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A B S T R A C T

Electrification of the heat network in buildings together with a rise in popularity of Electric Vehicles (EVs) will
result in a need to make investments in the electrical energy infrastructure in order to prevent congestion. This
paper discusses the influence of hydrogen in future smart microgrids on these investments. Moreover, smart
control strategies, i.e., EV management and demand response programs are used in this paper to lower the peak
of electrical energy demand resulting in the reduction of these investments. Performances of microgrid with
different levels of hydrogen penetration are discussed. It is shown that an increase in the level of hydrogen
in the microgrid will reduce the electric grid investments costs but is not economically more beneficial than
using ‘green’ gas due to the higher total economic costs.
1. Introduction

1.1. Literature background

In 2015, 195 governments signed an agreement for a long-term
goal of keeping the increase of the global average temperature this
century below two degrees and aiming for an increase of a maximum
of one and a half degrees, the Paris agreement [1]. To prevent ex-
ceeding this maximum of two degrees increase of the global average
temperature, scientists have determined that human society needs to
reduce the amount of electricity produced by burning fossil fuels from
70% in 2010 to 20% in 2050 [2]. Therefore, more energy needs to be
produced by renewable energy sources, because they have no emission
of greenhouse gases. However, due to the intermittent nature of these
renewable energy resources, there is a rise of complexity for the energy
management [3] and a need for more flexibility in the energy grid [4].

The implementation of microgrids seems to be a possible solution
to increase the integration of these renewable energy resources in the
energy grid due to their ability to reduce peak demand and energy
costs [5]. Microgrids consist of interconnected loads, distributed energy
resources, and energy storage systems. These microgrids can be seen
as a miniature version of the larger utility grid that can exchange
energy with the utility grid [6]. Microgrids can provide many benefits,
including improved reliability, power quality, and reduced distribution
losses are realised [7,8].

Furthermore, changes are happening in the transportation sector as
well to reduce the emission of greenhouse gases by replacing internal
combustion engine vehicles with Electric Vehicles (EVs). The increased
use of EVs has a strong effect on the demand of energy in the microgrid

∗ Corresponding author.
E-mail address: emiel.bartels@gmail.com (E.A. Bartels).

due to their relatively high consumption of energy [8]. This increase
in energy demand in the microgrid results in the need for economic
investments in the infrastructure of the microgrid since during peak
consumption hours the current infrastructure will not be able to cope
with the rising energy demand [9]. Therefore, in future microgrids, the
focus for economic profit should be on the peak of electrical energy
transfer between the microgrid and utility grid.

The impact of the increasing energy demand by the addition of EVs
in the microgrid can be reduced by using smart charging strategies
where the EVs can be charged when there is an abundance, or less
shortage, of energy in the microgrid. Moreover, EVs can contribute to
mitigate the problem of energy distribution in the microgrid by using
them as a power plant or energy storage system to provide energy
at times of high energy demand in the microgrid [8,10–12]. Another
strategy is the use of Demand Response (DR) programs where the con-
sumption pattern of the consumers in the microgrid is altered [13,14].
Instead of changing the energy supply one changes the demand within
the microgrid to satisfy the balance of energy supply and consumption.
The use of DR programs has proven to generate more flexibility in the
grid and to reduce the electrical energy peak transfer [7,15].

At the same time, a new source of energy is emerging in both
the energy and transportation sector, namely hydrogen [16,17]. The
popularity of hydrogen is expected to increase in the next years due to
its storage capabilities and cheap transport of energy. Furthermore, it
can be produced without the emission of greenhouse gases [18]. Hydro-
gen offers a great solution to the distribution of generated renewable
energy, e.g., when energy is generated on offshore wind farms and has
to be transported to the consumers onshore. Fuel cell EVs are emerging
vailable online 15 March 2022
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due to some beneficial specifications compared to the nowadays more
used battery EVs, e.g., larger range and faster refuelling [16,19,20]. The
introduction of hydrogen in the microgrid can alter the behaviour of the
microgrid, altering the peak of electrical energy transfer between the
microgrid and utility grid. In this paper, future microgrids are consid-
ered based on the year 2050 in the Netherlands where it is assumed that
hydrogen has widely emerged in the energy infrastructure. Different
levels of penetration of hydrogen in the microgrid are compared to
investigate the effect on required electrical grid investments.

The microgrids considered in this paper will be controlled with
the Model Predictive Control (MPC) framework, which has proven
to provide good performance for the energy management of a mi-
crogrid [10,21–26]. Furthermore, a Mixed Logical Dynamical (MLD)
framework [27] is used to describe the dynamics of the model of the
microgrid, resulting in a mixed-integer linear programming problem.

1.2. Contributions

The contribution of this paper is twofold. First, a realistic future resi-
dential hydrogen-based energy infrastructure and advanced forecasting
models for the stochastic processes are constructed. It is showed how
different components of the microgrid can cooperate with each other to
manage the energy flow and supply different sources of energy within
a future microgrid. Secondly, this paper aims to provide a primary
indication of the difference in the economic costs and reduction of the
peak of electrical energy transfer of the microgrid when hydrogen is
introduced. The influence of hydrogen in a microgrid is simulated and
discussed. In this paper, new research topics are included, such as:

• Including and evaluating different levels of hydrogen penetration
in a microgrid.

• Making a comparison between performance in the microgrid
including both battery and fuel cell EVs.

• Modelling energy flow in a future-based fully renewable micro-
grid.

To the best of the authors’ knowledge this paper is the first to
ndicate the performance difference while injecting hydrogen in a
icrogrid containing both battery and fuel cell EVs. With this paper,

he foundation is set to build upon to investigate what the differences
re when injecting hydrogen to a microgrid and how we can use this
o mitigate energy management problems in an urban microgrid.

.3. Outline

The remainder of this paper is organised as follows. In Section 2
he key features of the microgrid and its model are presented. In
ection 3, the different forecasting models that are used to forecast the
tochastic processes in the microgrid are discussed. In Section 4, the
ontrol objective and the MPC framework are presented. Scenarios with
ifferent levels of hydrogen penetration are compared and discussed.
ome final conclusions and suggestions for future work are given in
ection 6.

. Microgrid modelling

In this section, we describe the key features of the microgrid, which
omprises discrete-time dynamics of the distributed energy resources
nd energy flows. We remark that a constant ratio between energy
nd power per time step is assumed due to the constant sampling
ime 𝛥𝑇 = 𝑇 (𝑘 + 1) − 𝑇 (𝑘). A future microgrid is constructed based

on predictions in the Dutch energy infrastructure in 2050 [28]. In this
future microgrid, a level of penetration of hydrogen can be considered,
resulting in a relatively vast share of hydrogen-based components in
the microgrid. Therefore, an electrolyser with hydrogen storage tank
and fuel cell EVs are assumed to be present as seen in Fig. 1. Since
2

there will be a scenario considered without hydrogen in the microgrid,
as will be explained in Section 5, ‘green’ gas can flow through the gas
infrastructure instead of hydrogen as well. Furthermore, a microgrid
with residential and small commercial consumers is considered with a
high usage of Photovoltaic (PV) panels. The remainder of this section
will elaborate on the working principle, models, and energy balances
in this microgrid.

2.1. Components in the microgrid

For the different components in the microgrid, the working principle
and the models of the different components in the microgrid are
described.

