 Background
Inflation-indexed derivatives are financial instruments designed to manage inflation
risk. These derivatives include various products such as inflation swaps, options, and
inflation-indexed bonds. The main function of these instruments is to provide pro-
tection against inflation fluctuations, allowing investors and institutions to stabilize
their portfolios.

Inflation refers to the rate at which the general level of prices for goods and services
rises over time. Central banks, such as the European Central Bank, closely monitor
and target inflation rates to maintain economic stability. Continuously high inflation
can lead to increased uncertainty in financial markets, influence interest rates, and
distort the valuation of assets and portfolios.

An inflation rate is usually measured by a consumer price index (CPI) which reflects
the actual price level of a basket of typical consumer goods [8]. In the Eurozone
this is a harmonized consumer price index (HCPI) determined by EUROSTAT, the
statistical office for the European Union (see Figure 2.1). In the USA, the Bureau
of Labor Statistics publishes the consumer price index (CPI-U) which is chosen to
represent the expenditure of urban residents.

Figure 2.1: Eurozone CPI index percentage change per year in the last 5 years.

With the role central banks play in stabilizing inflation and investors asking for
compensation to cover inflation when investing into bonds, there is a clear connection
between interest rates and expectations on the future inflation rate. Studies into
this relation date back to Fisher in 1930 [21] who described the relation between
interest rates and inflation with the so-called Fisher equation

(1 + rn) = (1 + rr)(1 + I), (2.1)

where rN is the nominal interest rate, rR the real interest rate, and I the inflation
rate. Historically the following equation tends to function as a close approximation,

rn = rr + I.

Since the inflation rate is measured by a change in the consumer price index, the
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inflation rate can be represented in terms of the inflation index using the following,

I(T )− I(t)

I(t)
. (2.2)

Many articles on inflation modeling use a so-called foreign currency analogy which
uses this relationship between inflation and interest rates [7], [30]. In this analogy,
real interest rates are viewed as interest rates in a "foreign" economy, while the in-
flation index is interpreted as the exchange rate between the nominal (i.e., domestic)
and the real (i.e., foreign) economy. For example, if the index increases in a certain
time frame, more nominal currency is required to buy the same amount of goods
and services. A unit of money at time T is worth I(0)

I(T )
in the real currency, with

I(0) and I(T ) the value of the inflation index at times 0 and T , respectively. The
interest rate in the real economy is called the real rate and reflects the true cost of
borrowing or investing adjusted for inflation. It is important to note that this real
rate is not fixed, it is based on expected inflation index changes and is only known
for certain at the end of the time period. Thus, both the real interest rate and the
inflation index should be modeled along with the nominal interest rate.

Quantities related to the nominal economy are denoted by subscript n and for the
real economy by subscript r. The usual real-world probability space is denoted
by (Ω,F ,P), while Qn and Qr denote the risk-neutral measures in their respective
economies. The risk-neutral measures differ because the no-arbitrage principle leads
to a different discount factor in each economy, resulting in a different risk-neutral
valuation of derivative payoffs. Both sets of computations occur within the same
probability space (Ω,F ,P), however, under the real risk-neutral measure the cash
flows are adjusted for inflation in contrast to the nominal risk-neutral measure. To
bring the dynamics of a model under the same measure, the change of measure
technique using the Radon-Nikodym derivative can be used. For a broader insight
into this concept, see, for example, Brigo and Mercurio [7, p. 45], Michael [38, p. 365]
and Björk [3, p. 396].

This section concludes with some definitions and notation used throughout this
thesis. The term structures of the nominal and real interest rate curves at time t are
denoted by Pn(t, T ) and Pr(t, T ) respectively. Pn(t, T ) and Pr(t, T ) can be viewed
as the value of a nominal/real zero-coupon bond with maturity T at time t, t ≤ T .
The respective forward interest rates are defined by the constant rate at which an
investment of Pn(t, T ) or Pr(t, T ) units of currency at time t accrues continuously
to yield a unit amount of currency at maturity T :

fx(t, T ) = −∂ lnPx(t, T )

∂T
, x ∈ {n, r}.

The nominal and real instantaneous short rates, which represent at each instant the
initial point of the forward rates are then denoted by

rn(t) = lim
T→t+

fn(t, T ),

rr(t) = lim
T→t+

fr(t, T ).
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Throughout financial modeling, both forward rates and short rates are employed to
price derivatives.

Given future times Ti−1 and Ti, the forward London Interbank Offered Rate (LIBOR)
rates at time t are defined by

Fx(t, Ti−1, Ti) =
Px(t, Ti−1)− Px(t, Ti)

τiPx(t, Ti)
, x ∈ {n, r}, (2.3)

where τi is the year fraction for the interval [Ti−1, Ti], which is assumed to be the
same for both nominal and real interest rates.

2.1 Inflation-Indexed derivatives

Inflation-indexed derivatives were developed to manage exposure to inflation risk.
These derivatives are typically tied to a specific inflation index such as the Con-
sumer Price Index. By linking the derivative’s value to the inflation index, investors
can hedge against unexpected changes in inflation. The most commonly purchased
derivatives are government issued inflation-indexed bonds which have their principal
and interest payments adjusted according to an inflation index. There is a varied his-
tory of the government issuance of such bonds [17] [10]. Treasury Inflation-Protected
Securities (TIPS) linked to the CPI-U were introduced by the US in 1997 (the EU
followed closely in 1998), with 300 billion USD outstanding in 2005 with maturities
up to thirty years and an estimated 2.8 trillion outstanding worldwide in 2024.

There are many reasons an institution would buy an inflation-indexed bond. Most
pensions increase from year to year with inflation, sometimes under statutory re-
quirements. Therefore, a pension fund or a life insurer can match these liabilities by
buying these bonds. Furthermore, compared to conventional riskless bonds whose
real value declines over time, the effective duration of an inflation-indexed bond is
much longer. This is useful for investors who want guaranteed cashflows thirty years
in the future.

Similarly to a standard zero-coupon bond (a bond without interest payments) which
considers the term structure of interest rates, a zero-coupon inflation-indexed bond
pays the value of a price index I(T ) at maturity T . At an earlier time t, the
bond has an arbitrage-free price of PI(t, T ), with no delay between payment and the
publication of the inflation index. In principle, the present value of inflation-indexed
bonds in the market can be used to determine the curve of PI(t, T ). Unfortunately,
this is not practical as there is only a limited supply of inflation-indexed bonds for
different maturities. Currently, the best way to extract the market value of PI(t, T )
is by using the prices of inflation swaps.

The inflation-indexed derivatives market is dominated by zero-coupon inflation-
indexed swaps (ZCIIS) due to their simplicity. Inflation-indexed swaps can be tai-
lored to match the requirements of a clients future liabilities more closely than with
bonds. These swaps are traded over-the-counter between banks, investors, pension
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funds, and insurers to transfer inflation risk. A zero-coupon swap involves a fixed
payment of

(1 +K)TM − 1 (2.4)

at the final time TM =M years, in exchange for receiving the relative increase of an
index

I(TM)− I(0)

I(0)
=
I(TM)

I(0)
− 1.

The fixed rate K is usually quoted, e.g. on Bloomberg. The value of the zero-coupon
swap is zero when

(1 +K)TM − 1 =
I(TM)

I(0)
− 1.

Another important inflation-indexed swap is the year-on-year swap inflation-indexed
(YYIIS) where at each time Ti the fixed amount K is exchanged for the average rate
of inflation over the previous year with T0 := 0

I(Ti)− I(Ti−1)

I(Ti−1)
=

I(Ti)

I(Ti−1)
− 1.

In contrast to the zero-coupon swap, the present value of a year-on-year swap cannot
be written in terms of zero-coupon inflation bonds and requires a model to be valued.
This is shown in the next section.

In a swap contract, both parties are obligated to fulfill their cashflow obligations as
per the terms of the contract. However, similar to assets, it is also possible to define
options on the inflation index to provide additional flexibility. An inflation-indexed
cap (IIC) is a call option on an inflation index. Analogously, an inflation-indexed
floor is a put option on the same rate. The names cap/floor come from the idea
of providing an upper/lower limit on in this case the inflation index. The payoff at
time T is given by

[ω (I(T )− κ)]+ , (2.5)

where κ is the strike price, ω = 1 for a cap and ω = −1 for a floor.

More generally, a year-on-year inflation-indexed cap/floor is defined by a series of so-
called year-on-year caplets/floorlets which start at Ti−1 (0 ≤ t ≤ Ti−1) and mature
at time Ti (Ti−1 ≤ Ti). Each caplet/floorlet has the payoff[

ω

(
I(Ti)

I(Ti−1)
−K

)]+
. (2.6)

where K = (1 + κ)Ti−Ti−1 with κ the quoted strike price, T0 = 0, and Tn = T is the
end date. Here, n denotes the number of caplets/floorlets in the cap/floor and is
dependent on the time interval which is typically fixed.

Currently this is the extent of the options environment for inflation-indexed deriva-
tives. An open question remains whether exotic derivatives, such as barrier and
look-back options, will be introduced in the future.
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2.2 Pricing Formulas for Inflation-Indexed Derivatives

Standard no-arbitrage pricing theory implies that at time t, 0 ≤ t < T , the price of
the ZCIIS under the nominal risk-neutral measure Qn is given by

ZCIIS(t, T, I(0)) = EQn

[
e−

´ T
t rn(u)du

(
I(T )

I(0)
− 1

)
|Ft

]
, (2.7)

where Ft denotes the σ-algebra of market information generated by the underlying
processes up to time t. The foreign-currency analogy implies that the nominal price
of a real zero-coupon bond is equal to the nominal price of the contract paying off
one unit of the CPI index at maturity. This means we also have

I(t)Pr(t, T ) = I(t)EQr

[
e−

´ T
t rr(u)du|Ft

]
= EQn

[
e−

´ T
t rn(u)duI(T )|Ft

]
.

Therefore, equation (2.7) can be rewritten to

ZCIIS(t, T, I(0)) =
I(t)

I(0)
(Pr(t, T )− Pn(t, T )) , (2.8)

which at time t = 0 is the current value of the real and nominal zero-coupon bonds

ZCIIS(0, T, I(0)) = (Pr(0, T )− Pn(0, T )) , (2.9)

Formulas (2.8) and (2.9) are model-independent prices of the zero-coupon swap
which are not based on specific assumptions on the interest rate market. This
important result makes it possible to strip real zero-coupon bond prices from the
quoted prices of zero-coupon inflation-indexed swaps. Let K(TM) be the fixed rate
of the contract for a given maturity TM . Then the nominal discounted value of the
fixed payment (2.4) must be equal to the formula in equation (2.8) which gives the
price of a real zero-coupon bond at time t = 0 with maturity TM :

Pr(0, TM) = Pn(0, TM)(1 +K(TM))M .

It is apparent that the price of a ZCIIS is not dependent on the choice of model.
The same is not true for the YYIIS. Similarly computing the arbitrage-free price of
a YYIIS under the nominal risk-neutral measure with t < Ti−1 yields

YYIIS(t, Ti−1, Ti) = EQn

(
e−

´ Ti
t rn(u)du

[
I(Ti)

I(Ti−1)
− 1

]
|Ft

)
,

The part in the square brackets can be rewritten to

EQn

(
e−

´ Ti−1
t rn(u)du EQn

[
e−

´ Ti−1
Ti

(
I(Ti)

I(Ti−1)
− 1

)
|FTi−1

]
|Ft

)
,

and recognizing that the inner expectation is ZCIIS(Ti−1, Ti, I(Ti−1), this results in

YYIIS(t, Ti−1, Ti) = EQn

(
e−

´ Ti−1
t rn(u)duPr(Ti−1, Ti)|Ft

)
− Pn(t, Ti).
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This expectation can be viewed as the nominal price of a derivative that pays off,
in nominal units, the real zero-coupon bond price Pr(Ti−1, Ti) at time Ti−1. If real
rates are assumed to be stochastic then the expectation is model-dependent. In
Section 3.2 the price of a year-on-year inflation swap is calculated based on the
Jarrow-Yildirim model.

For inflation-indexed caplets/floorlets the price is derived again with standard no-
arbitrage pricing theory using the payoff (2.6). The value at time t ≤ Ti−1 is:

IICplt(t, Ti−1, Ti, ω) = EQn

(
e−

´ Ti
t rn(u)du

[
ω

(
I(Ti)

I(Ti−1)
−K

)]+
|Ft

)
. (2.10)

If the nominal interest rate and inflation index are assumed to be stochastic, then
the expressions in the expectation are not independent, and solving this expectation
can become quite cumbersome. In many model structures, the pricing formula is
calculated under the nominal T -forward measure. This measure is generated by the
nominal zero-coupon bond Pn(t, T ) so that the "forward" inflation is a martingale,
i.e.

E
[
I(T )

Pr(t, T )

Pn(t, T )
|Ft

]
= I(t)

Pr(t, T )

Pn(t, T )
. (2.11)

This means under this measure the discount factor can be decoupled from the ex-
pectation,

IICplt(t, Ti−1, Ti, ω) = Pn(t, Ti)EQTi
n

([
ω

(
I(Ti)

I(Ti−1)
−K

)]+
|Ft

)
.

