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1

INTRODUCTION

This thesis is concerned with the maximal regularity problem for parabolic boundary
value problems with inhomogeneous boundary conditions in the setting of weighted
function spaces and related function space theoretic problems. This in particularly in-
cludes weighted L;-L,-maximal regularity but also weighted L,-maximal regularity in
weighted Triebel-Lizorkin spaces. The weights we consider are power weights in time
and in space, and yield flexibility in the optimal regularity of the initial-boundary data
and allow to avoid compatibility conditions at the boundary. Moreover, the use of scales
of weighted Triebel-Lizorkin spaces also provides a quantitative smoothing effect for the
solution on the interior of the domain.

Section 1.1 introduces the subject of this thesis by discussing the weighted Lg-L)-
maximal regularity problem for parabolic boundary value problem.

Section 1.2 subsequently gives a systematic outline of the main part of the thesis,
which consists of five chapters (based on and corresponding to the respective five pa-
pers [161], [158], [164], [166] and [122]) with their own introductions and preliminaries.

In this chapter we only provide the most important references for the purpose of
introducing the subject of the present thesis. More extensive citations can be found in
the main part of the thesis.

1.1. GENERAL INTRODUCTION

During the last 25 years, maximal regularity has become an important tool in the the-
ory of nonlinear parabolic partial differential equations. Maximal regularity means that
there is an isomorphism between the data and the solution of the linear problem in
suitable function spaces. Having established such sharp estimates for the linearized
problem (in fact the best possible), the nonlinear problem can be treated with quite
simple tools as the contraction principle and the implicit function theorem (see [198]).
Let us mention [11, 52] for approaches in spaces of continuous functions, [1, 168] for
approaches in Holder spaces and [5, 8, 49, 50, 86, 196, 198] for approaches in L,-spaces
(with p € (1,00)). Concretely, the concept of maximal regularity has found its applica-
tion in a great variety of physical, chemical and biological phenomena, like reaction-
diffusion processes, phase field models, chemotactic behaviour, population dynamics,
phase transitions and the behaviour of two phase fluids, for instance (see e.g. [178, 198,
199, 204]).
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An abstract Cauchy problem
W' () +Au® = f() (t€]), u(0)=0, 1.1

in a Banach space E on a time interval J = (0, T) with T € (0,00], where A is a densely
defined closed linear operator on E with domain D(A), is said to have the property of
maximal Lq-regularity, q € (1,00), if for each function f € L, (J; E) there exists a unique
solution u € W; (J; EYn Ly(J; D(A)) of (1.1). Having maximal L,-regularity for (1.1), the
corresponding version

u'(0)+Au@®) = f(1) (te]), u(0)=up, (1.2)

with a non-zero initial value can be easily treated via an application of related trace the-
orems. As a consequence of the closed graph theorem!, an equivalent formulation of
maximal L,-regularity for (1.1) is that the map

% +A: Oqu(];E) NLy(J;D(A) — L4(J; E)
is an isomorphism of Banach spaces, where oW; (J; E) denotes the closed subspace of
W; (J; E) consisting of all functions which have a vanishing time trace at ¢ = 0. It was
already observed in [229] that (1.1) has maximal L4-regularity for some q € (1,00) if and
only if it has maximal L -regularity for every g € (1,00).

As an application of its operator-valued Fourier multiplier theorem, Weis [244] char-
acterized maximal L -regularity in terms of R-sectoriality in the setting of Banach spaces
E which are of class UMD (see Section 6.3.2). A second approach to the maximal L-
regularity problem is via the operator sum method, as initiated by Da Prato & Grisvard
[53] and extended by Dore & Venni [78] and Kalton & Weis [134] (see Sections 5.2.3 and
6.3.2).

Many concrete linear parabolic PDE’s can be formulated as an abstract Cauchy prob-
lem (1.1) (or (1.2)). For this thesis an important class of examples are the autonomous
vector-valued parabolic initial-boundary value problems with boundary conditions of
static type subject to homogeneous initial-boundary data, i.e. problems of the form

Oru(x, )+ (x,Du(x,t) =f(xt), xe€O, te],
Bj(x,D)u(x,t) =0, xedl, te], j=1,...,n, (1.3)
u(x,0) =0, X€EO,

where J = (0, T) for some T € (0,00), & is a domain in R? with a compact smooth bound-
ary 00, & (x, D) is partial differential operator of order 2n having 98(X)-valued smooth
variable coefficients, and the 98 (x, D) are partial differential boundary operators of or-
der n; < 2n having %(X)-valued smooth variable coefficients, where X a fixed Banach
space. One could for instance take X = C", describing a system of N initial-boundary
value problems.

1In concrete situations one can often obtain explicit estimates.
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For these problems an abstract formulation of the form (1.1) is possible in the L,-
setting, p € (1,00): just take A to be the L,-realization of the corresponding differential
boundary value problem, i.e., consider the Banach space E = L,,(0’; X) and the operator
Aon E given by

D(A) = {ve W, (0;X) : Bjv=0(0nd0),j=1,...,n},
Av=4v.

Then the associated abstract Cauchy problem (1.1) has maximal L,-regularity if and
only if for each f € Lq(J; Lp(ﬁ; X)) there exists a unique solution u € qu J; L,,(ﬁ; X)n
LqU; Wg” (0; X)) of (1.3), in which case we say that (1.3) enjoys the property of maximal
Lg-Ly-regularity.

Denk, Hieber & Priiss [59] proved maximal L;-L,-regularity for a large class of prob-
lems of the form (1.3), with as structural assumptions an ellipticity condition and a
condition of Lopatinskii-Shapiro type, in the setting of UMD spaces; in fact, also non-
autonomous versions were treated in which the top order coefficients of the operators
are assumed to be bounded and uniformly continuous (allowing for perturbation argu-
ments). Earlier works in this direction include [58, 80-82, 120, 121, 202], all concerning
scalar-valued 2nd order problems having special boundary conditions (mainly Dirich-
let).

The linear parabolic initial-boundary value problems (1.3) include linearizations
of reaction-diffusion systems and of phase field models with Dirichlet, Neumann and
Robin conditions. However, if one wants to use linearization techniques to treat such
problems with non-linear boundary conditions, then one needs to study versions (1.3)
with boundary inhomogeneities. It is in fact crucial to have a sharp theory for the fully
inhomogeneous version of the linear problem (1.3): the problem

Oiu(x, )+ (x,D)u(x,t) =f(x,t), x€e0, te],
Bj(x,D)u(x,t) =gjx,t), x€d0, te], j=1,..,n, (1.4)
u(x,0) =up(x), x€0,

is said to enjoy the property of maximal L4-Lj,-regularity if there exists a (necessarily
unique) space of initial-boundary data %; j, < L;(J; L,(00; X))" x L,,(€; X) such that for
every f € L,(J; L, (0;X)) it holds that (1.4) has a unique solution u € WL} L Lp(0; X)) N
LqU; Wg”(ﬁ; X)) ifand only if (g = (g1,..., 8n), Uo) € Z;.p.- In this situation there exists a
Banach norm on %; j,, unique up to equivalence, with

Dip. = LqgU;Lp(00;X)" & Ly(0; X)

which makes the associated solution operator a topological linear isomorphism be-
tween the data space L;(J;L,(0; X)) ® Z; 5. and the solution space WL} I Lp(03X) N
Lq(J; WS”(@’; X)). The maximal Ly-Ly-regularity problem for (1.4) consists of estab-
lishing maximal L-L,-regularity for (1.4) and explicitly determining the space Z; , to-
gether with a Banach norm as above.
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The maximal L,-Ly-regularity problem for (1.4) was solved by Denk, Hieber & Priiss
[61], who used operator sum methods in combination with tools from vector-valued
harmonic analysis; as in [59], also non-autonomous versions were considered in which
the top order coefficient of the operators are assumed to be bounded and uniformly
continuous. Earlier works on this problem are [152] (q = p) and [243] (p < q) for scalar-
valued 2nd order problems with Dirichlet and Neumann boundary conditions. Later,
the results of [61] for the case that g = p have been extended by Meyries & Schnaubelt
[180] to the setting of temporal power weights v, () = t*, u € [0, g — 1) (also see [176]).
After that, the results of [61, 180] were simultaneously extended by myself in [159] (also
see [156]) for the full range g, p € (1,00) to the setting of the temporal and spatial power
weights

vu()=t" and wd’ (x) = dist(x,00)" (1.5)

with g€ (-1,g-1) and y € (-1, p—1). Works in which maximal L;-L,-regularity of other
problems with inhomogeneous boundary conditions are studied, include [54, 65, 66, 86,
180] (the case g = p) and [186, 227] (the case g # p). Some of the results from [159]
have been applied in [72, 73] to the study of maximal L,-Lj,-regularity for parabolic
boundary value problems on the half-space in which the elliptic operators have leading
coefficients from the VMO class in both the time and the space variables.

