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Abstract. Drones performing an autonomous mission need to adapt to frequent
changes in their environment. In other words, they have to be context-aware. Most
current context-aware systems are designed to distinguish between situations that
have been pre-defined in terms of anticipated situation types and corresponding
desired behavior types. This only partially benefits drone technology because
many types of drone missions can be characterized by situations that are hard to
predict at design time. We suggest combining context-awareness and data analytics
for a better situation coverage. This could be achieved by using performance data
(generated at real-time) as training data for supervised machine learning — it would
allow relating situations to appropriate behaviors that a drone could follow. The
conceptual ideas are presented in this position paper while validation is left for
future work.

Keywords: Drone technology - Context-awareness - Data analytics

1 Introduction

‘We address Unmanned Aerial Vehicles (UAV) [1] with the label “drones” in the remain-
der of this paper. As studied in [2—12]: (i) Drones are capable of replacing people in
dangerous environments and can make use of advanced sensing capabilities allowing
for situational awareness. (ii) Drones are available in different sizes — small ones can
reach difficult to access places; larger drones can monitor buildings, cities, or regions
for many hours in a row. (iii) Drones need to be able to adapt to changes in their environ-
ment, while performing their missions. This makes context-awareness [13, 14] relevant
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to drone technology. Context awareness essentially concerns adaptive service delivery
[15], for which three adaptation perspectives are possible: serving user needs, system
needs, and public values [16]. Most current context-aware systems are specified to dis-
tinguish between several anticipated situation types that have been defined at design
time, this leading to triggering corresponding desired behavior types [17, 18].

Nevertheless, this only partially benefits drone technology because drone missions
are often carried out in difficult situations [12] and therefore they can suffer from situa-
tions that are hard to predict at design time. We suggest combining context-awareness and
data analytics [19] for a better situation coverage. This could be achieved by using per-
formance data (generated at real-time) as training data for supervised machine learning,
which would allow the drone to apply appropriate behaviors in similar situations.

We refer to literature and previous work (see above) for the topics of drone technology
and context-awareness, presenting our ideas on top of that. Validation is left for future
work.

The remaining of the paper is structured as follows: Sect. 2 covers drone technology
from a functional perspective. Section 3 presents a context-awareness conceptual model.
In Sect. 4 we present our proposed conceptual framework. Finally, in Sect. 5, we discuss
the framework and its limitations as well as our plans for future work.

2 Drone Technology — A Functional Perspective

Extensive literature exists about architectures for autonomous systems, with a nice
overview in [2—12]. In this position paper, we mainly focus on the design choices for
a drone system that relate to societal demands [20-22] and governance [23], as well as
the technical capabilities of the drone [5]. In this, we view a drone as AGENT, in the

— situation determination «-----======-mcmccccmoo-n ((({)))sensors

mission management

— behavior adaptation -----------==-mmmemmoem- - hactuators

Fig. 1. Drone technology — a functional perspective

category of Multi-Agent Systems, referring to Wooldridge [24]. As such, the drone
is autonomous to some degree and adaptive, and has three key features, namely: (i)
The ability to gather relevant contextual information by means of sensing; (ii) The
ability to analyze this data (and possibly generate conclusions and/or decisions), by
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means of algorithms; (iii) The ability to adapt its behavior in response to changes in the
environment. This is visualized (inspired by previous work [2]) in Fig. 1.

As Fig. 1 suggests, drones are essentially driven by a corresponding mission and
mission management is hence crucial. It is sensitive to the “current” situation that is to
be somehow determined by the drone — this is often done by means of reasoning on data
from sensors. The mission management also concerns the drone’s behavior adaptation.
In summary, it is necessary for a drone to get relevant information (for the sake of
determining the “current” situation) and be able to adapt its behavior accordingly (for
the sake of delivering situation-specific services); as it concerns the former/latter, a drone
would count on sensors/actuators.

3 Context-Awareness

As a problem theory for context-aware systems we postulate that end-users (users, for
short) of information systems often have different needs for services provided by such
systems, where different needs correspond to different context situations. As studied in
[13], context-aware (information) systems are a “treatment” for this problem if they can
provide context-specific services to users in accordance to their context-dependent
needs [25-39]. “Context” here is the context of the context-aware system, where the
former is a given (i.e., not designed) and the latter is the object of design. A context-
aware system that is transferred to practice would interact with its context. Two kinds of
interactions can be distinguished: one for collecting data on the context and another one
- for delivering a service that matches the context. The fact that the service is delivered
to a user means that the user is part of the context. This makes perfect sense, as the
part-of relation is an essential prerequisite for the system we want to design, viz. to
make a connection between what the context is and what a user needs.