For models under the T -forward measure containing stochastic interest rates, this
greatly simplifies the pricing structure. Pricing formulas are calculated for different
model frameworks in the next chapter.
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3 Model Overview
This section provides an overview of the models and methodologies used for pric-
ing inflation-indexed derivatives. First, the Black-Scholes model finds its place in
inflation modelling as a simple base model. Subsequently, combinations of Hull-
White processes and Heston dynamics are illustrated in the form of the famous
Jarrow-Yildirim model, the Heston-Hull-White model, and LIBOR market models
including the evolved SABR model.

3.1 Black-Scholes

In the pricing of financial derivatives, the Black-Scholes [4] framework is considered
one of the most natural starting points. The simplicity of this model makes it
widely accessible, and it results in a closed-form solution for the price of an option.
It is commonly used as the benchmark for pricing options despite its limitations in
capturing stochastic dynamics. Applying this framework to inflation by considering
the inflation index as an underlying asset is therefore a natural first step.

Kruse [31], [32] considers the simple inflation model where the inflation index I(t)
follows a geometric Brownian motion with (Ω,F , P ) the real-world probability space
with filtration (Ft)t≥0 of market information.

dI(t) = (rn − rr)I(t)dt+ σII(t)dWI(t),

where I(t) is the inflation index, rn the constant interest rate in the nominal economy,
rr the constant interest rate in the real economy, σI the constant volatility, and
dWI(t) a Brownian motion. By calculating the expectation, it can be shown that
this model preserves the Fisher equation, so it satisfies the expected relation between
inflation and interest rates, for T > t,

EQ

(
I(T )

I(t)

∣∣∣∣Ft

)
= e(rn−rr)(T−t).

Analogous to the Black-Scholes solution, the price of a plain vanilla call option on the
inflation index with strike price K, maturity T and payoff C(T, I(T )) = (I(T )−K)+

at maturity, is at time t = 0 given by

C(0, I(0)) = I(0)e−rrTN(d)−Ke−rnTN(d− σI
√
T ),

with

d =
ln
(

I(0)
K

)
+
(
rn − rr +

1
2
σ2
I

)
T

σI
√
T

.

Similarly the price of a caplet on the inflation rate over a future time interval from
Ti−1 to Ti with payoff (2.6) is also derived

IICplt(0, Ti−1, Ti, K) = e−rr(Ti−Ti−1)e−rnTi−1N(d)−Ke−rnTiN(d− σI
√
Ti − Ti−1),
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with

d =
− ln(K − 1) + (rn − rr +

1
2
σ2
I )(Ti − Ti−1)

σI
√
Ti − Ti−1

.

With this pricing formula, the implied volatility surface is derived from data on in-
flation caps. It is shown that the implied volatilities are far from constant, indicating
the deficiencies in the model.

While this model is easy to use, the drawbacks that exist in the Black-Scholes model
for options on assets carry over to derivatives on the inflation index. Most notably
the assumption of constant volatility and interest rates over time is unrealistic. Just
like in the stock or currency option market, the implied Black-Scholes volatilities
are not constant for different strike levels and maturities. Likewise, interest rates
are observed to have stochastic behavior.

3.2 Jarrow-Yildirim framework

In 1997 the US treasury started issuing inflation-indexed bonds, differing from con-
ventional bonds in that the principal is constantly adjusted for inflation. With the
first inflation-indexed derivatives on the market also came the first pricing models
for such products. The model published by Jarrow and Yildirim [30] in 2003 is one
of the first applications of the foreign-currency analogy to inflation-indexed deriva-
tives, as it is the first model to jointly model interest rates and inflation. Analogously
to the well-known Heath-Jarrow-Morton (HJM) framework [16], the forward rates
under the nominal and real economies are assumed to follow Hull-White processes.
See also Dodgson et al. [18] and Mercurio [35]. Simultaneously the inflation index
is assumed to follow a log-normal process correlated to the forward rates,

dfn(t, T ) = αn(t, T )dt+ σn(t, T )dW
n(t),

dfr(t, T ) = αr(t, T )dt+ σr(t, T )dW
r(t),

dI(t)

I(t)
= µI(t)dt+ σIdW

I(t),

where the Brownian motions dW n(t), dW r(t) and dW I(t) are correlated by ρi,j,
i ∈ {n, r, I} and σn, σr, σI are deterministic functions. According to Jarrow and
Turnbull [29] the processes are arbitrage free if and only if the processes Pn(t,T )

Bn(t)
,

I(t)Pr(t,T )
Bn(t)

and I(t)Br(t)
Bn(t)

are martingales under the nominal risk-neutral measure, with
Bn(t) and Br(t) money market accounts that increase with the nominal and real
interest rate, respectively. This implies the following conditions

αn(t, T ) = σn(t, T )

ˆ T

t

σn(t, s)ds (3.1)

αr(t, T ) = σr(t, T )

(ˆ T

t

σr(t, s)ds− σI(t)ρr,I

)
(3.2)

µI(t) = rn(t)− rr(t) (3.3)

where equation (3.1) refers to the arbitrage-free forward rate drift restriction as
in the original HJM model. Equation (3.2) is the analogous restriction for the
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real forward rates, and equation (3.3) corresponds to the Fisher equation relating
expected inflation with the nominal and real interest rates.

From here Jarrow and Yildirim use general results for Hull-White interest rate pro-
cesses to show that the nominal and real zero-coupon bonds must have the price
processes

dPn(t, T )

Pn(t, T )
= rn(t)dt−

ˆ T

t

σn(t, s) ds dW
n(t),

dPr(t, T )

Pr(t, T )
=

(
rr(t) + ρr,IσI(t)

ˆ T

t

σr(t, s)ds

)
dt−

ˆ T

t

σr(s)dsW
r(t).

Additionally the dynamics of the nominal and real interest rates are derived under
the nominal risk neutral measure using the change-of-measure technique,

drn(t) = (θn(t)− anrn(t))dt+ σndW
n(t), (3.4)

drr(t) = (θr(t)− ρr,IσIσr − arrr(t))dt+ σrdW
r(t), (3.5)

dI(t)

I(t)
= (rn(t)− rr(t))dt+ σI(t)dW

I(t), (3.6)

where θn(t) and θr(t) are deterministic functions used to exactly fit the term struc-
tures of nominal and real rates respectively. For the Hull-White model this results
in the following formula,

θl(t) =
∂f l(0, t)

∂T
+ alf

l(0, t) +
σl
2al

(1− e−2alt), (3.7)

with l ∈ {n, r} and fl(t, T ), t ≤ T the forward rate at time t for maturity M .

This provides all the ingredients required to price inflation-indexed bonds and deriva-
tives with closed-form formulas. Brigo and Mercurio [7] use the Jarrow and Yildirim
model to price Year-on-Year swaps and caplets/floorlets For the Year-on-Year swap,
the price under the nominal T-forward measure can be written as

YYIIS(t, Ti−1, Ti) = Pn(t, Ti−1)ETi−1
n [Pr(Ti−1, Ti)|Ft]− Pn(t, Ti)

where ETi−1
n is the expectation under the Ti−1-forward measure. From the theory

behind the Hull-White model the price of the real zero-coupon bond is

Pr(t, T ) = Ar(t, T )e
−Br(t,T )rr(t),

Br(t, T ) =
1

ar

(
1− e−ar(T−t)

)
,

Ar(t, T ) =
Pr(0, T )

Pr(0, t)
exp

[
Br(t, T )fr(0, t)−

σ2
r

4ar
(1− e2art)Br(t, T )

2

]
.

With a change of measure the real interest rate under the Ti−1-forward measure
follows the dynamics

drr(t) = [−ρn,rσnσrBn(t, Ti−1) + θr(t)− ρr,IσIσr − arr(t)]dt+ σrdW
r(t)

12



with dW r(t) a QTi−1-Brownian motion. After some calculations the price for the
Year-on-Year inflation indexed swap is:

YYIIS(t, Ti−1, Ti) = Pn(t, Ti−1)
Pr(t, Ti)

Pr(t, Ti−1)
eC(t,Ti−1,Ti) − Pn(t, Ti),

where

C(t, Ti−1, Ti) = σrBr(Ti−1, Ti)

[
Br(t, Ti−1)

(
ρr,IσI −

1

2
σrBr(t, Ti−1)

+
ρn,rσn

an + ar
(1 + arBn(t, Ti−1))

)
− ρn,rσn
an + ar

Bn(t, Ti−1)

]
Thus under the JY model the expectation of a real zero-coupon bond under the
nominal forward measure is equal to the current forward price of the real bond
multiplied by a correction factor C, which depends on the volatilities of the nominal
rate, real rate and the CPI, and the correlation between the real rate and the CPI.
The derivation of the price of a caplet is also long but straightforward, using the
idea that the ratio I(Ti)/I(Ti−1) conditional on Ft is lognormal under the forward
measure.

3.3 Heston framework

As a result of the significant skew/smile observed in the option market, the Heston
framework is often preferred in practice. In this case the variance process of the
inflation index is modeled by a Cox-Ingersoll-Ross (CIR) process which is considered
the gold standard in capturing the smile. For even more realistic dynamics, this can
be coupled with a stochastic term structure model for the interest rates such as the
Hull-White model [7]. Choosing this structure makes it possible to derive explicit
formulas for the prices of options on inflation. For more complicated dynamics some
assumptions are required to obtain such formulas.

3.3.1 Constant interest rate

The simple case where the interest rates are assumed to be constant almost exactly
overlaps the scenario where Heston’s model is applied to an asset. An asset price
A(t) which follows the Heston dynamics has the process

dA(t)

A(t)
= rdt+

√
V (t)dWA(t)

where r is the constant risk free nominal interest rate r and V (t) follows a mean
reverting stochastic process. Kruse [32] assumed the inflation index I(t) follows the
same type of process as A(t):

dI(t)

I(t)
= (rn − rr)I(t)dt+

√
V (t)dW I(t)

dV (t) = α(V̄ − V (t))dt+ σV
√
V (t)dW V (t) (3.8)
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with risk neutral long term mean V̄ , mean reverting speed α ≥ 0, σV the constant
volatility of the variance process, and W I(t) and W V (t) are correlated through pa-
rameter ρ. Additionally the feller condition which ensures positivity of the variance
process is satisfied if 2αV̄ > σ2

V .

The price of a cap on the inflation index at time t = 0 with payoff (I(T )−K)+ for
some strike K is now the same as the price of a call option with strike K on the
asset A(t). In the original paper about his model, Heston[27] constructs an exact
solution by deriving the characteristic function,

ϕhes(u, t) = exp

{
iut(rn − rr) +

αV̄

σ2
V

((α− iσV ρu− d) t− 2 log

(
1− ge−dt

1− g

)
+
V0
σV

(α− iσV ρu− d)

(
1− e−dt

1− ge−dt

)}
,

(3.9)

where
d =

√
(α− iσV ρu)2 + σ2

V (u
2 + iu), (3.10)

and
g =

α− iσV ρu− d

α− iσV ρu+ d
. (3.11)

Heston then inverts the characteristic function and numerically integrates to obtain
the exact solution of call options. A more recent and more efficient method that
has become popular is the COS method [19], which approximates the integral using
Fourier expansions. This method is illustrated in Section 3.4.

For a caplet payoff as in equation (2.6) the result for forward starting options can
be followed (see, for example, Kruse and Nögel [33]). The price at time t = 0 of a
caplet on the inflation index from Ti−1 to Ti with 0 < Ti−1 < Ti is given by

IICplt(0, Ti−1, Ti, K) = e−rr(Ti−Ti−1)e−rnTi−1P1(0, e
−rr(Ti−Ti−1), V (0), 1 +K)

− (1 +K)e−rnTiP2(0, e
−rr(Ti−Ti−1), V (0), 1 +K)

where P1, P2 are the Heston probabilities given in [32]. The full formula is not
presented here, but it involves the standard method of characteristic functions that is
widely used for Heston dynamics. As with option pricing for assets, the characteristic
function has an exponential affine form for which the terms can be derived by solving
ordinary differential equations.

While pricing using this model is relatively straightforward, as it does not rely on
specific assumptions on the correlation between inflation and its variance, the as-
sumption of constant interest rates is generally not realistic. The fisher equation has
long been accepted as a defined relation between the nominal/real interest rates and
the inflation rate. As a result, stochastic interest rates are expected in an accurate
stochastic inflation pricing model. Therefore, the natural next step is introducing
stochastic models for the interest rate which work in conjunction with the model for
inflation.
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3.3.2 Hull-White model for interest rates

In the interest of giving interest rates more structure than a constant or determinis-
tic function, much attention has been devoted to combining the Heston dynamics of
an asset with a model for the interest rates. Hout et al. [28] and Chval [13] among
others extend the Black-Scholes model for an asset with Heston dynamics for the
variance and a Hull-White process for the interest rate to price European options.
The reason for this popularity is many features in the option market can be captured
by this combination of models while analytic pricing formulae exist. This is highly
preferred, as it makes the valuation procedure much faster since numerical/simula-
tion techniques can be avoided.

