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Abstract

A project is under way to replace the ferry crossings in Norway’s highway E39 with fixed links, such as
highway bridges or tunnels. This thesis research is on the crossing located at the Sognefjord, the widest
and deepest of the straight crossings in the E39 highway. Previous thesis projects at IV-Consult have
yielded a design for a floating bridge supported on twenty-two pontoons. The bridge is moored using
a sub-sea cable system. The bridge design reaches a height of 70 m at its 465 m wide mid-span and is
dimensioned on the basis of static calculations of the structural elements.

The goal of this thesis research is to calculate the dynamic response of the bridge system to environ-
mental loads and to determine if the current bridge design is sufficient in relation to this response. To
reach this goal, several models have been developed for the structural elements that compose the bridge;
the continuous bridge deck girder, the pylons supporting this girder, the floating pontoons supporting
these and the sub-sea cable mooring system fixing the structure in place. First a structural model for
the bridge structure is developed with special attention being placed on the sub-sea mooring system.
For these cables an internal design is made and a calculation method is developed to model and de-
termine the internal hysteretic damping in the cables due to inter-wire friction. Second, a mechanical
model describing the linear dynamic response of the pontoons for small rotations has been developed.
The pontoons themselves are modelled as rigid bodies. Third, the bridge deck girder is modelled as an
equivalent Euler-Bernoulli beam. Finally, a load model is developed for the wave and current loads at the
bridge location. Diffraction theory is used to calculate wave loads on the large pontoons and the current
loading is identified and modelled according to prevailing design codes. Six critical wave load cases are
formulated.

Models of the bridge structure are built using the SACS and Scia Engineer software packages. A
non-linear solver is written in Python to implement the cable model for static calculation, utilizing Scia
Engineer’s non-linear solver. Verification calculations of SACS software results are performed.

The steady state response of the bridge structure is calculated using SACS software for the six critical
wave load cases formulated. In conjunction with this analysis, the cable damping is calculated according
to the cable model. The bridge deck motion and cable fatigue damage are evaluated and are found to be
well within design limits, leading to the conclusion that wave loading will not lead to critical failure in
the bridge design.

An analysis of vortex induced vibrations of the bridge system caused by cross-flow loading of the
bridge pontoons is performed. The analysis is performed using Ansys Fluent in conjunction with the
SACS Dynamic Response module to model the fluid-structure coupling. A large sensitivity to vortex
induced vibrations is found for the bridge system, several potential solutions to this problem are presented
and recommendations are made for further research into this phenomenon for the bridge design.

A verification calculation of the Fluent-SACS model introduced in this thesis is performed using a
coupled wake oscillator model. The verification is based on only the cross-flow motion of a single pontoon
in the bridge system and yields comparable results in terms of load and displacement amplitudes for both
models.
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Chapter 1

Introduction

Norway has a rough coastline with deep fjords cutting into the mainland. Although this creates a
beautiful natural environment, the possibilities for road-based transport are greatly reduced. This has
led the Norwegian Statens Vegvesen, the Public Roads Administration, to commission a series of studies
into the feasibility of spanning the fjords in the coastal highway with fixed crossings, such as bridges or
tunnels.

1.1 Project description

The coastal highway, the E39, is 1100 km long and currently includes eight ferry crossings. It connects an
area producing 50 % of Norwegian traditional export value. Eliminating all ferry crossings reduces travel
time for the complete stretch of highway by about 9 h, which will positively influence trade and industry
for the entire region [Ell12]. The entire route is depicted in Figure 1.1. As one can imagine, the crossings
not yet replaced with fixed links are the widest and deepest in the coastal highway and of these crossings,
the Sognefjord is the most challenging. This is due to its combination of a very large water depth of
1200 m, compared to 450-500 m in other fjords, its width of almost 4 km and the 2-300 m of muddy soil
deposits that make up the fjord bed. It is clear that this fjord crossing is a benchmark project.

Figure 1.1: Overview of the crossings in the E39 highway [Ell12].

This thesis project is part of an ongoing feasibility study on the possibility of spanning the Sognefjord
with a floating bridge design within IV-Consult. Although it is the fourth study performed on this
subject, it is the first to research the dynamic behaviour of this floating bridge design.
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1.2. STATE OF THE PROJECT

1.2 State of the project

The feasibility study on a floating bridge design to cross the Sognefjord at IV-consult has been investigated
in three design iterations prior to this study. To define a starting point for this thesis, a description of the
goals and accomplishments of these projects and an introduction into the current design of the Sognefjord
bridge are given in this section.

The first study on the Sognefjord crossing conducted at IV-Consult has been carried out by Hermans
(2014). It investigated the local environmental conditions, provided an overview of factors influencing
design choices and investigated the prevailing construction codes for this project. The end result of the
study was a preliminary bridge design, from which some elements have endured to the present design.
The elements that have endured to the present design include the circular, spar-like, shape and spacing
for the pontoons and the recognizable S-shaped curve the bridge deck follows. All design choices are based
on static calculations of the loads. This study makes a clear distinction between different construction
elements in the bridge design, which is continued in all studies since, including this one. These elements
are the bridge deck girder, the pylons supporting this girder, the floating pontoons to which they are
attached and the sub-sea cable mooring system fixing the structure in place. A first estimation of their
dimensions and influence on the total model is made. A visual representation of the resulting design is
depicted in Figure 1.2. This design has unfortunately been proven to be infeasible [Her14].

Figure 1.2: First bridge design for the Sognefjord crossing created at IV-Consult [Her14].

The second study has been performed by Yip (2015). It took the recommendations and methods
introduced in the first study and focussed on the cable system mooring the pontoons. Special care was
given to the above-water portion of the bridge design, which is redesigned to a more aesthetically pleasing
form in conjunction with an architectural design firm. Additional effort was placed on the construction
methods for the sub-sea part of the bridge design and design choices were made based on the construction
method. This design was based on static calculations. The final design of this study only includes the
circular shape for the spar-like pontoons and the original pontoon spacing previously introduced. The
bridge girder, pylons and cable system are redesigned, resulting in the bridge design depicted in Figures
1.3 and 1.4.
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1.2. STATE OF THE PROJECT

Figure 1.3: Second bridge design for the Sognefjord crossing created at IV-Consult [Yip15].

Figure 1.4: Sub-sea portion of the second bridge design for the Sognefjord crossing created at IV-Consult
[Yip15].

The third study has finished recently by Cijsouw (2018). It primarily focussed on the optimization of
the bridge girder in an effort to reduce its weight and in an effort to reduce the maintenance requirement
of the bridge structure. A complete redesign of the bridge girders is put forward, including a new set-up
of the connections between the girder and the supporting pylons. Design recommendations are made for
the internal design of the pontoons, based on a ship impact- and subsequent damage analysis. The cable
system, pontoons and pylons are left unchanged. The design calculations performed in this thesis were
static calculations, too.

To conclude: The dynamic behaviour of the Sognefjord bridge design has not been investigated yet.
This is a void this thesis aims to fill.
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1.3 Project overview

This section outlines the steps taken in this thesis to provide an answer to the research question and its
sub questions. A visual overview is shown in Figure 1.5.

Figure 1.5: Research overview.

The preliminary research phase includes the investigation of the local environment, design require-
ments put forward to the design and the current bridge design. The investigation into the local envi-
ronment is meant to yield information on the load-inducing environmental factors, such as wind, waves
and current. The design requirements give a framework in which the bridge design must fit when put
into motion by these environmental loads. Finally, the current bridge design provides the basis for this
feasibility study. The information obtained in the preliminary research allows the formulation of an in-
formed research question, to cover the investigation performed in this thesis. To analyse and calculate
the dynamic behaviour of the bridge system and provide an answer to the research question, a model of
the bridge design and the environment at the bridge location must be constructed. In the model con-
struction phase models are designed for both the structure and the environmental loading. During the
different analyses performed in this study the structural and load models meet and results are calculated.
Finally, the calculated results are discussed and recommendations are made for improvements and further
research.
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Chapter 2

Design information

This chapter includes design information for the Sognefjord Bridge.

2.1 Local environment

The floating bridge is to span the Sognefjorden in Norway. It connects highway E39 and the towns of
Lavik and Oppedal on opposite sides of the fjord. The bridge location is about 25 km from the sea. The
two towns and highway are currently connected by a ferry crossing. Figure 2.1 displays the location of
Sognefjord and the bridge location in the Sognefjord.

Figure 2.1: Location of the bridge (Google Maps).

The fjord is about 3700 m wide and the deepest point is 1250 m below mean sea level. As can be seen
in Figure 2.2, the fjord slope is relatively mild near-shore, but increases in steepness to about 30◦ to 50◦.
The soil at the bottom of the fjord consists of 200-300 m of soft clay and the steep sides are rocky.

Because support structures would either need to support the bridge from the depth of the fjord plus
the depth of the soft clay layer or be built to a significant depth on the fjords steep sides, the need for
for a crossing design that does not rely on bottom founded support structures is clear.
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Figure 2.2: Cross section of the fjord at the bridge location [Fje12].

2.2 Design requirements

In this section the design requirements specified by the Norwegian Statens Vegvesen are presented.

2.2.1 Design lifetime

The design lifetime for the bridge is to be at minimum 100 years. It is required that no significant
maintenance jobs, such as the replacement of complete structural elements, are needed within this time
period. Therefore, the design lifetime of each structural element is set at 100 years.

2.2.2 Ship clearance requirements

The ship clearance requirements are specified in Table 2.1.

Ship clearance at the middle fairway

Width passage 400 m

Height passage 70 m

Draught 20 m

Ship clearance outside the middle fairway

Height passage 70 m

Draught 20 m

Table 2.1: Ship clearance requirements.

2.2.3 Traffic requirements

The traffic requirements are specified in Table 2.2.

Average daily traffic 12000 vehicles

Design speed 80 km h−1

Road class H7, double lane in each direction

Road width 20 m (excluding pedestrian and cycling lanes)

Clearance height 4.5 m

Table 2.2: Traffic requirements.

2.2.4 Servicability limits

There are requirements posed for the largest rotations, deformations and accelerations allowed in the
bridge deck. These requirements are specified in Table 2.3.
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2.3. ENVIRONMENTAL DATA

Vertical deformation Lateral plane rotation

uz ≤ L/200 m az ≤ 0.7 m s−2 φz ≤ 0.060 rad ζz ≤ 0.050 rad s−2

Lateral deformation Cross section plane rotation

uy ≤ L/200 m ay ≤ 0.5 m s−2 φy ≤ 0.044 rad ζy ≤ 0.107 rad s−2

Longitudinal deformation Vertical section plane rotation

Not considered ax ≤ 0.5 m s−2 φx ≤ 0.060 rad ζy ≤ 0.070 rad s−2

Table 2.3: Bridge deck deformation and acceleration limits.

2.3 Environmental data

The environmental loads at the bridge location are based upon research performed by SINTEF [al11] and
Reinertsen [Fje12] for the Norwegian Statens Vegvesen.

2.3.1 Wind

The wind loading is based on wind speeds with a return period of 100 years. The 10-minute and hourly
mean wind velocity at a reference height of 10 m are shown in Table 2.4.

The direction of the extreme mean wind velocity ranges from 180◦ to 240◦ relative to the North. The
extreme wind velocity at a height of 10 m (U10) versus the direction relative to the North are displayed
in Figure 2.3 [al11].

The wind profile is extrapolated using the logarithmic function specified in DNV-RP-C205 [DNV10],
since it coincides with the profile extrapolated using the function specified in EN 1991-1-4:2005+A1
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Averaging period Wind velocity [m s−1]

10 min 35

1 h 32

Table 2.4: Mean wind velocity at a reference height of 10 m at the bridge location.

Figure 2.3: Extreme wind velocity at a height of 10 m per reference period vs. direction at the bridge
location [al11].

[ECS10]. This wind profile is shown in Figure 2.4.

Figure 2.4: Wind profiles extrapolated from the mean wind velocity at a height of 10 m at the bridge
location.

DNV-RP-C205 specifies methods to be used to model spatial and temporal variations in wind speeds
from wind measurements to be used in modelling wind loads [DNV10].

2.3.2 Waves

Wind waves have been measured at three locations in the fjord crossing: the north shore, the middle of
the fjord and at the south shore. The extreme values of the wind wave height, relative to the North,
obtained from these measurements are displayed in Figure 2.5, while the different wave characteristics
are presented in Table 2.5.
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Figure 2.5: Extreme values wind wave height per reference period vs. direction at respectively, the north
shore, mid-fjord and the south shore [al11].

Parameter
Wind waves

North side Mid-fjord South side

Significant wave
height

Hs [m] 2.22 2.34 2.13

Spectral top pe-
riod

Tp [s] 4.6 4.8 4.8

Direction [ ◦] 180 240 270

Maximum single
wave height

Hmax [m] 4.55 4.79 4.36

Wave length λ [m] 33 36 36

Table 2.5: Wave characteristics at the bridge location.

2.3.3 Currents

The current flow direction is assumed to be along the axis of the fjord, which corresponds to an angle of
60◦ relative to the North. The current flow is assumed to be uniform for the fjord. The current velocities
the bridge location are presented in Table 2.6.

Mid-fjord

Water depth [m] Outwards velocity [m s−1] Mean velocity [m s−1] Inwards velocity [m s−1]

0 - 10 -1.06 -0.53 1.27

30 -0.55 0.26 0.48

75 -0.44 0.26 0.39

Table 2.6: Characteristic current velocity at the bridge location.
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2.3.4 Tidal effects

The tidal motion is expected to change the water level uniformly over the full fjord’s width at the bridge
location. Since no tidal information is available on at the bridge location, tidal measurements at Ålesund
are taken as representative for the Sognefjord, too. The tidal characteristics at the bridge location are
presented in Table 2.7.

Lowest astronomical tide (LAT) 0.00 m

Mean sea level (MSL) +1.20 m

Highest astronomical tide (HAT) +2.39 m

Return period [y] Highest sea level [m] Lowest sea level [m]

1 +2.61 -0.10

10 +2.88 -0.27

20 +2.97 -0.32

100 +3.05 -0.38

Table 2.7: Tidal characteristics at the bridge location.

2.3.5 Temperature

The design air and water temperature at the bridge location are displayed in Table 2.8.

Tmin [◦C] Tmax [◦C]

Air temperature at water surface -20 32

Water temperature at water sur-
face

4 20

Table 2.8: Temperatures at the bridge location.

2.3.6 Marine growth

According to DNV-RP-C205, marine growth will develop as shown in Table 2.9.

Depth [m] Thickness [mm] Dry mass [kg m−2] Submerged weight [N m−2]

+2 to -40 80 106 255

Below -40 40 53 128

Table 2.9: Marine growth on the submerged parts of the bridge.

2.4 Current design

An overview of the current bridge design analysed in this thesis is presented in this section. For a more
detailed treatment of the bridge design reference is made to appendix A. Figure 2.6 shows the main bridge
dimensions and gives an insight into the spacing of the different structural elements. The bridge deck
rests on twenty-two pylons, which in turn are supported by twenty-two floating pontoons. Figure 2.7
provides the numbering used for the pylons and pontoons in this thesis. The pontoons are subsequently
secured in place by forty-four lateral cables, which connect to two main cables spanning the width of the
fjord. The main cables are connected to shore at water level.
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Figure 2.6: An overview of the bridge model including dimensions.

Figure 2.7: Pylon and pontoon numbering.
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Chapter 3

Research question and scope

The research question this thesis aims to answer is the following;

”What is the dynamic response of the current bridge structure design, as a result of wave and
current loading?”

To which the following sub questions are posed:

i ”Considering the dynamic response of the system, will the bridge deck motion or cable fatigue
damage exceed design limits?”

ii ”Which design measures, specifically focusing on the pontoon and cable system design, can be
taken to improve the system’s dynamic behaviour?”

3.1 Scope

For this thesis the following scope has been chosen;

i It has been chosen to focus on wave and current induced loading, excluding wind loading because
this thesis is focussed on the sub-sea portion of the bridge design. A preliminary calculation of
wind loading, included in section B.4, indicates that the wind loading will be a big factor in the
bridge design.

ii Traffic loads are not a part of this thesis. The current bridge design has been dimensioned taking
into account static traffic loading according to the prevailing design codes. It is not expected that
moving traffic loads will induce a large dynamic response.

iii The rigid body motions of the pontoons are investigated. To model the pontoons as rigid bodies,
they are modelled as numerically ”infinitely” stiff beam elements.

iv Vortex induced vibration analysis only considers the inward current, since the velocity of the
inward current is higher and thus this is expected to be the critical current direction.

v Vortex induced vibration analysis is limited to the loading applied by the current to the pontoons,
excluding the loading on the cables, because it is expected that the pontoon loading will be most
critical to the bridge design.
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Chapter 4

Structural model

This chapter describes the structural model used to model the bridge. The model has been built using
two FEM software packages; SACS and Scia engineer.

4.1 Girders

The continuously connected girders spanning the 200 m wide side- and 465 m wide main span are modelled
as prismatic Euler-Bernoulli beam elements with properties obtained from a previous study [Cij18]. This
representation is chosen because this model is adequate to model the response of these relatively slender
elements in the low frequency domain. An important aspect is the connections between the girders and
the pylons. The support conditions are such that the girders are free to rotate in their longitudinal
direction, or around their local y-axis, in their normal direction, or around their local x-axis, and are
fixed for rotations around the vertical axis, or around their local z-axis. Figure 4.1 displays the local
girder axes and indicates the allowed girder support rotations.

Figure 4.1: Girder local axes and allowed girder support rotations.

For precise listing of all girder properties and dimensions, reference is made to section A.2. The
girders are modelled in SACS according to the method described in section G.4.
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4.2 Pylons

The pylons are still in the preliminary design phase. The aesthetically pleasing model shown in Figure
4.2 is not dimensioned based on calculations. Therefore, the pylon sections are modelled as steel tubular
cylinders in this thesis and a recommendation is made for future research to fully dimension the pylons.
The pylons are also modelled as Euler-Bernoulli beam elements and they are connected rigidly to the
pontoons. The rotations allowed by their connections to the bridge girders are depicted in Figure 4.1.
For the precise structural properties adopted for the pylons and the way they are modelled in SACS,
reference is made to sections A.3 and G.3.

Figure 4.2: Pylon design [Yip15].

4.3 Pontoons

The pontoons are modelled in this thesis as rigid bodies, by using extremely stiff Euler-Bernoulli tubular
elements, since their internal dynamic behaviour take place at much higher frequencies. An example of
a pontoons cross section and the related mechanical model adopted for small rotations is displayed in
Figures 4.3 and 4.4. The mechanical model utilizes rotational springs, attached to the pontoon center
of gravity, with a spring stiffness based on a linearisation of the pontoon restoring moment for small
rotations. A translational spring is also used; attached to the center of buoyancy of the pontoon, it
models buoyant force as the vertical position of the pontoon changes. The precise pontoon properties
and locations are described in full in section A.4. For the full derivation and calculation of the pontoon
mechanical model, reference is made to section A.4.1.

Figure 4.3: Example pontoon cross section. Figure 4.4: Mechanical model for the pontoons.
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4.4 Cable system

The current cable system design is the result of research focused on its layout. Therefore, the current
model for the main and lateral cables is a prismatic circular beam with a steel area large enough to
withstand the static loads imposed on the bridge structure. A detailed description of the current cable
system properties is given in section A.5.

For the purpose of this thesis, this preliminary design is not sufficient. For the analysis of the dynamic
behaviour of the bridge system as a whole, the internal damping properties of the cables have an influence
that can not be neglected. These properties are not a part of the present cable model. Therefore, a detailed
design for both the main- and lateral cables is made and the method for the calculation of the internal
cable damping is presented. The entire design process for the main and lateral cable designs is described
in depth in appendix C. This section outlines the resulting design, the choices motivating this design and
the adopted model for the cables.

4.4.1 Cross section

For the cross section layout type the open spiral rope with plastic sheathing has been chosen. The open
spiral rope has been chosen due the general better fatigue- and design lifetime of open spiral ropes. The
plastic sheathing is added to ensure a proper corrosion protection. The layout of the cables’ strands and
rope cross section have been calculated using a Python script, developed for this purpose, which optimizes
the steel area used in the rope design against the steel area required based on the previous cable design.
The resulting strand and rope cross section layout for the lateral cables is shown in Figure 4.5.

(a) Cross section of the lateral cable strands. (b) Cross section of the lateral cable rope.

Figure 4.5: Cross sections of the lateral cable strands and total rope

4.4.2 Cable stiffness

In the mechanical model adopted for the cables in this thesis, the bending stiffness of the cables is modelled
to be variable as a function of the cable curvature. This is because when the cable is stretched, all wires
in the cable ’stick’ together and they act as a solid material. As the cables bend, the wires slip past each
other and the bending stiffness decreases, until all wires act individually. A visual representation of this
phenomenon is shown in Figure 4.6, in which a cable is first shown completely straight and then bent over
an angle of 2 α. The situation in which the cable is completely straight is the situation where the cable
bending stiffness is maximal and at approximately the same level as a solid steel circular cross section of
the same diameter. The situation where all wires have slipped is the situation where the cable bending
stiffness is minimal. No wire stress transfer is taking place and the bending stiffness of individual wires
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is summed [Pap97]. An example of the variable bending stiffness versus curvature for the main cable
at different strand lay angles, tensioned by an axial load of 530 MN is depicted in Figure 4.7. For the
calculation of the variable cable bending stiffness reference is made to section C.4.

This method has been developed for much smaller scale cables than the ones used for the lateral- and
main cables in this thesis. Therefore it is recommended that the results of these calculations are verified
with measurements.

(a) Wires stick, force transfer between wires. (b) Wires slip, force transfer between wires reducing.

Figure 4.6: Unbent cable segment (left) and cable segment bent over an angle 2 α

Figure 4.7: Variable bending stiffness versus curvature for the main cable with different strand lay angles,
tensioned at 530 MN.

4.4.3 Cable damping

Hysteretic damping is a new subject in this thesis. It is the damping of cable motions due to inter-wire
friction and pure material damping in the wires themselves. Friction between the strands and wires in
the cables are the main contribution to this phenomenon and only a negligible contribution is made by
damping in the wire material itself [Spa13].

Hysteretic damping is caused by the dissipation of energy due to inter-wire friction as the cables
deform under loading. This can be visualised using a force-displacement hysteresis curve. An example of
a wire rope hysteresis curve is depicted in Figure 4.8. In this Figure, the load sequence is depicted with
numbers 1 − 4. In this load sequence, the load path during unloading is different than during loading,
creating the shaded area in the Figure. The area contained in this load path is the energy extracted from
the motion by the internal hysteretic damping during this load cycle.
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Figure 4.8: An example force-deflection hysteresis curve [Pap97].

A method to model the effect of this hysteretic damping due to inter-wire friction is to model the
cable with a variable bending stiffness, dependant upon the curvature and tension of the cable [Pap97].
For each analysis step, the bending stiffness is updated, reflecting the state of the cable. As the internal
cable damping is modelled to be dependant upon its changing curvature, it can only be calculated during
dynamic analysis. Therefore the full treatment of the cable damping is performed in conjunction with a
dynamic analysis at a later point in this thesis.

4.4.4 Lay angle

The lay angle of wires in a steel wire rope is the angle at which the wires in the layers surrounding the
cable core are twisted around this core. Figure 4.9 displays an example of the lay angle of wires in a steel
wire rope. The lay angle of the wires in the cable strands, and of the strands themselves, are a critical
design choice as they influence all mechanical properties of the cable.

Figure 4.9: Example steel wire rope with wire lay angle indicated by α [Fey07].

The desired properties of the rope should lead to a long fatigue life, low extension under tensile stress,
good environmental protection and high hysteretic damping. Both a long fatigue life and low tensile
extension are achieved by choosing low lay angles for these axially loaded stay cables. The environmental
protection should mainly be achieved by the plastic sheathing added to the cross section. However, by
giving both the strands and the wires in the strands a small lay angle, the containment of the rope
lubricating agent in all rope parts will be improved, improving the fatigue life of the rope [Fey07].

Hysteretic damping, as described in section 4.4.3, has a positive contribution to the cable system’s
dynamic behaviour, reducing vibration amplitudes and reducing the time needed for the system to return
to equilibrium after excitation. Previous studies showed that when loaded under its own weight, most
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cable segment curvatures fall between 10−3 to 10−5. To maximize hysteretic damping, a lay angle should
be chosen that maximizes the stiffness change in this curvature range. As the damping is achieved mainly
through inter-wire friction, this will most likely be detrimental to the fatigue life of the cable.

4.4.5 Cable design

Taking the considerations outlined in the previous sections into account and balancing the different
advantages and disadvantages has led to the main and lateral cable properties displayed in Table 4.1.
The lay angle of the wires in the cable strands is kept at a low 2◦, as this has a large influence on the
elasticity modulus of the cable as a whole and thus the cable extension under axial loading. The cable
strands’ lay angle is slightly higher at 6◦ as this allows a better ’lock in’ of lubricating agent in the
ropes. At 6◦ the change in bending stiffness in the regarded curvature range is already quite significant,
while further increases in lay angle yield smaller increases in the variability of the bending stiffness. It is
expected that these values for the lay angles provide a good balance between fatigue life and damping.
The bending stiffness versus curvature for the main and lateral cables in shown in Figures 4.10 and 4.11.

Material Type Wire
lay
angle

Wire
diameter
[mm]

Wire
layers

Strand
lay
angle

Strand
diameter
[mm]

Strand
layers

Main cable Y1860 Spiral
rope

2◦ 3.0 20 6◦ 123 6

Lateral cable Y1860 Spiral
rope

2◦ 4.7 4 6◦ 42.3 5

Table 4.1: Cable wire rope properties.

Figure 4.10: Main cable bending stiffness versus curvature.
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Figure 4.11: Lateral cable bending stiffness versus curvature.

4.5 Numerical model

All the structural elements handled in this chapter have been modelled in the SACS software package.
A complete description of the model created in SACS, as well as verification calculations for portions of
the model, is given in appendix G.
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Chapter 5

Load model

This chapter outlines the environmental loads taken into account for this thesis; the wave and current
loading.

5.1 Wave loading

For a full description and calculation of the wave loads on the pontoons, reference is made to section B.1.
This section provides an outline of the calculation method and the results. Table 5.1 contains the critical
wave conditions at the bridge location.

Parameter
Wind waves

North side Mid-fjord South side

Significant wave
height

Hs [m] 2.22 2.34 2.13

Spectral top pe-
riod

Tp [s] 4.6 4.8 4.8

Direction [ ◦] 180 240 270

Maximum single
wave height

Hmax [m] 4.55 4.79 4.36

Wave length λ [m] 33 36 36

Table 5.1: Wave characteristics at the bridge location.

The common method of calculating wave loads on structures is to apply the Morison equation [Zhu93].
This method of calculation is valid for structures whose presence in the wave field does not create a
significant disturbance of the wave field. Objects of the size of the pontoons in the bridge model, however,
may significantly alter the wave field. This depends upon the structures’ dimensions in relation to the
incident wave length. As is described in section B.1, the pontoons are large compared to the wave lengths
and therefore the Morison equation is not applicable. Thus, for the pontoons used in the bridge design,
the diffraction theory of wave scattering is to be used.

For the calculation of the resulting loads on the pontoons, an analytical equation derived by MacCamy
(1954) is used [Mac54]. This analytical equation has been derived for the ’linear’ or ’airy’ wave theory. It
has been concluded that the waves found in the Sognefjord are best described using Stokes 3rd wave theory
[Sto47]. Therefore the loads calculated using the MacCamy equation provide a close approximation of
the wave loading on the pontoons.

To model the wave loading on the bridge structure, the SACS SeaState module is used. This module
allows the user to input the waves according to their characteristics and applicable wave theory. The
software then calculates the loading on the structural elements using the Morison equation. Since this
approach is not applicable to the bridge design in this thesis a method has been found to apply the loading
calculated using the MacCamy expression with the Morison expression. This is done by modifying the
CM value in the Morison expression, or effective inertia value, for each pontoon per different wave case.
This method is also applicable in SeaState, as it allows for member properties to be modified per load
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5.2. CURRENT LOADING

condition. The calculated effective inertia values per pontoon, per wave condition are displayed in Table
5.2.

A detailed description of modelling using the SeaState program and a verification of its load calcula-
tions is found in section G.6.

Pontoon
number

Wind wave
direction 180◦

Wind wave
direction 240◦

Wind wave
direction 270◦

1 0.3312 0.3771 0.3771

2 0.2521 0.2872 0.2872

3 0.2521 0.2872 0.2872

4 0.2521 0.2872 0.2872

5 0.2521 0.2872 0.2872

6 0.2521 0.2872 0.2872

7 0.2 0.228 0.228

8 0.2 0.228 0.228

9 0.2 0.228 0.228

10 0.2 0.228 0.228

11 0.1451 0.1654 0.1654

Table 5.2: Effective inertia values per pontoon per wave condition.

5.2 Current loading

The in- and outgoing current velocities at the bridge location are displayed in Table 5.3. The current
direction if shown in Figure 5.1. The resulting profile is calculated using a curve fitting regression tool
developed for this purpose with the power law expression specified in the DNV-RP-C205 and is depicted
in Figure 5.2.

Inwards - 60◦ Outwards - 240◦

Depth Velocity Depth Velocity

10 m 1.27 m s−1 10 m 1.06 m s−1

30 m 0.48 m s−1 30 m 0.55 m s−1

70 m 0.39 m s−1 70 m 0.44 m s−1

Table 5.3: In- and outward current profile.

For analyses involving wave loading, it is sufficient to model the current as a constant flow and add the
static load this flow exerts on the structure to the total loading of the structure [DNV10]. This calculation
is performed by the SACS module SeaState after the user inputs the current profile and direction. A
description of this and a verification of the load calculation is given in section G.6.

For the research into vortex induced vibrations due to the current loading, the inward current is used
as this provides the highest flow velocities.
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5.3. LOAD CASES

Figure 5.1: Current flow direction in reality (left, Google Maps) and in the bridge model (right).

Figure 5.2: Inward current velocity profile.

5.3 Load cases

The load cases used for the different analyses are outlined in this section. For the wave loading, six
distinct load cases have been created. Each critical wave direction is coupled to both the in- and outward
current. This is displayed in Table 5.4.

Loadcase Wave direction - height
- wavelength

Current direction

1 180◦ - 4.55 m - 33 m Inwards

2 180◦ - 4.55 m - 33 m Outwards

3 240◦ - 4.79 m - 36 m Inwards

4 240◦ - 4.79 m - 36 m Outwards

5 270◦ - 4.36 m - 36 m Inwards

6 270◦ - 4.36 m - 36 m Outwards

Table 5.4: Wave load cases.

Another load case is the inward current, which is used on its own for the research into vortex induced
vibrations of the bridge structure, for which reference is made to appendix J.
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Chapter 6

Dynamic analyses

This chapter describes the dynamic analyses performed in this study. First, the steady state response
analysis is described, then the vortex induced vibrations analysis. For each analysis, the goals, used
methodology, defining results and related conclusions are described.

6.1 Steady state response calculation

This section describes the steady state analysis performed in this study. It outlines the goals of the
analysis, the methodology, the defining results and the conclusions that can be drawn from these results.

6.1.1 Goals

The goals of this analysis are the following;

Calculate the cable internal structural damping.

Calculate the steady state motion of the bridge system to verify if the bridge deck motion is within
serviceability limits.

Calculate the internal loading during the steady state motion to investigate cable fatigue.

6.1.2 Methodology

The methodology to attain the goals of this analysis is described in this section. All steady state analyses
are performed for the six critical wave load cases described in section 5.3.

6.1.2.1 Cable damping

The methodology to calculate the internal cable damping is described in this section and displayed in
Figure 6.1. For the full description of the cable damping analysis, reference is made to appendix D.

The definition for the structural damping factor used in this thesis is the following; The critical
damping ratio per mode of vibration, commonly known as the ”modal damping ratio”, is fixed at a single
value for all modes of vibration. This is a simplification of reality. The procedure to include the cable
damping is as follows;

i An equilibrium situation (in terms of displacement u0, cable bending stiffness EI0 and tension
T0) of the bridge model loaded by its self-weight is obtained through iterative non-linear FEM
analysis. An iterative solver is written in Python for this task. It operates in combination with
the FEM software Scia Engineer as described in appendix F. Figure 6.2 displays an isometric view
of the equilibrium situation calculated using the this solver.

ii Taking the bridge model in this equilibrium situation, an eigenvalue analysis is performed in order
to calculate mode shapes, mode frequencies and mass M and stiffness K0 matrices using the
Dynpac module of the SACS software package. Reference is made to section H.1.
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6.1. STEADY STATE RESPONSE CALCULATION

Figure 6.1: Work-flow for the structural damping calculation.

iii Use the SACS wave response program to pre-calculate the steady state response of the model
without damping and with constant cable bending stiffness EI0, calculated previously, to the
different wave load cases as described in section G.6. Reference is made to appendix E and section
H.2.

iv Create a set of linear analyses in which the model is deformed according to the steady state
displacements calculated earlier, time-stepping the model through the displacement to obtain
hysteresis curves per node. The cable bending stiffness EI is updated per time step.

v These hysteresis curves are integrated to calculate the dissipated energy per node during the steady
state excitation.

vi Per node, per degree of freedom, single mass-spring-dashpot systems are used as equivalent systems
to mimic the local hysteretic dissipation of energy. The spring stiffness k is determined from the
global stiffness matrix K0. The viscous damping is to be determined.

vii Hysteretic damping factors µ are determined per degree of freedom per node by equating the
dissipated energy in the hysteretic curves to the dissipated energy in the equivalent system.

viii An energy consistent structural damping factor for the entire system is calculated from the nodal
damping factors.

Figure 6.2: Isometric view of the undeformed (blue) and deformed (red) equilibrium bridge structure
shape as calculated using the Sciapython solver.
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6.1. STEADY STATE RESPONSE CALCULATION

6.1.2.2 Steady state motion bridge deck

The steady state motion of the bridge deck is calculated using the SACS Wave Response module in com-
bination with the structural damping calculated earlier. From this motion, the maximum displacements,
rotations and accelerations are calculated and compared to the given limits. For the full description of
this analysis, reference is made to appendix E.

6.1.2.3 Cable fatigue

Cable fatigue is investigated by calculating the internal cable system loads during the steady state motion
and calculating fatigue damage to the cable system during the load cycles. By calculating the fatigue
damage caused by the critical wave load cases, an indication of the probability of fatigue damage to the
cable system due to wave loading being a critical factor for the bridge design can be given. For the full
description of this analysis and the theory behind wire rope fatigue, reference is made to appendix K.

6.1.3 Defining results and conclusions

This section provides the defining results and related conclusions of the analyses.

6.1.3.1 Cable damping

The results of the cable damping calculations are presented in Table 6.1. The resulting cable deflection
amplitudes are shown for the load cases causing the highest and lowest cable deflection amplitude in
Figure 6.3.

Load case Undamped ζ Iteration 1 ζ Iteration 2 ζ Iteration 3 ζ

1 1.894 % 0.912 % 1.644 % 1.624 %

2 1.850 % 0.878 % 1.768 % 1.776 %

3 7.145 % 5.568 % 5.403 %

4 6.958 % 5.365 % 5.612 %

5 2.377 % 2.347 %

6 2.347 % 2.337 %

Table 6.1: Structural damping factors per load case.

Figure 6.3: Cable node displacement amplitude values for load case 1 and 3.
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6.1. STEADY STATE RESPONSE CALCULATION

As can be seen, the structural damping factor is highly dependent upon the wave excitation and
almost insensitive to the change in current loading. That the damping factors are the same for the in-
and outgoing current cases coupled to the same wave loading provides a simple sanity check for the
entire damping calculation, because it is expected that these values match closely. It is clear that when
the wave loading remains the same, the damping factor remains mostly the same. As the wave loading
changes and excites more modes of vibration of the structure, the structural damping increases. This is
expected, since the source of the structural damping is the friction between the strands and wires in the
steel cables. If the steel cables move less, there is less friction and the damping is less. This is illustrated
by the difference in displacement amplitude visible between the highly damped load case three and the
and the much less damped load case one. The solution is quick to converge, which makes this method
quite effective to obtain a constant structural damping factor for all modes of vibration quickly. It is clear
that for every loading scenario, a recalculation of the cable structural damping is necessary to obtain the
structural damping as applicable for that specific load case.

A point of attention is the fact that the results obtained from this analysis have to be verified and
potentially modified after experiments with steel cables whose properties approach the cables used in this
design.

6.1.3.2 Steady state motion bridge deck

The results for the two load cases containing the maximal values of displacement, rotation and acceleration
are shown in Table 6.4 per measure of deformation. The serviceability design limits are given in Tables
6.2 and 6.3.

Vertical deformation Lateral plane rotation

uz ≤ L/200 m az ≤ 0.7 m s−2 φz ≤ 0.060 rad ζz ≤ 0.050 rad s−2

Lateral deformation Cross section plane rotation

uy ≤ L/200 m ay ≤ 0.5 m s−2 φy ≤ 0.044 rad ζy ≤ 0.107 rad s−2

Longitudinal deformation Vertical section plane rotation

Not considered ax ≤ 0.5 m s−2 Not considered

Table 6.2: Bridge deck deformation serviceability limits.

Deck number Length [m] Maximum displacement [m]

1 to 11 and 13 to 23 200 1

12 465 2.325

Table 6.3: Maximum allowed deck displacements.

Measure of deformation Maximum value Loadcase(s) U.C.

Maximum total displacement 0.198 m 3, 4 0.198

Maximum total acceleration 0.008 m s−2 5, 6 0.016

Maximum lateral rotation 0.000 64 rad 5, 6 0.1066

Maximum cross section plane rotation 0.0001 rad 3, 4 0.0023

Maximum lateral angular acceleration 2.6 · 10−5 rad s−2 5, 6 0.0005

Maximum cross section plane angular acceleration 2.8 · 10−5 rad s−2 3, 4 0.0002

Table 6.4: Bridge deck deformation serviceability limits.

