

Delft University of Technology

A column and row generation approach to the crowd-shipping problem with transfers

Stokkink, Patrick; Cordeau, Jean François; Geroliminis, Nikolas

DOI
10.1016/j.omega.2024.103134
Publication date
2024
Document Version
Final published version
Published in
Omega (United Kingdom)

Citation (APA)
Stokkink, P., Cordeau, J. F., & Geroliminis, N. (2024). A column and row generation approach to the crowd-
shipping problem with transfers. Omega (United Kingdom), 128, Article 103134.
https://doi.org/10.1016/j.omega.2024.103134

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.omega.2024.103134
https://doi.org/10.1016/j.omega.2024.103134

Omega 128 (2024) 103134

A
0

Contents lists available at ScienceDirect

Omega

journal homepage: www.elsevier.com/locate/omega

A column and row generation approach to the crowd-shipping problem with
transfers✩

Patrick Stokkink a,c,∗, Jean-François Cordeau b, Nikolas Geroliminis a

a École Polytechnique Fédérale de Lausanne (EPFL), Urban Transport Systems Laboratory (LUTS), Switzerland
b HEC Montréal, Canada
c Faculty of Technology, Policy, and Management (TPM), Technical University Delft, Netherlands

A R T I C L E I N F O

Keywords:
Crowd-shipping
Last-mile delivery
Transfers
Column generation
Row generation

A B S T R A C T

Crowd-shipping is a last-mile delivery concept in which commuters pick up and deliver parcels on their
pre-existing paths. In urban areas, crowd-shipping circumvents problems that traditional last-mile delivery
systems suffer from, such as road congestion and lack of parking spaces, especially if more sustainable modes
of transport are utilized, like bikes or e-bikes. Using transfers between crowd-shippers allows for expanding
the service area and improving the overall performance. However, as this requires synchronization over space
and time, it makes the problem more complex. In this work, we develop a model that can encompass fully
heterogeneous crowd-shippers and parcels. Thereby, it allows for both direct time-synchronized transfers as
well as intermediate storage at designated parcel lockers. We design a column generation algorithm to solve
large-scale realistic instances to optimality. We extend the problem to allow crowd-shippers to carry multiple
parcels at the same time and for this, we extend the algorithm to simultaneous column and row generation.
We evaluate the performance of our algorithm as well as the potential of crowd-shipping with transfers on
a realistic case study of a bike-based crowd-shipping system in Washington DC. Our methods solve realistic
instances with 1000 crowd-shippers and 1000 parcels within minutes. The results show that a gain in revenue
and service level of 30% can be obtained by allowing transfers. By letting part of the population of crowd-
shippers carry two or three parcels at the same time, the revenue and service level can be further increased by
30 to 50%. Maximum locker capacities are shown to be reasonable and are the highest in areas where there
is a large gap between the moment when parcels are dropped off and when they are picked up from parcel
points, which are mainly in the city center.
1. Introduction

The concept of crowd-shipping as a solution to last-mile delivery
problems has drawn a lot of attention in recent years. Especially in
urban areas, traditional last-mile delivery using large delivery vehicles
is suffering from road congestion [1], lack of parking spaces [2],
and restricted access to certain areas due to pollution regulations.
Paradoxically, crowd-shipping is most successful in urban areas due to
the higher availability of crowd-shippers [3]. Crowd-shipping is seen
as a low-cost, flexible, and mostly sustainable alternative to traditional
last-mile delivery systems in which large vehicles are responsible for all
deliveries. In crowd-shipping, commuters pick up and deliver a parcel
on their pre-existing path, possibly making a small detour.

One of the main operational challenges in crowd-shipping is match-
ing crowd-shippers to parcels that need to be delivered [4]. The quality
of such a match is influenced by the detour that the crowd-shipper

✩ Area: Production Management, Scheduling and Logistics. This manuscript was processed by Associate Editor Yagiura.
∗ Corresponding author.

E-mail addresses: patrick.stokkink@epfl.ch (P. Stokkink), jean-francois.cordeau@hec.ca (J.-F. Cordeau), nikolas.geroliminis@epfl.ch (N. Geroliminis).

needs to make to pick up and deliver the parcel, as well as potential
time windows that need to be satisfied. Especially when the number of
parcels and the number of crowd-shippers is high, finding the optimal
matching is challenging, yet important to optimize the service level.
Another major challenge that can complicate matching problems is
stochasticity in demand (i.e., uncertainty in destination, quantity, and
time window) as well as supply (the full itinerary of crowd-shippers is
uncertain until they communicate it).

When the origins and destinations of parcels are further apart than
those of potential crowd-shippers, finding matches that can directly
take the parcels from their origin to their destination can be diffi-
cult. Especially in bike-based or pedestrian-based crowd-shipping, the
two forms that are considered among the least polluting and with
the highest potential (i.e. lower value of time), crowd-shipper trips
are usually short whereas distances across the city can be long. In
vailable online 20 June 2024
305-0483/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.omega.2024.103134
Received 17 October 2023; Accepted 11 June 2024
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/omega
https://www.elsevier.com/locate/omega
mailto:patrick.stokkink@epfl.ch
mailto:jean-francois.cordeau@hec.ca
mailto:nikolas.geroliminis@epfl.ch
https://doi.org/10.1016/j.omega.2024.103134
https://doi.org/10.1016/j.omega.2024.103134
http://crossmark.crossref.org/dialog/?doi=10.1016/j.omega.2024.103134&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Omega 128 (2024) 103134P. Stokkink et al.
this paper, we consider multi-stage deliveries where parcels can be
transported from their origin to their destination in multiple stages
and with multiple crowd-shippers. That is, parcels can be stored at
intermediate transfer points by a crowd-shipper, from where they can
be picked up by another crowd-shipper later. We construct a detailed
compensation scheme for crowd-shippers and we consider that crowd-
shippers can carry multiple non-identical parcels at the same time. We
design a path-based approach that allows us to solve significantly larger
instances compared to those considered in the literature. We develop a
column-generation approach that allows us to solve realistic instances
of the problem in a reasonable amount of time.

Practical applications of this work can be found in urban last-mile
delivery systems. Crowd-shippers can access parcel lockers through
a mobile application to pick up or drop off a parcel. Through the
same mobile application, they can announce their itinerary which a
central operator can then use to determine the assignment of parcels to
crowd-shippers and with this the routing of parcels from their origin
to their destination. Such a system is therefore easily accessible to
crowd-shippers, making participation more appealing.

The rest of this paper is organized as follows. In Section 2 we
provide an overview of the relevant literature and highlight the con-
tribution of this paper. In Section 3 we provide a formal definition of
the problem at hand and in Section 4 we propose a column genera-
tion approach to solve the problem. We describe the case study and
the experimental results in Section 5 and we conclude the paper in
Section 6.

2. Literature review

The literature on crowd-shipping as a last-mile delivery option has
been growing rapidly over the last few years. For a review of the
current practice, academic research, and empirical case studies, the
reader is referred to Le et al. [5]. Pourrahmani and Jaller [4] study the
characteristics of crowd-shipping platforms and provide an overview
of operational challenges and research opportunities. Alnaggar et al.
[6] review management decisions and platform characteristics that are
studied in the literature and compare those to real-world applications.
Earlier works on crowd-shipping consider direct deliveries from a depot
to the customer, often in parallel with regular drivers in traditional de-
livery vehicles. A common way to model this is by extending the vehicle
routing problem with occasional drivers [7,8]. In larger networks and
when potential crowd-shippers perform relatively short trips compared
to the origin–destination distance of parcels (i.e., in biker-based or
pedestrian-based crowd-shipping), direct deliveries can considerably
restrict the service level of such a system. Chen et al. [9] show that
using relays in a reverse logistics system can substantially increase the
number of successful deliveries.

The literature on crowd-shipping with transfers can be roughly
divided into two types of transshipments. On the one hand, there
are transfers between crowd-shippers and another mode of transport,
usually traditional delivery vehicles [10]. Such transfers are commonly
modeled as two-echelon systems [11]. Kafle et al. [12] consider crowd-
shippers performing first-leg pickups or last-leg deliveries, with relays
to trucks performing the middle leg. Several variants of the two-echelon
delivery system with crowd-shippers have been introduced, such as
mobile satellites [13], parcel lockers [14,15] and delivery options [16].
Others have considered two-echelon systems with transfers to mobile
depots [17] and public transport [18] rather than a traditional delivery
vehicle.

On the other hand, there are transfers among the crowd-shippers
themselves. Our work can be classified in this second type of litera-
ture. This can again be divided into two groups of studies. One with
transfers taking place at dedicated transfer locations with, for example,
parcel lockers [19] and one with time-synchronized transfers, where
parcels are transferred directly from one crowd-shipper to another and
cannot be left unattended [20]. The latter is highly similar to what
2

is classified by Agatz et al. [21] as multi-hop ride-sharing. Multi-hop
ride-sharing has received considerably more attention [22–26]. We also
note the similarity with public transport modeling, where passengers
can make stops and transfers when traveling through a public transport
network [27]. The most important difference between multi-hop ride-
sharing and multi-stage crowd-shipping is the fact that passengers incur
opportunity costs when making detours and transfers and when they
are waiting at transfer points. Parcels, on the other hand, are more
flexible and can make large detours with various transfers as long as
they arrive on time.

Chen et al. [20] allow for transfers between crowd-shippers but
require time synchronization such that parcels are directly passed on
from one to another crowd-shipper. In their approach, a parcel cannot
be left unattended. Sampaio et al. [28] consider a crowd-shipping
system with a single transfer at a dedicated transfer point, where
parcels can be stored temporarily. As their crowd-shippers do not have
predetermined paths, their problem is similar to a pickup and delivery
problem with transfers [29,30]. The itinerary of crowd-shippers is
considered by Voigt and Kuhn [31], but they do not consider time
windows for crowd-shippers nor parcels. Such a system is clearly less
attractive for potential crowd-shippers that wish to deliver a parcel
during their commute, where time windows are imposed. Such a system
is considered by Yıldız [32], who develop a dynamic programming
approach to solve their problem. The authors later extend this problem
by considering stochasticity in demand [33]. Their crowd-shippers are
inflexible and do not deviate from their routes. As a result, crowd-
shippers are paid a fixed compensation. Raviv and Tenzer [19] consider
compensations for stopping and handling. In their work, they assume
Poisson arrivals of occasional couriers, that have a predetermined
sequence of transfer points that they will visit. Based on this assump-
tion, they use a stochastic dynamic programming algorithm to find an
optimal policy. Nieto-Isaza et al. [34] take a strategic perspective and
focus on finding the optimal locations for mini-depots that function as
transshipment points. Pugliese et al. [35] consider transfers between
two types of crowd-shippers: long-distance crowd-shippers and short-
distance crowd-shippers in an urban area. Thanks to this classification,
they can more easily model transfers. Our work lies at the intersection
of these two subgroups, as our methods allow to consider transfers at
dedicated transfer locations as well as time-synchronized transfers.

We model our problem using paths through a network. A common
approach to solve such a path-based formulation is to use column
generation [36]. Column generation has been used in a broad set of
applications [37], among which are several variants of the pickup-
and-delivery problem [38,39]. In the crowd-shipping literature, column
generation has been used by Torres et al. [40] to solve a vehicle rout-
ing problem with a stochastic supply of crowd-shippers. The authors
also use column generation to solve a crowd-shipping problem with
stochastic destinations [41]. This approach allows us to consider only
feasible paths and partially relegate the intricate interactions between
parcels and crowd-shippers to the subproblem. In this way, our method
is highly scalable, allowing us to solve significantly larger problems
than those considered in the literature.

In this work, we propose a general framework that allows the
incorporation of both time-synchronized transfers as well as transfers
with intermediate storage at transfer points. To the best of our knowl-
edge, this is the first model that can capture both types of transfers
simultaneously. In addition to this, we consider the original itinerary
of crowd-shippers including their departure times, but we consider
some flexibility in their routing decisions. This makes crowd-shipping
accessible to daily commuters. On top of this, we consider a detailed
compensation scheme for crowd-shippers, which includes rewards for
stops, detours, and the inconvenience of carrying a parcel for a longer
distance. Furthermore, we consider heterogeneous crowd-shippers and
parcels. We propose a column-generation approach to solve our prob-
lem. Our results are evaluated on a realistic large-scale case study in

the city of Washington DC.