2.1.1. Battery
The battery serves as energy storage system where energy can be

temporarily stored or consumed from to compensate for the discrepan-
cies in the supply and demand of energy in the microgrid. The dynamics
that describe the stored energy in a battery 𝑥bat at the next time step
𝑘+1 depend on the mode the battery is in, i.e., charging or discharging
mode. A binary variable is introduced such that 𝛿bat (𝑘) = 1 if the battery
is charging and 𝛿bat (𝑘) = 0 if the battery is discharging at time step
𝑘. It is necessary to model the battery using this binary variable due
to the difference in charging and discharging efficiency. Therefore, the
dynamics of the battery are being described as:

𝑥bat (𝑘 + 1) =

{

𝑥bat (𝑘) + 𝜂c𝑢bat (𝑘), if 𝛿bat (𝑘) = 1
𝑥bat (𝑘) +

1
𝜂d
𝑢bat (𝑘), if 𝛿bat (𝑘) = 0 ,

where 𝑢bat is the exchanged electrical energy, 𝜂c the charging efficiency,
and 𝜂d the discharging efficiency. The state of the battery and the
lectrical energy exchanged to or from the battery cannot exceed
heir minimal and maximal bounds. Therefore, the constraints 𝑥bat ≤
𝑥bat (𝑘) ≤ 𝑥bat and 𝑢bat ≤ 𝑢bat (𝑘) ≤ 𝑢bat apply. Moreover, an extra
constraint on the energy transfer is set to distinguish whether energy is
coming in or leaving the battery, i.e., whether the battery is in charging
or discharging mode. Therefore, 𝛿bat (𝑘) = 1 ⟺ 𝑢bat (𝑘) ≥ 0.

2.1.2. Hydrogen storage tank
Remaining hydrogen in the microgrid can be temporarily stored in

the hydrogen storage tank to be used at a later time. The amount of
hydrogen stored in the tank 𝑥hst at time step 𝑘 + 1 is proposed to be
modelled as

𝑥hst (𝑘 + 1) = 𝑥hst (𝑘) + 𝑢hst (𝑘),

where 𝑢hst (𝑘) is the hydrogen exchanged at time step 𝑘. Similarly to the
battery case, bounds are set on the amount of stored and exchanged
hydrogen, i.e., 𝑥hst ≤ 𝑥hst (𝑘) ≤ 𝑥hst and 𝑢hst ≤ 𝑢hst (𝑘) ≤ 𝑢hst .

2.1.3. Electrolyser
The electrolyser converts the consumed electrical energy 𝑢elc into

hydrogen 𝐻elc when the system is on
(

𝑢elc(𝑘) = 1
)

. When the system
is off

(

𝑢elc(𝑘) = 0
)

, the electrolyser will not produce any hydrogen.
Therefore, the microgrid can generate its own hydrogen when needed
when there is a redundancy of electrical energy instead of importing
hydrogen from the utility grid. The electrolyser can be written as

𝐻elc(𝑘) = 𝛼elc𝑢elc(𝑘),

where 𝛼elc is a model parameter related to the specifications of the
system as proposed in [10]. The amount of electrical energy that is

𝑢 .
consumed is constrained by 0 ≤ 𝑢elc(𝑘) ≤ elc
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Fig. 1. Visualisation of the scenarios considered in the case studies, with Electric Vehicles (EVs), Photovoltaic (PV) power, Heat Pumps (HP), and micro-Combined Heat and Power
(𝜇-CHPs) plants. The white boxes are included in each scenario. The electric scenario is constructed by adding the red and green parts, the mixed scenario by adding the blue
art and green parts, and the hydrogen scenario by only including the blue part.
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.1.4. PV power
The power coming from the PV panels is calculated as a function of

he solar irradiance and ambient temperature following [29] as

PV(𝑘) = 𝑃STC
𝐺c(𝑘)
𝐺STC

[

1 + 𝛼
(

𝑇c(𝑘) − 𝑇STC
)]

, with

𝑇c(𝑘) = 𝑇amb(𝑘) + (𝑇NOCT − 20)
𝐺c(𝑘)
800

.
(1)

The nominal power 𝑃STC, the global irradiance 𝐺STC, and the cell
temperature 𝑇STC are determined under standard test conditions of
(1000 W∕m2, 25 ◦C). The air mass coefficient that is commonly used to
characterise the performance of solar cells under the standardised con-
ditions (𝑃STC) is assumed to be AM1.5. This is almost universal when
characterising terrestrial PV panels [30]. Furthermore, 𝛼 is the negative
power temperature coefficient, and 𝑇NOCT the nominal operating cell
temperature. These values are commonly given by the manufacturers
of the PV panels. The global irradiance 𝐺c(𝑘) and ambient temperature
𝑇amb(𝑘) at time step 𝑘 are estimated to calculate the cell temperature
𝑇c(𝑘) and generated PV power 𝑃PV(𝑘).

2.1.5. Hybrid heat pump
The hybrid heat pump can produce thermal energy 𝑄HP by consum-

ing electrical energy 𝑢elHP or gas 𝑢thHP. When the outside temperature is
high enough, the built-in heat pump will retrieve the outside air to
warm up the house. Otherwise, gas is burned to heating the house,
which is less energy efficient. Therefore, two logic binary variables
are introduced to represent whether at time step 𝑘 the hybrid heat
pump is running on electrical energy

(

𝛿elHP(𝑘) = 1
)

, on thermal energy
(

𝛿thHP(𝑘) = 1
)

, or if the system is off
(

𝛿elHP(𝑘) = 𝛿thHP(𝑘) = 0
)

. Therefore, the
hybrid heat pump is being modelled in this paper as

𝑄HP(𝑘) =

⎧

⎪

⎨

⎪

⎩

𝜂elHP𝑢
el
HP(𝑘), if 𝛿elHP(𝑘) = 1 and 𝛿thHP(𝑘) = 0

𝜂thHP𝑢
th
HP(𝑘), if 𝛿elHP(𝑘) = 0 and 𝛿thHP(𝑘) = 1

0, if 𝛿elHP(𝑘) = 𝛿thHP(𝑘) = 0

where 𝜂elHP is the electrical efficiency and 𝜂thHP the efficiency of burn-
ing hydrogen. The maximal consumed energy is constrained by the
equations 0 ≤ 𝑢elHP(𝑘) ≤ 𝑢elHP and 0 ≤ 𝑢thHP(𝑘) ≤ 𝑢thHP. The consumption
f energy, either electrical or gas, will be zero if that mode is off,
3

t

i.e., 𝛿elHP(𝑘) = 0 ⟺ 𝑢elHP(𝑘) = 0 and 𝛿thHP(𝑘) = 0 ⟺ 𝑢thHP(𝑘) = 0.
Since the hybrid heat pump will not consume electrical energy and
use the boiler at the same time, a constraint is added such that the
logical binary variables cannot both be equal to one at time step 𝑘,
i.e., 𝛿elHP(𝑘) + 𝛿thHP(𝑘) ≤ 1.

2.1.6. Micro-combined heat and power plant
The micro-Combined Heat and Power (𝜇-CHP) plant generates elec-

trical 𝑃CHP energy and also saves the otherwise wasted thermal energy
𝑄CHP during the generation by water or air heating simultaneously.
Moreover, a thermal storage unit is included where energy can be
stored 𝑥CHP. The production of energy depends on the amount of
consumed gas 𝑢CHP. This concludes to the dynamics of a 𝜇-CHP plant
being described as

𝑃CHP(𝑘) = 𝜂elCHP𝑢CHP(𝑘)

𝑥CHP(𝑘 + 1) = 𝑥CHP(𝑘) + 𝜂thCHP𝑢CHP(𝑘) −𝑄CHP(𝑘),

where 𝜂elCHP and 𝜂thCHP are the electrical and thermal efficiency of the
plant. The consumed energy and stored energy are bounded by 0 ≤
𝑢CHP(𝑘) ≤ 𝑢CHP and 𝑥CHP ≤ 𝑥CHP(𝑘) ≤ 𝑥CHP. The minimum stored
thermal energy needs to be higher than a determined threshold 𝑥CHP >
.