The serviceability limit states for the bridge deck aren’t broken during any of the steady state analyses.
Therefore it is concluded, that bridge deck motion due to wave excitation is not excessive and well below
the serviceability limits.
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6.1. STEADY STATE RESPONSE CALCULATION

6.1.3.3 Cable fatigue

The results of the cable fatigue analysis are presented here in terms of the Woehler diagrams for the
main- and lateral cables in Figure 6.4. The allowed load cycles until failure are plotted in the diagrams
for the internal loads per cable element for all load cases. The two S-N curves are calculated at two
distinct minimum load levels. Figure 6.5 displays the maximal axial load amplitude values calculated
during this analysis.

Figure 6.4: Woehler diagram for the main- and lateral cable strands with calculated maximum cycles for
the loads observed in the main- and lateral cable nodes.

Figure 6.5: Load amplitude values for load case 3.

The conclusion to be drawn from this analysis is simple; fatigue induced by wave loading should not
be an issue for the bridge design. This is clearly visible in the two Woehler diagrams. A quick calculation
using the minimum calculated cycles and minimum wave period out of the load cases shows that for
the main cable to experience a single strand failure due to the wave loads would take, at minimum,
1013 · 4.6 s = 1.46 · 106 years. For the lateral cable this number is slightly lower at 1012 · 4.6 s = 1.46 · 105

years.

32



6.2. VORTEX INDUCED VIBRATIONS

This is explained by the load amplitudes calculated, too. The maximal axial load amplitude calculated
is 783 kN. Comparing this to the design static axial load values for the main- and lateral cables, 930 MN
and 53 MN, respectively, shows the difference in order of magnitude.

Bending stresses have not been a part of the study presented here and will have an influence on
the fatigue life. Their influence is, however, expected to be marginal and it is not expected that their
inclusion will lead to cable fatigue due to wave loading being decisive in the bridge design.

6.2 Vortex induced vibrations

This section describes the vortex induced vibration analyses performed in this study. It outlines the goal
of the analysis, the methodology, the defining results and accompanying conclusions.

6.2.1 Goal

The goal of this analysis is to determine if the bridge design is sensitive to vortex induced vibrations
and, if it is sensitive, determine the extent of the motion caused by this phenomenon. For more detailed
information on the theory behind vortex induced vibration, reference is made to section J.1.

6.2.2 Methodology

This section outlines the methodology and different analyses performed to investigate vortex induced
vibrations in the bridge system. The fluid flow analyses are carried out using the program Ansys Fluent
and all structural calculations are performed using SACS. The steps taken in the process are the following;

i First the pontoon modal eigenfrequencies are calculated from the model developed in appendix F
using the method described in section H.1.

ii Next a ’semi-2D’ analysis is performed on stationary pontoon models and the resulting cross-flow
loading frequencies are compared to the pontoon modal eigenfrequencies. This is detailed further
in section J.3.2.

iii After this, the influence of pontoon spacing relative to the flow direction on the loading is investi-
gated, as a pontoon being in the wake region where vortices are shed by preceding pontoons may
influence the loading on that pontoon. More on this can be found in section J.3.3.

iv If the preceding analyses indicate sensitivity to vortex induced vibrations, a 3D analysis is per-
formed on stationary pontoon models for a more realistic calculation of the cross-flow loading
frequencies. These are then compared to the modal eigenfrequencies of the bridge model. This
analysis can be found in section J.3.4.

v To verify the calculation model calculating the loads on four representative pontoons out of the
twenty-two, a verification calculation is performed for pontoons with matching diameters and
different draughts. This analysis is found in section J.3.5.

vi If the system is deemed sensitive to vortex induced vibrations based on the preceding analysis, a
coupled analysis is performed. In this coupled analysis the influence of the pontoon motion on the
fluid flow is taken into account, leading to a more accurate depiction of reality and a calculation
of the bridge motion due to vortex induced vibrations. The performed analysis can be found in
section J.3.7. A trial analysis using a different meshing method is found in section J.3.6.

vii A verification calculation of the model to calculate vortex induced vibrations introduced in
this thesis (the Fluent-SACS model) is performed using a wake oscillator model based on the
work by Ogink and Metrikine (2010) [OM10]. The verification is performed for the motion of a
single pontoon, pontoon 11, in just the cross-flow direction. The theory behind this model and
the detailed set-up of this analysis is found in section J.3.8.

viii If all analyses show that vortex induced vibrations will be a problem for the bridge design, possible
solutions to the problem are presented. This can be found in section J.3.9.
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6.2.3 Defining results and conclusions

This section contains the defining results and accompanying conclusions of the analysis. These are
displayed per partial analysis performed.

Apart from the pontoon modal eigenfrequencies, the eigenfrequencies of the entire bridge structure
are calculated. The first five are depicted in Table 6.5.

Mode num-
ber

Eigenfrequency [Hz] Eigenperiod [s]

1 0.006231 160.5

2 0.008432 118.6

3 0.008974 111.4

4 0.009476 105.5

5 0.009677 103.3

Table 6.5: Bridge system eigenfrequencies of the first five modes.

The results of the ’semi-2D’ analysis in terms of the calculated load periods compared to the first two
pontoon eigenperiods with matching values shown in bold text are shown in Table 6.6. The load periods
for a pontoon in a flow with velocity 1.27 m s−1 are close to one of the two eigenperiods of four pontoons.
Since this flow velocity is found in the inward current velocity profile, there is at least part of the pontoon
loaded at the calculated frequencies and it can be stated that the pontoons appear sensitive to vortex
induced vibrations.

Pontoon
number

Diameter First eigenpe-
riod [s]

Second eigen-
period [s]

”Semi-2D” VIV
load period [s]

1 30 m 79.167 57.187 78.9

2 36 m 96.987 59.388 89.1

3 36 m 110.123 67.436 89.1

4 36 m 122.226 75.277 89.1

5 36 m 125.271 83.525 89.1

6 36 m 128.881 89.194 89.1

7 42 m 130.616 89.712 104.0

8 42 m 131.444 92.492 104.0

9 42 m 133.908 96.640 104.0

10 42 m 132.461 100.173 104.0

11 52 m 137.071 106.649 136.6

Table 6.6: Pontoon eigenperiods and ”Semi-2D” VIV load periods.

The results of the wake effect analysis in terms the average change in the cross-flow loading parameters
are shown in Table 6.7. There is a wake effect present in the part of the model analysed. The wake effect
provides, on average, a −10 % decrease in the cross-flow load amplitude for pontoons affected by the wake
of preceding pontoon. This is a positive effect. The average increase of about 15 % of the load period
is not necessarily a positive effect since it moves the load frequency away from the second eigenperiods
of the pontoons, which are between 59.4 s and 75.3 s, but towards the first eigenperiods of the pontoons,
which are between 97 s and 122.2 s. The influence of this wake effect is dwarfed by the influence the 3D
calculation has on cross-flow loading parameters, as is shown next. Therefore the results of this analysis
are not taken into account further in this thesis and a recommendation is made to investigate wake effects
in 3D flow.

The results of the 3D load calculations on stationary pontoons in terms of the loading period compared
to the first two pontoon- and bridge system eigenperiods are displayed in Table 6.8. At first sight
the results of the 3D analysis seem to indicate that the pontoons are less sensitive to vortex induced
vibrations than may have been expected from the results of the ’semi-2D’ analysis. The primary cross-
flow loading periods have moved quite a bit away from the corresponding pontoons first two eigenperiods.
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6.2. VORTEX INDUCED VIBRATIONS

Affected load parameter Average change

Load periods + 15 %

Load amplitude - 10 %

Table 6.7: Average change in cross-flow load parameters due to wake effects.

The main indication that these results only show a larger sensitivity to vortex induced vibrations is
given when the eigenfrequencies of the entire bridge structure are taken into account. When comparing
the first eigenfrequency of the entire bridge to the main loading periods calculated in this analysis it
becomes obvious that the main loading period for pontoon 6 coincides with the bridge structure’s first
eigenperiod. Under the assumption that the cross-flow loading for different pontoon lengths does not
change significantly, this means that ten out of the twenty-two pontoons will be subject to loading at the
structure’s first eigenfrequency. This indicates a very high sensitivity to vortex induced vibrations due to
the current as present at the bridge location. Furthermore, as a coupled analysis may show, the range of
load frequencies which are shifted to a frequency closer to eigenfrequencies of the bridge structure may
be large enough to ’capture’ even more of the load frequencies found.

Structure Diameter First eigenpe-
riod [s]

Second eigen-
period [s]

3D VIV main
loading period [s]

Pontoon 1 30 m 79.167 57.187 142.9

Pontoon 6 36 m 128.881 89.194 166.7

Pontoon 10 42 m 132.461 100.173 200.4

Pontoon 11 52 m 137.071 106.649 189.8

Entire bridge - 160.5 118.6 -

Table 6.8: Pontoon eigenperiods and 3D VIV load periods.

The result of the draught comparison analysis is shown in Figure 6.6 in terms of the frequency
spectra of the cross-flow loading on the pontoons. Visual comparison of the spectra for the two pontoons
considered in the draught influence analysis shown in Figure 6.6 shows a large discrepancy in the location
of the peaks - and thus in the energy content per load frequency. The main issue is the difference in the
locations of the peaks, with minima visible where the the other spectrum is maximal. This indicates that
the loading on the pontoons is definitely not just scaled based on the draught over which the current
load acts. So it must be concluded that the assumption that the total load on a pontoon with a larger
draught can be scaled to be used on a pontoon with a smaller draught is not valid for all draughts.
Therefore it is recommended to further investigate the difference pontoon draught makes on cross-flow
loading. Perhaps this means that all twenty-two pontoons must be included separately in vortex induced
vibration analysis.

The defining results of the coupled analysis are shown in Figure 6.7 and Table 6.9. Figure 6.7 displays
the calculated displacement for pontoon eleven for each of the iterations. Table 6.9 displays the main
cross-flow loading frequency calculated for the four representative pontoons for each iteration. The first
conclusion that must be drawn from the coupled analysis is that the bridge structure is highly sensitive to
vortex induced vibrations. This is clear from the fact that the fluid-structure interaction causes cross-flow
loading frequencies over a wide band (0.005 Hz - 0.072 Hz) to move toward the structure’s first modal
eigenfrequency. This may be partially caused by the chosen load model, which will be discussed later.

Diameter [m] Iteration 1 [Hz] Iteration 2 [Hz] Iteration 3 [Hz] Iteration 4 [Hz]

30 0.0072 0.0064 0.0061 0.0061

36 0.0064 0.0064 0.0064 0.0061

42 0.005 0.005 0.0064 0.0064

52 0.0053 0.0061 0.0061 0.0064

Table 6.9: Cross flow load frequencies per pontoon diameter for four iterations

The shape of the first mode of vibration of the bridge structure is a slight deformation of the rigid
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Figure 6.6: Comparison of the cross-flow load spectrum for pontoon 6 (load 1) and pontoon 2 (load 2).

Figure 6.7: Displacements plotted against time for pontoon 11 for the four coupled iterations performed.

bridge deck in which the pontoons mainly move in the cross-flow direction relative to the current, depicted
in Figures 6.8 and 6.9. This further contributes to the structure’s sensitivity to cross-flow loading at
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frequencies in a range near the first eigenfrequency.

Figure 6.8: Top view of the first eigenmode shape (in red) of the bridge structure and the undeformed
structure (green).

Figure 6.9: Side view of the first eigenmode shape (in red) of the bridge structure and the undeformed
structure (green).

Despite the structure’s high sensitivity to vortex induced vibrations, the fact that the vibrations are
this pronounced casts doubt on the results obtained. Furthermore, the fact that the displacement reaches
values that are larger than the pontoon diameters raises red flags, as experimental results indicate the
maximum displacements in cross-flow direction should be in the range of 0.6 - 0.8 times the pontoon
diameter [OM10] and the results indicate displacements as large as 1.2 times the pontoon diameter.
Therefore, the results must be examined critically and reasons for the larger results must be found.

Another point of attention is the fact that the fluid loading is calculated using the shape, and motion,
of only four pontoons out of the twenty-two. After which it is scaled to the draught of the remaining
pontoons of the same diameter. The assumption that this is a realistic model for the loading of stationary
pontoons has been proven wrong for at least one combination of pontoons with the same diameter and
different draughts in section J.3.5. Performing this operation leads to ten out of the twenty-two pontoons
(all those with a 36 m diameter) being loaded at the first modal frequency of the bridge structure for the
first iteration. Furthermore, due to the fact that the resulting motion of only four pontoons is taken into
account for the calculation of the new fluid forces per iteration, this leads to a perfect line-up of forcing
frequencies across all pontoons with the same diameter, which may be possible, but is improbable due to
variations in structural boundary conditions for the different pontoons.

For further research into this phenomenon, it is recommended to extend the calculation of fluid forces
to all of the pontoons separately for each iteration, increasing the computation time by at least a factor
five, but eliminating the assumptions leading to the issues described earlier.

Another remarkable element of the results is that the fluid force - structure interaction appears to
increase each other with each iteration without an apparent maximum, although there are some clues
in the results a maximum may have been reached. One of the reasons there is no conclusive result
proving a maximum amplitude of vibration is the fact that the time-span for the analysis has been set
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too short. The first potential apparent ’plateauing’ of the results appear after 3300 s into the analysis
and increasing the analysis time should lead to a conclusive answer to the question of the maximum
amplitude’s existence.

The results of the coupled wake oscillator model are shown in Figures 6.10 and 6.12 for the cross-flow
loading and displacement.

Figure 6.10: Cross-flow loading calculated using the wake oscillator model for pontoon 11 in both the
time (left) and frequency domain (right).

Figure 6.11: Cross-flow loading calculated using the Ansys-Fluent model for pontoon 11 in both the time
(left) and frequency domain (right).

Figures 6.11 and 6.13 show the results of the final iteration performed with the Fluent-SACS model.
Once again, the solution has not converged and shows no signs of nearing convergence. The reason for
this will be explained later.

The results show that the Ansys-Fluent model and the wake oscillator model calculate both loads
and displacements with comparable amplitudes. Differences are found once the results in the are ex-
amined in the frequency domain. The cross-flow loading using the wake oscillator model shows four
distinct peaks, even in this coupled analysis, while the Fluent-SACS loading is mainly concentrated in
one frequency. There are peaks near the same frequencies as in the wake oscillator model, but they are
far less pronounced. For both the wake oscillator and the Fluent-SACS model the loading is not very
different from the loading on a stationary pontoon. This is expected when the displacement amplitude is

38



6.2. VORTEX INDUCED VIBRATIONS

Figure 6.12: Cross-flow displacement calculated using the wake oscillator model for pontoon 11 in both
the time (left) and frequency domain (right).

Figure 6.13: Cross-flow displacement calculated using the Ansys-Fluent model for pontoon 11 in both
the time (left) and frequency domain (right).

considered with respect to the pontoon diameter; 1.5 m versus 52 m, or a 0.029 amplitude over diameter
ratio. The pontoon is nearly stationary. The wake oscillator model finds the pontoon’s eigenfrequency
as main frequency of vibration, while the Fluent-SACS model finds that the pontoon mainly vibrates at
the amplitude of the loading and has a smaller peak at the pontoon eigenfrequency. This difference is
explained by looking at the exciting frequencies for both models; the wake oscillator model has a pro-
nounced peak close to the pontoon eigenfrequency, while the Fluent-SACS model is almost exclusively
loaded at 0.0053 Hz. If further improvements are made to make the loading by the wake oscillator model
more closely resemble the Fluent-SACS model loading, it is expected that the displacement results will
also be more in line in terms of frequency. What can be concluded from this analysis is that both meth-
ods produce comparable results for this case and thus that the Fluent-SACS model is applicable for the
calculation of pontoon motion.

Then there is the matter of the Fluent-SACS model not converging. The reason for this is found
when the simulation time of the wake oscillator model is extended. Figure 6.14 shows the cross-flow
motion of pontoon 11 over a time period of 28 800 s, or 8 hours. The figure shows that it takes about
22 500 s, or 6.25 hours, for the coupled system to reach a steady state in terms of vibration amplitude.
This means that even at a simulation time of 2 hours, the modelled systems are still in the transient

39



6.2. VORTEX INDUCED VIBRATIONS

phase, making comparison of results and especially calculating convergence a futile effort. Once again,
the recommendation is made to extend simulation time even further for this analysis, to see if the Fluent-
SACS model finds a comparable steady state motion.

One point of interest is the small peak near a frequency of 0.0063 Hz in the Fluent-SACS model’s
displacement in the frequency spectrum (shown on the right in Figure 6.13). This value corresponds to
the frequency of the first mode of vibration of the entire bridge structure and apparently it is already
excited when only a single pontoon is loaded by cross-flow lift forces at mainly a very different frequency.
This lends credence to the conclusion that the bridge is very susceptible to vortex induced vibrations.

Figure 6.14: Cross-flow displacement calculated using the wake oscillator model for pontoon 11 in time,
for a period of 8 hours.
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Chapter 7

Conclusions and recommendations

This chapter contains the conclusions drawn in this study and recommendations for both the bridge
design and further research. These are first given in relation to the research questions, after which
further recommendations are given.

7.1 Research questions

7.1.1 Main question

What is the dynamic response of the current bridge structure design, as a result of wave and current
loading?

The steady state response of the structure due to wave and current loading has been calculated for
six representative critical load cases. The displacement and internal loads have been used to answer the
research sub questions. The dynamic response to the current in terms of vortex induced motion has been
shown to be significant and a critical factor in the design of the bridge structure. The bridge system
is found to be excited in its first mode of vibration as a result of the cross-flow loading by the inward
current. The precise extent of the vortex induced motion has not been determined with certainty in
this study. A verification calculation of the model used in this thesis has partially verified the results
provided by this model, however a more complete verification is needed and can be achieved by extending
the simulation time. The same applies to the coupled analysis performed for the entire bridge structure
in this thesis. Increasing the calculation time should lead to evidence of the self-limiting effect of vortex
induced vibrations being present in the model. Further refining of the model will lead to more accurate
and potentially more realistic results. This can be achieved by calculating the fluid loading on each
pontoon separately, at the cost of an enormous increase in computation time.

7.1.2 Sub questions

Considering the dynamic response of the system, will the bridge deck motion or cable fatigue damage
exceed design limits?

Considering the steady state response of the system due to current and wave loading, a definitive
answer to this question has been found in this thesis. The bridge deck motion and fatigue damage are
well within design limits for the critical wave load cases considered. Therefore, bridge deck motion and
fatigue damage due to any wave condition found at the bridge location is deemed to be insignificant and
not critical to the bridge design.

When the results obtained for the vortex induced vibrations are considered, it is clear that bridge
deck motion will exceed design limits by an impressive margin and lead to complete structural failure of
the bridge design. Therefore, the calculation of cable fatigue damage is foregone. Since the displacement
results obtained from the vortex induced vibration calculation are deemed to be uncertain until verified,
the answer to this sub-question considering vortex induced motion remains uncertain, too. It is considered
to be very likely that both bridge deck motion and cable fatigue damage will exceed design limits due to
vortex induced motion.

Which design measures, specifically focusing on the pontoon and cable system design, can be taken
to improve the system’s behaviour?
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To improve the system’s behaviour in relation to wave loading, no further design steps are necessary.
To solve the bridge system’s sensitivity to vortex induced vibrations, multiple solutions are available. An
extended treatment of some of the solutions is found in section J.3.9 and a summary is given here.

The first possible solution is the addition of one, or multiple, helical strakes to the pontoons. Figure
7.1 depicts and example of a helical strake attached to a pontoon. Helical strakes, when applied well,
reduce the amplitude of the cross-flow loading, ’spread’ the frequency of vortex shedding over more
frequencies and create a phase difference in vortex shedding along the pontoon draught. All of these
combined lead to a reduced structural response to the current in cross-flow direction. However, the drag
in the in-flow direction is increased, which is undesirable. Furthermore, strake functioning is reduced by
marine growth, which, as shown in section 2.3.6, is significant at the bridge location. This leads to an
increased maintenance requirement or a significant increase in cost due to expensive coatings, which is
both highly undesirable. Strakes are designed to reduce vortex induced vibrations in multidirectional
flows. Usually this property outweighs the negative side effects of their inclusion. Since the flow direction
at the bridge location is known and unidirectional, this may not be the case for this bridge design.

Therefore, a recommendation is made to investigate the effect and required shape of strakes applied
to the pontoons and determine if the negative side effects mentioned are too significant for this solution
to be viable.

Figure 7.1: Example of a helical
strake attached to a pontoon.

Figure 7.2: Possible different
pontoon shape.

Figure 7.3: Dynamic absorber
in a pontoon.

Another possible solution is redesigning the pontoons into something with a more aerodynamic shape.
An analysis of a simple redesign is found in section J.3.9.2. The results of this analysis show that the
amplitude of cross-flow loading is much lower than for the original pontoon. This is a positive improvement
and it is deemed likely that further research into possible pontoon shapes can lead to huge improvements in
the vortex induced vibrations of the bridge system. Furthermore, redesigning the pontoons to something
with a larger section plane cut by the water line leads to a higher restoring moment in the enlargened
direction. This is an improvement which may lead to smaller amplitudes of motion of both the bridge
deck and the cable mooring system. A recommendation is made to investigate a redesign of the pontoons
in relation to vortex induced vibrations.

Another change that can be made to the pontoons is the inclusion of a dynamic absorber, or tuned
mass damper. These systems improve dynamic behaviour by changing the frequency of vibration of the
mode(s) of vibration of the system, or by damping the response at a certain frequency of vibration. The
first is difficult to implement, since the main mode of vibration of the bridge system is considered. The
latter may be possible to implement within the confines of the pontoons. This system damps the primary
structure response by ’absorbing’ the energy of certain vibrations from the primary structure by vibrating
itself. An example of the set-up of such a system is shown in Figure 7.3. A recommendation is made to
investigate the scale and effectiveness of the system needed to damp the bridge design’s primary mode of
vibration.

A redesign of the cable mooring system is recommended. The recommendation is made to research the
possibilities for restraining the cross-flow motion of the pontoons, as this particular direction of motion is
currently almost unrestrained. An example of this could be replacing the single lateral cables, spanning
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in the flow direction, with multiple cables at angles with the flow direction, restraining the cross-flow
motion.

7.2 Further recommendations

This section includes further recommendations made on the basis of this study that have not yet been
stated.

i The cable model adopted in this thesis, in which the cable bending stiffness changes based on cable
curvature, is developed for the calculation of internal damping of transmission line conductors.
These steel cables are vastly different in dimensions compared to the cables designs used in this
thesis. Therefore, a recommendation is made to verify the cable model adopted in this thesis for
cables of the dimensions used in the bridge design through testing.

ii For the vortex induced vibration analysis, the current load on cables has not been investigated.
The main cables may well be sensitive to vortex induced vibrations in the current velocities found
at the bridge location. The lateral cables are expected to be affected by this phenomenon too,
since they are inclined in the flow direction. It is recommended to investigate the sensitivity of
both the main- and lateral cables to vortex induced vibrations.

iii This thesis has focused on the bridge structure’s response to wave and current loading, omitting
wind loading. Due to the large lever arm wind loading on the bridge deck has with respect to
the centers of rotation of the bridge structure, wind loading may be an issue here. Furthermore,
the precise loading applied to the bridge structure by the wind has to be investigated using
either wind tunnel testing or a detailed flow model. A recommendation is made to investigate
the loading applied to the bridge structure by the wind at the bridge location and the bridge
structure’s response to the wind loading.

iv With the design of the cable’s cross sections in this thesis, most structural elements used in the
bridge have received a detailed design. The elements still in need of such a treatment are the
bridge pylons and, to a lesser extent, the pontoons. Since the redesign of the pontoons has been
recommended earlier, a recommendation for the detailed design of the pylons is made here.

v From the investigation performed into the wake effect for the bridge design it has become clear
that there is an interaction between pontoon wakes and subsequent pontoons. Due to the large
difference observed between results obtained using ’semi-2D’- and 3D models, it is recommended
to investigate the wake effect using a 3D model, too.
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Appendix A

Current bridge design

This chapter lays out the most current design for the floating bridge crossing the Sognefjord on which
this thesis is based and handles previous studies performed on this subject.

A.1 Overview

The current bridge design is an S-shaped bridge in the horizontal plane, which gradually inclines to the
required height for the mid-span. The bridge deck rests on aesthetically pleasing pylons which transfer
the loads to 22 pontoons, which provide the necessary buoyancy. To aid in maintaining the relative
position of the pontoons, a sub-sea cable system has been designed which consists of 44 lateral and 2
main cables. Each pontoon is connected to two lateral cables to restrain its motion. The current design
for the above sea level portion of the bridge is displayed in Figures A.1 [al17]. The bridge design is
rotationally point symmetric in the middle point of the main span, meaning that rotating the bridge by
180◦ degrees around this points will provide the same structure.

Figure A.1: An overview of the current bridge design [Yip15].

An overview of the current bridge design including the subsea cable system and coordinate system
origin is found in Figure A.2. As previously mentioned, the main cables span from shore to shore over
a distance of approximately 4 km and the lateral cables connect the pontoons to the main cables. The
figure also displays the bridge designs’ outer- and main span dimensions.
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A.2. BRIDGE GIRDER

Figure A.2: An overview of the bridge dimensions.

A.2 Bridge girder

The bridge girder has different characteristics across the bridge design. Three girder designs are used; the
main, intermediate and side girders. The main girder is the largest, as it spans the main, 465 m, span.
This girder is flanked by the two intermediate girders, which span 200 m and are continuously connected
to the main girder. The rest of the 200 m spans are spanned by side girders, which are also continuous.
Figure A.3 displays the three girder types.

Figure A.3: Main (top), intermediate (middle) and side (bottom) span girders [Cij18].

All girders are supported on hinged connections at their respective pylon supports. These supports
allow free rotation about the x- and y-axes and fix the girders to the pylons for rotation about the vertical
z-axis. Figure A.4 displays the mechanical model for the center spans (not scaled to size).

Figure A.4: Mechanical model for the center bridge spans.

The precise characteristics of the bridge girder types are specified in Tables A.3 and A.2, and expla-
nation of the symbols used is given in Table A.1.
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A.3. PYLONS

Length L

Height Z

Width Y

Cross sectional area A

Shear area in Y-direction Ashear,y

Shear area in Z-direction Ashear,z

Torsional moment of inertia It

Moment of inertia about Y-axis Iy

Moment of inertia about Z-axis Iz

Self weight G

Table A.1: An overview of the symbols used in the following tables.

Steel Type S460

Young’s modulus E 200 ·103 N mm−2

Shear modulus G 80 ·103 N mm−2

Yield stress fy 460 N mm−2

Table A.2: Girder steel properties.

Girder L
[m]

Z
[m]

Y
[m]

A
[m2]

Ashear,y
[m2]

Ashear,z
[m2]

It [m4] Iy [m4] Iz [m4] G
[kN m−1]

Main 468 27 21.5 4.342 1.7 2.6 1.3 · 103 2.9945 · 102 1.1245 · 102 408

Intermediate 200 16.8 21.5 1.8829 0.76 1.1 7 · 102 1.4696 · 103 4.1602 · 103 220

Side 200 16.8 21.5 0.987 0.39 0.59 4.4 · 102 4.9639 · 102 3.564 · 102 151

Table A.3: Girder characteristic properties.

A.3 Pylons

The pylons have not been fully designed, apart from the aesthetic design displayed in Figure A.5.

Figure A.5: Pylon design [Yip15].

There is no structural model for the pylons as yet and their weight and dimensions are conservatively
assumed values. Other assumptions made for the pylon design are the following;

The pylon shape is assumed to be tubular, without gaps.

Each pylons’ diameter is taken as half the diameter of the pontoon upon which it rests
and the wall thickness is taken as 0.4 m for stiffness calculations.

The pylons are assumed to be stiff enough with respect to the other structural components
to behave as a rigid components. To this end the same steel type is used for the pylons
as for the bridge girders.

The pylon weight is 405.85 kN m−1.
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A.3. PYLONS

Table A.4 displays the steel characteristics used in the pylon design.

Steel Type S460

Young’s modulus E 200 ·103 N mm−2

Shear modulus G 80 ·103 N mm−2

Yield stress fy 460 N mm−2

Table A.4: Pylon steel properties.

The pylons and pontoons are numbered from 1 to 22, from the south to the north shore. Figure A.6
displays this numbering and the coordinate system used.

Figure A.6: Pylon and pontoon numbering.

Using the assumptions describer earlier in this section, the properties used in the design and displayed
in Table A.5 have been calculated. Equations A.1 and A.2 specify the expressions used for Ix, Iy and
It, which are the moments of inertia around the major axes and the torsion constant, respectively. Since
the bridge is point symmetric in the main span mid-point, the values for pylon 1 through 11 are given.

Ix,y =
π

4

(
r4outerr

4
inner

)
(A.1)

In which;

Ix,y is the moment of inertia about the x or y major axis

router is the tube outer radius

rinner is the tube inner radius

It =
1

3
π 2 rmedian t

3 (A.2)

In which;

It is the torsion constant
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A.4. PONTOONS

rmedian is the radius to the median section of the tube wall

t is the tube wall thickness

Pylon Height [m] Diameter [m] Weight [kN] Area [m2] Ix,y [m4] It [m4]

1 4.19 15 1.70 ·103 37.2 4.07 ·103 1.98

2 15.31 18 6.21 ·103 44.74 7.09 ·103 2.39

3 26.39 18 10.71 ·103 44.74 7.09 ·103 2.39

4 36.32 18 14.74 ·103 44.74 7.09 ·103 2.39

5 45.11 18 18.31 ·103 44.74 7.09 ·103 2.39

6 52.74 18 21.40 ·103 44.74 7.09 ·103 2.39

7 59.23 21 24.04 ·103 52.28 11.31 ·103 2.79

8 64.57 21 26.21 ·103 52.28 11.31 ·103 2.79

9 68.77 21 27.91 ·103 52.28 11.31 ·103 2.79

10 71.82 21 29.15 ·103 52.28 11.31 ·103 2.79

11 73.72 26 29.92 ·103 64.84 21.58 ·103 3.46

Table A.5: Pylon properties.

A.4 Pontoons

As mentioned earlier, the bridge design incorporates 22 pontoons. The numbering is displayed in Figure
A.6 in the previous section. The pontoon dimensions have been adapted from a previous study [Yip15],
their mechanical properties are calculated in Subsection A.4.1. The pontoons are cylindrical in shape,
like the tried offshore spar pontoon design. Figure A.7 displays the cross section of pontoon number 7 as
an example of the pontoon design. In this cross section the internal ballast is shown as the striped area
and the lateral cable connections are shown schematically.

The densities of the different pontoon components are shown in Table A.6.

ρconcrete 2500 kg m−3

ρballast 2000 kg m−3

Table A.6: Pontoon component densities.

The pontoon dimensions and coordinates are displayed in Table A.7. Since the bridge design is point
symmetric in the main span midpoint, half the pontoons are shown. The coordinate system is specified
in Figure A.6.

One more important factor in the bridge design is the local water depth at the pontoon locations.
This is used in the calculation of wave forces on the pontoons. To this end, a linearised profile of the
Sogne Fjord cross section has been assumed. This is depicted in Figure A.8.

The water depth per pontoon is determined by calculating its position along this profile using the
pontoons y-coordinate. The results are displayed in Table A.8. Since the fjord depth profile is not
symmetric, this value is displayed for all 22 pontoons.
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Figure A.7: Pontoon 7 cross section.

Number Radius
[m]

Length
[m]

Draught
[m]

Freeboard
[m]

Thickness
Top [m]

Thickness
Side [m]

Thickness
Bottom
[m]

Height
Ballast
[m]

X-
coordinate
[m]

Y-
coordinate
[m]

1 15 77.42 -73.13 4.29 1 1.5 2.55 14.3 734.1 116.89

2 18 93.32 -88.8 4.52 1 1.7 2.86 19.5 915.96 199.86

3 18 104.44 -99.83 4.61 1 1.7 3.09 22.7 1087.9 301.85

4 18 115.18 -110.5 4.68 1 1.7 3.3 25.7 1247.95 421.63

5 18 124.15 -119.4 4.75 1 1.7 3.49 28.2 1394.27 557.84

6 18 134.31 -129.5 4.81 1 1.7 3.68 30.9 1525.18 708.91

7 21 114.16 -109.8 4.36 1 1.9 3.29 27.1 1639.18 873.13

8 21 127.39 -123 4.39 1 1.9 3.55 30.5 1734.96 1048.59

9 21 125.02 -120.6 4.42 1 1.9 3.5 30 1811.42 1233.29

10 21 137.53 -133.1 4.43 1 1.9 3.75 33.1 1867.69 1425.12

11 26 138.4 -133.5 4.9 1 2.23 3.76 35.1 1903.12 1621.86

Table A.7: Pontoon dimensions and coordinates.
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Figure A.8: Linearised cross section for pontoon water depth [Fje12].

Pontoon
number

1 2 3 4 5 6 7 8 9 10 11

Water
depth
[m]

81.69 139.68 210.96 294.67 389.87 495.45 610.22 732.85 861.93 996.0 1133.5

Pontoon
number

12 13 14 15 16 17 18 19 20 21 22

Water
depth
[m]

1258.0 1258.0 1258.0 1258.0 1213.85 1003.06 809.13 634.28 480.53 349.63 243.09

Table A.8: Water depth at each pontoon location.
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A.4.1 Buoyancy and restoring moment

In this section the buoyancy force and restoring moment is calculated for the pontoons specified in the
previous section. This leads to a mechanical model to be used in further analyses in this thesis.

To illustrate the method of calculation, the calculation is performed on pontoon number one. Figure
A.9 displays the cross section and employed axis system for pontoon number one. Its dimensions are
specified further in Table A.7 in section A.4. The dimensions and characteristics of the pylon and the
girders connected to pontoon one are specified in sections A.3 and A.2.

Figure A.9: Pontoon 1 cross section.

First, the buoyancy force is calculated according to Equation A.3.

Fbuoy = ρ g ∇ (A.3)

In which;

Fbuoy is the buoyancy force

ρ is the sea water mass density

g is the gravitational acceleration, to be taken as 9.81 m s−2

∇ is the displaced volume of water, the pontoon volume under the water line

For pontoon number one this leads to a buoyancy force of 514.7 · 103 kN. This is used later in the
calculation.

Now the distribution of weight in the structure is examined. This is done by calculating the center of
gravity. First, this is performed on the pylon and girder combination displayed in Figure A.10.
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Figure A.10: Pontoon 1 pylon and girder centers of mass.

The calculation of the center of gravity is done using the expression in Equation A.4. This is done
only in the vertical z-direction, due to the axial symmetry of the pontoons.

zCoG =

∑
mi zi∑
mi

(A.4)

In which;

zCoG is the z-coordinate of the center of gravity

mi is the mass of element i

zi is the z-coordinate of element i’s center of gravity

Performing the calculation for the girder and pylon leads to the combined center of gravity for the
two elements displayed in Figure A.11. This figure also displays the locations of the centers of gravity of
the other structural elements in the pontoon.

Recognizing that all the centers of gravity share the same horizontal coordinate, Equation A.4 is used
to determine the center of gravity G of the entire structure. Simultaneously the center of buoyancy B
is determined. This is the location through which the buoyancy force calculated earlier acts in positive
z-direction. The center of buoyancy is defined as the center of the displaced volume ∇. Finally, the
metacenter M of the structure is calculated. When the structure experiences a rotation through an angle
of heel, the submerged volume ∇ changes and thus the center of buoyancy B moves to new position. The
metacenter M,Nφ is the point where the work line of the buoyancy force in the undisturbed situation
intersects the work line of the buoyancy force in the rotated situation. The expression for the calculation
of the metacenter M,Nφ position for symmetric, wall-sided structures is displayed in Equation A.5.
From this equation it is apparent that for small angles of heel φ, the metacenter M is different from the
metacenter Nφ when the angle of heel φ is larger. This is due to the tanφ2 term.

BNφ, BM =
IT
∇

(
1 +

1

2
tanφ2

)
(A.5)

In which;

BNφ is the distance between center of buoyancy B and the metacenter Nφ in case of a
large heel angle φ

BM is the distance between center of buoyancy B and the metacenter M in case of a
small heel angle φ

IT is the transverse moment of inertia of the section plane cut by the water surface about
the axis of inclination according to Equation A.6

∇ is the displaced volume of water, the pontoon volume under the water line, which does
not change for a symmetric structure

φ is the angle of heel

Equation A.6 displays the expression for the transverse moment of inertia of the pontoon section plane
cut by the water line about the axis of rotation. This expression takes into account that the shape of the
section plane cut by the water line changes from circular to elliptical with an increasing heel angle φ.

IT =
π

4
r (cosφ r)

3
(A.6)

In which;
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Figure A.11: Pontoon 1 centers of gravity.

IT is the transverse moment of inertia

r is the pontoon radius

φ is the angle of heel

Figure A.12 displays B, G and M calculated using Equation A.5 with φ = 0. That the metacenter
location is above the center of gravity shows that the pontoon is theoretically stable, it will right itself
when small angles of heel φ are applied.

To determine the restoring moment Mres, a heel angle φ is applied to the pontoon. Figure A.13
displays the heeled situation. The restoring moment is the result of the move of the center of buoyancy
B to its new position in the heeled situation Bφ and the leverm arm about the center of gravity G this
creates. The restoring moment is calculated using the expressions in Equations A.7 and A.8.

Mres = ρ g ∇GZ (A.7)

In which;

Mres is the restoring moment

ρ is the mass density of the sea water

g is gravitational acceleration, to be taken as 9.81 m s−2

∇ is the submerged volume
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Figure A.12: Pontoon 1 center of gravity, center
of buoyancy and metacenter.