Naturally, this makes the inflation option market another interesting application for
this structure. Singor et al. [43][25] have a series of papers that investigate this
model structure, including an application to pension funds. The nominal and real
interest rates, rn and rr follow the one-factor Hull White model under the nominal
risk-neutral measure Qn just as in equations (3.4) - (3.6):

drn(t) = (θn(t)− anrn(t))dt+ σndW
rn(t) (3.12)

drr(t) = (θr(t)− ρI,rσr
√
V (t)− arrr(t))dt+ σrdW

rr(t) (3.13)

where ai are mean-reversion parameters and σi are volatility parameters for i ∈
{n, r}. The functions θi(t) are determined by the nominal/real initial term struc-
ture observed in the market. Meanwhile the CPI I(t) follows the Heston model
as in equations (3.8) under the nominal economy measure Qn but now with time-
dependent interest rates,

dI(t)

I(t)
= (rn(t)− rr(t))I(t)dt+

√
V (t)dW I(t),

dV (t) = α(V̄ − V (t))dt+ σV
√
V (t)dW V (t).

The correlation structure between the Brownian motions dW I(t), dW V (t), dW rn(t),
dW rr(t) is provided through the symmetric positive-definite correlation matrix

dW(t)(dW(t)T ) =


1 ρI,V ρI,n ρI,r
ρI,V 1 ρV,n ρV,r
ρI,n ρV,n 1 ρn,r
ρI,r ρV,r ρn,r 1

 dt. (3.14)

From here the dynamics are given under the T -forward measure so that the forward
CPI is a martingale. This greatly simplifies the derivation of the characteristic
function later. The full derivation is presented by Grzelak and Oosterlee [25]

drn(t) = (θn(t)− σ2
nBn(t, T )− anrn(t))dt+ σndW

rn(t),

drr(t) =
(
θr(t)− ρI,rσr

√
V (t)− σnσrρn,rBn(t, T )− arrr(t)

)
dt+ σrdW

rr(t),

dIT (t)

IT (t)
=

√
V (t)dW I(t) + σnBn(t, T )dW

rn(t)− σrBr(t, T )dW
rr(t),

dV (t) =
(
α(V̄ − V (t))− σV σnρV.nBn(t, T )

√
V (t)

)
dt+ σV

√
V (t)dW V (t).
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where Bi(t, T ) =
1
ai
(1− e−ai(T−t)) for i ∈ {n, r}. It is worth noting that the forward

CPI does not depend directly on the interest rate processes but only depends on the
Brownian motions.

Just as in the previous section, the characteristic function belonging to the inflation
cap/floor under this model must be derived to apply the Fourier-based pricing meth-
ods. The derivation of this characteristic function is discussed in Grzelak and Oost-
erlee [25] in the context of foreign exchange markets. By applying the Feynman-Kac
theorem [42] to the log inflation process x = log I(t) they show the characteristic
function is the solution of the following Kolmogorov backward partial differential
equation:

−∂ϕ
∂t

=(α(V̄ − V ) + ρI,nσV σn
√
V Bn

∂ϕT

∂V
+

(
1

2
V − ζ(t,

√
V )

)(
∂2ϕT

∂x2
− ∂ϕT

∂x2

)
+ (ρI,V σV V − ρV,nσn

√
V Bn + ρV,rσV σr

√
V Br)

∂2ϕT

∂x∂V
+

1

2
σ2
V V

∂2ϕT

∂V 2

(3.15)

with Bn = Bn(t, T ), Br = Br(t, T ) and

ζ(t, ψ(t)) = (−ρI,nσnBn+ρI,rσrBr)
√
V (t)+ρr,nσnσrBrBn−

1

2
(σ2

nB
2
n+σ

2
rB

2
r ). (3.16)

By approximating the non-affine
√
V terms with a linearization technique, and let-

ting τ := T − t, an approximate closed-form solution of the characteristic function
is provided,

ϕT (u, τ) = exp(A(u, τ) +B(u, τ)xT (t) + C(u, τ)σ(t)). (3.17)

with
B(u, τ) = iu, (3.18)

C recognized from the Heston model,

C(u, τ) =
1− e−dτ

σ2
V (1− ge−dτ )

(α− ρI,V σV iu− d) (3.19)

with

d =
√

(ρI,V σV iu− α)2 − σ2
V iu(iu− 1) (3.20)

g =
α− σV ρI,V iu− d

α− σV ρI,V iu+ d
, (3.21)

and

A(u, τ) =

ˆ T

0

(αV̄ − ρV,nσV σnψ(s)Bn(s) + ρσ,nσnσV ψ(s)Bn(s)iu

−ρV,rσV ψ(s)Br(s)iu)C(s)ds+ (u2 + iu)

ˆ T

0

ζ(s, ψ(s))ds,

(3.22)
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where
ψ(t) := E(

√
V (t)) (3.23)

is approximated. Under certain assumptions on the correlation parameters, an an-
alytic solution for A(u, τ) exists. Otherwise, numerical procedures can be used.
Grzelak and Oosterlee [43] further derive an approximate expression for the charac-
teristic function of year-on-year inflation caps/floors which involves ϕT (u, τ). This
topic, however, falls outside the scope of this thesis.

After a complicated sequence of calculations an inflation cap/floor can now be priced
exactly for the Heston Hull-White model using Fourier methods.

3.3.3 Libor Market Models for forward rates

LIBOR (London Interbank Offer Rate) market models, also known as Brace-Gatarek-
Musiela (BGM) models, have long been an industry standard in pricing exotic in-
terest rate derivatives by modeling forward rates over short rates. Unlike when
modeling short rates like in the Hull-White framework, forward rates are directly
observable in the market. Using forward rates eliminates the requirement to cali-
brate the short-rate process parameters to the prices of market instruments, which
would be an extra layer of fitting [2]. Because the discount curve can evolve in a com-
plicated manner, using the forward rate means more focus can be on the dynamics
of the asset rather than the fitting of the short rate curve. This motivated Mer-
curio and Moreni [36] to use the LIBOR market model in pricing Inflation-Indexed
derivatives.

The forward rates Fi (see equation (2.3)) are assumed to be lognormally distributed
according to a driftless lognormal LIBOR model, see, for example, Brace et al. [6].
Under a given reference measure Q with tenor dates 0 < T0 < T1 < · · · < Tn and
corresponding forward rates f0, . . . , fn−1 with fi the forward rate for the period Ti
to Ti+1, this means

dFi(t)

Fi(t)
= σF

i dW
Q,F
i (t) (3.24)

Due to the dependence of forward CPI’s on forward rates, Mercurio and Moreni com-
bined this model with a Heston-like model for the forward CPI’s Ii each with the
same mean-reverting square-root volatility process. Compared to the CPI, which
is simply an exchange rate, forward CPI’s are price processes of tradable securi-
ties. Furthermore. a forward CPI is a martingale under its corresponding forward
measure. so its dynamics are fully defined by its volatility process. Having a single
volatility process for each forward CPI is a reasonable assumption since the dynamics
for each forward CPI are expected to be similar.

In Section 3.3.4 an expansion of the model is explored where each forward CPI is
modeled by a different volatility process at the cost of the requirement to calibrate
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many more parameters. The complete model is as follows:

dFi(t)

Fi(t)
= σF

i dW
Q,F
i (t)

dIi(t)

Ii(t)
= σI

i

√
V (t)dWQ,I

i (t),

dV (t) = α(θ − V (t))dt+ σV
√
V (t)dWQ(t),

where σF
i , σ

I
i , α, θ, σV are positive constants, and the Brownian motions dWQ,F

i (t),
WQ,I

i (t) and dWQ(t) are correlated. To ensure the variance process is positive, the
Feller condition 2αθ > σV must be satisfied.

Instead of defining the dynamics under a risk-neutral measure, which would hide the
market price of volatility risk, or under the terminal forward measure which would
use the bond price P (t, TM) as numeraire and thus depend on the choice of the last
maturity, the authors chose the spot LIBOR measure Q0. This measure uses the
numeraire

N(t) := P (t, β(t))

β(t)∏
l=1

(1 + τFl(t)), β(t) = Tj if Tj−1 < t ≤ Tj

This numeraire involves an initial portfolio of a zero-coupon bond expiring at time
T0, with the proceeds received upon expiration of every bond being reinvested in
bonds expiring at the next tenor date, up to Tn. The use of this numeraire was
introduced in 1997 by Jamshidian [20].

The authors’ motivation behind using the spot LIBOR measure for this forward CPI
model is that it is payoff independent, so it allows the valuation of a single payoff of
a caplet 2.6 without needing to consider the number of caplets that follow. However,
in the context of interest rate modeling, this numeraire is used because the variance
of Monte Carlo simulation is generally lower than with the terminal forward measure
[2]. This can be of particular importance when exact solutions cannot be found.

Following a change-of-measure technique as presented by Geman et al. [22], Mercurio
and Moreni proceed to define the dynamics under both the spot LIBOR measure
and the forward measure. Since caplets and floorlets with payoff at time Tj are
derivatives that depend on Ij and Ij−1 it is convenient to use the forward measure,
as it means both Fj and Ij are martingales. The dynamics under the forward

18



measure with P (t, Tj) as numeraire and Xj(·) := ln
(

Ij(·)
Ij−1(·)

)
become

dFi(t)

Fi(t)
= σF

i dW
F
i (t)

dIj(t)

Ij(t)
=

√
V (t)σI

jdW
I
j (t),

dIj−1(t)

Ij−1(t)
=

√
V (t)σI

j−1

[
−σF

j ρ
F,I
j,j−1

τjFj(t)

1 + τjFj(t)
dt+ dW I

i−1(t)

]
,

dXj(t) =

[
V (t)

2
((σI

j−1)
2 − (σI

j )
2) +

√
V (t)σI

j−1σ
F
j ρ

F,I
j,j−1

τjFj(t)

1 + τjFj(t)

]
dt, (3.25)

+
√
V (t)(σI

jdW
I
j (t)− σI

j−1dW
I
j−1(t))

dV (t) =

αθ − σV
√
V (t)

j∑
l=β(t)+1

τlFl(t)

1 + τlFl(t)
σF
l ρ

F,V
l − αV (t)

 dt+ σV
√
V (t)dW (t),

where ρF,Vl dt = dW F
l (t)dW (t) for every l, ρIj,l = dW I

j (t)dW
I
l (t) is the correlation

between forward CPI’s Ij and Il, and ρI,Vi = dW I
i (t)dW (t) the correlation between

the forward CPI Ii and the volatility.

Despite the focus on the spot LIBOR measure, which results in more simple dy-
namics than the forward measure, the pricing formula is only calculated with the
forward measure in mind. The method of characteristic functions is used to obtain
the caplet price in terms of its Fourier transform

Cpltj(t,K) = P (t, Tj)Ej
t

(
Ij(Tj)

Ij−1(Tj−1)
− (K + 1)

)
= P (t, Tj)

e−ηk

π

ˆ ∞

0

e−iuk ϕj
t(u− (η + 1)i)

(η + iu)(η + 1 + iu)
du,

where k = ln(K+1) and η ∈ R+, is used to ensure L2-integrability. Further reading
on this method can be found in [11]. The only unknown value is the conditional
characteristic function

ϕj
t(u) = Ej

t

(
e
iu ln

(
Ij(Tj)

Ij−1(Tj−1)

))

which can be written as the solution to a partial differential equation that can be
found using Feynmann-Kac’s theorem (by definition of the characteristic function
and the Markov property).

Due to the general dynamics in equations (3.25) it may not be explicitly solvable.
Instead, results are derived separately for two specific assumptions. First, by assum-
ing ρF,Ii,l = ρF,Vi = 0, many terms in the dynamics vanish, so finding ϕj

t(u) reduces
to solving a Heston-like partial differential equation for which an explicit solution
exists. This assumption is reasonable for basic derivatives which are not sensitive to
the correlation between forward rates and forward CPI’s. When pricing more exotic
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derivatives on interest rate and inflation, approximated dynamics can be derived
instead by freezing the drift terms to their value at time 0. This also provides a
closed-form solution by solving a Heston-like partial differential equation.

3.3.4 Multi-Factor SABR model

By choosing a single volatility process for every forward CPI as in the previous
section, the model is sensitive to calibration errors, especially when considering
long-term maturities. Mercurio and Moreni [37] therefore expanded their model by
defining a separate volatility process for each forward CPI. The resulting caplet price
can be valued with a SABR formula which has been researched by Hagan et al. [26]
for the pricing of European options.

In the expanded model, the forward rates follow the same process as in Equation
(3.24). Next the forward CPI’s Ii evolve under the associated forward measure QTi

according to
dIi(t)

Ii(t)
=

i∑
j=β(t)

Vj(t)dW
i
j (t)

where β(t) is the index of the first tenor date Ti strictly larger than t. This can
be interpreted as the volatility of the forward CPI to Ti is a sum of the volatility
processes for each tenor date up to Ti.