Preceding the weighted maximal regularity approach in [180], Priiss & Simonett [197]
had already initiated a weighted maximal L,-regularity approach for abstract Cauchy
problems (1.1)/(1.2). Here it is proposed to work in the weighted Lebesgue-Bochner
spaces

LyuU5E) = LyU, v E) = {ue LoU;E) : /||u(r)||gvu(t)dt<oo},
J

equipped with the natural norm, for the power weights v, () = tH uel0,q- 1).2 Having
maximal L, ,-regularity for (1.1),° the problem (1.2) can be solved for initial values ug
belonging to the real interpolation space (E, D(A));_1, 0.q° The space of initial values
(E, D(A))l,%(umﬂ gets closer to the space E when qgets closer to g — 1, giving a reduc-
tion in the required initial regularity. Here the intuition is that the weight v, gives more
compensation for rough behaviour near the initial time as the weight parameter p in-
creases. Besides this extra flexibility of treating rougher initial data, the weights also give
an inherent smoothing effect of the solutions.

The temporal power weights v, give corresponding benefits in [180] for (1.4). Fur-
thermore, these weights allow to avoid compatibility conditions at the boundary. In
[176, 177], this weighted maximal regularity approach was used to establish conver-
gence to equilibria and the existence of global attractors in high norms.

The spatial power weights wgﬁ in [159] additionally yield flexibility in the boundary
data. In order to make this explicit, let us for reasons of exposition state [159, Theo-

2The authors actually use a different parametrization of the weights.
3Maximal Lg,u-regularity is defined analogously to maximal L4-regularity with the natural modifications.
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rem 3.4], the main result of [159], for the easy case of the scalar-valued heat equation

Oiu—Au =f on Jx0O,
UWoo =8 on Jxa0, (1.6)
u0 =up on O.

Theorem 1.1.1. (/159, Example 3.6]) Let ] = (0, T) with T € (0,00) and let © be a C*°-
domain inR% with compact boundaryd0. Letq,p € (1,00), u€ (-1,q—1) andy € (-1, p—
1) bessuch that2—§(1+p) # %(1+7/)_ Let v, and wl? beas in (1.5). Then the problem (1.6)
has the property of Lg,.-Lp,y-maximal regularity with space of initial-boundary data

1
1—5(14—

) 2—=(1+y)
) Fo U v Ly@ON N LU, v Fyy | (00)
€

X
Uo

Dib. = ( 8
2—%(1+

0 36
p.a (@, wy™)

tr;—0g = trys Uy when2 — %,(1 + 1) > ’—1?(1 +y) 3,

thatis, u— (0;u—Au,tryou, tr;—ou) defines an isomorphism of Banach spaces
Wa U, 0 Lp (0, w09 Ly, v WA(O, W) — Ly, 0 Lp (0, wO)) x D .
In particular, (1.6) has a unique solution u € Wc} U, v Ly (O, w‘ym))qu(], Vi Wj(ﬁ, w?ﬁ))
ifand only the data (f, g, up) satisfy:
* feLqU,vu;Lp(0,wi9));

1- 2 (+y) 2-51+y) .
* g€k, U, v Lp(0O) N LgU, vy Fp (600)) (boundary regularity);

2
2-2(1+p)

* € prq

0, wgﬁ) (initial regularity);
° try—08 =trapup when2— %( 1+p)> ’—17(1 +7) (compatibility condition).

The main contribution of the above result is the treatment of the boundary inho-
mogeneity g. So let us focus on this and for simplicity assume p = 0. Note that, setting
0=0py=1- 124’—;' and using the trivial identity B}, , = F;, ,, the boundary datum g has to
be in the intersection space

F} ,U;L,(00)) n Ly(J; B, 00)), (L7
which in the case g = p coincides with
B ,(;L,(00) N Ly(J; BY,(00)) = W2 (J; L,00) N Ly (; W2 (00));  (1.8)

here F;;'p denotes a Triebel-Lizorkin space and W,j = B;, p anon-integer order Sobolev-
Slobodeckii space or Besov space.
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The space (1.8) for the special case g = p and u = 0 already nicely shows the effect
of the spatial weight wﬁﬁ on the sharp regularity of the boundary inhomogeneity g. In

particular, we see that6 =6, =1- 1;—; € (%, D\{1- %} can be taken arbitrarily close to

% by choosing y arbitrarily close to p — 1.

However, it is desirable to have maximal L,-Lj-regularity for the full range q,p €
(1,00), as this enables one to treat more nonlinearities. For instance, one often requires
large g and p due to better Sobolev embeddings, and g # p due to criticality and/or scal-
ing invariance (see e.g. [97, 141, 199, 203, 204]). The latter has in particularly turned out
to be crucial in applications to the Navier-Stokes equations, convection-diffusion equa-
tions, the Nernst-Planck-Poisson equations in electro-chemistry, chemotaxis equations
and the MHD equations (see [199, 204]).

For (1.4) the case g # p is much more involved than the case g = p on the function
space theoretic part of the problem due to the inhomogeneous boundary conditions.
This is not only already reflected in the space of initial-boundary data for the special case
(1.6) through the appearance of the intersection space describing the sharp boundary
regularity ((1.7) versus (1.8)), but also in the proof(s) due to a lack of Fubini in the form
of Ly[Lp]l = Ly[Ly]l when g # p.

Let us say something about the difficulties in the proof for (1.4) in the case g # p. In
[61] the proof of the solution to the L;-L,-maximal regularity problem for (1.4) is treated
separately for the cases g # p and g = p with completely different proofs ([61, Theo-
rem 2.3] versus [61, Theorem 2.2]). Whereas the proof for the case g = p (see [176, 180]
for more details) is reasonably natural and uses a Fourier transform in time in combina-
tion with representation formulae for the corresponding elliptic problems, the proof for
the case g # p relies on very complicated and clever ad hoc arguments (already know-
ing how the space of initial-boundary data should look like thanks to Weidemaier [243]).
In [159] there is no separation into the cases g # p and g = p: there is one proof that
also uses a Fourier transform in time in combination with representation formulae for
the corresponding elliptic problems (slightly different from the ones in [61, 180], see
[159, Remark 6.4]), but additionally uses the theory of anisotropic mixed-norm function
spaces as considered in [131] (partly developed in [159] as well). Here we have to remark
that some of the underlying anisotropic function space theory used in [159] simplifies a
lot in the case g = p thanks to the availability of Fubini in the form of Ly[L,] = Lp[Lg].

Whereas the maximal regularity space

W, U; Lp(0) N Ly (J; WS (0) (1.9)

and the space of boundary data

1
F) Ui Lp@O) N Ly(; F,00)),  6=08,=1- o (1.10)

are only viewed as intersection spaces in [61, 180], in [159] they are also viewed as anisotropic
mixed-norm function spaces, described in a distribution space theoretic or Fourier an-
alytic way, as considered in [131].
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For (1.9) it is very easy to give such a description. Indeed, the maximal regular-
ity space in (1.9) can naturally be identified with the anisotropic mixed-norm Sobolev
space

Wi (O x N ={ue D' (0 x]):01,05u€ Lipg) (0 x ), el <2}, (1.11)

where the mixed-norm Lebesgue space

plq 1/q
L(p,q)(ﬁxf)={f€L0(ﬁ><Di(/(/ If(x,t)lpdx) dt) <oo}
J\JO

can be naturally identified with the Lebesgue Bochner space L, (J; Ly (0)). However, for
(1.10) a description as a suitable mixed-norm anisotropic function space is highly non-
trivial and will be treated in Chapter 2.

The main result of Chapter 2 actually is an intersection representation for a class
of anisotropic vector-valued function spaces in an axiomatic setting a la Hedberg &
Netrusov [119], which includes weighted anisotropic mixed-norm Besov and Triebel-
Lizorkin spaces. In Theorem 1.1.2 below we state a special case of weighted anisotropic
mixed-norm Triebel-Lizorkin spaces.

Let us first introduce the setting of Theorem 1.1.2. To this end, recall that, as a con-
sequence of [61, Theorem 2.3] for the special case (1.6) (see Theorem 1.1.1 for the ex-
tension to the weighted setting), the intersection space (1.10) is the spatial trace space
of the maximal regularity space (1.9). On the other hand, this spatial trace space could
be determined by viewing (1.9) as the anisotropic mixed-norm Sobolev space (1.11) and
reducing the situation to the full Euclidean space R?*! = R? x R by standard localization
arguments. This leads us to determining the spatial trace space of W((jblﬁ (R4 x R). The
latter has actually been done by Johnsen & Sickel [131] using anisotropic Littlewood-
Paley decompositions.