Figure A.13: Pontoon 1 center of gravity, center
of buoyancy and metacenter in heeled situation.

GZ is the restoring moment lever arm, according to Equation A.8.

GZ = BNφ + (B −G) sinφ (A.8)

In which;

GZ is the restoring moment lever arm

BNφ is the distance between the undisturbed center of buoyancy B and the metacenter
Nφ

B is the location of the undisturbed center of buoyancy

G is the location of the center of gravity of the structure

φ is the angle of heel

The result of the preceding calculation for pontoon 1 is diplayed in Figure A.14. It should be noted
that while the figure shows angles of heel between −π rad and π rad, this expression is not accurate for
such heel angles as they would suggest the pontoon is upside down. Furthermore, the expression does
not take into account the change in shape of the section plane cut by the water line once the top corner
of the pontoon gets submerged.

As is shown in Figure A.13, the heel prescribed at the water level is the same rotation the center of
gravity experiences. The restoring moment in relation to the angle of rotation of the center of gravity
can be expressed as a rotational stiffness of the structure about the center of gravity for rotation about
the horizontal axes. The linear approximation to the restoring moment for small angles of heel displayed
in Figure A.14 can be equated to the spring stiffness of a rotational spring acting in the center of gravity
of the pontoon for rotation about the horizontal x- and y-axis. In the same manner the buoyancy force
can be equated to the spring stiffness of a spring acting in the center of buoyancy of the pontoon, for
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Figure A.14: Pontoon 1 restoring moment versus angle of heel.

translation in the vertical z-direction. This linearisation of the non-linear restoring moment caused by the
buoyancy force is necessary for dynamic analysis and greatly simplifies static analysis. The calculation
of the buoyancy stiffness, rotational stiffness and the center of buoyancy and gravity where the springs
with this stiffness are applied is performed for all pontoons. The results of this calculation are displayed
in Table A.9. Because the bridge is point symmetric in the main span mid-point, the values for the first
11 pontoons are shown.

The mechanical model incorporating these springs is displayed for pontoon 1 in Figure A.15.
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Number z-coordinate
Center of
gravity [m]

x-coordinate
Center of
gravity [m]

Rotational
stiffness kr
[kN m rad−1]

z-coordinate
Center of
buoyancy
[m]

x-coordinate
Center of
buoyancy[m]

Buoyancy
stiffness
kbuoy
[kN m−1]

1 -42.16 15 3.246 · 106 -36.56 15 7038.29

2 -54.0 18 9.388 · 106 -44.4 18 10135.14

3 -60.96 18 1.191 · 107 -49.91 18 10135.14

4 -67.73 18 1.47 · 107 -55.25 18 10135.14

5 -73.36 18 1.724 · 107 -59.7 18 10135.14

6 -79.88 18 2.054 · 107 -64.75 18 10135.14

7 -68.03 21 2.125 · 107 -54.9 21 13795.06

8 -76.99 21 2.761 · 107 -61.5 21 13795.06

9 -75.08 21 2.593 · 107 -60.3 21 13795.06

10 -83.0 21 3.152 · 107 -66.55 21 13795.06

11 -80.83 26 4.3 · 107 -66.75 26 21146.17

Table A.9: Pontoon dimensions and coordinates.
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Figure A.15: Pontoon 1 mechanical model.
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A.5 Cable System

The cable system is designed using two main cables anchored at the shores and lateral cables connecting
each pontoon to the main cables. This leads to system containing a total of 46 cables. The cable
characteristics can be found in Table A.10. Lateral cable lengths are displayed in Figure A.16 [Yip15].
The lateral cable lengths for the other half of the span are mirrored and the main cables have a total
length of 4465 m. Internal cable geometry and layout has not been designed in any of the previous work
performed on the bridge design. All that has been researched is the cable layout and steel cross section
required per cable. Reference is made to appendix C for the detailed design of the main and lateral
cables.

Diameter
[mm]

Material Tensile
strength
[N mm−2]

Modulus of
elasticity
[N mm−2]

Mass den-
sity in air
[kg m−2]

Main cables 1200 Y1860 1860 195000 7850

Lateral cables 350 Y1860 1860 195000 7850

Table A.10: Cable characteristics.

Figure A.16: Lateral cable lengths.
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Appendix B

Loads

This appendix contains detailed information on the different loads on the bridge system. As a reference,
Figure B.1 displays the location of the bridge.

Figure B.1: Bridge location (Google Maps).

B.1 Wave loading

The waves considered at the bridge location are wind waves. Wind waves are measured at three locations
in the fjord crossing: at the north shore, at the middle and at the south shore [al11]. The extreme values
of the wind wave height, relative to the North, obtained from these measurements are displayed in Figure
B.2.

The different wave characteristics are presented in Table B.1.
From these wave characteristics the applicable wave theory can be calculated. Figure B.3 displays

the ranges of validity for the different wave theories. Table B.2 displays the measure of shallowness and
steepness for the different measured wave regimes in Ft s−2, as used in Figure B.3.
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Figure B.2: Extreme values wind wave height per reference period vs. direction at respectively, the north
shore, mid-fjord and the south shore [al11].

Parameter
Wind waves

North side Mid-fjord South side

Significant wave
height

Hs [m] 2.22 2.34 2.13

Spectral top pe-
riod

Tp [s] 4.6 4.8 4.8

Direction [ ◦] 180 240 270

Maximum single
wave height

Hmax [m] 4.55 4.79 4.36

Wave length λ [m] 33 36 36

Table B.1: Wave characteristics at the bridge location.

Wave Shallowness characteristic[
d
T 2
p

]
[Ft s−2]

Steepness characteristic[
Hs

T 2
p

]
[Ft s−2]

Wave theory

Wind waves north side 186.059 0.3442 Third order
Stokes

Wind waves mid-fjord 170.8771 0.3332 Third order
Stokes

Wind waves south side 170.8771 0.3033 Third order
Stokes

Table B.2: Wave steepness and shallowness characteristics.

For the loading of submerged structures by waves, the Morison equation is the most widely used
expression to calculate the exerted force. The Morison equation does not, however, apply to large

structures. Large structures have diameters that are larger than the wavelength divided by 6 (D > λ
6 )

[DNV10]. As can be seen in Tables B.1 and B.21, the wave length of the wind waves range between
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Figure B.3: Ranges of validity for various wave theories. The horizontal axis is a shallowness
characteristic, the vertical axis is a deepness characteristic [DNV10] [Cha87].
The position of the occurring waves is marked with their name.

33-36 m and the pontoon diameters between 30-52 m. This is clearly outside the application range of
the Morison Equation. To find the right theory model to calculate the wind wave loads on the pontoons
the DNV-RP-C205 [DNV10] provides the figure displayed in Figure B.4. In this figure the ratios between
significant waveheight H, the pontoon diamter D and the wavelength of the wave λ lead to a modelling
’region’.

In table B.3 the limits to these ratios for the different wave characteristics and pontoon dimensions
are shown.

Lower limit Upper limit

H
D 0.04 0.08

π D
λ

2.6 4.9

Table B.3: Ratio limits of wave and pontoon characteristics.

Comparing the ratios from Table B.3 with Figure B.4 clearly shows that the pontoon dimensions
and wave characteristics land in the ’Diffraction region’. This means that the incident wave field will
be significantly deformed by the presence of the pontoons and the diffraction theory of wave scattering
around the body can to be used. An analytical solution for a vertical cylinder is available, it is called the
MacCamby Equation and shown in Equation B.1 [maccamby-diffraction]. This expression assumes
that the incident waves are plane waves, which means that the wave height is constant perpendicular to
the wave propagation direction. This is a conservative assumption and thus safe, since wave loading on a
vertical cylinder is maximal when the incident waves are plane waves [Zhu93]. This expression assumes
the incident waves are linear, or airy, waves. This means this expression may be used to roughly compute
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Figure B.4: Different wave force regimes [DNV10] [Cha87].

the wave loading by the 3rd order Stokes waves found in the critical wave conditions, since it leaves out
higher order terms. Equation B.5 provides an expression for the load taking into account 2nd and higher
order terms [maccamby-diffraction].

Fx =
2 g H

k

cosh (k (d+ z))

cosh (k d)

1√
J ′1

(
π D

λ

)2

+ Y ′1

(
π D

λ

)2
cos (ω t− α) (B.1)

In which;

Fx is the x-component of the force on the cylinder per unit length in the z-direction,
at depth z

g is the gravity acceleration, to be taken as 9.81 m s−2

H is the wave height

k is the wave number according to Equation B.3

d is the water depth

z is the elevation below mean sea level

J ′1 is the first derivate of the first-kind Bessel function of the first order

Y ′1 is the first derivate of the second-kind Bessel function of the first order

D is the pontoon diameter

λ is the incident wave length

ω is the angular frequency of the wind wave, according to Equation B.4

α is a phase angle correction according to Equation B.2
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Equation B.2 provides and expression for the phase angle correction.

α = arctan

J ′1

(
π D

λ

)
Y ′1

(
π D

λ

) (B.2)

In which;

α is the phase angle correction

J ′n is the first derivative of the first-kind Bessel function of the first order

Y ′n is the first derivative of the second-kind Bessel function of the first order

D is the pontoon diameter

λ is the incident wave length

Equations B.3 and B.4 provide expressions for the wave number and the angular frequency, respec-
tively.

k =
2 π

λ
(B.3)

In which;

k is the wave number

λ is the wave length

ω =
2 π

Tp
(B.4)

In which;

ω is the angular frequency

Tp is the spectral top period

As mentioned earlier, Equation B.5 provides an expression for the force on a vertical cylinder per
unit length in the z-direction including second order terms. In the formulation of this expression, the
assumption has been made that the wave diffraction for large cylinders is the same as for small cylinders
[maccamby-diffraction].

Fx =
ρ g π D H

2

(
cosh(k (d+ z))

cosh (k d

π D

λ
sin (ω t) +

π H

λ

(
3 cosh (2 k (d+ z))

4 sinh3 (k d) cosh (k d)
− 1

2 sinh (2 k d)

)
2 π D

λ
sin (2 ω t)

)
(B.5)

In which;

Fx is the x-component of the force on the cylinder per unit length in the z-direction, at
depth z

g is the gravity acceleration, to be taken as 9.81 m s−2

H is wave height

k is the wave number according to Equation B.3

d is the water depth

z is the elevation below mean sea level

D is the pontoon diameter
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λ is the incident wave length

ω is the angular frequency of the wind wave, according to Equation B.4

Integrating the results of Equations B.1 and B.5 from the bottom of the pontoon to the water level
provides the total load on the pontoon. To observe the difference in loading between the first order
and second order MacCamby expressions and the loads calculated by the Morison expression shown in
Equation B.6, the integrated total loads for pontoon one with the extreme wave case in the direction
180◦ relative to the North is plotted in Figure B.5.

qN = ρ CM A v̇ +
1

2
ρ CD D v |v| (B.6)

In which;

qN is the sectional load on the pontoon

ρ is the mean density of water, to be taken as 1015 kg m−3 [Cij18]

CM is the is the effective inertia coefficient

A is the section area of the pontoon

v̇ is the horizontal particle acceleration, according to Equation B.7

CD is the drag coefficient, to be taken as 1.0 [DNV10]

D is the diameter of the pontoon

v is horizontal particle velocity, according to Equation B.8

Equations B.7 and B.8 provide expressions for the horizontal particle acceleration and velocity ac-
cording to the Stokes wave theory to be used in Equation B.6.

v̇ =
2 π2 Hs

T 2
p

cosh (k (z + d))

sinh (k d)
sin θ +

3 π2 Hs

T 2
p

π Hs

λ

cosh (2 k (z + d))

sinh (k d)
4 sin (2 θ) (B.7)

In which;

v is horizontal particle acceleration

Hs is the significant wave height

Tp is the spectral top period

k is the wave number

z is the elevation below mean sea level

λ is the wave length

θ is equal to ω t

ω is the wave angular frequency

t is time

v =
π Hs

Tp

cosh (k (z + d))

sinh (k d)
cosθ +

3

4

π Hs

Tp

π Hs

λ

cosh (2 k (z + d))

sinh (k d)
4 cos (2 θ) (B.8)

In which;

v is horizontal particle velocity

Hs is the significant wave height

Tp is the spectral top period

k is the wave number
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Figure B.5: Comparison of the first and second order MacCamby and Morison wave load calculation for
extreme wave case 180◦ relative to the North for pontoon 1.

z is the elevation below mean sea level

ω is the wave angular frequency

The results displayed in Figure B.5 clearly show that the Morison equation produces wave loads of up
to a factor six higher than the first order MacCamby expression. Furthermore, due to the assumption of
small cylinders in the formulation of the second order MacCamby wave load expression, it turns into the
Morison equation and is inapplicable for the combination of waves and pontoons in the bridge design.

Since most modelling software calculates wave loads using the Morison equation, it is of significant
value to be able to model the actual load on the pontoons using a (scaled) form of the Morison equation.
For this purpose a test wave is defined, with the same wave parameters as the observed wind wave, but
the significant wave height which has been divided by a factor six, as this is the factor between the
maximum loads observed in Figure B.5. The results of this test are shown in Figure B.6.

The result of this first test shows that ’scaling’ the waves produces accurate results in terms of the
maximum total load on the pontoons and thus Equation B.9 is obtained for the scaling factor.

sfactor =
max (FMacCamby)

max (FMorison)
(B.9)

In which;

max (FMacCamby) is the maximum occurring load in a wave period according to the
MacCamby expression

max (FMorison) is the maximum occurring load in a wave period according to the
Morison expression

This scaling factor is then applied to the significant wave height Hs. Figure B.6 also displays a clear
phase shift. This phase shift can be accounted for by shifting the result of the Morison expression for the
test wave over a phase angle φ, as displayed in Figure B.7.

This phase shift φ is incorporated in the incident wave phase angle θ as expressed in Equations B.10
and B.11.

φ = φtime ω (B.10)

In which;

φ is the phase shift in rad

φtime is the phase shift in s
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Figure B.6: Comparison of the wave load using the MacCamby and Morison expression for an observed
wind wave and a scaled test wave

ω is the angular frequency according to Equation B.4

θ = ω t+ φ (B.11)

In which;

θ is the phase angle of the incident wave

ω is the angular frequency according to Equation B.4

φ is the phase shift according to Equation B.10

This method of scaling waves works well for waves on single pontoons. However, every combination
of pontoon dimensions and wave characteristics leads to different scaling factors and phase shifts. This
is displayed in Tables B.4 and B.5. Since the water local water depth at the pontoons is part of the
calculations of the wave loads on the pontoons, it is expected that these values are not point symmetric
in the bridge mid-point. Therefore, the scaling factors and phase shifts for all 22 pontoons have been
calculated. From the results it has become clear that the local water depth has very little influence on
these values and the scaling factors and phase shifts are equal for the same pontoon dimensions and
wave conditions, regardless of local water depth. Therefore, only the results for the first 11 pontoons
are displayed, since the bridge design is point symmetric in its mid-point. It is clear that there is quite
a spread in both scaling factors and phase shifts for the different combinations of pontoons and wave
conditions. This will provide a challenge in the modelling of the wave loads on the pontoons using
computer software, since the wave conditions have to be scaled differently for the different pontoons.
This would mean creating multiple wave conditions and in- or excluding pontoons from certain wave
condition loading. This is not a common option in software packages. Another option is to model a wave
using average values for the scaling and phase shift. Since the extremes are quite a bit apart, this would
be a huge and unacceptable approximation of the actual conditions on the Sogne fjord.
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Figure B.7: Comparison of the wave load using the MacCamby and Morison expression for an observed
wind wave and a scaled test wave, shifted to fit to the MacCamby expression

Pontoon
number

Wind wave
direction 180◦

Wind wave
direction 240◦

Wind wave
direction 270◦

1 0.1658 0.1884 0.1884

2 0.1262 0.1435 0.1435

3 0.1262 0.1435 0.1435

4 0.1262 0.1435 0.1435

5 0.1262 0.1435 0.1435

6 0.1262 0.1435 0.1435

7 0.1001 0.1139 0.1139

8 0.1001 0.1139 0.1139

9 0.1001 0.1139 0.1139

10 0.1001 0.1139 0.1139

11 0.0727 0.0826 0.0826

Average 0.1154 0.1313 0.1313

Table B.4: Scaling factors for the different pontoon and wave combinations.

Another method to scale Morison wave loads to fit to the MacCamby expression is to modify the
Morison equation to fit the total load of the MacCamby expression [Cha87]. The expression this produces
is displayed in Equation B.12.

fx = ρ CM A v̇ (B.12)

In which;
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Pontoon
number

Wind wave
direction 180◦

Wind wave
direction 240◦

Wind wave
direction 270◦

1 -2.419 -2.1782 -2.1782

2 -2.9083 -2.6373 -2.6373

3 -2.9083 -2.6373 -2.6373

4 -2.9083 -2.6373 -2.6373

5 -2.9083 -2.6373 -2.6373

6 -2.9083 -2.6373 -2.6373

7 -0.4094 -3.119 -3.119

8 -0.4094 -3.119 -3.119

9 -0.4094 -3.119 -3.119

10 -0.4094 -3.119 -3.119

11 -1.2825 -0.8008 -0.8008

Average -1.8073 -2.6038 -2.6038

Table B.5: Phase shifts for the different pontoon and wave combinations in [rad].

fx is the x-component of the force on the cylinder per unit length in the z-direction,
at elevation z

CM is the effective inertia coefficient according to Equation B.13

A is the pontoon sectional area

v̇ is the water particle acceleration at an elevation z according to Equation B.7, with a
phase shift φ = −α+ π

2

The effective inertia coefficient is obtained using the expression shown in Equation B.13.

CM =
4

π (k a)2
√
J ′1(k a)2 + Y ′1(k a)2

(B.13)

In which;

CM is the effective inertia coefficient

k is the wave number according to Equation B.3

a is the pontoon radius

J ′1 is the first derivative of the first-kind Bessel function of the first order

Y ′1 is the first derivative of the second-kind Bessel function of the first order

Most software supports the option to specify the effective inertia and drag coefficient for structural
elements per wave condition. This would mean setting the effective inertia coefficient CM to the value
calculated using Equation B.13 and the drag coefficient CD to zero. The results of this modification are
shown in Figures B.8 and B.9. Figure B.8 shows the Morison equation with the modified values of CM
and CD implemented versus the MacCamby expression for pontoon number one under the wave condition
with an angle of 180◦ relative to the North. Figure B.9 adds in the effect of the phase shift φ as described
in Equation B.12.

From these figures it is clear that modifying the Morison expression according to Equation B.12
produces accurate results for the total load on the pontoons in comparison to the MacCamby expression.
Since this method allows for the modification of the CM and CD values per pontoon per wave condition,
this method is applicable in the software modelling of wave loads on the pontoons. The values of CM
per pontoon per wave condition are displayed in Table B.6. The results once again agree with the
point-symmetric design of the bridge and thus the results for the first 11 pontoons are displayed.
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Figure B.8: Comparison of the wave load on pontoon one under the wave condition with an angle of 180◦

relative to the North using the MacCamby expression and Morison expression with modified
CM and CD values.

Figure B.9: Comparison of the wave load on pontoon one under the wave condition with an angle of 180◦

relative to the North using the MacCamby expression and Morison expression with modified
CM and CD values and the phase shift φ
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Pontoon
number

Wind wave
direction 180◦

Wind wave
direction 240◦

Wind wave
direction 270◦

1 0.3312 0.3771 0.3771

2 0.2521 0.2872 0.2872

3 0.2521 0.2872 0.2872

4 0.2521 0.2872 0.2872

5 0.2521 0.2872 0.2872

6 0.2521 0.2872 0.2872

7 0.2 0.228 0.228

8 0.2 0.228 0.228

9 0.2 0.228 0.228

10 0.2 0.228 0.228

11 0.1451 0.1654 0.1654

Table B.6: CM values per pontoon per wave condition.
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B.2 Current loading

The current loading occurring at the bridge location is is based on tests and calculations performed by
SINTEF [al11]. The direction of the inward current in reality and translated to the bridge model used
in this thesis is shown in Figure B.10.

Figure B.10: Current flow direction in reality (left, Google Maps) and in the bridge model (right).

The values determined by SINTEF are depicted in Table B.7 and the power law current profile fit to
the inward current data is depicted in Figure B.11. The power law current profile is calculated by fitting
the provided measurements to Equation B.14 [DNV10] using a Python curve fitting regression tool.

Inwards - 60◦ Outwards - 240◦

Depth Velocity Depth Velocity

10 m 1.27 m s−1 10 m 1.06 m s−1

30 m 0.48 m s−1 30 m 0.55 m s−1

70 m 0.39 m s−1 70 m 0.44 m s−1

Table B.7: In- and outward current profile.

vc,tide(z) = vc,tide(0)

(
d+ z

d

)α
(B.14)

In which;

vc,tide(z) is the current velocity at depth z

z is the depth

d is the local water depth

α is a scaling factor, to be fit to the provided data

For most analyses it is sufficient to compute the drag force the constant current applies to the different
structural elements according to Equation B.15 and sum it with the other loads applied to the system.
This method is used by SACS to accommodate current loading.

fN (t) =
1

2
ρ CD D v |v| (B.15)

In which;

fN (t) is the sectional force on a member
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Figure B.11: Inward current velocity profile.

ρ is the water density

CD is the coefficient of drag

D is the member diameter

v is the current velocity

Special care should be taken for the phenomenon of vortex induced vibrations, for which reference is
made to appendix J.

B.3 Traffic loading

Static traffic loads have been a part of a previous study [Cij18]. The loads induced by traffic moving
across the bridge are assumed to be much less significant than the wave and current loading found at the
bridge location and is therefore not a part of the scope of this thesis.

B.4 Wind loading

Research into the dynamic loading applied to the bridge structure by wind forces has been set outside
the scope of this thesis. A preliminary calculation of the wind loading based on the prevailing design
codes for the bridge structure is given in this section.

The results of the calculation performed in this section are a preliminary, to be verified using wind
tunnel tests and/or CFD calculations.

The wind loading is based on wind speeds with a return period of 100 years, the 10-minute and hourly
mean wind velocity at a reference height of 10 m are shown in Table B.8.
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Averaging period Wind velocity [m s−1]

10 min 35

1 h 32

Table B.8: Mean wind velocity at a reference height of 10 m at the bridge location [al11].

The direction of these mean wind speeds ranges from 180-240 deg relative to the North. The extreme
wind speeds versus the direction relative to the North are displayed in Figure B.12 [al11].

Figure B.12: Extreme wind speed values per reference period vs. direction at the bridge location.

The wind profile is extrapolated using the logarithmic function specified in DNV-RP-C205 [DNV10],
since it coincides with the profile extrapolated using the function specified in EN 1991-1-4:2005+A1
[ECS10]. An example of this, and other, wind profiles is shown in Figure B.13.

Figure B.13: Wind profiles extrapolated from the mean wind velocity at a height of 10 m at the bridge
location.

The loads on the bridge deck, pylons and pontoons are calculated according to DNV-RP-C205 [DNV10]
in the following subsections.
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B.4.1 Wind load on bridge girder

The design for the bridge girder used in this section is found in section A.2. To calculate the static wind
load on the bridge girders, Equation B.16 is provided.

FW = Ce q S φ sinα (B.16)

In which;

FW is the wind force

Ce is the effective shape coefficient

q is the wind pressure according to Equation B.18

S is the projected area normal to the direction of the wind force

φ is the solidity ratio

α is the angle between the wind direction and the axis of the exposed member

First, the average solidity ratio of the truss structure is determined. It’s definition is as taken from the
code;

The solidity ratio φ is defined as the projected exposed solid area of the frame normal to
the direction of the wind force divided by the area enclosed by the boundary of the frame
normal to the direction of the wind force.

Since the internal chords in the truss girder are tubular, their area normal to wind force direction is the
same for all directions. Some of the dimensional characteristics of the most recent girder design are shown
in Table B.9 [Cij18]. In this table the main girder is the girder with the largest span, the intermediate
girders span the spans next to the largest span and the side girders span the remaining spans. The girders
are displayed in Figure B.14.

Figure B.14: The main, intermediate and side span girder designs [Cij18].

The total area per m is taken as the average height of the girders. The solid area per m is the diameter
of the two main chords and the internal chord taken together. φ is calculated by dividing the solid area
per m by the total area per m.

Girder Main chord
diameter [m]

Internal chord
diameter [m]

Solid area
[m2 m−1]

Total area
[m2 m−1]

φ

Main 3 1.6 7.6 27 0.28

Intermediate 1.7 1.45 5.85 15 0.39

Side 1.4 0.6 3.4 13.4 0.25

Table B.9: Girder dimensions

The effective shape coefficient Ce is taken from Table 5-4 in DNV-RP-C205, this table is shown in
Figure B.15.

To use the table, first the Reynolds number for the different member diameters must be computed.
If the Reynolds number is bigger or smaller than 4.2 · 105, the the value of Ce is affected. Equation B.17
provides the calculation, the results are presented in Table B.10, in which the Reynolds numbers are
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Figure B.15: Effective shape coefficient for single frames [DNV10].

minimized by taking the smallest chord diameter and mean wind speed to see if they can be lower than
4.2 · 105.

Re =
D UT,z
νa

(B.17)

In which;

Re is the Reynolds number

D is the chord diameter

UT,z is the mean wind speed

νa is the kinematic viscosity of air, may be taken as 1.45 · 10−5 m2 s−1

Reynolds numbers

Girder Lowest chord
diameter [m]

U10,10 = 21 m s−1

Main 1.6 2.3 · 106

Intermediate 1.45 2.1 · 106

Side 0.6 8.7 · 105

Table B.10: Minimal Reynolds numbers for the different girders.

All Reynolds numbers are bigger than 4.2 · 105, so the value for Ce can be taken from Figure B.15 as
0.8 for all girders.

The wind pressure q can be calculated using Equation B.18.

q =
1

2
ρa U

2
T,z (B.18)

In which;

q is the wind pressure

ρa is the mean mass density of air, to be taken as 1.226 kg m−3

UT,z is the mean wind velocity averaged over an interval T at a height z above mean water
level, according to Equation B.19

The mean wind velocity using a logarithmic wind profile can be calculated using Equation B.19.

U(z) = U(H) ·

1 +
ln
( z
H

)
ln

(
H

z0

)
 (B.19)

In which;
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U(z) is the mean wind speed at height z above mean water level

U(H) is the mean wind speed at the reference height H above mean water level

z0 is the terrain roughness parameter, taken as 0.01 [Cij18]

The logarithmic wind profiles per measurement direction depicted in Figure B.12 for the 10 min mean
wind velocities are depicted in Table B.11.
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Table B.11: Mean wind velocity for the different wind directions.

To determine the values for S, q and α, needed to compute Equation B.16, the directions of the
bridge girders relative to the north, their average height above mean sea level and their total side areas
are needed. The girder numbering is shown in Figure B.17, their angles relative to the North, dimensions
and φ-values are displayed in Table B.12. Since the bridge is symmetric, one half of the girders is displayed.
Equation B.16 gives the wind load on the first horizontal side of the truss in the wind directions’ path.
To calculate the load on the second horizontal side, shielded by the first, Equation B.20 is provided.

FW,Shielded = FW η (B.20)

In which;

FW is the wind force

η is the shielding factor

The shielding factor η is determined using Table 5-1 in DNV-RP-C205, this table is shown in Figure
B.16. To use this table, spacing ratio αspacing and aerodynamic solidity ratio β need to be computed.
Equation B.21 displays the calculation for β.

βi = φi a (B.21)

In which;

βi is aerodynamic solidity ratio for girder i

φi is the solidity ratio for girder i, see Tables B.9 and B.12

a is a constant, to be taken as 1.2 for circular sections in the subcritical range [DNV10]

The spacing ratio’s description is as taken from the code;

The spacing ratio αspacing is the distance, center to center, of the frames beams or girders
divided by the least overall dimension of the frame measured at right angles to the direction
of the wind force.

To compute the spacing ratio for the different wind directions, Equation B.22 is used.

αspacing,i,j =
Lctc,i sinαi,j

Dchord
(B.22)

In which;
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Figure B.16: Shielding factor η as function of spacing ratio α and aerodynamic solidity ratio β [DNV10].

αspacing,i,j is the spacing ratio of girder i under wind direction j

Lctc,i is the chord average c.t.c. distance for girder i

αi,j is the angle between girder i and wind direction j, taken from Equation B.23

Dchord,i is the chord diameter in girder i

Since the members used in the girders are tubular, the dimensions measured at angles to the wind
direction do not change. Table B.12 includes the average center to center distances of chords in the
girders and chord diameters.

Figure B.17: Girder numbering.

To compute α and S, to be used in Equation B.16, Equations B.23 and B.24 are used.

αi,j = γi − θj (B.23)

In which;

αi,j is the angle between girder i and wind direction j
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Girder
number

Angle rela-
tive to the
North [◦]

Average
height above
MSL [m]

Area [m2] φ Average c.t.c
distance
chords [m]

Chord
diameter
[m]

1 35 5.44 2680 0.25 14 0.6

2 30 17.08 2680 0.25 14 0.6

3 25 28.25 2680 0.25 14 0.6

4 15 38.26 2680 0.25 14 0.6

5 10 47.11 2680 0.25 14 0.6

6 5 54.80 2680 0.25 14 0.6

7 -5 60.66 2680 0.25 14 0.6

8 -10 66.03 2680 0.25 14 0.6

9 -15 70.25 2680 0.25 14 0.6

10 -20 73.32 3000 0.39 14 1.45

11 -25 75.44 12420 0.28 20 1.6

Table B.12: Girder angles relative to the North, dimensions and values for φ.

γi is the angle of girder i relative to the north

θj is the angle of wind direction j relative to the north

Si, j = Ai sinαi,j (B.24)

In which;

Si, j is the projected area of girder i normal to the direction of wind force j

Ai is area of girder i

αi,j is the angle between girder i and wind direction j

The total load per girder per wind direction can be computed, taking into account all of the above,
using Equation B.25.

FW, tot, i, j = FW, i, j + FW, shielded, i, j (B.25)

In which;

FW, tot, i, j is the total wind load on girder i in the wind direction j

FW, i, j is the wind load on the first horizontal side of girder i in the wind direction j

FW, shielded, i, j is the wind load on the second horizontal side of girder i in the wind
direction j

Tables B.13, B.14, B.15, B.16, B.17, B.18, B.19 and B.20 show the intermediate results and the
resulting loads on the bridge girders per wind direction.

The calculation results clearly show that the static wind loading on the bridge girders is maximal
when the wind direction is at around 240◦-270◦ relative to the North.
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Girder/
Wind
direction

1 2 3 4 5 6 7 8 9 10 11

0◦ 225.6 313.5 357.7 385.5 405.0 419.8 430.0 438.2 444.4 448.7 451.7

30◦ 345.8 480.5 548.4 591.0 620.9 643.5 659.1 671.7 681.3 687.7 692.4

60◦ 345.8 480.5 548.4 591.0 620.9 643.5 659.1 671.7 681.3 687.7 692.4

90◦ 270.6 376.0 429.1 462.5 485.8 503.5 515.8 525.6 533.1 538.2 541.8

120◦ 294.6 409.4 467.2 503.6 529.0 548.3 561.6 572.4 580.5 586.0 590.0

150◦ 401.0 557.3 636.0 685.4 720.0 746.3 764.4 779.0 790.1 797.6 803.0

180◦ 626.6 870.7 993.7 1070.9 1125.1 1166.1 1194.4 1217.2 1234.6 1246.3 1254.8

210◦ 626.6 870.7 993.7 1070.9 1125.1 1166.1 1194.4 1217.2 1234.6 1246.3 1254.8

240◦ 626.6 870.7 993.7 1070.9 1125.1 1166.1 1194.4 1217.2 1234.6 1246.3 1254.8

270◦ 557.0 774.1 883.4 952.0 1000.2 1036.6 1061.8 1082.1 1097.5 1107.9 1115.4

300◦ 557.0 774.1 883.4 952.0 1000.2 1036.6 1061.8 1082.1 1097.5 1107.9 1115.4

330◦ 270.6 376.0 429.1 462.5 485.8 503.5 515.8 525.6 533.1 538.2 541.8

Table B.13: Wind pressure per wind direction per girder in kN m−2.

Girder/
Wind
direction

1 2 3 4 5 6 7 8 9 10 11

0◦ 35◦ 30◦ 25◦ 15◦ 10◦ 5◦ 5◦ 10◦ 15◦ 20◦ 25◦

30◦ 5◦ 0◦ 5◦ 15◦ 20◦ 25◦ 35◦ 40◦ 45◦ 50◦ 55◦

60◦ 25◦ 30◦ 35◦ 45◦ 50◦ 55◦ 65◦ 70◦ 75◦ 80◦ 85◦

90◦ 55◦ 60◦ 65◦ 75◦ 80◦ 85◦ 95◦ 100◦ 105◦ 110◦ 115◦

120◦ 85◦ 90◦ 95◦ 105◦ 110◦ 115◦ 125◦ 130◦ 135◦ 140◦ 145◦

150◦ 115◦ 120◦ 125◦ 135◦ 140◦ 145◦ 155◦ 160◦ 165◦ 170◦ 175◦

180◦ 145◦ 150◦ 155◦ 165◦ 170◦ 175◦ 185◦ 190◦ 195◦ 200◦ 205◦

210◦ 175◦ 180◦ 185◦ 195◦ 200◦ 205◦ 215◦ 220◦ 225◦ 230◦ 235◦

240◦ 205◦ 210◦ 215◦ 225◦ 230◦ 235◦ 245◦ 250◦ 255◦ 260◦ 265◦

270◦ 235◦ 240◦ 245◦ 255◦ 260◦ 265◦ 275◦ 280◦ 285◦ 290◦ 295◦

300◦ 265◦ 270◦ 275◦ 285◦ 290◦ 295◦ 305◦ 310◦ 315◦ 320◦ 325◦

330◦ 295◦ 300◦ 305◦ 315◦ 320◦ 325◦ 335◦ 340◦ 345◦ 350◦ 355◦

Table B.14: Angle alpha between wind direction and girder per wind direction per girder.
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Girder/
Wind
direction

1 2 3 4 5 6 7 8 9 10 11

0◦ 1537.2 1340.0 1132.6 693.6 465.4 233.6 233.6 465.4 693.6 1026.1 5248.9

30◦ 233.6 0.0 233.6 693.6 916.6 1132.6 1537.2 1722.7 1895.0 2298.1 10173.9

60◦ 1132.6 1340.0 1537.2 1895.0 2053.0 2195.3 2428.9 2518.4 2588.7 2954.4 12372.7

90◦ 2195.3 2321.0 2428.9 2588.7 2639.3 2669.8 2669.8 2639.3 2588.7 2819.1 11256.3

120◦ 2669.8 2680.0 2669.8 2588.7 2518.4 2428.9 2195.3 2053.0 1895.0 1928.4 7123.8

150◦ 2428.9 2321.0 2195.3 1895.0 1722.7 1537.2 1132.6 916.6 693.6 520.9 1082.5

180◦ 1537.2 1340.0 1132.6 693.6 465.4 233.6 233.6 465.4 693.6 1026.1 5248.9

210◦ 233.6 0.0 233.6 693.6 916.6 1132.6 1537.2 1722.7 1895.0 2298.1 10173.9

240◦ 1132.6 1340.0 1537.2 1895.0 2053.0 2195.3 2428.9 2518.4 2588.7 2954.4 12372.7

270◦ 2195.3 2321.0 2428.9 2588.7 2639.3 2669.8 2669.8 2639.3 2588.7 2819.1 11256.3

300◦ 2669.8 2680.0 2669.8 2588.7 2518.4 2428.9 2195.3 2053.0 1895.0 1928.4 7123.8

330◦ 2428.9 2321.0 2195.3 1895.0 1722.7 1537.2 1132.6 916.6 693.6 520.9 1082.5

Table B.15: Projected area S per wind direction per girder in m.

Girder/
Wind
direction

1 2 3 4 5 6 7 8 9 10 11 Total

0◦ 39.8 42.0 34.2 13.8 6.6 1.7 1.8 7.1 16.0 49.1 224.4 436.5

30◦ 1.4 0.0 2.2 21.2 38.9 61.6 116.2 148.8 182.6 377.8 1292.6 2243.3

60◦ 33.1 64.4 96.7 158.4 195.3 231.4 290.2 317.9 340.7 624.3 1911.7 4264.2

90◦ 97.3 151.2 188.9 231.3 252.6 267.8 274.4 273.2 266.6 444.8 1238.2 3686.4

120◦ 156.7 219.4 248.5 251.8 250.4 241.4 202.0 180.0 155.6 226.6 540.0 2672.5

150◦ 176.6 224.0 228.7 183.7 159.5 131.6 73.2 48.8 28.4 22.5 17.0 1293.9

180◦ 110.5 116.7 95.1 38.4 18.2 4.8 4.9 19.7 44.3 136.4 623.5 1212.5

210◦ 2.6 0.0 4.0 38.4 70.5 111.6 210.6 269.6 330.9 684.5 2342.4 4065.2

240◦ 60.0 116.7 175.2 287.0 353.9 419.4 525.9 576.1 617.4 1131.3 3464.3 7727.2

270◦ 200.3 311.2 388.9 476.1 519.9 551.4 564.8 562.5 548.9 915.7 2549.0 7588.7

300◦ 296.3 414.9 469.9 476.1 473.4 456.4 381.9 340.4 294.1 428.5 1020.9 5052.7

330◦ 119.1 151.2 154.3 123.9 107.6 88.8 49.4 33.0 19.1 15.2 11.4 873.1

Table B.16: Wind load on the first frame of the girders per wind direction per girder in kN.
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Girder/
Wind
direction

1 2 3 4 5 6 7 8 9 10 11

0◦ 1.0 1.0 1.0 1.0 0.9 0.9 0.9 0.9 1.0 0.7 0.9

30◦ 0.9 0.9 0.9 1.0 1.0 1.0 1.0 1.0 1.0 0.8 1.0

60◦ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 1.0

90◦ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 1.0

120◦ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 1.0

150◦ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.7 0.9

180◦ 1.0 1.0 1.0 1.0 0.9 0.9 0.9 0.9 1.0 0.7 0.9

210◦ 0.9 0.9 0.9 1.0 1.0 1.0 1.0 1.0 1.0 0.8 1.0

240◦ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 1.0

270◦ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 1.0

300◦ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 1.0

330◦ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.7 0.9

Table B.17: Shield factor η per wind direction per girder in kN.

