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Abstract

In this paper two ways of modeling the secondary electron yields of an insula-
tor under electron irradiation, are discussed and coupled. The drift-diffusion-
reaction model is used to investigate the secondary yields and charging effects.

This paper is part of the BSc Applied Physics and BSc Applied Mathemat-
ics at the Delft University of Technology.
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Chapter 1

Introduction

At present, when someone wants to detect electrons (or a single electron), one
needs a photomultiplier tube (PMT) to do this. A PMT is typically a vacuum
glass tube with several dynodes and one anode inside. When a primary electron
falls on the PMT, the electron goes via the focusing electrode to the first dyn-
ode, which works as a electron multiplier. The second dynode is held at a higher
potential than the first, so the second dynode attracts the secondary electrons
from the first dynode. This process continues until the secondary electrons ar-
rive at the anode. Each dynode contributes about ∼ 5 secondary electrons for
each electron that falls on its surface. When the anode is for instance coupled to
an oscilloscope a clear peak in current can be distinguished. This peak occurs
about ∼ 50ns after the electron falls on the PMT.

The Imaging Physics department of the faculty of Applied Sciences at the TU
Delft is attempting to create a new measuring device for electrons. This device
utilizes the fact that disturbances in the charge densities in insulators do not
instantaneously even out (like in a metal). This means that when an electron
falls on the surface of a dielectric, a cascade of secondary electrons is created,
which cannot flow away instantaneously. When a secondary electron inside the
insulator comes close to the surface of the dielectric and has a kinetic energy
higher than the work function, this secondary electron can leave the dielectric.
When a thin membrane of a dielectric can realize a high secondary transmission
yield, when an electron falls on its surface, the material can be used as a tynode
(transmission dynode). This means that a setup, with several tynodes stacked
on top of each other, with a vacuum and a potential difference between them,
could work as an electron multiplier. A big advantage of this technique would be
that a much smaller device could be used to detect electrons. This means that
it would be possible to make a camera that can detect single electron impacts
on a surface.

Currently there are two ways to model the physical processes inside an in-
sulator under electron radiation The first method is tracking electron paths
with Monte-Carlo simulations. The second method is a self-consistent drift-
diffusion-reaction (DDR) model. This paper attempts to clarify the connection
between these two models. This is done by coupling both models to the Boltz-
mann Transport Equation (BTE). Further, the DDR model is employed here
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to simulate charging processes in continuously irradiated dielectric membranes.
The original computer code was modified to include polynomial interpolation
of tuned penetration depths for primary (incoming) electrons. Reflection and
transmission yields are calculated for different energies of incoming electrons
and different membrane thicknesses. It is shown that the charging of the mem-
brane leads to the drop in the transmission yield over time. However, if the
membrane is grounded, the yield may recover.

This paper is part of the BSc Applied Physics and BSc Applied Mathemat-
ics at the Delft University of Technology.
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Chapter 2

Electron irradiation of an
insulator

The information in this chapter is taken from reference [3]. This chapter at-
tempts to describe the different stages of the processes inside an insulator, after
an electron has fallen onto the surface of said insulator. Due to the primary
electron a cascade of secondary excitations occur inside the insulator of which
the different stages in the time interval of 10−18 − 10−7 are described. During
the time interval the number of secondary excitations increases enormously and
the average energy decreases. The stages are as follows:

10−18 − 10−17s During the first attoseconds the primary impact occurs alongside Auger
ionization of the insulator. Generation of secondary electrons, holes, plas-
mons and exitons also occur. During this stage the attosecond electron
conductivity dominates.

10−17 − 10−14s In this stage secondary electron-electron (e-e) and electron-hole (e-h) colli-
sions occur and the electron energy spectrum evolves to the instantaneous
distribution. When the electrons and holes lose their ability to ionize the
medium, the formation of the instantaneous spectrum also stops. The
electrons and holes are now ionization passive, which means that elec-
trons can no longer impact ionize and holes are no longer able to Auger
ionization. During this stage the femtosecond high-energy conductivity
prevails and the charge carriers consist mainly of electrons with kinetic
energy 20-10000eV.

10−14 − 10−12s Due to electron phonon (e-ph) collisions the energy of the ionization pas-
sive electrons relaxes. The main charge carriers are ionization passive
electrons and holes with energies between 0.1 and 20eV. The charge carri-
ers are unable to form new electron-hole pairs. In this stage the picosecond
high-energy conductivity prevails.

10−12 − 10−11s During this stage the electrons and holes thermalize and the low-energy
electron conductivity prevails.

10−11 − 10−7s In this stage multiple trapping and detrapping of thermalized electrons
and holes occur.

6



Chapter 3

Two models

The processes occurring in a material under electron radiation can be modeled
in two ways. At the department of Imaging Physics at the TU Delft a Monte
Carlo approach is used. At the department of Numerical Mathematics a Drift-
Diffusion-reaction model is used. In this chapter both models are described and
subsequently coupled. This is done by coupling both models to the Boltzmann
transport equation (BTE).

3.1 Monte-Carlo model

With the Monte-Carlo model a realization of an electron path is calculated.
From the starting point of the electron, discrete time steps are taken. At each
time step one of three processes is used (The model as it is used at the time of
writing this paper models 3 processes inside the material). The three precesses
are:

1. Inelastic collisions

2. Phonon scattering for electrons with energy below 100 eV

3. Mott scattering for electrons with energy above 100 eV

In an inelastic collision the electron loses some energy and its direction can be
changed. The angle of the new direction with respect to the old direction can
be calculated with the law of conservation of momentum and energy. When an
electrons scatters on a phonon only the direction of the electron changes. This is
also the case for Mott scattering, except that for this process the electron bends
around the electric field of an electron. Each process has a different distribution
function, which only differs by one parameter. This parameter is the mean free
path (λ), with for each process a different λ. Now the mean free path for the
total process is:

1

λtot
=
∑
i

1

λi
(3.1)

The distribution function is:

p(L) =
1

λtot
e

L
λtot (3.2)
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With L the free path. To determine which process was used a number from a
uniform distribution is pulled. The numbers that can be pulled are between 0
and 1

λtot
. This number line is divided into two parts. λ1 is always in there, but

depending on the energy of the electron λ2 or λ3 is used. When the process
which is being used is known, it is possible to pull a number out of the angle
distribution of the process. If the collision is inelastic, an energy difference has
to be pulled from a distribution. The path of the electron ends, when the elec-
tron is outside of the material or when its energy has gotten too low to leave
the material. An electron cannot leave the material when its kinetic energy is
lower than the work function of the material.