The M volatility processes are modeled by driftless geometric Brownian motions
under their respective forward measure,

dVi(t)

Vi(t)
= νidWi(t)

In order to provide structure to the Brownian motion structure,M−1M -dimensional
Brownian motions are recursively defined

W 1 := {W 1
1 ,W

1
2 , . . . ,W

1
M}

W 2 := {W 2
1 ,W

2
2 , . . . ,W

2
M}

...
...

WM−1 := {WM−1
1 ,WM−1

2 , . . . ,WM−1
M }

by the rule

dW i−1
j (t) = dW i

j (t)−
τiσ

F
i (t)Fi(t)

1 + τiFi(t)
ρF,Wi,j dt (3.26)

where j = 1, . . . ,M and i = 2, . . . ,M and ρi,j := dW i
j (t)dW

F
i (t)/dt = dW i−1

j (t)dW F
i (t)/dt.

This recursive structure comes from the change-of-measure technique, when moving
from QTi to QTi−1 dynamics of W i

j contain a drift term equal to the final term stated
in equation (3.26). By taking this drift term away, the recursively defined Brownian
motions are indeed Brownian motions.

20



Similar to the previous section, the dynamics of Ii−1(t) are derived under the forward
measure, this time with a sum over the volatility processes. Using equation (3.26),

dIi−1(t)

Ii−1(t)
= −τiσ

F
i (t)Fi(t)

1 + τiFi(t)

i−1∑
j=β(t)

Vj(t)ρ
F,W
i,j dt+

i−1∑
j=β(t)

Vj(t)dW
i
j (t).

Next with the goal of producing SABR dynamics in mind, the dynamics of the
forward inflation rate Yi defined by Yi(t) := Ii(t)

Ii−1(t)
−1 are derived using Itô’s lemma,

dYi(t) = (1 + Yi(t))

 i−1∑
j=β(t)

Vj(t)

(
τiσ

F
i (t)Fi(t)

1 + τiFi(t)
ρF,Wi,j − Vi(t)ρ

W
i,j

)
dt+ Vi(t)dW

i
i (t)


To produce analytically tractable dynamics the forward rates Fi(t) and volatilities
Vj(t) in the drift term are frozen to their value at time 0. Furthermore, setting
Ȳi(t) := 1 + Yi(t) produces

dȲi(t)

Ȳi(t)
= Di(t)dt+ Vi(t)dW

i
i (t)

dVi(t) = νVi(t)dZi(t), Vi(0) = αi

with

Di(t) :=
i−1∑

j=β(t)

Vj(0)

(
τiσ

F
i (t)Fi(0)

1 + τiFi(0)
ρF,Wi,j − Vi(0)ρ

W
i,j

)
which is only dependent on the forward rate volatility’s and the correlations.

Finally the SABR dynamics are stated by noticing that Ȳi(Ti) = Ỹi(Ti) where the
process Ỹi(Ti) is defined by

dỸi(Ti)(t) = Ỹi(Ti)Vi(t)dW
i
i (t), Ỹi(0) = Ȳi(0)e

´ Ti
0 Di(t)dt

dVi(t) = νiVi(t)dZi(t), Vi(0) = αi.

The caplet price can now be written directly from the SABR lognormal formula with
β = 1 with ρi the correlation between Ỹi and Vi (see equations 2.16a-2.17c in [26]):

IICplt(t, Ti−1, Ti, K) = P (t, Ti)ETi
[
(Ȳi(Ti)−K)+|Ft

]
= P (t, Ti)ETi

[
(Ỹi(Ti)−K)+|Ft

]
= P (t, Ti)[Ỹi(t)Φ(d+)−KΦ(d−)]

with

d± =
ln( Ỹi(t)

K
)± 1

2
σ2(K)(Ti − t)

σ(K)
√
Ti − t

σ(K) = αi
z

x(z)

[
1 +

(
ρiνiαi

4
+ ν2i

2− 3ρ2i
24

)
(Ti − t)

]
z :=

νi
αi

ln

(
Ỹi(t)

K

)

x(z) := ln

(√
1− 2ρiz + z2 + z − ρi

1− ρi

)
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The resulting pricing formula means only the SABR parameters αi, ρi and νi have
to be calibrated when pricing Year-on-Year caplets. For the analytical pricing of
caps/floors and year-on-year swaps on the CPI, a separate approximation procedure
is derived, which results in a closed-form SABR formula.

3.4 Exact Solution Using the Cos Method

A commonly used method for the analytical pricing of financial derivatives under
Heston models with known characteristic functions is the COS method introduced
by Fang and Oosterlee [19]. This method is applicable to the Heston model when
this characteristic function can be derived in closed form such as the Heston model
with constant interest rates. The Fourier methods involved can also be extended to
the Heston-Hull-White model[43]. In these cases, the exact solution can be used for
direct comparison with the results using Monte Carlo simulation.

For the Heston model with constant interest rates, the risk-neutral value of an option
can be written as

V (x, t0) = e−r△tEQ(V (y, T )|x) = e−r△t

ˆ
R
V (y, T )f(y|x)dy (3.27)

where V is the option value, T the maturity date, t0 the initial date, △t = T −
t0. x and y are state variables representing the payoff function at time t0 and T
respectively, and f(y|x) the probability density of y given x, and r is the risk-neutral
interest rate.

By truncating the infinite integration range and replacing the density with its cosine
expansion, Fang and Oosterlee obtain the approximation

Ṽ (x, t0) = e−r△t

ˆ a

b

V (y, T )
∞∑
k=0

Ak(x) cos

(
kπ
y − a

b− a

)
dy, (3.28)

with

Ak(x) :=
2

b− a

ˆ b

a

f(y|x) cos
(
kπ
y − a

b− a

)
. (3.29)

By using the definition

Uk :=
2

b− a

ˆ b

a

V (y, T ) cos

(
kπ
y − a

b− a

)
dy, (3.30)

the value of the option is written in terms of the Fourier-cosine series of f(y|x) and
V (y, T ),

Ṽ (x, t0) =
1

2
(b− a)e−r△t

∞∑
k=0

Ak(x)Vk. (3.31)

Due to the periodic nature of the cosine series, the coefficients decay quickly, so
only a finite number of terms can be used to obtain sufficiently accurate results.
Additionally the coefficients Ak can be approximated by

Ak ≈ Fk ≡
2

b− a
Re
(
ϕ

(
kπ

b− a

)
exp

(
−i kaπ
b− a

))
(3.32)

22



with phi the characteristic function. This combined results in the following approx-
imation

Ṽ (x, t0) = e−r△t

N∑
k=0

Re
(
ϕ

(
kπ

b− a
;x

)
e−ikπ a

b−a

)
Uk. (3.33)

Equation (3.33) is referred to as the COS formula for general underlying processes.
The coefficients Uk are obtained analytically for vanilla options

U call
k =

2

b− a
K(χk(a, b, 0, b)− ψk(a, b, 0, b)), (3.34)

with

χk(a, b, c, d) =
1

1 +
(

kπ
b−a

)2 [cos(kπd− a

b− a

)
ed − cos

(
kπ
c− a

b− a

)
ec

+
kπ

b− a
sin

(
kπ
d− a

b− a

)
ed − kπ

b− a
sin

(
kπ
c− a

b− a

)
ec
]
,

(3.35)

and

ψk(a, b, c, d) =

{
b−a
kπ

(
sin
(
kπ d−a

b−a

)
− sin

(
kπ c−a

b−a

))
k ̸= 0,

d− c k = 0.
(3.36)

To find the exact solution only the characteristic function ϕ, a truncation range for
the integral, and a truncation value N is required. However, as the models include
more realistic processes for the interest rate, the characteristic function is only known
in closed form for specific assumptions.
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4 Monte Carlo Simulation
As observed in the previous sections not all model setups admit analytical solutions
for all parameter combinations, and those that do can rely on undesirable assump-
tions. Monte Carlo methods, widely used in the pricing of financial derivatives, have
efficiently addressed this problem [24][5][12]. These methods use stochastic simula-
tions of future paths of underlying processes and the strong law of large numbers
to estimate expectations of future values. This enables relatively easy evaluation
of complex pricing formulas where analytical solutions may not be feasible. Monte
Carlo simulations have been employed to verify or compare results from analytical
pricing formulas for many types of derivative structures. Furthermore, Monte Carlo
methods offer great flexibility in pricing more complex derivatives. Such options do
not exist yet for inflation, but may be introduced for institutions looking to manage
inflation risk in a flexible manner.

At its simplest, Monte Carlo can be used to estimate an expectation E[P ]. A stan-
dard Monte Carlo estimate P̂MC is an average of values P (ω) for N independent
samples ω from a given probability space (Ω,F ,P),

P̂MC = N−1

N∑
n=1

P (ω(n)), (4.1)

where P (ω(n)) is the n’th sample. Due to the Strong Law of Large Numbers this
estimator converges to the average E[P ] as N → ∞. With the Central Limit Theo-
rem it can be shown that the convergence rate is of order 1√

N
. Additionally a 1− α

confidence interval is provided:[
P̂MC − ϕ−1

(
1− α

2

)√V(P (ω)
N

, P̂MC + ϕ−1
(
1− α

2

)√V(P (ω)
N

]
, (4.2)

where ϕ−1 is the inverse of the cumulative distribution function of the standard
normal distribution.

There exist two sources of error in the estimator,the sampling error related to es-
timating the expected value with a finite sample average, and the approximation
of P by P (ω) which is related to the discretization of the continuous model. The
contribution of each becomes clear when the mean square error (MSE) is expanded,

MSE(P̂MC) = E
[(
P̂MC − E(P )

)2]
= E

[(
P̂MC − E(P̂MC) + E(P̂MC)− E(P )

)2]
= E

[(
P̂MC − E(P̂MC)

)2]
+
[
E(P̂MC)− E(P )

]2
= V(P̂MC) +

[
E(P̂MC)− E(P )

]2
=

V(P (ω))
N

+ (E[P (ω)− P ])2 . (4.3)
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Hence the first term in the MSE is the variance of the Monte Carlo estimator which
represents the sampling error. The second term is the square of the error in the mean
between the samples and the exact value. From this it is apparent the root mean
square error is O(1/

√
N). This means the computational cost can be very high for a

given accuracy, especially when each sample P (ω) requires an approximate solution,
or the computation of many time steps.

Several approaches have been considered to address the high computational cost.
One class of methods is called the control variate approach which reduce the variance
using prior knowledge such as the exact solution of a value correlated to P . Multi-
level Monte Carlo is a method which constructs its own control variate in the process
by simulating at a coarse and fine level of time steps simultaneously. Before Monte
Carlo can be used, the continuous model in question must be discretized.

4.1 Simulation of the Heston model

For the valuation of inflation caps/floors using simulation, a numerical discretiza-
tion scheme is required. Since the stochastic model is continuous it cannot be used
directly and needs to be approximated. For the Heston model in particular much
attention has been devoted to constructing efficient simulation methods. Consider
an arbitrary set of discrete times T = {ti}Mi=1. Now consider the problem of gen-
erating random paths of (I(t), V (t)) for all t ∈ T . The interest lies in generating
random variables (I(t+△t), V (t+△t)) conditional on (I(t), V (t)), with an arbitrary
time step △t. By repeating the generation of these random variables a full path is
produced (I(t), V (t))t∈T . This is notably required for path-dependent options where
the payoff depends on multiple values of the inflation index over time. Throughout
this thesis, approximations of I(t) and V (t) are denoted by Î(t) and V̂ (t).

4.1.1 Euler discretization

A general and well studied approach to simulate the Heston model is using the
Euler discretization scheme. Applying the Euler scheme to the Heston model with
constant nominal and real interest rates results in

Î(t+△t) = I(t) + (rN − rR)I(t)△t+ I(t)
√
V (t)△W I(t), (4.4)

V̂ (t+△t) = V (t) + α(V̄ − V (t))△t+ σV
√
V (t)△W V (t). (4.5)

Using this scheme for the variance process leads to a positive probability of the
variance becoming negative,

P(V̂ (t+△t) < 0|V̂ (t) > 0) = 1− Φ

(1− α△t)V̂ (t) + αV̄△t

σV

√
V̂△t

 . (4.6)

This means the scheme can break down since negative values appear in the square
root term, especially when the Feller condition 2αθ > σV is not satisfied so that a
high probability mass of the variance is concentrated around the boundary. Lord et
al.[34] discuss several methods to approach this issue. They recommend combining
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several fixes into a single framework called the full truncated (FT) scheme. For the
variance process this is given by,

V̂ (t+△t) = max((V̂ (t) + α(V̄ − ((V̂ (t))+)△t+ σV

√
(V̂ (t))+△WV (t)), 0), (4.7)

guaranteeing the scheme cannot break down due to taking the square root of a
negative value. However, even when the Feller condition is fulfilled this scheme still
introduces bias due to the correction for negative values.

Since the log-inflation index is log-normally distributed, usually the log-normal Hes-
ton model is preferred for numerical practice. This results in the following simulation
for the inflation index,

Î(t+△t) = Î(t)e(rN−rR− 1
2
V̂ (t))△t+

√
V (t)△W I(t) (4.8)

The correlated Brownian motions can be implemented using Cholesky decomposi-
tion.