.2. Electric vehicles

Smart EV management can be implemented in a microgrid where
mart charging or refuelling of the EV is done and the EV can be
sed as an energy storage system or power plant when parked. Due to
hese strategies, a microgrid can be more flexible and self-sustainable,
.e., less power exchange with the utility grid will be needed [10,31–
3]. Moreover, the EV can provide energy in times of large demand
or energy, reducing the peak of electrical energy demand [31]. In this
tudy, vehicle-to-grid is chosen since a microgrid with a large number
f EVs is considered and it is assumed that in a future scenario, such
n implementation will be possible. Moreover, this strategy can provide
he most reduction in the peak of electrical energy demand [32,33].
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2.2.1. Battery EV
The battery EV dynamics are based on the dynamics of the battery

but they include more modes since the EV can be in transportation. The
EV can be refilled with electrical energy, provide electrical energy to
the microgrid, be in transportation, or arrive after its trip. The amount
of electrical energy stored in the battery EV 𝑥BEV is based on the
electrical energy 𝑢BEV transferred and the energy costs of a trip ℎBEV.
The model of the battery EV, derived from [10], can be written down
as

𝑥bev(𝑘 + 1) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑥bev(𝑘) + 𝜂cbev𝑢bev(𝑘), if refilling
𝑥bev(𝑘), if no generation
𝑥bev(𝑘) +

1
𝜂dbev

𝑢bev(𝑘), if generation

𝑥bev(𝑘), if transportation
𝑥bev(𝑘) − ℎbev(𝑘), if arrival

where 𝜂cbev and 𝜂dbev are the charging and discharging efficiencies,
respectively. Constraints are set on the total energy storage of the
battery 𝑥bev ≤ 𝑥bev(𝑘) ≤ 𝑥bev as well as on the transferred energy
bev ≤ 𝑢bev(𝑘) ≤ 𝑢bev. The value of the transferred energy is managed
n a similar way as in the battery: 𝑢bev(𝑘) ≥ 0 ⟺ refilling mode, and
𝑢bev(𝑘) < 0 ⟺ generation mode.

2.2.2. Fuel cell EV
The fuel cell EV is modelled in a similar way as the battery EV to

estimate the amount of hydrogen 𝑥fev in the tank. However, a difference
is that the refilled energy 𝑢hydfev and trip cost ℎfev are expressed in
amounts of hydrogen, while in generation mode electrical energy 𝑢elfev
is produced. Furthermore, the dynamics of the battery in the battery
EV are replaced by the dynamics of a fuel cell to get the model for a
fuel cell EV [10]:

𝑥fev(𝑘 + 1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥fev(𝑘) + 𝑢hydfev (𝑘), if refilling
𝑥fev(𝑘), if no generation
𝑥fev(𝑘) −

(

𝛼fev𝑢elfev(𝑘) + 𝛽fev
)

, if generation
𝑥fev(𝑘), if transportation
𝑥fev(𝑘) − ℎfev(𝑘), if arrival

where 𝛼fev and 𝛽fev are the model parameters of the fuel cell in the EV.
These model parameters are based on the specifications of the fuel stack
in the EV as described in [10,34]. Constraints are set on the hydrogen
storage, transferred hydrogen, and the electrical energy transferred,
i.e., 𝑥fev ≤ 𝑥fev(𝑘) ≤ 𝑥fev, 0 ≤ 𝑢hydfev (𝑘) ≤ 𝑢hydfev , and 0 ≤ 𝑢elfev(𝑘) ≤ 𝑢elfev,
respectively. The maximum generated electrical energy is based on the
fact the fuel cell will operate at partial load when in generation mode.

2.2.3. Trip characteristics
A stochastic part for the EV modelling is the trip pattern as well as

the fuel costs of these trips. Assumptions need to be made to model
these stochastic processes. A data set with real data on the arrival
and departure times of EVs and on charging patterns of EVs in the
Netherlands from ElaadNL [35] has been obtained. These charging
sessions can be clustered into three groups by the method described
in [36]: charge-near-home, park-to-charge, and charge-near work. In
this method, the charging sessions are clustered based on the duration
of charging and the time of the day. Furthermore, it is shown in [36]
that the arrivals are earlier in summer and spring than in autumn and
winter. Moreover, people stay out of home longer during weekends
resulting in later arrival times compared to the weekdays. The obtained
data set is clustered and only the charge-near-home data are used to
describe different arrival and departure time patterns for the EVs in
the microgrid.

The energy cost per trip is calculated based on the average number
of kilometres driven per year. It is assumed that the driving behaviour
will not change when switching from internal combustion engine ve-
hicles to EVs, and that the average number of kilometres driven per
4

trip is 35.57 in the Netherlands. From [36], it is estimated that 54.4% 𝑄
of the charging sessions are charge-near-home sessions. Therefore, not
all the energy for the EV will be refilled in the microgrid, but also at
work or in public charging poles elsewhere. It is assumed that 19.35
kilometres worth of fuel is the average energy cost per trip for the EVs
in the microgrid. Since different vehicles will have different driving
patterns, a multivariate random Gaussian sampling with a mean of 1
and standard deviation of 0.5 is used to obtain different trip costs for
different EVs.

2.3. Demand response

Direct load control is implemented in the microgrid as a DR program
since it can provide good performance in lowering the peak of electrical
energy transfer and is suitable for the low-consumption consumers con-
sidered in the microgrid. It is assumed that only residential consumers
are willing to participate in the DR program.

2.3.1. Curtailable load
Curtailable load 𝐷c can temporarily be lowered or switched off. The

ecision variable 𝛽c(𝑘) with 0 ≤ 𝛽c(𝑘) ≤ 1 expresses the percentage
f preferred power level to be curtailed at time step 𝑘. Thus, if no
urtailment is allowed, 𝛽c(𝑘) = 0 at time step 𝑘 [22]. Only the thermal
nergy is considered to be applicable for curtailment against some
iscomfort costs, i.e., the temperature in the building becomes lower
han preferred (or higher in hot climates). Note that only a fraction
f the thermal energy demand will be considered to be available for
urtailment. The curtailed load 𝑄c is expressed by

c(𝑘) = 𝛽c(𝑘)𝐷c(𝑘).

.3.2. Reschedulable load
Reschedulable loads 𝐷r can be shifted in time, but in contrast to

he curtailable loads, there corresponding energy demand has to be
onsumed before a certain time. These loads are divided into two
ifferent subcategories: uninterruptible and interruptible loads. In this
aper, only uninterruptible loads are considered since no data of large
onsumption interruptible household devices were available. However,
he smart charging of EVs due to the implementation of the EV man-
gement strategies can be considered as an interruptible load in the
icrogrid. The approach for interruptible load is similar to that of
ninterruptible load despite from the fact that no constraint needs to
e added to ensure the corresponding energy demand is consumed in
ne go.

Both fractions of the electrical and thermal energy are considered
o be reschedulable. The only electric devices that are considered to be
eschedulable are dishwashers. These devices are chosen due to their
egular consumption pattern and their time of use. Dishwashers are
sed in the evening where, in general, large peaks of electrical energy
emand are visible. Similar to the curtailable load, a variable 𝛽r (𝑘) with
≤ 𝛽r (𝑘) ≤ 1 is introduced to indicate the percentage of preferred level

o be rescheduled at time step 𝑘. This results in the following equation
f rescheduled load for electrical and thermal demand:
𝑃r (𝑘) = 𝛽elr (𝑘)𝐷

el
r (𝑘)

r (𝑘) = 𝛽 thr (𝑘)𝐷th
r (𝑘)

,

here 𝑃r and 𝑄r are the rescheduled electrical and thermal load,
espectively. The energy demands of the rescheduled loads have to be
onsumed at other time steps. Since these loads are uninterruptible
nes, they have to be satisfied in consecutive time steps. The amount
f energy that is consumed at each time step is a constant denoted as
el
rc or 𝐷th

rc for the electrical and thermal energy, respectively. A binary
ariable 𝛿rc is introduced to determine whether the rescheduled energy
emand is consumed (𝛿rc(𝑘) = 1) or not (𝛿rc(𝑘) = 0) at time step 𝑘. This
eads to the following constraint on the consumed rescheduled energy
er time step:

𝑃rc(𝑘) = 𝐷el
rc𝛿

el
rc(𝑘)

th th ,

rc(𝑘) = 𝐷rc𝛿rc (𝑘)
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where 𝑃rc(𝑘) and 𝑄rc(𝑘) are the consumed electrical and thermal energy
t time step 𝑘. The following constraints assure that the energy is
onsumed without interruption:

𝛿elrc(𝑘) − 𝛿elrc(𝑘 − 1) ≤ 𝛿elrc(𝜏), for 𝜏 = 𝑘 + 1,… , 𝑘 + 𝑇 el
cr − 1

𝛿thrc (𝑘) − 𝛿thrc (𝑘 − 1) ≤ 𝛿thrc (𝜏), for 𝜏 = 𝑘 + 1,… , 𝑘 + 𝑇 th
cr − 1

where 𝑇 el
cr and 𝑇 th

cr are the time needed for the unsatisfied rescheduled
electrical 𝑙elr and thermal energy demand 𝑙thr to be fully consumed,
respectively. To estimate how much electrical and thermal energy still
needs to be consumed at time step 𝑘, the values are updated as follows:

𝑙elr (𝑘) = 𝑙elr (𝑘 − 1) + 𝑃r (𝑘 − 1) − 𝑃rc(𝑘)

𝑙thr (𝑘) = 𝑙thr (𝑘) +𝑄r (𝑘 − 1) −𝑄rc(𝑘)
.

The rescheduled energy demand has to be consumed before reach-
ing a predefined time step 𝐹 . For example, a dishwasher can be
rescheduled in the evening to a later time step, but one wants that the
program is done by the coming morning. Therefore, no unsatisfied load
should be present at that time step, i.e., 𝑙elr (𝐹el) = 0 and 𝑙thr (𝐹th) = 0.

2.4. Connection to utility grid

The microgrid remains connected to the utility grid at all times.
Therefore, it is able to import or export electrical energy, hydrogen, or
‘green’ gas at a certain price. To model the utility grid, a binary logic
variable 𝛿UG is introduced to determine whether energy 𝑢UG is bought
(

𝛿UG(𝑘) = 1
)

or sold
(

𝛿UG(𝑘) = 0
)

to the utility grid at time step 𝑘 with
𝑢UG(𝑘) ≥ 0 ⟺ 𝛿UG(𝑘) = 1. The economic cost 𝐶UG for the microgrid,
due the import and export of energy with the utility grid, is modelled
as

𝐶UG(𝑘) =
{

𝑐P(𝑘)𝑢UG(𝑘), if 𝛿UG(𝑘) = 1
𝑐S(𝑘)𝑢UG(𝑘), if 𝛿UG(𝑘) = 0

,

where 𝑐P(𝑘) and 𝑐S(𝑘) are the purchase and sale price of energy at
time step 𝑘, respectively. The transferred energy is constrained by
the maximum allowed energy transfer between the microgrid and the
utility grid, i.e., 𝑢UG ≤ 𝑢UG(𝑘) ≤ 𝑢UG.

For the purchase and sale price of electricity, a time-of-use price
is computed. The electrical energy price varies greatly throughout the
day and shows strong weekly patterns. Therefore, an import price is
computed for every time step during the week based on the national
data of the Netherlands. A 20% increase in this price is added due to
rising electrical energy price till the year 2050 [28]. The purchasing
price of hydrogen and ‘green’ gas is fixed throughout the day based on
the data of [28]. The sale price of energy is assumed to be equal to the
net import price, i.e., excluding taxes and transportation costs.

2.5. Operational constraints

Multiple operational constraints are presented in this section.

2.5.1. Degradation
To tackle the problem of degradation for multiple components in

the microgrid, a constraint is added as introduced in [22]. A constraint
is set on the minimum time the system is turned on or off, i.e., 𝑇ON
and 𝑇OFF, respectively. In this constraint, the introduced binary logic
variables are used to define whether the system is on (𝛿(𝑘) = 1)
or off (𝛿(𝑘) = 0). Note that in the previous section, these modes
were respectively the charging and discharging mode of the battery
and battery EV. The constraint is expressed without resorting to any
additional variable as
𝛿(𝑘) − 𝛿(𝑘 − 1) ≤ 𝛿(𝜏), for 𝜏 = 𝑘 + 1,… , 𝑘 + 𝑇ON − 1

𝛿(𝑘 − 1) − 𝛿(𝑘) ≤ 1 − 𝛿(𝜏), for 𝜏 = 𝑘 + 1,… , 𝑘 + 𝑇OFF − 1

The first line in this equation ensures the system satisfies the mini-
5

mal ‘on time’ and the second line the minimal ‘off time’. This constraint
is used to prevent fast switching between modes in the battery, elec-
trolyser, 𝜇−CHP, hybrid heat pump, and both types of EVs. For the
hybrid heat pumps, both for thermal energy generated by electrical
energy consumption and by gas, the constraint is added. Moreover, for
the EVs, this constraint is introduced for both the modes refilling and
generation.

2.5.2. Range anxiety
The use of EV management strategies may result in fear of the users

that the EV will not be sufficiently charged upon departure, i.e., range
anxiety [11]. In the model, it is chosen that it is not necessary that
the EV should be fully charged upon departure since this will lead
to conservative results and the exact departure time is generally not
known in advance in real life. However, the following constraint is
introduced to ensure a certain state of charge 𝑥tEV is reached when the
vehicle turns into transportation mode 𝛿tEV:

𝑥EV(𝑘) ≥ 𝑥tEV𝛿
t
EV(𝑘),

where 𝑥EV(𝑘) is the fuel storage of the EV at time step 𝑘. Since not
all trips are known beforehand, one wants to ensure as well that
enough fuel is in the EV before the EV will be generating electricity
to the microgrid. Therefore, another constraint is added that ensures a
minimal state of charge 𝑥gEV in the EV is set before the EV can be in
generation mode 𝛿gEV:

𝑥EV(𝑘) ≥ 𝑥gEV𝛿
g
EV(𝑘),

where 𝑥gEV < 𝑥tEV.

2.5.3. Power balance
The different types of energy sources in the microgrid have to be

balanced at every time step. In the microgrid, different types of energy
sources are considered: electrical energy, thermal energy, hydrogen,
and ‘green’ gas. The power balances are given using the variables
introduced in the previous section:

𝑢elUG(𝑘) + 𝑃PV(𝑘) + 𝑃CHP(𝑘) + 𝑢elfev(𝑘) = 𝑃res(𝑘) + 𝑃com(𝑘) + 𝑃rc(𝑘) − 𝑃r (𝑘)

+ 𝑢bat (𝑘) + 𝑢bev(𝑘) + 𝑢elc(𝑘) + 𝑢elHP(𝑘)

𝑄CHP(𝑘) +𝑄HP(𝑘) = 𝑄res(𝑘) +𝑄com(𝑘) +𝑄rc(𝑘) − 𝑄r (𝑘) −𝑄c(𝑘)

𝑢gasUG(𝑘) = 𝑢gasCHP(𝑘) + 𝑢gasHP(𝑘)

𝑢hydUG (𝑘) +𝐻elc(𝑘) = 𝑢hydCHP(𝑘) + 𝑢hydHP (𝑘) + 𝑢hydfev (𝑘).