The Monte-Carlo model described in this section is not accounting for charging
phenomena due to electron/hole trapping in a material. It is possible to imple-
ment this, but the implementation would drastically slow down simulations.

3.2 Drift-Diffusion-Reaction model

The DDR model consists of a Poisson equation coupled to the carrier continuity
equations and the drift-diffusion equations, along with appropriate boundary
and initial conditions. The carrier continuity equations and the drift-diffusion
equation can be derived from the BTE. For Poisson’s equation for the potential
a derivation can be found in the appendix. The Poisson equation is given by:

−∇ · (ε∇V ) =
q

ε0
(C + p− n− nT ) (3.3)

where C is the density of empty traps, n(x, t) is the density of free electrons,
nT (x, t) is the density of trapped electrons and p(x, t) is the density of free
holes. Poisson’s equation is needed to determine the potential inside the entire
domain.

3.2.1 Boltzmann transport equation

The Boltzmann transport equation (BTE) can describe the statistical behavior
of a thermodynamic system, which is not in a state of equilibrium. Instead
of considering the positions and momenta of individual particles in a fluid to
describe the behavior of a system, the BTE uses probability distributions for
position and momenta of a single particle to describe the system. For each
particle species a BTE is needed. The BTE is given by:

∂f

∂t
+ F · ∂f

∂p
+

p

m
· ∇f =

(
∂f

∂t

)
coll

(3.4)

where F is the force field acting on the particles, p is the momentum and and

m is the mass of the particles involved. The expression
(
∂f
∂t

)
coll

models all the

collision processes in the fluid. The distribution f is a function of time, position
and momentum. When the system under investigation is in the domain D and∫

D

∫
R3

f(r,p, t)d3rd3p = 1 (3.5)
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f is a probability distribution of a single particle in the system. In this situation
f(r,p, t) gives the probability that a particle occupies an infinitesimally small
region of phase space d3rd3p around r and p at time t. Consequently, when the
distribution is normalized to the amount of particles in the system, f(r,p, t)
is the expected amount of particles in an infinitesimally small region of phase
space around r and p at time t. A good example of a system that the BTE can
describe is the heat flow in a system with temperature gradients. In the model
that is derived below there are particle density gradients in the material, which
cause a particle flow in the material. All the kinematics in the Boltzmann trans-
port equation are classical, but the collision term can take quantum mechanics
into account. This means that the BTE gives a semi-classical description of a
system.

In this paper the BTE is used to describe the transport of charge carriers inside
a dielectric, under electron radiation. The charge carriers in a dielectric are
electrons and holes. This means that two Boltzmann transport equations are
needed. One for the electrons and one for holes. This is indicated with a sub-
script q in the distribution function. The BTE for charge carriers with charge
q is as follows:

∂fq
∂t

+ F · ∇pfq + v · ∇f = Q(fq)− T (fq) (3.6)

where fq = fq(r,p, t) is the distribution function for a carrier with charge q. In
this context q can be either e for holes and −e for electrons, where e represents
the elementary charge. Further more the following notation is used for the
momentum-nabla operator:

∇p =

(
∂

∂px

∂

∂py

∂

∂pz

)T
(3.7)

The distribution fq(r,p, t) is normalized, such that:

N = Nq =

∫
D

∫
R3

fq(r,p, t)d
3rd3p (3.8)

Where N is the total number of carriers in the material. N = Nq, because the
number of electrons is the same as the number of holes in a neutral material.
The domain D is the volume of the material under observation. The expression

of
(
∂f
∂t

)
coll

is divided into two parts:(
∂f

∂t

)
coll

= Q(fq)− T (fq) (3.9)

The Q operator takes care of the scattering processes in the material. While the
T operator describes the generation/recombination processes in the material.
F is the the force exerted on the particle by the local electric field. This means
that F = qE, with q the charge of the carrier and E the electric field. v is the
group velocity.

3.2.2 Method of Moments and Approximations

To derive the carrier continuity equations and the drift-diffusion equations, the
method of moments is used on the BTE. For the method of moments an equation
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is multiplied by a weight function, which can be raised to an integer power and
is subsequently integrated over a volume. In the case of the BTE, the equation
is multiplied by a weight function, which depends on the momentum of the
particle and is subsequently integrated over momentum phase space. The carrier
continuity equations arise when the weight function is a constant with value 1.
The drift-diffusion equations arise when the weight function is the velocity v.
To use the method of moments on the BTE, an approximation for the collision
term Q(fq) is needed. The approximation that is taken in this paper is the
Bhatnagar, Gross and Krook (BGK) approximation, which can be stated as
follows:

Q(fq) ≈
fq,0 − fq

τq
(3.10)

with τq the relaxation time and fq,0 the equilibrium distribution. The assump-
tion here is that the perturbed distribution function relaxes exponentially to the
equilibrium function, with rate τq. Before the method of moments is applied
to the BTE a few definitions are stated. The first definition gives the carrier
density:

dq(x, t) =

∫
R3

fqd
3p (3.11)

For the free electron density the following notation is used: d−e(x, t) = n(x, t).
The notation for the density of holes is de(x, t) = p(x, t). The average of a
function g is defined as follows:

〈g〉 =
1

dq

∫
R3

gfqd
3p (3.12)

Here g can be either a vector function or a scalar function. The current density
can be expressed as follows:

Jq = qdq 〈v〉 (3.13)

For the electron current the notation J−e = Jn is used and for the holes
J−e = Jp applies. This concludes all the definitions that are used. approxi-
mations/assumptions for the derivations of the carrier continuity equations and
the drift-diffusion equations are:

1. The energy function of the electrons and holes is approximated by a
parabolic function and given by:

E =
~2k2

2m
=

p2

2m
=

1

2
mv2 (3.14)

2. Mass is isotropic and constant

3. The temperature gradient is zero, this can be stated qualitatively as fol-
lows: ∇T = 0

4. The force F is independent of particle momentum. This can be stated
more generally in vector notation:

∇p · F = 0 (3.15)

In other words: the p-divergence of the force must equal zero.
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5. The symmetric part of fq is isotropic:

fq,S(p) = fq,S(‖p‖) = fq,S(
√
p2
x + p2

y + p2
z) (3.16)

This is a special case of the diffusion approximation. This approximation
is valid after 10−11s after the entry of the primary electron. The semi-
empirical source function models this first 10−11s seconds of the processes.