Omega 128 (2024) 103134P. Stokkink et al.

r

3. Problem description and formulation

In Section 3.1 we introduce the main concepts and notation used in
the paper before providing a mathematical formulation of the problem
in Section 3.2.

3.1. Concepts and notation

We consider a set 𝑃 of parcels that make up the considered demand
equests. Every parcel 𝑝 ∈ 𝑃 has an origin 𝑜𝑝, a destination 𝑑𝑝 and

a delivery time window [𝑒𝑝, 𝑙𝑝], where 𝑒𝑝 is the earliest delivery time
and 𝑙𝑝 is the latest. Every delivered parcel 𝑝 generates revenue, which
can vary between parcels, and is denoted by 𝜌𝑝. The set 𝐶 contains all
(potential) crowd-shippers. Every crowd-shipper 𝑐 ∈ 𝐶 has an origin
𝑜𝑐 , a destination 𝑑𝑐 , and a trip starting time at 𝑡𝑐 . Crowd-shippers may
be willing to deviate from their shortest path with a maximal detour of
𝜏𝑐 . The detour can be measured either in units of distance or units of
time.

Definition 1. A route is the trajectory a crowd-shipper traverses to
get from his/her origin to his/her destination. The route may either be
the shortest path between origin and destination or may deviate from
this shortest path with a maximal detour of 𝜏𝑐 .

In this work, we consider a static assignment problem where all
parcels and crowd-shippers are known when matching and routing de-
cisions are made. Such settings are realistic when considering next-day
delivery (such that all parcel requests are known) and if crowd-shippers
are required to sign up their commute to the system a day in advance.
Dynamic systems where crowd-shippers are able to sign up during
the day require (re-)scheduling in a rolling-horizon framework that
captures the stochastic arrivals of crowd-shippers. Such a system is
outside the scope of this work, but constitutes an important direction
of future research.

Based on their route, a crowd-shipper 𝑐 is able to execute a set
of delivery segments 𝑆𝑐 . Fig. 1 illustrates a network with a crowd-
shipper traveling from 𝐴 to 𝐷 with its original path, marked in green,
being 𝐴 → 𝐵 → 𝐷. The crowd-shipper can also travel through the
blue path 𝐴 → 𝐵 → 𝐶 → 𝐷 within his maximum detour. Based
on these two paths, the list of segments for this crowd-shipper is:
[𝐴𝐵,𝐴𝐶,𝐴𝐷,𝐵𝐶,𝐵𝐷,𝐶𝐷]. Based on the crowd-shipper’s start time, we
can compute the time at which the crowd-shipper starts the segment,
which is given by 𝑡𝑠. A segment also has an origin 𝑜𝑠 and a destination
𝑑𝑠. A crowd-shipper 𝑐 ∈ 𝐶 is rewarded 𝑤𝑐𝑠 for traversing a segment
𝑠 ∈ 𝑆𝑐 . This cost is made up of three components:

1. A fixed compensation 𝛼1𝑐 for the inconvenience of pickup and
delivery;

2. A variable compensation based on the detour crowd-shipper 𝑐 ∈
𝐶 makes to perform the delivery on segment 𝑠 ∈ 𝑆𝑐 , denoted by
𝛼2𝑐 ⋅ 𝑑𝑒𝑡𝑐𝑠;

3. A variable compensation based on the time/distance spent car-
rying the parcel, which is equal to the length of the segment and
denoted by 𝛼3𝑐 ⋅ 𝑙𝑒𝑛𝑠.

Using this compensation scheme, a crowd-shipper receives a fixed
compensation for every parcel carried, and a variable compensation
proportional to the effort they put in. This depends on the detour they
make from their original path and the total time spent carrying this
parcel. If the same crowd-shipper carries more than one parcel, they
receive full compensation for each of these parcels.

Definition 2. A segment is a part of a crowd-shipper’s route between
two nodes in the network during which he/she can carry a parcel.
Every segment corresponds to a unique crowd-shipper and has an origin
and destination node and a start time at which the crowd-shipper
commences with traversing the segment. The origin and destination
of the segment may differ from the origin and destination of the
3

crowd-shipper.
A parcel can be transferred between crowd-shippers at a set 𝐻 of
transfer points or transfer hubs. After the parcel is dropped off at the
transfer point by a crowd-shipper, the next crowd-shipper can pick up
the parcel at least 𝛥𝑚𝑖𝑛 time units later (a safety margin) and at most
𝛥𝑚𝑎𝑥 time units later (to avoid the parcel staying at the hub for too
long). We note that by choosing the set 𝐻 of points to be arbitrarily
large and 𝛥𝑚𝑎𝑥 arbitrarily small, this corresponds to direct transfers
where parcels are handed directly from one crowd-shipper to another.
Otherwise, parcel lockers need to be present at transfer hubs for crowd-
shippers to temporarily store the parcels. Generally, this may differ
across transfer points ℎ ∈ 𝐻 and we allow 𝛥𝑚𝑖𝑛

ℎ and 𝛥𝑚𝑎𝑥
ℎ to vary.

The objective is to maximize the profit consisting of the revenue
for delivered parcels minus the costs of paying crowd-shippers. For
this, we determine the optimal matching of parcels to crowd-shippers.
Specifically, for the multi-stage delivery problem, we determine the
exact path a parcel traverses from its origin to its destination. This
path may be direct or through transfer points and by using multiple
crowd-shippers. To this end, we define the concept of a parcel path.

Definition 3. A parcel path is the trajectory a parcel traverses to
get from its origin to its destination. A parcel path is made up of one
or more segments that a parcel travels with a crowd-shipper. Between
segments, a parcel is stored at a transfer point.

In the next section, we give a formulation of the problem based on
this concept of parcel paths. The approach we take to solve the problem
is described in Section 4.

3.2. Mathematical formulation

We first give a full formulation of the problem described above.
This is a path-based formulation that maximizes the revenue collected
by parcel deliveries minus the costs of crowd-shipper compensation.
The full set of parcel paths is denoted by 𝐾, where 𝐾𝑝 is the set of
parcel paths that correspond to parcel 𝑝 ∈ 𝑃 . Only feasible parcel
paths (i.e., paths that are fully connected and time-synchronized, and
for which the time windows of the delivery are satisfied) are included
in the set 𝐾. The binary decision variable 𝑥𝑘 is equal to 1 if parcel path
𝑘 ∈ 𝐾 is selected and 0, otherwise. We define 𝑎𝑐𝑘 as a binary parameter
that is equal to 1 if crowd-shipper 𝑐 ∈ 𝐶 is involved in parcel path 𝑘 ∈
𝐾. For completeness, we also introduce binary parameter 𝑏𝑐𝑠𝑘, which is
equal to 1 if crowd-shipper 𝑐 ∈ 𝐶 contributes to parcel path 𝑘 ∈ 𝐾 by
performing segment 𝑠 ∈ 𝑆𝑐 and 0 otherwise. Although this parameter
is only indirectly part of the formulation of the problem through the
defined profit of a parcel, it is required for the solution approach.
Clearly, following the definition of a segment, 𝑎𝑐𝑠 =

∑

𝑠∈𝑆𝑐
𝑏𝑐𝑠𝑘.

The profit of a parcel path 𝑘 ∈ 𝐾𝑝 is defined as 𝜋𝑘 and is defined as
follows:

𝜋𝑘 = 𝜌𝑝 −

[

∑

𝑐∈𝐶
𝑎𝑐𝑘𝛼

1
𝑐 +

∑

𝑐∈𝐶

∑

𝑠∈𝑆𝑐

𝑏𝑐𝑠𝑘(𝛼2𝑐 𝑑𝑒𝑡𝑐𝑠 + 𝛼3𝑐 𝑙𝑒𝑛𝑠)

]

. (1)

Here, the first term captures the revenue obtained by delivering
the parcel 𝑝 corresponding to the column 𝑘 ∈ 𝐾𝑝. We emphasize
that incorporating the cost of unsatisfied demand is equivalent to
the lost revenue of delivery. The second and third term capture the
compensation scheme defined in Section 3.1. The second term is the
fixed price paid to a crowd-shipper for making a delivery. This does
not depend on the segment and therefore only uses parameter 𝑎𝑐𝑘. The
third term is a variable cost paid to a crowd-shipper which depends on
the segment and is therefore based on 𝑏𝑐𝑠𝑘. This term captures the cost
per unit of detour and cost per unit traveled with a parcel.

The formulation of the problem is as follows:

max
∑

𝑝∈𝑃

∑

𝑘∈𝐾𝑝

𝜋𝑘𝑥𝑘 (2)

∑

𝑥𝑘 ≤ 1 ∀𝑝 ∈ 𝑃 (3)

𝑘∈𝐾𝑝

Omega 128 (2024) 103134P. Stokkink et al.

l

𝑘

E
s
t
w
m

4

e
c
n
e
v
a
e
a
t
m
s
a
v
n
s
s
d
w
f
g
(

p
u

4

m
c
f
t
c
T
v

Fig. 1. Illustration of a crowd-shipper traveling from 𝐴 to 𝐷 that can perform segments: 𝐴𝐵,𝐴𝐶,𝐴𝐷,𝐵𝐶,𝐵𝐷,𝐶𝐷. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)
d

∑

∈𝐾
𝑎𝑐𝑘𝑥𝑘 ≤ 1 ∀𝑐 ∈ 𝐶 (4)

𝑥𝑘 ∈ B ∀𝑘 ∈ 𝐾. (5)

The objective (2) is to maximize the total profit. By substituting
q. (1) we observe the dependency on parameters 𝑎𝑐𝑠 and 𝑏𝑐𝑠𝑘. Con-
traints (3) ensure that every parcel is delivered at most once and
herefore only one parcel path can be selected among those associated
ith that parcel. Constraints (4) ensure that a crowd-shipper is used at
ost once.

. Methodology

We solve the problem using a column generation approach, where
very column is a unique parcel path. A column generation approach is
ommonly used for routing and path-planning problems where the total
umber of routes or paths is exponentially large. For example, Archetti
t al. [42] use a column generation approach for the split-delivery
ehicle routing problem, Faiz et al. [43] use a column generation
pproach for vehicle scheduling and routing problems, and Borndörfer
t al. [44] use a column generation approach for line planning in
public transport system. In the master problem, parcel paths from

he current set of columns �̄� are selected to maximize revenue and
inimize operational costs, by solving the LP relaxation of the Re-

tricted Master Problem (RMP). In the pricing problem, new columns
re generated that improve the current solution, based on the dual
ariables of the constraints of the last iteration of the LP. Finally, when
o more columns with positive reduced cost are found the optimal
olution to the LP is obtained. We then obtain an integer solution by
olving the IP with the last set of obtained columns. We note that this
oes not guarantee the optimality of the IP solution. An exact method
ould require embedding the column generation in a branch-and-price

ramework. However, in our computational experiments, the optimality
ap of the IP and LP objectives indicates that the obtained solutions are
near) optimal.

The master problem is described in Section 4.1 and the pricing
roblem is described in Section 4.2. The shortest path problem that is
sed to solve the pricing problem is described in Section 4.3.