4.1.2 Exact simulation

An alternative popular approach for simulating the Heston model is using exact
simulation, first introduced by Broady and Kaya [9]. They use the property that
the variance process at time t+△t conditioned on time t, 0 < △t, follows a scaled
noncentral chi-square distribution, a property which was first observed by Cox et al.
[15],

Vt+△t
d
=
σ2
V (1− e−α(t−u)

4α
χ2
d

(
4αe−α(t−u)

σ2
V (1− e−α(t−u))

Vt

)
, (4.9)

where χ2
d(λ) denotes a noncentral chi-squared random variable with d := 4V̄ α

σ2
V

and
non-centrality parameter λ.

For simulation purposes, two representations of the noncentral χ2
d(λ) distribution

are mentioned which can be used:

χ2
d(λ)

d
=

{
(Z +

√
λ)2 + χ2

d−1 for d > 1,

χ2
d+2N for d > 0,

(4.10)

where Z ∼ N(0, 1), χ2
v is an ordinary chi-squared distribution with v degrees of

freedom, and N is Poisson distributed with mean µ := 1
2
λ. In most practical appli-

cations in finance d << 1 so one is forced to work with the second representation.

A bias-free simulation scheme for the inflation index is obtained by using a different
representation of (4.5) and (4.8). The value of the inflation at time t + △t, given
the value Î(t) and the sampled V̂ (t), can be written as

Î(t+△t) = Î(t) exp

(
(rn − rr)△t−

1

2

ˆ t+△t

t

V̂ (s)ds+ ρ

ˆ t+△t

t

√
V̂ (s)dW V (s)

+
√
1− ρ2

ˆ t+△t

t

√
V̂ (s)dW 2(s)

)
.

(4.11)
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where dW V (t) and dW 2(t) are independent Brownian motions and the Cholesky
decomposition dW I(t) := ρdW V (t)+

√
1− ρ2dW 2(t) is used to represent the corre-

lated Brownian motion.

Furthermore, by integrating the SDE for the variance process (4.5) and rearranging,
ˆ t+△t

t

√
V (s)dW V (s) =

1

σ

(
V (t+△t)− V (t)− αV̄△t+ α

ˆ t+△t

t

V (s)ds

)
,

(4.12)
which when substituting into equation (4.11) leads to

Î(t+△t) =Î(t) exp
(
(rn − rr)△t−

1

2

ˆ t+△t

t

V̂ (s)ds

+
ρ

σV

(
V̂ (t+△t)− V̂ (t)− αV̄△t+ α

ˆ t+△t

t

V̂ (s)ds

)
+
√
1− ρ2

ˆ t+△t

t

√
V̂ (s)dW 2(s)

)
d
=Î(t) exp

(
(rn − rr)△t−

1

2

ˆ t+△t

t

V̂ (s)ds

+
ρ

σV

(
V̂ (t+△t)− V̂ (t)− αV̄△t+ α

ˆ t+△t

t

V̂ (s)ds

)

+
√
1− ρ2

√ˆ t+△t

t

V̂ (s)dsN

 .

(4.13)

where N is a standard normal variable. The final step is due to V being independent

ofW 2, which means given
´ t+△t

t
V (s)ds,

´ t+△t

t

√
V̂ (s)dW 2(s) is normally distributed

with mean 0 and variance
´ t+△t

t
V (s)ds. Exact simulation of the Heston model

therefore comes down to

1. Sampling V (t+△t) using its distributional properties (4.10).

2. Sampling the integrated variance process
´ t+△t

t
V (s)ds conditional on V (t) and

V (t+△t).

Broadie and Kaya [9] suggest sampling V (t + △t) using an acceptance and rejec-
tion method to generate gamma variates. They then sample the integrated variance
process by deriving the characteristic function of its distribution and numerically
inverting it using a root-finding procedure. This requires a time-consuming iterative
Fourier inversion method because the characteristic function involves Bessel func-
tions with complex arguments. While this is theoretically an exact procedure, all
the steps combined require immense computational effort and implementation has
to be done with care due to the involved procedures. Especially for the purposes of
simulation of complete paths with many time steps and long maturities, it is com-
putationally inconvenient.
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A straightforward approximation for a sample of the conditional integrated variance
process is a simple drift interpolation. That is, the integral is approximated by

 t+△t

t

V (s)ds := (c1V (t) + c2V (t+△t))△t ≈
ˆ t+△t

t

V (s)ds. (4.14)

for some constants c1, c2. Due to the difficulty in sampling the integrated variance
process exactly, van Haastrecht [41] mentions that it is computationally more effi-
cient to use this approximation. Anderson also [1] uses this as an alternative to the
Fourier methods. Using c1 = c2 =

1
2

corresponds to the trapezoidal method, which is
used by Zheng [44] with the purpose of applying the multilevel Monte Carlo method
discussed in the next chapter.

4.1.3 NCI scheme

For the Broadie and Kaya scheme in the previous section, the sampling of the non-
central χ2

d(λ) distribution is done by first conditioning on a Poisson variate followed
by consecutively generating a sample from a chi-squared or gamma distribution
(χ2

v
d
= Gamma(v

2
, 2)). Broadie and Kaya suggest the use of an acceptance and rejec-

tion method to generate gamma variates. Van Haastrecht and Pelsser [41] mention
this limits the practical use of their scheme because the number of samples depends
on the specific model parameters. They suggest what is now considered an "almost
exact" scheme as an alternative, where almost exact indicates any desired accuracy
can be achieved, and the effect of the time step size on the approximation error is
negligible.

Let Qmax be a positive integer, Q := {0, 1, 2, . . . , Qmax} be a set of Poisson values,
and U := {0, . . . , 1− δ} be an equidistant grid with δ < 10−15 (the reason for this is
that the quantile function evaluated in 1 is infinity). The NCI method starts with
a precomputation of the inverse of the chi-square distributions on this grid, i.e.

H−1
Q (U) := G−1

χ2
d+2Q

(U), for all Q ∈ Q, U ∈ U . (4.15)

Remember that the variance process V follows equation (4.9). The method continues
by generating one sample Q from the Poisson distribution with mean λ

2
, and another

sample U1 from the uniform distribution on (0, 1). A sample of V (t + △t) is then
generated using an interpolation of the precomputed grid,

F−1
Q (U) :=

{
C0J(U), for Q ≤ Qmax

C0F
−1
χ2
d+2Q

(U) for Q > Qmax
(4.16)

where J is an interpolation rule based on the precomputed values H−1
Q (·), and

F−1
χ2
d+2Q

(·) represents the unlikely but possible event the Poisson sample Q > Qmax. In

the latter case F−1
Q (U) is generated using other methods, such as generating gamma

variates. Using representation (4.10) the sample for V (t + △t) can be calculated.
Van Haastrecht and Pelsser [41] suggest two interpolation rules for J , linear inter-
polation which is fast to execute, and monotone cubic Hermite spline which might
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require less points to be cached for the same accuracy. Because of its simplicity the
results in this thesis use the former. Additionally, for high precision Qmax is set to
40, and |U| to 10000.

4.1.4 QE scheme

As an approximation to sampling from the noncentral chi-squared distribution, An-
derson [1] suggests drawing from a related distribution and moment matching with
the first two moments of the noncentral chi-squared distribution. The choice of
distribution is decided in two parts.

1. For a moderate noncentrality parameter, Anderson states that the noncentral
chi-squared distribution can be represented by a power function applied to a
Gaussian variable. For sufficiently high values of V (t) a sample of V (t +△t)
can be generated by

V (t+△t) = a(b+ Z)2, (4.17)

where Z is a standard normal variable, and a and b are constants.

2. For sufficiently low values of V (t), the density of V (t+△t) can be approximated
by

P (V (t+△t) ∈ [x, x+ dx]) ≈ (pδ(0) + β(1− p)e−βx)dx.x ≥ 0, (4.18)

where δ is the Dirac delta function, and p and β are non negative constants.
Sampling from this distribution is done by inverting the distribution func-
tion. The distribution function can be obtained by integrating the probability
density function and is given by:

L−1(u) =

{
0 for 0 ≤ u ≤ p
1
β
log
(
1−p
1−u

)
for p < u ≤ 1

(4.19)

The values of the constants a, b, p and β are determined by moment-matching. What
remains is defining a rule that states when to switch between using the first method
and the second. Anderson bases the rule on the value of ψ = s2

m2 where m is the
conditional mean and s2 the conditional variance of the variance process, which are
given by

m := V̄ + (V (t)− V̄ )e−α△t, (4.20)

s2 :=
V (t)σV e

−α△t

α
(1− e−α△t) +

V̄ σ2
V

2α
(1− e−α△t)2. (4.21)

It can be shown that for ψ ≤ 2, the quadratic scheme (4.17) can be moment matched
with the exact distribution, and for ψ ≥ 1 the exponential scheme (4.19) can be
moment matched. Thus, a value ψc ∈ [1, 2] can be chosen where (4.17) is used if
ψ ≤ ψc and (4.19) when ψ ≥ ψc. Anderson notes that the exact choice of ψc does
not have a major impact on the quality of the simulation scheme and suggests using
ψc = 1.5.

29



Moment-matching the constants a, b, p and β results in the following.

For ψ ≤ 2

b2 =
2

ψ
− 1 +

√
2

ψ

√
2

ψ
− 1 (4.22)

a =
m

1 + b2
(4.23)

For ψ ≥ 1,

p =
ψ − 1

ψ + 1
(4.24)

β =
1− p

m
=

2

m(ψ + 1)
(4.25)

As a result, the QE algorithm is as follows

1. Given V(t), calculate m, s2 and ψ = m2

s2
.

2. If ψ ≤ ψc:

• Compute a and b.

• Generate a sample Z from the standard normal distribution.

• Set V (t+△t) = a(b+ Z)2.

3. If ψ > ψc:

• Compute β and p.

• Generate a uniform random number U .

• Set V (t+△t) = L−1(U).

This is the extent of the simulation schemes considered for the variance process
in this thesis. An additional moment matching scheme is proposed by Anderson
[1] called the Truncated Gaussian scheme and van Haastrecht [41] also proposed a
combination of the QE and NCI schemes. Furthermore, martingale corrections are
also discussed, since a discretization scheme may not always satisfy the martingale
assumptions. Both authors state the practical relevance of a martingale correction is
often minor and trying to implementing this may not result in more accurate option
prices for the same computation time. This could be an interesting point of further
research, however, it is not considered for the results of this thesis.

4.2 Simulation of the interest rates

So far the simulation schemes have involved constant interest rates due to the ap-
plication to the Heston model. For the Heston Hull-White model, the interest rates
also have distributional properties which enable exact simulation. Assuming the
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nominal interest rate has Hull-White dynamics, following Brigo and Mercurio [7,
p.73] and Section 3.2, using the integrating factor results in

rn(t) = rn(s)e
−an(t−s) +

ˆ t

s

e−an(t−u)θ(u)du+ σn

ˆ t

s

e−an(t−u)dW rn(u), (4.26)

= rn(s)e
−an(t−s) + αn(t)− αn(s)e

−an(t−s) + σn

ˆ t

s

e−an(t−u)dW rn(u),(4.27)

where s < t and

αn(t) = fn(0, t) +
σ2
n

2a2n
(1− e−ant)2. (4.28)

Under the nominal risk-neutral measure, the real interest rate similarly satisfies,

rr(t) = rr(s)e
−ar(t−s) +

ˆ t

s

e−ar(t−u)θ(u)du+ σr

ˆ t

s

e−ar(t−u)dW rn(u)

−
ˆ t

s

e−ar(t−u)ρI,rσr
√
V (u)du.

(4.29)

By approximating the integrated square root variance with the trapezoidal rule
described in Section 4.1.2,

 t

s

e−ar(t−u)
√
V (u)du :=

√
V (t) + e−ar(t−s)

√
V (s)

2
(t− s), (4.30)

the real interest rate at time t can be written as:

rr(t) = rr(s)e
−ar(t−s) + α(t)− α(s)e−ar(t−s) + σr

ˆ t

s

e−ar(t−u)dW rr(u)

− ρI,rσr

√
V (t) + e−ar(t−s)

√
V (s)

2
(t− s).

(4.31)

Therefore, using that a deterministic integrand with respect to a Wiener process
is normally distributed, rn(t) and rr(t) conditional on Fs and V (t) are normally
distributed. The means and variances are given respectively by,

E(rn(t)|Fs) = rn(s)e
−an(t−s) + αn(t)− αn(s)e

−an(t−s),

E(rr(t)|Fs) = rr(s)e
−ar(t−s) + αr(t)− αr(s)e

−ar(t−s)

− ρI,rσr

√
V (t) + e−ar(t−s)

√
V (s)

2
(t− s),

V(rn(t))|Fs) =
σ2
n

2an

(
1− e−2an(t−s)

)
,

V(rr(t))|Fs) =
σ2
r

2ar

(
1− e−2ar(t−s)

)
.