The derivations is placed in the appendix, but the results are: Carrier continuity
equations:

∂n

∂t
− 1

e
∇ · Jn = −Tn (3.17)

∂p

∂t
+

1

e
∇ · Jp = −Tp (3.18)

Drift-Diffusion equations:

Jn = −eµnn∇V + eDn∇n (3.19)

Jp = −eµpp∇V − eDp∇p (3.20)

Generation and recombination

The information in this section is taken from [2]. In the previous section a
derivation of de drift-diffusion model was shown, but the term R was ignored.
This term accounts for the implementation Shockley-Read-Hall(SRH) genera-
tion/recombination model. In the used implementation only the trapped elec-
trons have to be tracked, because the relevant physics is contained in de following
equation:

∂nT
∂t

= Tn − Tp (3.21)

Here Tn consists of an implementation of the electron capture(Rn) and electron
emission(Gn). The term Tp consists of the hole capture (Rp) and the hole
emission (Gp). In the following let Ec be the energy of the conduction band,
Ev the energy of the valence band and Et be the energy of the trapping site.
Now a more elaborate explanation of the generation/recombination processes is
given, along with expressions for the average rates of the processes:

1. Electron capture: In this process an electron from the conduction band
gets trapped in a trap in the band-gap. Let the energy at the trap be: Et.
The surplus energy of this process is Ec − Et, which is transmitted to a
phonon. The average rate for this process is:

Rn = σnvthn (NT − nT ) (3.22)

2. Hole capture: In this process an electron in a trapped moves to the va-
lence band and neutralizes a hole. Also a phonon with energy Ev − Et is
produced. The average rate for this process is:

Rp = σpvthpnT (3.23)
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3. Hole emission: In this process a hole moves from a neutral trap to the
valence band. An electron is left in the trap. The energy Et − Ev needs
to be supplied in this process. The average rate for this process is:

Gp = σpvthni (NT − nT ) (3.24)

4. Electron emission: A trapped electron moves from the trapping site to the
conduction band. The energy Ec−Et needs to be supplied in this process.
The average rate for this process is:

Rn = σnvthninT (3.25)

3.2.3 Boundary and initial conditions

The information in this section is taken from [2]. To finish the DDR-model,
boundary conditions on V , n, p, Jn and Jp need to be applied. The boundary
conditions on V , n and p at the interface between the sample and its holder are
either of a Dirichlet-type or of a Neumann-type. The Dirichlet-type boundary
condition is to simulate an ohmic contact and the Neumann-type boundary
condition to simulate isolation. At the wall of the vacuum chamber the boundary
conditions for these three variables can also be of both Dirichlet and Neumann-
type. The boundary conditions on Jn and Jp at the sample vacuum interfaces
are of a Robin-type. Defining ν as the outward normal vector at the surface of
the sample and Σ as either the upper of the lower sample-vacuum interface, the
boundary conditions can be stated as follows:

−Jn · ν =

{
ve(n− ni)− α∂V

−

∂ν if n > ni,

0 otherwise
(3.26)

−Jp · ν = 0 On the sample-vacuum interface (3.27)

where
∂V −

∂ν
|Σ =

{
∂V
∂ν if ∂V

∂ν < 0

0 otherwise
(3.28)

and

α
(
max

(
V +
))

=


0 if max (V +) < Vmin

αmax
max(V +)−Vmin
Vmax−Vmin if Vmin ≤ max(V +) < Vmax

αmax otherwise

(3.29)

and

V +|Σ =

{
V if V > 0

0 otherwise
(3.30)

and
max

(
V +
)

= Maximum of
(
V +|Σ − Vg

)
(3.31)

and

αmax =
ve
∫

Σ(n−ni)dA∫
Σ
∂V
∂ν dA

(3.32)
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where Vg is the applied potential at Σ, which in this paper is set to zero. The
parameter ve is called the emission velocity. There is no experimental data to
determine this parameter, but its expected value is below that of the thermal

velocity. With the term α∂V
−

∂ν in equation 3.27 the tertiary electrons current
density is modeled, where α controls the magnitude of the tertiary current

density and ∂V −

∂ν controls the spatial distribution. When Jn · ν = 0 there is
no net secondary electron yield, so the tertiary electron current cancels out the
secondary electron current.

3.2.4 Injection of Primary Electron

Now that the governing equations are derived, a method to inject a primary
electron at the surface of a material is needed. This is done by adding a source
term to the continuity equation of the density of electrons and holes. In [1] a
detailed description of different source terms is given.

3.3 Advantages and Disadvantages of the Two
Models

In this section the advantages and the disadvantages of both the Monte Carlo
model as the DDR-model are discussed.

3.3.1 Monte Carlo model

The advantages of using the Monte Carlo model to simulate the processes inside
a dielectric after an electron falls on its surface and the consecutive secondary
electron yield of a the dielectric are:

1. There is no need for any empirical data to start the simulation, since only
(well) described physical phenomena need to be modeled in the Monte
Carlo approach.

2. The second advantage of the Monte Carlo model is the fact that at any
moment the kinetic energy of the electron is known. This makes it possible
to know the kinetic energy of the electrons that leave the dielectric at the
boundary. Using these facts an energy distribution of an electron can be
known.

The disadvantages are:

1. The Monte Carlo method is very computationally demanding. One pri-
mary electron creates an enormous amount of secondary electrons inside
the material, that all need to be tracked by the Monte-Carlo simulation.
This makes it hard to simulate the amount of realizations to derive sta-
tistically good yields, with low variances. When the trapping/detrapping
mechanism is not turned on the simulations are quite quick.

2. The fact that there is no trapping/detrapping mechanism implemented
into the Monte Carlo model, makes for another disadvantage. This leads to
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expected yields that are too high and do not match with the experimental
data.

3. It is hard to model transient processes with the Monte Carlo Simulation,
because to get yields with low variances too many electron paths need to
be calculated.

3.3.2 DDR-Model

The advantages of the DDR-Model over the Monte Carlo Model are:

1. It is easier to implement a trapping and de-trapping mechanism for the
charge carriers inside a dielectric.

2. The DDR-Model can determine the expected yields quicker than the Monte
Carlo model, when a trapping/detrapping mechanism is implemented.

3. An implementation for tertiary electrons is also simple to implement into
the boundary conditions.

4. The DDR-Model makes it possible to see the time evolution of the yields.

The disadvantages are:

1. The main disadvantage is the fact that the DDR approach needs a semi-
emperical source to start off the simulation. It is not possible for the
DDR-model to use the known physical phenomena and implementing this
in the first 1 · 10−11 seconds.

2. The second disadvantage is that the DDR-model does not track the kinetic
energy of the charge carriers, but only works with charge densities, in
combination with the macroscopic processes: diffusion and drift.

3. Another disadvantage is the need for the DDR-model to tune the emission
velocity, capture cross-sections and the density of traps.