.1. Master problem

The formulation of the master problem closely resembles the for-
ulation in Section 3.2. In the master problem, we select the best

olumns from the current set �̄� that maximize the obtained revenue
rom delivering parcels minus the costs of crowd-shippers. In addition
o the total set of columns, we define �̄�𝑝 as the set of columns that
orrespond to parcel paths of parcel 𝑝 ∈ 𝑃 . It follows that ⋃𝑝∈𝑃 �̄�𝑝 = �̄�.
he formulation of the master problem is as follows, with the dual
ariables of the constraints in parentheses.

max
∑

𝑝∈𝑃

∑

𝑘∈�̄�𝑝

𝜋𝑘𝑥𝑘 (6)

∑

𝑥𝑘 ≤ 1 ∀𝑝 ∈ 𝑃 (𝑣𝑝) (7)
4

𝑘∈�̄�𝑝
∑

𝑘∈�̄�

𝑎𝑐𝑘𝑥𝑘 ≤ 1 ∀𝑐 ∈ 𝐶 (𝑢𝑐) (8)

𝑥𝑘 ∈ B ∀𝑘 ∈ �̄�. (9)

4.2. Pricing problem

We extend the set of columns in the RMP by finding columns with
positive reduced cost. The reduced cost for a new column 𝑘 ∈ 𝐾 ⧵ �̄� is
efined as 𝑟𝑘 and it can be computed as:

𝑟𝑘 = 𝜋𝑘 − 𝑣𝑝 −
∑

𝑐∈𝐶
𝑢𝑐𝑎𝑐𝑘. (10)

We can rewrite this by substituting 𝜋𝑘 from Eq. (1), as follows:

𝑟𝑘 = 𝜌𝑝 −
∑

𝑐∈𝐶
𝑎𝑐𝑘𝛼

1
𝑐 −

∑

𝑐∈𝐶

∑

𝑠∈𝑆𝑐

𝑏𝑐𝑠𝑘(𝛼2𝑐 𝑑𝑒𝑡𝑐𝑠 + 𝛼3𝑐 𝑙𝑒𝑛𝑠) − 𝑣𝑝 −
∑

𝑐∈𝐶
𝑢𝑐𝑎𝑐𝑘. (11)

We can then rewrite this by grouping together similar terms:

𝑟𝑘 = (𝜌𝑝 − 𝑣𝑝) −
∑

𝑐∈𝐶
𝑎𝑐𝑘(𝑢𝑐 + 𝛼1𝑐) −

∑

𝑐∈𝐶

∑

𝑠∈𝑆𝑐

𝑏𝑐𝑠𝑘(𝛼2𝑐 𝑑𝑒𝑡𝑐𝑠 + 𝛼3𝑐 𝑙𝑒𝑛𝑠). (12)

Recall that 𝑎𝑐𝑠 =
∑

𝑠∈𝑆𝑐
𝑏𝑐𝑠𝑘 and that the total compensation paid to a

crowd-shipper is denoted by 𝑤𝑐𝑠. We can further simplify the definition
of the reduced cost as follows:

𝑟𝑘 = (𝜌𝑝 − 𝑣𝑝) −
∑

𝑐∈𝐶

∑

𝑠∈𝑆𝑐

𝑏𝑐𝑠𝑘(𝑢𝑐 + 𝛼1𝑐 + 𝛼2𝑐 𝑑𝑒𝑡𝑐𝑠 + 𝛼3𝑐 𝑙𝑒𝑛𝑠) (13)

𝑟𝑘 = (𝜌𝑝 − 𝑣𝑝) −
∑

𝑐∈𝐶

∑

𝑠∈𝑆𝑐

𝑏𝑐𝑠𝑘(𝑢𝑐 +𝑤𝑐𝑠). (14)

From Eq. (14) it is clear that finding a column with positive reduced
cost can be decomposed over the parcels. For every parcel, we search
the parcel path with the highest reduced cost (if any column with
positive reduced cost exists). This is done by finding the best crowd-
shippers and segments to constitute a feasible path from origin to
destination. This path has to satisfy basic flow constraints as well as
timing restrictions to ensure that a parcel can only be picked up after
it is delivered. As the problem is separated over parcels, the term 𝜌𝑝−𝑣𝑝
is fixed. Finding a path with maximal reduced costs is then equivalent
to minimizing ∑

𝑐∈𝐶
∑

𝑠∈𝑆𝑐
𝑏𝑐𝑠𝑘(𝑢𝑐 + 𝑤𝑐𝑠). This means that finding the

positive reduced cost path is equivalent to solving the shortest path
problem.

We consider a layered procedure for the pricing problem where
direct, indirect paths with a single transfer, and indirect paths with mul-
tiple transfers are considered separately. This procedure is presented in
Algorithm 1. First, direct paths are generated. Direct paths constitute
a simple match of a crowd-shipper to a parcel. Here, the feasibility
with respect to time windows and location needs to be verified and the
costs are computed. Thereafter, indirect paths are generated. Although
slightly more difficult due to time and location synchronization at the
transfer, this can still be done by simply enumerating for every parcel
all crowd-shippers that can pick up and all crowd-shippers that can
deliver the parcel. Finally, we consider multi-stage deliveries by solving
a shortest-path problem. As the number of transfers is not fixed, this
is more complicated and discussed in detail in the remainder of this

section.

Omega 128 (2024) 103134P. Stokkink et al.

t

p
t
a
f

i
a

Fig. 2. Conversion from network with 1 parcel and 5 crowd-shippers, each with a maximum detour of 0, to a graph for the pricing problem. (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this article.)
This layered procedure has two main benefits. First, solving the
ricing problem for direct delivery and indirect delivery with one
ransfer is computationally much faster. For a direct delivery, finding

column with a positive reduced cost only requires going over all
easible matches of crowd-shippers and parcels, which can be done in
(|𝑃 ||𝐶|). For an indirect delivery with one transfer, a similar approach

s used where every crowd-shipper is considered twice (once for pickup
nd once for delivery), which can be done in (|𝑃 ||𝐶|

2). Therefore,
the column generation algorithm can be warm-started first for direct
deliveries and then also for indirect deliveries with one transfer, before
considering the computationally more expensive multi-stage deliveries.
The second benefit is that, by considering multi-stage deliveries sepa-
rately, the shortest path problem and the corresponding graph can be
fully adapted to this type of delivery and therefore improve the speed
of the algorithm.
Algorithm 1: Layered procedure for pricing problem
1 for every parcel 𝑝 ∈ 𝑃 do
2 Generate a direct path with positive reduced costs.
3 Compute �̄�; the maximum reduced cost across all generated

paths
4 if �̄� ≤ 0 then
5 for every parcel 𝑝 ∈ 𝑃 and every pickup segment 𝑠 ∈ 𝑁𝑝 do
6 Generate an indirect path with one transfer with

positive reduced costs.
7 Compute �̄�; the maximum reduced cost across all generated

paths
8 if �̄� ≤ 0 then
9 for every parcel 𝑝 ∈ 𝑃 and every pickup segment 𝑠 ∈ 𝑁𝑝 do
10 Generate an indirect path with positive reduced

costs, by solving the shortest path problem.

11 Add all generated paths with positive reduced costs to �̄�

4.3. Shortest path algorithm — Graph construction

To solve the shortest path problem, a graph is constructed based
on the movement of crowd-shippers through the road network. An
5

example of such a graph is given in Fig. 2 and will be described below.
The road network with five potential crowd-shippers and one parcel
is depicted in Fig. 2(a) and the corresponding graph is depicted in
Fig. 2(b). The shortest path problem is solved on a directed graph where
nodes correspond to segments. Whenever a node is part of the shortest
path, the variable 𝑏𝑐𝑠𝑘 is equal to 1 and it is equal to 0 otherwise.
The cost of such a node is equal to 𝑢𝑐 + 𝑤𝑐𝑠, such that the length of
the shortest path corresponds to the second term of the reduced cost
in Eq. (14). An arc between two nodes exists if the two segments are
compatible, in the sense that one segment can be executed right after
the other. In Fig. 2(b), such an arc is depicted by a black arrow. An arc
between two nodes 𝑛1 and 𝑛2 exists if all of the following conditions
hold:

• The crowd-shipper of node 𝑛1 is different from the crowd-shipper
of node 𝑛2.

• The segment of node 𝑛1 ends at the same transfer point where the
segment of node 𝑛2 starts.

• The segment of node 𝑛1 finishes at least 𝛥𝑚𝑖𝑛 time units before and
at most 𝛥𝑚𝑎𝑥 time units after the segment of node 𝑛2 starts.

All existing arcs have a cost of zero, which means that the only cost
components are on the nodes. For the multi-stage delivery problem
we consider three types of nodes each corresponding to a type of
segment: pickup nodes/segments, dropoff nodes/segments and transfer
nodes/segments. We describe the properties of these nodes in detail
below, with the set of nodes of each type in parentheses. A feasible
parcel path starts with a pickup segment and ends with a dropoff
segment, possibly with one or more transfer segments in between. A
segment describes a part of the parcel path for which the parcel is
traveling with the same crowd-shipper.

1. Pickup nodes/segments (𝑁𝑃): A pickup segment represents
the initial pickup of the parcel from the origin location and
its delivery to a transfer point. A pickup node exists if the
origin of the segment coincides with the origin of the parcel and
the destination of the segment coincides with a transfer point.
Thereby, it only exists if the start time of the segment is later

Omega 128 (2024) 103134P. Stokkink et al.

T
d
d
t

P

than the earliest availability time of the parcel. A pickup node
has no incoming arcs. In the example in Fig. 2(b), the three
left-most nodes correspond to pickup nodes.

2. Dropoff nodes/segments (𝑁𝐷): A dropoff segment represents
the final delivery of the parcel from the last transfer point
to the destination of the parcel. A delivery node exists if the
destination of the segment coincides with the destination of the
parcel and the origin of the segment coincides with a transfer
point. Thereby, it only exists if the time window of the parcel is
satisfied. A dropoff node has no outgoing arcs. In the example
in Fig. 2(b), the single right-most node corresponds to a dropoff
node.

3. Transfer nodes/segments (𝑁𝑇): A transfer segment represents
the transfer of any parcel from one transfer point to another.
There are no restrictions on location or time for the existence of
a transfer node.

We emphasize that although pickup and dropoff nodes are parcel-
specific, due to origins, destinations, and time windows, transfer nodes
are not. Therefore, transfer nodes are only added once, whereas pickup
and dropoff segments may be repeated for multiple parcels that are
similar.

4.4. Modified Dijkstra’s algorithm

To find the column to add to the master problem for every parcel,
we aim to find the shortest path between any pickup segment and any
dropoff segment. We do this by applying a modified version of Dijkstra’s
shortest path algorithm tailored to fit well the specifics of our problem.
As Dijkstra’s algorithm can find the shortest path from a source node to
any node in the graph, we apply the shortest path problem |𝑁𝑃 | times.
The column with the highest reduced cost (if any column with positive
reduced cost exists) is added to the master problem and this is repeated
for every parcel.

Dijkstra’s algorithm takes as an input a set of nodes and an adja-
cency matrix which defines the arcs between the nodes. We observe
that the full graph does not change between iterations and can therefore
be pre-computed once. Then, at each call to the pricing problem, only
the costs on the nodes are updated according to the dual variables. The
details on the algorithm are described in Algorithm 2. The algorithm
enforces all constraints that hold between nodes through the adjacency
matrix, as these constraints are transitive. The only exception to this
is that two segments belonging to the same crowd-shipper may be
included in the shortest path, as long as at least one other segment
is in between. This constraint is not enforced as a hard constraint
as this would make the problem resource-constrained. However, by
construction of our problem, such paths are never feasible if 𝛥𝑚𝑖𝑛 > 0.
As a crowd-shipper will leave directly after dropping off the parcel,
whereas a parcel can only be transferred after 𝛥𝑚𝑖𝑛 time units, the
crowd-shipper will arrive at the next transfer point at least 𝛥𝑚𝑖𝑛 time
units before the parcel arrives with another crowd-shipper. As crowd-
shippers never wait for a parcel to become available in our framework,
these paths are implicitly eliminated.

The algorithm is initialized by marking all nodes as unvisited (Line
5) and setting the distance to each node at infinity, except the source
node (Line 6). The next node to be visited is the one with minimal
distance (Line 8). In our modified version of Dijkstra’s algorithm we
have an additional termination criterion. In Line 11, the algorithm is
terminated because there exist no remaining unvisited nodes that can
be visited through a feasible path from the source node. In Line 13, we
skip the for-loop in Lines 14–16 whenever the current node is in 𝑁𝐷
as this is by definition the last node on a path and therefore cannot be
on the shortest path to another node. Otherwise, the distances to all
unvisited nodes are updated in Lines 14–16.