Girder/
Wind
direction

1 2 3 4 5 6 7 8 9 10 11 Total

0◦ 37.8 39.9 32.5 13.2 6.1 1.6 1.6 6.6 15.2 36.4 211.0 401.7

30◦ 1.3 0.0 2.0 20.2 37.0 58.5 110.4 141.3 173.4 313.5 1228.0 2085.7

60◦ 31.4 61.2 91.9 150.5 185.5 219.9 275.7 302.0 323.7 518.2 1816.1 3976.0

90◦ 92.4 143.6 179.5 219.7 239.9 254.5 260.6 259.6 253.3 369.2 1176.3 3448.6

120◦ 148.9 208.5 236.1 239.2 237.9 229.3 191.9 171.0 147.8 188.1 513.0 2511.7

150◦ 167.7 212.8 217.3 174.5 151.5 125.0 69.5 46.4 27.0 16.0 15.4 1223.2

180◦ 105.0 110.8 90.4 36.5 16.9 4.3 4.4 18.3 42.1 101.0 586.1 1115.8

210◦ 2.3 0.0 3.7 36.5 67.0 106.0 200.1 256.1 314.3 568.2 2225.3 3779.5

240◦ 57.0 110.8 166.5 272.7 336.2 398.4 499.6 547.3 586.5 939.0 3291.1 7205.1

270◦ 190.3 295.6 369.5 452.3 493.9 523.8 536.6 534.4 521.4 760.0 2421.6 7099.4

300◦ 281.5 394.2 446.4 452.3 449.7 433.6 362.8 323.3 279.4 355.6 969.9 4748.7

330◦ 113.2 143.6 146.6 117.7 102.2 84.4 46.9 31.3 18.2 10.8 10.4 825.3

Table B.18: Wind load on the second frame of the girders per wind direction per girder in kN.
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Girder/
Wind
direction

1 2 3 4 5 6 7 8 9 10 11 Total

0◦ 193.6 245.7 250.9 201.5 174.9 144.4 80.3 53.6 31.1 21.6 18.2 1415.8

30◦ 118.9 125.6 102.4 41.4 19.4 5.0 5.1 21.0 47.7 131.0 667.5 1285

60◦ 2.7 0.0 4.3 41.4 75.9 120.1 226.6 290.1 356.0 691.3 2520.6 4329

90◦ 50.5 98.2 147.6 241.7 298.0 353.2 442.8 485.1 519.9 894.0 2917.2 6448.2

120◦ 206.6 320.9 401.1 491.1 536.2 568.7 582.5 580.2 566.1 886.3 2629.1 7768.8

150◦ 416.0 582.4 659.6 668.4 664.6 640.7 536.1 477.8 412.9 564.5 1433.3 7056.3

180◦ 537.9 682.6 696.9 559.7 485.9 401.0 223.0 148.8 86.4 60.2 50.6 3933

210◦ 215.4 227.5 185.5 75.0 35.1 9.1 9.3 38.0 86.4 237.4 1209.6 2328.3

240◦ 4.9 0.0 7.7 75.0 137.6 217.7 410.7 525.7 645.2 1252.7 4567.6 7844.8

270◦ 104.0 202.3 303.8 497.5 613.4 727.0 911.6 998.7 1070.3 1840.5 6005.4 13274.5

300◦ 390.6 606.8 758.4 928.4 1013.9 1075.2 1101.4 1096.9 1070.3 1675.7 4970.6 14688.2

330◦ 280.7 393.0 445.1 451.0 448.4 432.3 361.7 322.4 278.6 380.9 967.1 4761.2

Table B.19: Total wind load per wind direction per girder in kN.

Girder/
Wind
direction

1 2 3 4 5 6 7 8 9 10 11

0◦ 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

30◦ 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.4

60◦ 0.0 0.1 0.1 0.2 0.3 0.3 0.4 0.5 0.5 0.5 0.5

90◦ 0.1 0.2 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4

120◦ 0.2 0.3 0.4 0.4 0.4 0.4 0.3 0.3 0.2 0.2 0.2

150◦ 0.3 0.3 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 0.0

180◦ 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.2

210◦ 0.0 0.0 0.0 0.1 0.1 0.2 0.3 0.4 0.5 0.5 0.7

240◦ 0.1 0.2 0.2 0.4 0.5 0.6 0.8 0.8 0.9 0.9 1.0

270◦ 0.3 0.4 0.6 0.7 0.8 0.8 0.8 0.8 0.8 0.7 0.7

300◦ 0.4 0.6 0.7 0.7 0.7 0.7 0.6 0.5 0.4 0.3 0.3

330◦ 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.0

Table B.20: Distributed wind load per wind direction per girder in kN m−2.
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B.4.2 Wind load on bridge pylons and pontoons

The pylon and pontoon design used in this section is specified in sections A.3 and A.4.
Equation B.26 is a modified version of Equation B.16 which is used to compute the static wind loads

on the pylons and pontoons.

FW = Ce q S sinα (B.26)

In which;

FW is the wind force

Ce is the effective shape coefficient, taken from Figure B.15 as being 0.7, since the solidity
ratio φ of the pylons and pontoons is below 0.1

q is the wind pressure according to Equation B.18, using UT,z taken as the average value
over the height of the pylon or pontoon

S is the projected area normal to the direction of the wind force, in this case to be taken
as the pylon diameter D multiplied with its height above mean sea level z

α is the angle between the wind direction and the axis of the exposed member, which is
taken as 90◦ for every wind direction due to the tubular shape of the pylons

The pylon and pontoon numbering is shown in Figure B.18. Their dimensions are shown in B.21
[Cij18]. Since the bridge is symmetric, only half the pylons and pontoons are displayed.

Figure B.18: Pylon and pontoon numbering.

The results of performing the calculation in Equation B.26 are displayed in Tables B.22, ??, B.24 and
B.25.

As is expected, the wind load on the pylons and pontoons is maximal in the directions where the
10 min mean wind speed is measured to be maximal. This is due to the assumed tubular shape of both
pylons and pontoons, due to which the exposed area of both does not change with a changing wind
direction.
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Number Pylon height
[m]

Pylon diameter
[m]

Pontoon height
above MSL [m]

Pontoon diameter
[m]

1 0 15 4.29 30

2 11.64 18 4.52 36

3 22.81 18 4.61 36

4 32.82 18 4.68 36

5 41.67 18 4.75 36

6 49.36 18 4.81 36

7 55.22 21 4.36 42

8 60.59 21 4.39 42

9 64.81 21 4.42 42

10 67.88 21 4.43 42

11 70 26 4.90 52

Table B.21: Pylon and pontoon dimensions.

Pylon/
Wind
direction

1 2 3 4 5 6 7 8 9 10 11 Total

0◦ 0.0 25.9 68.3 112.1 154.1 192.1 259.4 292.3 318.8 338.5 435.7 2197.2

30◦ 0.0 39.8 104.7 171.8 236.2 294.4 397.7 448.0 488.6 518.9 667.9 3368.1

60◦ 0.0 39.8 104.7 171.8 236.2 294.4 397.7 448.0 488.6 518.9 667.9 3368.1

90◦ 0.0 31.1 81.9 134.5 184.8 230.4 311.2 350.6 382.4 406.0 522.6 2635.7

120◦ 0.0 33.9 89.2 146.4 201.3 250.9 338.9 381.8 416.4 442.1 569.1 2869.9

150◦ 0.0 46.1 121.4 199.3 273.9 341.5 461.2 519.6 566.7 601.8 774.6 3906.2

180◦ 0.0 72.0 189.8 311.4 428.0 533.6 720.7 811.9 885.5 940.3 1210.3 6103.4

210◦ 0.0 72.0 189.8 311.4 428.0 533.6 720.7 811.9 885.5 940.3 1210.3 6103.4

240◦ 0.0 72.0 189.8 311.4 428.0 533.6 720.7 811.9 885.5 940.3 1210.3 6103.4

270◦ 0.0 64.0 168.7 276.8 380.5 474.3 640.7 721.8 787.2 835.9 1075.9 5425.8

300◦ 0.0 64.0 168.7 276.8 380.5 474.3 640.7 721.8 787.2 835.9 1075.9 5425.8

330◦ 0.0 31.1 81.9 134.5 184.8 230.4 311.2 350.6 382.4 406.0 522.6 2635.7

Table B.22: Total wind load per wind direction per pylon in kN.
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Pylon/
Wind
direction

1 2 3 4 5 6 7 8 9 10 11

0◦ 0.0 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

30◦ 0.0 0.2 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4

60◦ 0.0 0.2 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4

90◦ 0.0 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3

120◦ 0.0 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3

150◦ 0.0 0.2 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4

180◦ 0.0 0.3 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.7 0.7

210◦ 0.0 0.3 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.7 0.7

240◦ 0.0 0.3 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.7 0.7

270◦ 0.0 0.3 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6

300◦ 0.0 0.3 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.6 0.6

330◦ 0.0 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3

Table B.23: Distributed wind load per wind direction per pylon in kN m−2.

Pontoon/
Wind
direction

1 2 3 4 5 6 7 8 9 10 11 0

0◦ 7.2 9.7 9.9 10.7 10.8 11.0 10.2 11.0 11.1 11.1 17.0 119.6

30◦ 11.0 14.9 15.2 16.4 16.6 16.8 15.7 16.9 17.0 17.0 26.1 183.4

60◦ 11.0 14.9 15.2 16.4 16.6 16.8 15.7 16.9 17.0 17.0 26.1 183.4

90◦ 8.6 11.6 11.9 12.8 13.0 13.2 12.2 13.2 13.3 13.3 20.4 143.5

120◦ 9.4 12.7 12.9 13.9 14.1 14.3 13.3 14.4 14.5 14.5 22.2 156.3

150◦ 12.8 17.2 17.6 19.0 19.2 19.5 18.2 19.6 19.7 19.7 30.2 212.7

180◦ 19.9 27.0 27.5 29.6 30.1 30.4 28.4 30.6 30.8 30.8 47.3 332.3

210◦ 19.9 27.0 27.5 29.6 30.1 30.4 28.4 30.6 30.8 30.8 47.3 332.3

240◦ 19.9 27.0 27.5 29.6 30.1 30.4 28.4 30.6 30.8 30.8 47.3 332.3

270◦ 17.7 24.0 24.4 26.3 26.7 27.1 25.2 27.2 27.3 27.4 42.0 295.4

300◦ 17.7 24.0 24.4 26.3 26.7 27.1 25.2 27.2 27.3 27.4 42.0 295.4

330◦ 8.6 11.6 11.9 12.8 13.0 13.2 12.2 13.2 13.3 13.3 20.4 143.5

Table B.24: Total wind load per wind direction per pontoon in kN.
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Pontoon/
Wind
direction

1 2 3 4 5 6 7 8 9 10 11

0◦ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

30◦ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

60◦ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

90◦ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

120◦ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

150◦ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

180◦ 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

210◦ 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

240◦ 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

270◦ 0.1 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.2

300◦ 0.1 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.2

330◦ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Table B.25: Distributed wind load per wind direction per pontoon in kN m−2.
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B.5 Load cases

This section shows the load cases considered in this thesis. These load cases are combinations of the
waves specified in section B.1 and the current specified in section B.2.

Loadcase Wave direction - height
- wavelength

Current direction

1 180◦ - 4.55 m - 33 m Inwards

2 180◦ - 4.55 m - 33 m Outwards

3 240◦ - 4.79 m - 36 m Inwards

4 240◦ - 4.79 m - 36 m Outwards

5 270◦ - 4.36 m - 36 m Inwards

6 270◦ - 4.36 m - 36 m Outwards

Table B.26: Wave load cases.

Another load case is the inward current for the research into vortex induced vibrations caused by this
current. Reference is made to appendix J.
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Appendix C

Cable design

This chapter shows the design considerations and choices made in the more detailed design of the main
and lateral cable cross sections. The choice of material has been made in earlier work, reference is made
to section A.5 [Yip15]. The chosen material is steel, thus the cables are steel wire ropes, as steel cables
are generally named [Fey07].

C.1 Cross section type

There are many different types of steel wire ropes with different application areas. The main types of
wire rope are displayed in Figure C.1. They are differentiated due to their properties in multiple areas,
such as corrosion protection, fatigue characteristics and effective Young’s Modulus [Fey07]. All of these
factors contribute to the choice of the wire rope design.

(a) Six strand steel wire
rope.

(b) Spiral strand steel wire
rope.

(c) Half locked coil steel wire
rope.

(d) Full locked coil steel wire
rope [DNV15a].

Figure C.1: Basic steel wire rope types

The choice of wire rope is heavily influenced by the guidelines set in DNVGL-OS-E304 Offshore
mooring steel wire ropes [DNV15a]. The recommendation for any type of long-term mooring is to use
the spiral strand, half locked- or full locked coil type of wire rope. This is due to these rope layouts
preventing sea water and other contaminants from entering the rope and ’locking in’ the lubrication agent
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used [DNV15a]. Further specification of this guideline is given in DNVGL-OS-E301 Position mooring
[DNV15b], which gives the guidelines shown in Table C.1.

Field design life [years]
Possibilities for replacement of wire rope segments

Yes No

< 8 A/B/C A/B/C

8− 15 A/B/C A/B

> 15 A/B A

A Half locked coil/full locked coil/spiral rope with plastic sheathing.

B Half locked coil/full locked coil/spiral rope without plastic sheathing.

C Six strand rope.

Table C.1: Choice of steel wire rope construction [DNV15b].

The field design life of the cable mooring system is above 15 years, with a large preference for not
having to replace wire rope segments. According to Table C.1, this leads to a rope construction with
plastic sheathing and eliminates the six strand rope as a design option. The next criterion to consider
is the fatigue characteristics of the rope. Figure C.2 displays design fatigue curves for different mooring
lines, also including two types of mooring chains.

Figure C.2: Fatigue design S-N curves for different mooring line types [DNV15b].

From Figure C.2, it is clear that for fatigue loading the spiral strand rope has the best design char-
acteristics.

These considerations lead to the choice of spiral strand wire rope with a plastic sheathing for envi-
ronmental protection. This choice may be changed to half- or full locked coil rope if required without
much difficulty at a later stage, as the calculation of rope characteristics are not very different for these
types [Fey07]. The plastic sheathing is disregarded in the calculation of mechanical properties, as its
contribution is expected to be insignificant.

C.2 Cross section design

In previous work performed on the bridge design, the steel cross section of the cables has been determined.
This cross section is displayed in Table C.2 and reference is made to section A.5.

This cross section is needed to ensure the stresses in the cable remain at or under the values calculated
in the previous work. However, due to the fact that each layer of strands in the rope has to be ’complete’
(it can’t miss strands in the layer [Fey07]), the total steel cross section of the rope will be higher than
the one calculated in this earlier work. To ensure that the new steel cross sectional area is as close as
possible to the one calculated earlier, a rope cross section optimization tool has been written in Python.
This tool calculates the optimal strand- and rope layout based on the minimum and maximum steel wire
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Diameter [mm] Steel area [mm2]

Main cables 1200 1131 ·103

Lateral cables 350 96.2 ·103

Table C.2: Cable steel cross section.

sizes to minimize the ’extra’ rope steel sectional area. The calculation is based on a spiral stranded rope
and spiral stranded strands with 6 extra strands or wires per consecutive layer and a single strand or
wire core. The effect of a larger or smaller strand or wire core has not been researched and may be the
subject of more research.

The minimum and maximum wire size to be used in steel wire rope for a certain design tensile strength
grade is given in EN 10264-1:2002 Steel wire and wire products - steel wire for ropes [ECS02]. For the
design tensile strength of 1860 N mm−2 the wire diameter range is 0.20 mm to 5 mm [ECS02].

These values for the minimum and maximum wire diameter are fed to the tool with steps of 0.1 mm
in between for both the main and lateral cables. The resulting cross sections are displayed in Figures C.3
and C.4 and their characteristic values in Tables C.3 and C.4.

(a) Cross section of the main cable strands. (b) Cross section of the main cable rope.

Figure C.3: Cross sections of the main cable strands and total rope

Layers Strands/wires Diameter [mm] Steel area [mm2]

Main cable rope 6 127 1599 1132.01 ·103

Main cable strand 20 1261 123 8.913 ·103

Table C.3: Main cable wire rope properties.

Layers Strands/wires Diameter [mm] Steel area [mm2]

Lateral cable rope 5 91 465.3 96.3 ·103

Lateral cable strand 4 61 42.3 1.058 ·103

Table C.4: Lateral cable wire rope properties.
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(a) Cross section of the lateral cable strands. (b) Cross section of the lateral cable rope.

Figure C.4: Cross sections of the lateral cable strands and total rope

C.3 Elasticity module

An important factor in wire rope properties is the lay angle of the rope, which is the angle under which
the wires or strands are twisted around the core. The lay angle influences the elasticity module of the
rope, which is different from the steel’s Young’s Modulus for the entire rope or strand. The difference
the lay angle makes on a rope’s elasticity module is shown in Figure C.5, in which the elasticity module
multiplied by a unit area of 1 mm2 of the main cable strand determined in section C.2 is plotted versus
different lay angles. The expression to calculate this elasticity module is shown in Equation C.1.

ES =
1

A

n∑
i=0

zi cos3 αi

1 + ν sin2 αi
Ei Ai (C.1)

In which;

ES is the rope or strand elasticity module

A is the steel sectional area

n is the number of layers of wires or strands

zi is the number or wires or strands in the layer

αi is the lay angle of the layer

ν is Poisson’s ratio

Ei is the elasticity module of the layer

Ai is the wire or strand sectional area in the layer

As is shown in Figure C.5, as the lay angle increases, the elasticity module of the entire rope decreases.
This leads to a larger extension of the wire rope under the same loading and due to higher deformability
of the cross section under a lower tensile force, potentially more wire wear due to inter-wire friction. The
advantage of the lay angle is to ’lock in’ the rope lubricant, which has the greatest positive effect on the
rope endurance under cyclical loading [Fey07]. The lay angle also has an influence on the wire rope’s
variable bending stiffness, which is addressed in section C.4.
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Figure C.5: Longitudinal stiffness of the lateral cable strand design versus lay angle per mm2.

C.4 Bending stiffness

Wire rope bending stiffness is variable, depending upon the curvature of the rope [Pap97]. The method
of determining the variable bending stiffness used in this thesis is based on work done by Papaillou. As
a caveat it must be mentioned that his work is based on transmission line conductors, which are much
smaller than the cables considered in this thesis. His work does consider multi-layered conductors, which
makes it suitable for the many-layered cables used in this bridge design.

The bending stiffness is variable due to the wires ’sticking’ together to form a solid beam under low
curvature and ’slipping’ apart as the curvature of the rope increases. This means that there is a critical
slip curvature where wires pass from the slip to the stick state. The expression for the critical slip
curvature is shown in Equation C.2.

κi(ϕn) =
(ZT,i + Si)(e

µ sin βϕn − 1)

Ai Ei ri sinφn cos2 β
(C.2)

In which;

κi is the critical slip curvature of the wire

ϕn is the wire helix angle, according to Figure C.6

ZT,i is the tensile force in the wire according to Equation C.3

Si, this term considers the contribution of the tensile forces in the layers ’above’ this layer
to the tensile force ZT,i of this layer, according to Equation C.4

µ is the wire rope friction coefficient, typically taken as 0.5 [Pap97]

β is the lay angle of the wire

Ai is the wire or strand sectional area

Ei is the wire or strand elasticity modulus

ri is radius of the wire layer according to Figure C.6
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Figure C.6: Helix angle and layer radius definition [Pap97].

The definition of the wire or strand helix angle and layer radius is depicted in Figure C.6. The helix
angle is a value between −π/2 and π/2.

The expression for the tensile force in a single wire is given in Equation C.3.

ZT,i =
Ei Ai cos2 β∑

all wires

Ei Ai cos3 β
T (C.3)

In which;

ZT,i is the tensile force in a single wire

Ei is the wire or strand elasticity modulus

Ai is the wire or strand sectional area

β is the lay angle of the wire or strand

T is the tensile force acting on the rope

The expression for the term that incorporates the influence of the tensile forces in the ’higher’ layers
to the tensile force of the present layer is given in Equation C.4.

Si =

n∑
j=i+1

2 ZT,j (C.4)

In which;

Si, this term considers the contribution of the tensile forces in the layers ’above’ this layer
to the tensile force ZT,i of this layer

n is the number of layers of wires or strands in the rope

ZT,j is the tensile force in a single wire

The variable bending stiffness is defined by Equation C.6. Equations C.7, C.8, C.9 and C.10 define
the bending stiffness of the wire rope wires or strands in their different stick or slipped states.

0 < κ ≤ κslip,a : EI(κ) = EImax (C.5)

κslip,i ≤ κ ≤ κslip,i−1 : EIi(κ) = EImin,i +

i−1∑
j=1

EIstick,j +

a∑
j=i

EIslip,j (C.6)

In which;

κ is the curvature of the rope
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κslip is the critical slip curvature

a is the total number of wires or strands

EImax is the maximal bending stiffness of the rope according to equation C.7

EImin,i is the minimum bending stiffness of a wire or strand according to Equation C.8

EIstick,j is the sticking bending stiffness of a wire or strand according to Equation C.9

EIslip is the slipped bending stiffness of a wire or strand according to Equation C.10

EImax =

a∑
i=0

EImin,i + EIstick,i (C.7)

In which;

EImax is the maximal bending stiffness of the rope

a is the total number of wires or strands

EImin,i is the minimum bending stiffness of a wire or strand according to Equation C.8

EIstick,i is the sticking bending stiffness of a wire or strand according to Equation C.9

EImin,i = Ei
π δ4i
64

cosβ (C.8)

In which;

EImin,i is the minimal bending stiffness of a wire or strand

Ei is the elasticity modulus of the wire or strand

δ is the wire or strand diameter

β is the wire or strand lay angle

EIstick,i = Ei Ai (ri sinϕn)2 cos3 β (C.9)

In which;

EIstick,i is the stick bending stiffness of a wire or strand

Ei is the elasticity modulus of the wire or strand

Ai is the sectional area of the wire or strand

ri is the layer radius of the wire or strand according to Figure C.6

ϕn is the wire or strand helix angle according to Figure C.6

β is the wire or strand lay angle

EIslip,i =
(Zslip,i(ϕn) ri sinϕn cosβ)

κ
(C.10)

In which;

EIslip,i is the slipped bending stiffness of a wire or strand

Zslip,i is the maximum possible friction force in a wire or strand after they have slipped
according to Equation C.11

ϕn is the wire or strand helix angle according to Figure C.6

ri is the layer radius of the wire or strand according to Figure C.6
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β is the wire or strand lay angle

κ is the rope curvature

Zslip,i(ϕ) = (ZT,i + Si)
(
eµ sin β ϕ − 1

)
(C.11)

In which;

Zslip,i(ϕ) is the maximal possible friction force in a wire or strand after they have slipped

ZT,i is the tensile force in a single wire according to Equation C.3

Si, this term considers the contribution of the tensile forces in the layers ’above’ this layer
to the tensile force ZT,i of this layer, according to Equation C.4

µ is the wire rope friction coefficient, typically taken as 0.5 [Pap97]

β is the lay angle of the wire

ϕn is the wire or strand helix angle according to Figure C.6

Using these expressions the variable bending stiffness of the wire ropes designed in section C.2 can
be plotted, and the influence of the strand and rope lay angle on the bending stiffness can be examined.
Figure C.7 displays the main cable bending stiffness versus its curvature with different strand lay angles.
The lay angle used for the wires in the strand in this figure is 2◦ and the rope tension is set at 829 000 kN,
which is the maximum value found for the cable tension in earlier work [Yip15].

Figure C.7: Main cable wire rope bending stiffness versus curvature for different strand lay angles, lay
angle wires in strands is 2◦ and rope tension is 829 000 kN.

Figure C.7 clearly shows the influence of the strand lay angle on the variable bending stiffness. The
main difference is visible near the minimal bending stiffness, where for the lower lay angles the minimal
bending stiffness is reached at a lower curvature value. The minimum- and maximum bending stiffness
are maximal when the strand lay angle is 6◦. They are minimal at the higher strand lay angle of 22◦.

The influence of the lay angle of the wires in the rope strands is examined by performing the same
calculation with a lay angle of the wires in the rope strands of 22◦. The results are displayed in Figure
C.8.
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Figure C.8: Main cable wire rope bending stiffness versus curvature for different strand lay angles, lay
angle wires in strands is 22◦ and rope tension is 829 000 kN.

The difference between the lower and higher lay angle of the wires in the strand is mainly visible in
the maximal bending stiffness, which is approximately 1010 N m2 lower across all strand lay angles. This
is due to the lower elasticity modulus for the strands with the higher wire lay angles. Apart from lowering
both the maximum- and minimum bending stiffness, there is no difference in the shape or the curvature
at which the minimum- or maximum bending stiffness are achieved.

The same calculation has been performed for wire lay angles in the strands between 2◦ and 22◦.
The results are as to be expected, the variation of the minimum- and maximum bending stiffness versus
change in lay angle follow the shape of the plot shown in Figure C.5. Which is unsurprising, since the
elasticity modulus has a direct influence on the minimum- and maximum wire bending stiffness, as is
shown in Equations C.8 and C.9. The shape of the plots is largely unchanged, due to the fact that the
changing elasticity modulus has no effect on the slipped wire bending stiffness.

Another influence to examine is the effect of the rope tension on the bending stiffness-curvature rela-
tion. The previous calculations were performed under the maximum occurring rope tension of 829 000 kN.
A new calculation is now performed with the minimum main cable tensile force of 530 000 kN to examine
the effect the rope tension has on the wire rope stiffness behaviour. This is displayed in Figure C.9, in
which a wire lay angle of 2◦ is used in the strands.

Comparing Figure C.9 to C.7, one is hard pressed to find a difference. This is due to the fact that
the minimum and maximum bending stiffness remain unchanged. If one looks closely, it is visible that
the minimum tension is attained at a slightly lower curvature value. It can be concluded that this huge
change in cable tension has had a minimal effect on the cable bending stiffness.

The same four analyses as performed for the main cable are performed for the lateral cable and
displayed in Figures C.10, C.11, C.12 and C.13. These results confirm the conclusions of the tests
performed with the main cable wire rope and show that these conclusions hold for these rope and strand
layouts and rope tensile loads.
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Figure C.9: Main cable wire rope bending stiffness versus curvature for different strand lay angles, lay
angle wires in strands is 2◦ and rope tension is 530 000 kN.

Figure C.10: Lateral cable wire rope bending stiffness versus curvature for different strand lay angles, lay
angle wires in strands is 2◦ and rope tension is 52 146 kN.
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Figure C.11: Lateral cable wire rope bending stiffness versus curvature for different strand lay angles, lay
angle wires in strands is 22◦ and rope tension is 52 146 kN.

Figure C.12: Lateral cable wire rope bending stiffness versus curvature for different strand lay angles, lay
angle wires in strands is 2◦ and rope tension is 17 702 kN.
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Figure C.13: Lateral cable wire rope bending stiffness versus curvature for different strand lay angles, lay
angle wires in strands is 22◦ and rope tension is 17 702 kN.
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C.5 Conclusion

As a result of the calculations performed in this appendix the final design for the main and lateral cables
can be determined. The desired properties of the rope should lead to a long fatigue life, low extension
under tensile stress, good environmental protection and high hysteretic damping.

Both a long fatigue life and low tensile extension are achieved by choosing low lay angles for these
axially loaded stay cables. The environmental protection should mainly be achieved by the plastic
sheathing added to the cross section. However, by giving both the strands and the wires in the strands a
small lay angle, the containment of the rope lubricating agent in all rope parts will be improved, improving
the fatigue life of the rope [Fey07]. Hysteretic damping is mentioned here for the first time. It is the
damping of cable motions due to inter-wire friction and pure material damping in the wires themselves.
It can be modelled by taking the cable’s non-linear bending stiffness as a function of its curvature into
account during dynamic analysis. From previous studies it has been found that when loaded under its
own weight, most cable segment curvatures fall between 10−3 to 10−5. Thus to maximize hysteretic
damping, a lay angle should be chosen that maximizes the stiffness change in this curvature range. As
the damping is achieved mainly through inter-wire friction, this will most likely be detrimental to the
fatigue life of the cable.

Taking these considerations into account and balancing the different advantages and disadvantages
has led to the main and lateral cable properties displayed in Table C.5 and the cross sections as depicted
in section C.2 in Figures C.3 and C.4. The lay angle of the wires in the cable strands is kept at a low
2◦, as this lay angle has a large influence on the elasticity modulus of the cable as a whole and thus the
cable extension under axial loading. The cable strands’ lay angle is slightly higher at 6◦ as this allows for
a better ’lock in’ of lubricating agent in the ropes. At 6◦ the change in bending stiffness in the regarded
curvature range is already quite significant, while further increases in lay angle yield smaller increases
in the variability of the bending stiffness. It is expected that these values for the lay angles provide a
good balance between fatigue life on the one hand and damping on the other hand. The bending stiffness
versus curvature for the main and lateral cables in shown in Figures C.14 and C.14.

Once again, it should be noted that the method used to obtain the cable bending stiffness character-
istics was not developed for or tested with cables of the size implemented here. A recommendation to be
made is to test the veracity of this method for cables of the sizes used in this design.

Material Type Wire
lay
angle

Wire
diameter
[mm]

Wire
layers

Strand
lay
angle

Strand
diameter
[mm]

Strand
layers

Main cable Y1860 Spiral
rope

2◦ 3.0 20 6◦ 123 6

Lateral cable Y1860 Spiral
rope

2◦ 4.7 4 6◦ 42.3 5

Table C.5: Cable wire rope properties.
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Figure C.14: Main cable bending stiffness versus curvature.

Figure C.15: Lateral cable bending stiffness versus curvature.
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Appendix D

Cable damping

This chapter outlines the calculation of the internal damping of the cables in the bridge model.

D.1 Hysteretic damping

As mentioned in section C.5, hysteretic damping is the internal structural damping of the cable motion.
This is mainly caused by friction between the strands and wires in the cables and only a negligible
contribution is made by damping in the wire material itself [Spa13].

Hysteretic damping is caused by the dissipation of energy due to inter-wire friction as the cables
deform under loading. This can be visualised using a force-displacement hysteresis curve. An example of
a wire rope hysteresis curve is depicted in Figure D.1. In this Figure, the load sequence is depicted with
numbers 1 − 4. In this load sequence, the load path during unloading is different than during loading,
creating the shaded area in the Figure. The area contained in this load path is the energy extracted from
the motion by the internal hysteretic damping during this load cycle.

Figure D.1: An example force-deflection hysteresis curve [Pap97].

A method to model the effect of this hysteretic damping due to inter-wire friction is to model the
cable with a variable bending stiffness, dependant upon the curvature and tension of the cable [Pap97].
For each analysis step, the bending stiffness is updated, reflecting the state of the cable.

D.2 Modelling cable damping

As mentioned in section D.1, in the method used in this thesis to model cable hysteretic damping, the
bending stiffness of the cable is to be updated during analysis based on the curvature and tension of
the cable. Little to no Finite Element software packages provide options to implement this and SACS
is no exception. The SACS software does, however, allow for the structural damping to be entered
as a percentage of critical damping for all modes of the structural model (also known as a structural
damping factor). The critical damping is the damping value for which the approach of the system to its
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zero amplitude (equilibrium position) from a displaced situation is the quickest. If the damping value is
higher, the approach takes longer. If it is lower, it reaches the zero amplitude faster, but subsequently
oscillates around it. The damping factor for the entire bridge system is expected to be much lower than
the critical damping. The methodology to transform the hysteretic damping model from the non-linear
bending stiffness to a percentage of critical damping (or damping factor) is described in this section and
subsections.

D.2.1 Overview

The path to transform the variable bending stiffness in a cable cross section into a structural damping
factor for the entire bridge model is quite extensive, this section provides an overview of the steps taken.
The work-flow for the iterations is depicted visually in Figure D.2.

Figure D.2: Work-flow for structural damping iterations.

Use the variable cable bending stiffness to create an equilibrium situation (in terms of displacement
u0, bending stiffness EI0 and tension T0) of the bridge model loaded by its self-weight through
iterative non-linear FEM analysis as described in appendix F.

Taking the bridge model in this equilibrium situation, calculate mode shapes, mode frequencies and
mass M and stiffness K0 matrices using the Dynpac module of the SACS software package.

Use the SACS wave response program to pre-calculate the steady state response of the model with-
out damping and with constant cable bending stiffness EI0, calculated previously, to the different
wave load cases as described in section G.6.

Create a set of linear analyses in which the model is deformed according to the steady state dis-
placements calculated earlier, time-stepping the model through the displacement to obtain hysteresis
curves per node. The cable bending stiffness EI is updated per time step.

These hysteresis curves are integrated to calculate the dissipated energy per node during the steady
state excitation.

Per node, per degree of freedom, simple mass-spring-dashpot systems are used as equivalent systems.
The spring stiffness k is determined from the global stiffness matrix K0. The viscous damping is to
be determined.

Hysteretic damping factors µ are determined per degree of freedom per node by equating the
dissipated energy in the hysteretic curves to the dissipated energy in the equivalent system.

An energy consistent structural damping factor for the entire system is determined from the nodal
damping factors.

The following subsections adress the different parts of the methodology outlined here.
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D.2.2 Equilibrium

The first step is to determine the equilibrium situation of the entire bridge model when loaded by its self
weight. A short summary of the proceedings is given here, for more detail reference is made to appendix
F. To find the equilibrium situation, in terms of displacement and cable bending stiffness and tension,
an iterative procedure using the FEM package Scia Engineer is performed. This procedure starts with a
non-linear analysis in Scia using the maximum cable stiffness as calculated in section C.4. Then, reading
out the cable tension and displaced position, the cable bending stiffness is recalculated and updated
before performing another non-linear analysis. This iteration is repeated until convergence in terms of
displacement is reached.

D.2.3 Mode shapes

The next step is to take the resulting tension and displacement data from the equilibrium situation
and create a SACS model incorporating this data. Using the SACS Dynpac module, the mode shapes,
mode frequencies, stiffness-, and mass matrix are calculated. This step is performed in SACS due to the
possibility to automatically take into account fluid added mass in determining these properties of the
model.

D.2.4 Undamped steady state solution

Taking the results of the modal analysis, the SACS Wave Response program is run for the different wave
load cases outlined in section B.5 with the structural damping factor set to zero for the first iteration, and
following iterations set to the resulting structural damping factor calculated in the previous iteration. As
described in section H.2, the Wave Response program calculates the steady state response of the structure
to these load cases.

D.2.5 Pre-set displacement

The calculated steady state displacements are applied to the model as pre-set displacement per time step
using SACS. For each time step, a new cable bending stiffness EI is calculated and applied per cable
section. The analysis performed is a linear calculation, with each node receiving a pre-set displacement
per time step.

The energy dissipated in the steady state movement per node per degree of freedom ∆En,dof is
calculated by integrating the area contained in the hysteresis curve created by the resulting forces per
node per degree of freedom and the displacements per node per degree of freedom. The method used to
integrate the hysteresis curves is detailed in section D.2.6. An example of a a hysteresis curve produced
using the pre-set displacements is shown in Figure D.3.
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Figure D.3: Force-deflection hysteresis curve for joint C24 in the z-direction.

D.2.6 Integration

This section deals with the integration of the hysteresis curves produced using a linear analysis with
pre-set displacements in SACS. Examples of hysteresis curves produced using this method are shown in
Figures D.3 and D.4.

Figure D.4: Force-deflection hysteresis curve for joint M223 in the z-direction.

As is seen in these figures, the hysteresis curve are very jumpy and contain large peaks caused by
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outlying values. These outlying values are caused in part by the bridge geometry and relative displacement
and partly by numerical errors in the linear SACS analysis. When multiple data points are the cause of
one these peaks it is most likely due to the geometry and relative displacement of the cable at the node
location. However, when a peak is caused by single outlying data point which is not in accordance with
the surrounding data, it is likely caused by a numerical error. To mitigate the influence of these single
outlying values on the integrated area, a corner-cutting algorithm is employed to smooth the curve surface
and reduce single peaks. The corner-cutting algorithm chosen to perform this task is Chaikin’s Corner
Cutting Algorithm [Cha74]. This algorithm iteratively refines a collection of data points to smooth the
curve area. Using this refining algorithm with proportions 0.6 : 0.4 and 3 iterations yields the refinement
shown in Figures D.5 and D.6. These proportions are tested to yield a large ’protection’ against outlying
values, while the refinement limit of three iterations provides a good balance between ’smoothness’ and
computation time.

Figure D.5: Force-deflection hysteresis curve for joint M223 in the z-direction, refined using Chaikin’s
Corner Cutting Algorithm with 3 iterations and 0.6 : 0.4 proportions.

As can be seen in Figure D.5, some peaks are not ’cut’ by the algorithm. This is due to the fact that
although these peaks appear to be single outliers, they are in fact comprised of multiple data points.

Another example of Chaikin’s Corner Cutting Algorithm in action is displayed in Figure D.6. In this
figure the peaks are caused by single outliers and the corner cutting algorithm decreases their influence
on the total area in the hysteresis curve.

After processing the data to smooth out numerical errors, the curves can be integrated to obtain the
total dissipated energy per steady state movement per node per degree of freedom.