(4.32)

From here a sample of the interest rates conditional on rn(t), rr(t) can be obtained
by generating a sample from the correlated standard normal distributions and com-
puting,

r̂n(t+△t) = E(rn(t)|Ft) +
√

V(rn(t))|Fs)Zn, (4.33)
r̂r(t+△t) = E(rr(t)|Ft) +

√
V(rr(t))|Fs)Zr. (4.34)
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Singor et al. [43] briefly mention the use of exact simulation methods for the variance
and the interest rate. Since multiple methods exist it is unclear how the integrated
square root variance term is sampled or approximated. Here, for simplicity, the
integrated term is approximated using the drift interpolation used in the previous
section. Exact simulation of the real interest rate may be possible but is left for
future studies.

4.3 Multilevel Monte Carlo (MLMC)

The multilevel Monte Carlo (MLMC) method was introduced by Giles [23] as a vari-
ance reduction technique for the standard Monte Carlo method. Given a sequence
P0, . . . , PL−1 which approximates PL with increasing accuracy and cost, then the
expected value E(P̂L) can be written as

E(P̂L) = E(P̂0) +
L∑
l=1

E(P̂ℓ − P̂ℓ−1), (4.35)

where each expectation is estimated independently. As a result we can use the
following unbiased estimator for E(P̂L),

1

N0

N0∑
i=1

P 0,i
0 +

L∑
l=1

[
1

Nℓ

Nℓ∑
i=1

(P ℓ,i
l − P ℓ,i

ℓ−1)

]
, (4.36)

where Nℓ is the number of samples at each level, and the superscript (ℓ, i) indicates
the i′th independent sample at each level.

This is the general MLMC method in which the output E(PL) corresponds to the
quantity of interest. However, as mentioned by Giles, in many applications involving
the simulation of SDEs, the output Pℓ at level ℓ is an approximation to the random
variable P , which cannot be simulated exactly. Let Y be the multilevel estimator

Y =
L∑
l=0

Yℓ (4.37)

where Yℓ are the estimators for each level

Yℓ =
1

Nℓ

Nℓ∑
i=1

(P ℓ,i
ℓ − P ℓ,i

ℓ−1), (4.38)

with P−1 ≡ 0 making Y0 a standard Monte Carlo estimator. Because the expecta-
tions E(Yℓ) are estimated independently, this results in

E[Y ] = E[PL], (4.39)

V[Y ] =
L∑
l=0

Vℓ
Nℓ

, (4.40)

(4.41)
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where V[·] is the variance and Vℓ defined as

Vℓ ≡ V[Pℓ − Pℓ−1] (4.42)

This shows Y is an approximation to E(P ). Expanding the mean square error as in
equation (4.3) results in

MSE(Y ) := E[(Y − E[P ])2] (4.43)
= V[Y ] + (E[Y ]− E[P ])2, (4.44)

=
L∑
l=0

Vℓ
Nℓ

+ (E[Y ]− E[P ])2. (4.45)

Just as in the standard Monte Carlo case, the MSE consists of discretization error,
which is exactly the same, and the sampling error. To achieve a mean square error
of ϵ2 both terms have to be less than ϵ2/2. Intuitively, the computational cost of
MLMC should be cheaper than standard Monte Carlo because of the following:

• If Y converges to E(P ) in mean square then V(Yℓ) → 0 as ℓ → ∞, indicating
fewer samples are required to estimate E(Y ) as the levels become finer.

• The coarse level ℓ = 0 can be kept fixed for all ϵ so the cost per sample does
not increase as ϵ→ 0.

The computational cost C of the estimator is

C(Y ) =
L∑

ℓ=0

NℓCℓ, (4.46)

where Cℓ = C(Yℓ) represents the cost of a sample of Yℓ. The following theorem
which is a generalization of the theorem in Giles [23] presents an upper bound for
C. The proof is provided by Cliffe et al. [14].

Theorem 1. Let P denote a function of the solution of the stochastic differential
equation for a given Brownian path, and let P̂ℓ be the approximation corresponding
to a numerical discretization with time step hℓ = M−lT . If there exist independent
estimators Yℓ based on Nℓ Monte Carlo samples, each with expected cost Cℓ and
variance Vℓ, and positive constants α, β, c1, c2, c3 such that α ≥ 1

2
min{β, γ} and

1. E(P̂ℓ − P ) ≤ c1h
α
ℓ

2. E(Yℓ) =

{
E(P̂0), l = 0

E(P̂ℓ − P̂ℓ−1), l > 0

3. V(Yℓ) ≤ c2N
−1
ℓ hβℓ

4. Cℓ ≤ c3Nℓh
γ
ℓ ,
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then there exists a positive constant c4 such that for any ϵ < e−1 there are values L
and Nℓ for which the multilevel estimator (4.37) has a bounded MSE

MSE = E[(Y − E(P ))2] < ϵ2 (4.47)

with a computational complexity C bounded by

C ≤


c4ϵ

−2, β > γ

c4ϵ
−2(ln ϵ)2, β = γ

c4ϵ
−2−(1−β)/α, β < γ.

(4.48)

Proof. See appendix A.1.

In the MLMC algorithm the values of L and Nℓ can be calculated adaptively. If C0

and V0 are the cost and variance of one sample of P0, and Cℓ and Vℓ the cost and
variance of one sample of Pℓ−Pℓ−1, then the total cost and variance of the multilevel
estimator are

∑L
ℓ=0NℓCℓ and

∑L
ℓ=0

Vℓ

Nℓ
respectively. For a fixed variance, the cost is

minimized by choosing Nℓ to minimize

L∑
ℓ=0

(
NℓCℓ + µ2 Vℓ

Nℓ

)
(4.49)

for some value µ2 known as the Lagrange multiplier. This results in Nℓ = µ
√
Vℓ/Cℓ.

To obtain the variance 1
2
ϵ2 then requires µ = 1

ϵ2

∑L
ℓ=0

√
VℓCℓ which results in

Nℓ =

⌈
2

ϵ2

√
Vℓhℓ

(
L∑

ℓ=0

√
Vℓ
hℓ

)⌉
. (4.50)

The MLMC algorithm calculates the optimal value Nℓ adaptively using the (unbi-
ased) estimates for the variances from the simulation, and the number of levels L is
increased until a MSE less than ϵ2 is achieved. The test for convergence to achieve
this MSE tries to make sure that |E[PL − P ]| < ϵ√

2
. If E[Pℓ − Pℓ−1] ∝ hαl as the

theorem suggests, then the remaining error is

E[PL − P ] =
∞∑

ℓ=L+1

E[Pℓ − Pℓ−1] =
E[PL − PL−1]

Mα − 1
, (4.51)

which means a convergence test is

|E[PL − PL−1]|
Mα − 1

<
ϵ√
2

(4.52)

In Giles original paper[23] a short analysis about the optimal value of M is provided.
For the numerical results in this thesis M is set to 4 as suggested.

Combining the ideas from this section, the MLMC algorithm given in algorithm 1
is implemented using the following algorithm.
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Algorithm 1 Multilevel Monte Carlo algorithm
Start with L = 2.
Construct an initial Nl = 10000 samples of Pℓ and Pℓ−1 for ℓ = 0, 1, 2.
Calculate Yℓ from equation (4.37).
Estimate V̂ℓ .
Calculate the optimal number of samples Nl using equation (4.50).
while extra samples required do

Compute extra samples for each level until the optimal number is reached.
Update V̂ℓ and Nl.
Test for convergence using (4.52).
If not converged, set L := L+ 1.

end while

4.4 Convergence properties

As mentioned at the start of this chapter, it is important to distinguish between
the convergence of an unbiased estimator and of a discretization scheme since both
contribute to the convergence of the MSE. The importance of both is shown in
Theorem 1 in the form of parameters β and α. In practice, for condition 1. the
value of α is often established from previous research into the weak convergence of
a discretization scheme, and also might depend on the value M .

The main challenge lies in determining the correct value for β, and whether it is
possible to develop estimators with a larger value of β. For options with bounded
and Lipschitz continuous payoffs often the order of convergence of the variance of
the estimator can be derived. In the original paper, Giles [23] shows that for the
Euler discretization scheme applied to geometric Brownian motion with M = 4,
α = β = 2. However, in the case of the Heston model the volatility does not satisfy
a global Lipschitz condition and at the time of this paper no theory existed to predict
the order of convergence. Only recently, Mickel and Neuenkirch [39] showed with the
FT scheme applied to the Heston model that when the Feller condition is satisfied,
α = 1 and when it is not satisfied α = 1 − a with a arbitrarily small. Zheng [44]
proves that for the path-dependent exact simulation scheme that β = 1 − ϵ for all
parameters of the Heston model.

The theorems and proofs on (weak) convergence of the simulation schemes are rel-
atively complex and so for the sake of brevity are not discussed in detail in this
thesis.

4.5 MLMC for path-dependent options using the Heston model

To capture the full flexibility of possible option payoffs the full sample paths must
be simulated. The key step in using MLMC is to establish a connection between the
estimated inflation index at the coarse level and the estimated inflation index at the
fine level. This is achieved by specifying the same Brownian path for the coarse and
fine approximation at each level.
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Consider the Heston model with constant interest rates. Let Îf (t) and V̂ f (t), t = 0,
△t, 2△t, . . . , T be an approximation of the path of I and V respectively, at the
fine level with step size △t. Let Îc(t) and V̂ c(t), t = 0, M△t, 2M△t, . . . , T be
an approximation of I and V respectively, at the coarse level with step size M△t.
Additionally, Îc(0) = Îf (0) = I(0) and V̂ f (0) = V̂ c(0) = V (0). Using the full
truncated Euler discretization scheme for the log-normal Heston model (see Section
4.1.1) results in the following for the fine level

Îf (t+ i△t) =Î(t+ (i− 1)△t) exp
[
(rN − rR − 1

2
V̂ (t+ (i− 1)△t))△t

+

√
V̂ (t+ (i− 1)△t)△tN I

i

] (4.53)

V̂ f (t+ i△t) =
[
V̂ (t+ (i− 1)△t)) + α(V̄ − (V̂ (t+ (i− 1)△t))+)△t

+σV

√
(V̂ (t+ (i− 1)△t))+

√
△tNV

i

]+ (4.54)

where i = 1, . . . ,M , (·)+ = max{· , 0} and N I
i , N

V
j are standard normal variables

which are correlated for i = j and independent for i ̸= j. For the coarse level,

Îc(t+M△t) = Î(t) exp

[
(rn − rr −

1

2
V̂ (t))M△t+

√
V̂ (t)M△tNI

]
, (4.55)

V̂ c(t+M△t) =
[
V̂ (t) + α(V̄ − (V̂ (t)+)M△t+ σV

√
(V̂ (t))+

√
M△tNV

]+
, (4.56)

where Nk := 1√
M
(Nk

1 +Nk
2 + · · · +Nk

M), k ∈ {I, V } establishes the same Brownian
path between the fine and coarse level.

As discussed in Section 4.1.1 this structure is particularly sensitive to the parameters
of the Heston model. The unrealistic dynamics produced, especially when the Feller
condition is not satisfied, can cause poor convergence in standard Monte Carlo. Even
though the variance is reduced using MLMC, the bias from the discretization is still
present and MLMC is not designed to improve this.

One way to avoid this is to use the exact simulation schemes presented previously.
That is, by simulating the variance exactly and using the trapezoidal scheme to
approximate the integrated variance process. This results in the following schemes
for the coarse and the fine level in MLMC,

Îf (t+ i△t) =Î(t+ (i− 1)△t) exp
[(
rn − rr −

ραV̄

σV

)
△t

+

(
ρα

σV
− 1

2

)
V̂ (t+ (i− 1)△t) + V (t+ i△t)

2
△t

+
ρ

σV

(
V̂ (t+ i△t)− V̂ (t+ (i− 1)△t)

)
+
√

1− ρ2

√
V̂ (t+ (i− 1)△t) + V̂ (t+ i△t)

2
△tNi


(4.57)
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Îc(t+M△t) =Î(t) exp
[(
rn − rr −

ραV̄

σV

)
M△t

+

(
ρα

σV
− 1

2

)
V̂ (t+M△t) + V̂ (t)

2
M△t

+
ρ

σV

(
V̂ (t+M△t)− V̂ (t)

)
+
√

1− ρ2

√
V̂ (t+M△t) + V̂ (t)

2
M△tN


(4.58)

Since the variance process is now simulated exactly, only a single Brownian path
needs to be specified, N := 1√

M
(N1 +N2 + · · ·+NM).

All the ingredients are now available to apply multilevel Monte Carlo to the Hes-
ton model. By specifying a simulation scheme for the inflation index and variance
process, deciding how to deal with the integrated variance, and implementing the
Brownian paths, MLMC can be compared with standard Monte Carlo simulation.
Furthermore, MLMC can in theory be implemented with any of the exact schemes
described in this chapter.
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5 Numerical experiments
To test the simulation schemes, the pricing of European call options on the inflation
index is considered for the Heston model. Since inflation caps using the Heston
model can be priced analytically using the COS method, this is a standard test case
on which to benchmark the implemented schemes. Firstly, the Euler, Euler-FT, NCI
and QE schemes are compared. Based on the results from this, multilevel Monte
Carlo is compared to standard Monte Carlo for the Heston model.