Anisotropic Littlewood-Paley decompositions for WY (R4 x R) can be formulated

(p.q)
by means of anisotropic mixed-norm Triebel-Lizorkin spaces: for instance,

1
W2 R xR) = 2 (R x R) (1.12)

(P, (p,q),2
with an equivalence of norms. Instead of smoothness s = 1 and anisotropy a = (%, 1) on
the right-hand side, we could take the scaled version s =1 and a = A(%, 1) for any A > 0.
However, smoothness 1 with respect to the anisotropy (%, 1) seems to be a natural way
to think of W((Z'U (R x R) as it nicely fits with the viewpoint of it being of order 1 with

p.q)
respect to the parabolic operator 6, — Ay.

1
The anisotropic mixed-norm Triebel-Lizorkin space F:;Z;lz (RYxR) for se R, r €
[1,00] is defined analogously to the classical isotropic Triebel-Lizorkin space F;YT(Rd)
(see Section 6.3.4), but with an underlying Littlewood-Paley decomposition of R x R

that is adapted to the (%, 1)-anisotropic (or 2nd order parabolic) scalings

1
57" €0 =000, Ae(,00). (1.13)
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Intuitively the dilation structure (1.13) causes a decay behaviour on the Fourier side at
different rates in the two components of R% x R in such a way that smoothness s € (0,00)
with respect to the anisotropy (%, 1) corresponds to smoothness 2s in the spatial direc-
tion and smoothness s in the time direction. One way to look at the intersection repre-
sentation (1.18) is as a way to make this intuition precise.

Regarding spatial traces, by [131, Theorem 2.2], the trace operator Tr : u — Ui} cpd-1)xg
defines a retraction

s=35:(3.1)

RYxR) — F R x R) (1.14)

EEYC )
Tr: F (pa)p

(P"i),r
forevery se (ﬁ,oo) and r € [1,00]. Combining this with the Littlewood-Paley decompo-
sition (1.12), a corollary to this result is that

LICRY

@1 md
Tr: W, R xR — F, 00

1
RIIxR), §=6,=1-—, 1.15
( ) p 2p (1.15)
is a retraction as well. The intersection space (1.10) being the spatial trace space of the
maximal regularity space (1.9), this suggests that

e

(pq)p(Rd "% R) =F) ,(R; L, R N Ly (R; F5), R (1.16)

The intersection representation (1.16) with a general anisotropy (a, b) instead of (%, 1)
was proved by Denk & Kaip [63, Proposition 3.23]: for every g, p € (1,00), a, b € (0,00) and
s€(0,00),

s(ub) d-1 s/b d-1 sla mpd—1
(pq)p([R xR) = F (IR Ly(R ))nLq(IRF (R*)). (1.17)

This identity was obtained by comparing the trace result [131, Theorem 2.2] by Johnsen
& Sickel with a trace result by Berkolaiko [24, 25].

In (1.17) itis crucial that the microscopic parameter p coincides with the inner com-
ponent of the integrability parameter (p, g) in F(sp(‘;)b; (R%~! x R). Besides that the proof
given in [63, Proposition 3.23] heavily relies on that, it is also very important for the
statement itself. One way to look at this is through Fubini in the form of L, ¢)[€,] =
Lgl€p](Lp): inspecting (1.17) and recalling the definition of (anisotropic mixed-norm)
Triebel-Lizorkin spaces (see Section 6.3.4), we realize that the order of Lp([Rd‘l) and
¢, (N) is interchanged in the first space on the right-hand side. Theorem 1.1.2 in par-
ticularly says that this is actually not necessary for the result itself, at the cost of work-
ing with a more complicated function space: It is formulated in the setting of weighted
mixed-norm anisotropic Banach space-valued function spaces (see Section 6.3.4).

Theorem 1.1.2. Let X be a Banach space, a, b € (0,00), s € (0,00), p,q € (1,00), r € [1,00],
weApR") andve Ay[R™). Then

FlO ®" x R™, (w, v); X) = Fl P R”, v; Ly ®", w); X) N Ly ®"™, v; Flf (R", w; X)), (1.18)

where, for E = L,([R", w),

7, R™ EX) = {f € 7' ®R™ EX0) : @57 St i € Ly RS ELL (NI}
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with (S) xen a Littlewood-Paley decomposition of R™.

The above theorem was established in my master thesis [156, Proposition 5.2.38] un-
der the restriction r > 1. As already mentioned eatlier, in Chapter 2 we will actually treat
a much more general and more systematic intersection representation, see Section 2.5.
In particular, Theorem 1.1.2 extends to the setting of general A.,-weights, in which the
statement becomes more technical.

In the case p = r, Fubini yields [Ff/,lr“([ﬂim, v; Ly (R, w); X) = Ff,,/g([Rm, v; Ly (R", w; X))
and F,f,{,“([R”, w; X) = B;,/“(R", w; X), and we obtain an extension of the intersection rep-

P
resentation (1.17) to decompositions R? = R” xR™ in the weighted Banach space-valued
setting:

s,(a,b) . _ 1slb . . . s/ .
F(pyq)'p(ﬂ%”xﬂ?m,(w, v); X) —F;,,,(Rm,v,Lp(IR",w,X))ﬂLq(R’",v,B;,,‘j(R",w,X)). (1.19)

In the form of (1.19), Theorem 1.1.2 is one of the main ingredients in the proof of
[159, Theorem 3.4] (a version of Theorem 1.1.1 for the general case (1.4)). Another main
ingredient is [159, Theorem 4.6], an extension of (1.15) to the weighted Banach space-
valued setting.

Crucial to the proof of Theorem 1.1.2 are difference norm characterizations for the
spaces F{ ") R" xR™, (w, v); X), Fy P (R™, v; L, (R", w); X) and Ly (R™, v; Fy/f (R", w; X).
This is especially quite involved for [Fﬁ,{ l,”([Rm, v; L, (R", w); X). Let us for illustrational
purposes state such a difference norm characterization for [Ff,yq([R%d, w; E; X) (see Theo-

rem 2.4.7).

Proposition 1.1.3. Let X be a Banach space E a UMD Banach function space (e.g. E =
L, (S) withr € (1,00)), pe(1,00), g€ [1,00], we Ap(le) and s € (0,00). Given m € N with
m > s, there is the equivalence of extended norms

lqu

o0
i) — 278 AP, fdnl|%)
“f“[Ff,,q(Rd,w,E,X) ||f||L,,([Red,w,E(X)) ||(]g,1 H /[—1'1]‘1 2-inf ||X LR, w;E)

for f € LR, w; E(X)), where
Apf(x) = fx+h) - f(x), xeR heR?,

and

AT F(0)=Ap... Ay f () = Z(—nf(n?)f(“ (m—jh), xeR% heR®
—— j=0 ]

m times

In the special case E = C we have [F;,'q([Rid, w;E; X) = F;,,q(le, w; X) and the above
proposition becomes an extension of the discrete version of [220, Section 2.3, Proposi-
tion 6] (considered in the proof of that result) to the weighted setting. The difference
norm characterization in [220] in its own turn generalizes the classical difference norm
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characterizations by Strichartz [230] and Triebel [234, Theorem 2.6.3] for scalar-valued
Bessel potential spaces and Triebel-Lizorkin spaces, respectively.

In the scalar-valued setting Sobolev spaces are a special case of Bessel potential
spaces which are in turn a special case of Triebel-Lizorkin spaces:

kmd k md d da
Wp(IR ,w)=Hp([R ,w) and H;([R ,w):F;YZ(IR , W), (1.20)

where p € (1,00), w € Ap([Rd), k € N and s € R. This breaks down in the general Banach
space-valued setting: the identity W;(Rd, w; X) = H,’,f (R, w; X) holds provided that X
is a UMD Banach space, where the UMD property may even be necessary depending
on d, k (see [126]); the Littlewood-Paley decomposition H;, ([Rd, w; X) = F;,Z(Rd, w; X)
holds true if and only if X is isomorphic to a Hilbert space.

However, for every Banach space X there still are the embedding

F’g'l(RZ’ w; X) — Wé‘(Rj, w; X) — Fs,’;oo(R:, w; X), 121
prl([R yw; X) — Hy(RY, w; X) — F), (R, w; X)),

that can in some instances be used through independence on the microscopic parame-
ter g in the Triebel-Lizorkin space F;,, q (R?, w; X) to overcome the unavailability of (1.20).
This idea is due to Scharf, Schmeiler & Sickel [219], who used it to determine the trace
space of W,f (R%; X) for general Banach spaces X. This idea has furthermore been pow-
erful in works by Meyries & Veraar [182, 185, 186] in the direction of trace theory and
Sobolev embedding in a weighted setting, where there are many estimates with mi-
croscopic improvement. In connection to Theorem 1.1.1, anisotropic versions of (1.21)
were used in [159] to extend (1.15) to the weighted Banach space-valued setting.