To integrate the area contained in the hysteresis curves, Green’s Theorem is used [Rie51]. This
Theorem links the area bounded by a closed curve to the path integral following its border. The expression
for Green’s Theorem is found in Equation D.1.

A =

∫∫
D

dA =
1

2

∮
C

(−y dx+ x dy) (D.1)

In which;

A is the area bounded by curve C

C is the curve bounding area A

The integration procedure expressed in Equation D.1 is performed for every degree of freedom of each
node in the bridge system.
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Figure D.6: Force-deflection hysteresis curve for joint C24 in the z-direction, refined using Chaikin’s
Corner Cutting Algorithm with 3 iterations and 0.6 : 0.4 proportions.

D.2.7 Equivalent systems

Per node, per degree of freedom, equivalent systems must be set up to equate the dissipated energy in
the steady state movement to the energy dissipated in the equivalent system. The equivalent systems are
simple mass-spring-dashpot systems, as is depicted in Figure D.7.

Figure D.7: A mass-spring-dashpot system.

The spring stiffness used in the equivalent systems is taken from the global bridge system stiffness
matrix. The values relating the displacement in the x-, y-, or z-degree of freedom one a node to a force
in the same degree of freedom on the node are used.

The expression for the energy dissipated in this system at resonance is given in Equation D.2 and the
expression for the equivalent damping factor µeq is then achieved by a simple operation on this expression
and given in Equation D.3 [Adh13].

∆W = 2 π k µ x2max (D.2)

In which;

∆W is the dissipated energy per cycle

k is the spring stiffness

µ is the damping factor as percentage of critical damping according to Equation D.3

xmax is the absolute maximum amplitude
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µeq =
∆W

2 π k x2max
(D.3)

The equivalent damping factor per node per degree of freedom is calculated by inserting the energy
dissipation obtained through the integration of the hysteresis curves into Equation D.3.

D.2.8 Structural damping factor

After obtaining the equivalent damping factors per node per degree of freedom, a final operation is
required to obtain the total structural damping factor.

This operation is detailed in Equations D.4 and D.5. This operation leads to an energy-consistent
structural damping factor for the steady state motion across all modes [al96].

ζ =
1

2

nhysteretic∑
m=1

µ(m) E(m)
max

nhysteretic∑
m=1

E(m)
max

(D.4)

In which;

ζ is the structural damping factor

nhysteretic is the number of hysteretic systems in the model

µ(m) is the hysteretic damping factor for hysteretic system m

E
(m)
max is the maximum potential energy in the steady state movement for hysteretic system

m according to Equation D.5

E(k)
max =

1

2
k(k) u(k) 2max (D.5)

In which;

E
(k)
max is the maximum potential energy in the steady state movement for hysteretic system

k

k(k) is the spring stiffness of hysteretic system k

u
(k)
max is the absolute maximum displacement of hysteretic system k in the steady state

movement

D.3 Results

This section displays and discusses the results obtained using the methodology outlined in section D.2.
First it is necessary to explain that the structural damping factor has been calculated for the six load cases
outlined in section B.5. Each of these load cases correspond to a critical wave (with aligned direction)
together with in- or outgoing current. Each two load cases thus represent the same wave loading, in
which only the current has changed direction. The calculated structural damping factors are displayed
in Table D.1.
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Load case Undamped ζ Iteration 1 ζ Iteration 2 ζ Iteration 3 ζ

1 1.894 % 0.912 % 1.644 % 1.624 %

2 1.850 % 0.878 % 1.768 % 1.776 %

3 7.145 % 5.568 % 5.403 %

4 6.958 % 5.365 % 5.612 %

5 2.377 % 2.347 %

6 2.347 % 2.337 %

Table D.1: Structural damping factors per load case.

D.4 Conclusions

As can be seen in the results, the structural damping factor is highly dependant upon the wave excitation
and almost insensitive to the change in current loading. That the damping factors are the same for the
in- and outgoing current cases coupled to the same wave loading also provides a simple sanity check for
the entire damping calculation, because it is expected that these values match closely. It is clear that
when the wave loading remains the same, the damping factor remains mostly the same. As the wave
loading changes and excites more modes of vibration of the structure, the structural damping increases.
This is expected, since the source of the structural damping is the friction between the strands and wires
in the steel cables. If the steel cables move less, there is less friction and the damping is less.

The solution is quick to converge, which makes this method quite effective to obtain a structural
damping factor for all modes of vibration quickly.

It is also clear that for every loading scenario, a recalculation of the cable structural damping is
necessary to obtain the structural damping as applicable for that specific load case.

A point of attention is the fact that the results obtained from this analysis have to be verified and
potentially modified after experiments with steel cables whose properties approach the cables used in this
design.
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Appendix E

Waves steady state displacement

This appendix contains the steady state displacement analysis performed in this study. The goal of this
analysis as presented in this appendix is to determine the motion of the bridge deck due the wave loads
on the bridge system. First the theory behind steady state analysis is presented. Then the set-up of the
analysis as it is performed in this thesis is described. After which the results and conclusions that can be
drawn from the analysis are presented.

E.1 Theory

The steady state displacement of a structure under an unchanging known harmonic load is the movement
of the structure after a sufficient amount of time has passed and the structure vibrates at the same
frequency as the load, albeit possibly with a phase shift. For the calculation of said response, first the
system’s eigenmodes and corresponding modal frequencies need to be determined, for this operation
reference is made to section H.1. Following this, the system’s equation of motion (Equation E.1) can be
transformed into the modal form by substituting the expression in Equation E.2. This expression states
that the sum of all modal responses can be combined to into the actual response of the structure, which
assumes that all degrees of freedom within a modal response move using the same time function. After
some operations this leads to the expression for the modal equation of motion shown in Equation E.3.

M ü+ C u̇+K u = F (t) (E.1)

In which;

u is the system displacement

M is the system mass matrix

C is the system damping matrix

K is the system stiffness matrix

F (t) is the forcing function

u(t) =

n∑
i=1

x̂i ui(t) (E.2)

In which;

u(t) is the system response

n is the number of system eigenmodes

x̂i is the eigenvector (mode shape) of mode i

ui(t) is the modal response of mode i
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üi + 2 ξi ωi u̇i + ω2
i ui =

F ∗(t)

m∗ii
, (i = 1 . . . n) (E.3)

In which;

ui is the modal displacement for mode i

ξi is the modal damping factor for mode i

ωi is the modal eigenfrequency for mode i

F ∗(t) is generalized force for mode i

m∗ii is the entry in the modal damping matrix for mode i

n is the number of modes in the system

For the steady state solution it is assumed that the influence of the initial conditions on the structure
response have ’died out’ and that just the system response to the forcing function is left, thus that sufficient
time has passed for just the particular solutions to the system of equations presented in Equation E.3
to be present in the modal response functions. To obtain the particular solutions, the Duhamel integral
(Equation E.4) is utilized in combination with the unit impulse response function shown in Equation E.5,
which leads to the expression for the particular solutions depicted in Equation E.6.

ui(t) =

∫ t

τ=0

F ∗(τ) gi(t− τ) dτ, (i = 1 . . . n) (E.4)

In which;

ui is the particular solution for the modal displacement for mode i

F ∗(τ) is generalized force for mode i

gi(t− τ) is the modal unit impulse response function as expressed in Equation E.5

gi(t) =
1

m∗ii ωi

√
1− ξ2i

exp−ξi ωi t sin

(
ωi

√
1− ξ2i t

)
, (i = 1 . . . n) (E.5)

In which;

gi(t) is the modal unit impulse response function

m∗ii is the entry in the modal damping matrix for mode i

ωi is the modal eigenfrequency for mode i

ξi is the modal damping factor for mode i

ui(t) =

∫ t

τ=0

F ∗(τ)

m∗ii ωi

√
1− ξ2i

exp−ξi ωi t sin

(
ωi

√
1− ξ2i t

)
dτ, (i = 1 . . . n) (E.6)

In which;

ui is the particular solution for the modal displacement for mode i

F ∗(τ) is generalized force for mode i

m∗ii is the entry in the modal damping matrix for mode i

ωi is the modal eigenfrequency for mode i

ξi is the modal damping factor for mode i

This method of calculating the steady state response assumes a linear system, which, due to the non-
linear nature of the cables, the bridge model in this thesis is not. Therefore, employing this calculation
method is an approximation.

section H.2 describes the implementation of this calculation method in the SACS wave response
module, with particular emphasis on the calculation of the hydrodynamical loading.
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E.2 Set-up

The steady state analysis presented here is performed for the six critical wave load cases defined in section
B.5 and shown in Table E.1.

Loadcase Wave direction - height
- wavelength

Current direction

1 180◦ - 4.55 m - 33 m Inwards

2 180◦ - 4.55 m - 33 m Outwards

3 240◦ - 4.79 m - 36 m Inwards

4 240◦ - 4.79 m - 36 m Outwards

5 270◦ - 4.36 m - 36 m Inwards

6 270◦ - 4.36 m - 36 m Outwards

Table E.1: Wave load cases.

For the calculation of the structural damping factor used for all modes of vibration, reference is made
to appendix D. The damping factors per loadcase are shown in Table E.2.

Load case ζ

1 1.624 %

2 1.776 %

3 5.403 %

4 5.612 %

5 2.347 %

6 2.337 %

Table E.2: Structural damping factors per load case.

The serviceability limits of note for this analysis for the bridge deck motion are shown in Table E.3.
Table E.4 shows the maximum displacement amplitudes allowed for the bridge decks.
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Vertical deformation Lateral plane rotation

uz ≤ L/200 m az ≤ 0.7 m s−2 φz ≤ 0.060 rad ζz ≤ 0.050 rad s−2

Lateral deformation Cross section plane rotation

uy ≤ L/200 m ay ≤ 0.5 m s−2 φy ≤ 0.044 rad ζy ≤ 0.107 rad s−2

Longitudinal deformation Vertical section plane rotation

Not considered ax ≤ 0.5 m s−2 Not considered

Table E.3: Bridge deck deformation serviceability limits.

Deck number Length [m] Maximum displacement [m]

1 to 11 and 13 to 23 200 1

12 465 2.325

Table E.4: Maximum allowed deck displacements.

E.3 Results

This section contains the results of this analysis. First the calculated amplitudes of displacement for the
cable nodes are depicted in Figure E.1. Next the calculated total displacement amplitudes and maximum
accelerations for the bridge deck nodes are depicted in Figures E.2 and E.3. Figures E.4, E.5, E.6 and
E.7 show the calculated maximum rotations and angular accelerations for the bridge decks.
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Figure E.1: Cable node displacement amplitude values for the different load cases.
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Figure E.2: Bridge deck node displacement amplitude values for the different load cases.
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Figure E.3: Bridge deck maximum acceleration values for the different load cases.
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Figure E.4: Bridge deck maximum lateral rotation values for the different load cases.

126



E.3. RESULTS

Figure E.5: Bridge deck maximum cross section plane rotation values for the different load cases.
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Figure E.6: Bridge deck maximum lateral angular acceleration values for the different load cases.
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Figure E.7: Bridge deck maximum cross section plane angular acceleration values for the different load
cases.
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E.4 Conclusions

The conclusions to be drawn from this analysis are clear. The serviceability limit states for the bridge
deck given in Table E.3 aren’t broken during any of the steady state analyses. Therefore, it is concluded
that, since the wave cases considered are extreme wave cases, bridge deck motion due to wave excitation
will not break the serviceability limits.
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Appendix F

Nonlinear analysis

This appendix describes the non-linear analysis performed with the Scia Engineer software package to
obtain the model deformation, cable tension and bending stiffness when loaded with its own self-weight.

F.1 Nonlinear analysis

The Scia Engineer software package contains a non-linear solver, which can solve large deflection non-
linear models. This is done using a Newton-Rhapson solver to iterate to equilibrium per load step.

In cable model adopted for this thesis, the cable bending stiffness changes as the curvature of cables
change. This is not a common option for finite element software packages, and Scia Engineer is no
exception. To accommodate the changing bending stiffness as the cables flex and their curvature changes,
a non-linear solver (called Sciapython) is created which adds an additional iteration step in terms of the
cable element bending stiffness to the calculation. The work-flow for this program is shown in Figure
F.1. The program utilizes the ”ESA XML.exe” tool provided by the creators of Scia Engineer to interact
with the Scia solvers.

Figure F.1: Sciapython solver work-flow.

The steps in the solver process are the following;

First the bridge model is created, with a set level for the bending stiffness of all main and
lateral cables.

From this model an xml input file is created, which is converted to a Scia model by the ”ESA XML”
tool.
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With different commands passed to the ”ESA XML”, the nonlinear calculation is prepared and
performed by Scia. The Scia Engineer non-linear solver is run with the options specified in Table
F.1.

The output results of the calculation are split in a displacement file and an internal load file.

Convergence is calculated by Sciapython based on the nodal displacements. The convergence norm
is un − un−1 ≤

un−1
100 , or a convergence norm of 0.01.s

If the solution converges the solver stops here.

If it doesn’t, Sciapython calculates the cable bending stiffness per cable segment according to the
method described in appendix C using the expression for the curvature shown in Equation F.1
[Bel99].

The updated cable bending stiffness is exported to the XML input file and the iteration loop restarts.

Solver type Direct

Average elements per member 10

Geometrical non-linearity 3rd order, large displacement

Calculation method Newton-Rhapson

Number of load increments 50

Maximum iterations 100

Solver precision ratio 1

Solver robustness ratio 1

Initial stress Yes

Initial stress from load case Self-weight

Table F.1: Solver options.

κBC =
κB + κC

2
(F.1)

In which;

κBC is the curvature of the element from Node B to Node C

κB is curvature at node B, according to Equation F.2

κC is curvature at node C, according to Equation F.2

κN =

√
(MN +NO +MC) (NO +MO −MN) (MO +MN −NO) (MN +NO −MO)

4 (MN ·NO ·MO)
(F.2)

In which;

κN is the curvature at node N

M is the (x,y,z) location of node M, which is connected to node N

N is the (x,y,z) location of node N, which is connected to both node M and N

O is the (x,y,z) location of node O, which is connected to node N

MN is the distance from node M to N

NO is the distance from node N to O

MO is the distance from node M to O
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Figure F.2: Isometric view of the undeformed (blue) and deformed (red) equilibrium shape as calculated
by the Sciapython solver.

Figure F.3: Top view of the undeformed (blue) and deformed (red) equilibrium shape as calculated by
the Sciapython solver.

The results of the solver calculation are displayed visually in Figures F.2, F.3 and F.4.
Due to the large number of nodes used in this calculation, there are many resulting deflections. To

give an indication of the deflection of the cables, the displacements of the connection nodes between main
and lateral cables of the same number depicted in Figure F.5 are shown in Table F.2.

The largest vertical deflections occur at nodes C17 and C28, with approximately −115 m. The largest
deflections in the x-direction occur at joints C18 and C27, with −31.83 m and 31.83 m, respectively. The
largest y-deflections are relatively small, compared to the z- and x-directions, with 10.06 m and −10.06 m
occurring at joints C11 and C34. The point symmetric design of the bridge is reflected in the displacement
results, with each joint having a ’twin’ with the same, or opposite displacement. The largest axial tensions
occur in the main cables, at the four supports. The axial load in the cables reaches 931 541 kN in main
cable no. 46 and similar values, though lower, at the other three main cable supports.

The results of the solver calculation are incorporated in the SACS model used in the subsequent
dynamic analyses in the following parameters;
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Figure F.4: Side view of the undeformed (blue) and deformed (red) equilibrium shape as calculated by
the Sciapython solver.

Figure F.5: Main and lateral cable numbers.

The axial tension, which is incorporated as a pre-stressing load on the beam elements which repre-
sent the cables segments.

The calculated curvature and tension dependant bending stiffness, which is input as a section
property per cable segment.
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Node name X-deflection [m] Y-deflection [m] Z-deflection [m]

C1 -3.09277 4.45428 -6.8637

C2 -2.84115 0.7169 1.40486

C3 -4.76871 5.96832 -23.30378

C4 -4.77616 0.35867 -10.01821

C5 -4.53812 5.18554 -40.76301

C6 -7.06488 0.21667 -22.35835

C7 -6.78496 7.54098 -58.80405

C8 -9.14932 0.25039 -34.66561

C9 -8.03332 8.96732 -75.59014

C10 -12.8866 0.87943 -46.11637

C11 -8.72953 10.06431 -90.18508

C12 -17.76454 2.09385 -55.96377

C13 -6.14194 8.34692 -101.73449

C14 -21.89583 3.43509 -63.82604

C15 -4.39451 7.69608 -109.75209

C16 -27.45579 5.50739 -70.12377

C17 -0.27525 5.47719 -114.71929

C18 -31.8274 7.48778 -78.13269

C19 2.09816 4.71613 -115.6574

C20 -31.72164 7.87766 -86.31981

C21 8.09088 1.94853 -113.9699

C22 -25.26808 5.45433 -96.54096

C23 25.26929 -5.45554 -96.54489

C24 -8.09006 -1.94943 -113.9644

C25 31.72262 -7.87883 -86.32282

C26 -2.09708 -4.71717 -115.65239

C27 31.82815 -7.4889 -78.13471

C28 0.27733 -5.47889 -114.71469

C29 27.45685 -5.50865 -70.12454

C30 4.39699 -7.69802 -109.74859

C31 21.89834 -3.43683 -63.82471

C32 6.14588 -8.35002 -101.7319

C33 17.76774 -2.0958 -55.96134

C34 8.73316 -10.06695 -90.18398

C35 12.89111 -0.88167 -46.11347

C36 8.03776 -8.97062 -75.58995

C37 9.15252 -0.25236 -34.66304

C38 6.78816 -7.54281 -58.80474

C39 7.06309 -0.21778 -22.35654

C40 4.53938 -5.18512 -40.76388

C41 4.7677 -0.3588 -10.01716

C42 4.76106 -5.95735 -23.30419

C43 2.82343 -0.71524 1.39957

C44 3.07149 -4.42567 -6.86579

Table F.2: Displacement of lateral and main cable connections.
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F.2 Linear analysis

The cable bending stiffness and tension calculated using the Sciapython program are exported to SACS
to be used in the linear dynamic calculations. To prove that the results using this method comply with
the results calculated by SciaPython, a static calculation is performed using the SACS linear solver and
the results are compared to the non-linear results computed using SciaPython.

The results are compared using the Mean Squared Displacement Percentage error metric presented
in Equation F.3 [MGB74].

MSDP (u, û, ū) = 1− (MSD (u, û))

(MSD (u, ū))
(F.3)

In which;

MSDP is the error metric, which is smaller than 1 and maximal when it is 1

u is the vector containing the true displacements

û is the vector containing the displacement to test

ū is the vector containing the undeformed structure

MSD (y, ŷ) is the Mean Squared Displacement according to Equation F.4

MSD(y, ŷ) =
1

nsamples

nsamples−1∑
i=0

(yi − ŷi)2 (F.4)

In which;

MSD(y, ŷ) is the average squared displacement

y is the vector containing the true displacement

ŷ is the vector containing the displacement to test

The results from the test with this error metric for the displacements in the three degrees of freedom
are shown in Table F.3.

X Y Z

MSDP 0.8681 0.9353 0.9858

Table F.3: Results for the MSDP in comparing the non-linear displacement calculated by the SciaPython
program to the linear displacement calculated by SACS.

It is clear that the linear analysis displays some differences in comparison to the non-linear analysis,
mainly in the horizontal plane. In the vertical plane the two methods produce very similar results. To
analyse the magnitude of the errors in the three directions, the maximum absolute errors between the
non-linear and linear results are displayed in Table F.4.

X Y Z

Absolute error 3.015 m 0.949 m 1.304 m

Table F.4: Absolute errors comparing the non-linear displacement calculated by the SciaPython program
to the linear displacement calculated by SACS.

These results show that although the error metric points to an error close to 14 % for for instance the
x-displacement results, the absolute error is still extremely small compared to the model dimensions.

Taking into account the absolute maximum error values calculated for the displacement directions,
the error scores for the full set of nodal displacements are deemed to be acceptable. Especially taking
the scale of the model into consideration.
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Appendix G

SACS modelling

This appendix includes the assumptions and design choices made for the full bridge model in the finite
element software SACS. It also includes analytical verification of the dynamic response of parts of the
model.

G.1 Cables

In this section the assumptions made when modelling cables in SACS are defined and as verification a
static analysis and an eigenfrequency analysis for a simple cable model are performed.

The cable model used in the bridge design are defined further in Appendices C, F and D. In SACS,
the cables are modelled as tensioned Euler Bernoulli beam elements. The bending stiffness is determined
per cable element according to the calculations specified in the Appendices mentioned earlier. The shear
area modifier is set set to 0.9, which is a common value for cable elements [al10].

The characteristics of the steel used in the cables is depicted in in Table G.1.

Modulus of elasticity E 195 000 N mm−2

Shear modulus G 80 000 N mm−2

Yield strength fy 1860 N mm−2

Density ρ in air 7850 kg m−3

Table G.1: Y1860 steel characteristics.

G.1.1 Verification of the SACS cable model

For the verification of the SACS cable model, different cable properties have been adopted than the ones
calculated in Appendices C, F and D. The cable model to be checked has the characteristics displayed in
Table G.3 and the steel and element properties displayed in Tables G.1 and G.2.

Torsional moment of inertia 10−5mm4

Moment of inertia about the local Y-axis 10−5mm4

Moment of inertia about the local X-axis 10−5mm4

Shear area modifier for tubular sections 0.9

Table G.2: Test cable moments of inertia.
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Length 50 m

Diameter 150 mm

Cable tension 1000 kN

Table G.3: Test cable model characteristics.

G.1.1.1 Static analysis

The value of 1000 kN for the cable tension has been chosen by using Equation G.1 [Sim11] to plot the
relation between the cable sag at midspan and the tension shown in G.1 and choosing a reasonable
deflection and tension.

w =
T

µ

(
cosh

µ l

2 T
− cosh

(
µ

T

(
l

2
− x
)))

(G.1)

In which;

w is the cable deflection

T is the cable tension

µ is the cable weight

l is the cable length

x is the coordinate along the cable span

Figure G.1: The relation between cable sag at midspan and cable tension for a 50 m cable loaded by its
own weight.

The cable deflection at midspan according to Equation G.1 is 0.425 m for the cable defined in this
section. The deflection of the entire cable plotted along its length is shown in Figure G.2.
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Figure G.2: Cable deflection along its length, loaded by self weight.

This cable model is modelled in SACS using the parameters described previously. The cable span is
divided into four sections, by using four equally spaced nodes. The end nodes are fixed in all translational
degrees of freedom and free to rotate. The members connecting the nodes are loaded with the cable self
weight. The result of a linear static calculation of this model is shown in Figure G.3.

Figure G.3: Cable deflection along its length, loaded by self weight using 4 nodes in a linear static SACS
analysis. Max deflection is −0.44 m.

This result shows that the SACS analysis produces a similar result compared to the analytical solution.
The slight difference in results is mainly caused by the non linear nature of cable action. This result can
be seen as a first ’guess’ of the final cable shape, after which the new values for the cable tension and
deflection are to be fed into a new linear analysis until the solution converges on the analytical solution.
In the analytical solution provided the final cable shape is known to be a catenary - a computer program
needs to iteratively work towards this shape. Since SACS does not provide a non-linear solver capable
of dealing with low stiffness elements, this analysis can’t be performed. To look at the influence of an
increase in ’resolution’, meaning an increase in the amount of cables segments in the span, the results of
a linear static analysis of a twenty node SACS model is shown in Figure G.4.

Figure G.4: Cable deflection along its length, loaded by self weight using 20 nodes in a linear static SACS
analysis. Max deflection is −0.38 m.

This result shows that a higher resolution leads to a more ’smooth’ cable shape. It also shows that it
does not favourably influence the accuracy of the results in a linear static analysis. This further reinforces
the fact that more iterations are needed to converge on the analytical result.

Since the aim of this study is to look into dynamic behaviour, the linear analysis is deemed suitable
enough.

G.1.1.2 Eigenfrequency analysis

To validate the suitability of SACS for dynamical analysis, an eigenfrequency analysis is performed on
the previously defined test cable using both SACS and an analytical solution.
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First the analytical solution is presented, starting with the equation of motion and boundary conditions
of the model, shown in Equation G.2.

ρ A
∂2w

∂t2
− T ∂2w

∂x2
= 0 (G.2)

With boundary conditions;

w(0, t) = 0

w(50, t) = 0

In which;

w(x, t) is the cable deflection

ρ is the cable density

A is the cable cross sectional area

T is the cable tension

The solution to this differential equation can be found by splitting the problem in a spatial and
temporal part, as shown in Equation G.3.

w(x, t) = w(x) sin(ω t+ φ) (G.3)

Substituting this in the equation of motion from Equation G.2 leads to Equation G.4.

−ρ A ω2 sin (ω t+ φ) w(x)− T sin (ω t+ φ) w′′(x) = 0 (G.4)

Since the time function can’t be equal to zero for all t, the other factor should be equal to zero, as
shown in G.5.

w′′(x) +
ρ A ω2

T
w(x) = 0 (G.5)

Solving this differential equation with the boundary conditions specified in G.2 leads to the expression
for the eigenfrequencies of the cable shown in Equation G.6.

ωn =

√
T

ρ A

k π

L
, (k = 1, 2, ...∞) (G.6)

In which;

L is the cable length

For the eigenfrequency analysis in SACS, the two previously defined models and one model using two
hundred nodes are used. The modal mass matrix is built using the consistent method and the vertical
displacements are considered for dynamical analysis.

Using Equation G.6 and the three SACS models, the first ten eigenfrequencies of the cable are cal-
culated and shown in Table G.5. The four node SACS model only has three degrees of freedom to be
considered for this analysis and thus only produces three eigenfrequencies and modal shapes. The results
clearly validate the solution provided by SACS to be in the same range as the analytical results. It also
shows that when the nodes do not coincide with the maxima and zero-points (also called nodes) of the
modal shape, the solution tends to have a higher error. This can also be seen in the modal shapes, which
are displayed in Table G.4.

Analytical 4 noded SACS model 20 noded SACS model 200 noded SACS model
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Table G.4: First ten modal shapes of the cable model.

If the resolution of the cable is chosen high enough, the margin of error for the results drop significantly,
becoming nearly non-existant. This shows the importance of performing resolution studies during the
design modelling. It also shows that SACS is a suitable software package for dynamic cable analysis.

Number Analytical SACS 4 nodes SACS 20 nodes SACS 200 nodes

1 0.849 Hz 0.827 Hz 0.902 Hz 0.849 Hz

2 1.698 Hz 1.530 Hz 1.698 Hz 1.698 Hz

3 2.547 Hz 2.000 Hz 2.663 Hz 2.547 Hz

4 3.396 Hz 3.384 Hz 3.396 Hz

5 4.245 Hz 4.310 Hz 4.245 Hz

6 5.094 Hz 5.017 Hz 5.093 Hz

7 5.943 Hz 5.779 Hz 5.942 Hz

8 6.792 Hz 6.438 Hz 6.789 Hz

9 7.641 Hz 7.035 Hz 7.637 Hz

10 8.490 Hz 7.851 Hz 8.484 Hz

Table G.5: Test cable model eigenfrequencies.

G.2 Pontoons

In this section the assumptions and design choices made modelling the pontoons in SACS are described
and verified. The pontoon parameters and mechanical model are defined in detail in section A.4.

The pontoons are modelled as stiff tubular Euler-Bernoulli beam elements to examine their rigid body
movements, Table G.6 shows the chosen parameters in SACS.

Modulus of elasticity E 2 000 000 N mm−2

Shear Modulus G 2 000 000 N mm−2

Yield strength fy 2500 N mm−2

Table G.6: Modelled pontoon parameters.

To validate the pontoon model in SACS, an eigenfrequency analysis is performed for pontoon number
seven. Figure G.5 shows a section cut and related mechanical model for pontoon number seven.
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Figure G.5: section cut and mechanical model for pontoon number seven [Yip15].

The bridge girder resting on the pontoon and the lateral cables hanging from the center of rotation
of the system are modelled as point masses at their respective locations. The pylon weight, pontoon
cylinder weight, ballast weight and the pontoon top and bottom weights are modelled as distributed
loads along their respective length. The masses, distributed weights and values for the spring stiffness
used for pontoon seven are displayed in Table G.7.

Pontoon number 7

Rotational stiffness krotational 21250 ·103 kN m rad−1

Buoyancy stiffness kbuoy 13795 kN m−1

Mass girder mgirder 3078.5 ·103 kg

Mass cables in air mcables 1800.7 ·103 kg

Mass pylon ρpylon 38.9 ·103 kg m−1

Mass top pontoon ρtop 3463.6 ·103 kg m−1

Mass cylinder pontoon in air ρcylinder 598.4 ·103 kg m−1

Mass ballast in air ρballast 2292.2 ·103 kg m−1

Mass bottom pontoon in air ρbottom 3463.6 ·103 kg m−1

Table G.7: Characteristic masses and stiffness pontoon seven.

G.2.1 Static analysis

Static analysis is foregone for the pontoons. Since all loads modelled in the proposed model are in the
z-direction and have no eccentricity to the rotation center, the analysis boils down to dividing the total
mass by the buoyancy stiffness. The buoyancy stiffness and total mass is verified in the eigenfrequency
analysis, so there is no need to perform an additional validation.

G.2.2 Eigenfrequency analysis

To simplify the calculation, the verification is performed in two decoupled degrees of freedom, rotation
around the center of rotation and translation in the z-direction. Figure G.6 displays the two degrees of
freedom. Damping is disregarded for this benchmark analysis. It will change the results significantly.
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Figure G.6: Degrees of freedom for the pontoon model.

The expressions for the two equations of motion are displayed in Equations G.7 and G.8.

mtot z̈ + kbuoy z = 0 (G.7)

In which;

mtot is the summed mass of the pontoon, according to Table G.7

kbuoy is the buoyancy spring stiffness, according to Table G.7

J r̈ + krot r = 0 (G.8)

In which;

J is the pontoon’s mass moment of inertia around the rotation center, according to Equation G.9

krot is the rotational spring stiffness, according to Table G.7

The pontoon’s mass moment of inertia is calculated using the expression in Equation G.9.

J =

∫
ρ z2 dz (G.9)

In which;

J is the pontoon’s mass moment of inertia around the rotation center

ρ is the distributed weight along the pontoon’s z-axis

z is the distance from the rotation center along the z-axis

The equations of motion belong to simple undamped mass spring systems and the eigenfrequencies can
be found directly. The expressions for the two eigenfrequencies related to the two degrees of freedom are
displayed in Equations G.10 and G.11.

ωr =

√
kr
J

1

2 π
(G.10)

In which;

ωr is the eigenfrequency related to the pontoon rotation r in Hz

kr is the rotational spring stiffness, according to Table G.7

J is the pontoon’s mass moment of inertia around the rotation center

ωz =

√
kz
mtot

1

2 π
(G.11)

In which;
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ωz is the eigenfrequency related to the pontoon displacement z in Hz

kz is the buoyancy spring stiffness, according to Table G.7

mtot is the summed mass of the pontoon, according to Table G.7

The pontoon and pylon are modelled in SACS as Euller Bernoulli beams with internal stiffness pa-
rameters according to Table A.9. The masses are modelled as point and distributed loads in the vertical
direction on the beam element. The beam is supported by a hinged support at the metacenter with rota-
tional and translational stiffness according to Table G.7. The Dynpac dynamic analysis tool provided by
SACS converts the loads in the z-direction into a consistent mass matrix and performs the eigenfrequency
analysis for the two degrees of freedom. Table G.8 displays the results of the analytical calculation and
SACS analysis for pontoon number seven. The SACS results are presented visually in Figure G.7.

Pontoon number 7

Analytical results

Mass moment of inertia J 302907659.8 · 103 kg m2

Summed mass mtot 152228.3 · 103 kg

Eigenfrequency translation ωz 0.0479 Hz

Eigenfrequency rotation ωr 0.0297 Hz

SACS results

Eigenfrequency translation ωz 0.049 Hz

Eigenfrequency rotation ωr 0.029 Hz

Table G.8: Eigenfrequency analysis results for pontoon number seven.

The results presented in Table G.8 clearly validate the results generated by SACS for the rigid body
motion of the pontoons. The minute differences can be explained by rounding differences in load input
and numerical errors.

Figure G.7: Rigid body modes and eigenfrequencies calculated by SACS for pontoon number seven.
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G.3 Pylons

This section describes the manner in which the pylons detailed in section A.3 are modelled in SACS.
The pylons are modelled as Euler-Bernoulli tubular sections in SACS. Their section properties are set as
manual input.

G.4 Girders

This section describes the design and modelling choices made for modelling the bridge girders in SACS.
The design and characteristic properties of the bridge girders modelled in in this section can be found
in appendix A. The bridge girders are modelled in SACS as prismatic rectangular beam elements. The
beam characteristics such as its area, shear area and moments of inertia are set manually, according
to the girder properties. An example of these characteristics for the main girder beam is displayed
in Table G.9. For detailed static analysis of the bridge girder reference is made to W. Cijsouw. “A

Height Z 27 m

Width Y 21.5 m

Cross sectional area A 4.342 m2

Shear area in Y-direction Ashear,y 1.7 m2

Shear area in Z-direction Ashear,z 2.6 m2

Torsional moment of inertia It 1300 m4

Moment of inertia about Y-axis Iy 299.45 m4

Moment of inertia about Z-axis Iz 112.45 m4

Self weight G 408 kN m−1

Table G.9: Main girder beam characteristics.

continuous superstructure for the Sognefjord bridge”. Delft University of Technology, 2018. Since the
bridge girders are very stiff in comparison to the other structural elements present in the bridge design
(mainly the cables), they can be assumed to be near rigid bodies. Their internal dynamic behaviour is
not investigated further in this thesis.

G.5 Bridge model

This section describes the modelling of the entire bridge in SACS. The previous sections have described
the modelling of the different structural components of the bridge design. This section outlines the total
model and the manner in which these components fit in this model.

G.5.1 Dimensions and axis system

This subsection describes the model dimensions and the axis system used. The bridge model is contained
in a 3835.17 m by 3707.52 m area horizontally. The highest point is at 78.66 m. Figure G.8 gives an
overview of the model. The axis system used has its origin at the left endpoint of the main cable on
the left. The z-axis origin coincides with the water level. The fjord floor is modelled at an elevation of
−1200 m below mean sea level and thus the z-axis origin.

145



G.5. BRIDGE MODEL

Figure G.8: Overview of the total model.

G.5.2 Component coordinates

In this section the locations of the different structural components are shown. Figure G.9 displays the x-
and y-coordinates of the connections between the main and lateral cables. The main and lateral cables
are modelled at an elevation of −20 m below mean sea level. The main cables are supported at their top
and bottom endpoints. From the main cable support to the first connection with a lateral cable the main
cable is modelled with a linear sag.

Figure G.9: Coordinates of the main and lateral cable connections.

Table G.10 displays the x- and y-coordinates of the pontoons. The pontoon numbering is shown in
Figure G.10.

The elevation of the tops of the pylons above mean sea level and thus their z-coordinate is displayed
in Table G.11. The pylons share x- and y-coordinates with the pontoon they are placed on. The bridge
girders are modelled connecting the tops of the pylons.
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Pontoon
number

1 2 3 4 5 6 7 8 9 10 11

X-coordinate
[m]

734.1 915.96 1087.9 1247.95 1394.27 1525.18 1639.18 1734.96 1811.42 1867.69 1903.12

Y-coordinate
[m]

116.89 199.86 301.85 421.63 557.84 708.91 873.13 1048.59 1233.29 1425.12 1621.86

Pontoon
number

12 13 14 15 16 17 18 19 20 21 22

X-coordinate
[m]

1932.05 1967.48 2023.75 2100.21 2195.99 2309.99 2440.9 2587.22 2747.27 2919.21 3101.07

Y-coordinate
[m]

2085.66 2282.4 2474.22 2658.92 2834.39 2998.6 3149.68 3285.89 3405.66 3507.63 3590.63

Table G.10: Pontoon coordinates.

Figure G.10: Pontoon numbering.

Pontoon
number

1 2 3 4 5 6 7 8 9 10 11

Pylon eleva-
tion [m]

8.48 19.83 31.0 41.0 49.86 57.55 63.59 68.96 73.19 76.25 78.62

Pontoon
number

12 13 14 15 16 17 18 19 20 21 22

Pylon eleva-
tion [m]

78.62 76.25 73.19 68.96 63.59 57.55 49.86 41.0 31.0 19.83 7.37

Table G.11: Pylon top elevation.

G.5.3 Connections

This subsection describes the location and nature of the different connections between the structural
elements in the model.

The main cables are restrained at both ends. These supports are modelled as rigid supports, allowing
no rotations or translations to portray a cable cast in concrete or secured in some form of clamp. The
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connection between the main and lateral cables are modelled as rigid connections. This is done because
the connection will involve a clamp or other form of rigid connection.

The lateral cables are connected to the pontoons at an elevation of −20 m below mean sea level. This
connection is modelled as a rigid connection as well, for the connection to the pontoons will involve some
form of clamp.

In the structural model, there is no distinct connection between the pontoon and pylons. The con-
nection present between them is rigid.

In the current bridge design, the entire bridge girder is a continuous girder, resting on hinged supports
in axial and horizontal normal directions. Axial rotation around the pylon vertical axis is prevented by
the support conditions. As such, This rotational degree of freedom is set to be fixed, while the others
are free. All translational degrees of freedom between the pylon and girders are fixed. For a mechanical
model of the pylon to girder connections reference is made to section A.2.

G.5.4 Full model

This section describes the construction method and depict the complete bridge model built in SACS.

G.5.4.1 SACS Input file

The model is built in SACS using a SACS input file. An example of a sportion of a SACS input file is
shown in Figure G.11.