In addition to the modifications to Dijkstra’s algorithm, more com-
putational enhancements are made to improve the speed of the algo-
rithm. We consider three enhancements that allow to retain the opti-
mality of the algorithm and one enhancement that does not guarantee
6

optimality.
Algorithm 2: Modified Dijkstra’s Algorithm
1 Input: A set of nodes 𝑁 = 𝑁𝑃 ∪𝑁𝐷 ∪𝑁𝑇 with their costs 𝑐(𝑛)

for all 𝑛 ∈ 𝑁
2 Input: For every node 𝑛 ∈ 𝑁 , a set of neighboring nodes 𝐴(𝑛)
3 Input: A source node 𝑠
4 Output: A set of shortest paths from source node 𝑠 ∈ 𝑁𝑃 to all

nodes in 𝑁𝐷
5 Mark all nodes as unvisited: 𝑣𝑖𝑠𝑖𝑡(𝑛) → false
6 Set the shortest distance to each node at 𝑑𝑖𝑠𝑡(𝑛) → ∞, except

for the source node which is set to 𝑑𝑖𝑠𝑡(𝑠) → 𝑐(𝑠)
7 while Not all nodes are visited do
8 Find node 𝑞− as the unvisited node with minimal 𝑑𝑖𝑠𝑡(𝑞−)
9 Set 𝑣𝑖𝑠𝑖𝑡(𝑞−) → true
10 if 𝑑𝑖𝑠𝑡(𝑞−) = ∞ then
11 return shortest paths
12 if 𝑞− ∈ 𝑁𝐷 then
13 continue to next node
14 for 𝑞+ ∈ 𝐴(𝑞−) do
15 if 𝑣𝑖𝑠𝑖𝑡(𝑞+) = false and 𝑑𝑖𝑠𝑡(𝑞−) + 𝑐(𝑞+) < 𝑑𝑖𝑠𝑡(𝑞+) then
16 𝑑𝑖𝑠𝑡(𝑞+) → 𝑑𝑖𝑠𝑡(𝑞−) + 𝑐(𝑞+)

17 return shortest paths

4.4.1. Removing suboptimal nodes and arcs
For some nodes and arcs, we can immediately see that they will

not be part of the shortest path because the cost on the node is too
high or the joint costs of two nodes connected by an arc is too high.
Propositions 1 and 2 identify several of these cases where nodes and
arcs can be eliminated from the graph. This also leads to identifying
parcels for which the pricing problem does not need to be solved
because no column with positive reduced cost exists for that parcel.
By eliminating nodes and arcs, the size of the graph can be reduced,
which improves the speed of the shortest path algorithm.

Proposition 1 (Disregarding Nodes). Let 𝜌 = min𝑝∈𝑃 𝜌𝑝 and 𝑤 =
min𝑐∈𝐶,𝑠∈𝑆𝑐

𝑤𝑐𝑠. A parcel 𝑝 ∈ 𝑃 can be disregarded if 𝜌𝑝 − 𝑣𝑝 − 2𝑤 ≤ 0.
he corresponding pickup and dropoff segments (nodes) can then also be
isregarded. A segment (node) 𝑠 ∈ 𝑆𝑐 of crowd-shipper 𝑐 ∈ 𝐶 can be
isregarded if 𝜌 − 𝑢𝑐 − 𝑤𝑐𝑠 − 𝑤 ≤ 0 or 𝜌 − 𝑢𝑐 − 𝑤𝑐𝑠 − 2𝑤 ≤ 0 if 𝑠 is a
ransfer segment (node).

roposition 2 (Disregarding Arcs). Let 𝜌 = min𝑝∈𝑃 𝜌𝑝 and 𝑤 =
min𝑐∈𝐶,𝑠∈𝑆𝑐

𝑤𝑐𝑠. An arc between two nodes 𝑠1 ∈ 𝑆𝑐1 of crowd-shipper
𝑐1 ∈ 𝐶 and 𝑠2 ∈ 𝑆𝑐2 of crowd-shipper 𝑐2 ∈ 𝐶 can be disregarded if
𝜌− 𝑢𝑐1𝑤𝑐1𝑠1 − 𝑢𝑐2𝑤𝑐2𝑠2 ≤ 0 or 𝜌− 𝑢𝑐1𝑤𝑐1𝑠1 − 𝑢𝑐2𝑤𝑐2𝑠2 −𝑤 ≤ 0 and either 𝑠1
or 𝑠2 is a transfer segment.

As we consider multi-stage deliveries, a parcel path consists of at
least two segments (i.e., a pickup and a dropoff segment). In case the
considered segment is a transfer segment, there are at least two other
segments involved. Using this property, the proof of these propositions
is straightforward.

4.4.2. Constructing several smaller subgraphs
The nodes of the considered graph of the shortest path problem

are partitioned into three categories: pickup nodes (𝑁𝑃), dropoff nodes
(𝑁𝐷) and transfer nodes (𝑁𝑇). Transfer nodes are independent of the
specific parcels and only depend on crowd-shippers’ itineraries. Pickup
and dropoff nodes, for their part, depend on the specific parcel through
the origin, destination and delivery time window. Constructing separate
graphs, hereafter referred to as subgraphs, that only include a part of
the pickup and dropoff nodes can solve memory issues, at the cost of a
slight increase in computation time. Transfer nodes, finally, need to be
included in every subgraph to guarantee the optimality of the solution.

Omega 128 (2024) 103134P. Stokkink et al.

a
n
s
m
t
i
f

4

t
i
r
D
n
F
h
t
o
w
c

𝑠
s
i

𝑘

b
t
t
o
b
p
f
t
T
c
F
a
t
m

p
i

𝑟

𝛿
p
p
c
t
∑

t
𝑠
a

4

t
c
t
s
t
c
m
f

𝑘

a
a
l
a

We consider a fraction 𝜂 ∈ (0, 1] of the parcels that are included in a
subgraph. This means that 1∕𝜂 subgraphs are constructed for which the
pricing problems are solved separately. Basically, the value of 𝜂 forms

trade-off between time-savings and memory-savings, as well as the
umber of subgraphs and the size of those subgraphs. When 𝜂 is small,
ubgraphs are small and therefore do not lead to memory issues, but
any subgraphs need to be constructed at the cost of extra computation

ime. When 𝜂 is large, subgraphs are larger, which may lead to memory
ssues, but fewer subgraphs need to be constructed which is generally
aster.

.4.3. Randomly removing highly similar nodes
Whereas the aforementioned enhancements improve the speed of

he algorithm and reduce the memory consumption without jeopardiz-
ng optimality, we now turn to a method that can very successfully
educe the size of the graph but can no longer guarantee optimality.
ue to the nature of our problem, many of the segments (and therefore
odes in the graph) are highly similar and therefore likely unnecessary.
or example, many transfer segments between the same two transfer
ubs may exist, but with different crowd-shippers at slightly different
imes. For this reason, many of those nodes can be removed with-
ut influencing optimality. However, as we do not know in advance
hether such a node will be in a shortest path or not, optimality

an no longer be guaranteed. We maintain a fraction 𝜁 ∈ [0, 1) of
the nodes in the graph and remove the other 1 − 𝜁 (and the arcs
connected to those nodes). These nodes are selected randomly and
with equal probability. As this is repeated at every iteration of the
column generation algorithm, different nodes can be removed across
iterations. This limits the influence on optimality, yet maintains the
goal of reducing the size of the graph.

4.5. Locker and shipper capacity

So far, we have assumed that lockers have an infinite capacity and
that crowd-shippers can only carry a single parcel. In this section,
we relax those assumptions and extend the formulation accordingly.
This will come at the cost of increased complexity in both the mas-
ter problem and the pricing problem but will lead to more realistic
solutions.

4.5.1. Shipper capacity
Instead of assuming that a crowd-shipper can only make a single

delivery, we now relax this assumption and allow crowd-shippers to
make multiple deliveries. We assume that crowd-shippers only perform
multiple pickups and deliveries if they involve the exact same itinerary.
That is, a crowd-shipper may carry multiple parcels at the same time,
but only if they are picked up and delivered at the exact same stations.
The reason for this is that significant effort is involved with every
pickup and delivery (i.e., stopping at a locker, collecting or storing
the parcel and continuing the journey). Whereas this can be largely
consolidated if the pickup and drop-off locations are the same for the
different items, this is not the case if these locations are different. We
denote the capacity of a crowd-shipper 𝑐 ∈ 𝐶 by 𝑄𝑐 .

To efficiently model the capacity, we duplicate every segment in
𝑆𝑐 a total of 𝑄𝑐 times. We redefine the set 𝑆𝑐 by introducing 𝑆𝑞

𝑐 with
1 ≤ 𝑞 ≤ 𝑄𝑐 as the 𝑞th copy of the set of segments and 𝑆𝑐 = ∪𝑄𝑐

𝑞=1𝑆
𝑞
𝑐 . For

the sake of notation, let 𝑠1 ∼ 𝑠2 denote the property that segments 𝑠1
and 𝑠2 are copies of each other and 𝑠1 ≁ 𝑠2 the fact that they are not
copies. Then, we reformulate problem (2)–(5) by replacing Constraints
(4) by the following set of constraints, which ensures the capacity of a
crowd-shipper:
∑

𝑘∈𝐾
𝑎𝑐𝑘𝑥𝑘 ≤ 𝑄𝑐 ∀𝑐 ∈ 𝐶 (𝑢𝑐). (15)

In addition to this, we add the following set of constraints to enforce
7

that only segments that are duplicates of each other are performed by c
the same crowd-shipper. A pair of segments that are not duplicates of
each other are deemed incompatible and columns that cannot be used
together because of such an incompatibility are part of an incompatible
set 𝐼 . The full collection of incompatible sets is denoted as crowd with
𝐼 ∈ crowd. Let 𝑏𝐼𝑘 be a binary parameter taking value 1 if parcel path
𝑘 uses a segment that is part of incompatible set 𝐼 , and 0 otherwise.
Basically, the set 𝐼 contains all paths that are incompatible because
they contain one of two incompatible segments 𝑠1 and 𝑠2 for which it
holds that 𝑠1 ∈ 𝑆𝑐 and 𝑠2 ∈ 𝑆𝑐 for some crowd-shipper 𝑐 ∈ 𝐶 and
1 ≁ 𝑠2. Every set 𝐼 , therefore, corresponds to a pair of incompatible
egments (𝑠1, 𝑠2). The following set of constraints is added to exclude
ncompatibilities, with dual variable 𝛿𝐼 for every constraint 𝐼 ∈ crowd:

∑

∈𝐾
𝑏𝐼𝑘𝑥𝑘 ≤ 1 ∀𝐼 ∈ crowd (𝛿𝐼). (16)

Instead of adding all constraints, which is computationally impossi-
le due to the large number of segments, we only add those constraints
hat are violated in the current solution. We can still guarantee op-
imality as satisfied constraints do not influence the solution or the
bjective function. Given that they are inactive, their dual variable is
y definition equal to 0 and therefore this also does not influence the
ricing problem. The procedure to identify violated constraints is as
ollows. We define in advance all possible combinations of segments
hat would constitute a violation. That is, we identify all possible 𝐼 ∈ .
hen, every time the master problem is solved, for all the newly added
olumns we verify whether they contain a segment that is in any 𝐼 ∈ .
or every violation 𝐼 ∈ we maintain the set of columns that contain
ny segment in this set. We note that the violation 𝐼 ∈ is only added
o the master problem if the corresponding set of columns contains
ore than one column.