All the experiments are conducted in Python, the code can be accessed using the
link below. Note that the implementation for the Heston Hull-White class is still a
work in progress.

https://github.com/Wobbuffet334/MLMC-

5.1 Valuing an inflation cap using the Heston model

To test the simulation schemes, the value of an inflation cap (see, Equation (2.5))
is estimated and compared with the exact value. For the parameter settings of the
Heston model, Anderson [1] provides a test case designed for long-dated foreign
exchange options. This parameter set is given in Table 1.

Table 1: Heston model parameters for long dated foreign exchange options.

T r I(0) V (0) α V̄ σV ρ
10 0 100 0.04 0.5 0.04 1.0 −0.9

The value 2αV̄
σV

= 0.04 ≪ 1 shows the Feller condition is not satisfied by a large
margin. Having a high volatility of the variance process combined with a low mean-
reversion means the variance process has a high probability of being pushed towards
zero. This means for this parameter setting, some simulation schemes will have
difficulty obtaining exact prices especially for large time steps.

For an inflation cap with maturity T and strike K, the exact price is denoted by P
and the price calculated using Monte Carlo is denoted by P̂ and calculated using
equation (4.1). Since the estimated values are in general not equal to the theoreti-
cally exact value, the difference between the estimation and the exact value, defined
as the bias, is

b := P − P̂ . (5.1)

For the different simulation schemes the bias is estimated for several values of the
time step, strike K = 100 and 105 samples. The Exact-Gamma scheme refers to
sampling using the noncentral chi-squared distribution using the built in function
from the Scipy package, which samples directly from the gamma distribution. The
results are provided in Table 2. Unsurprisingly the standard Euler method with
the variance forced to zero when it becomes negative, exhibits terrible performance
with a significant bias even at 4096 time steps. When the number of time steps
is 1 the bias is more reasonable than for 4 time steps because the correction for
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negative variances does not take place. For reasonable sizes of the time step, the
exact schemes produce substantially lower biases than the Euler-FT scheme.

Another observation is the high computation times for the exact QE and NCI
schemes. In the literature they are considered state of the art when it comes to
combining speed and accuracy. However, in the implementation for this thesis, the
python package for sampling from the noncentral chi-squared distribution is signif-
icantly faster. This is likely due to the code currently running the QE and NCI
algorithms element-wise.

Table 2: Estimated inflation cap prices biases b for different simulation schemes and
time steps. Number of samples was 105. The bias is the left value, the standard
error is given in the parenthesis, and the computation time (in seconds) is on the
right hand side of the standard error.

No. of time steps Euler Euler-FT Exact-Gamma Exact-QE Exact-NCI
1 −11.323(±0.171) 0.01 −11.616(±0.173) 0.50 3.827(±0.046) 0.44 3.327(±0.046) 1.14 3.853(±0.046) 2.21
4 −502.933(±34.812) 0.03 −11.844(±0.172 0.03 −0.308(±0.042) 0.063 −1.701(±0.041) 2.43 −0.313(±0.042) 8.42
16 −39.867(±0.393 0.18 −4.491(±0.073) 0.21 −0.111(±0.042) 0.29 −0.488(±0.042) 9.64 −0.075(±0.042) 33.92
64 −13.420(±0.089) 0.70 −1.344(±0.0489) 0.77 0.055(±0.042) 1.22 0.044(±0.042) 39.54 0.009(±0.042) 134.02
256 −4.254(±0.055) 2.97 −0.303(±0.043) 3.08 −0.001(±0.042) 4.64 0.029(±0.042) 157.31
1024 −1.147(±0.045) 13.73 −0.125(±0.042) 13.39 0.008(±0.042) 18.40 −0.060(±0.042) 633.51
4096 −0.336(±0.0432) 212.27 0.025(±0.042) 218.26 0.019(±0.042) 190.85 0.044(±0.042) 2681.31

5.2 MLMC vs standard Monte Carlo using the Heston model

Another set of parameters, used specifically for inflation caps is suggested by Singor
et. al. [43] and shown in Table 3.

Table 3: Heston model parameters for short maturity inflation caps.

T r I(0) V (0) α V̄ σV ρ
1 0.05 100 0.04 0.3 0.04 0.6 −0.7

This is again an extreme case where the Feller condition (2αV̄
σV

> 1) is not satisfied.
Applying the exact simulation method with the drift interpolation scheme described
in Section 4.1.2, the MLMC mean and variance V(P̂ℓ − P̂ℓ−1) are plotted in Figure
5.2 to observe the convergence to zero as the level ℓ increases. P̂ℓ is the approximated
price of a cap on the inflation index with step sizeM−ℓ with M set to 4. According to
Theorem 1, the logarithm base M of the variance should approximately correspond
to a slope of −1. This is indeed the case verifying Vℓ is approximately O(h).
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Figure 5.1: Comparison of the expectation and variance between the standard Monte
Carlo estimator (blue) and the MLMC estimator (yellow) with ϵ = 0.005.

The computational cost of MLMC is defined as the total number of time steps
performed on all levels,

CMLMC = N0 +
L∑

ℓ=1

Nℓ(M
ℓ +M ℓ−1). (5.2)

where the term M ℓ +M ℓ−1 reflects that each sample at level ℓ > 0 requires one fine
path with M ℓ time steps, and one coarse path with M ℓ−1 time steps. For comparison
purposes the cost to carry out one time step is not required. The computational cost
is compared to the cost of the standard Monte Carlo method which is calculated as

CMC =
L∑

ℓ=0

NMC
ℓ M ℓ (5.3)

where NM
ℓ C = 2ϵ−2V(Pℓ) so that the variance of this estimator is also 1

2
ϵ2. Giles

mentions the summation over the levels corresponds to an application of the standard
Monte Carlo method on each level to enable the estimation of the error in order to
apply the same termination criterion as the multilevel method. It is also possible to
define CMC = NMC

L ML since this will be of a similar magnitude.

The number of samples and computation costs for the parameters mentioned pre-
viously are shown in Figure 5.2. The plot for the computational costs is ϵ2 against
ϵ because it is expected that ϵ2C is only weakly dependent on ϵ for the multilevel.
This is also visible in the figure. For the standard Monte Carlo method, theory sug-
gests that ϵ2C is proportional to the number of time steps on the finest level, which
is roughly proportional to 1/ϵ due to the weak convergence. This is also visible in
the figure because the number of levels for ϵ = 0.005 and ϵ = 0.01 is higher which
translates to the computation costs figure.

The computational savings from using MLMC compared to standard Monte Carlo
are significant, ranging from a factor of 10 to 50.
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Figure 5.2: Comparison of the optimal number of samples per level and computation
costs for different values of ϵ.

To test the longer maturity performance, MLMC is applied to the parameter setting
in Table 1 where the maturity is T = 10 years. Additionally, as a result from the
numerical results in the previous section, the time steps in the first level is set to
16 to ensure a reasonable initial estimate in the MLMC algorithm. In Table 5.2 the
difference between the estimated price and the exact price is compared against ϵ.
The resulting number of samples and computation costs are given in Figure 5.2. In
this case the savings in computation time range between a factor 3 and 10.

Table 4: Difference between MLMC prices and the exact price per MSE (ϵ). Exact
value is 13.085.

ϵ 0.1 0.05 0.02 0.01 0.005
b −0.0431 −0.0021 0.0078 −0.0088 −0.0040

Figure 5.3: Comparison of the optimal number of samples per level and computation
costs for different values of ϵ, with the parameter setting from Table 1
.
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6 Conclusion & Discussion
In this chapter the conclusions of the research carried out in this thesis are discussed.
In the last section some final thoughts and recommendations for future research are
discussed.

6.1 Conclusion

In this thesis the models and methods for pricing inflation-indexed derivatives were
analyzed. Particular attention was given to the challenges associated with finding
analytical solutions and the simulation techniques which are available as an alter-
native. This thesis is particularly interesting for financial institutions who deal with
inflation risk and require risk-neutral valuation of options on inflation.

To start with, the shortcomings of the well known Black-Scholes and Jarrow-Yildirim
frameworks where the volatility is deterministic are discussed. Addressing this, the
Heston model models the volatility of the inflation index as a Cox-Ingersoll-Ross
process while keeping the interest rates constant. The COS method provides a fast
method for calculating the exact solution of the price of a call option to the Heston
model using its characteristic function. Several extensions of the Heston model
involving stochastic interest rates, such as the Hull-White model, are also discussed.

Considering the complicated pricing and correlation structure using Heston Hull-
White, Monte Carlo simulation offers an alternative approach. The distributional
properties of the variance process leads to several exact simulation schemes which can
sample from the noncentral chi-squared distribution. Comparing the Euler schemes
with the exact simulation schemes, it is apparent that exact simulation using a drift
interpolation for the integrated variance process is the most accurate method.

One of the main obstacles to using Monte Carlo is the high computational cost
associated with its low convergence rate. Multilevel Monte Carlo (MLMC) uses
a sequence of estimators with increasing step-size to optimize the computational
cost around a large number of samples at a large time step, and a small number of
samples at a small time step. Applying the MLMC method to the Heston model with
constant interest rates simulating the variance exactly results in a marked decrease
in computation times. Compared to the standard Monte Carlo method a decrease up
to a factor of 50 was observed for a set of parameters where the Feller condition was
not satisfied. This makes MLMC a powerful tool for the path-dependent simulation
of inflation indexed-derivatives. However, it is reliant on the underlying simulation
scheme used

6.2 Discussion

Considering the complicated approximations required to derive analytical solutions,
Monte Carlo simulation is an appealing alternative. In Section 4.1 several simulation
schemes are discussed for the Heston model. Many papers have been devoted to the
exact simulation of the variance process using its distributional properties. However,
little discussion exists about the use of Monte Carlo for inflation-indexed derivatives.
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An open question remains whether simulation techniques can bridge the gap in
complexity between the complex multi factor models and the use of these models
by financial institutions. Currently the inflation-indexed products in the market are
limited in structure. American, Asian, lookback, barrier options, to name a few, are
not publicly available. Finding an exact pricing formula for such derivatives using
the Heston Hull-White model in the context of inflation may prove challenging if not
impossible. The same can be said when using other model dynamics, like including
jumps or seasonality in inflation, or a different model for the interest rates. Monte
Carlo simulation however, is much more flexible and can still be used in such cases.

Aside from the different payoff structures, it would be interesting to see the simula-
tion techniques found in this thesis applied to the LIBOR market models. Further-
more, a calibration to market data more recent than 12 years could not be found,
a brief summary of calibrations performed in the literature is provided in Appendix
A.2.

The next step for this research would be applying MLMC to the Heston Hull-White
model and comparing to the analytical solution found by using the characteristic
function in Section3.3.2. Currently the implemented algorithm does not converge as
expected when applying the results from Section 4.2 and Appendix A.3. Another
point of interest would be combining antithetic sampling and MLMC to further
reduce the variance of the estimator.
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A Appendix

A.1 Proof of Theorem 1

Proof. Recall that hℓ = 1
M
hℓ−1 for all ℓ = 1, . . . , L for some M ∈ N\{1}. Without

loss of generality, assume h0 = 1. If this is not the case simply scale the constants
c1, c2 and c3 accordingly.

Using the notation ⌈x⌉ to denote rounding up to the nearest integer, start with
choosing L to be

L = ⌈α−1 logM(
√
2c1ϵ

−1)⌉ < α−1 logM(
√
2c1ϵ

−1) + 1 (A.1)

so that
M−α ϵ√

2
< c1M

−αL ≤ ϵ√
2

(A.2)

and hence due to assumptions 1 and 2,(
E[P̂ℓ − P ]

)2
≤ 1

2
ϵ2 (A.3)

This 1
2
ϵ2 upper bound on the square of the bias error together with the 1

2
ϵ2 upper

bound on the variance of the estimator (proved later) produces an ϵ2 upper bound
on the mean squared error estimator.

Using the left side of equation (A.2) and the standard result for the geometric series,
the following inequality is obtained which will be used later

L∑
ℓ=0

h−γ
ℓ = h−γ

L

L∑
ℓ=0

M−ℓ <
M

M − 1
h−γ
L ≤ M2

M − 1
(
√
2c1)

γ/αϵ−γ/α. (A.4)

Now the different values of β are considered.