Although the elementary embedding (1.21) can be quite powerful, in many instances
one needs sharper information on W5 (R, w; X) and H}(R?, w; X). This is for example
the case in the L,-approach to (abstract) evolution and integral equations, both in the
deterministic setting (see e.g. [5, 195, 251]) and in the stochastic setting (see e.g. [69,
191, 192]), where UMD Banach space-valued Sobolev and Bessel potential spaces play
an important role (especially with d = 1).

In the UMD Banach function space-valued setting there still is a Littlewood-Paley
decomposition like H;(Rd, w) = F;,Z(Rd, w) in terms of square functions:

S md . _ S d .
Hp(lR ,w,E)—[prz([RE ,w; E), (1.22)

where E is a UMD Banach function space, p € (1,00), w € Ap (R%) and s € R. The differ-
ence norm characterization from Proposition 1.1.3 thus in particularly contains a dif-
ference norm characterization for H;, ([Rd ,w; E): given m € N with m > s, there is the
equivalence of extended norms

o0
11113t s = VN s + | | 2 1218/

j=1 -1,1

AM fdh|2)1/2” (1.23)
ja 277k Ly(R4,w;E)
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for f € L, RY, w; E).

The main result of Chapter 3 is a version of (1.23) in the general UMD Banach space-
valued setting, see Theorem 1.1.4 below.

We denote by {¢;} jen @ Rademacher sequence on some probability space (Q2, &, P),
i.e. a sequence of independent symmetric {—1, 1}-valued random variables on (Q, &, P).

Theorem 1.1.4. Let X be a UMD Banach space, p € (1,00), w € Ap([Rd), s € (0,00) and
meN, m>s. Suppose that

* K=1(_y ) in the unweighted case w = 1; or
o K€ % (RY) issuch that frm K(y)dy # 0 in the general weighted case.

We then have the equivalence of extended norms

J .
= Z 0Js m.
”fHH’S’(Rd'w;X) @i+ 5}1615 ‘ ‘ j=1812 /IRd K(h)AZ‘fhfdh’ )Lp(Q;Lp(Rd,w;X))

(1.24)
for fe L, RY, w; X).

In Chapter 3 we furthermore, as an application of Theorem 1.1.4, characterize the
boundedness of the indicator function 1,4 of the half-space Rﬁf =R, x R4 as a point-

wise multiplier on H;, (R?, w; X), s € (0,1), in terms of a continuous inclusion of the cor-
responding scalar-valued Bessel potential space H: ;,([R?d, w) into a certain weighted L -
space:

Theorem 1.1.5. Let X # {0} be a UMD space, s € (0,1), p € (1,00) and w € A,,([Rd). Let
ws,p be the weight on R = Rx R given by Wy p(x1,X') := (X117 P w(x1, X) if1x11 < 1 and
ws,p(xl,x’) = w(xy,x") iflx1| > 1. Then 1“1 is a pointwise multiplier on H;(Rd, w; X) if
and only if there is the inclusion

HYR?, w) — L, R, wy, ). (1.25)
In the specific case of the Aj,-power weights wy, y € (-1, p—1), given by
wyGe, x) =lal’, (0, x)eR=RxR, (1.26)

Theorem 1.1.5 gives back a result due to Meyries & Veraar [187]: given a UMD Banach
space X, p € (1,00) and y € (-1,p — 1), it holds that 1ga is @ pointwise multiplier on

H3 (R, wy; X) in the parameter range

1+y 1+vy

-1<s<

In Chapter 4 we provide a simplified proof of the latter (see Theorem 4.4.1), where it
will be used to prove results on the complex interpolation of Sobolev spaces on the half
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line with Dirichlet boundary condition. In this context the half line usually stands for
the time variable and X is a suitable function space for the space variable. So let us
for consistency of notation within this introduction state one of the main results from
Chapter 4 (see Section 4.6.2) as follows.

Theorem 1.1.6. Let E be a UMD space, g € (1,00), p€ (=1,q 1) and v, (t) = t*. Then
1 l+u
[Lq(R+;wp;E);0Wq([R+;V,u;E)]H:0H3(IR+;V/J;E)y 0e(0,1\ 7 )

where Wj (R, vy; E) i= {u € Wi Ry, v B): u(0) = 0} and
Hg(R+,Uu;E), 6<1+TH’

0
Hy(Ry, vy E) i=
oy Ry, Uy {{ueHg(R+,vu;E):trt_ouzo}, g>1+TI{

In the unweighted scalar-valued case u = 0 and X = C, the result was already well-
known and due to Seeley [224], where one of the advantages is that Bessel potential
spaces have a simple square function characterization. The vector-valued result was
already used several times in the literature without proof. The corresponding result for
real interpolation is due to Grisvard [104] and more elementary to prove.

The complex interpolation result has applications in the theory of evolution equa-
tions, as it yields a characterization of the fractional power domains of the time deriva-
tive D((d/dt)e) and D((—d/dt)e) on R, . For instance such spaces can be used in the the-
ory of Volterra equations (see [195, 250, 251]), in evolution equations with form methods
(see [70, 89]), in stochastic evolution equations (see [192]).

As already mentioned op page 4, the L, ;,-maximal regularity (v, -weighted L,-maximal
regularity) approach to evolution equations initiated by Priiss & Simonett [197] enables
one to treat rough initial values. Examples of other papers in evolution equation where
such weights are used include [11, 52, 141, 159, 180, 186, 200]. The monographs [168,
198] are an excellent source for applications of weighted spaces to evolution equations.

From the viewpoint of trace theory it does not make sense to go beyond the range
(=1, g—1) for the temporal weight-parameter w in the L, ;,-maximal regularity approach.
For the treatment of rough initial values it actually already suffices to consider p € [0, g —
1), which is reflected in (E, D(A)), _ % (+,q being the optimal space of initial values ug

in the L, ;,-maximal regularity approach to (1.2).

In the Ly ,-Lp,y-maximal regularity approach to (1.6) (see Theorem 1.1.1) the situ-
ation is different for the spatial weight parameter y. Indeed, here it would make sense
to go beyond the range (-1, p — 1). On the one hand, there still is a trace operator try,
on WS(@’, w%,) forye (p—1,2p—1), so that the Lg,-Ly,y-maximal regularity problem
for (1.6) still is a well-defined question for such y. On the other hand, allowing such val-
ues of y should enable one to treat rougher boundary data: regarding the optimal space
of boundary data

1+
FS U, v Ly@ON N LU, v F2,00)),  §=8py=1- z—py, (1.27)
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note that 6,y € (%, 1) when y € (-1, p—1) while 6, , € (0,1) can be taken arbitrarily close
to 0 by choosing y € (p —1,2p — 1) arbitrarily close to 2p — 1.

Motivated by this, in Chapter 5 we extend Theorem 1.1.1toy € (p—1,2p—1). It turns
out that (1.27) indeed still provides the correct space for the boundary data:

Theorem 1.1.7. Let J = (0, T) with T € (0,00] and let € be a bounded C%-domain in R4,
Letq,p € (1,00), pe (-1,g—1) andy € (-1,2p—1) \ {p — 1} be such that 2 - %(1 +u) #
%(1 +7v). Let v, and wf,ﬁ be as in (1.5). Then the problem (1.6) has the property of Lq ;-
Lp,y-maximal regularity with space of initial-boundary data

1-2£ (1+y) 2-La+y
g Fq,pzp J, v Lp(00))n Ly, Vy;Fp,pp 00))
Dip. = (u € x
0 2-2(1+p)
q 00
Wo.a (@, wy®)

tr;—0g = trys Uo when2 — %7(1 + ) > %(1 +7) b,

that is, u— (0;u — Au,trypu, tr;=ou) defines an isomorphism of Banach spaces
Wa U, 0 Lp (0, w09 1 Ly, 0 WA (O, W) — Ly, 0 Lp (0, w09)) x D .
Here Wy (6, wl?) := (Ly(0, wd?), W3 (O, w?)) s 4 for s € (0,2).

Whereas Theorem 1.1.1 has only been stated for the specific case of the heat equa-
tion (1.6) for reasons of exposition, being an example of [159, Theorem 3.4] on more
general parabolic problems (1.4) as considered by Denk, Hieber & Priiss [61], in Chap-
ter 5 we will not go beyond (1.5). The reason for this is that (1.5) is already involved
enough as a first step outside the Muckenhoupt A-setting for wf;ﬁ.