The new reduced cost then looks as follows, where we identify if
arcel path 𝑘 contains a segment that makes it part of any of the
ncompatible sets 𝐼 ∈ :

𝑘 = 𝜋𝑘 − 𝑣𝑝 −
∑

𝑐∈𝐶
𝑢𝑐𝑎𝑐𝑘 −

∑

𝐼∈crowd
𝑏𝐼𝑘𝛿𝐼 . (17)

The pricing problem remains the same apart from an extra cost
𝐼 that is subtracted whenever the new column is part of an incom-
atible set. We emphasize that the computational complexity of the
ricing problem remains unchanged after the addition of the capacity
onstraint. Even though we duplicate the number of segments by
he capacity, only the duplicate segment 𝑠 with the lowest value of
𝐼∈crowd 𝑏𝐼𝑘𝛿𝐼 is considered in the pricing problem. The reason for

his is that the duplicate segments are identical. Therefore, a segment
′ with a higher sum of dual variables can never be in the shortest path,
s replacing it with segment 𝑠 would always reduce the cost of the path.

.5.2. Locker capacity
In our framework, we allow parcels to be stored in parcel lockers at

he transfer point. So far, we assumed that parcel lockers had infinite
apacity. Here, we limit the number of parcels that can be stored at a
ransfer point ℎ ∈ 𝐻 to be �̄�ℎ. Similar to the capacity of the crowd-
hippers, we identify sets of columns that are incompatible because
he capacity of a locker is exceeded at some point in time. The full
ollection of incompatible sets is denoted as locker. We adapt the
aster problem by adding the same set of constraints as in (16), but

or the new collection:
∑

∈𝐾
𝑏𝐼𝑘𝑥𝑘 ≤ 1 ∀𝐼 ∈ locker (𝛿𝐼). (18)

Again, we do not add all constraints at once but identify those that
re violated. The capacity of the transfer point needs to be considered
t every time interval. We only consider transfer points with transfer
ockers, as direct time-synchronized transfers do not need to be stored
nd therefore do not influence the capacity. To identify the violated

onstraints, we use the following procedure. For every transfer point,

Omega 128 (2024) 103134P. Stokkink et al.
we identify the parcel paths that store a parcel at this point. We sort
the parcel paths twice: once in ascending order of their arrival time
at the transfer point and once in ascending order of their departure
time from the transfer point. We start with an empty set of paths 𝑉 .
We then go over those events one by one in chronological order. Every
time an arrival is recorded, the parcel path is added to 𝑉 . Every time
a departure is recorded, the parcel path is removed from 𝑉 . Whenever
a parcel arrives that causes the cardinality of 𝑉 to exceed �̄�ℎ, we add
violation 𝐼 with 𝑏𝐼𝑘 = 1 for all 𝑘 ∈ 𝑉 and we store the time 𝑡𝐼ℎ at
which the violation occurs, which will later aid the pricing problem.
For every transfer point, we only add a single constraint and then re-
solve the master problem. This is repeated until no violated constraints
are encountered.

The reduced cost can then be computed as follows, where we
identify if a parcel path 𝑘 stores a parcel at transfer point ℎ at time
𝑡𝐼ℎ for any of the incompatibilities 𝐼 ∈ locker:

𝑟𝑘 = 𝜋𝑘 − 𝑣𝑝 −
∑

𝑐∈𝐶
𝑢𝑐𝑎𝑐𝑘 −

∑

𝐼∈crowd
𝑏𝐼𝑘𝛿𝐼 −

∑

𝐼∈locker
𝑏𝐼𝑘𝛿𝐼 . (19)

If this is the case, 𝑏𝐼𝑘 = 1 for the new parcel path. The pricing
problem can then be extended by exploiting the start and end times
of every segment. We recall that every node in the network discussed
in Section 4.2 corresponds to a segment. So far, a node corresponding to
a segment 𝑠 ∈ 𝑆𝑐 of crowd-shipper 𝑐 ∈ 𝐶 was attributed a cost 𝑢𝑐 +𝑤𝑐𝑠,
and no costs were attributed to arcs. Now, for an arc between two nodes
corresponding to segment 𝑠1 with end time 𝑡 and 𝑠2 with start time 𝑡
where 𝑑𝑠1 = 𝑜𝑠2 = ℎ a cost of 𝛿𝐼 is added for every 𝐼 ∈ locker for
which it holds that 𝑡 ≤ 𝑡𝐼ℎ ≤ 𝑡. We note that if an arc violates multiple
constraints, multiple dual variables can be added to the same arc.

5. Results

We describe the details of the case study and the parameter settings
in Section 5.1. In Section 5.2 we evaluate the performance of the al-
gorithm in terms of optimality gap and computation time. We evaluate
the effect of crowd-shipper capacity and locker capacity in Sections 5.4
and 5.5, respectively. Finally, we perform a sensitivity analysis on the
cost parameters in Section 5.6.

5.1. Case study

The city of Washington DC is used as a case study. We use data
on the spatial distribution of the population [45] and the movement
of individuals throughout the city based on bike-sharing users [46].
The bike-sharing system of Washington DC has over 500 stations and
4500 bikes, making it one of the largest in the USA. A selection of 240
stations are used in our case study. For this, all stations in the city
center have been selected combined with those in the closest suburbs
(mainly consisting of Georgetown and Columbia Heights). Bike-sharing
stations are considered as demand locations. This can either be through
parcel lockers or home delivery to an individual living arbitrarily close
to a station. Thereby, historical data on the movement of bike-sharing
users throughout the city is used to approximate the movement of
potential crowd-shippers.

The case study and the construction of the dataset are highly similar
to that of Stokkink and Geroliminis [47]. The main difference is that
the size of the network we consider in this work is more than three
times as large. Thereby, we consider time-dependent arrival rates of
crowd-shippers. For a detailed description of how the case study is
constructed, the reader is referred to their work. Fig. 3 displays a
bubble chart of the considered network, where the size of the bubble is
determined relative to the population around the corresponding station.
Whereas most commuters travel around Union Station, the Mall, and
the center of Washington DC, most people live in the suburbs and this is
therefore where demand is the highest. We note the large asymmetry in
supply and demand for a crowd-shipping system in an urban network,
8

Fig. 3. Bubble chart of bike-sharing stations, where the size of the bubble is determined
by the population in the area.

making our case study highly realistic. We emphasize that, although
our methodology is able to capture direct transfers from one crowd-
shipper to another, in this case study we only consider transfers where
the parcel is temporarily stored in a parcel locker. The reason for this
is that direct transfers can be subject to more practical issues regarding
privacy, security, and timeliness, which are outside the scope of this
work.

The baseline parameters used for the model and the column gen-
eration algorithm are given in Table 1. These parameters are used in
all numerical experiments, except for sensitivity analyses on these pa-
rameters. According to an analysis from American survey data in [48],
on average, crowd-shippers expect a compensation of 12$ per hour.
Considering 10 min to perform both the pickup and delivery, we set
𝛼1 = $2. Using an average bikers speed of 12 km/h, we set 𝛼3 = $1∕km,
which is similar to the value chosen by Le et al. [49]. Intuitively,
𝛼2 > 𝛼3 and therefore we set 𝛼2 = $2∕km. This is in line with
the findings of Rougès and Montreuil [50], who studied 26 crowd-
shipping businesses, that found the prices of intra-urban deliveries to
start between $4 and $10 plus additional charges for inconveniences
such as heavy loads and long distances. According to Le and Ukkusuri
[48], a traditional carrier charges $15 per parcel. To accommodate
distance aspects, we set the cost per parcel to a base cost of $10, which
can increase up to $15 with $2.00 per kilometer between the origin
and destination of the parcel. The maximum runtime of the algorithm
is set to 1800 s. The maximum runtime is checked before every call to
the pricing problem and may therefore be slightly exceeded.

The base case we consider has two origin locations and we construct
a subgraph for every origin in the pricing problem. This means 𝜂 = 1∕2.
Parcels are stored at a random origin in the morning and not necessarily
at the closest origin to the destination. The relative rate of parcels
and crowd-shippers (|𝐶|∕|𝑃 |) is fixed. For computational reasons, we
reduce the set 𝐶 by removing crowd-shippers that cannot contribute to
any delivery (complete or partial). This yields the reduced set 𝐶 ′. The
number of crowd-shippers in |𝐶 ′

| depends on other parameters such as
the transfer locations 𝐻 and the maximum detour 𝜏. Therefore, in the
experiments that follow, the reported ratio |𝐶 ′

|∕|𝑃 | is not necessarily
constant.

CPLEX version 12.6.3.0 is used in Java to solve all ILPs and LPs.
The LPs during the iterations of the column generation algorithm are
solved to optimality and the IP after the final iteration of the column
generation algorithm is solved up to a 0.5% optimality gap.

5.2. Algorithm evaluation

In this section, we evaluate the performance of our column-
generation algorithm in terms of objective value and computation

Omega 128 (2024) 103134P. Stokkink et al.

o
i
a
H
p

1
L
c
a
o
m
c
F
a
s

m
a
d
t
d
t
n
c
r
v
c
s
𝜁

t
n
a
h
i
t
n
o
g

a
w
n
l
w

5

o
c
s
m
c
e
s
o
a
c
u
T

t
o
t
t
o
t
t
w
t

t

Table 1
Parameter settings.

Model parameters

𝛼1 $1.00/parcel
𝛼2 $2.00/parcel/km
𝛼3 $1.00/parcel/km
𝛥min 1 min
𝛥max 10 h
𝜌 min{$15.00, $10 + $2.00∕km}/parcel

Algorithm parameters

𝜂 0.5
𝜁 0.3
CPU time limit 1800 s

time. We evaluate the performance for various model parameters and
problem sizes. Thereby, we compare the performance of the algorithm
for multiple levels of 𝜁 . The results are displayed in Table 2. Clearly,
the computation time of the algorithm increases as the size of the
problem increases. The most important determinant of the complexity
of the algorithm is the number of segments that are used to construct
the graph in the pricing problem. Therefore, the computation time
increases drastically with |𝑃 |, |𝐶|, and 𝜏. This also explains why using
nly a random portion of the segments to construct the graph in every
teration leads to a significant reduction in computation time. By using

portion 𝜁 , the computation time is reduced almost by a factor 10.
ence, larger instances can be solved without decomposing the pricing
roblem over more subgraphs.

The algorithm finds optimal or near-optimal solutions. When 𝜁 is
and the algorithm converges before the time limit, we can use the

P solution as an upper bound to the objective value and therefore
ompute an optimality gap. For 𝜁 < 1, the LP solution is not necessarily
n upper bound. Hence, we only compute the optimality gap if the
ptimal LP solution is found for 𝜁 = 1. The optimality gap is at
ost 0.5% for all tested instances for which the optimality gap was

omputable. Even when 𝜁 = 0.3, the optimality gap is almost negligible.
urthermore, using transfers leads to an improvement between 15%
nd 50% both in the objective value (i.e., revenue - costs) and the
ervice level (i.e., number of served parcels).

To further evaluate the effect of 𝜁 on computation time and opti-
ality gap, we evaluate the case where |𝑃 | = 681, |𝐶 ′

| = 1202, 𝜏 = 500,
nd |𝐻| = 11 for 6 different values of 𝜁 . In Fig. 4, the optimality gap is
isplayed relative to the number of iterations (left) and the computation
ime in seconds (right). Clearly, the computation time per iteration
ecreases drastically by decreasing the random portion of segments
hat are used at every iteration. However, because the subgraphs are
ot complete, they may lead to not all columns with positive reduced
osts being identified in an iteration. Therefore, the algorithm may
equire more iterations and can lead to suboptimal solutions. The best
alue of 𝜁 is thus a trade-off between the number of iterations and the
omputation time per iteration. The best value is also dependent on the
ize of the problem. In general, for larger problems, smaller values of
can be chosen at the cost of limited losses.

In general, the number of segments is the component that has
he biggest influence on computation time. Increasing the size of the
etwork does not have a direct effect on the computation time of our
lgorithm. However, as a larger network generally corresponds to a
igher number of parcels, crowd-shippers, and transfer points, this will
n turn lead to a higher number of segments and therefore increase
he computation time of the algorithm. Following from this, for larger
etworks the computation time can be reduced by reducing the value
f 𝜁 , without leading to a substantial deterioration of the optimality
9

ap. f
5.3. Performance compared to locally optimized benchmark

In this section, we compare the performance of our optimized
assignment procedure to a myopic first-best assignment policy. Such
a policy is commonly applied for settings with incomplete information
and without coordination [51–53].