We frame the design problem with the diagram in Fig. 2. The diagram shows that a
user, being part of a context, has one or more user needs (or sets of user needs), where
each distinguished user need results from a corresponding unique context situation. A
context can be conceived as a temporal composition of one or more context situations,
where each context situation has a unique set of properties that collectively are relevant
to a specific user need. A useful context-aware system is able to detect the confext
situation at hand and then offers one or more situation-specific services that satisfy the
needs of the user being in, or experiencing, that situation.
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Fig. 2. Framing the problem of context-awareness (Source: [13], p. 122 ©2021, Springer,
reprinted with permission)

4 Solution Directions

In the current paper, we consider drones viewed as a context-aware system (in general)
and in particular — their role for the benefit of mitigations after disruptive events, such as
natural disasters, pandemics, military conflicts, and so on [2], sticking to Systemics [14,
15,21]. As visualized in Fig. 3, where the grey area stays for our system of consideration,
we emphasize on system-user interaction (indicated at the bottom of the figure) and
on the environmental input signals, (indicated at the top of the figure); for the sake
of brevity, we omit the unavoidable reflection of system behavior to the environment.
Further, taking a functional holistic perspective on a drone system, we abstract from the
system duality vision assuming two overlapping systems, namely the one responsible
for motion planning and the other one — for the achievement of concrete goals.

We suggest envisioning two systems (SA and SB) that complement each other,
as inter-related parts of the drone system of consideration, as visualized in Fig. 3
(arrows indicate corresponding data flows; “CA” stands for “context-awareness” and
“DA” stands for “data analytics™):
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Fig. 3. A vision for combining context-awareness and data analytics

SA has been designed to distinguish between different situations that concern the
user/environment, in the sense that SA is capable of capturing a number of data val-
ues (for example: sensor readings) whose combination points to the “current” situ-
ation type. Then SA would trigger accordingly a corresponding behavior type. We
may take another perspective on this: (i) There are a number of possible SITUATION
INSTANCES that are recognizable by the systems and those instances are characterized
by corresponding ATTRIBUTE VALUES; (ii) The different possible system behaviors
are in (several) behavior CLASSES and AS PRE-DEFINED AT DESIGN TIME: for
each recognizable situation instance there is a corresponding desirable behavior class.
For example, there may be three behavior classes relevant to the drone-mitigation case,
namely: MONITOR, BRING THINGS, and FLY BACK. As it concerns situations, there
may be relevant attributes, such as (suffering) person(s) identified: Yes or No; the drone
has enough power (fuel and/or battery): Yes or No; there is overall emergency: Yes or
No; drone supplies are: normal, scares, or none, and so on; the identified person(s) are: in
close proximity to the drone, in mid proximity, or away, and so on. Hence, depending on
the values, we derive an INSTANCE TUPLE and for each instance tuple, SA “knows”
which behavior class to trigger. This all is rooted in the CA paradigm (see the dashed
line at the left side of Fig. 3 and refer to Sect. 3) and validated in many cases, such as
AWARENESS [40].

We argue that using this alone would mean that we should: (i) either spend too
much time and resources during the design, for identifying, specifying, and designing
things that concern very many potential situation instances; (ii) or assume high levels of
risk that a situation instance would pop up that cannot be “recognized” by the system.
Systems servicing critical enterprises would count on developments that are backed by
“huge” resources and (i) would then be realistic, which we nevertheless consider not the
case as it concerns most current civil drone systems.

Hence, we count on SB, rooted in DA (see the dashed line at the right side of the
Figure), to complement SA in a useful way, considering SML - Supervised Machine
Learning [19] and Statistics [41]. In particular, the “running” of SA would produce “for
free” as “side effect” training data that would feed SB. Since this would be labelled data,
it would adequately let SB learn to dynamically compose behaviors for situations not
recognized by SA. Still, this all should “happen” at a lower granularity level, assuming
that situation instances point to particular attribute values that are considered by SB.
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When SA has not “recognized” a situation instance, it could at least pass to SB attribute-
values-level data concerning what was captured. This can be used by SB to “decide”
which behavior class to trigger.