In the above equations, (⋅)el, (⋅)gas, and (⋅)hyd represent the energy
that is generated or consumed as electricity, ‘green’ gas, and hydrogen,
respectively. For almost all the power balances a connection to the
utility grid that can act as an infinite buffer is present. The net imbal-
ance of the microgrid can be compensated by importing or exporting
(only for electricity) energy from the utility grid. The thermal power
balance does not have this connection since no thermal infrastructure
is present between the microgrid and utility grid. However, since the
generation of thermal energy is more of a conversion of other types
of energy to thermal energy, the connections to the utility grid in the
other power balances act indirectly as an infinity buffer for the thermal
power balance.

3. Stochastic processes

The different stochastic processes in the microgrid, i.e., PV power,
electrical and thermal energy demand of residential buildings, and
electrical and thermal energy demand of commercial buildings, need to
be forecast to control the model described in the previous section. This
section comprises an overview of the different point forecasting models
for each stochastic process. Real data is used based on meteorological

measurements and energy consumption patterns in the Netherlands.
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3.1. Literature background

A brief description of the two forecasting models used in this
paper is presented: autoregressive moving average and long short-term
memory recurrent Artificial Neural Network (ANN). These models were
chosen due to their good performance in the literature [37–39].

3.1.1. Autoregressive moving average
The first forecasting model used in this paper is the autoregres-

sive moving average model based on the Box–Jenkins method [40].
This model shows reliable predictions when there exists an underlying
linear correlation structure in the time series while considering the
unobserved errors of previous time steps. Furthermore, a favourable
aspect of the model is its flexibility since it can represent multiple types
of time series by using different orders [41]. With the autoregressive
moving average model, one assumes that the data do not show any
characteristics of non-stationarity [37]. When non-stationary data are
considered, a generalisation of the model can be used by creating
an autoregressive integrated moving average model. Inherent seasonal
effects of the data can be added to the model by adding seasonality
to the model. Lastly, exogenous inputs with a high correlation to the
forecasting data can be added to improve the performance of the model.
A mathematical description of the difference autoregressive moving
average models is shown in [41].

3.1.2. Artificial neural network
The second forecasting model used in this paper is the ANN. An ANN

consists of multiple hidden layers making the connection from the input
to the output. Each layer is composed of one or more neurons where
an activation function in the neurons determines the nonlinear mapping
characteristics across the ANN [42]. This approach is widely used since
it does not require mathematical expressions, it is self-learning, easy to
implement, short online computation time is needed, and it is able to
detect complex nonlinear relations between the input and output [38].
However, drawbacks of the model are that it needs a significant amount
of historical data to be properly trained and overfitting may occur [37].

In this paper, a long short-term memory recurrent ANN, as first in-
troduced in [43], is used. A recurrent ANN is used since it considers the
temporal correlation between previous information and current circum-
stances, resulting in that previous decisions influence the predictions in
future time steps [44]. Due to the gradient vanishing or exploring in the
training of the ANN by using the popular back-propagation algorithm,
long-range dependencies are difficult to learn. This can be overcome by
using long short-term recurrent ANNs that use a memory cell to capture
these long-range dependencies, as mathematically shown in [43,44].

3.2. PV power

For the PV power, two stochastic processes need to be forecast as
determined from (1), i.e., the solar irradiance and ambient temperature.
Both stochastic processes are forecast in similar time steps as the
available train data of one hour.

3.2.1. Solar irradiance
A clear-sky model is used since it has proven to deal with the

stochastic influence of cloud covering well [45,46]. In the clear-sky
model, the global horizontal solar irradiance is computed as if it was
a clear-sky day 𝐺cs

c , i.e., without any clouds. Therefore, the stochastic
component is excluded and a clear-sky global horizontal solar irradi-
ance can be obtained for every hour in the year. With these values, the
clear-sky index 𝜃 can be computed as the normalisation of the measured
solar irradiance 𝐺c(𝑘):

𝜃(𝑘) =
𝐺c(𝑘)
𝐺cs
c (𝑘)

.

The clear-sky model is obtained from the available data, and missing
data are computed using a statistical smoothing technique based on
6

weighted quantile regressions as in [45]. In general, a limiting factor
of developing clear-sky data is the absence or quality of the data [47],
i.e., in the winter there are not many clear-sky observations to train
the model and this increases the error of the quantile regression. This
problem is partly solved by using data of the past 20 years.

It is decided from the autocorrelation of the clear-sky index that the
prediction models will use data of one hour and 24 h before. Different
exogenous inputs can be considered based on the geographical loca-
tion [37,48] and from the data it is concluded the highest correlation
coefficients for the solar irradiance are obtained with the temperature,
presence of snow, and humidity. With these exogenous inputs, it is
concluded that an ANN model provides the smallest root mean square
error.

3.2.2. Ambient temperature
The autocorrelation is analysed and it is chosen to use the data from

1, 2, 3, 4, 5, and 24 h before for the forecasting. It is concluded that
solar irradiance and humidity have the strongest correlation for tem-
perature, but are still low. Using a seasonal autoregressive integrated
moving average model provided the smallest root mean square error.

3.3. Residential energy demand

The energy demand of residential consumers is characterised by
the distinctive pattern during the day, having a peak consumption
in the early evening. This peak often determines the general peak in
the microgrid where the electrical energy grid investments are based
upon. In this section, both the electrical and thermal energy demand
are forecast in the sampling time corresponding to the available data
of 15 min and one hour, respectively. Since data of only one year is
available and used, the ANN did not have enough training data to
construct a proper model and autoregressive moving average models
are used.

3.3.1. Electrical energy demand
From the autocorrelation, it is chosen that for the electrical energy

demand, data of the previous 45 min and of 23:45, 24:00, and 24:15 h
before is used. Exogenous inputs did not improve the models of the res-
idential electrical energy demand. A seasonal autoregressive integrated
moving average obtained the smallest root mean square error and is
used in this study.

3.3.2. Thermal energy demand
Time series data of 1, 2, 23, 24, 25 h before is used, as concluded

from the autocorrelation. A high correlation coefficient between the
thermal energy demand and the ambient temperature is found, and
the temperature is used as an exogenous input in the forecasting
models. The smallest error is obtained using the seasonal autoregressive
integrated moving average model.

3.4. Commercial energy demand

The commercial energy demand shows large differences in the
consumption pattern between weekdays and the weekend. This is based
on the opening hours of the small stores. In this section, both the
electrical and thermal energy demand are forecast in the sampling
time corresponding to the available data of 15 min and one hour,
respectively.

3.4.1. Electrical energy demand
From an analysis of the autocorrelation, it is chosen that for the

electrical energy demand, data of the previous 30 min and of 168 h
before, i.e., one week ago, is used. Exogenous inputs did not improve
the models of the commercial electrical energy demand. The ANN
obtained the best performance, i.e., smallest root mean square error
in the point forecasts.
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3.4.2. Thermal energy demand
Time series data of 1, 23, 24, and 25 h before is used, as concluded

from the autocorrelation. A high correlation coefficient between the
thermal energy demand and the ambient temperature is found, and the
temperature is used as an exogenous input in the forecasting models.
The smallest root mean square error is obtained using the ANN model.

4. Control

This section discusses the objective function of the optimisation
problem in the microgrid and the MPC strategy used.

4.1. Objective function

The objective function considers the economic profitability of low-
ering the peak of electrical energy demand (𝐽gd) as well as the energy
import costs (𝐽eco). Discomfort penalties (𝐽dis) and the durability of the
EVs (𝐽dur) are included as well, resulting in a multi-objective function
as

𝐽 = 𝛼𝐽eco + 𝛽𝐽dis + 𝛾𝐽dur + 𝜆𝐽gd,

with 𝛼, 𝛽, 𝛾, and 𝜆 being predefined weights.

4.1.1. Economic objective
The economic objective is based on the import costs of the different

energy sources from the utility grid in the prediction horizon 𝑁p,
i.e., electricity (𝐶el

UG), ‘green’ gas 𝐶gas
UG, and hydrogen 𝐶hyd

UG . Operational
costs due to the increase in maintenance and startup and shut-down
costs as in [22] are not considered due to the difficult assumptions that
need to be made to approximate these costs in the future microgrid.
Therefore, the economic objective is written as

𝐽eco =
𝑁p
∑

𝑘=1

(

𝐶el
UG(𝑘) + 𝐶gas

UG(𝑘) + 𝐶hyd
UG (𝑘)

)

.