For this benchmark, crowd-shippers are sorted based on their depar-
ture time. For every crowd-shipper the parcel that is locally optimal
is assigned, without considering future crowd-shippers. For a direct
delivery, the profit can be computed exactly as the full trip is known.
For an indirect delivery, the costs of the current delivery stage are
known. The costs of previous delivery stages have already been in-
curred and can be considered sunk costs, which are therefore omitted
from the optimization. It is assumed that after the current stage, the
parcel is directly picked up from the transfer point and taken to the final
destination of the parcel. Due to coordination issues in the dynamic
arrival of crowd-shippers, we only allow for two-stage deliveries and
strictly prefer delivering a parcel to the final destination over delivery
to a transfer point. With these cost components and the revenue ob-
tained from delivering the parcel, the expected profit can be computed.
Since the strategy is myopic, no information is used on potential future
crowd-shippers.

We note that for the myopic first-best assignment policy, parcels
may remain at transfer points whereas for the optimized assignment
this is not possible. In case a parcel remains at the transfer point, the
revenue is not obtained although a part of the costs is already incurred.
For the sake of comparison, we compare the optimized assignment to
two dynamic benchmarks. One where the costs for uncompleted deliv-
eries are excluded (B1) and one for which the costs for uncompleted
deliveries are included (B2).

The results are displayed in Table 3 where the first set of rows
denotes the results for |𝐻| = 0, implying that only direct deliveries
re allowed and the second set of rows denotes the results for |𝐻| = 11
here transfers are allowed. Global optimization allows for the coordi-
ation of transfers. As a consequence, global optimization outperforms
ocal optimization by 25% in terms of service level and objective value
hen transfers are allowed. Without transfers, the effect is only 5%.

.4. Crowd-shipper capacity

In this section, we evaluate the influence of crowd-shipper capacity
n the profit and service level. We consider that a part of the potential
rowd-shippers can carry multiple parcels at the same time. Whereas
ome crowd-shippers can only carry small parcels in a backpack, others
ay have a small basket in the back or front which allows them to

arry several parcels at the same time. When generating the instance,
very crowd-shipper has an equal probability for each capacity level,
uch that we obtain an evenly distributed population. The results are
btained for 𝜁 = 0.05, to further reduce the CPU time. Here, we
lso apply the described row generation procedure to identify violated
onstraints that we iteratively add to the formulation. As a result of
sing 𝜁 = 0.05, the obtained LP solution is not necessarily optimal.
herefore, the optimality gap is an approximation.

The results are displayed in Table 4. By considering higher capaci-
ies, computation times increase drastically. For this reason, a time limit
f 3600 s (1 h) is used instead. The reason for the increased computa-
ion times is two-fold. First, we consider duplicate segments, such that
he number of considered segments and therefore the computation time
f the pricing problem increases. Second, the violated constraints need
o be identified and added to the master problem, which makes solving
he master problem more computationally demanding. Furthermore,
e observe that the optimality gap increases with capacity. However,

he highest observed optimality gap is 9%, which is deemed reasonable.
We note that to obtain an optimal solution the column genera-

ion framework would have to be integrated into a branch-and-price

ramework. However, given the relatively small optimality gap, the

Omega 128 (2024) 103134P. Stokkink et al.
Table 2
Algorithm evaluation.
|𝑃 | |𝐶 ′

| |𝐻| 𝜏 𝜁 CPU time (s) Opt. gap (%) Obj. ($) Gain (%) SL Gain (%)

310 339 6 250 1 2.4 0.0 1094.33 30.7 32.7 35.4
310 491 6 500 1 8.7 0.0 1475.85 24.6 31.0 28.8
681 777 6 250 1 25.0 0.0 2715.32 18.0 34.6 20.1
681 1028 6 500 1 387.3 0.4 3762.00 13.2 37.5 16.3

1043 1165 6 250 1 79.8 0.1 3988.24 14.7 34.3 17.0
1043 1531 6 500 1 a1800.0 – 5461.77 12.5 36.7 15.9

310 442 11 250 1 4.5 0.1 1178.63 40.7 27.1 46.3
310 577 11 500 1 45.5 0.2 1636.59 38.1 29.8 45.8
681 976 11 250 1 53.7 0.0 2823.08 22.6 28.8 25.4
681 1202 11 500 1 1456.3 0.1 4033.96 21.4 34.9 26.9

1043 1447 11 250 1 520.4 0.2 4195.71 20.6 29.2 23.4
1043 1774 11 500 1 a1800.0 – 5860.22 20.7 34.5 26.2

310 339 6 250 0.3 0.9 0.0 1094.26 30.7 32.7 35.4
310 491 6 500 0.3 1.9 0.0 1475.81 24.6 31.0 28.8
681 777 6 250 0.3 4.1 0.0 2716.18 18.0 34.6 20.1
681 1028 6 500 0.3 89.7 0.4 3763.67 13.3 37.5 16.3

1043 1165 6 250 0.3 16.0 0.0 3989.80 14.7 34.3 17.0
1043 1531 6 500 0.3 200.2 – 5453.03 12.3 36.6 15.7

310 442 11 250 0.3 2.2 0.0 1179.20 40.8 27.1 46.3
310 577 11 500 0.3 10.1 0.4 1633.30 37.9 29.6 44.9
681 976 11 250 0.3 10.1 0.0 2823.58 22.7 28.8 25.4
681 1202 11 500 0.3 230.7 0.5 4018.04 20.9 34.7 26.0

1043 1447 11 250 0.3 36.5 0.1 4200.88 20.8 29.2 23.7
1043 1774 11 500 0.3 991.9 – 5869.61 20.9 34.6 26.6

Note: |𝑃 | = number of parcels, |𝐶 ′
| = number of potential crowd-shippers, 𝜏 = maximum detour of crowd-shippers, |𝐻| = number of transfer

hubs, 𝜁 is the portion of random segments used in the construction of the subgraph for the pricing problem. The optimality gap is the percentage
difference between the IP solution and the LP solution for 𝜁 = 1. SL = service level. The gain columns display the improvement that is obtained
by using transfers over not using transfers. The two largest instances for 𝜁 = 1 cannot be solved due to memory issues.
a Denotes scenarios for which the CPU time limit is reached and therefore no optimality gap can be obtained.
Fig. 4. Iterative optimality gap for different values of 𝜁 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
already substantial computation time of the column generation algo-
rithm, and the fact that we are dealing with an operational problem
rather than a strategic one, developing a branch-and-price framework
looks unappealing for our specific problem.

The increase in capacity leads to a substantial improvement in the
objective (profit) and the service level. Depending on the problem
setting, using a capacity of 2 for half of the population improves the
objective and service level by 20% to 50%. For higher capacities,
the observed increase is even higher, even though the algorithm has
reached the time limit before the optimal solution has been found.

Fig. 5 displays a Gantt chart of the movement of parcels. Each
colored bar represents the time spent with a crowd-shipper. Identi-
cal bars in identical locations signal that a crowd-shipper is carrying
multiple parcels at the same time. A deeper investigation reveals that
10

the additional flexibility leads to parcels being carried collectively on
one leg and separately on the other, which is clear from the zoomed
figure. We also observe the influence of travel patterns on crowd-
shipping activity. We observe a clear morning and evening peak, by
the frequency of the activities. The evening peak contains significantly
more activities, despite the number of potential crowd-shippers not
being significantly different from the morning commute. The reason
for this is that most destinations for parcels are in the suburbs. Hence,
the evening commute from the center to the suburbs is more useful for
reaching these destinations.

5.5. Parcel locker capacity

As parcel locker capacity does not seem to be a restrictive parameter
for reasonable values of �̄�ℎ, these constraints are not considered in

the obtained results. In this section, we discuss the evolution of locker

Omega 128 (2024) 103134P. Stokkink et al.

c
t
i
i
p
t
p

1
p
t
e
c
c
t
D
e
t
t

c
d
d
c
o

Table 3
Benchmark comparison.
|𝑃 | |𝐶 ′

| 𝜏 |𝐻| Global optimization Local optimization Effect of global optimization

SL Obj SL B1 B2 SL B1 B2

310 442 250 0 26.5 837.40 25.2 797.75 797.75 −4.9 −4.7 −4.7
310 577 500 0 38.1 1184.80 37.1 1144.06 1144.06 −2.5 −3.4 −3.4
681 976 250 0 32.9 2301.94 32.3 2251.91 2251.91 −1.8 −2.2 −2.2
681 1202 500 0 48.6 3322.31 45.5 3107.11 3107.11 −6.3 −6.5 −6.5

1043 1447 250 0 32.8 3477.75 31.4 3328.68 3328.68 −4.1 −4.3 −4.3
1043 1774 500 0 46.5 4856.33 44.9 4650.70 4650.70 −3.5 −4.2 −4.2

310 442 250 11 38.7 1179.20 29.4 905.14 864.79 −24.2 −23.2 −26.7
310 577 500 11 55.2 1633.30 40.6 1208.52 1098.46 −26.3 −26.0 −32.7
681 976 250 11 41.3 2823.58 34.5 2367.28 2298.17 −16.4 −16.2 −18.6
681 1202 500 11 61.2 4018.04 48.3 3198.28 3044.50 −21.1 −20.4 −24.2

1043 1447 250 11 40.6 4200.88 33.3 3471.00 3379.15 −18.0 −17.4 −19.6
1043 1774 500 11 58.9 5869.61 47.2 4768.41 4522.80 −19.9 −18.8 −22.9

Note: |𝑃 | = number of parcels, |𝐶 ′
| = number of potential crowd-shippers, 𝜏 = maximum detour of crowd-shippers, |𝐻| = number of transfer

hubs, SL = service level given as a percentage, obj = objective value given in dollars, B1 and B2 are the objective values of two local optimization
benchmarks given in dollars. The last three columns denote the percentual difference between the local and the global optimization strategies.
Table 4
Influence of crowd-shipper capacity.

|𝑃 | |𝐶 ′
| 𝑞𝑐 𝜏 (m) CPU time (s) Obj. ($) SL (%) ̃Opt. gap (%) Gain obj. (%) Gain SL (%)

310 442 {1} 250 2.2 1179.20 38.7 0.0 – –
310 442 {1,2} 250 132.4 1559.52 52.3 2.5 32.3 35.0
310 442 {1,2,3} 250 176.8 1661.95 55.2 8.0 40.9 42.5

310 577 {1} 500 8.6 1633.30 55.2 0.4 – –
310 577 {1,2} 500 664.0 2008.52 68.4 2.8 23.0 24.0
310 577 {1,2,3} 500 1642.1 2158.09 73.2 5.3 32.1 32.7

681 976 {1} 250 10.0 2823.58 41.3 0.0 – –
681 976 {1,2} 250 3433.3 4025.81 60.2 42.6 45.9
681 976 {1,2,3} 250 a3600.0 4431.95 66.1 57.0 60.1

681 1202 {1} 500 188.2 4018.04 61.2 0.5 – –
681 1202 {1,2} 500 a3600.0 4079.37 59.2 1.5 −3.4
681 1202 {1,2,3} 500 a3600.0 – – – – –

Note: |𝑃 | = number of parcels, |𝐶 ′
| = number of potential crowd-shippers, 𝑞𝑐 is the considered crowd-shipper capacity, each with equal

probability, 𝜏 = maximum detour of crowd-shippers, The optimality gap is the percentage difference between the IP solution and the LP
solution. Since we use 𝜁 = 0.3, the optimality gap is not exact but an approximation. SL = service level. The gain columns display the
improvement that is obtained by increasing the capacity. The largest instance cannot be solved due to memory issues.
a Denotes scenarios for which the CPU time limit is reached and therefore no optimality gap can be obtained.
5

o
t
o
t
t
e
n
r

𝜋

T
f
c
t
f
o
l
1
t
b
t

apacity over time. Out of the 11 transfer hubs, we specifically focus on
hree locations that have distinct patterns. The locations are identified
n Fig. 6(b), where origins are marked in red, transfer points are marked
n yellow, destinations of parcels are marked in green and the flow of
arcels that make at least one transfer is marked by blue lines. Here,
he size of the line denotes the number of parcels. The total number of
arcels stored in the transfer points is displayed in Fig. 6(a).