3.4 Connection MC-Model and DDR-Model

In this section the connection between the Monte Carlo model and the drift-
diffusion model is made. This connection is established by first connecting the
MC-model to the BTE. Consequently the connection between the MC-model
and the DDR-model, because the DDR-model is a method of solving the BTE.

The clearest connection between the two models is the fact that the kinematics
of the boltzmann transport equation and MC-model are both classical. The
collisions in the MC-model are modeled directly, while the collision term in the
BTE is approximated. The approximation is not valid if the electrons in the
material are not thermalized. This is why the semi-emperical source functions
models the creation of electron-hole pairs and the transport of electrons and
holes during this stage of the processes. The semi-empirical source function is
based upon many Monte-Carlo simulations.
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Furthermore, if a trapping/detrapping mechanism was build into the MC-model,
it would be possible to determine the distribution function, with Monte-Carlo
simulations. So under certain conditions/approximations the Monte Carlo is
also a solving method for the Boltzmann transport equation.
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Chapter 4

Simulations with
DDR-model

In this chapter several simulations are presented. All the simulations are done
in COMSOL 5.2, with implementations of the DDR-model by Behrouz Raftari.
The simulations are done on a rectangular 2D surface, which is then rotated
around its left axis to acquire the results for a 3D disk.

4.1 Tuning Parameters

In order to simulate the processes, that lead up to the radiation of electrons from
a material, there are a few parameters that need to be tuned to experimental
data. The parameters that needed tuning were ve, the capture cross-sections and
the density of traps. These parameters were tuned by Behrouz Raftari such that
the standard reflection yield of a bulk sample corresponds to the experimentally
measured standard yields. The standard yield is the yield, caused by a single
primary electron that falls on the surface of a material. As B. Raftari explains
in [2], both the capture cross-sections and the density of traps only influence the
shape of the yield-energy curve. When these parameters are increased, the high-
energy tail is higher in the yield-energy curve. The emission velocity directly
influences the height of the curve. The parameters of the unpolished amorphous
alumina are as follows:

εr relative permittivity 10

µn Electron mobility 4 cm2V−1s−1

µp Hole mobility 0.002 cm2V−1s−1

σn Electron mean trapping cross section 10−15 cm2

σp Hole mean trapping cross section 10−17 cm2

ρ Density 3.98 gcm−3

Ei Ionization Energy 28 eV
Nt Trapping site density 1020cm−3

ve Emission velocity 135cms−1

It should also be noted that nt is the density of trapped electrons and Nt−nt =
pt is the density of trapped holes.
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4.2 Fitting of penetration depth

For electron with a kinetic energy that is higher than 2000eV the penetration
depth of an electron with energy E0 is given in the following empirical formula
by Seiler ([1]):

R(E0, ρ) = 115
E1,66

0

ρ
[nm] E0 ≥ 2000eV (4.1)

with ρ the density of the sample. For energies lower than 2000eV a data set
with measured penetration depths for certain primary electron energies is used.
To acquire a continuous penetration depth formula for alumina in the entire
spectrum of possible primary energies a polynomial fit of order 8 is done. The
formula for this fit looks as follows:

R(E0) = p1x
8 + p2x

7 + p3x
6 + p4x

5 + p5x
4 + p6x

3 + p7x
2 + p8x+ p9 (4.2)

The parameters are listed in the table below:

p1 4.528e-29
p2 -2.042e-24
p3 3.854e-20
p4 -3.959e-16
p5 2.422e-12
p6 -9.331e-9
p7 3.356e-5
p8 0.001661
p9 0.02938

It is important to note that this fit is for alumina. For another material a
different fit has to be done.
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4.3 Single Impact

In this section the results of simulating the electron yield after a single electron
falls on the surface of an alumina membrane are presented. For the simulations
three different membrane thicnesses are used: 15nm, 20nm and 30nm. Plots of
the transmission and reflection yields for unpolished alumina are presented in
the figures below. In order to determine how fine the used mesh grid for the

Figure 4.1: This figure shows the reflection yield of an alumina membrane with
three different thicknesses. On the x-axis the kinetic energy of the primary
electron is displayed.

simulation had to be to acquire accurate results, I first took a maximum length
dimension of a grid element at 1.6 · 10−16. Subsequently an approximately two
times finer grid is used. The results are that the difference in secondary elec-
tron yield for both grids is about 0.5%. This means that the results are accurate
enough with the first grid, however all the single impact simulations are done
with the second finer grid.

The curves of the reflection yield are very similar. The maximum variates only
very slightly and when the energy increases, the yield goes to 0.

In graph for the transmission yield, it can clearly be seen that when the thick-
ness of the membrane is increased, the maximum transmission yield decreases.
Also a higher energy primary electron is needed to get the maximum transmis-
sion yield, when the membrane is thicker. The last part resulted in the question
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Figure 4.2: This figure shows the transmission yield of an alumina membrane
with three different thicknesses. On the x-axis the kinetic energy of the primary
electron is displayed.

if it is possible to find the ideal membrane thickness for a given primary energy.
This is investigated further below. The maxima of the transmission yield curves
from figure 4.2 are shown in the table below:

Thickness (nm) Primary Energy (eV) Transmission Yield
15 1200 6.22
20 1400 6.16
30 1700 5.75

4.3.1 Generation Time

It is also interesting to know how the electron yield evolves in time. For this
purpose single impact simulations are done with a beam energy of 1000eV and
an alumina membrane with thickness 20nm. The definition of tg is the time it
takes to create all the secondary charge carriers inside the material, due to one
primary electron impact. It is interesting to note that influence of the generation
time on the secondary electron yield is almost nothing. This can be seen in the
following table:
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Figure 4.3: In this figure the transmission boundary fluxes over time, after
the single impact of a 1keV electron, are displayed of three different genera-
tion times. The boxes represent the different stages of the processes inside the
insulator, which are stated in Chapter 2.

tg (s) Reflection Yield Transmission Yield
1·10−14 5.4185 3.953464
1·10−15 5.4036 3.939264
1·10−16 5.3565 3.908164

The simulated expected yields are all simulated with the same mesh grid. This
means that the generation time can be taken as any of the following times:
1 · 10−14s, 1 · 10−15s or 1 · 10−16s. Physically this is understandable because in
the first stages the secondary electrons have not had the time to drift/diffuse
to the boundary of the sample. So very few particles satisfy the conditions to
leave the sample after just 10−16s.