4.1.2. Discomfort objective
The discomfort for the consumers in the microgrid will mainly

be influenced by the usage of DR. Furthermore, the range anxiety
is included by penalising a lower state of charge of an EV. Another
low discomfort is placed on the amount of energy in the battery and
hydrogen storage tank. This is penalised in a similar way as for the
state of charge of the EVs. The discomfort objective can be written as

𝐽dis =
𝑁p
∑

𝑘=1

(

𝜌c𝛽c(𝑘) + 𝜌elr 𝛽
el
r (𝑘) + 𝜌thr 𝛽

th
r (𝑘)

+
𝜌EV
𝑁EV

(𝑁bev
∑

𝑖=1

𝑥bev,𝑖 − 𝑥bev,𝑖(𝑘)
𝑥bev,𝑖

+
𝑁fev
∑

𝑖=1

𝑥fev,𝑖 − 𝑥fev,𝑖(𝑘)
𝑥fev,𝑖

)

+ 𝜌bat
𝑥bat (𝑘) − 𝑥bat

𝑥bat
+ 𝜌hst

𝑥hst − 𝑥hst (𝑘)
𝑥hst

)

.

where 𝜌c, 𝜌elr , and 𝜌thr are the penalty weights for curtailment and
rescheduling of the electrical and thermal energy, respectively. The
parameters 𝜌EV, 𝜌bat , and 𝜌hst are the penalty weights given for the
state of charge of the total number of EVs (𝑁EV), the battery, and the
hydrogen storage tank, respectively.

4.1.3. Durability objective
Frequent use of the EVs in vehicle-to-grid will result in faster

degradation of the batteries and fuel cells in the EVs. Although the
degradation is tackled up to a certain degree using the operation
constraints, a penalty is still applied to the usage of the EVs in vehicle-
to-grid for giving energy to the microgrid to increase its durability
as

𝐽dur =
1

𝑁

𝑁p
∑

(𝑁bev
∑

𝑧gbev,𝑖(𝑘)
g +

𝑁fev
∑

𝑢elfev,𝑖(𝑘)
el

)

,

7

EV 𝑘=1 𝑖=1 𝑧bev,𝑖 𝑖=1 𝑢fev,𝑖 h
where 𝑧gbev(𝑘) = 𝛿gbev(𝑘)𝑢bev(𝑘) is introduced by the mixed logical dynam-
cal modelling [27], where 𝛿gbev(𝑘) indicates whether the battery EV is
n generation mode at time step 𝑘.

.1.4. Grid demand objective
The maximum value of the electrical energy exchange per time step

s penalised since we want to reduce the increase in energy infrastruc-
ure. Therefore, the absolute maximum energy transfer of the electricity
eeds to be minimised using a weight 𝜌GD. An auxiliary variable 𝜁 elug(𝑘)
s introduced to obtain a linear objective function using the auxiliary
ariable 𝑧elUG(𝑘) = 𝛿elUG(𝑘)𝑢

el
UG(𝑘) as introduced for the mixed logical

ynamical modelling. This results in the objective as

gd = 𝜌GD ⋅max
𝑘

|𝑢elUG(𝑘)| = 𝜌GD ⋅ 𝜁 elug(𝑘), with

𝜁 elug(𝑘) ≥ 2𝑧elUG(𝑘) − 𝑢elUG(𝑘), 𝑘 = 1, … , 𝑁p,

where the lower equation ensures that the value of 𝜁 elug(𝑘) remains
positive for both the import and export of energy.

4.2. Model predictive control

There has been a vast amount of literature on MPC for discrete-time
systems where the observable states 𝒙 and inputs 𝒖 are constrained,
described as
𝒙(𝑘 + 1) = 𝑓 (𝒙(𝑘), 𝒖(𝑘)) , 𝒚(𝑘) = ℎ(𝒙(𝑘)),𝒙 ∈ X, 𝒖 ∈ U,

∈ R𝑛 × R𝑚 → R𝑛, 𝒚 ∈ R𝑏, and ℎ ∈ R𝑛,
(2)

ith 𝒙 representing the state and 𝒚 the output of the system. In this
aper, the state is assumed to be observable. At each time step, an
ptimal control problem is solved while simulating the future states
n a receding horizon fashion. For the length of this finite-horizon
indow, i.e., the prediction horizon, an optimal control sequence is

omputed. This optimal control sequence calculates an optimal control
nput at each time step in the control horizon window, where the
ontrol horizon is always equal or smaller than the prediction horizon.
he first control of the computed sequence is implemented in the
ystem and the process is repeated for the next time step.

The main advantage for using MPC, compared to more conventional
ule-based control methods, is that this controller is optimisation based.
herefore, a determined cost function can be optimised and better
esults are obtained. Furthermore, MPC considers the future evolution
f the system when determining the optimal control input as well,
trengthening the ability to gain an even better performance. Increasing
he control horizon can improve the performance of the closed-loop
ontrolled system, but it also increases the computation time.

In this paper, the considered MLD model will result in an mixed-
nteger linear programming problem. The main drawback of a MLD
odel using MPC is the computational burden due to the introduction

f the binary variables in the optimisation. Such a problem is NP-hard
nd, loosely speaking, the overall worst-case complexity of mixed-
nteger problems is exponential in the number of binary optimisation
ariables [49].

In general, no constraints satisfaction nor recursive feasibility can
e guaranteed by using MPC due to the errors in the point fore-
asts, i.e., violations of the constraints can occur [50]. A low-level
ontroller is therefore implemented in the microgrid to compensate
or the discrepancies in the microgrid during the optimisation. The
ow-level controller imports extra ‘green’ gas, hydrogen, or electrical
nergy during a shortage of energy and activates the hybrid heat pumps
o generate thermal energy. During an abundance of energy, similar
teps are taken, with the difference that the abundance in ‘green’ gas,
ydrogen, or electrical energy is subtracted from the imported quantity.
easibility is assumed to be ensured since there are no constraints on
he imported energy and the hybrid heat pumps can provide more
hermal energy than the maximum thermal demand measured in the

istoric data.
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4.3. Control of uncertainty

Extensions on the nominal MPC are possible to deal with the uncer-
tainties of the point forecasts for the stochastic processes better and
obtain an improved overall performance of the microgrid. Different
robust and stochastic MPC methods that can deal with the nonlin-
earities of the mixed-integer linear programming problem are briefly
elaborated upon for future research.

In robust MPC, the uncertainty is assumed to be bounded and for
all required realisations of the disturbances 𝒘 = {𝑤(0), 𝑤(1),… , 𝑤(𝑁 −
)} ∈ W𝑁 the control constraints need to be satisfied [50]. This
uarantees feasibility for the bounded disturbances but results in a
onservative solution. To decrease the conservatism of the results,
tochastic MPC can be used where the constraints are assumed to
e stochastic. In this method, the constraints are softened, i.e., the
onstraints do not need to be satisfied for all possible realisations of
he disturbances [50]. In the optimisation of stochastic MPC, a trade-off
hould be made between the control performance and the probability
f state constraint violation [51]. Two stochastic MPC strategies that
an be adapted with the nonlinearities of the mixed-integer linear pro-
ramming problem are [52]: scenario-based and tree-based MPC. These
ontrol strategies should be investigated in future work to improve the
erformance of the microgrid.

. Case study

In this section, simulations are performed for different case studies.
hree scenarios that consider different levels of penetration of hydro-
en in the microgrid are defined. From these results, the question of
ow hydrogen influences the peak of electrical energy transfer of the
icrogrid and the required grid investments is answered.