In this part of the input file, the model options are set on the OPTIONS line. This line is currently
set to make the model use metric units and export a joint displacement report, an internal load report,
a member forces and moments report and a joint reaction report in static analysis.

The SECT lines input the different member section types and their geometric characteristics to be
used in the model. The previous sections of this thesis provide an accurate description of the member
section characteristics used in the SACS bridge model.

Figure G.12 shows the following part of the input file, detailing the member groups to be assigned to
the members in the model. The GRUP lines assigns member sections to member groups and assigns shear
and elasticity moduli. It also assigns shear and elasticity moduli, member group densities and member
group shear areas.

In Figure G.13 lines creating members are shown. The MEMB lines displayed create the members
of which pontoon number 22, the first section of one of the main cables and main-, intermediate- and
side-span girders are comprised. The lines display the two joints which are connected by the member,
the member group to which the member is to be assigned and the member end fixities. These fixities
describe the member support conditions at the two member ends for the six degrees of freedom. The
order of the degrees of freedom is as follows: displacement x - displacement y - displacement z - rotation
x - rotation y - rotation z. The value 0 means the end release of the member is fixed for this degree of
freedom. The value 1 means the member end release is free in this degree of freedom. The depicted lines
for the side-span girders and pylon show the girder support conditions. The member line can also assign
a local density and diameter for members, this is visible in the member lines representing pontoon 22.

SECT

SECT PYL1 TUB6.48+53.4600+821.58+1121.58+11 2600.040.00

SECT PYL2 TUB5.23+52.7900+811.31+1111.31+11 2100.040.00

SECT PYL3 TUB4.47+52.3900+87.090+117.090+11 1800.040.00

SECT PYL4 TUB3.72+51.9800+84.070+114.070+11 1500.040.00

SECT PONT1 TUB2.12+76.039+105.772+125.772+12 5200.0223.0

SECT PONT2 TUB1.39+73.017+102.582+122.582+12 4200.0190.0

SECT PONT3 TUB1.02+71.852+101.450+121.450+12 3600.0170.0

SECT PONT4 TUB7.07+61.060+107.375+117.375+11 3000.0150.0

SECT MAINCAB TUB1.13+42.0405+7 2.409+7 2.409+7 120.0059.90

SECT LATCABL TUB962.11147580.0171760.8171760.8 35.00017.40

SECT GIRDMN PRI4.34+41.299+112.995+101.125+10 2700.0 2150.01.7+42.6+4

SECT GIRDSI PRI9870.04.400+104.964+103.564+10 1680.0 2150.03.9+35.9+3

SECT GIRDIN PRI1.88+47.000+101.497+114.160+10 1680.0 2150.07.6+31.1+4

Figure G.11: SECT lines detailing section properties in the SACS input file.

148



G.5. BRIDGE MODEL

GRUP PY1 PYL1 20.0020.0046.00 1 1.001.00 0.6380

GRUP PY2 PYL2 20.0020.0046.00 1 1.001.00 0.7913

GRUP PY3 PYL3 20.0020.0046.00 1 1.001.00 0.9246

GRUP PY4 PYL4 20.0020.0046.00 1 1.001.00 1.1121

GRUP PO1 PONT1 20.0020.0046.00 1 1.001.00

GRUP PO2 PONT2 20.0020.0046.00 1 1.001.00

GRUP PO3 PONT3 20.0020.0046.00 1 1.001.00

GRUP PO4 PONT4 20.0020.0046.00 1 1.001.00

GRUP CAL LATCABL T19.298.000186.0 1 1.001.00 0.900 7.8500

GRUP CAM MAINCAB T19.358.000186.0 1 1.001.00 0.900 7.8500

GRUP GRM GIRDMN 21.508.077 46.0 1 1.001.00 9.5829

GRUP GRI GIRDIN 21.508.077 46.0 1 1.001.00 11.928

GRUP GRS GIRDSI 21.508.077 46.0 1 1.001.00 15.595

Figure G.12: Member group lines in a SACS input file.

For the main cable a MEMB2 line is added, in which the member tension is assigned in kN. The final
0.9 value inputs the shear area modifier for a cable, as mentioned in chapter G.1.

MEMBER P210P211 PY4 000110000000

MEMBER P211P212 PO4 N 2.5 3000.

MEMBER P212P213 PO4 N 0.475 3000.

MEMBER P213P214 PO4 N 0.475 3000.

MEMBER P214P215 PO4 N 0.475 3000.

MEMBER P215P216 PO4 N 0.475 3000.

MEMBER P216P217 PO4 N 2.095 3000.

MEMBER P217P218 PO4 N 2.5 3000.

MEMBER M0 M1 A 0 000000000000 0.9

MEMB2 931165.

MEMBER G0 P0 GRS 000000000000

MEMBER P0 P10 GRS 000000000000

MEMBER P10 P20 GRS 000000000000

MEMBER P20 P30 GRS 000000000000

MEMBER P30 P40 GRS 000000000000

Figure G.13: Member lines in a SACS input file.

Figure G.14 displays the lines creating the joints for pontoon number 22 and a section of one of the
main cables. The joints names are the first input on these lines, followed by the integer values of their x-,
y- and z-coordinates in m. The next three values are the decimal values of the joint location. The final
input is the joint fixity. The order for the joints fixity is the following: displacement x - displacement
y - displacement z - rotation x - rotation y - rotation z. A 2 or 0 value means the degree of freedom
is not fixed, the 2 value instructs SACS to consider this degree of freedom in dynamic analysis. A 1
value fixes the degree of freedom for this particular joint, or, when the joint line is followed by a line
ending with ELASTI, assigns the stiffness specified on the ELASTI line to this degree of freedom. The
displayed portion of the input file instructs the program to consider the top of pontoon number 22’s pylon
for dynamic analysis. It also instructs SACS to fix the first node of the main cable to the shore and to
consider its joints for dynamic analysis. Finally, it creates the rotational stiffness and buoyancy stiffness
of the pontoon in the joint located at the pontoon center of buoyancy and center of rotation.

Figure G.15 displays the LOAD input lines assigning a unit distributed load of 1 kN to the submerged
part of pontoon 21, in the x-direction. This load line is called by the dynamic response program to model
the distributed current load calculated using Ansys Fluent. Reference is made to appendix J. The lines
start with the direction in which the load is acting, which in this case is the global direction X. Next the
member on which the load acts is set. Then the length from the start of the member until the start of
the load is input in m, if applicable. After this the starting value for the load, which in this case acts in
the positive x-direction, is prescribed in kN. Next the length along the member on which the load acts
is applied in m, if applicable. If this is not set explicitly, the load will act until the end of the member.
Following this the end value of the load is input in kN. The GLOB UNIF specify that the load inputs
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G.5. BRIDGE MODEL

JOINT P210 3101. 3590. 7. 07. 63. 37. 222000

JOINT P211 3101. 3590. 4. 07. 63. 29.

JOINT P212 3101. 3590. 3. 07. 63. 29.

JOINT P213 3101. 3590. -20. 07. 63. 222000

JOINT P214 3101. 3590. -36. 07. 63. -56. 001000

JOINT P214 7038.29 ELASTI

JOINT P215 3101. 3590. -42. 07. 63. -16. 000110

JOINT P215 3.246+63.246+6 0.1 ELASTI

JOINT P216 3101. 3590. -56. 07. 63. -28.

JOINT P217 3101. 3590. -70. 07. 63. -58.

JOINT P218 3101. 3590. -73. 07. 63. -13.

JOINT M0 0. 0. 0. 111111

JOINT M1 15. 10. -1. 13.636 62.636-81.818 222000

JOINT M2 30. 21. -3. 27.272 25.272-63.636 222000

JOINT M3 45. 31. -5. 40.909 87.909-45.454 222000

JOINT M4 60. 42. -7. 54.545 50.545-27.272 222000

Figure G.14: Joint lines in a SACS input file.

are in the global coordinate system and contain distributed loads.

LOADCNP21X

LOAD X P202P203 3.52 1.0 1.0 GLOB UNIF

LOAD X P203P204 0.0 1.0 1.0 GLOB UNIF

LOAD X P204P205 0.0 1.0 1.0 GLOB UNIF

LOAD X P205P206 0.0 1.0 1.0 GLOB UNIF

LOAD X P206P207 0.0 1.0 1.0 GLOB UNIF

LOAD X P207P208 0.0 1.0 1.0 GLOB UNIF

Figure G.15: Load lines in a SACS input file.

G.5.4.2 Graphical presentation

The input file described in the previous subsection produces the visual model in SACS depicted in Figures
G.16 and G.17. As can be seen in these Figures, the resolution chosen for the cable segments is 4.

Figure G.16: Visual presentation of the bridge model in SACS.

Figure G.17: Side view of the bridge model in SACS.
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G.6. WAVES AND CURRENT

G.6 Waves and current

This section describes the modelling of waves as they are described in section B.1 in appendix B. It also
provides verification of the loads generated by SACS with the theory presented in section B.1. As a quick
reference, the wave properties described in appendix B are shown in Table G.12.

Parameter
Wind waves

North side Mid-fjord South side

Significant wave
height

Hs [m] 2.22 2.34 2.13

Spectral top pe-
riod

Tp [s] 4.6 4.8 4.8

Direction [ ◦] 180 240 270

Maximum single
wave height

Hmax [m] 4.55 4.79 4.36

Wave length λ [m] 33 36 36

Wave theory Stokes 3rd Stokes 3rd Stokes 3rd

Table G.12: Wave characteristics at the bridge location.

G.6.1 Modelling

SACS employs a separate module to calculate wave loads, called SeaState. The Seastate module accept
an input file in a similar style as the SACS input file and is usually (in offshore situations) the location
where the loading is added to the model.

LOADCNI180

CURR

CURR 1183. 0.39 90.

CURR 1228. 0.48 90.

CURR 1248. 1.27 90.

MEMOV P2 P3 0.330.33

MEMOV P3 P4 0.330.33

MEMOV P4 P5 0.330.33

MEMOV P5 P6 0.330.33

...

WAVE

WAVE STOK 4.55 4.6 210. D 0. 10.0 36AL

DEAD

DEAD -Z

END

Figure G.18: Different inputs in a Seastate load case.

Figure G.18 displays the load case with an inward current and the critical wave case in the direction
with an angle of 180◦ relative to the North. The first lines, marked ’CURR’, input the current velocity
profile. This is done from the bottom up, with the first values representing the elevation above the ocean
floor (or mudline). The second value is the current velocity in m s−1 and the third the angle relative to
the y-axis. The following lines, marked ’MEMOV’ provide the opportunity to locally override member
properties for this single load case. This is an important feature for this study, since it allows to locally
override the pontoon CM , or coefficient of inertia, values for the different waves to be used by SeaState
in the Morison equation. Reference is made to section B.1. In this case, the coefficient of inertia for both
the local member y- and x-direction is set to 0.33. Then the line marked ’WAVE’ inputs the wave into
SeaState. The first value, tells SeaState which wave theory should be used. In this case SeaState should
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G.6. WAVES AND CURRENT

employ the 5th order Stokes theory. The second value inputs the significant wave height Hs and the
third the wave period Tp. The following value tells the program in which direction, measured in degrees
relative to the y-axis, the wave propagates. The ’D’ value tells the program that the next two values are
input in degrees of angular motion. The ’0.’ value tells SeaState to start the wave at its 0◦ and the last
values tells it to model the loading in 36 increments of 10◦ out of the 360◦ that make up one wave period
and to output loads at all increments. Finally, the lines marked ’DEAD’ tell SeaState to include the
dead weight of all structural elements in the load case. The ’DEAD’ option calculates the member weight
based on the densities and section properties defined in the SACS input file. The dead calculation also
takes into account buoyancy effects for all members which aren’t marked as ’flooded’ and thus displace
water, leading to upward loads.

G.6.2 Verification

To verify the wave and current loads on the pontoons, two calculations are performed. Both are performed
modelling loads on pontoon 1, which is fixed at the top and bottom for the purposes of this calculation.
The SACS input file detailing this situation is shown in Figure G.19.

OPTIONS MN SD 1 1 PTPT PT PTPTPTMXPT

SECT

SECT PONT4 TUB7.07+61.060+107.375+117.375+11 3000.0150.0

GRUP

GRUP PO4 PONT4 3000. 20.0020.0046.00 1 1.001.00

MEMBER

MEMBER P1 P2 PO4 N 2.5 3000.

MEMBER P2 P3 PO4 N 0.475 3000.

MEMBER P3 P4 PO4 N 0.475 3000.

MEMBER P4 P5 PO4 N 0.475 3000.

MEMBER P5 P6 PO4 N 0.475 3000.

MEMBER P6 P7 PO4 N 2.095 3000.

MEMBER P7 P8 PO4 N 2.5 3000.

JOINT

JOINT P1 734. 116. 4. 1. 89. 29. 111111

JOINT P2 734. 116. 3. 1. 89. 29.

JOINT P3 734. 116. -20. 1. 89.

JOINT P4 734. 116. -36. 1. 89. -56.

JOINT P5 734. 116. -42. 1. 89. -16.

JOINT P6 734. 116. -56. 1. 89. -28.

JOINT P7 734. 116. -70. 1. 89. -58.

JOINT P8 734. 116. -73. 1. 89. -13. 111111

END

Figure G.19: Pontoon 1 input model for the wave and current load verification.

This pontoon is then loaded using Seastate. First with the wave case with an angle of 180◦ relative
to the North, the SeaState input detailing this load is shown in Figure G.20.

The result of this analysis is a collection of 72 wave load cases, in which distributed loads are modelled
on the pontoon. This is displayed visually in Figure G.21 for step 15 out of 72, along with the distributed
load calculated using the method detailed in section B.1. As is visible in the figure, the shape of the
distributed loading agrees with the theoretical calculation. To determine if the loading values agree, the
distributed load calculated by SACS in the x- and y-direction is transformed into a load in the wave
direction, as in the theoretical calculation. Then both are integrated along the vertical axis to determine
the total load on the pontoon. The results of this integration is shown in Figure G.22 for a single wave
period.

As can be seen in Figure G.22, the results are relatively similar, though there are remarkable dif-
ferences. One of the causes is that the theoretical calculation is performed using the 2nd order Stokes
theoretical application, as opposed to the 5th order SACS employs, for the velocity and acceleration
terms, leading to a slightly different wave shape. The wave shape in the 5th order specification is more
defined and thus more accurate, although the difference is small considering the large water depth at the
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G.6. WAVES AND CURRENT

LDOPT NF+Z 1.015 -1258. 1258.GLOBMN

FILE B

LOAD

LOADCNI180

WAVE

WAVE STOK 4.55 4.6 210. D 0. 5.0 72AL

MEMOV P2 P3 0.330.33

MEMOV P3 P4 0.330.33

MEMOV P4 P5 0.330.33

MEMOV P5 P6 0.330.33

MEMOV P6 P7 0.330.33

MEMOV P7 P8 0.330.33

END

Figure G.20: SeaState input file for the wave case with an angle of 180◦ relative to the North, loading
pontoon 1.

Figure G.21: Distributed load calculated by SACS in the x- and y-direction along with the distributed
load from the theoretical calculation.

bridge location. Thus this does not explain all differences, and the most likely explanation for the dif-
ference is that SeaState modifies the surface elevation while the wave loads the pontoon, thus increasing
and decreasing the loaded area on the pontoon, leading to differences in load shape and amplitude and
a much more accurate representation of reality. On the whole, this calculation verifies the wave loading
on members calculated by SeaState.

For the current loading, the same SACS model is used, with pontoon 1 restrained at the top and
bottom. The inward current profile is applied, as specified in Table G.13.

The inward current is applied in the SeaState input file as shown in Figure G.23.
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G.6. WAVES AND CURRENT

Figure G.22: Distributed load calculated by SACS in the x- and y-direction along with the distributed
load from the theoretical calculation.

Inwards - 60◦

Depth Velocity

10 m 1.27 m s−1

30 m 0.48 m s−1

70 m 0.39 m s−1

Table G.13: Inward current profile.

LDOPT NF+Z 1.015 -1258. 1258.GLOBMN

FILE B

LOAD

LOADCNCURI

CURR

CURR 1183. 0.39 0.

CURR 1228. 0.48 0.

CURR 1248. 1.27 0.

END

Figure G.23: SeaState input file for the inward current case.

The resulting shape of the distributed current load on pontoon 1, calculated by SACS and using the
theory presented in section B.2 is shown in Figure G.24. It is visible that the shape of both loads are very
similar, although SeaState linearises between the calculated distributed loads instead of between current
velocities, resulting in straight lines in the distributed load profile.

154



G.6. WAVES AND CURRENT

Figure G.24: Distributed current load calculated by SACS along with the distributed load from the
theoretical calculation.

The calculated values of both methods are compared in Figure G.25. The comparison clearly verifies
the values calculated by SeaState with the values calculated according to the theory.

Figure G.25: Distributed current load calculated by SACS along with the distributed load from the
theoretical calculation.
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Appendix H

SACS dynamic analysis

This appendix contains information and insights into the methods employed by the SACS software package
for different dynamic analyses.

H.1 Eigenfrequency analysis

Eigenfrequency, or modal, analysis calculates a structures eigen- or natural frequencies of vibration and
shape the structure takes once vibrating in this frequency. This section shows how the Dynpac tool
in the SACS software package performs this analysis and which design choices were made in relation
to this analysis for this study. It is performed in Dynpac by first calculating the structural stiffness
matrix through a static calculation of the model. Then this stiffness matrix is reduced, the mass matrix
is generated and reduced, too and finally the eigenfrequencies and modal shapes, or eigenvectors, are
calculated for the master degrees of freedom and expanded for the slave degrees of freedom. SACS allows
the user to set master degrees of freedom and slave degrees of freedom manually. This is done in the
SACS input file, where per joint the user can set a degree of freedom to be retained for dynamic analysis
(become a master dof). This is displayed in Figure H.1, where the top and cable joint of pontoon 22 are
assigned translational master degrees of freedom, as well all main- and lateral cable joints (except for
the support joints, such as ’M0’). The reason not all free degrees of freedom in the model are assigned
a master degree of freedom is due the fact that Dynpac can only allow up to 3000 master degrees of
freedom in a single model. Therefore it has been chosen to retain the tops of the pontoon pylons and
cable joints as master joints, since the pontoons only need two master joints to display their rigid body
motion and there is no need for more. The cable joints translational degrees of freedom are all assigned
master status, because, as evidenced by the verification calculation in section G.1.1.2, the more joints with
master degrees of freedom used in a cable model, the closer the resulting mode shapes and frequencies
come to the theoretical results and therefore, presumably, reality.

JOINT P210 3101. 3590. 7. 07. 63. 37. 222000

JOINT P211 3101. 3590. 4. 07. 63. 29.

JOINT P212 3101. 3590. 3. 07. 63. 29.

JOINT P213 3101. 3590. -20. 07. 63. 222000

...

JOINT M0 0. 0. 0. 111111

JOINT M1 15. 10. -1. 13.636 62.636-81.818 222000

JOINT M2 30. 21. -3. 27.272 25.272-63.636 222000

...

JOINT L0 682. 116. -20. 5. 89. 222000

JOINT L1 630. 116. -20. 9. 89. 222000

JOINT L2 579. 116. -20. 3. 89. 222000

Figure H.1: Joint lines with translational master degrees of freedom assigned.
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H.2. STEADY STATE ANALYSIS

H.1.1 Stiffness matrix reduction

Once the structural stiffness matrix is known, a Guyan reduction is performed to reduce the structural
stiffness matrix [HH88]. This reduction uses the definition of slave degrees of freedom, that no external
forces are directly applied to them, to reduce the number of equations that need to be solved. By
performing this reduction, the relation between the applied force and relating displacement is also reduced
to only forces applied to master dofs, stiffness matrix entries related to master dofs and displacements of
master degrees of freedom. After this system of equations has been solved, the slave degrees of freedom
can be calculated from the results obtained for the master degrees of freedom.

H.1.2 Mass matrix generation

Dynpac can generate a mass matrix based on two methods; the lumped mass method and the consistent
mass method. The lumped mass method concentrates the mass calculated by integration along the
element axis at the joints, creating a fully diagonal mass matrix. This method is quicker than the
consistent mass method, but it is not recommended in cases where for instance fluid added mass is added
to a slender element. This is because the element mass for a slender element including fluid added mass
is not the same in each direction, since there is additional fluid mass acting normal to the element. Since
the bridge design includes many slender elements immersed in fluid, such as all cables used for the cable
system, it has been decided not to use the lumped mass approach. Therefore the mass matrix generation
is performed using the consistent mass approach, which is implemented in Dynpac by first integrating
the expression for the kinetic energy along the element axis. Then the resulting expression for the kinetic
energy is differentiated first with respect to the element joint degree of freedom velocities and then with
respect to time, resulting in an expression of Force. This resulting expression contains the consistent mass
matrix, and the joint degree of freedom accelerations. The consistent mass matrix contains off-diagonal
elements, coupling all degrees of freedom. Once the mass matrix has been generated, it is reduced using
a Guyan reduction, just as the stiffness matrix.

H.1.3 Result calculation

The reduced system of equations created by the Guyan reductions is then solved for the eigenfrequencies
and mode shapes using a QR algorithm, which employs QR decomposition and to solve for the eigenvalues
(eigenfrequencies) and eigenvectors (mode shapes) [Apo09]. The results are then expanded to obtain
results for the slave degrees of freedom, to facilitate the calculation of modal reactions and modal internal
loads.

H.2 Steady state analysis

Steady state analysis is the analysis of a structure under a constant periodic load. In this analysis it is
assumed that the frequency of vibration of the structure and the frequency of the periodic load align after
a sufficient time span. SACS can calculate steady responses using two different program modules; the
dynamic response module for general periodic vibrations and the wave response module, which specifically
calculates wave generated steady state vibrations. The steady state analysis performed in this thesis is
the analysis of the six critical load cases defined in section B.5, comprised of critical wave- and in- or
outgoing current loading. Therefore the wave response program is used for this analysis.

The wave response program calculates the steady state response by first assuming that an infinite
train of the periodic wave has passed and the system vibrates in the same frequency as the wave. Since the
structure is immersed in fluid, it is subjected to hydrodynamic forcing, both by the wave on the structure-
and by the fluid displaced by the displaced structure due to wave forcing. This calculation is highly non-
linear, as the force the wave exerts on the structure is dependant upon the displacement and velocity of
the structure, as is the displacement and velocity of the structure dependant upon both the wave forcing
and the fluid reaction on the displacing structure. Therefore the wave response program employs an
iterative procedure to calculate the hydrodynamic forcing (which includes any hydrodynamic damping).
The procedure starts by assuming the structure is at rest and generating the distributed wave loading
for one full cycle of the wave in load steps using the Morison equation. The equivalent joint forces are
calculated using static equilibrium. These equivalent joint forces are transformed into modal generalized
forces by multiplying them with the modal eigenvectors. Then each mode is considered individually and
the generalized force is decomposed into Fourier components, which are sinusoidal functions with varying
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H.3. TIME HISTORY ANALYSIS

phase angles. The amount of Fourier components is determined by setting the Fourer series convergence
tolerance, which is a percentage root mean squared error over the full range of outputs. After this the
modal response is calculated per Fourier component, which is then linearly combined into a total modal
response. By summing the response of all modes, the motion of the entire structure is calculated. Then
this motion is combined with the wave case and fluid the structure is immersed in to calculate a new set
of distributed wave loads per wave step and the iterative procedure restarts. The process is ended when
the generalized forces of the present- and previous load step are within the specified tolerance.

The tolerance for the generalized forces are set as a percentage root mean squared error and is set to
1 % in this thesis.

Because the wave response program takes into account the hydrodynamic forcing due to displacing
structure, there is no need for a separate calculation of the fluid damping on the structure.

H.3 Time history analysis

In time history analysis any type of forcing can be applied to a structure, after which a time history
of the structure response is calculated. Time history analyses are applied in this thesis in the vortex
induced vibration analysis, for which reference is made to appendix J. Time history analysis is possible
in SACS, using either the dynamic response or the wave response module. The dynamic response module
accepts any time history input loading, while the wave response module works exclusively with wave
time histories. In this study non-wave loading is applied to the pontoons in the time history analyses,
therefore the dynamic response program is used.

The force time history can be applied in a Dynamic Response input file, of which an example is shown
in Figure H.2.

DROPT VIBR 500 +Z-1200.

SDAMP 4.300

FDAMP PCNL

LOAD

FVIB THIS LINE NFD LN JTD

Figure H.2: Example dynamic response input file.

In this file the ’SDAMP’ line sets the structural damping factor to 4.3 % of the critical damping across
all modes of vibration. The ’FDAMP’ line set to ’PCNL’ informs the module that it has to calculate the
non-linear fluid damping based on the structure motion, which is described in more detail in section H.2.

The dynamic response program operates by first transforming the force time history input by the user
and if applicable, the fluid response, into modal generalized forces by multiplying them with the modal
eigenvectors. The input is interpolated to make sure the generalized force is continuous throughout the
complete time history. This is needed, since the solution calculation utilizes a variable time stepping
integration procedure to speed up computation and maintain error control throughout the solution.

Figure H.3 shows an example of a portion of time history input in a Dynamic Response input file. In
this example, the time history is set in terms of the distributed loads ’P1X’ and ’P1Y’ set in the SACS
input file (for more on this, see section G.5.4.1) and timesteps of 7.4 s.

...

LOADC P1X0.00015.4755

LOADC P1Y0.000-0.1384

LOADC P1X7.40766.0743

LOADC P1Y7.4070.45331

...

Figure H.3: Example portion of a force time history input.
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Appendix I

Pontoon decoupling

This appendix contains the calculations and analyses performed to determine the stiffness and potential
frequency dependence of the coupling springs used to model the constraints the rest of the bridge structure
imposes upon the pontoons. These coupling springs are to be used in part of the vortex induced vibration
analysis, for which reference is made to appendix J. Figure I.1 contains a mechanical model of a pontoon
with attached coupling springs. A model such as this allows an analysis to be performed on a single
pontoon, without neglecting the influence the rest of the bridge structure has on the analysis performed.
In the model displayed, the pontoon is expected to behave as a rigid body. Therefore, the coupling
springs only have to be attached in one location on the pontoon, as the rest of the pontoon body will
move rigidly with respect to this location. This means that the movement of any point on the pontoon
can be calculated from the movement of the point where the coupling springs attach. The location where
the springs are modelled are chosen to be at the water level.

Figure I.1: Mechanical model decoupled pontoon.
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I.1 Methodology

The methodology to determine the static- and frequency dependent stiffness of the coupling springs is
described in this section and an overview is depicted in Figure I.2.

Figure I.2: Workflow to determine the decoupling spring stiffness.

The starting point is the static equilibrium situation of the bridge, with the properties as calculated in
appendix F. Then, using the Dynpac module of the SACS software package, for which reference is made
to section H.1, the mode shapes and eigenfrequencies are calculated. Next, each degree of freedom for
which we are calculating the stiffness is loaded with a numerical impact force, for which the properties
are shown in Table I.1 and a visual presentation can be found in Figures I.3. As can be seen in Figure
I.1, the numerical impacts modelled create a load amplitude that is the same across all frequencies that
may be excited. This means that the energy distribution of the load is the same across all frequencies,
which, in theory, should lead to a frequency response spectrum in which the modal frequencies are clearly
visible.

Degrees of freedom Loading Duration

ux, uy, uz 100 ·103 kN 1 s

rx, ry, rz 1 ·106 kN m 1 s

Table I.1: Impact load and moment properties.

Figure I.3: Impact load (left) and moment (right) plotted in time (top) and their amplitude versus
frequency (bottom).

Afer this, the Dynamic Response module is used to calculate the displacement time history response
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over a period of 10 000 s. For more information on this calculation module, reference is made to section
H.3.

Both the displacement time history and the impact load are transformed to the frequency domain
using the Fast Fourier Transform algorithm, which is a numerical implementation of the Fourier transform
[CT65]. This yields a collection of complex numbers, which are the Fourier components of the signal at
the corresponding frequency. Taking the absolute value of the Fourier components leads to the amplitude
of the signal at the corresponding frequency. This is shown visually in Figure I.3, in which the absolute
value of the Fourier components versus frequency is plotted in the lower two graphs. This step yields the
amplitude frequency response of both the exciting load, F (ω), and the resulting displacement, U(ω) for
each degree of freedom.

Subsequently, the frequency dependant stiffness is calculated for each of the six impact loads and
degrees of freedom according to Equation I.1, leading to a frequency dependent stiffness matrix as shown
in Equation I.2. A visual representation of the frequency dependent stiffness matrix is given in Figure
I.4.

Ki,j(ω) =
Fj(ω)

Ui(ω)
(I.1)

In which;

Ki,j(ω) is the frequency dependent stiffness at frequency ω and degree of freedom i due to
a load at degree of freedom j

Fj(ω) is load amplitude at frequency ω and degree of freedom j

Ui(ω) is displacement amplitude at frequency ω and degree of freedom i

K(ω) =


K1,1(ω) K1,2(ω) K1,3(ω) . . . K1,6(ω)
K2,1(ω) K2,2(ω) K2,3(ω) . . . K2,6(ω)

...
...

...
. . .

...
K6,1(ω) K6,2(ω) K6,3(ω) . . . K6,6(ω)

 (I.2)

Figure I.4: Visual representation of the frequency dependent stiffness matrix for joint P1.
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I.2 Results

The results of this analysis clearly show the modal eigenfrequencies of the bridge model returning in
the displacement amplitude response and the frequency dependent stiffness. To illustrate this, Figure
I.5 displays the load amplitude versus frequency, the displacement amplitude versus frequency and the
resulting frequency dependent stiffness for joint ’P1’ degree of freedom ux loaded by an impact load at that
same degree of freedom. This result illustrates that the bridge structure has a very high stiffness when
responding to loads at frequencies away from its own modal eigenfrequencies- and a very low stiffness
in response to loads at its modal eigenfrequencies. This is visible because the impact load provides the
same energy to all frequencies and the response varies across the frequencies.

Figure I.5: Impact load amplitude (top left) and displacement amplitude (bottom left) versus frequency
and frequency dependant stiffness (right) for joint ’P1’ dof ux.

I.3 Significance

The results obtained from this analysis in terms of the frequency dependent stiffness can be used as spring
stiffness for the pontoon coupling springs. In case the choice is made to only take into account the static
stiffness, and thus leave out the frequency dependent portion, the value found at a frequency of 0 Hz can
be used, as this is the static stiffness. To use these results to model the frequency dependence of the
structures’ reaction as well, additional operations are necessary.

The results of this calculation have been used in a trial run of a coupled vortex induced vibrations
analysis. Details can be found in section J.3.6.
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Appendix J

Vortex induced vibrations

This chapter describes the vortex induced vibration analysis performed in this thesis. It starts with a
short description of the phenomenon of vortex induced vibrations, after which an overview of the follow
research method is shown. Then the research itself, results and conclusions are presented.

J.1 Theory

The theory behind the phenomenon of vortex induced vibrations is described here. As a current flows
past an object, vortex shedding takes place in the area behind the object, in terms of the flow direction.
For a circular object, vortices are formed on both left and right side of the cylinder, when looking along
the flow direction, and they are shed one side after the other. The frequency with which this occurs is
the shedding frequency. The shedding of vortices causes the fluid to flow faster along one side of the
cylinder, creating a large cross-flow force on one side than on the other. This is called a cross-flow lift
force. Figure J.1 depicts vortex shedding by showing a contour plot of the magnitude of the velocity of
the flow past a cylindrical object. In areas where vortices are found, the magnitude of the velocity is low
(coloured in blue). The areas with a high magnitude of velocity are coloured in red. It is visible that
there is an inequality in the velocity magnitude between the sides of the cylinder and the contact area of
this higher velocity zone with the cylinder. This inequality causes the cross-flow forcing.

Figure J.1: Magnitude of fluid flow velocity around a cylinder.

Vortex induced vibrations are caused by the cross-flow forcing and tend to be problematic when the
frequency of the cross-flow loading are around modal eigenfrequencies of the loaded structure. The range
of frequencies for which the shedding frequency can be considered too close to the modal eigenfrequencies
is larger than is usual in structural dynamics. This is because the fluid flow past the object is influenced by
the motion of the object, therefore the vortex shedding frequency is often shifted closer to the structures
frequency of vibration. Since structures tend to vibrate in their modal eigenfrequencies, this leads to a
wide range of vortex shedding frequencies shifting to modal eigenfrequencies, causing larger structural
excitation. In this thesis, the fluid flow around the pontoons, including vortices, is modelled using the
Ansys Fluent program. This program utilizes computational fluid dynamics to calculate fluid flow. More
information on the theory behind the functioning of this software is found in section J.1.1.
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J.1.1 Ansys Fluent turbulent flow modelling

This subsection deals with the theory behind the modelling of fluid flow by the Ansys Fluent program.

J.1.1.1 Constitutive equations

Ansys Fluent models fluent flows based on the conservation of mass and momentum, according to the
Navier-Stokes equations, shown in Equations J.1 and J.2.

∇ · (ρ~v) = Sm (J.1)

In which;

ρ is the fluid mass density

~v is the fluid velocity

Sm is the constant mass of the observed volume

∂

∂t
(ρ~v) +∇ · (ρ~v~v) = −∇p+∇ ·

(
τ
)

+ ρ~g + ~F (J.2)

In which;

ρ is the fluid mass density

~v is the fluid velocity

p is the fluid static pressure

τ is the fluid stress tensor according to Equation J.3

ρ~g are the gravitational forces

~F are external forces on the fluid body

τ = µ

((
∇~v +∇~vT

)
− 2

3
∇ · ~vI

)
(J.3)

In which;

τ is the fluid stress tensor

µ is the molecular viscosity

~v is the fluid velocity

I is the unit identity tensor

For modelling turbulent flows, different models are available with ranges of validity for different flow-
and structure models and a higher- or lower accuracy in different regions of the models. For this thesis,
the choice was made to model the fluid flow using the two-transport-equation k-°model with shear stress
transport. This model allows for an accurate near-wall treatment and high accuracy boundary layer
simulations and switches to a different transport equation for fluid flow further from boundaries [Men94].
Since the goal of the analysis is to determine the cross-flow force exerted on the pontoon walls, high
modelling accuracy in this area of the model is needed and this model fits the needs of the research. The
k-°-SST model used in this thesis makes use of Reynold’s averaging, in which the (exact) solution variables
in the Navier-Stokes equations are decomposed into mean (time-averaged) and fluctuating components.
This is shown for velocity components in Equation J.4. This is also performed for the fluid pressure and
other scalar quantities, as shown in Equation J.5.

ui = ui + u′i, i = 1, 2, 3 (J.4)

In which;

ui are the fluid velocity components
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ui are the mean fluid velocity components

u′i are the fluctuating fluid velocity components

φ = φ+ φ′ (J.5)

In which;

φ is the fluid pressure, or a different scalar quantity

φ is the mean fluid pressure, or different scalar quantity

φ′ is the fluctuating fluid pressure, or different scalar quantity

Substituting these into Equations J.1 and J.2 yields the expressions shown in Equations J.6 and J.7.
These expressions are the Reynolds-averaged-Navier-Stokes (RANS) equations and include additional
terms that represent the effects of turbulence, the Reynold’s stresses. These Reynold’s stresses,

(
−ρu′iu′j

)
must be modelled for the expressions to be closed.

∂

∂xi
(ρui) = 0 (J.6)

In which;

∂
∂xi

is the partial derivative in direction xi

ui is the mean (time-averaged) fluid velocity component in direction xi

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = − ∂p

∂xi
+

∂

∂xj

(
µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂ul
∂xl

))
+

∂

∂xj

(
−ρu′iu′j

)
(J.7)

In which;

ρ is the fluid mass density

∂
∂xi

is the partial derivative in direction xi

ui is the mean (time-averaged) fluid velocity component in direction xi

p is the fluid static pressure

µ is the molecular viscosity

u′i is the fluctuation fluid velocity component in direction xi

To model the turbulent fluid flows the k-°-SST model rewrites and appends the RANS-equations into
an expression for the transport of the fluid’s turbulent kinetic energy and one for the specific turbulent
dissipation rate. These expression are shown in Equations J.8 and J.9.

Dρk

Dt
= τij

∂ui
∂xj
− β∗ρωk +

∂

∂xj

(
(µ+ σkµt)

∂k

∂xj

)
(J.8)

In which;

D
Dt is the Lagrangian derivative: ∂/∂t+ ui∂/∂xi

ρ is the fluid mass density

k is the fluid’s turbulent kinetic energy

τij is the turbulent stress tensor, −ρu′iu′j , according to Equation J.10

ui is the mean (time-averaged) fluid velocity component in direction xi

β∗ is a closure coefficient
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ω is the specific turbulent dissipation rate

µ is the molecular viscosity of the fluid

σk is a diffusion constant

µt is the turbulent eddy viscosity, according to Equation J.11

Dρω

Dt
=

γ

νt
τij

∂ui
∂xj
− β∗ρω2 +

∂

∂xj

(
(µ+ σωµt)

∂ω

∂xj

)
+ 2ρ(1− F1)σω2

1

ω

∂k

∂xj

∂ω

∂xj
(J.9)

In which;

D
Dt is the Lagrangian derivative: ∂/∂t+ ui∂/∂xi

ρ is the fluid mass density

ω is the specific turbulent dissipation rate

γ is a closure coefficient

νt is the kinematic turbulent eddy viscosity, according to Equation J.11

τij is the turbulent stress tensor, −ρu′iu′j , according to Equation J.10

ui is the mean (time-averaged) fluid velocity component in direction xi

β∗ is a closure coefficient

µ is the molecular viscosity

σω is a diffusion constant

µt is the turbulent eddy viscosity, according to Equation J.11

F1 is a blending function

σω2 is a diffusion constant

k is the fluid’s turbulent kinetic energy

τij = µt

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
− 2

3
ρkδij (J.10)

In which;

τij is the turbulent stress tensor, −ρu′iu′j
µt is the turbulent eddy viscosity, according to Equation J.11

ui is the mean (time-averaged) fluid velocity component in direction xi

δij is the Kronecker delta

ρ is the fluid mass density

k is the fluid’s turbulent kinetic energy

νt =
µt
ρ

=
k

ω
(J.11)

In which;

νt is the kinematic turbulent eddy viscosity

µt is the turbulent eddy viscosity

ρ is the fluid mass density

k is the fluid’s turbulent kinetic energy

ω is the specific turbulent dissipation rate

These equations provide a closed-form solution to model turbulent fluid flows.
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J.1.1.2 Boundary conditions

The pontoon wall is modelled as a no-slip wall boundary. To incorporate this in Ansys Fluent, the software
takes the following boundary conditions into account. The distance from a boundary or interface is often
indicated using the y-variable in literature and this convention will be used here as well.