4.3.2 Thickness Dependence

In this section the possibility is investigated that for a given primary energy,
the thickness which gives the highest secondary transmission yield, is a constant
times the penetration depth. In formula form this looks as follows:

T = aR (4.3)

where T is the membrane thickness, R is the penetration depth and a is a yet
to be determined constant. To determine the constant a two beam energies
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Figure 4.4: In this figure the reflection boundary fluxes over time, after the single
impact of a 1keV electron, are displayed of three different generation times. The
boxes represent the different stages of the processes inside the insulator, which
are stated in Chapter 2.

are tested: 1000eV and 2500eV . For each primary energy the transmission
yield for a range of thicknesses between 0.2R and 0.6R shall be determined in
a simulation. Here R corresponds to the (theoretical) penetration depth of a
primary electron with energy E0. The results are stated below. The first tabular
are the results with primary beam energy 1000eV and the second tabular are
the results with a beam energy of 2500eV .

T a Transmission Yield
8.4 0.3 5.504
9.8 0.35 5.995
11.2 0.4 6.220
12.6 0.45 6.267
14 0.5 6.117
15.4 0.55 5.774
16.8 0.6 5.299

In the table for 1000eV it is clear that at 0.45R is the optimal thickness, which
give the maximum transmission yield. Now the results for 2500eV are presented:
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T a Transmission Yield
39.67 0.3 5.065
46.29 0.35 5.161
52.90 0.4 4.947
59.51 0.45 4.728
66.12 0.5 4.346
72.74 0.55 3.793
79.35 0.6 3.230

From these two tables it becomes clear that a cannot be a constant, because the
optimal thickness for a primary beam with energy 2500eV lies at 0.35R. This
conclusion does not mean that there is not a function of primary energy, that
gives the membrane thickness that will give the maximum transmission yield,
but this option is not further investigated in this paper.

4.4 Electron Bombardement

In this section the results of electron bombardment of a thin membrane of
unpolished amorphous alumina are presented and discussed. In the simulations
the electrons land on the same spot of the sample every time, so the results
presented here are a worst case scenario. In these figures the general rule of

Figure 4.5: Here the electron yield over time of bombardment of unpolished
amorphous alumina for different primary electron energies are shown. The cur-
rent of the primary electron beam is 100 pA.
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Figure 4.6: Here the electron yield over time of bombardment of unpolished
amorphous alumina for different primary electron energies are shown. The cur-
rent of the primary electron beam is 100 pA.

thumb can be acquired that the higher the beam energy the sooner the secondary
electron yields drops. It is interesting to determine how many electrons have
to fall at the surface of the sample to get half the standard transmission yield.
For the beam with primary energy 1500eV the time it takes to get half the
transmission yield is about 10−8s. The beam current is 100pA. This means
that 100pA · 10−8s = 1 · 10−18C. Dividing this by elementary electron charge
the result is approximately 10 electrons. So when 10 electrons have fallen in the
same spot it only takes 10 electrons with primary energy 1500eV to decrease
the yield by a factor 2.

4.5 Charging

In this section charging phenomena due to trapped charges are investigated.
First this is done by looking at the trapped charge densities on the surface of a
20nm membrane after a single impact simulation. This is done with primary en-
ergies 1000eV and 2500eV . The second investigation is done, after a simulation
of a sustained bombardment.
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(a) Primary energy of 1000eV. (b) Primary energy of 2500eV.

Figure 4.7: In this figure the trapped charge density pt, of the top surface of a
20nm membrane is given, after a single impact simulation.

(a) Primary energy of 1000eV. (b) Primary energy of 2500eV.

Figure 4.8: In this figure the trapped charge density pt, of the bottom surface
of a 20nm membrane is given, after a single impact simulation.

4.5.1 Single Impact

In the figures below it is clear that a higher primary energy leaves a larger
part of the surface layer with trapped charges. The figures show the surfaces a
nanosecond after the primary electron has impacted. The fact that the density
is positive means that there are trapped holes at both surfaces. So when a
second primary electron falls on the top surface it would actually accelerate
toward the surface.
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4.5.2 Bombardment

In this section the distribution of trapped charges after a sustained electron
bombardment in a single spot is shown. In the previous section about electron
bombardment it was shown that the yields quickly diminished, this is because
the local potential at the surface of the thin membrane, becomes too high for
secondary electrons to escape. The trapped holes pull the secondary electrons
back into the membrane. The maximum potential at the boundary is set to
10V, this is because the secondary electrons have an energy between 0-10eV. So
when the maximum potential is reached, no electrons can leave.

Figure 4.9: In this figure the trapped charge density pt, in a 20nm alumina
membrane is shown, after sustained electron bombardment, with a primary
energy of 1000eV and a current of 100pA.

The legend of figures 4.9 and 4.10 is the same. In figure 4.10 we see that the area
of the trapped holes is bigger than that of the top surface of an alumina sample
after single impact, which was discussed in the previous paragraph. Negative
charge density, as is indicated in the legend, represent trapped holes. The images
are both showing the trapped charge density after electron bombardment of 1µs.
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Figure 4.10: In this figure the top view of a 20nm alumina membrane is shown,
after 1 microsecond of electron bombardment, with a primary energy of 1000eV
and a current of 100pA. Positive charge density represents the density of trapped
holes pt.

4.5.3 Electron inflow

The last simulation is a simulation with electron inflow at the boundary. In this
simulation a layer of 5nm alumina is placed on top of a 15nm layer alumina. The
boundary conditions for the lower 15nm layer are the same as for the isolated
case, but at the boundary of the 5nm layer charge density is kept at the intrinsic
charge density. The result is shown in figure 4.11, where it is also compared to
the isolated case. For the case with electron inflow it can be seen that it takes
longer for the secondary electron yield to drop. It also seems to recover some of
the secondary electron yield after 10−5s. The yield at the end for the case with
inflow of electrons is 1.5, while the yield for the isolated case is about 0.8. This
is a significant increase. Due to computational problems it was not possible to
place a more conducting material on top of the 15nm alumina, but it could be
expected that the yield might increase even more when this is the case.
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Figure 4.11: In this figure the the secondary transmission yield of a isolated
sample and a sample where electron inflow from the upper boundary is allowed.
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Chapter 5

Conclusions

In conclusion we can say that both the Monte Carlo model and the DDR model
may be viewed as different solution methods of the Boltzmann transport equa-
tion. The strengths of the Monte Carlo model are that it does not use empirical
data and that an energy spectrum of the secondary electrons can be found. Its
weaknesses are that it is harder to implement a trapping/detrapping mecha-
nism, it becomes very computationally demanding when all the processes are
accounted for and the time-evolution of the yield is not known. The main
advantages of the DDR model are that it can model transient processes, a
trapping/detrapping model is easier to implement, tertiary electrons can be
accounted for. Its disadvantages are: the DDR model needs a semi-empirical
source function to start the simulation, the kinetic energy of the particles is not
tracked and some parameters need to be tuned.