.1. Setup

The number of distributed energy resources and their specifications
re based on realistic future investments and calculated ratios as will
e presented in following paragraphs.

uildings. To estimate the energy demand of the microgrid, the number
f buildings in the microgrid is chosen. A ratio of 42:1 for residential to
mall commercial buildings is calculated based on data in Amsterdam,
he Netherlands [53]. Therefore, it is chosen to construct a microgrid
ith 42 residential buildings and one small commercial building. It

s chosen not to include more buildings since this will increase the
omputation time due to an increase of decision variables.

emand response. In each residential building, a dishwasher, which has
n energy consumption of 0.78 kWh and which is used five times a
eek, is chosen to participate in the DR program as reschedulable load.
urthermore, we assume that 10% of the real consumed thermal energy
emand in residential buildings can be rescheduled and another 10%
urtailed.

lectric distributed energy resources. PV panels are installed on each
uilding with an average power of 3.34 kW, estimated from the re-
earch done in [28]. This yields a 143.62 kW maximum power of solar
anels in the microgrid. A district battery with a maximum storage
apacity of 500 kWh and a maximum power of 150 kW is considered.
t is assumed that the battery does not discharge below 10% of its
aximum capacity and has a charging and discharging efficiency of
0%. An electrolyser is used with a maximum power consumption
f 25 kW containing an integrated hydrogen storage system with a
torage capacity of 500 kg. It is assumed that the storage level does
ot drop below 5% of the maximum storage. Since an efficiency of
he electrolyser of 70% and a heating value of hydrogen of 39.4
Wh/kg [10] are assumed, the model parameter 𝛼elc is estimated to
e 0.02 kg/kWh.
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Thermal distributed energy resources. A hybrid heat pump is installed
with a maximum power of 20 kW. The efficiency for the electric part
is 400% due to heat obtained from the ground or air. The boiler in
the hybrid heat pump that burns gas has an efficiency of 90% for
both ‘green’ gas and hydrogen. Furthermore, a 5 kW 𝜇-CHP plant is
installed with a thermal storage capacity of 70 kWh. The efficiency
for the electrical energy and thermal energy are 22.5% and 67.5% for
the 𝜇−CHP plant with an internal combustion engine, respectively, and
both 45% for the 𝜇−CHP plant with a fuel cell.

Electric vehicles. A single EV per household is considered. Battery EVs
with a charging and discharging efficiency of 90% and a maximum
battery storage capacity of 100 kWh are used. Their charging or dis-
charging power is set to be a maximum of 16 kW. The fuel cell EVs in
the microgrid have a fuel storage capacity of 7 kg of hydrogen with
a refilling rate of 2 kg/h. Since this EV operates on partial load in
the microgrid, the maximum power is set to be at 15 kW. The model
parameters 𝛼FEV and 𝛽FEV for the fuel cell EVs are based on the model
of fuel cell stacks in [34] and are determined to be 0.06 kg/kWh and
0.11 kg/h, respectively [10].

5.2. Scenarios

Three scenarios with different levels of penetration of hydrogen
in the microgrid are considered. The energy and thermal demand is
similar for each scenario. Therefore, a fair comparison can be made
about how the introduction of hydrogen in the microgrid will influ-
ence the performance. The following three scenarios are considered,
schematically visualised in Fig. 1, as:

(1) Electric: In this scenario, no hydrogen is present in the mi-
crogrid. Therefore, no electrolyser with an integrated hydrogen
storage tank and fuel cell EVs are present. The hybrid heat
pumps and 𝜇-CHP plant can run on ‘green’ gas that is imported
from the utility grid.

(2) Mixed: This scenario is based on the expected microgrid in the
Netherlands in 2050 [28]. Both electric and hydrogen-based
components are present in the microgrid. However, no ‘green’
gas is considered since hydrogen will be using the current nat-
ural gas infrastructure. Using both gases would lead to an extra
gas network which is preferred to be avoided since the extra
investments needed will probably overrule the potential profit.
Therefore, the hybrid heat pumps and 𝜇-CHP plant will contain
fuel cells that run on hydrogen instead of the ‘green’ gas. Fur-
thermore, the electrolyser with an integrated hydrogen storage
tank is included in the microgrid. Both types of EVs are present
and a ratio of 1.5:1 for the number of battery EVs to the number
of fuel cell EVs is used [28].

(3) Hydrogen: In this scenario, a hydrogen-based microgrid is con-
sidered. The microgrid consists of almost the same distributed
energy resources as in the mixed scenario, with the only differ-
ence that the battery is excluded from the microgrid. Further-
more, all the battery EVs are replaced by fuel cell EVs.

5.3. Performance indices

The performance of the energy management of the microgrid is
measured by economic and generic performance indices. In the eco-
nomic performance indices, the performance is measured in terms of
economic costs. The generic performance indices are estimated as a
value between 0 and 1, yielding a better performance with a higher
value. An overview of these different performance indices based on the
number of time steps during the simulation 𝑇 are:

Economic performance indices
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• Electrical grid investment: The peak of electrical energy transfer
is translated to variable economic investments needed to be paid
by the energy suppliers following the prices in the Netherlands.
Hence, economic costs are based on the peak of electrical energy
transfer, i.e., e2.4147 per month per maximum transferred en-
ergy in kW [54]. This results in the equation for the electrical
grid investment, with 𝑇m as the number of time steps in a month,
as

EGI = 2.4147 ⋅ 𝑇
𝑇m

𝑇
∑

𝑘=1

(

𝜁 elug(𝑘)
)

.

• Energy import costs: The netted economic costs of the microgrid
by purchasing and selling energy is calculated as

EIC =
𝑇
∑

𝑘=1

(

𝐶el
UG(𝑘) + 𝐶gas

UG(𝑘) + 𝐶hyd
UG (𝑘)

)

.

Generic performance indices

• Comfort level: The discomfort costs in the microgrid are rewrit-
ten as a normalised comfort level for the consumers. This comfort
level is estimated by considering the comfort decrease due to
participation in DR, the influence of range anxiety, and battery
state of charge. The comfort level is calculated as the discomfort
objective divided by its weights as

CL = 1 −
𝐽dis

𝜌c + 𝜌elr + 𝜌thr + 𝜌EV + 𝜌bat + 𝜌hst
.

• Durability of EV: The durability of the EVs is influenced by the
possible intensive usage in vehicle-to-grid and is also penalised in
the objective function. A durability ratio for the EVs is calculated
that identifies the ratio of vehicle-to-grid used when not on trans-
portation

(

𝛿t (𝑘) = 0
)

. The durability ratio for the EVs is calculated
as

DEVn =
𝑇
∑

𝑘=1

(𝑁bev
∑

𝑖=1

(

1 − 𝛿t𝑖 (𝑘)
)

𝑧gbev,𝑖(𝑘)

𝑧gbev,𝑖
+

𝑁fev
∑

𝑖=1

(

1 − 𝛿t𝑖 (𝑘)
)

𝑢elfev,𝑖(𝑘)

𝑢elfev,𝑖

)

,

DEV = 1 −
DEVn

∑𝑇
𝑘=1

∑𝑁EV
𝑖=1

(

1 − 𝛿t𝑖 (𝑘)
)

.

• Electric self-supply: A microgrid can be rated by the ability to
use the generated energy in the microgrid as proposed in [55–57],
i.e., not selling the energy if there is an abundance. The electric
self-supply performance index calculates the ratio between the
exported and generated electrical energy in the microgrid as

ESS = 1 −
∑𝑇

𝑘=1
(

𝑧elUG(𝑘) − 𝑢elUG(𝑘)
)

∑𝑇
𝑘=1

(

𝑃PV(𝑘) + 𝑃CHP(𝑘)
)
.