The three chosen transfer points are the most used among a total of
1. It is clear that a capacity of 10, therefore, suffices for all transfer
oints. The first two points are in the city center. This is clear because
hey fill up quickly during the morning commute after which they are
mptying out slowly during the evening commute. During the morning
ommute, potential crowd-shippers travel from the suburbs to the city
enter, passing by these transfer points. The opposite is observed for the
hird transfer point, which is at the main train station of Washington
C, parcels gradually accumulate throughout the day before being
mptied out rapidly during the evening commute when people are
raveling back home (i.e., to the suburbs) from the train station. Clearly,
he results in Fig. 6 align with the results in Fig. 5.

We emphasize that even though in this case study the parcel locker
apacity is not restrictive, it may be different for other case studies
epending on the distribution of the destinations of parcels and the
istribution of origin–destination pairs of crowd-shippers. In some
ases, parcel lockers may need higher or lower capacities depending
n the frequency of pickups and dropoffs over time.
11
.6. Sensitivity for cost parameters

In this section, we evaluate the effect of the cost parameters on the
bserved performance and the number of transfers per parcel path. In
his way, we can consider scenarios where more emphasis is placed
n service level rather than costs, as well as scenarios where poten-
ial crowd-shippers are more or less sensitive to detour and distance
raveled with a parcel. We consider similar settings as in the previous
xperiment, but with a constant |𝐻| = 11 and 𝜁 = 0.3. We consider
on-linear cost components for crowd-shipper compensation where we
eplace the profit in Eq. (1) with the following function:

𝑘 = 𝜌𝑝 −

[

∑

𝑐∈𝐶
𝑎𝑐𝑘𝛼

1 +
∑

𝑐∈𝐶

∑

𝑠∈𝑆𝑐

𝑏𝑐𝑠𝑘
(

𝛼2(𝑑𝑒𝑡𝑐𝑠)𝛽2 + 𝛼3(𝑙𝑒𝑛𝑠)𝛽3
)

]

. (20)

he results are displayed in Table 5. We observe that the effect of trans-
ers on service level is relatively constant for different cost parameter
ombinations. The effect on the objective improvement is more substan-
ial. For higher values of 𝜏, the relative improvement of the objective
unction compared to the case |𝐻| = 0 is lower than for lower values
f 𝜏. Thereby, if the penalty for distance traveled with a parcel is non-
inear, the improvement of the objective decreases by approximately
0%. The value of 𝛼1 has a significant influence on the number of
ransfers on a path. When the fixed compensation is negligible, transfers
ecome more beneficial and we observe significantly more paths with
wo or more transfers.

Omega 128 (2024) 103134P. Stokkink et al.
Fig. 5. Gantt chart of the movement of parcels with time on the 𝑥-axis and the parcel index on the 𝑦-axis. Parcels are sorted by the start time of the first segment. Each colored
bar represents the time spent with a crowd-shipper. In the upper left corner, we zoom on four specific parcels. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
The economic sustainability of the designed crowd-shipping sys-
tem, in comparison to other last-mile delivery systems, is also highly
dependent on these cost parameters. A detailed analysis of this is
outside the scope of this work, as it depends on many parameters of
the crowd-shipping system and the traditional delivery system. For
example, slightly changing the size of the parcels or the capacity of
the truck can drastically influence the number of trucks that is needed
and with that the full solution. However, a couple of useful managerial
insights can be drawn from the results in this paper. First, the results
in Section 5.2 show the presence of economies of scale with respect to
supply and demand. This suggests that crowd-shipping is more likely
to be economically sustainable if a critical mass of demand and, most
importantly, potential crowd-shippers is reached. Clearly, this is closely
related to the number of parcels that a crowd-shipper is willing to carry,
as illustrated in Section 5.4. Second, due to the reliance of the perfor-
mance on supply and demand, crowd-shipping is likely to be profitable
in some parts of the network where supply is high, but not in other
parts where supply is low, as also previously indicated by Stokkink and
Geroliminis [47]. To properly evaluate this, traditional delivery and
crowd-shipping need to be solved in an integrated framework where
for every parcel the decision is made to either deliver it through a
crowd-shipping system or through traditional delivery. This can also be
anticipated through a dynamic pricing scheme, which is an important
direction of future research.

6. Conclusion

In this paper, we developed a crowd-shipping model with interme-
diate transfers. In contrast with the majority of the existing literature,
12
our model allows for high levels of heterogeneity of crowd-shippers,
parcels, and transfer points. We consider a detailed individual-specific
cost structure for crowd-shipper compensation and allow for different
weights to be assigned to different parcels, for example, to differentiate
between locations in the network. Thereby, we allow for direct time-
synchronized transfers, where a parcel is directly handed from one
crowd-shipper to another, as well as transfers with intermediate storage
at strategically located parcel lockers. We designed a column gener-
ation algorithm to solve large-scale realistic scenarios to optimality
within a reasonable amount of time.

To improve the performance of the system, we allow crowd-shippers
to carry more than one parcel at the same time. This further complex-
ifies the problem, as additional constraints are required to regulate
crowd-shipper capacity and compatibility of parcels. To solve this
problem, we extend our column generation algorithm to simultane-
ous column and row generation. This algorithm identifies violated
compatibility constraints and adds these to the master problem after
every column generation iteration. A similar approach can be taken to
enforce constraints on locker capacity, but the results show that in the
considered scenarios locker capacity is not restrictive.

We evaluated the performance of our model and algorithm on a
realistic case study in the city of Washington DC. Demand for parcels
is approximated through the number of inhabitants of a region and the
flow of potential crowd-shippers through the network is based on the
flow of bike-sharing users. For a large network with 250 regions, 11
transfer points, approximately 500 parcels, and 500 crowd-shippers,
our algorithm finds the optimal matching within one minute. For larger
models of approximately 1000 parcels and 1000 crowd-shippers, we
find solutions that are optimal or near-optimal within 10 to 30 min.

Omega 128 (2024) 103134P. Stokkink et al.
Fig. 6. Step and flow charts that indicate the number of parcels stored at transfer points over time and the flow of parcels in the network. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
Computation times increase with the total number of segments. This
means that as the number of crowd-shippers, transfer points, and
maximum detour crowd-shippers are willing to make increases, the
computation time also increases. However, computation time can be
significantly improved by randomly reducing the set of segments in
every iteration. Although this removes the optimality guarantee, an
optimality gap smaller than 0.5% is observed across the tested in-
stances. Due to the complexity of coordination between crowd-shippers
in a system with transfers, our optimal approach outperforms a myopic
first-best (locally optimized) approach by 25%.

Our results indicate that the use of parcel lockers for intermediate
transfers allows for increasing the total revenue and service level
by around 30%, depending on the system configurations. A further
increase of 30 to 50% can be obtained by allowing some crowd-shippers
to carry two or three parcels at the same time (with an average capacity
of two across the population). Due to the asymmetric movement of
crowd-shippers during the day (i.e., suburbs to the city center in the
morning and city center to suburbs in the afternoon), some parcels
can be stored for an entire work day in a parcel locker before being
13
transported to their final destination. Due to the increased computation
time for the case where crowd-shippers can carry more than one parcel,
developing a heuristic solution approach is an important direction of
future research.

A comparison between transfer points shows that the location of
the transfer point strongly impacts the quality of the obtained solution.
The strategic decision of choosing the optimal location of depots and
transfer points remains an important direction of future research. In
this work, we consider that crowd-shippers that carry two parcels at
the same time receive double the compensation. An adaptive pricing
strategy and behavioral analysis of the crowd-shippers’ response to
prices is an important direction of future research. Such pricing policies
typically improve the efficiency of the system. However, it also comes
at a cost of reduced transparency and lower utilization rates for some
crowd-shippers [54].

Finally, we considered a fully static setting for the crowd-shippers
and parcel requests, where all crowd-shippers and parcel requests
are known before the routing and matching decisions are made (for
example, a day in advance). An extension of this work to a dynamic

Omega 128 (2024) 103134P. Stokkink et al.
Table 5
Sensitivity to cost parameters.
|𝑃 | |𝐶 ′

| 𝜏 𝛼1 𝛼2 𝛼3 𝛽2 𝛽3 Improvement over |𝐻| = 0 Transfers per path (%)

Obj. (%) SL (%) 0 1 2+

310 442 250 1 2 1 1 1 40.8 46.3 66.7 33.3 0.0
310 577 500 1 2 1 1 1 38.4 45.8 66.3 32.0 1.7
310 442 250 1 1.6 1 1.2 1 40.3 48.1 65.0 34.2 0.8
310 577 500 1 1.6 1 1.2 1 34.4 46.2 64.9 33.3 1.8
310 442 250 1 2 0.8 1 1.2 29.7 46.3 64.2 34.2 1.7
310 577 500 1 2 0.8 1 1.2 23.1 43.2 68.0 30.8 1.2
310 442 250 1 1.6 0.8 1.2 1.2 28.3 46.9 66.4 32.8 0.8
310 577 500 1 1.6 0.8 1.2 1.2 18.6 32.5 70.3 29.0 0.6
310 442 250 0.01 2 1 1 1 46.2 46.3 56.7 38.3 5.0
310 577 500 0.01 2 1 1 1 43.8 45.8 60.5 33.7 5.8
310 442 250 0.01 1.6 1 1.2 1 46.4 48.1 56.7 38.3 5.0
310 577 500 0.01 1.6 1 1.2 1 41.3 47.0 58.7 34.3 7.0
310 442 250 0.01 2 0.8 1 1.2 39.3 46.3 49.2 42.5 8.3
310 577 500 0.01 2 0.8 1 1.2 33.9 44.1 51.8 38.8 9.4
310 442 250 0.01 1.6 0.8 1.2 1.2 38.0 46.9 53.8 42.0 4.2
310 577 500 0.01 1.6 0.8 1.2 1.2 29.0 41.0 53.9 38.8 7.3

Note: |𝑃 | = number of parcels, |𝐶 ′
| = number of potential crowd-shippers, 𝜏 = maximum detour of crowd-shippers, 𝛼1 = fixed crowd-shipper

compensation in dollars, 𝛼2 = variable crowd-shipper compensation per km detour, 𝛼3 = variable crowd-shipper compensation per km traveled
with parcel, 𝛽2 = power of detour component, 𝛽3 = power of distance component. SL = service level. 𝛼1, 𝛼2, and 𝛼3 are given in dollars (per
kilometer).
framework where crowd-shippers gradually arrive throughout the day
marks an interesting direction of future research. In this case, the
assignment problem of parcels to crowd-shippers can be (re-)optimized
in a rolling horizon framework combined with a dynamic program-
ming approach. Here, we also note the added value of the integration
of a machine-learning approach to predict the existence of future
crowd-shippers.

CRediT authorship contribution statement

Patrick Stokkink: Writing – review & editing, Writing – original
draft, Visualization, Validation, Software, Methodology, Investigation,
Formal analysis, Conceptualization. Jean-François Cordeau: Writing
– review & editing, Writing – original draft, Supervision, Methodol-
ogy, Investigation, Formal analysis. Nikolas Geroliminis: Writing –
review & editing, Writing – original draft, Supervision, Methodology,
Investigation, Formal analysis, Conceptualization.

Declaration of competing interest

None

Data availability

The used data is freely accessible online.

Acknowledgments

The authors would like to thank the Editor and three anonymous
referees for their constructive comments on an earlier version of this
paper.

References

[1] Arnott R, Rave T, Schöb R, et al. Alleviating urban traffic congestion, Vol. 1,
MIT Press Books; 2005.