ûi = 0, k = 0 at y = 0 (J.12)

In which;

ûi is fluid velocity component in direction xi, relative to the velocity of the boundary in
direction xi

k is the fluid’s turbulent kinetic energy

ω = 10
6ν

β1 (∆y)
2 (J.13)

In which;

ω is the specific turbulent dissipation rate

ν is the fluid’s kinematic viscosity

β1 is a closure coefficient

∆y is the distance to the next point away from the wall

J.1.1.3 Moving boundaries in Fluent

There are multiple methods to implement moving boundaries in Fluent. First, a short description of each
method is given.

The first method is called dynamic meshing. This method moves the boundary ’through’ the mesh
and re-meshes and deforms the mesh to accommodate this motion. This method allows the investigation
of fluid behaviour between multiple boundaries in different states of movement and creates a visual
representation of the movement of the boundary. Figure J.2 shows an example mesh of a pontoon in a
fluid volume in un-deformed (left) and deformed (right) state, when the dynamic meshing method is used.
To illustrate the effect of dynamic meshing, Figure J.3 uses colour-coding to show the (approximate) cell
mesh velocity caused by the re-meshing on the left and the fluid velocity relative to the pontoon boundary
on the right. One of the advantages of this method, is that it is possible to assign dynamic properties
to the moving boundary, allowing for the immediate calculation of motion of the object and resulting
disturbance in fluid flow. Due to the nature of the dynamic mesh, it immediately creates an animation
of the corresponding pontoon motion and fluid flow.

The second method is called the sliding mesh method. This method moves the entire mesh together
with the boundary that is moved. Figure J.4 shows this visually. For the case studied in this thesis,
this approach is not correct. This is because the entire fluid volume is given a velocity, moving with the
pontoon. Because of this, the relative velocity of the volume in relation to the pontoon is zero, causing
the calculated load on the pontoon to be the same as for a stationary pontoon. This is shown visually in
Figure J.5, which uses colour-coding to show the mesh velocity on the left and the fluid velocity relative
to the pontoon boundary on the right.

The third method, the one used in this thesis, assigns motion to a boundary relative to the surrounding
fluid volume, without disturbing the mesh. This method will be called the ’boundary condition’ method
in this text. The method is shown visually in Figure J.6, in which it is clearly shown that the mesh is
undisturbed. To illustrate the similarity in the effective physical models created using this method and
the dynamic meshing method, Figure J.7 uses colour-coding to show the mesh velocity and fluid velocity
relative to the pontoon boundary for the boundary condition method. It is clear that in physical reality,
the methods are equivalent.

On the basis of these descriptions, it is clear that the sliding mesh method can’t be used for the
calculation of the loads on the pontoon. The dynamic meshing method with coupling springs and dy-
namic characteristics seems like the best option to calculate pontoon motion due to the fluid loading.
However, this method is very demanding in terms of computation power. The computer available for
these calculations is the author’s laptop computer, which is not very well suited to the task. To illustrate
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Figure J.2: Undeformed and deformed mesh using the dynamic meshing method.

Figure J.3: Mesh velocity (left) and fluid velocity relative to the pontoon boundary (right), shown using
colour-coding for the dynamic mesh method.

Figure J.4: Undeformed and deformed mesh using the sliding meshing method.

Figure J.5: Mesh velocity (left) and fluid velocity relative to the pontoon boundary (right), shown using
colour-coding for the sliding mesh method.

the, one test calculation in which the mesh was too rough and the chosen time-step too large to produce
useful results, took 24 hours for one modelled hour.

Calculating the fluid loading on stationary pontoons or pontoons with a given velocity is faster, taking
about 2 and a half hours to calculate one modelled hour.

As Figures J.3 and J.7 show, the dynamic meshing method and boundary condition method produce
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Figure J.6: Stationary pontoon (left) and pontoon in motion (right).

Figure J.7: Mesh velocity (left) and fluid velocity relative to the pontoon boundary (right), shown using
colour-coding for the boundary condition method.

physically similar results. This coupled to the fact that the k-°-SST model calculates the boundary
conditions and thus the flow around these boundaries in the same manner for both methods leads to the
conclusion that they are equivalent.

Therefore the choice is made to perform the coupling calculations using two separate programs. The
fluid loading is calculated in Fluent, the resulting motion is calculated using SACS and re-implemented
in Fluent through a pontoon wall velocity boundary condition.
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J.2 Methodology

This section outlines the methodology and different analyses performed to investigate vortex induced
vibrations in the bridge system. The fluid flow analyses are carried out using the program Ansys Fluent
and all structural calculations are performed using SACS. The steps taken in the process are the following;

First the pontoon modal eigenfrequencies are calculated from the model calculated in appendix F
using the method described in section H.1.

Next a ’semi-2D’ analysis is performed on stationary pontoon models and the resulting cross-flow
loading frequencies are compared to the pontoon modal eigenfrequencies. This is detailed further
in section J.3.2.

After this, the influence of pontoon spacing relative to the flow direction on the loading is investi-
gated, as a pontoon being in the wake region where vortices are shed by preceding pontoons may
influence the loading on that pontoon. More on this can be found in section J.3.3.

If the preceding analyses indicate sensitivity to vortex induced vibrations, a 3D analysis is performed
on stationary pontoon models for a more realistic calculation of the cross-flow loading frequencies.
These are then compared to the modal eigenfrequencies of the bridge model, too. This analysis can
be found in section J.3.4.

To verify the calculation model calculating the loads on four representative pontoons out of the
twenty-two, a verification calculation is performed for pontoons with matching diameters and dif-
ferent draughts. This analysis is found in section J.3.5.

If the system is deemed sensitive to vortex induced vibrations based on the preceding analysis, a
coupled analysis is performed. In this coupled analysis the influence of the pontoon motion on the
fluid flow is taken into account, leading to a more accurate depiction of reality and a calculation
of the bridge motion due to vortex induced vibrations. The performed analysis can be found in
section J.3.7. A trial analysis using a different method is found in section J.3.6.

A verification calculation of the model to calculate vortex induced vibrations introduced in this
thesis (the Fluent-SACS model) is performed using a wake oscillator model based on the work
by Ogink and Metrikine (2010) [OM10]. The verification is performed for the motion of a single
pontoon, pontoon 11, in just the cross-flow direction. The theory behind this model and the detailed
set-up of this analysis is found in section J.3.8.

If all analyses show that vortex induced vibrations will be a problem for the bridge design, possible
solutions to the problem are presented. This can be found in section J.3.9

J.3 Research and results

This section contains the set-up, results and conclusions of the analyses performed in the vortex induced
vibration study. First some properties of the analysis set-up that are the same for all analyses, unless
specified otherwise, are presented.

J.3.1 Shared parameters

The parameters described in this section are the same for all analyses, unless specified otherwise. The
inward current velocity profile, detailed in section B.2 is chosen to be used in all analyses as the velocities
observed in the inward current are higher than in the outward current. The velocity profile and the
truncated version of this profile used in 3D analyses are shown in Figure J.8. Table J.1 displays the
values for- and the depth of measurement of the inward current velocity. Figure J.9 shows the inward
current direction in reality and the translation to the bridge model used in this thesis.

The parameters used with the k-°-SST model are displayed in Table J.2, for more information on the
theory behind this model, reference is made to section J.1.1.1.

All simulations run are transient simulations with over a length of, unless specified otherwise, of 3600 s,
with a time-step fixed at 6 s and a maximum of 40 iterations per time step.

The solution method utilized by the Fluent program, the spatial discretization method and order for
the different fluid flow variables and the transient formulation are displayed in Table J.3.
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Figure J.8: Measured values of inward current velocity, the power law profile fitted to these values and
the truncated profile used in 3D VIV analyses.

Inwards - 60◦

Depth Velocity

10 m 1.27 m s−1

30 m 0.48 m s−1

70 m 0.39 m s−1

Table J.1: Inward current measured values.

Figure J.9: Current flow direction in reality (left, Google Maps) and in the bridge model (right).

The solution controls used in Ansys Fluent are shown in Table J.4 and the convergence criteria are
shown in Table J.5.

For an in-depth description of the pontoons, reference is made to section A.4. The important pontoon
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Parameter Value

α∗∞ 1

α∞ 0.52

β∗∞ 0.09

a1 0.31

βi,inner 0.075

βi,outer 0.0828

TKE inner Prandtl number 1.176

TKE outer Prandtl number 1

SDR inner Prandtl number 2

SDR outer Prandtl number 1.168

Production limiter clip factor 10

Table J.2: Parameters used with the k-ω SST model turbulent flow model.

Parameter Value

Pressure-velocity coupling Coupled scheme

Spatial discretization

Gradient Least squares cell based

Pressure Second order

Momentum Second order upwind

Turbulent kinetic energy Second order upwind

Specific dissipation rate Second order upwind

TKE inner Prandtl number 1.176

TKE outer Prandtl number 1

SDR inner Prandtl number 2

SDR outer Prandtl number 1.168

Transient formulation Second order implicit

Table J.3: Solution method, spatial discretization and transient formulation used in the analyses with
Ansys Fluent.

properties for the vortex induced vibration research are shown in Table J.6, since the bridge model is
point rotationally symmetric in the bridges center, only the first eleven pontoons are displayed. The
roughness height of the concrete pontoons is taken 0.001 m [CGZ14]. Figure J.10 shows the diameters of
the pontoons in the bridge model.
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Parameter Value

Flow courant number 200

Explicit relaxation factors

Pressure 1

Momentum 1

Under-relaxation factors

Density 1

Body forces 1

Turbulent kinetic energy 0.8

Specific dissipation rate 0.8

Turbulent viscosity 1

Table J.4: Solution controls used in the Ansys Fluent program.

Parameter Value

Continuity 0.001

x-velocity 0.001

y-velocity 0.001

z-velocity 0.001

k 0.001

ω 0.001

Table J.5: Convergence criteria used in the Ansys Fluent program.

Pontoon
number

Diameter [m] Depth [m]

1 30 -73.13

2 36 -88.80

3 36 -99.83

4 36 -110.5

5 36 -119.4

6 36 -129.5

7 42 -109.8

8 42 -123.0

9 42 -120.6

10 42 -133.1

11 52 -133.5

Table J.6: Pontoon diameter and depth.
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Figure J.10: Pontoon diameter displayed in the bridge model.
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J.3.2 ’Semi-2D’ analysis

The ’semi-2D’ analysis is an analysis in which the flow of a fluid layer of unit height 1 m is modelled
around a stationary cylinder with the same modelled height. The main advantage of this analysis is
the size reduction of the modelled volume and thus a much shorter computation time. Therefore, a
quick indication of the cross-flow loading frequency can be made to compare to the pontoon modal
eigenfrequencies.

J.3.2.1 Set-up

Since a flow volume with a height of 1 m is used, the fluid velocity is taken as constant across the height
of the volume. The value chosen for the velocity is 1.27 m s−1, or the measured value at a depth of 10 m
below the water surface. The analysis is performed for the four different pontoon diameters present in
the model, as shown in Table J.6 and Figure J.10.

An example of the mesh used in these analyses is shown in Figure J.11 and the mesh parameters used
to generate the meshes are shown in Table J.7.

Figure J.11: Mesh for the 2D analysis of a 36m diameter pontoon.

Parameter Value

Element shape Tetrahedrons

Boundary layer

Define by First layer thickness

First layer thickness 0.1 m

Maximum layers 14

Growth rate 1.2

Size controls inner volume

Max element face size 8 m

Size controls outer volume

Max element face size 18 m

Table J.7: Mesh parameters used for the 2D mesh.

J.3.2.2 Results

The results are in terms of the cross-flow force, examples of the output cross flow loading are shown in
Figures J.12 and J.13.
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Figure J.12: Resulting cross flow loading for
a 36m diameter pontoon shown from 200 s to
1200 s.

Figure J.13: Resulting cross flow loading for
a 30m diameter pontoon shown from 2000 s to
3600 s.

Table J.8 shows the first two modal eigenperiods for the first 11 pontoons and the load period results
calculated with Fluent. The loading periods close to one of the two first eigenperiods of the corresponding
pontoon are shown in bold. It should be noted that some loading periods also correspond to eigenperiods
of other pontoons - which may cause problems since the pontoons are connected through the bridge deck.

Pontoon
number

Diameter First eigenpe-
riod [s]

Second eigen-
period [s]

”Semi-2D” VIV
load period [s]

1 30 m 79.167 57.187 78.9

2 36 m 96.987 59.388 89.1

3 36 m 110.123 67.436 89.1

4 36 m 122.226 75.277 89.1

5 36 m 125.271 83.525 89.1

6 36 m 128.881 89.194 89.1

7 42 m 130.616 89.712 104.0

8 42 m 131.444 92.492 104.0

9 42 m 133.908 96.640 104.0

10 42 m 132.461 100.173 104.0

11 52 m 137.071 106.649 136.6

Table J.8: Pontoon eigenfrequencies and ”Semi-2D” VIV load periods.

J.3.2.3 Conclusions

The results clearly show that the load periods for a pontoon in a flow with velocity 1.27 m s−1 are near
one of the two eigenperiods of four pontoons. Since this flow velocity is found in the inward current
velocity profile, there is at least part of the pontoon loaded at the frequency displayed in the Table J.8
and it can be stated that the pontoons appear sensitive to vortex induced vibrations. It may also be
that other load periods are too close to the pontoon eigenperiods due to the pontoon fluid interaction
described in section J.1, but that is not certain until a coupled analysis is performed.
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J.3.3 Wake effect influence

The ’wake effect’ is the influence the ’wake’ of a pontoon ’in front’, in terms of the fluid flow direction, of
a pontoon has on the loading the current applies to that pontoon. To investigate this influence, a ’semi-
2D’ analysis is set up with a fluid flow volume height of 1 m in which multiple pontoons are modelled
spaced at the same distance as in the complete model. The output cross-flow loading is compared to the
’semi-2D’ analysis for a single pontoon of the same diameter. Figure J.14 displays the area investigated
in this analysis and Figure J.15 displays the model used for the analysis.

Figure J.14: The red box indicates the model area investigated for wake effects.

Figure J.15: Model used for the wake effects analysis. The bottom pontoon has a 30m diameter, the
others a 36m diameter.

J.3.3.1 Set-up

Table J.9 displays the meshing properties used for the wake effects analysis and Figure J.16 displays the
mesh visually. The pontoons are loaded by the 1.27 m s−1 current measured at a depth of 10 m, which is
constant across the flow volume height.
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Figure J.16: Mesh used in the wake effect analysis.

Parameter Value

Element shape Tetrahedrons

Boundary layer

Define by First layer thickness

First layer thickness 0.1 m

Maximum layers 14

Growth rate 1.2

Size controls inner volume

Max element face size 6 m

Size controls outer volume

Max element face size 26 m

Table J.9: Mesh parameters used for the wake effect analysis.

J.3.3.2 Results

A first visual inspection of the results is depicted in Figures J.17. These figures show the magnitude of
the flow velocity at two moments in the transient simulation. In both these Figures it is visible that part
of the wake of the pontoons in ’front’ of the others interacts with the flow field around these pontoons.

To quantify the interaction visible in the earlier figures, results in terms of the cross-flow loading from
the ’semi-2D’ single pontoon analysis are compared to the results obtained in this analysis. Figure J.18
displays the results of a ’semi-2D’ analysis on a single 36 m diameter pontoon and the result obtained in
this analysis for the second pontoon.

The results for all pontoons are displayed in Tables J.10, J.11 and J.12. As is expected, both the load
period and load amplitude for the first pontoon in line remains unchanged. Both values due, however,
change for the other pontoons in the analysis.

178



J.3. RESEARCH AND RESULTS

Figure J.17: Flow velocity magnitude at two time points in the wake effect analysis.

Figure J.18: Cross flow load for a single 36 m diameter pontoon (left) and the cross flow load for the
second pontoon with the same diameter from the wake effect analysis (right).
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Pontoon
number

Diameter ”Semi-2D” VIV
load period [s]

Wake effect
load period [s]

Percentage dif-
ference

1 30 m 78.9 78.9 0 %

2 36 m 89.1 103.2 15.8 %

3 36 m 89.1 103.4 16.0 %

4 36 m 89.1 102.8 15.4 %

Table J.10: Change in VIV load periods due to wake effects.

Pontoon
number

Diameter ”Semi-2D” VIV
load amplitude
[kN]

Wake effect
load amplitude
[kN]

Percentage dif-
ference

1 30 m 36 36 0 %

2 36 m 64 56 14.3 %

3 36 m 64 60 6.2 %

4 36 m 64 58 10.3 %

Table J.11: Change in VIV load amplitudes due to wake effects.

Pontoon
number

Diameter First eigenpe-
riod [s]

Second eigen-
period [s]

”Wake effect
load period [s]

1 30 m 79.167 57.187 78.9

2 36 m 96.987 59.388 103.2

3 36 m 110.123 67.436 103.4

4 36 m 122.226 75.277 102.8

Table J.12: Pontoon eigenperiods and ”Semi-2D” VIV load periods due to wake effects.
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J.3.3.3 Conclusions

Based on both the visual representation in terms of the flow velocity magnitude and the resulting calcu-
lated loads there is a wake effect present in the part of the model analysed. The wake effect provides, on
average, a −10 % decrease in the cross-flow load amplitude for pontoons effected by the wake of preceding
pontoon. This is a positive effect. The average increase of about 15 % of the load period is not necessarily
a positive effect since it moves the load frequency away from the second eigenperiods of the pontoons,
which are between 59.4 s and 75.3 s, but towards the first eigenperiods of the pontoons, which are between
97 s and 122.2 s. Therefore the results of this analysis should be taken as is, an on average −10 % decrease
in cross-flow loading and a 15 % increase in cross-flow load periods.

J.3.4 3D analysis

The ’semi-2D’ analysis performed in section J.3.2 showed that the pontoons show sensitivity to vortex
induced vibrations. Therefore a more detailed, full 3D analysis of stationary pontoons in 3D flow is
performed to see if the sensitivity can also be observed in a model closer to reality. Figure J.19 gives a
visual representation of a 3D model used to calculate the cross-flow loading in Fluent.

Figure J.19: 3D Model for a 52 m diameter pontoon in a 3D fluid volume.

J.3.4.1 Set-up

The 3D analyses are performed for four pontoons out of the twenty-two, their properties are displayed in
Table J.13. This is done because 3D flow calculations take a long time and only performing the calculation
for four pontoons saves time. The only relevant variable different between the pontoons chosen and other
pontoons of the same diameter is the depth to which the pontoons reach under the water level. The
assumption is made that dividing the total cross-flow load on pontoons by their length under water
and applying this distributed load to the pontoons is, still, an accurate representation of reality. This
assumption is put to the test in section J.3.5.

Pontoon
number

Diameter Draught [m] First eigenpe-
riod [s]

Second eigen-
period [s]

1 30 m 73.13 79.167 57.187

6 36 m 129.5 128.881 89.194

10 42 m 133.1 132.461 100.173

11 52 m 133.5 137.071 106.649

Table J.13: Characteristics of pontoons used for the 3D analysis.

The current profile used for the 3D analysis is depicted in Figure J.20, in which the measured values,
power law curve fit and truncated velocity profile are shown on the right and the representation of the
truncated velocity for the flow volume in Fluent using vectors is shown on the left.

The current profile is programmed into the Fluent calculation using User Defined Functions (UDF)
programmed in C++. They can be compiled using Microsoft Visual Studio and added to Fluent. One
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Figure J.20: Velocity vector representation of the 3D current profile for the flow volume in Fluent (left)
and the measured values, power law curve and truncated profile (right).

of the functions defines the velocity at the fluid flow inlet, the code for this function is shown in Figure
J.21. The input into Fluent is shown in Figure J.22

#include "udf.h"

DEFINE_PROFILE(inlet_x_velocity , thread , position)

{

real x[ND_ND ]; /* this will hold the position vector */

real y, v_in;

face_t f;

real h[3] = {-10, -30, -70}; /* inlet height in m */

real v[4] = {1.84, 1.27, 0.55, 0.39};

begin_f_loop(f,thread)

{

F_CENTROID(x, f, thread);

y = x[1]; /* y coordinate */

v_in = (y > h[0]) ? v[0] : (y > h[1]) ? v[1] : (y > h[2]) ? v[2] : v[3];

F_PROFILE(f, thread , position) = v_in;

}

end_f_loop(f, thread)

}

Figure J.21: User Defined Function to define the velocity conditions for the fluid volume inlet in Fluent.

Figure J.22: Setting the inlet velocity profile to the UDF defined in Figure J.21.

The other UDF defines an initial condition in which the fluid flow for the entire volume is set. This
function is shown in Figure J.23. The input into Fluent is shown in Figure J.24.
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#include "udf.h"

DEFINE_INIT(velocity ,d)

{

cell_t c;

Thread *t;

real x[ND_ND ];

real y;

real v_p;

real h[3] = {-10, -30, -70}; /* inlet height in m */

real v[4] = {1.84, 1.27, 0.55, 0.39};

/* loop over all cell threads in the domain */

thread_loop_c(t,d)

{

/* loop over all cells */

begin_c_loop_all(c,t)

{

C_CENTROID(x,c,t);

y = x[1]; /* y coordinate */

v_p = (y > h[0]) ? v[0] : (y > h[1]) ? v[1] : (y > h[2]) ? v[2] :

v[3];

C_U(c,t) = v_p;

}

end_c_loop_all(c,t)

}

}

Figure J.23: User Defined Function to define the initial velocity conditions for the fluid volume in Fluent.

Figure J.24: Setting the initial velocity profile to the UDF defined in Figure J.23.

A visual depiction of the mesh used for Pontoon number 1, with properties as shown in Table J.13, is
given in Figure J.25. The mesh parameters used for these analyses are shown in Table J.14.
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Figure J.25: Mesh for pontoon 1.

Parameter Value

Element shape Tetrahedrons

Boundary layer

Define by Smooth transition

Transition ratio 0.21

Maximum layers 7

Growth rate 1.05

Size controls Pontoon 1

Max element face size 5 m

Size controls Pontoon 6, 10, 11

Max element face size 6 m

Table J.14: Mesh parameters used for the 3D analysis.

J.3.4.2 Results

The resulting velocity magnitude for Pontoon 11 at 2880 s into the simulation is depicted in Figure J.26
in a vector representation for the entire flow volume. The pontoon itself is visible in top left, with its low
velocity wake trailing behind. In the bottom right the higher velocity region is shown across the height
of the flow volume. In this area it is visible that the frequency of vortex shedding is different across
the pontoon height, as fast-flowing region is in different cross-flow positions across the height of the flow
volume. This will lead to different frequencies being visible in the time plot of the total cross-flow force.

Figure J.27 depicts the total force on Pontoon 11 during the 3D analysis. It is obvious that multiple
frequencies cross-flow loading are present. To visualize the energy content per frequency and determine
the primary frequency of cross-flow loading, spectra are created using the FFT algorithm [CT65]. This
is depicted in Figure J.28.

Using the spectra the primary frequencies of cross-flow loading can be determined. These are shown
in Table J.15.
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Figure J.26: Pontoon 11 velocity magnitude vector representation at 2880 s into the transient 3D analysis.

Figure J.27: Pontoon 11 total cross-flow load
plotted against time.

Figure J.28: Spectrum of the cross-flow load at
pontoon 11.

Pontoon
number

Diameter First eigenpe-
riod [s]

Second eigen-
period [s]

3D VIV main
loading period [s]

1 30 m 79.167 57.187 142.9

6 36 m 128.881 89.194 166.7

10 42 m 132.461 100.173 200.4

11 52 m 137.071 106.649 189.8

Table J.15: Pontoon eigenfrequencies and 3D VIV load periods.

J.3.4.3 Conclusions

At first sight the results of the 3D analysis seem to indicate that the pontoons are less sensitive to
vortex induced vibrations than may have been expected from the results of the ’semi-2D’ analysis. The
primary cross-flow loading periods have moved quite a bit away from the corresponding pontoons first
two eigenperiods. However, it must be stated that not all energy transferred from the current to the
cross-flow loading is transferred in the primary loading frequency. There are peaks at other frequencies
which may correspond to other modal eigenfrequencies of the pontoons. This is shown in Figure J.29.

The main indication that these results only show a larger sensitivity to vortex induced vibrations
is given when the eigenfrequencies of the entire bridge structure are taken into account. The first ten
eigenfrequencies and periods of the entire bridge structure are depicted in Table J.16.

When comparing the first eigenfrequency of the entire bridge to the main loading periods calculated
in this analysis it becomes obvious that the main loading period for pontoon 6 coincides with the bridge
structure’s first eigenperiod. Under the assumption that the cross-flow loading for different pontoon
lengths does not change significantly, this means that ten out of the twenty-two pontoons will be subject
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Figure J.29: Pontoon 6 spectrum of cross-flow loading. with additional peaks indicated

Mode num-
ber

Eigenfrequency [Hz] Eigenperiod [s]

1 0.006231 160.5

2 0.008432 118.6

3 0.008974 111.4

4 0.009476 105.5

5 0.009677 103.3

6 0.009933 100.7

7 0.010019 99.8

8 0.010107 98.9

9 0.010318 96.9

10 0.010321 96.9

Table J.16: Bridge system eigenfrequencies of the first ten modes.

to loading at the structure’s first eigenfrequency. This indicates a very high sensitivity to vortex induced
vibrations due to the current as present at the bridge location. Furthermore, as a coupled analysis may
show, the range of load frequencies which are shifted to a frequency closer to eigenfrequencies of the
bridge structure may be large enough to ’capture’ even more of the load frequencies found.

J.3.5 3D draught comparison

This analysis is performed to put the assumption that dividing the total cross-flow load on pontoons by
their length under water and applying this distributed load to the pontoons is an accurate representation
of reality to the test. The analysis is performed by comparing the results of a 3D analysis for two pontoons
of the same diameter and different draughts.

J.3.5.1 Set-up

The pontoons used for this analysis are shown in Table J.17.
The flow velocity profile used is the same as used in the 3D analysis in section J.3.4. The mesh

parameters used for both analyses are depicted in Table J.18.
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Pontoon
number

Diameter Draught [m] First eigenpe-
riod [s]

Second eigen-
period [s]

2 36 m 88.80 96.99 59.39

6 36 m 129.5 128.881 89.194

Table J.17: Characteristics of pontoons used for the 3D analysis.

Parameter Value

Element shape Tetrahedrons

Boundary layer

Define by Smooth transition

Transition ratio 0.21

Maximum layers 7

Growth rate 1.05

Size controls

Max element face size 6 m

Table J.18: Mesh parameters used for the draught comparison 3D analysis.

J.3.5.2 Results

The results in terms of the total cross-flow force plotted against time are depicted in Figures J.30 and
J.31.

Figure J.30: Pontoon 6 total cross-flow load
plotted against time.

Figure J.31: Pontoon 2 total cross-flow load
plotted against time.

To directly compare the total cross-flow time histories is futile, therefore the frequency spectra of both
loads are plotted together to compare them. This is shown in Figure J.32, in which load 1 corresponds
to pontoon 6 and load 2 to pontoon 2. Table J.19 shows different error scores for larger data sets as used
for the comparison of the spectra.
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Figure J.32: Comparison of the cross-flow load spectrum for pontoon 6 (load 1) and pontoon 2 (load 2).

Error score Value Best possible value

R2 score -0.624 1.0

Explained
variance
score

-0.623 1.0

Root mean
squared
error score

6.678 · 106 0.0

Table J.19: Different metrics to compare data set similarity used on the cross-flow load spectra for
pontoon 2 and 6.

J.3.5.3 Conclusions

Visual comparison of the spectra shown in Figure J.32 shows a large discrepancy in the location of the
peaks - and thus in the energy content per load frequency. The error scores corroborate this, negative
values for R2- and eplained variance scores and a root mean squared error score of magnitude 106, which
is about as big as half of the biggest peak contained in the spectrum for pontoon 2, indicate very large
differences in data sets that can’t be explained by just the lower energy content due to the lower draught
of pontoon 2. So it must be concluded that the assumption that the total load on a pontoon with a
larger draught can be scaled to be used on a pontoon with a smaller draught is not valid for all draughts.
Therefore it is recommended to further investigate the difference pontoon draught makes on cross-flow
loading. Perhaps this means that all twenty-two pontoons must be included separately in vortex induced
vibration analysis.

J.3.6 Coupled analysis using decoupling springs

To model the fluid-structure interaction, an attempt is made to calculate the fluid using a dynamic mesh
in Fluent and the stiffness for the coupling springs calculated in appendix I as the boundary conditions.
A dynamic mesh means that the mesh in the fluid flow region deforms according to the motion of the
wall area designated as capable of movement. This analysis is performed to test this method of coupled
analysis.
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J.3.6.1 Set-up

The flow velocity profile used is the same as used in the 3D analysis in section J.3.4. The mesh parameters
used for both analyses are depicted in Table J.20. It is clearly visible that the maximum mesh size is
greatly increased compared to the maximum size set in the 3D analysis. This is due to the fact that
problems arise when mesh element node movement between time steps is greater than the element size
and the elements get a negative volume. To solve these problems, either the mesh element size has to be
increased, or the time step decreased. An attempt has been made to prevent this problem by changing
both. Therefore the time steps in this analysis are decreased to 0.5 s, while the simulation time is set at
1800 s.

Parameter Value

Element shape Tetrahedrons

Boundary layer

Define by Smooth transition

Transition ratio 0.21

Maximum layers 7

Growth rate 1.05

Size controls

Max element face size 26 m

Table J.20: Mesh parameters used for the draught comparison 3D analysis.

A single coupling spring is used for this analysis in the cross-flow direction. Its spring stiffness is taken
from the calculation performed in appendix I. The static value is taken for joint ’P63’ located in pontoon
6.

Degree of freedom Stiffness

cross-flow (y in SACS, z in Fluent) 26.02 kN m−1

Table J.21: Coupling spring stiffness pontoon 6.

J.3.6.2 Results

The results of this analysis in terms of cross-flow loading are shown in Figure J.33.
Figure ?? shows a contour plot of the fluid velocity magnitude during the analysis.
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Figure J.33: Cross-flow load versus time for the dynamic mesh analysis of pontoon 6.

Figure J.34: Contour plot of the fluid velocity magnitude during the dynamic mesh analysis of pontoon
6.

J.3.6.3 Conclusions

The cross-flow loading calculated using this method displays huge peaks into values of magnitude 107 N.
This is indicative of the time step being set too large.

Furthermore, the contour plot shows the irregular mesh pattern created during the analysis, the
big ’jumps’ in velocity magnitude between elements and the lack of a proper wake forming behind the
pontoon. This is indicative of the mesh elements being too large.

Therefore it would be a logical step to decrease the time step and element size used for this analysis.
However, this analysis of half the time span used in the other analyses already took approximately three
times as long. Therefore, it is deemed this method of coupled analysis is not suitable for this study.

J.3.7 Coupled analysis

As the results of previous analyses clearly indicate that the bridge structure is sensitive to vortex induced
vibrations, a coupled analysis is necessary to investigate the magnitude of the problem presented by
vortex induced vibrations for the bridge structure.

J.3.7.1 Set-up

To investigate motion caused by vortex induced vibrations in the bridge structure, a coupled analysis is
necessary.

First, the methodology of the coupled analysis performed in this thesis is presented. It is shown
visually in Figure J.35.

The steps taken in the process are the following;
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Figure J.35: Methdology for the coupled vortex induced vibration analysis.

First a 3D analysis is performed for four stationary pontoons as described in section J.3.4.

The resulting total cross-flow current load is transformed into distributed loading and applied to
all pontoons in the complete bridge model using the Dynamic Response module. Reference is made
to section H.3.

The resulting bridge motion is then sent through structural damping iterations, which are explained
in more detail in this section.

The velocity of the motion of the center of buoyancy of the pontoon in both cross- and inflow
direction is then applied as a velocity boundary condition to the pontoon walls in the Fluent
calculation.

From this point the iterations continue, with convergence checks on both the current loading and
subsequent bridge motion.

If both have converged, the end result is reached: The bridge motion due to vortex induced vibration
caused by the current at the bridge location.

To include the pontoon motion in the Ansys Fluent calculation, the option to include a boundary
condition in the form of a User Defined Function is used. A User Defined Function (UDF) is a small
program coded in C++. An example of two user defined function templates created to set the velocity
boundary conditions for the pontoon walls for this analysis are shown in Figures J.36 and J.37. The
assignment of these boundary conditions to the pontoon in Fluent is shown in Figure J.38.

#include "udf.h"

static real x_vib[<len_x_vib >] = <x_vib_params >;

DEFINE_PROFILE(x_velocity ,thread ,position)

{

face_t f;

int i = N_TIME;

begin_f_loop(f, thread)

{

F_PROFILE(f, thread , position) = x_vib[i];

}

end_f_loop(f, thread)

}

Figure J.36: User Defined Function template to define the in-flow direction velocity boundary condition
for the pontoon walls in Fluent.

The structural damping iterations used for this analysis differ from the damping iterations used in
section D. The methodology is the following;
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#include "udf.h"

static real z_vib[<len_z_vib >] = <z_vib_params >;

DEFINE_PROFILE(z_velocity ,thread ,position)

{

face_t f;

int i = N_TIME;

begin_f_loop(f, thread)

{

F_PROFILE(f, thread , position) = z_vib[i];

}

end_f_loop(f, thread)

}

Figure J.37: User Defined Function template to define the cross-flow direction velocity boundary condition
for the pontoon walls in Fluent.

Figure J.38: Setting the pontoon boundary condition to the UDF’s defined in Figures J.36 and J.37.

First the calculated displacements are imported into a Python program, together with the displace-
ments calculated for the Steady State cases described in section D.

The maximum total displacement per node in the bridge model are compared using three error
metrics; The R2-score, the Explained Variance score and the Root Mean Squared Error score
[DS98] [KEN83] [MGB74].

Based on the results of the error metric scores, a new damping value is chosen and the calculation
is re-run in SACS. This is continued until the error scores are minimized and convergence is reached
in terms of displacement.

The iterations as stated above are performed in this manner to save time- and since the hydrodynamic
fluid damping is the most important source of damping for this calculation, the relative error introduced
by the approximation of the structural damping through this method will be small.

J.3.7.2 Results

This analysis has not led to a converged result. The iterations were stopped once it became clear that
the structure is highly sensitive to vortex induced vibrations and the displacements kept increasing per
iteration. To illustrate this, Figure J.39 displays the displacement in in- and cross-flow direction for
pontoon 11 for the four iterations performed. It is illustrated further in Figure J.40, which displays the
cross-flow loading plotted versus time for the same pontoon for the four iterations performed. It is visible
in these Figures that with each iteration the observed load amplitudes increase.

The minimum and displacement per iteration for the cross- and inflow direction considered in are
shown in the tables in section J.3.7.3 for each pontoon. From these results it is clear that from the very first
iteration all pontoons vibrate in the eigenfrequency of the first mode of vibration of the bridge structure
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Figure J.39: Displacements plotted against time for pontoon 11 for the four coupled iterations performed.

in the cross-flow direction. By iteration four, the same can be said of the in-flow vibration frequency.
Furthermore, it can be observed that the minimum and maximum cross- and in-flow displacements
increase with each iteration.

The main frequencies of the cross-flow loading per pontoon diameter per iteration are shown in Table
J.22. From this Table it is very clear that the fluid structure interaction has a big influence on the cross-
flow loading frequency. In three iterations all cross-flow loading frequencies are moved to the frequency of
cross-flow vibration of the pontoons, which coincide with the bridge structure’s first modal eigenfrequency.

Diameter [m] Iteration 1 [Hz] Iteration 2 [Hz] Iteration 3 [Hz] Iteration 4 [Hz]

30 0.0072 0.0064 0.0061 0.0061

36 0.0064 0.0064 0.0064 0.0061

42 0.005 0.005 0.0064 0.0064

52 0.0053 0.0061 0.0061 0.0064

Table J.22: Cross flow load frequencies per pontoon diameter for four iterations

There is one result that indicates that a maximum may be reached in terms of the pontoon displace-
ment and fluid forcing increasing each other with each iteration. It is found at pontoon 6, a 36 m diameter
pontoon, at the tail end of the load calculation for iteration 4. The cross-flow loading for pontoon 6 in
iteration 4 is depicted in Figure J.41. In this Figure it is clear that from about 3300 s, the cross-flow
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Figure J.40: Cross-flow loading plotted against time for pontoon 11 for the four coupled iterations
performed.

load ampltidue decreases sharply. When the velocity magnitude plot before this time period is reviewed
it shows highly periodic vortex shedding, this is displayed in Figure J.42. Then from 3300 s first, the the
wake does not change sides and then a large disruption is visible, in which the wake separates from both
sides of the pontoon. This is shown in Figure J.43. In these velocity magnitude plots, special attention
is drawn to the red areas at the pontoon walls, and especially to the fact that they are visible in the first
three images and is coloured yellow in the fourth image. This corresponds to the drop in cross-flow load
amplitude observed in Figure J.41.