Given p € (1,00) and y € R, it holds that

wl? =dist(-,00) € A,RY) = ye(-1,p-1), (1.28)

where A,,([Rd) denotes the class of Muckenhoupt A,-weights on R? (see Section 3.2.2).
The main difficulty in the proof of Theorem 1.1.7 in the non-A, setting is that stan-
dard tools from harmonic analysis are not available. For instance, the boundedness of
the Hilbert transform, the boundedness of the Hardy-Littlewood maximal function op-
erator, and the Littlewood-Paley decomposition all hold on L, (R4, wgﬁ) if and only if
Y € (=1, p—1) (see [103, Chapter 9] and [218]).

The proof of Theorem 1.1.7 roughly speaking consists of a function space theoretic
part and an operator theoretic part. In the function space theoretic part we obtain iden-
tifications of the spatial and temporal trace space of the maximal regularity space

Wa U, v Lp(6, w090 0 Ly U, vy WEO, w39)). (1.29)
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Having these identifications, the problem under consideration reduces to the abstract
Cauchy problem (1.1) on J = R, with A the realization of ~A on E = L, (0, wf,ﬁ) with
domain

DA = W21y, (0,w87) = {ue WO, w)”) : trypu=0}.

In the operator theoretic part we establish L, ;,-maximal regularity for this Cauchy prob-
lem through the H*°-calculus (see Section 5.2.3).

Theorem 1.1.8. Let & be a bounded C*-domain inR?. Let p € (1,00) andy € (—1,2p —
1\ {p—1}. Let Apir be the realization of the Laplacian A on Lp(ﬁ, wgﬁ) with domain
D(Apy) = W;Di r(ﬁ , w)‘zﬁ). Then Apj; is the generator of an exponentially stable analytic

Co-semigroup and —Apj; has a bounded H* -calculus of angle zero.

The operator Apj; and its generalizations have been studied in many papers (see
(58, 59, 149]). The main contribution of Theorem 5.1.1 is the treatment of the non-A,-
case. The Ap-case y € (-1, p — 1) can be treated by classical methods, and it can be
derived from the case of general A,-weights which will be considered in Chapter 5 as
well.

Besides L, ,-maximal regularity for the Cauchy problem (1.1) on J = R, with A =
—Apijr, the boundedness of the H*°-calculus has many other interesting consequences
for the operator Ap;, on L,(0, wf,ﬁ). Loosely speaking, the boundedness of the H*°-
calculus can be used as a black box to ensure existence of certain singular integrals. In
particular, the boundedness of the H*°-calculus implies:

¢ Continuous and discrete square function estimates (see [127, Theorems 10.4.4 &
10.4.23]), which are closely related to the classical Littlewood-Paley inequalities.

¢ Bounded imaginary powers and characterizations of fractional domains as com-
plex interpolation spaces (see [110, Theorem 6.6.9] or [235, Theorem 1.15.3]).

e Maximal regularity for the stochastic heat equation on Lp(ﬁ> , w;?ﬁ) (see [192, The-
orem 1.1]).

Analogues of Theorems 1.1.7 and 1.1.8 for second order elliptic operators on weighted
Triebel-Lizorkin spaces have been obtained by myself in [162, 163], which are indepen-
dent from Theorems 1.1.7 and 1.1.8 since in the non- A, -setting Triebel-Lizorkin spaces
do not coincide with Sobolev spaces. The advantage of the scale of weighted Triebel-
Lizorkin spaces is the strong harmonic analytic nature of these function spaces, leading
to the availability of many powerful tools (see e.g. [38-40, 115-118, 163, 182, 185, 186,
228]). In particular, there is a Mikhlin-Hé6rmander Fourier multiplier theorem.

The subresult in Theorem 1.1.8 that Ap;; generates an analytic Cp-semigroup on
L,(O, w?ﬁ) with p € [2,00) and y € (p—1,2p—1) is used by myself & Veraar [167] to treat
the heat equation with multiplicative noise of Dirichlet type at the boundary. There we
use the method developed by Schnaubelt & Veraar [222] for their treatment of parabolic
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problems with multiplicative noise of Neumann type. A model example which fits in
our framework is as follows:

o,u(t,x) =Ault,x) on (0,T] x O,
u(t,x) =C(t,u(t,))(x)0;W(t,x) on(0,T]x00, (1.30)
u0,x) = up(x) on O,

where C is a suitable nonlinearity mapping functions on & to functions on d& and W is
a space-time Brownian noise.

In the application to (1.30) it turns out that y has to be taken in the non-Aj,-range
(p—1,2p—1) in order suppresses the irregularities due to the noise near to the bound-
ary. This goes back to Alos and Bonaccorsi [3] and was further devoloped by Fabri &
Goldys [88], who established existence and uniqueness of L, (&, w?‘/j)-valued solutions
(with p =2,y e (p—1,2p—1) respectively p =2,y € (p—1,2p—1)) for problems with ad-
ditive noise of Dirichlet type at the boundary in the one-dimensional case (in (1.30) ad-
ditive noise would correspond to C = 1). Before the results in [3, 88], Da Prato & Zabczyk
[55] had already shown that an unweighted L,-setting does not provide the right setting
to obtain function-valued solutions: the solution u of the additive case of (1.30) (i.e. with
C=1)is Hj-valued ifand only if s < —%.

It would be interesting to generalize Theorems 1.1.7 and 1.1.8 to the more general
setting of a higher order systems with boundary conditions of Lopatisnkii-Shapiro type
(1.3)/(1.4) as considered by Denk, Hieber & Priiss [59, 61]. Regarding Theorem 1.1.8,
a possible approach could proceed through an extrapolation result due to Martel [171,
Theorem 7.3] in the spirit of Section 5.5.4. Having a suitable extension of Theorem 1.1.8,
we obtain Lg ;- L -maximal regularity for (1.3). As a next step, trace theory would then
subsequently reduce the L, ;- L),y-maximal regularity problem for (1.4) to solving

orulx, )+ (x,D)u(x,t) =0, X€EOD, te],
Bj(x,D)u(x,t) =gjlx,t), x€d0, te], j=1,..,n, (1.31)
u(xyo) :O, xEﬁ,

inan Lg-Lpy-setting.

In Chapter 6 we study the problems of Lg,,-F), ., -maximal regularity and Lq,,- H,, , -
maximal regularity for (1.4), where Ly ,-F ;, r,y-maximal regularity and Lg .- H f,,},-maximal
regularity refer to L, -maximal regularity in the Triebel-Lizorkin space F;,,r(ﬁ ) w?ﬁ)
and L4 ,-maximal regularity in the Bessel potential space H;,(@’, wgﬁ). As in Theo-
rem 1.1.1, let us for reasons of exposition state the main result in this direction for the
easy case of the scalar-valued heat equation (1.6). In view of the identity F), . (&, w?ﬁ) =
Hy (0, w)‘?ﬁ) for y € (-1, p—1) in the scalar-valued setting, we furthermore only formu-

late the Lg,,-F), . -variant.

Theorem 1.1.9. Let J = (0,T) with T € (0,00) and let € be a C®-domain in R? with
compact boundaryd0. Let q, p,r € (1,00), p€ (-1,g-1),y€ (—1,00) and s € (”77’—2, ”TY)
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be such that s+2— % Q+p) # %(l +7). Let vy, and wy be as in (1.5). Then the problem (1.6)
has the property of Lg,.-F), ...-maximal regularity with space of initial-boundary data

S+1-5-(1+y) s+2-L1(1+y)
¢ Fyp 7 UvsLp@O)nLyU, v Fpp 7 (00))
Dip = € x
" o s+2-2(1+p)
Bpq (@, wy)

try—0g =trgpuo whens+2 — %(1 +u) > %(1 +v) 3,

that is, u— (0;u — Au,trypu, tri=ou) defines an isomorphism of Banach spaces
W, U, v Fy (0, w) 0 LU, v Fy 2 (0, wy) — Lo, 05 Fy, (O, w))) x D .

The main result of Chapter 6, Theorem 6.6.2, is a version of Theorem 1.1.9 for (1.4). A
version for second order elliptic operators instead of —A was already obtained by myself
in [163].

Note that Theorem 1.1.9 contains Theorem 1.1.1 as a special case since Fg,z (7 w;?ﬁ )=
Hg (O, w?ﬁ) =Ly(0, wgﬁ) fory € (-1, p—1). In the general setting of (1.4), the Lv/.u'stJ,y'
variant of Theorem 6.6.2 covers [159, Theorem 3.4]. Here it is worth to remark that the
proof of the Lg ,-Lp,y-case of Theorem 6.6.2 simplifies a bit on the function space the-
oretic side of the problem. Moreover, this in particularly yields a simplification of the
previous approaches [61, 180]. than the previous ones ([61] (1 =0, y = 0), [180] (g = p,
pel0,p—1),y=0)and [159]).