[2] Shoup DC. Cruising for parking. Transp Policy 2006;13(6):479–86.
[3] Ermagun A, Shamshiripour A, Stathopoulos A. Performance analysis of crowd-

shipping in urban and suburban areas. Transportation 2020;47(4):1955–85.
[4] Pourrahmani E, Jaller M. Crowdshipping in last mile deliveries: Operational

challenges and research opportunities. Soc-Econ Plan Sci 2021;78:101063.
[5] Le TV, Stathopoulos A, Van Woensel T, Ukkusuri SV. Supply, demand, operations,

and management of crowd-shipping services: A review and empirical evidence.
Transp Res C 2019;103:83–103.

[6] Alnaggar A, Gzara F, Bookbinder JH. Crowdsourced delivery: A review of
platforms and academic literature. Omega 2021;98:102139.
14
[7] Archetti C, Savelsbergh M, Speranza MG. The vehicle routing problem with
occasional drivers. European J Oper Res 2016;254(2):472–80.

[8] Macrina G, Di Puglia Pugliese L, Guerriero F, Laganà D. The vehicle routing
problem with occasional drivers and time windows. In: International conference
on optimization and decision science. Springer; 2017, p. 577–87.

[9] Chen C, Pan S, Wang Z, Zhong RY. Using taxis to collect citywide E-commerce
reverse flows: a crowdsourcing solution. Int J Prod Res 2017;55(7):1833–44.

[10] Macrina G, Pugliese LD, Guerriero F, Laporte G. Crowd-shipping with time
windows and transshipment nodes. Comput Oper Res 2020;113:104806.

[11] Laporte G, Nobert Y. A vehicle flow model for the optimal design of a two-
echelon distribution system. In: Advances in optimization and control. Springer;
1988, p. 158–73.

[12] Kafle N, Zou B, Lin J. Design and modeling of a crowdsource-enabled system
for urban parcel relay and delivery. Transp Res B 2017;99:62–82.

[13] Lan Y-L, Liu F, Ng WW, Gui M, Lai C. Multi-objective two-echelon city
dispatching problem with mobile satellites and crowd-shipping. IEEE Trans Intell
Transp Syst 2022.

[14] Enthoven DL, Jargalsaikhan B, Roodbergen KJ, Uit het Broek MA, Schroten-
boer AH. The two-echelon vehicle routing problem with covering options: City
logistics with cargo bikes and parcel lockers. Comput Oper Res 2020;118:104919.

[15] dos Santos AG, Viana A, Pedroso JP. 2-echelon lastmile delivery with lockers
and occasional couriers. Transp Res E 2022;162:102714.

[16] Vincent FY, Jodiawan P, Redi AP. Crowd-shipping problem with time windows,
transshipment nodes, and delivery options. Transp Res E 2022;157:102545.

[17] Mousavi K, Bodur M, Roorda MJ. Stochastic last-mile delivery with
crowd-shipping and mobile depots. Transp Sci 2022;56(3):612–30.

[18] Kızıl KU, Yıldız B. Public transport-based crowd-shipping with backup transfers.
Transp Sci 2023;57(1):174–96.

[19] Raviv T, Tenzer EZ. Crowd-shipping of small parcels in a physical internet.
Workingpaper, Tel Aviv University; 2018.

[20] Chen W, Mes M, Schutten M. Multi-hop driver-parcel matching problem with
time windows. Flex Serv Manuf J 2018;30(3):517–53.

[21] Agatz N, Erera A, Savelsbergh M, Wang X. Optimization for dynamic ride-sharing:
A review. European J Oper Res 2012;223(2):295–303.

[22] Drews F, Luxen D. Multi-hop ride sharing. In: International symposium on
combinatorial search. Vol. 4, 2013.

[23] Herbawi W, Weber M. Evolutionary multiobjective route planning in dynamic
multi-hop ridesharing. In: European conference on evolutionary computation in
combinatorial optimization. Springer; 2011, p. 84–95.

[24] Masoud N, Jayakrishnan R. A decomposition algorithm to solve the multi-hop
peer-to-peer ride-matching problem. Transp Res B 2017;99:1–29.

[25] Chen Y, Guo D, Xu M, Tang G, Zhou T, Ren B. PPtaxi: Non-stop package delivery
via multi-hop ridesharing. IEEE Trans Mob Comput 2019;19(11):2684–98.

[26] Lu W, Liu L, Wang F, Zhou X, Hu G. Two-phase optimization model
for ride-sharing with transfers in short-notice evacuations. Transp Res C
2020;114:272–96.

[27] Spiess H, Florian M. Optimal strategies: a new assignment model for transit
networks. Transp Res B 1989;23(2):83–102.

[28] Sampaio A, Savelsbergh M, Veelenturf LP, Van Woensel T. Delivery systems with
crowd-sourced drivers: A pickup and delivery problem with transfers. Networks
2020;76(2):232–55.

[29] Mitrović-Minić S, Laporte G. The pickup and delivery problem with time
windows and transshipment. INFOR Inf Syst Oper Res 2006;44(3):217–27.

http://refhub.elsevier.com/S0305-0483(24)00100-2/sb1
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb1
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb1
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb2
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb3
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb3
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb3
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb4
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb4
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb4
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb5
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb5
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb5
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb5
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb5
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb6
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb6
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb6
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb7
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb7
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb7
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb8
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb8
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb8
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb8
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb8
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb9
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb9
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb9
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb10
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb10
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb10
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb11
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb11
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb11
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb11
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb11
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb12
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb12
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb12
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb13
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb13
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb13
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb13
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb13
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb14
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb14
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb14
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb14
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb14
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb15
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb15
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb15
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb16
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb16
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb16
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb17
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb17
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb17
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb18
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb18
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb18
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb19
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb19
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb19
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb20
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb20
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb20
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb21
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb21
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb21
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb22
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb22
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb22
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb23
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb23
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb23
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb23
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb23
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb24
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb24
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb24
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb25
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb25
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb25
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb26
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb26
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb26
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb26
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb26
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb27
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb27
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb27
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb28
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb28
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb28
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb28
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb28
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb29
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb29
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb29

Omega 128 (2024) 103134P. Stokkink et al.
[30] Rais A, Alvelos F, Carvalho MS. New mixed integer-programming model for
the pickup-and-delivery problem with transshipment. European J Oper Res
2014;235(3):530–9.

[31] Voigt S, Kuhn H. Crowdsourced logistics: The pickup and delivery problem with
transshipments and occasional drivers. Networks 2022;79(3):403–26.

[32] Yıldız B. Express package routing problem with occasional couriers. Transp Res
C 2021;123:102994.

[33] Yıldız B. Package routing problem with registered couriers and stochastic
demand. Transp Res E 2021;147:102248.

[34] Nieto-Isaza S, Fontaine P, Minner S. The value of stochastic crowd resources and
strategic location of mini-depots for last-mile delivery: A benders decomposition
approach. Transp Res B 2022;157:62–79.

[35] Pugliese LD, Guerriero F, Macrina G, Scalzo E. Crowd-shipping and occasional
depots in the last mile delivery. In: Optimization and decision science: ODS,
virtual conference, November 19, 2020. Vol. 7, Springer; 2022, p. 213.

[36] Desrosiers J, Lübbecke ME. A primer in column generation. In: Column
generation. Springer; 2005, p. 1–32.

[37] Lübbecke ME, Desrosiers J. Selected topics in column generation. Oper Res
2005;53(6):1007–23.

[38] Ropke S, Cordeau J-F. Branch and cut and price for the pickup and delivery
problem with time windows. Transp Sci 2009;43(3):267–86.

[39] Ghilas V, Cordeau J-F, Demir E, Woensel TV. Branch-and-price for the pickup
and delivery problem with time windows and scheduled lines. Transp Sci
2018;52(5):1191–210.

[40] Torres F, Gendreau M, Rei W. Vehicle routing with stochastic supply of crowd
vehicles and time windows. Transp Sci 2022;56(3):631–53.

[41] Torres F, Gendreau M, Rei W. Crowdshipping: An open VRP variant with
stochastic destinations. Transp Res C 2022;140:103677.
15
[42] Archetti C, Bianchessi N, Speranza MG. A column generation approach for the
split delivery vehicle routing problem. Networks 2011;58(4):241–54.

[43] Faiz TI, Vogiatzis C, Noor-E-Alam M. A column generation algorithm for vehicle
scheduling and routing problems. Comput Ind Eng 2019;130:222–36.

[44] Borndörfer R, Grötschel M, Pfetsch ME. A column-generation approach to line
planning in public transport. Transp Sci 2007;41(1):123–32.

[45] Census Reporter. Census reporter. 2021, https://censusreporter.org/. [Accessed:
10 March 2021].

[46] Capital Bikeshare. Capital bikeshare. 2020, https://www.capitalbikeshare.com/
system-data.

[47] Stokkink P, Geroliminis N. A continuum approximation approach to the depot
location problem in a crowd-shipping system. Transp Res E 2023;176:103207.

[48] Le TV, Ukkusuri SV. Crowd-shipping services for last mile delivery: Analysis from
American survey data. Transp Res Interdiscip Perspect 2019;1:100008.

[49] Le TV, Ukkusuri SV, Xue J, Van Woensel T. Designing pricing and compensation
schemes by integrating matching and routing models for crowd-shipping systems.
Transp Res E 2021;149:102209.

[50] Rougès J-F, Montreuil B. Crowdsourcing delivery: New interconnected business
models to reinvent delivery. In: 1st international physical internet conference. 1,
2014, p. 1–19.

[51] Bent R, Van Hentenryck P. Regrets only! online stochastic optimization under
time constraints. In: AAAI. Vol. 4, 2004, p. 501–6.

[52] Bent R, Van Hentenryck P. Waiting and relocation strategies in online stochastic
vehicle routing.. In: IJCAI. Vol. 7, Citeseer; 2007, p. 1816–21.

[53] Mousavi K, Bodur M, Cevik M, Roorda MJ. Approximate dynamic programming
for crowd-shipping with in-store customers. 2021.

[54] Alnaggar A, Gzara F, Bookbinder JH. Compensation guarantees in crowdsourced
delivery: Impact on platform and driver welfare. Omega 2024;122:102965.

http://refhub.elsevier.com/S0305-0483(24)00100-2/sb30
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb30
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb30
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb30
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb30
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb31
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb31
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb31
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb32
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb32
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb32
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb33
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb33
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb33
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb34
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb34
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb34
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb34
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb34
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb35
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb35
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb35
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb35
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb35
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb36
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb36
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb36
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb37
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb37
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb37
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb38
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb38
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb38
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb39
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb39
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb39
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb39
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb39
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb40
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb40
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb40
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb41
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb41
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb41
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb42
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb42
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb42
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb43
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb43
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb43
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb44
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb44
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb44
https://censusreporter.org/
https://www.capitalbikeshare.com/system-data
https://www.capitalbikeshare.com/system-data
https://www.capitalbikeshare.com/system-data
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb47
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb47
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb47
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb48
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb48
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb48
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb49
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb49
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb49
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb49
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb49
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb50
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb50
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb50
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb50
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb50
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb51
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb51
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb51
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb52
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb52
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb52
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb53
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb53
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb53
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb54
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb54
http://refhub.elsevier.com/S0305-0483(24)00100-2/sb54

	A column and row generation approach to the crowd-shipping problem with transfers
	Introduction
	Literature review
	Problem description and formulation
	Concepts and notation
	Mathematical formulation

	Methodology
	Master problem
	Pricing problem
	Shortest path algorithm — Graph construction
	Modified Dijkstra's algorithm
	Removing suboptimal nodes and arcs
	Constructing several smaller subgraphs
	Randomly removing highly similar nodes

	Locker and shipper capacity
	Shipper capacity
	Locker capacity

	Results
	Case Study
	Algorithm evaluation
	Performance compared to locally optimized benchmark
	Crowd-shipper capacity
	Parcel locker capacity
	Sensitivity for cost parameters

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