In referring to SML and Statistics, let us consider (for example) CovA — the Covering
Algorithm and BCA — the Naive Bayesian Classification Approach [43]. In applying
CovA, SB uses the training data (in terms of a number of fuples, featuring situation
instances and corresponding behavior classes) “inherited” by SA, to generate RULES
corresponding to each of the behavior classes. Hence, in the event of SA not recognizing
a situation instance, it “‘goes” to SB which in turn applies the abovementioned rules to
it in order to establish a match with regard to one of the behavior classes, triggering it
accordingly. In applying BCA, SB similarly uses the training data (see above) but in a
different way and restricted by the BCA limitation of considering maximum two behavior
classes. Then it would be a question which of the two behavior classes is more adequate
with regard to the situation instance that has not been recognized by SA. To answer
this question for the benefit of SB, we need to apply the Bayes Theorem that allows for
classifying a tuple (featuring a situation instance) with regard to two behavior classes,
using the abovementioned training data. That is how SB would identify the relevant
behavior class and would trigger it accordingly. And in the end, even though Neural
Networks [42] can bring invaluable pattern-recognition-related support to drone’s motion
planning, we argue that methods, such as the ones considered above (and possibly also
decision-tree classifiers [19]) are most appropriate for combining CA and DA. That is
not only because the attributes are precisely defined by SA but also because traceability
is important - the system “decisions” have to be explainable.

Further, it would be possible “exporting” SA’s training data to other systems and/or
“importing” (for the benefit of SB) external training data. Nevertheless, for this the
training data STRUCTURE (featured by particular attributes) should be the same — for
example, if SA is recognizing situations, considering particular attributes while later
SB would be covering unrecognized situations, considering other attributes, then the
overall quality-of-service would be low and with limited traceability potential. Also,
we must not forget the existence of the problem of confusion between causality and
coincidence. Finally, SB’s inheriting classification models from other CA (drone) systems
poses the need for addressing, issues, such as data reliability, data pre-processing, data
harmonization, and so on.

In summary, going back to the example featuring drones used for monitoring that
aims at mitigations after disruptive events [2], we have just two behavior classes, namely:
monitoring of people in normal health in an affected area (when just monitoring is
needed), and providing support to persons needing urgent help in this area. Here, at a
lower granularity level we may consider values of attributes featuring the health situation,
the area, and so on. Hence, a situation instance unrecognized by SA and hence “passed”
to SB would be: a person needs urgent help outside of the affected area (for instance —
when the drone can identify some accident outside of the area which is on the focus of
its mission). Then, with this not having been anticipated at design time, SB may try to
identify the right behavior class to trigger, for example, by applying CovA or BCA (see
above), possibly resulting in: call ambulance.
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Hence, there are several things that are essential: ® the (drone) system (and in partic-
ular SA) should be capable of identifying situation instances; ® in this, its possibilities
are not unlimited, in the sense that only a limited number of situation instances (these
anticipated at design time) are covered; ¢ for each recognized situation instance, the
system (and in particular SA) switches to a corresponding behavior class (and this was
also “prepared” at design time); * any unrecognized situation instance is to be “passed”
to SB; ¢ it uses training data (in terms of tuples featuring situation instances and reflect-
ing corresponding attribute values and a relevant behavior class) “inherited” by SA; ¢ in
this, SB applies CovA, BCA, or another appropriate method for classifying the situation
instance with regard to the behavior classes.

5 Discussion and Conclusions

Nowadays, drones have become indispensable helpers in many situations, from vari-
ous observations to detect damage in critical infrastructures such as roads, railways, or
other facilities, through monitoring featuring flooded areas, agricultural crops, pollution
spots, and deforestation, to active actions such as delivering first aid kits and spraying
insecticides.

A specific feature of such missions (that are often carried out in difficult situations)
is the dynamic change in environment, and it is often impossible to foresee all scenarios
at design time. This is specific even though not exclusively valid for drones and concerns
such context-awareness-related limitations. Still, the contribution of the current paper is
limited to drone technology.

We have addressed this technology, referring to previous work and we have super-
imposed this with regard to a context-awareness conceptualization (again referring to
previous work). On that basis, we have proposed solution directions featuring the com-
bined application of context-aware computing and data analytics, and assuming a
system duality, as follows:

e The first one is a “classical” context-aware system, which incorporates recognition of
different situations and sets appropriate behaviors according to algorithms established
at design time.

e Unlike the classical system, whose functions end there, in the proposed architecture,
this system feeds data, characterizing situations and behaviors to a second system;
those recognizable cases will be used by the second system to build a classification
model, such that it is capable of generating rules in a cases when the first system falls
into a “non-recognized” situation.

Validating the proposed idea is left for future work.
The limitations of our work are considered to be three-fold:

e An explicit discussion is missing concerning the criteria for “calling SB” since it
may be that a situation is not “recognized” because of sensor failures and/or data-
processing-related issues.
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o A mapping architecture is missing as it concerns the two granularity levels, namely:

the SA granularity level featuring situations and behaviors, and the SB granularity
level featuring patterns of both.
The work is limited just to drone technology.
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