Although Lq,u-Fg‘r,y-maximal regularity and L, ,-Lp y-maximal regularity are inde-
pendent notions for y ¢ (-1, p — 1), there still is a connection between the Lg,,-F,, -
maximal regularity problem and the L ,-L ,-maximal regularity problem. This con-
nection is provided by the following combination of a Sobolev embedding and an ele-
mentary embedding:

Jo+ =X
Epy 7 (0,w)0) = FE (0,000 = WE@,wd%),  v>y,rellool.

Indeed, in view of the invariance

V=Y
6=0 =0y, s= ,
pv,s =Opy P

in connection with the optimal space of boundary data
Fg,p(], v Lp(00) N LgU, l/p;F,Z,fSp(aﬁ))

in Theorems 1.1.7 and 1.1.9, a solution operator for (1.31) with f = 0 and yy = 0 in the
v=y
Lg u-Lp,y-case could have been obtained from the Lq,u—Fp";'v—case. In the simple case
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of the heat equation with Dirichlet boundary condition (1.31) this actually would not
simply the proof of Theorem 1.1.7. However, in the general case (1.31) this would be a
good strategy, see the discussion preceding (1.31). The invariance of trace spaces under
Sobolev embedding and related invariance can be a quite powerful tool and is in fact
used in Chapters 5 and 6 (also see Remark 6.4.2 and the references given there).

The main technical ingredient in the proof of Theorem 6.6.2 (see the special case
Theorem 1.1.9) is an analysis of anisotropic Poisson operators and their mapping prop-
erties on weighted mixed-norm anisotropic function spaces. The Poisson operators un-
der consideration naturally occur as (or in) solution operators to the model problems

orulx, )+ +L(D)ulx,t) =0, xeRY, teR,

1.32
BiDu', 1) =gjx,1), xXeR", teR, j=1,..,n, (1.32)

where </ (D) and %;(D) are homogeneous with constant coefficients. Moreover, they
are operators K of the form

Kg(xy,x',t)=@m)™" / WD (x, &, EE, DAE T,  ge LR xR),

R*-1xR
(1.33)
for some anisotropic Poisson symbol-kernel k.

The anisotropic Poisson operator (1.33) is an anisotropic (x/, t)-independent version
of the classical Poisson operator from the Boutet the Monvel calculus. The Boutet the
Monvel calculus is pseudodifferential calculus that in some sense can be considered as
a relatively small "algebra", containing the elliptic boundary value problems as well as
their solution operators (or parametrices). The calculus was introduced by, as the name
already suggests, Boutet de Monvel [32, 33], having its origin in the works of Vishik and
Eskin [241], and was furhter developped in e.g. [105-107, 129, 206]; for an introduction
to or an overview of the subject we refer the reader to [107, 108, 223].

A parameter-dependent version of the Boutet de Monvel calculus has been intro-
duced and worked out by Grubb and collaborators (see [107] in the references given
therein). This calculus contains the parameter-elliptic boundary value problems as well
as their solution operators (or parametrices). In particular, resolvent analysis can be
carried out in this calculus.

In the present paper we also consider a variant of the parameter-dependent Poisson
operators from [107] in the x'-independent setting. Besides that this is one of the key in-
gredients in the proof of Theorem 6.6.2 (see the special case Theorem 1.1.9) through the
anisotropic Poisson operators (1.33), it also forms the basis for our parameter-dependent
estimates in weighted Besov, Triebel-Lizorkin and Bessel potential spaces for the elliptic
boundary value problems

A+ (x,D)u(x) =f(x), XeEO

B;(¥,Du(x) =gj(x), x¥€df, j=1,.,n, (1.34)

in Theorem 6.7.1. These parameter dependent estimates are an extension of [163] on
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second order elliptic boundary value problems subject to the Dirichlet boundary condti-
tion, which was in turn in the spirit of [67, 109].

1.2. OUTLINE OF THE MAIN PART OF THE THESIS

Part I: Harmonic Analysis and Function Spaces

Chapter 2: An Intersection Representation for a Class of Anisotropic Vector-valued
Function Spaces. In this chapter we introduce classes of anisotropic vector-valued
function spaces in an axiomatic setting a la Hedberg&Netrusov, which includes weighted
anisotropic mixed-norm Besov and Triebel-Lizorkin spaces. The main results are Theo-
rem 2.5.1 and Corollary 2.5.2 on intersection representations in this setting, which con-
tain Theorem 1.1.2 as a special case. Crucial ingredients are the estimates in terms of
differences in Section 2.4, which are generalizations of Proposition 1.1.3.

Chapter 3: Difference Norms for Vector-valued Bessel Potential Spaces. In this chap-
ter we study weighted Bessel potential spaces of tempered distributions taking values
in UMD Banach spaces. The main result is Theorem 3.4.1 on a randomized difference
norm characterization for such function spaces H ;,([Rd, w; X). The main ingredients are
R-boundedness results for Fourier multiplier operators from Section 3.3, which are of
independent interest. Theorem 3.4.1 can be considered as a more general version of
Theorem 1.1.4 (also see Theorem 3.1.1) thanks to Examples 3.4.4 and 3.4.5. As an ap-
plication of the randomized difference norm description we characterize the pointwise
multiplier property of IR‘ff on H; (R?, w; X) in Theorem 4.4.1, which corresponds to The-
orem 1.1.5 in this introduction.

Chapter 4: Complex interpolation with Dirichlet boundary conditions on the half

line. Inthischapter we prove results on the complexinterpolation of weighted Sobolev

spaces of distributions taking values in UMD Banach spaces spaces with Dirichlet bound-
ary conditions. The weights that we consider are the Aj,-power weights w, (1.26) with

Y € (-1, p — 1), where p is the integrability parameter under consideration. The main

results are presented in Section 4.6.2 on the halfline. These cover Theorem 1.1.6 and an

application to the characterization of the fractional domain spaces of the first deriva-

tive operator on the halfline. A crucial ingredient is the pointwise multiplier property of

IM on the corresponding weighted Bessel potential spaces H ;([Rd , Wy; X), of which we

provide a new and simpler proof as well (see Theorem 4.4.1).

Part II: Boundary Value Problems

Chapter 5: The Heat Equation subject to the Dirichlet Boundary Condition. In this
chapter we consider the Laplace operator subject to Dirichlet boundary conditions on
a smooth domain in a weighted L, -setting with power weights that fall outside the clas-
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sical class of Muckenhoupt Ap-weights. The first two main result are Theorem 5.6.1
and Corollary 5.6.2, corresponding to Theorem 1.1.8 in this introduction, on the bound-
edness of the H*°-calculus. The third and fourth main result are Theorems 5.7.15 and
5.7.16, of which the second corresponds to Theorem 1.1.7 in this introduction, on the
Lg u-Lp-maximal regularity problem. An important role is played by Sobolev spaces
with power weights outside the A,-range, whose theory is partially developed in Sec-
tions 5.3 and 5.7.

Chapter 6: General Elliptic and Parabolic Boundary Value Problems. In this chapter
we study elliptic and parabolic boundary value problems with inhomogeneous bound-
ary conditions in weighted function spaces of Sobolev, Bessel potential, Besovand Triebel-
Lizorkin type. The first main result is Theorem 6.6.2 on L, ,-maximal regularity in weighted
Triebel-Lizorkin spaces and Bessel potential spaces for the parabolic boundary value
problems (1.4), including Theorem 1.1.9 as a special case. The second main result is
Theorem 6.7.1 on parameter-dependent estimates in weighted Besov, Triebel-Lizorkin
and Bessel potential spaces for the elliptic boundary value problems (1.34). The key
ingredient in this chapter is an analysis of Poisson operators and their mapping proper-
ties, which is carried out in Sections 6.4 and 6.5. The anistropic Poisson operators (1.33)
are a special instance of the Poisson operators that are treated here.
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2

AN INTERSECTION REPRESENTATION FOR A CLASS
OF ANISOTROPIC VECTOR-VALUED FUNCTION SPACES

This chapter is based on the paper:

N. Lindemulder. An Intersection Representation for a Class of Anisotropic Vector-
valued Function Spaces in preparation.

The main result of this paper is an intersection representation for a class of anisotropic
vector-valued function spaces in an axiomatic setting a la Hedberg&Netrusov, which in-
cludes weighted anisotropic mixed-norm Besov and Triebel-Lizorkin spaces. In the spe-
cial case of the classical Triebel-Lizorkin spaces, the intersection representation gives an
improvement of the well-known Fubini property. The motivation comes from the weighted
Lg-Lyp-maximal regularity problem for parabolic boundary value problems, where weighted
anisotropic mixed-norm Triebel-Lizorkin spaces occur as spaces of boundary data.