To see if the change in loading is visible in the displacement results, Figure J.44 displays the the
displacement plot for pontoon 6 during iteration four. A visible flattening of the displacement increase
with each cycle can be observed after 3300 s in the lower part of the plot.

This flattening, or in some cases even a slight decrease of the maximum deflection, from about 3300 s
is observable in the displacements of all pontoons during iteration four. To illustrate this, Figure J.45
contains displacement plots for pontoons 1, 5, 10 and 12 during iteration four.
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Figure J.41: Cross-flow loading plotted against time for pontoon 6 for the fourth coupled iteration
performed.

Figure J.42: Velocity magnitude plots for pontoon 6 showing the maximum and minimum periodic wake
movement before 3300 s during iteration 4.

Figure J.43: Velocity magnitude for pontoon 6 plots showing the disruption of the periodic vortex shed-
ding after 3300 s during iteration 4.

195



J.3. RESEARCH AND RESULTS

Figure J.44: Displacement plot for pontoon 6 during iteration four.

Figure J.45: Displacement plots for pontoons 1, 5, 10 and 12 during iteration four.
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J.3.7.3 Displacement table

Iteration 1

Pontoon
Number

Max uy
[m]

Min uy
[m]

Main
freq. uy
[Hz]

Max ux
[m]

Min ux
[m]

Main
freq. ux
[Hz]

1 2.533 -2.941 0.0061 1.062 -0.858 0.0061

2 4.283 -5.025 0.0061 1.767 -1.426 0.0061

3 5.648 -6.636 0.0061 2.379 -1.873 0.0061

4 6.627 -7.7 0.0061 2.725 -2.061 0.0061

5 6.987 -8.055 0.0061 2.75 -1.912 0.0061

6 6.781 -8.207 0.0061 2.585 -1.412 0.0061

7 6.563 -8.011 0.0061 2.293 -1.246 0.0061

8 5.216 -7.319 0.0061 2.244 -1.196 0.0064

9 5.644 -7.454 0.0061 2.655 -0.902 0.0083

10 5.606 -8.191 0.0061 2.944 -1.734 0.0083

11 6.986 -7.278 0.0061 3.38 -3.242 0.0083

12 6.979 -7.275 0.0061 3.372 -3.224 0.0083

13 5.613 -8.197 0.0061 2.912 -1.712 0.0083

14 5.668 -7.441 0.0061 2.621 -0.894 0.0083

15 5.221 -7.311 0.0061 2.219 -1.193 0.0064

16 6.564 -8.018 0.0061 2.252 -1.253 0.0061

17 6.816 -8.243 0.0061 2.562 -1.402 0.0061

18 7.022 -8.107 0.0061 2.746 -1.915 0.0061

19 6.658 -7.742 0.0061 2.729 -2.067 0.0061

20 5.681 -6.681 0.0061 2.389 -1.882 0.0061

21 4.304 -5.052 0.0061 1.777 -1.433 0.0061

22 2.515 -2.943 0.0061 1.068 -0.862 0.0061

Iteration 2

Pontoon
Number

Max uy
[m]

Min uy
[m]

Main
freq. uy
[Hz]

Max ux
[m]

Min ux
[m]

Main
freq. ux
[Hz]

1 7.321 -7.111 0.0061 2.425 -2.486 0.0061

2 12.49 -11.873 0.0061 4.068 -4.173 0.0061

3 16.664 -15.736 0.0061 5.484 -5.57 0.0061

4 19.103 -18.256 0.0061 6.279 -6.267 0.0061

5 20.318 -19.647 0.0061 6.377 -6.117 0.0061

6 19.948 -19.549 0.0061 5.853 -5.131 0.0061

7 18.927 -19.685 0.0061 4.765 -3.571 0.0061

8 16.363 -17.363 0.0061 3.425 -2.031 0.0061

9 16.005 -17.196 0.0061 2.554 -0.786 0.0083

10 15.525 -16.357 0.0061 2.93 -1.469 0.0083

11 18.298 -19.156 0.0061 4.378 -2.881 0.0083

12 18.295 -19.151 0.0061 4.422 -2.865 0.0083

13 15.51 -16.35 0.0061 2.925 -1.449 0.0083

14 16.008 -17.192 0.0061 2.521 -0.762 0.0083
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15 16.357 -17.349 0.0061 3.315 -1.933 0.0061

16 18.925 -19.701 0.0061 4.69 -3.499 0.0061

17 19.964 -19.57 0.0061 5.806 -5.091 0.0061

18 20.346 -19.694 0.0061 6.361 -6.105 0.0061

19 19.143 -18.317 0.0061 6.279 -6.267 0.0061

20 16.721 -15.81 0.0061 5.501 -5.583 0.0061

21 12.524 -11.92 0.0061 4.085 -4.187 0.0061

22 7.262 -7.082 0.0061 2.435 -2.493 0.0061

Iteration 3

Pontoon
Number

Max uy
[m]

Min uy
[m]

Main
freq. uy
[Hz]

Max ux
[m]

Min ux
[m]

Main
freq. ux
[Hz]

1 12.985 -12.914 0.0064 4.417 -4.359 0.0064

2 22.29 -21.802 0.0064 7.459 -7.332 0.0064

3 29.597 -29.165 0.0064 10.104 -9.795 0.0064

4 33.427 -34.391 0.0064 11.608 -11.037 0.0064

5 35.71 -36.698 0.0064 11.739 -10.864 0.0064

6 35.392 -36.327 0.0064 10.549 -9.338 0.0064

7 33.775 -35.219 0.0064 8.357 -6.758 0.0064

8 29.68 -31.303 0.0064 5.545 -3.612 0.0064

9 29.168 -30.961 0.0064 3.078 -1.059 0.0064

10 27.463 -28.948 0.0064 2.88 -1.313 0.0086

11 32.463 -33.307 0.0064 5.562 -3.078 0.0064

12 32.455 -33.3 0.0064 5.656 -3.171 0.0064

13 27.444 -28.936 0.0064 3.032 -1.295 0.0086

14 29.153 -30.952 0.0064 2.923 -0.909 0.0061

15 29.666 -31.294 0.0064 5.35 -3.454 0.0064

16 33.786 -35.231 0.0064 8.212 -6.639 0.0064

17 35.445 -36.379 0.0064 10.459 -9.262 0.0064

18 35.799 -36.781 0.0064 11.707 -10.844 0.0064

19 33.54 -34.495 0.0064 11.608 -11.043 0.0064

20 29.728 -29.321 0.0064 10.137 -9.826 0.0064

21 22.371 -21.905 0.0064 7.494 -7.364 0.0064

22 12.911 -12.867 0.0064 4.437 -4.376 0.0064

Iteration 4

Pontoon
Number

Max uy
[m]

Min uy
[m]

Main
freq. uy
[Hz]

Max ux
[m]

Min ux
[m]

Main
freq. ux
[Hz]

1 23.196 -21.137 0.0064 7.204 -7.806 0.0064

2 39.848 -36.358 0.0064 12.159 -13.115 0.0064

3 52.976 -47.94 0.0064 16.402 -17.516 0.0064

4 60.355 -55.446 0.0064 18.755 -19.728 0.0064

5 63.962 -59.893 0.0064 18.903 -19.399 0.0064

6 63.314 -59.547 0.0064 16.953 -16.67 0.0064
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7 58.827 -58.215 0.0064 13.441 -12.126 0.0064

8 52.15 -51.857 0.0064 8.942 -6.554 0.0064

9 51.782 -51.736 0.0064 4.514 -1.269 0.0064

10 49.074 -48.991 0.0064 4.628 -1.943 0.0061

11 55.356 -54.938 0.0064 9.29 -5.766 0.0064

12 55.346 -54.929 0.0064 9.468 -5.931 0.0064

13 49.047 -48.957 0.0064 4.913 -2.188 0.0061

14 51.769 -51.713 0.0064 4.215 -1.105 0.0064

15 52.141 -51.832 0.0064 8.624 -6.254 0.0064

16 58.847 -58.205 0.0064 13.206 -11.901 0.0064

17 63.398 -59.636 0.0064 16.809 -16.526 0.0064

18 64.112 -60.048 0.0064 18.858 -19.355 0.0064

19 60.534 -55.652 0.0064 18.76 -19.734 0.0064

20 53.219 -48.19 0.0064 16.459 -17.571 0.0064

21 40.002 -36.52 0.0064 12.217 -13.172 0.0064

22 23.063 -21.062 0.0064 7.237 -7.837 0.0064

Table J.23: Pontoon minimum and maximum displacements and main displacement frequencies for four
iterations

J.3.7.4 Conclusions

The first conclusion that must be drawn from this analysis is that the bridge structure is highly sensitive to
vortex induced vibrations. This is clear from the fact that the fluid-structure interaction causes cross-flow
loading frequencies over a wide band (0.005 Hz - 0.072 Hz) to move toward the structure’s first modal
eigenfrequency. Another indication of this problem is that the resulting main pontoon displacement
frequencies after the first iteration, during which the pontoons were loaded with different frequencies, are
all on the bridge systems first modal eigenfrequency. This may also be partially caused by the chosen
load model, which is treated later.

The mode shape for the first eigenfrequency is shown in Figures J.46 and J.47. As is visible in these
Figures, the shape first mode of vibration of the bridge structure is a slight deformation of the rigid
bridge deck in which the pontoons mainly move in the cross-flow direction relative to the current. This
contributes to the structure’s sensitivity to cross-flow loading at frequencies in a range near the first
eigenfrequency.

Despite the structure’s high sensitivity to vortex induced vibrations, the fact that the vibrations are
this pronounced casts doubt on the results obtained. Furthermore, the fact that the displacement reaches
values that are larger than the pontoon diameters raises red flags, as experimental results indicate the
maximum displacements in cross-flow direction should be in the range of 0.6 - 0.8 times the pontoon
diameter [OM10]. Therefore, the results must be examined critically and reasons for the remarkable
results must be found.

One recommendation for further research is to use a different model type to validate the calculation
method used for the coupled analysis. One may think of a calculation of the vibration of a single pontoon
compared to the results provided by the coupled analysis for a single pontoon. This can be found in
section J.3.8.

Another point of attention is the fact that the fluid loading is calculated using the shape, and motion,
of only four pontoons out of the twenty-two. After which it is scaled to the draught of the remaining
pontoons of the same diameter. The assumption that this is a realistic model for the loading of stationary
pontoons has been proven wrong for at least one combination of pontoons with the same diameter and
different draughts in section J.3.5. Performing this operation leads to ten out of the twenty-two pontoons
(all those with a 36 m diameter) being loaded at the first modal frequency of the bridge structure for the
first iteration. Furthermore, due to the fact that the resulting motion of only four pontoons is taken into
account for the calculation of the new fluid forces per iteration, this leads to a perfect line-up of forcing
frequencies across all pontoons with the same diameter, which may be possible, but is improbable due to
variations in structural boundary conditions for the different pontoons.
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Figure J.46: Top view of the first eigenmode shape (in red) of the bridge structure and the undeformed
structure (green).

Figure J.47: Side view of the first eigenmode shape (in red) of the bridge structure and the undeformed
structure (green).

For further research into this phenomenon, it is recommended to extend the calculation of fluid forces
to all of the pontoons separately for each iteration, increasing the computation time by at least a factor
five, but eliminating the assumptions leading to the issues described earlier.

Another remarkable element of the results is that the fluid force - structure interaction appears to
increase each other with each iteration without an apparent maximum, although there are some clues
in the results a maximum may have been reached. One of the reasons there is no conclusive result
proving a maximum amplitude of vibration is the fact that the time-span for the analysis has been set
too short. The first potential apparent ’plateauing’ of the results appear after 3300 s into the analysis
and increasing the analysis time should lead to a conclusive answer to the question of the maximum
amplitude’s existence.

The following assumption made that will probably have had an influence on the results is the fact that
only motions in the horizontal plane have been taken into account and the pontoons have been modelled as
rigid vertical bodies translating through the fluid flow in cross- and in-flow directions. Pontoon rotations
around the horizontal axes are neglected, which, based on the present results, are quite pronounced. The
influence these rotations may have is based on the change of cross section in the horizontal plane the fluid
has to pass. These cross section changes will influence the fluid flow, vortex shedding and resulting cross-
and in-flow loading. It is expected that this influence is small, and perhaps even negligible in relation to
the issues outlined earlier.

The simplified manner in which the structural damping is determined in this analysis may also con-
tribute to the high amplitudes of the displacement results obtained. However, it is expected that the
internal structural damping has a much lower influence on the obtained results compared to the hydro-
dynamic damping due to the fluid loading and therefore, although calculation of the model structural
damping according to the method outlined in appendix D may lead to different results, the influence is
expected to be small.
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J.3.8 Model verification

In this section, the results produced for the motion of a single pontoon using the coupled analysis model
presented in this thesis are compared to the results produced using a coupled wake oscillator model. The
goal of this analysis is to show that the results calculated using the Fluent-SACS model are in the same
range as the results calculated using this different model and thus verifying the Fluent-SACS model.

In this section, first the theory behind this coupled wake oscillator model is presented. Then the
set-up for both the coupled wake oscillator model and the coupled analysis model are presented.

J.3.8.1 Coupled wake oscillator model

The wake oscillator model used in this thesis is based on work by Ogink and Metrikine (2010) [OM10]. A
simplification has been made in that only the cross-flow motion of the structure is taken into account and
in-flow motion has been restricted. Furthermore, the rigid body motion of the entire pontoon is modelled.
The fluctuating wake and subsequent periodic lift force on the body is modelled using a wake oscillator
model. This wake oscillator model is coupled to the motion of the body in the governing equations for
both systems. This is shown in Equations J.14 and J.15 which show the governing equations for the wake
oscillator model used in this thesis. In vortex induced vibration analysis it is common to use dimensionless
governing equations. In this thesis it has been chosen not to make the equations dimensionless. This is
mainly done to make it easier to tune the wake oscillator model to correspond to the pontoon loading
calculated using Ansys Fluent through the scaling factors.

∂2y

∂t2
+ 2 ζ ωn

∂y

∂t
+ ω2

n y =

∫ 0

zD

ρ D z

2 (m+ma)

CL,0 q(z, t)

2
v2(z) dz (J.14)

In which;

y(t) is the cross-flow displacement of the pontoon

ζ is the structural damping ratio

ωn is natural frequency of the cross-flow motion of the pontoon according to
Equation J.16

z is the elevation below the water level

zD is the pontoon draught

ρ is the water mass density

D is the pontoon diameter

m is the pontoon mass

ma is the fluid added mass according to Equation J.17

CL,0 is the lift coefficient for a circular body

q(z, t) is the wake oscillator function

v(z) is the fluid velocity at elevation z

∂2q(z, t)

∂t2
+ ε ωs(z)

(
q(z, t)2 − 1

) ∂q(z, t)
∂t

+ ω2
s(z) q(z, t) =

A

D

∂2y

∂t2
(J.15)

In which;

q(z, t) is the wake oscillator function

ε is a scaling factor

z is the elevation below the water level

ωs(z) is the vortex shedding frequency at elevation z according to Equation J.18

A is a scaling factor
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D is the pontoon diameter

ωn =

√
k

(m+ma)
(J.16)

In which;

ωn is natural frequency of the cross-flow motion of the pontoon

k is the stiffness of the structure restraining the pontoon in the cross-flow direction

m is the pontoon mass

ma is the fluid added mass according to Equation J.17

ma = Ca
π D2

4
ρ |zD| (J.17)

In which;

ma is the fluid added mass

Ca is the fluid added mass coefficient for a circular body

D is the pontoon diameter

ρ is the fluid mass density

zD is the pontoon draught

ωs(z) = 2 π Str
v(z)

D
(J.18)

In which;

ωs(z) is the vortex shedding frequency at elevation z

z is the elevation below the water level

Str is the Strouhal number for the structure and flow

v(z) is the fluid velocity at elevation z

D is the pontoon diameter

As shown in the equations, the lift force coefficient is taken as constant. This is a simplification of
reality. Another simplification is that the Strouhal number is taken as a single constant, while it is a
function of the Reynolds number of the flow which varies over the draught of the pontoon.

J.3.8.2 Set-up

In this section, the set-up, preliminary actions and assumptions made for both the wake oscillator model
and the Fluent-SACS model are presented. The fluid velocity profile used is the same as in the other
analyses in this thesis and given in section J.3.1.

The coupled wake oscillator model is solved by numerical integration, using the Python function
solve ivp from the Scipy module. The integration method used is the ’RK45’ method, an explicit Runge-
Kutta method of the order 5 [DP80]. To numerically integrate the right hand side of the cross-flow
displacement equation of motion, Romberg integration is used [Rom55]. This numerical integration
method needs 2k+1 samples to function, so the wake oscillator function is evaluated 2k+1 evenly spaced
locations along the pontoon’s draught. After some testing, 27 + 1 = 129 evenly spaced points provided a
good trade-off between computation time and accuracy. The constant parameters used in the governing
equations for the coupled wake oscillator model are shown in Table J.24. The initial values for the 129
wake oscillator functions are chosen randomly in the range (0.25, 0.5).
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Parameter Value

Pontoon diameter 52 m

Pontoon draught −133.5 m

Pontoon mass 2614.405 · 103 t

Pontoon added mass 290.519 · 103 t

Pontoon cross-flow natural frequency 0.0508 rad s−1

Pontoon structural damping ratio 4.300 %

Table J.24: Parameters used in the coupled wake oscillator model.

The natural frequency of the cross-flow motion of the pontoon is calculated using the SACS Dynpac
module, for more information on the methodology behind this reference is made to section H.1. The
structural damping factor is the same as the one calculated in the coupled Ansys-SACS analysis.

The set-up for the coupled Ansys-SACS analysis is the same as in the coupled analysis performed
in section J.3.7, apart from the fact that only the loading on a single pontoon is considered and the
timespan is increased to 7200 s. The pontoon considered is pontoon 11, its defining characteristics are
given in Table J.24.

One more important factor in the set-up of the coupled wake oscillator model is the Strouhal number
and the scaling factor Eused. These two factors directly influence the governing equation for the wake
oscillator thus the entire model. To determine the values to be used for these parameters, the loading on
the stationary pontoon is calculated using Ansys Fluent. After this, the cross-flow loading is calculated
using the wake oscillator model, but the cross-flow motion is set to zero. Then the Strouhal number and
Eare iteratively scaled to fit the cross-flow loading calculated using the wake oscillator model to the one
calculated by Fluent in both the frequency and time domain. The expression for the cross-flow loading
on the pontoon in the wake oscillator model is given in Equation J.19.

F (t) =

∫ 0

zD

ρ D z

2

CL,0 q(z, t)

2
v2(z) dz (J.19)

In which;

F (t) is the cross-flow lift force on the pontoon

z is the elevation below the water level

zD is the pontoon draught

ρ is the water mass density

D is the pontoon diameter

m is the pontoon mass

ma is the fluid added mass according to Equation J.17

CL,0 is the lift coefficient for a circular body

q(z, t) is the wake oscillator function

v(z) is the fluid velocity at elevation z

The cross-flow loading calculated using Fluent are shown in Figure J.48 for both the time and frequency
domain. The Strouhal number in the wake oscillator governing equation is set such that the shedding
frequency of the fluid in the -10 to -30 elevation range with a velocity of 1.27 m s−1 is the same as the
main shedding frequency calculated using Fluent. Doing this gives the best fit for the cross-flow loading
in the frequency domain and is shown on the right in Figure J.49. As is visible, the wake oscillator
model provides loading at four distinct frequencies. These are coupled to the four distinct fluid velocities
found in the discrete fluid velocity profile used. This effect may be lessened by using different Strouhal
numbers coupled to the different flow velocities (and thus different Reynolds numbers). However, this
approximation is considered allowable for the purposes of this analysis. The Evalue is found by iteratively
trying different values, starting at the values found by Ogink and Metrikine (2010) [OM10], and comparing
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the results, mainly in the time domain. In the end, the best fit was found at a value of 0.4 for E. The
resulting loading is shown in the time domain on the left in Figure J.49. The loading in the time domain
is mainly consistent between the two models in terms of the amplitude of the load. For the coupled
analysis, the scaling factor A is taken as 4.0, corresponding to the values found for the upper branch
fitting by Ogink and Metrikine (2010) [OM10].

Figure J.48: Cross-flow loading calculated by Fluent for the stationary pontoon 11 in both the time (left)
and frequency domain (right).

Figure J.49: Cross-flow loading calculated using the wake oscillator model for the stationary pontoon 11
in both the time (left) and frequency domain (right).

J.3.8.3 Results and conclusions

The results of the coupled wake oscillator model are shown in Figures J.50 and J.52 for the cross-flow
loading and displacement.

Figures J.51 and J.53 show the results of the final iteration performed with the Fluent-SACS model.
Once again, the solution has not converged and shows no signs of nearing convergence. The reason for
this will be explained later.

The results show that the Ansys-Fluent model and the wake oscillator model calculate both loads
and displacements with comparable amplitudes. Differences are found once the results in the are ex-
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Figure J.50: Cross-flow loading calculated using the wake oscillator model for pontoon 11 in both the
time (left) and frequency domain (right).

Figure J.51: Cross-flow loading calculated using the Ansys-Fluent model for pontoon 11 in both the time
(left) and frequency domain (right).

amined in the frequency domain. The cross-flow loading using the wake oscillator model shows four
distinct peaks, even in this coupled analysis, while the Fluent-SACS loading is mainly concentrated in
one frequency. There are peaks near the same frequencies as in the wake oscillator model, but they are
far less pronounced. For both the wake oscillator and the Fluent-SACS model the loading is not very
different from the loading on a stationary pontoon. This is expected when the displacement amplitude is
considered with respect to the pontoon diameter; 1.5 m versus 52 m, or a 0.029 amplitude over diameter
ratio. The pontoon is nearly stationary. The wake oscillator model finds the pontoon’s eigenfrequency
as main frequency of vibration, while the Fluent-SACS model finds that the pontoon mainly vibrates at
the amplitude of the loading and has a smaller peak at the pontoon eigenfrequency. This difference is
explained by looking at the exciting frequencies for both models; the wake oscillator model has a pro-
nounced peak close to the pontoon eigenfrequency, while the Fluent-SACS model is almost exclusively
loaded at 0.0053 Hz. If further improvements are made to make the loading by the wake oscillator model
more closely resemble the Fluent-SACS model loading, it is expected that the displacement results will
also be more in line in terms of frequency. What can be concluded from this analysis is that both methods
produce comparable results for this case.

Then there is the matter of the Fluent-SACS model not converging. The reason for this is found when
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Figure J.52: Cross-flow displacement calculated using the wake oscillator model for pontoon 11 in both
the time (left) and frequency domain (right).

Figure J.53: Cross-flow displacement calculated using the Ansys-Fluent model for pontoon 11 in both
the time (left) and frequency domain (right).

the simulation time of the wake oscillator model is extended. Figure J.54 shows the cross-flow motion of
pontoon 11 over a time period of 28 800 s, or 8 hours. The figure shows that it takes about 22 500 s, or
6.25 hours, for the coupled system to reach a steady state in terms of vibration amplitude. This means
that even at a simulation time of 2 hours, the modelled systems are still in the transient phase, making
comparison of results and especially calculating convergence a futile effort.

One point of interest is the small peak near a frequency of 0.0063 Hz in the Fluent-SACS model’s
displacement in the frequency spectrum (shown on the right in Figure J.53). This value corresponds to
the frequency of the first mode of vibration of the entire bridge structure and apparently it is already
excited when only a single pontoon is loaded by cross-flow lift forces at mainly a very different frequency.
This lends credence to the conclusion that the bridge is very susceptible to vortex induced vibrations.
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Figure J.54: Cross-flow displacement calculated using the wake oscillator model for pontoon 11 in time,
for a period of 8 hours.

J.3.9 Possible solutions

The results of the coupled analysis detailed in section J.3.7 show that vortex induced vibrations will lead
to problems at the bridge location. This chapter outlines possible solutions to this issue.

J.3.9.1 Helical strakes

One of the possible solutions to vortex induced vibrations is the use of helical strakes. An example of a
helical strake applied to a pontoon in shown in Figure J.55.

Figure J.55: Example of a helical strake attached to a pontoon.

Helical strakes function by providing clear locations along the pontoon for the fluid boundary layer to
separate from the pontoon. This causes the phase of the vortex shedding to be slightly different at each
horizontal cross section along the pontoon draught and, if applied well, this leads to both the frequencies
of the shedding along the cylinder to be different and the amplitude of resulting in- and cross-flow forces
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to be reduced. It is specified that for these strakes to work, they have to be applied well, meaning that
a lot of modelling is required to achieve the desired effect. The spreading of shedding frequencies and
reduction of fluid forcing amplitudes is, of course, positive, and based on these qualities of the strakes
they are a welcome addition to the bridge design. One of the advantages of using helical strakes is that
they ’work’ for multiple flow directions of the fluid flow past the pontoon. Since the direction of the fluid
flow at the bridge location is known, this is not relevant for the bridge design. One of the disadvantages
of adding strakes to the pontoons is the increase in drag the strakes cause. Although this will probably
not be as big an increase as the increase in drag caused by vortex induced vibrations, this is still an
undesirable side effect of the use of strakes for the bridge design. One more point of attention with the
use of strakes is their dependence on their shape to remain unchanged for their proper operation. This
may be influence by the growth of marine life on the surface of the strake. Since there will be a lot of
marine growth occurring at the bridge location, this will mean having to either clean or treat the strakes
on a regular basis.

J.3.9.2 Changing the pontoon shape

Changing the shape of the pontoons to something more aerodynamic may lead to reduction of vortex
induced vibration effect. Due to the fact that the current direction and properties are known, it is possible
to design a shape specifically for the current direction and properties at the bridge location.

To demonstrate a possibility for a different shape (with the same submerged volume as the correspond-
ing pontoon to maintain buoyancy), an 3D fluid flow analysis, as described in section J.3.4 is performed
on the stationary geometry shown in Figure J.56. This geometry has the dimensions specified in Table
J.25.

Figure J.56: Elongated pontoon geometry of with a 36 m cross-flow dimension.

Dimension Size

Cross-flow length 36 m

In-flow length 72 m

Draught 57 m

Corresponding pontoon volume Pontoon 6

Table J.25: Dimensions of the elongated pontoon used for the 3D analysis.

The analysis is run using the same properties for the mesh and flow velocity specified in section J.3.4.
This leads to the mesh as depicted in Figure J.57.

The analysis is run for a timespan 3600 s. The resulting cross-flow loading is shown in Figure J.58.
This figure clearly shows a huge drop in steady cross-flow loading amplitude when compared to the results
obtained for pontoon 6 as depicted in Figure J.59.
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Figure J.57: Mesh used for the elongated pontoon geometry of with a 36 m cross-flow dimension.

Figure J.58: Cross-flow loading versus time for the 3D-analysis of the elongated pontoon geometry.

The energy content per frequency also shows a large difference when compared to the reference
pontoon. This is depicted in Figures J.60 and J.61. The Figures show that the cross-flow loading is
spread across more frequencies for the elongated shape when compared to pontoon 6.

It is clear that changing the pontoon shape has advantages, even a simple change like the one analysed
in this section already provides quite an improvement over the original situation. Changing the shape
to a more elongated one is, however, not without risks. If the pontoons are not correctly aligned with
respect to the current direction, there is a risk of galloping [DX16].
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Figure J.59: Cross-flow loading versus time for the 3D-analysis of pontoon 6.

Figure J.60: Frequency spectrum of cross-flow load for the 3D-analysis of the elongated pontoon geometry.
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Figure J.61: Frequency spectrum of cross-flow load for the 3D-analysis of pontoon 6.
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J.3.9.3 Dynamic absorber (tuned mass damper)

A dynamic absorber (or tuned mass damper) is an auxiliary mass, attached to the primary structure using
springs and dampers or as a pendulum, used to ’absorb’ the energy of certain vibrations from the primary
structure by vibrating itself. Examples of how a dynamic absorber may be included in the pontoon design
is shown in Figure J.62. From this image it is obvious that using a pendulum as a dynamic absorber
is an extremely bad idea in this situation, since the pendulum load is applied above the pontoon center
of buoyancy, increasing the destabilizing moment when the pontoon rotates. More information on this
is found in section A.4.1. The option where the mass is located beneath the center of buoyancy makes
more sense in this situation.

Figure J.62: Dynamic absorbers.

The goal for the dynamic absorber is to dimension the mass and spring stiffness in a manner that puts
its eigenfrequency at the undesired frequency of vibration for the primary structure. The more energy
the absorber can absorb from the vibration of the primary structure, the better. This can be achieved by
maximizing the absorber mass and velocity during vibration within the confines of the pontoon structure.

J.4 Conclusions

The overall conclusions that can be drawn from the research into the bridge design in relation to vortex
induced vibrations induced by the current at the bridge location are presented here.

The bridge system is highly sensitive to vortex induced vibrations induced by tidal current. Every
analysis performed to investigate this sensitivity, from the ’semi-2D’ to the coupled analysis, has shown
that the structure is very sensitive. No precise measure of the extent of the vortex induced motions is
provided, as results calculated in the coupled analysis seem to be outside the range reasonable results
and need to be validated.

It is obvious a solution is necessary for the issue of vortex induced vibration and a few initial sugges-
tions to this effect have been given.
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Appendix K

Cable fatigue

This appendix contains research into fatigue of the cable system used to anchor the bridge design. For
more information on the precise cable (system) design, reference is made to section A.5 and appendix C.
This appendix contains a short introduction into the theory of fatigue damage and how it applies to steel
cables. Then the research set-up used to investigate this phenomenon in the bridge model is described,
after which the research results and conclusions are presented.

K.1 Theory

Fatigue is the accumulation of (at first) microscopic cracks in materials, mostly concentrated around
small material imperfections or discontinuities. These cracks form due to stresses in the material peaking
around these imperfections and thus causing small plastic (permanent) deformations of the material. This
damage can occur at total stress levels much lower than the yield stress of the material. If this process
occurs once, the effect is negligible and the structural element will be mostly unaffected. However, when
the process is cyclical in nature, each cycle introduces more cracking and growth of the cracks until the
structural element fails [Lal14].

This can be applied in structural design using rule called the Palmgren-Miner rule, for which the
expression is shown in Equation K.1. The idea behind this rule is that a certain cyclical load introduces
a certain amount of damage, which is a fraction of the damage at which the structural element fails.
When there are enough cycles of the load, the damage reaches the damage level of failure. This simple
model allows the combination of different load cycles and accompanying fractions of total damage to be
identified and analysed to see if they, together, lead to structural failure [Cam12].

N∑
i=1

Di = D (K.1)

In which;

N is the number of load cycles of the load introducing damage Di

Di is the amount of damage per load cycle as a fraction of total damage D

D is the total damage at failure of the structural component

The relation between the loading and the amount of cycles until a structure fails can be shown visually
using a Woehler diagram. An example of such a Woehler diagram for the axial loading of a steel cable
is given in Figure K.1. In this diagram the load cycles are displayed as the normalized force range
shown on the vertical axis and the black line shows the amount of cycles the cable can sustain under this
loading before failure. The constant stress around which the load fluctuates is also an important factor,
as is shown by the fact that changing this load changes the position of the lines. Figure K.2 shows a
visualisation of the load amplitude, and minimum and maximum loading during a load cycle.

To determine the relations between axial minimum load, load amplitudes and cycles to failure, material
tests have been performed, in which, in the case of cables, cables have been loaded to failure at different
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Figure K.1: Woehler diagram for a steel cable [Fey07].

Figure K.2: One load cycle, with minimum, maximum and load amplitude indicated [Fey07].

values for all variables. The result of extensive testing has been the creation of an equation best fitting
the test results [Fey07]. This expression is shown in Equation K.2.

logN = a0 + a1 · log
2 Sa d

2
e

d2 Se
+ a2 ·

Slower d
2
e

d2 Se
+ a3 ·

(
Slower d

2
e

d2 Se

)2

+ a4 · log
d

de
+ a5 · log z (K.2)

In which;

N is the number of load cycles

ai are scaling variables, determined through testing

Sa is the amplitude of the load cycle

de is a unit length, to make the expression dimensionless

d is the nominal rope diameter

Se is a unit force, to make the expression dimensionless

Slower is the lower limit of the force cycle

z is the number of wires in the rope

The ai values have been determined from testing using regression calculations and differ for different
wire rope dimensions and cross section designs. Using this expression, the Woehler diagram depicted in
Figure K.1 is created, with the caveat that since no extensive testing has been performed beyond 2 · 106

cycles and the results do not allow for the derivation of a relation between the loading and the amount of
cycles. Supposing that a constant fatigue strength does not exist, the line is continued using a fictitious
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continuation of the fatigue strength line [Hai89]. The expression for the fictitious continuation is shown
in Equation K.3.

N = ND

 2
Sa

d2

2
SaD

d2


2 a1+1

(K.3)

In which;

N is the number of load cycles

ND is the number of load cycles from which the fictitious conservative continuation of the
fatigue strength line starts, taken as 2 · 106 cycles

SaD
d2

is the force range at the number of load cycles ND

Sa is the amplitude of the load cycle

a1 is a scaling variable, determined through testing

d is the nominal rope diameter

K.2 Set-up

The set-up of the research performed in this appendix is described in this section. First the scope of
the research is set. The scope is set at fatigue loading induced due to axial loads in the cables. Cable
bending is not considered since the curvature changes of the cables in the cable system design are of a
much smaller magnitude than the ones considered in empirical testing, where steel cables running along
sheaves are considered [Fey07].

The scope is set further by limiting the investigation to the six critical wave load cases defined in
section E and shown in Table K.1. These load cases correspond to storms occurring once in a 100 years
and they should provide a maximum level of fatigue damage that the wave loading at the bridge location
can induce (per cycle). Therefore the steady state analysis of the bridge structure as a result of these
six load cases is taken as the basis for the calculation of the fatigue damage to the bridge structure. For
more information on this analysis, reference is made to appendix E.

Loadcase Wave direction - height
- wavelength

Current direction

1 180◦ - 4.55 m - 33 m Inwards

2 180◦ - 4.55 m - 33 m Outwards

3 240◦ - 4.79 m - 36 m Inwards

4 240◦ - 4.79 m - 36 m Outwards

5 270◦ - 4.36 m - 36 m Inwards

6 270◦ - 4.36 m - 36 m Outwards

Table K.1: Wave load cases.

From the results of the steady state analyses, the minimum stress (Slower) and stress amplitude (Sa)
are determined per cable node in the system. Subsequently, the axial stresses in the cable strands are
calculated using the expression shown in Equation K.4. Then the amount of load cycles until strand
failure at these load levels is calculated per node using Equation K.2. The values used for the ai variables
in this thesis are taken from tests on ropes closely resembling the strands used in the main and lateral
cable designs [Fey07]. Table K.2 compares the test ropes to the strand designs.

ZT,i =
Ei Ai cos2 β∑

all wires

Ei Ai cos3 β
T (K.4)

In which;
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ZT,i is the tensile force in a single strand

Ei is the strand elasticity modulus

Ai is the strand sectional area

β is the lay angle of the wire or strand

T is the tensile force acting on the rope

Nominal diame-
ter [mm]

Wires Layers Nominal strength
[N mm−2]

Casey (1993) [Cas93] 40 135 6 1770

Lateral cable strand 42.3 61 4 1860

Wehking and Klopfer
(2000) [Weh00]

127 292 10 1770

Main cable strand 123 1261 20 1860

Table K.2: Test and design cable properties.

The ai values used for the main and lateral cable fatigue cycle calculations are displayed in Table K.3.

a0 a1 a2 a3 a4 a5

Lateral cable strand 20.587 -5.420 -0.00019 -0.000024 -1.040 0

Main cable strand 15.401 -3.910 0.00118 -0.0000037 -0.793 0.399

Table K.3: ai values for the main and lateral cable fatigue calculations

K.3 Results

The results of the analysis are in terms of cycles to strand failure at each node of the cable bending system.
A distinction has been made between the main- and lateral cables due to their differing dimensions. The
results are depicted in the Woehler diagrams shown in Figures K.3 and K.4 in which the results for all
load cases are shown together. These Woehler diagrams also contain fatigue strength lines for the strands
at two minimum stress levels to visually represent the cycle limits for the two cable designs.

To show the distribution of the stress amplitude across the cable system, colour-coded visualisations
of the stress amplitudes for the different wave load cases are presented in Figure K.5. It should be noted
that the colour-coding is different for each plot, so for direct comparison reference is made to the plot
legends.
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K.3. RESULTS

Figure K.3: Woehler diagram for the main cable strands with calculated cycles for the loads observed in
the main cable nodes.

Figure K.4: Woehler diagram for the main cable strands with calculated cycles for the loads observed in
the lateral cable nodes.
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K.3. RESULTS

Figure K.5: Load amplitude values for the different load cases.
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K.4. CONCLUSIONS

K.4 Conclusions

The conclusion to be drawn from this analysis is simple; based on the obtained results, fatigue induced
by wave loading should not be an issue for the bridge design. This is clearly visible in the two Woehler
diagrams presented in Figures K.3 and K.4. A quick calculation using the minimum cycles and minimum
wave period shows that for the main cable to experience a single strand failure due to the wave loads
would take, at minimum, approximately 1013 · 4.6 s = 1.46 · 106 years. For the lateral cable this number
is slightly lower at approximately 1012 · 4.6 s = 1.46 · 105 years.

This is also explained by the load amplitudes calculated and depicted in Figure K.5. The maximal
axial load amplitude calculated is 783 kN. Comparing this to the design static axial load values for
the main- and lateral cables, 930 000 kN and 53 000 kN, respectively, shows the difference in order of
magnitude.

Bending stresses have not been a part of the research presented here and will be an influence on
the fatigue life. Their influence is, however, expected to be marginal and it is not expected that their
inclusion will lead to cable fatigue being decisive in the bridge design.
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