• Energy independence: The energy independence of a microgrid
can be rated by calculating the ratio of imported energy to the
consumed energy [55,56,58,59]. The energy independence is a
measure for self-reliance of a microgrid. It explains the ability of a
microgrid to deal with unexpected excessive demand. The energy
independence of the microgrid is calculated as

EId =
𝑇
∑

𝑘=1

(

𝑃res(𝑘) + 𝑃com(𝑘) +𝑄res(𝑘) +𝑄com(𝑘)

+
𝑁bev
∑

𝑘=1

(

ℎbev,𝑖(𝑘)
)

+
𝑁fev
∑

𝑘=1

(

ℎfev,𝑖(𝑘)
)

)

,

EI = 1 −
∑𝑇

𝑘=1
(

𝑧elUG(𝑘) + 𝑧thUG(𝑘)
)

EId
,

where 𝑧thUG presents the imported gas in kWh and the trip costs
ℎ and ℎ are calculated in kWh as well.
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5.4. Simulation weeks

A strong difference for the energy demand and PV power generation
throughout the year is observed from the analysis of the stochastic
processes. Therefore, it is chosen to simulate a typical winter week
and a typical summer week for the Netherlands. These two weeks are
analysed, and it is concluded that in an extreme winter week the most
energy transfer between the microgrid and utility grid is expected.
Hence, a week with extremely cold temperatures is simulated as well
to determine the minimum electrical energy grid investments needed
to guarantee the reliability of the microgrid. A high thermal energy
demand and low PV power, due to the low solar irradiance in the
winter, is present this week. From these different weeks, an overview of
the average costs during the year can be derived based on the summer
and winter case study. Furthermore, the minimum electrical energy
grid investments can be determined based on the week with extreme
conditions.

Each simulation in the different microgrids consists of eight consec-
utive days where the first day is only used for initialisation to create
a more realistic initial values for the energy stored in the distributed
energy resources. Thus, the results are based on the last seven days of
the simulation. The simulation starts on a Monday and ends on the next
Monday. It is chosen to use this order to include the influence of the
weekend on the first weekday. In Fig. 2, the energy transfer between
the microgrid and utility grid is shown as example.

The mixed-integer linear programming problem for the MLD-MPC
optimisation is solved in the Matlab R2020a environment using Gurobi
[60]. An HP EliteBook 8570w with a 2.3 GHz Intel Core i7 processor
and 4 GB of RAM is used for the simulations. Different computation
times are obtained for the controllers in each case study and scenario. In
general, the computation time increases with a higher energy demand
in the case study. The computation time for the week with extreme
conditions is approximately 3 h.

5.5. Results

Fig. 2 shows the energy transfer between the microgrid and utility
grid during the simulations. In Table 1, the system performance for
the different scenarios in these simulations is presented. It is shown
that a general trend is present for each week between the scenarios.
A higher level of hydrogen penetration in the microgrid reduces the
peak of electrical energy transfer of the microgrid, as shown in the
costs of EGI and Fig. 2. However, the total economic costs increase due
to the higher energy import costs, as seen in the Total costs column.
These higher energy import costs are mainly due to the more expensive
fuel costs for fuel cell EVs compared to battery EVs. The fuel costs are
more expensive due to the higher import price of hydrogen compared
to electrical energy and the low efficiency in the fuel cells. It must be
noted that the expected hydrogen price and low efficiency of the fuel
cells influence the results of the optimisation substantially and future
research should focus on improving hydrogen technology such that the
efficiency grows and the price drops.

The electrical energy grid investments are based on the week with
extreme conditions. The energy import costs are calculated by aver-
aging the costs in the typical winter and summer weeks, representing
an approximation of the mean costs throughout the year. It is con-
cluded that a reduction in the electrical grid investments of 16.90%
and 81.29% is achieved for the mixed and hydrogen scenario as seen
in Table 1 in the column presenting the costs of EGI, respectively.
However, the total economic costs are increased for the mixed and
hydrogen scenario, respectively by 29.92% and 52.38% as seen in the
column ’Total costs’. Therefore, despite reducing the grid investment
costs, introducing hydrogen to the microgrid will still lead to more
economic costs.

The introduction of hydrogen results in a lower energy indepen-

dence of the microgrid, decreasing the self-reliance of the microgrid.
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Fig. 2. Energy transfer between the microgrid and utility grid in the different scenarios for the extreme conditions case study.
Table 1
The results on the performance indices for the scenarios in the different weeks.

Week Scenario EGI [e] EIC [e] Total costs [e] CL DEV [103] ESS EI Total objective costs

Summer
Electric 271 53 324 0.8826 0.6795 0.7973 0.7073 14
Mixed 173 211 384 0.7432 0.6349 0.8007 0.3831 22

Hydrogen 34 511 545 0.8258 0.8031 0.8034 0.1347 39

Winter
Electric 338 409 747 0.6379 0.7554 0.8448 0.5956 47
Mixed 239 711 950 0.5873 0.6230 0.8414 0.5171 67

Hydrogen 48 1115 1163 0.6320 0.7424 0.8660 0.4075 92

Extreme conditions
Electric 345 548 893 0.4537 0.7648 0.9478 0.6760 60
Mixed 286 850 1136 0.4306 0.6450 0.9402 0.6081 82
Hydrogen 64 1257 1321 0.4624 0.7497 0.9618 0.5406 106
This is due to the lower efficiency of the fuel cell compared to the bat-
tery and more devices running on hydrogen, which is mainly imported.
Another trend is that for the mixed scenario including both battery and
fuel cell EVs, more degradation will occur on the battery and fuel cells
of the EVs due to the higher use of the EVs in vehicle-to-grid operations.
Furthermore, in the mixed scenario, a lower comfort level is obtained
due to the lower state of charge of the EVs. No clear differences are
concluded for the self-supply of the microgrids since different trends are
seen for the ESS in Table 1 between the levels of hydrogen penetration
in the different weeks.

6. Conclusions

In this paper, the influence of hydrogen on the electrical grid
investments costs has been analysed. A simulation-based case study has
been performed where scenarios with different levels of hydrogen have
been compared. It is shown that the introduction of hydrogen in the
microgrid reduces the electrical grid investments costs for the mixed
and hydrogen scenario with 16.90% and 81.29% while yielding higher
energy import costs, increasing the total economic costs by 29.92% and
52.38%, respectively. Furthermore, the introduction of hydrogen in the
microgrid shows a clear decrease in the energy independency of the
microgrid. In a microgrid containing both battery and fuel cell EVs, it
is concluded that more vehicle-to-grid operations are used compared to
the microgrids including only one type of EV. In conclusion, an increase
in the level of hydrogen in the microgrid will reduce the electric grid
investments costs but is not economically more beneficial than using
‘green’ gas.

As future work, unknown departure times need to be considered,
i.e., forecasting models need to be developed to predict the behaviour
10
of the arrival and departure times of the EVs instead of assuming them
to be known beforehand.

Furthermore, stochastic MPC methods that can deal with the non-
linearities of the mixed-integer linear programming problem (e.g.,
scenario- and tree-based MPC) can be evaluated to see if better per-
formance of the microgrid can be reached. With these methods, it is
possible to include the uncertainties in the point forecasting in the
control of the microgrid.

Another aspect is that scaling the size of the microgrid could in-
fluence the performance of the microgrid. Therefore, the influence
of hydrogen on smaller and larger microgrids should be evaluated.
Since the computational complexity rises when increasing the size
of the microgrid, alternative techniques as distributed MPC [61] or
parameterised MPC [62] could be considered to decrease the number
of decision variables and, therefore, the computational complexity and
computation time needed.

Lastly, the results of the experiments can be strengthened by using
statistical tests to evaluate the results and including reliability param-
eters in the optimisation of the microgrid. These aspects contribute to
be able to construct a complete picture of the influences of hydrogen
in the microgrid.
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