2010 Mathematics Subject Classification. Primary: 46E35, 46E40; Secondary: 46E30

Key words and phrases.  anisotropic, axiomatic approach, Banach space-valued functions and distribu-
tions, difference norm, Fubini property, intersection representation, maximal function, quasi-Banach func-
tion space
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2.1. INTRODUCTION

The motivation for this paper comes from [159] on the weighted L;-L,-maximal regu-
larity problem for parabolic boundary value problems, which provides an extension of
[61] to the weighted setting.

During the last 25 years, maximal regularity has turned out to be an important tool
in the theory of nonlinear PDEs (see e.g. [1, 5, 8, 11, 49, 50, 52, 84, 97, 141, 149, 168, 178,
180, 196, 198, 199, 203, 204]). Maximal regularity means that there is an isomorphism
between the data and the solution of the problem in suitable function spaces. Having es-
tablished maximal regularity for the linearized problem, many nonlinear problems can
be treated with tools as the contraction principle and the implicit function theorem (see
[198]). Concretely, the concept of maximal regularity has found its application in a great
variety of physical, chemical and biological phenomena, like reaction-diffusion pro-
cesses, phase field models, chemotactic behaviour, population dynamics, phase tran-
sitions and the behaviour of two phase fluids, for instance (see e.g. [178, 198, 199, 204]).

In order to elaborate a bit on the L;-L,-maximal regularity problem for parabolic
boundary value problems, let us for simplicity consider the heat equation with the Dirich-
let boundary condition,

Oculx, t)+Au(x,t) =f(x1), x€e0, te]j,
ulx',r) =g, n, x'edld, re], 2.1
u(x,0) =uplx), xed0,

where J = (0, T) is a finite time interval and ¢ < R? is a C®°-domain with a compact
boundary 4. In the maximal L,-L,-regularity approach to (2.1) one is looking for so-
lutions u in the maximal regularity space

W, (J; Ly (0) N Ly J; W, (O)). 2.2)

The solution to the Lg-L,-maximal regularity problem for (2.1) is classical in the
case g = p (see [152]). However, it is desirable to have maximal L,-L,-regularity for the
full range g, p € (1,00), as this enables one to treat more nonlinearities. For instance,
one often requires large g and p due to better Sobolev embeddings, and g # p due to
criticality and/or scaling invariance (see e.g. [97, 141, 199, 203, 204]). But the case g # p
is much more involved than the case g = p due to a lack of Fubini in the form of L4 [L,] =
Ly[L4] when g # p.

The main difficulty in the L;-L,-maximal regularity approach to (2.1) is the treat-
ment of the boundary inhomogeneity g in the case g # p. In the classical case g =p, g
has to be in the intersection space

B) ,(J; Lp(00) N Ly (J; B, (00)) = W) (J; L, (00)) N L, (J; W5 (90)

with § =1 - ﬁ, where W; = B’s,,p a non-integer order Sobolev-Slobodeckii space or
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Besov space. However, in the general case g has to be in the intersection space

FQ U Lp@O) N LgU; By, (00),  6=1- i, 2.3)
where F; , is a Triebel-Lizorkin space. This was established in [243] in the case p < g and
extended in [61] to the full range for g, p in the more general setting of vector-valued
parabolic boundary value problems with boundary conditions of Lopatinskii-Shapiro
type.

The solution to the Ly-Lp-maximal regularity problem for (2.1) in particularly yields
that the intersection space in (2.3) is the spatial trace space of the maximal regularity
space in (2.2). However, on the one hand, this maximal regularity space (2.2) can natu-
rally be identified with the anisotropic mixed-norm Sobolev space

WED(Ox ) ={ue D' (0 x ]):0,,09u€ Ly (0 x ), lal <2},

where the mixed-norm Lebesgue space

plq 4
L(p,q)(ﬁxﬂ={f€Lo(ﬁxD:(/(/ If(x,t)lpdx) dt) <oo}
J\JO

can be naturally identified with the Lebesgue Bochner space L (J;L,(0)). On the other
hand, in [131] it was shown that the anisotropic mixed-norm Triebel-Lizorkin space
Fs,(%,n

r.a)p
Sobolevspace W((;;; (R xR). This suggest a link between anisotropic mixed-norm Triebel-

Lizorkin spaces and intersection spaces of the form (2.3).

Such a link was in fact obtained in [63, Proposition 3.23] by comparing the trace
result [131, Theorem 2.2] with a trace result from [24, 25]: for every ¢, p € (1,00), a,b €
(0,00) and s € (0,00),

(R4 x R) naturally occurs as the trace space of the anisotropic mixed-norm

Flad @4 < R) = Fyl PR LyR) 0 Ly(R; By (R)). 2.4)

It is the goal of this paper to provide a more systematic approach to the intersec-
tion representation (2.4) and obtain more general versions of it, covering the weighted
Banach space-valued setting. In order to do so, we introduce a new class of anisotropic
vector-valued function spaces in an axiomatic setting a la Hedberg&Netrusov [119], which
includes Banach space-valued weighted anisotropic mixed-norm Besov and Triebel-
Lizorkin spaces.

The main result of this paper is an intersection representation for this new class of
anisotropic function spaces, from which the following theorem can be obtained as a
special case:

Theorem 2.1.1. Leta,b € (0,00), p,q € (1,00), r € [1,00] and s € (0,00). Then

FoleP @ < R™) =Fy /R Ly ®™) N Ly R™; Fy  R"), (2.5)
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where, for E = L,(R"),
Fo, R™E) = {f €. R B): @*7 S ) € La®R ELC,(N)D |
with (S) xen a Littlewood-Paley decomposition of R™.
In the case p = r, Fubini yields F§/?(R"™; L,(R™) = F§/)(R™; L,(R™) and F}/*R") =

B” “(IR”) and we obtain an extension of the intersection representation (2.4) to decom-
posmons R? = R" x R™:
(Sp(c;)b;(Rn x R™M) = Fs/b(Rm Lp([Rn)) ﬂLq(Rm Bs/a(Rn))

In the special case that a = b and p = g, the latter can be viewed as a special instance
of Fubini property. In fact, the main result of this paper, Theorem 2.5.1/2.5.3, extends
the well-known Fubini property for the classical Triebel-Lizorkin spaces F;, q([Rd) (see
[236, Section 4] and the references given therein), see Example 2.5.4. However, as seen in
Theorem 2.1.1, the availability of Fubini is unessential for intersection representations,
it should just be thought of as a way to simplify the function spaces that one has to deal
with in case of its availability.

Notation and convention.

f =Zf, f = g‘lf, where & denotes the Fourier transform, R, = (0,00), C; = {z €
C :Re(z) > 0}, [;(N) ={(an),cCN:(2"ay,), € ?p}, X will denote a Banach space and
(S, o7, u) will denote o -finite measure space.

2.2. PRELIMINARIES
2.2.1. Anisotropy and decomposition

ANISOTROPY ON R%

An anisotropy on R? is a is a symmetric real d x d matrix A with o (A) c R, An anisotropy
A on R? gives rise to a one-parameter group of expansive dilations (A;) teR, given by

A; =t =exp[AIn(r)], teR,,

where R, is considered as multiplicative group.
In the special case A = diag(a) with a = (ay,...,a4) € (0,00)%, the associated one-
parameter group of expansive dilations (A;) rep, is given by

A; = explAln(2)] = diag(¢¥,..., t%), teR,;

Given an anisotropy A on R%, an A-homogeneous distance function is a Borel mea-
surable mapping p : R? — [0, c0) satisfying

3For simplicity of this thesis we work with a restricted notion of anisotropy. In the paper [161] on which this
chapter is based an anisotropy on R4 is a real d x d matrix Awith o(A) c C4, see [71] and the references given
there.
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(i) p(x) =0ifand only if x = 0 (non-degenerate);
(i) p(Aix)=tp(x)forallxe RY re R+ ((Af) ter, -homogeneous);

(iii) there exists c € [1,00) so that p(x+y) < c(p(x)+p(y)) forall x,y € R4 (quasi-triangle
inequality). The smallest such c is denoted cp.

Any two homogeneous quasi-norms pi, p2 associated with an anisotropy A on R4
are equivalent in the sense that

P1(X) Rpypp p2(X), xR

If p is a quasi-norm associated associated with an anisotropy A on R% and A denotes
the Lebesgue measure on R%, then (R?, p, 1) is a space of homogeneous type.

Given an anisotropy A on R?, we define the quasi-norm p,4 associated with A as
follows: we put p 4(0) := 0 and for x € R? \ {0} we define p (x) to be the unique number
pa(x) = A € (0,00) for which Aj-1x € Sd’l, where S9! denotes the unit sphere in R4,
Then

pa(x):=min{d >0:]|A1 x| <1}, x #£0.

The quasi-norm p 4 is C* on R% \ {0}. We write
BA(x, r):=Bp,(x,r)={y€ R% . palx—=y)=r}, X€ [R{d,r € (0,00).
Given an anisotropy A on [Rd, we write
Aﬁlin :=min{A: A eo(A)}, /Lf:lax :=max{l: e o(A)}.