There are a few main conclusions that we can draw from the simulations on
a thin membrane of alumina. We can conclude that charging causes degrada-
tion of yield over time. Also the yield may recover if the membrane is grounded.
Further work may include simulation of TiN membrane cover and analysis of
shocks.

This can be divided into conclusions about single impact of a primary electron,
electron bombardment of a thin alumina membrane and electron bombardment
with the inflow of electrons at the boundary.

From the simulations with a single primary electron impact, we can conclude
that for a membrane of 15nm we get the highest transmission yield of 6.22,
which is achieved with a primary electron of 1200eV. The peak yields of the
thicker membranes decrease and the primary energy that is needed to achieve
the higher secondary electron yield is higher. For 20nm and 30nm, the peak
secondary transmission yields are respectively 6.16 and 5.75 at primary energies
1400eV and 1700eV.

From the electron bombardment simulations on an isolated membrane in which
all the electrons fall on the same spot, we can conclude that after about 10
electrons falling on the surface of our membrane the transmission secondary
electrons are halve that of the yields of a single electron impact.
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Appendix A

Derivation of the
Drift-Diffusion Reaction
model from the Boltzmann
Transport Equation

In this appendix the derivation of the carrier continuity equtions and the drift-
diffusion equations is given. The following list of (nabla) identities is used:

1. A · ∇a = ∇ · (aA)− a∇ ·A

2. B∇ · (aA) = ∇ · (aAB)− (aA · ∇)B

3. (aA · ∇)B = ∇ · (aAB)−B∇ · (aA)

When a certain identity is used the number of the identity will placed above the
equality sign.

A.1 Carrier continuity equations

To derive the carrier continuity equations with the method of moments the
weight function with value 1 is used. This yields:∫

R3

∂fq
∂t

d3p+

∫
R3

(F · ∇pfq) d3p+

∫
R3

v ·∇fqd3p =

∫
R3

fq,0 − f
τq

d3p−Tq (A.1)

With,

Tq =

∫
R3

T (fq)d
3p (A.2)

This equation will be reviewed term-by-term:

1. Using the definition of n(x, t), the first term becomes:∫
R3

∂fq
∂t

d3p =
∂

∂t

∫
R3

fqd
3p =

∂dq(x, t)

∂t
(A.3)
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2. fq is finite, so at the boundaries of R3, fq = 0. Using the divergence
theorem and the fact that the p-divergence of the force is zero, the second
term becomes:

∫
R3

F · ∇pfqd3p
(1)
=

∫
R3

∇p · (fqF ) d3p−
∫
R3

fq (∇p · F ) d3p (A.4)

= 0 (A.5)

3. The divergence of velocity is zero (v is only dependent on the momentum
phase variables), quantitatively described with ∇ · v = 0. The third term
becomes:∫

R3

v · ∇fqd3p
(1)
=

∫
R3

∇ · (vfq) d3p−
∫
R3

fq (∇ · v) d3p (A.6)

= ∇ ·
∫
R3

vfqd
3p− 0 (A.7)

= ∇ · (dq 〈v〉) (A.8)

4. Both distributions only differ in momentum space and the number of par-
ticles does not change. This means that dq(r, t) = 〈1〉 = 〈1〉0 = dq,0(r, t),
with 〈1〉0 =

∫
R3 fq,0d3p. The fourth term becomes:∫

R3

fq,0 − fq
τq

d3p = 0 (A.9)

By combining the results of the term-by-term analysis, the carrier continuity
equation becomes:

∂dq
∂t

+∇ · (dq 〈v〉) =
∂dq(x, t)

∂t
+

1

q
∇ · Jq = −Tq (A.10)

The carrier continuity equation for the electrons and holes are:

∂n

∂t
− 1

e
∇ · Jn = −Tn (A.11)

∂p

∂t
+

1

e
∇ · Jp = −Tp (A.12)

where Jn and Jp are the electron and hole current density, respectively.

A.2 Drift-Diffusion

To derive the drift-diffusion equations with the method of moments the weight
function v is used. This yields:∫
R3

v
∂fq
∂t

d3p+

∫
R3

v (F · ∇pfq) d3p+

∫
R3

v (v · ∇fq) d3p =

∫
R3

v
fq,0 − fq

τq
d3p−

∫
R3

vT (fq)d
3p

(A.13)
This equation is be reviewed term-by-term:
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1. The partial derivative in time of the group velocity is zero, so with the
definition of the average, the first term becomes:∫

R3

v
∂fq
∂t

d3p =
∂

∂t

∫
R3

vfqd
3p =

∂ (dq 〈v〉)
∂t

(A.14)

2. First the fact that ∇p · F = 0 is used, then the divergence theorem is
applied. Because f is finite, the surface integral becomes zero. The second
term becomes:∫

R3

v (F · ∇pfq) d3p
(1)
=

∫
R3

v (∇p · fqF ) d3p−
∫
R3

fqv (∇p · F ) d3p

(3)
=

∫
R3

∇p · (fqvF ) d3p−
∫
R3

(fqF · ∇p)vd3p− 0

= 0−
∫
R3

(
fqF

m

)
d3p

= −F

m

∫
R3

fqd
3p

= −qE
m
dq(x, t)

(A.15)

3. The following identities: ∇v = 0 and ∇ · v = 0 are true because v = p
m .

The third term becomes:∫
R3

v (v · ∇fq) d3p
(1)
=

∫
R3

v∇ · (fqv) d3p−
∫
R3

vfq (∇ · v) d3p

(2)
=

∫
R3

∇ · (fqvv) d3p−
∫
R3

(fqv · ∇)vd3p− 0

=

∫
R3

∇ · (fqvv) d3p

4. The fourth term becomes:∫
R3

v
fq,0 − fq

τq
d3p = dq

〈v0〉 − 〈v〉
τq

= −dq 〈v〉
τq

(A.16)

With,

〈v0〉 =

∫
R3

vfq,0d3p = 0 (A.17)

This equality is true, because the average velocity at equilibrium is zero.