(a) If β = γ, set Nℓ = ⌈2ϵ−2(L+ 1)c2hℓ⌉ so that

V(Y ) =
L∑

ℓ=0

V(Yℓ) ≤
L∑

ℓ=0

c2N
−1
ℓ hℓ ≤

1

2
ϵ2, (A.5)

which is the required upper bound on the variance of the estimator. To bound the
computational complexity C, begin with an upper bound on L given by

L ≤ log ϵ−1|

α logM
+

log(
√
2c1T

α

α logM
+ 1 (A.6)

given that 1 < log ϵ−1 for ϵ < e−1, it follows that

L+ 1 ≤ c5 log ϵ
−1, (A.7)

where

c5 =
1

α logM
+max{0, log(

√
2c1T

α

α logM
+ 2}. (A.8)
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Hence, the computational complexity is bounded by

C ≤ c3

L∑
ℓ=0

Nℓh
−γ
ℓ ≤ c3

(
2ϵ−2c2(L+ 1)2 +

L∑
ℓ=0

h−γ
ℓ

)
. (A.9)

Using the upper bound for L+ 1 and inequality (A.4) it follows that

C ≤ c4ϵ
−2(log ϵ)2, (A.10)

where
c4 = 2c2c3c

2
5 + c3

M2

M − 1
(
√
2c1)

γ/α (A.11)

(b) For β > γ, setting

Nℓ = ⌈2ϵ−2T β−γc2(1−M−(β−γ)/2)−1h
(β+γ)/2
ℓ ⌉ (A.12)

using the standard result for geometric series,

L∑
ℓ=0

h
(β−γ)/2
ℓ = T (β−γ)/2

L∑
ℓ=0

(M−(β−γ)2)ℓ < T (β−γ)/2(1−M−(β−γ)2)−1, (A.13)

and hence a 1
2
ϵ2 upper bound on the variance of the estimator is obtained. Using

the Nℓ upper bound, the computational complexity is bounded by

C ≤ c3

(
2ϵ−2c2T

(β−γ)/2(1−M−(β−γ)2)−1

L∑
ℓ=0

h
(β−γ)/2
ℓ +

L∑
ℓ=0

h−γ
ℓ

)
. (A.14)

Using inequalities (A.13) and (A.4) gives C ≤ c4ϵ
−2, where

c4 = 2c2c3T
β−γ(1−M−(β−γ)2)−2 + c3

M2

M − 1
(
√
2c1)

γ/α (A.15)

(c) for β < γ, setting

Nℓ = ⌈2c2ϵ−2h
−(γ−β)/2
L (1−M−(γ−β)/2)h

(β+γ)/2
ℓ ⌉. (A.16)

Then
L∑

ℓ=0

V(Y ) <
1

2
ϵ2h

(γ−β)/2
L (1−M−(γ−β)/2)

L∑
ℓ=0

h
−(γ−β)/2
ℓ . (A.17)

Since

L∑
ℓ=0

h
−(γ−β)/2
ℓ = h

−(γ−β)/2
L

L∑
ℓ=0

(M−(γ−β)/2)ℓ < h
−(γ−β)/2
L (1−M−(γ−β)/2)−1, (A.18)

again an upper bound 1
2
ϵ2 is obtained for the variance of the estimator.
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Using the upper bound for Nℓ, the computational complexity is bounded by

C ≤ c3

(
2c2ϵ

−2h
−(γ−β)/2
L (1−M−(γ−β)/2)−1

) L∑
ℓ=0

h
−(γ−β)/2
ℓ +

L∑
ℓ=0

h−γ
ℓ . (A.19)

Using inequality (A.18) gives

h
−(γ−β)
L < (

√
2c1)

(γ−β)/αMγ−βϵ−(γ−β)/α. (A.20)

Combining the inequalities with inequality (A.4) results in

C ≤ c4ϵ
−2−(γ−β)/α, (A.21)

where

c4 = 2c2c3(
√
2c1)

(γ−β)/αMγ−β(1−M−(γ−β)/2))−2 + c3
M2

M − 1
(
√
2c1)

γ/α (A.22)

A.2 Calibrations performed in Literature

As part of any model the pricing methods described, contain unknown parameters
which must be calibrated using historical data and/or quoted market data. Cali-
bration is an optimization procedure that estimates the model parameters such that
the market prices are replicated by the model as closely as possible. This generally
consists of a least squares estimation like minΩ ||C−Ĉ|| where C is the market price,
Ĉ the model price, || · || some norm, and Ω the set of parameters. In this section
some of the performed calibrations are discussed.

For the LIBOR market model in Section 3.3.3, calibration is performed on caplet
prices, which are stripped from the cap prices by taking differences between consec-
utive maturities. The time 0 value of a Ti-forward CPI where Ti = i years, can be
obtained from the market quote S(Ti) of the corresponding zero-coupon inflation-
indexed swap by applying the relation Ii(0) = I(0)(1 + S(Ti))

i. Cap prices for
different strikes and maturities are provided in Table 1. The discount factors, zero
coupon swap rates and implied forward CPI’s are quoted in Table 1.

The model parameters to be calibrated are for maturity TM :

• Volatility parameters: σV , α, θ, V (0),

• Forward CPI’s volatility coefficients: σI
i , i = 1, . . . ,M ,

• Correlations between consecutive forward CPI’s: ρIi−1,i, i = 2, . . . ,M ,

• Correlations between forward CPI’s and the volatility ρI,Vi , i = 1, . . . ,M

To reduce the degrees of freedom the correlations between forward CPI’s are param-
eterized by a decreasing growth function.

ρIi,i−1 = 1− (1− ρ0)e
−λTi−2 , i = 2. . . . ,M (A.23)
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Table 5: Inflation-indexed Cap prices (in bps) for different strikes and maturities for
November 3, 2004 in the USD market. Source: ICAP. Taken from [36].

K
Ti -1.5% -1.0% -0.5% 0% 0.5%
1y 416.7 368.2 319.8 271.8 224.3
2y 822.4 727.6 633.3 540.1 448.7
3y 1212.7 1074.0 936.5 800.7 667.8
4y 1588.4 1408.0 1229.2 1052.8 880.5
5y 1952.9 1732.8 1514.6 1299.4 1089.1
6y 2288.2 2030.7 1775.6 1524.1 1278.3
7y 2612.4 2319.7 2029.8 1744.2 1465.2
8y 2911.5 2585.9 2263.6 1946.2 1636.5
9y 3197.2 2840.7 2488.0 2140.9 1802.5
10y 3467.7 3082.3 2701.1 2326.3 1961.1

Table 6: USD discount factors, Zero Coupon swap rates, and implied forward CPI’s.
November 3, 2004. Source: ICAP. Taken from [36].

Ti P (0, Ti) ZC rates Ii(0)
1y 0.97701 2.111% 194.94
2y 0.94982 2.188% 199.35
3y 0.91835 2.240% 204.03
4y 0.88433 2.278% 208.91
5y 0.84862 2.293% 213.82
6y 0.81179 2.300% 218.82
7y 0.77460 2.310% 224.00
8y 0.73785 2.320% 229.36
9y 0.70218 2.325% 234.78
10y 0.66773 2.335% 240.48

where λ > 0. As a result a total of 2M +5 parameters are calibrated by minimizing
the sum of squared differences. For short maturity and close to zero strike caplets
the modelled prices coincide very well with market prices from 2004, see Figure
A.1. However, increasing the maturity to beyond 3 years reduces the fitting quality
significantly which is highly undesirable.

In the case of a different volatility process for each forward CPI as in Section 3.3.4
sequences of caplets/floorlets with maturities of 1 year to 15 years were again derived
from cap/floor quotes. Bid/ask spreads for caps/floors on the HICP excluding to-
bacco index from September 2008 are quoted in Table 3. The large bid/ask spreads
indicate a lack of liquidity for the inspected derivatives. For maturities where caps
were not available the cap prices for known maturities were inverted to find the cor-
responding flat implied volatilities. The flat volatilities are then interpolated to find
cap prices for the missing maturities. This is a common technique in the interest
rate market because calibrating to YoY caplets over YoY caps decreases computation
time significantly since the iterative calculation is avoided.
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Figure A.1: Percentage errors after calibration of the LIBOR market model with
Heston dynamics. Caplet maturities are 1,2 and 3 years and strikes range from
−1.5% to 0.5%. Taken from [36].

From here two calibration tests are performed with the zero-drift approximation.
Firstly the correlations between inflation rates and between the inflation rates and
the interest rates, are assumed to be zero. A visually accurate fit is obtained,
however, it is noted that the assumption made is unrealistic. For the second test the
calibrations are assumed to follow a complicated structure involving idiosyncratic
coupling coefficients. How this structure works is stated in the appendix without
references making it unclear what the method entails. The resulting correlation
assumptions are

ρWi,j = e−λ|i−j|,

ρF,Wi,j =

∑1
k=1 5ci,kρ

W
k,j√

1 +
∑1

k,k′=1 5ci,kci,k′ρ
W
k,k

,

with
ci,j = ce−λc|i−j−1|,

where λ, λc, c > 0 are freely chosen.

The calibration results are shown in Figure A.2 where the model implied volatilities
are plotted together with the market data. While the volatilities are well modelled,
the lack of error analysis, reliably defined correlation structure, and liquid market
data makes the results hard to verify.
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Table 7: HICP-exT cap (C) and floor (F) bid/ask quotes (in bps) for different
maturities T in years and strikes K. Taken from [37].

option type F F F F C C C C
T / K -1% 0% 1% 2% 2.5% 3% 4% 5%
3 3/6 7/14 26/40 98/118 109/128 67/84 26/37 11/18
5 5/17 14/34 51/73 165/189 218/238 143/161 62/79 29/45
7 14/22 39/49 73/104 220/256 321/348 212/241 97/119 49/67
10 23/38 45/78 102/152 293/351 467/510 315/362 152/189 82/114
15 40/70 72/130 150/233 405/499 676/746 465/543 237/299 136/191
20 56/100 96/181 191/306 499/629 834/930 578/684 302/389 179/253
30 82/154 136/268 256/432 650/841 1047/1186 730/885 390/517 238/348

Figure A.2: Market and model implied volatilities for caplets/floorlets maturing in
3, 5, 7, 10, 15 years, correlated case. Taken from [37]

Lastly the Heston and Hull-White dynamics in Section 3.3.2 are considered. A
calibration procedure is proposed by Singor et al. [43] that is more involved than just
a least squares estimation. In their case with the market data split in pairs (T̄ , K̄)
where T̄ is the option maturity and K̄ the strike level, and using the Euclidean
norm, the function to be minimized is

min
Ω

( m∑
i=1

n∑
k=1

|C(T̄i, K̄)− Ĉ(T̄j, K̄j)|2
) 1

2

 . (A.24)

The authors note that the difference between market and model implied volatilities
could also be minimized. However this requires an additional numerical inversion
with every iteration step which is undesirable.
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Equation (A.24) is solved iteratively by sampling random starting points and us-
ing the local minimization Levenberg-Marquardt least-squares algorithm. This is
repeated until the best local minimum is found. It is worth mentioning that the
speed of calibration is not analyzed in any of the above examples despite the fast
valuation of options being a topic of interest.

First the correlation parameters between the inflation and nominal/real interest
rates ρI,n, ρI,r and ρn,r are estimated using historical data. Considering the past
rates are known exactly this seems only natural, however this method is not applied
in the previous calibration examples where some or all correlation parameters are
parameterized or assumed to be zero. The correlations between the interest rates and
the variance process ρr,V , and ρn,V are derived with a conditional sampling method,
while the correlation between the inflation and the variance process ρI,V is the only
correlation parameter estimated in the calibration process. Conditional sampling in
the literature is stated as restricting samples to a specific condition which makes the
method for obtaining these correlations quite vague.

The authors utilize another unique step is calibrating the mean-reversion and volatil-
ity parameters in the one-factor Hull-White interest rate model to options on the
interest rate. Conditional on the estimated interest rate parameters, the inflation
model is calibrated to inflation indexed caplets/floorlets. Since interest rate op-
tion data are much more liquid than inflation option data, this should be standard
practice when dealing with interest rate models.

Calibration is essential for accurately pricing inflation-indexed derivatives. This pro-
cess, as demonstrated through the various models, highlights significant challenges
such as fitting long-term maturities and handling complex correlation structures.
Different procedures were used which often lacked error analysis and were not com-
pared to other methods. This emphasizes the need for refinement of the calibration
procedure to increase model robustness and reliability for when companies and in-
vestors are interested in using them.

A.3 MLMC for the Heston Hull-White model

In the case of Hull-White dynamics for the interest rates the integrated interest is
no longer constant. That is, the integrated interest rate terms found in the inflation
index dynamics and payoff functions are not trivial. Using the trapezoidal rule in
both cases is the straightforward approach. Because of the path dependent structure,
the discount factor can be approximated with the composite trapezoidal rule because
the nominal interest rate is known at every time step,

ˆ T

0

rn(u)du ≈ T

n

(
rn(0)

2
+

Nsteps−1∑
k=1

(
r̂

(
k
T

n

))
+
r̂n(T )

2

)
. (A.25)

For the inflation index, approximating the integrated interest term with the trape-
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zoidal rule results in:

Î(t+△t) = Î(t) exp

( t+△t

t

(r̂N(s)− r̂R(s))ds−
1

2

ˆ t+△t

t

V̂ (s)ds

+
ρ

σV

(
V̂ (t+△t)− V̂ (t)− αV̄△t+ α

ˆ t+△t

t

V̂ (s)ds

)

+
√

1− ρ2

√ˆ t+△t

t

V̂ (s)dsN

 .

(A.26)

With these approximations the use of MLMC is similar to the Heston case with
constant interest rates. The only additional requirement is when simulating the
interest rates exactly, the Brownian path between the coarse level and the fine level
must be established in the same manner as for the inflation index.
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