5. The generation/recombination process is independent of the momentum
phase space. The fifth term becomes:∫

R3

vT (fq)d
3p = T (fq)

∫
R3

vd3p = 0 (A.18)

After combining the term-by-term analysis equation A.13 becomes:

∂ (dq 〈v〉)
∂t

− qE

m
dq +

∫
R3

∇ · (fqvv) d3p = −dq 〈v〉
τ
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Now only: ∫
R3

∇ · (fqvv) d3p = ∇ ·
∫
R3

(fqvv) d3p (A.19)

needs to be worked out. First fq is split in a symmetric part and an anti-
symmetric part:

fq (p) = fq,S(p) + fq,A(p) (A.20)

Now the integral over the anti-symmetric part cancels to zero, because vv is
symmetric in p. The assumption that the symmetric part of f is isotropic is
now applied in the integral:

∇ ·
∫
R3

(fqvv) d3p = ∇ ·
∫
R3

(fq,S(p)vv) d3p (A.21)

Because fq,S(p) is symmetric in the three momentum phase variables, the fol-
lowing identity applies:∫

R
vlfS(‖p‖)dpl =

∫
R

pl
m
fS(‖p‖)dpl = 0 (A.22)

for l = x, y, z. This leaves only the integrals on the diagonal:

〈vl〉 =
1

m2

∫
R3

p2
l fq,S(

√
p2
x + p2

y + p2
z)dpl = A (A.23)

For some A and l = x, y, z. This means that:〈
v2
x

〉
=
〈
v2
y

〉
=
〈
v2
z

〉
= A (A.24)

Writing this in the following form yields:

3A =
〈
v2
x

〉
+
〈
v2
y

〉
+
〈
v2
z

〉
=
〈
v2
x + v2

y + v2
z

〉
=
〈
v2
〉

(A.25)

So the following relation is obtained:

A =

〈
v2
〉

3
=

2

3m
〈E〉 (A.26)

In the last equality the relation Ekin = 1
2mv

2 is used. Now, the derived expres-
sions can finally be combined and the integral expressed in n. To do this the
relation 〈E〉 = 3

2kBT is also used. This last expression will be derived in the
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section named closure. The integral becomes:

∫
R3

∇ · (fqvv) d3p =

∫
R3

∇ · fq

 v2
x vxvy vxvz

vyvx v2
y vyvz

vzvx vyvz v2
z

 d3p (A.27)

= ∇ ·

 ∫
v2
xfqd

3p
∫
vxvyfqd

3p
∫
vxvzfqd

3p∫
vyvxfqd

3p
∫
v2
yfqd

3p
∫
vyvzfqd

3p∫
vzvxfqd

3p
∫
vyvzfqd

3p
∫
v2
zfqd

3p

 (A.28)

= ∇ ·

dq 〈v2
x

〉
0 0

0 dq
〈
v2
y

〉
0

0 0 dq
〈
v2
z

〉
 (A.29)

=

(
∂dq

〈
v2
x

〉
∂x

∂dq
〈
v2
y

〉
∂y

∂dq
〈
v2
z

〉
∂z

)T
(A.30)

=
1

3

(
∂dq

〈
v2
〉

∂x

∂dq
〈
v2
〉

∂y

∂dq
〈
v2
〉

∂z

)T
(A.31)

=
1

3
∇
(
n
〈
v2
〉)

(A.32)

=
2

3m
∇ (n 〈E〉) (A.33)

=
kBT

m
∇n (A.34)

Combining all the results, the drift-diffusion becomes:

dq 〈v〉
τq

+
∂ (dq 〈v〉)

∂t
=
qE

m
dq −

kBT

m
∇dq (A.35)

Multiplying by qτ , the equation becomes:

qdq 〈v〉+ τq
∂ (qdq 〈v〉)

∂t
=
q2τqE

m
dq −

qτq
m
kBT∇dq (A.36)

Now a few substitutions are made:

Jq = qdq 〈v〉 (A.37)

µq =
eτq
m

(Mobility) (A.38)

Dq =
µqkBT

e
(Diffusion constant, Einstein relation) (A.39)

Also in an insulator, τ ∼ 10−15 for electrons and τ ∼ 10−18 for holes. This
means that the approximation: τ ∂Jn∂t ≈ 0 is valid. This yields:

Jq = eµnE − qD∇dq (A.40)

The drift-diffusion equations for electrons and holes are:

Jn = eµnnE + eDn∇n (A.41)

Jp = eµppE − eDp∇p (A.42)
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with µn and µp the mobility of the electrons and holes, respectively and Dn

and Dp the diffusion constants of the electrons and holes. To connect these
equations to Poisson’s equation the electric field is written in its potential form:
E = −∇V . The drift-diffusion equations become:

Jn = −eµnn∇V + eDn∇n (A.43)

Jp = −eµpp∇V − eDp∇p (A.44)

A.3 Closure

In this section a derivation for the expression 〈E〉 is given. Two major assump-
tions have to be made here. The first assumption is that (the symmetric part
of) f is a Maxwellian distribution of the form:

f = A exp(− E

kBT
) (A.45)

A discussion about the validity of this assumption can be found in reference
[4]. The second assumption is that the energy oth the carrier is the parabolic
dispersion relation:

E =
~2k2

2m
=

p2

2m
(A.46)

Now the expression for n 〈E〉 will be derived:

n 〈E〉 =

∫
R3

Efd3p =

∫
R3

EA exp

(
− E

kBT

)
d3p (A.47)

Now a coordinate change from Cartesian to spherical coordinates is made:

n 〈E〉 =

∫ ∞
0

4πp2EA exp

(
− E

kBT

)
dp (A.48)

The parabolic dispersion relation provides the following relation: dp = m
p dE.

This means:

n 〈E〉 = 4πmA

∫ ∞
0

pE exp

(
− E

kBT

)
dE (A.49)

Now the substitution p =
√

2mE is made:

n 〈E〉 = 2π (2m)
3/2

A

∫ ∞
0

E3/2 exp

(
− E

kBT

)
dE (A.50)

The last substitution that is needed is u = E
kBT

. This substitution gives rise to
the relation between the differentials: dE = kBTdu:

n 〈E〉 = 2π (2mkBT )
3/2

kBTA

∫ ∞
0

u3/2 exp (−u) du (A.51)

= 2π (2mkBT )
3/2

kBTAΓ

(
5

2

)
(A.52)

=
3

2
(2mπkBT )

3/2
kBTA (A.53)
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The expression for A can be obtained by normalizing f :

n =

∫
R3

fd3p (A.54)

To calculate this integral a coordinate change to spherical coordinates is made
again. Also the same substitution u = E

kBT
is made. This yields:

n =

∫
R3

A exp

(
− E

kBT

)
d3p

= 4πA

∫ ∞
0

p2 exp

(
− E

kBT

)
dp

= 8πAmkBT

√
mkBT

2

∫ ∞
0

u1/2 exp (−u) du

= 2πA (2mkBT )
3/2

Γ

(
3

2

)
= A (2mπkBT )

3/2

(A.55)

This means that the normalization constant A is:

A = n (2mπkBT )
−3/2

(A.56)

This yields:

〈E〉 =
3

2
kBT (A.57)
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Appendix B

Poisson’s equation

First of all Maxwell’s equations will be stated (ε is considerd a constant, for an
isotropic, permeable and conducting semiconductor):

∇×B = µ

(
J + ε

∂E

∂t

)
(B.1a)

∇×E = −∂B
∂t

(B.1b)

∇ ·E =
ρ

ε
(B.1c)

∇ ·B = 0 (B.1d)

We will now derive an equivalent set of differential equations. The maxwell
equations are a set of four coupled first order differential equations and we will
now write an equivalent system of two second order differential equations. We
do this by defining two potentials: V (the scalar electric potential) and A (the
magnet vector potential). We first define an expression for B. Next, we use
equation B.1b to find our potential. Define:

B = ∇×A (B.2)

Equation B.1b yields:

∇×
(
E +

∂A

∂t

)
= 0 (B.3)

This means that we can write:

E +
∂A

∂t
= −∇V (B.4)

for a scalar potential V . We will now substitute equation B.4 into equation
B.1c. This yields:

∇2V +
∂

∂t
(∇ ·A) = −ρ

ε
(B.5)

We also substitute equation B.4 into equation B.1a. This yields:

∇2A− εµ∂
2A

∂t2
−∇

(
∇ ·A + εµ

∂V

∂t

)
= −µJ (B.6)
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We will now decouple the two equations above. From the definition of B it
follows that A is arbitrary. This is shown in the following:

∇×A = ∇× (A +∇ζ) (B.7)

This equation shows that the transformation from A to A+∇ξ does not change
the induction vector B. Now we have to choose a transformation for the electric
potential V such that the electric field E does not change. We will use equation
B.4 and substitute the transformation for A:

E = −∂A
∂t
−∇

(
∂ξ

∂t
+ V

)
(B.8)

This means that we transform the scalar electric potential from V to V − ∂ξ
∂t .

We can now choose A and V such that:

∇ ·A + εµ
∂V

∂t
= 0 (B.9)

This yields:

∇ ·A = −εµ∂V
∂t

(B.10)

By substituting this into equation B.5 and B.6, we get:

∇2A− εµ∂
2A

∂t2
= −µJ (B.11a)

∇2V − εµ∂
2V

∂t2
= −ρ

ε
(B.11b)

These two equations and equation B.9 are equivalent to the set of Maxwell’s
equations stated in the first part of this paragraph. For our purposes the second-
order time derivative can be neglected, because the time scale in which the device
operates is much longer than the time it takes an electromagnetic wave to travel
the length of the device. This yields poisson’s equation for the scalar electric
potential:

∇2V = −ρ
ε

(B.12)

−1

q
∇(Jp − Jn) =

∂

∂t
(p− n) (B.13)
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Appendix C

Experiments

At the department of Imaging Physics at the TU Delft, experiments are con-
ducted to determine the secondary electron yield of certain materials. These
measurements are done by Hong Chan Wah and for a detailed description of
his experiments I refer to his ”paper”. With the results of his measurements
the validity of the model described in chapter 2 can be determined. A short
description of the experiments to determine the yield of a material is given in
this chapter.

C.1 Experiment

Before the experiment can be properly described a few definitions have to be
stated. The secondary electron yield is defined as follows:

δ =
Ns
Np

(C.1)

Where Np is the number of primary electrons (PE) and Ns the number of
secondary electrons (SE). The source for our primary electrons is the electron
canon in a scanning electron microscope (SEM). To measure the yield (δ) a
device called the dual Faraday cup is used. In figure C.1 a schematic of the
dual Faraday cup is shown. The setup as it is used now only makes use of the
lower half of the dual Faraday cup. This is because the sample that is placed
in electrode 3 cannot be imaged when the upper half is on top, this means
that de electron beam cannot be focused. Furthermore is a small Faraday cup
(SFC) placed in electrode 3. To each electrode a Keithley 2450 source-meter
is connected. This allows the electrodes to be biased, while also making it
possible to measure the current through the three electrodes. The yield can be
determined by these currents as follows:

δ =
ISE
IPE

(C.2)

In this experiment we want to distinguish between reflected secondary electrons
(RSE), transmitted secondary electrons (TSE) and forward/backward scattered
electrons (FSE/BSE). Also the RSE and the BSE have to be distinguished.
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Figure C.1: Dual faraday cup. This image was taken from the report by Hong
Wah

This also applies to TSE and FSE. Now we define a few yields. The reflected
secondary electron yield is given by:

δR =
IRSE
IPE

(C.3)

The transmitted secondary electron yield by:

δT =
ITSE
IPE

(C.4)

Backscattered electron yield by;

η =
IBSE
IPE

(C.5)

Forward scattered electron yield by:

τ =
IFSE
IPE

(C.6)
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In every measurement IPE = ISFC , the current measured in de small faraday
cup. Now two experiments have to be done to learn ITSE and IFSE . In the first
experiment the sample will be negatively biased and in the second experiment
the sample will be positively biased.

C.1.1 Negative bias

When the sample is negatively biased both the transmitted secondary electrons
as the forward scattered electrons will be accelerated into the faraday cup and
currents will be measured. The reflected secondary electrons and the backward
scattered electrons will be accelerated into the SEM. This contribution will be
called: ISEM . We get:

ISFC = ISEM + I3 + I4 + I5 (C.7)

In this equation I# is the current through electrode #. Because the TSE and
the FSE are accelerated to the cup, the following is known:

I4 + I5 = [ITSE + IFSE ] (C.8)

The square brackets are used to show that ITSE and IFSE cannot be distin-
guished at this moment. The total yield of experiment 1 is given by:

σ1 = [δR + η] + [δT + τ ] =
ISEM
ISFC

+
I4 + I5
ISFC

(C.9)

C.1.2 Positive bias

When the sample is positively biased all the low energetic electrons that are
leaving the sample at the sample-vacuum interface get pulled back. This means
that only the high energy backward/forward scattered electrons leave the sam-
ple. This means that:

ISEM = IBSE (C.10)

and
I4 + I5 = IFSE (C.11)

The total yield is given by:

σ2 = η + τ =
IBSE
IPE

+
IFSE
IPE

=
ISEM
ISFC

+
I4 + I5
ISFC

(C.12)

The backscatter yield is given by:

η =
IBSE
IPE

=
ISEM
ISFC

=
ISFC − I3 − I4 − I5

ISFC
(C.13)

The forward scattered yield is given by:

τ =
IFSE
IPE

=
I4 + I5
ISFC

(C.14)

By subtracting sigma2 from sigma1 we get:

δR + δT = σ1 − σ2 (C.15)
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