Notethat0< A4, < A4  <oo. It holds that

min max
A A
rmin|x|  <|Apx| < ttmex|x|,  |f=1,
A4 A4
t'max|x| <|A;x| < t'min|x]|, (<1,
and , .,
tV maxp o(x) < paltx) =tVmnpa(x),  It21,
A A
M minp () <paltx) <tV Amaxp,(x), [t < 1.
Furthermore,
A4 A4
pax) min  <|x| <= p(x)"max, x| =1,
A A
pa(Mmx <|x| <pa()tmn,  |x|<1,

An alternative viewpoint to anisotropy is as follows (see [34] and references given
there), which is actually more general. A real d x d matrix B is an expansive dilation
if minjegp)IAl > 1. A quasi-norm associated with an expansive dilation B is a Borel
measurable mapping p : R” — [0, co) satisfying

(i) p(x) =0ifand only if x = 0 (non-degenerate);
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(i) p(Bx)=|det(B)|p(x)forall x e RY te R (B-homogeneous);

(iii) there exists c € [1,00) so that p(x+y) < c(p(x)+p(y)) forall x,y € R4 (quasi-triangle
inequality). The smallest such c is denoted cp.

If A is an anisotropy on R? and p is an A-homogeneous distance function, then B =
Ay = exp[AIn(2)] is an expensive dilation and pB(x) = p(x)tr(A) defines a quasi-norm
associated with B.

d-DECOMPOSITIONS AND ANISOTROPY

Letd =(d4,...,dp) € (Zzl)[ be such thatd =|d|; = d; +...+ dy. The decomposition
RY=R% x...xR%.

is called the d -decomposition of R%. For x € R? we accordingly write x = (x1, ..., X,) and
Xj= (xj,l,...,xj,dj),where Xj€ R% and Xji€R(j= 1,...,¢0;i = 1,...,d;). We also say that
we view R? as being 4-decomposed. Furthermore, for each k € {1,..., ¢} we define the
inclusion map

= gty R — R, xp— (0,...,0,x4,0,...,0),

and the projection map
_ . h dy
Tk =gk - R — R™%, x = (x1,..., Xp) = Xk.

A d-anisotropy is tuple A = (A,..., Ay) with each A; an anisotropy on RY. A d-
anisotropy A gives rise to a one-parameter group of expansive dilations (A;)er, given
by

Apx=(Ayxn,.., Agex),  xeR%teR,,

where A;; = exp[A;In(f)]. Note that A® := @§:1Aj is an anisotropy on R? with A% = A,
for every t € R,. We define the A®-homogeneous distance function p 4 by

pa(x) :=max{pa,x,...,04,xe)}, xeRY,

We write

BA(x,R):=B,,(x,R), xeR? Re[0,00),

and

BA(x,R):=BM(x1,Ry) x...x BA(xs,R;), x€R Re[0,00)".

Note that B4(x, R) = BA(x,R) when R = (R,...,R).
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2.2.2. Vector-valued Functions and Distributions

As general reference to the theory of vector-valued distributions we mention [6] (and [5,
Section II1.4]).

Let G be a topological vector space. The space of G-valued tempered distributions
9’([Rd; G) is defined as y/([R{d; G):= .Sf(y(Rd), G), the space of continuous linear oper-
ators from the Schwartz space . (R%) to G. In this chapter we equip .%' (R%; G) with the
topology of pointwise convergence. Standard operators (derivative operators, Fourier
transform, convolution, etc.) on.%'(R%; G) can be defined as in the scalar-case.

By a combination of [6, Theorem 1.4.3] and (the proof of) [6, Lemma 1.4.6], the space
of finite rank operators &%’ ([R{d) ® G is sequentially dense in .% ’([Rd ; G). Furthermore, as
a consequence of the Banach-Steinhaus (see [214, Theorem 2.8]), if G is sequentially
complete, then so is %' (R%; G).

Let (T, %, v) be a o-finite measure space and let G be a topological vector space. We
define Ly(T; G) as the space as of all v-a.e. equivalence classes of v-strongly measurable
functions f : T — G. Suppose there is a system 2 of semi-quasi-norms generating the
topology of G. We equip Ly(T; G) with the topology generated by the semi-quasi-norms

pB,q(f):z/(q(f)/\l)dv, Be%,v(B)<o00,q€2.
B

This topological vector space topology on Ly(T;G) is independent of £ and is called
the topology of convergence in measure. Note that Ly(T) ® G is sequentially dense in
Ly(T; G) as a consequence of the dominated convergence theorem and the definitions.

If G is an F-space, then Ly(T;G) is an F-space as well. Here we could for example
take G = L,'d'loc(Rd; X) with r € (0,00] and X a Banach space, where

Ly 10c®Y) = { feLo®Y): flpe L, ;®Y), B<R? bounded Borel}

and
Ly s R =Ly, R)[... (L, RD)]..].

Let X be a Banach space. Then Lo(T) ® #'(R?) ® X is sequentially dense in both
of Lo(T;.&' (R%; X)) and &' (R%; Lo(T; X)), while the two induced topologies on Ly(T) ®
! ([Rd) ® X coincide. Therefore, we can naturally identify

Lo(T;.' R%; X)) = &' (RY; Ly (T; X)).

2.3. DEFINITIONS AND BASIC PROPERTIES

Suppose that R? is 4 -decomposed with & € (Z>1)¢ andlet A = (Ay,..., A¢) be a £-anisotropy.
Letes,e- €eRand r € (0,00)". B
For je{l,..., ¢}, we define the maximal function operator M, .’:[,[,j] on Lo(S x RY) by
jild;

A;
Mg (D20 1= sé‘i%]i/*j lf (s, x +ugpypldy;.
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We define the maximal function operator M2 by iteration:
Arpy._ agAe A
M7 (f):= M n G (M Mn..).

The following definition is an extension of [119, Definition 1.1.1] to the anisotropic
setting with some extra underlying measure space (S, .27, ). The extra measure space
provides the right setting for intersection representations, see Section 2.5.

Definition 2.3.1. We define #(e4,¢_, A, r, (S, <7, ) as the set of all quasi-Banach func-
tion spaces E on R? x N x S with the Fatou property for which the following two proper-
ties are fulfilled:

(@) S4,S- € B(E), the left respectively right shift on N, with

NS NmE <275k and 1S llgrE <25°F, kel

(b) M2Aisbounded on E:

IMAFIE SIEDIE  (f) €E.

We similarly define #(e4,e_, A, r) without the presence of (S, <, ), or equivalently,
y(£+,g,,A, r) = y(EJr,E,,A,r, ({0}»{@;{0}}y#))

Remark 2.3.2. Note that €, < e_ when E # {0}, which can be seen by considering (S+)k o
(S_)k, keN.
Remark 2.3.3. Note that

y(£+r£—rArrr(S)=Q{)H))Cy(£+)g—rA)Fr (S)d)“))r r= F'

Example 2.3.4. Let us provide some examples of E € S (e1,e_, A, r,(S,<, ). Condi-
tion (b) in Definition 2.3.1 can be covered by means of the lattice Hardy-Littlewood
maximal function operator: if F is a UMD Banach function space on S, A an ansitropy,
pe(1,00), and w € Ap(R?, A) then (see [29, 94, 114, 211, 231])

Mf(x)::sup][ lfidy
650 JBA(x,6)

defines a bounded sublinear operator on Lp([R{d, w; F) = Lp(Rd, w)[F]. The latter in-
duces a bounded sublinear operator on Ly, (R%, w) [F[¢]] in the natural way. Let us fur-
thermore remark that the mixed-norm space F[G] of two UMD Banach function spaces
F and G is again a UMD Banach function space (see [211, page 214]). This leads to the
following examples of:

(i) Letpe (0,00)¢, g€ (0,00, we H?zleo(lR’ff,Aj) and seR. If r € (0,00)! is such that
ri<pin..Apjnqforj=1,...,¢ and weH?zlApj/rj(R‘{f,Aj),then

E=L,R%,w)[t(N)] € #(s,5,A,1).
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(i) Letpe (0,00)¢, g€ (0,00], we H?ZlAm(R‘[f,Aj) and s €R. If r € (0,00)¢ is such that
ri<piA..Apjforj=1,..,¢and well|_ Ap;r, R, Ap), then

E=05(N)LyRY, w)] € F(s,5,A,1).

(i) Let p € (0,00)¢, g € (0,00] and w € H§:1 Ax(R%,A)), s € R and F a quasi-Banach
function space on S. If r € (0,00)" is such that ri<piAh..Apjnqforj=1,..,¢
and w e H?:l Ap;ir; RY, A j) and F™max is a UMD Banach function space,

Fli={feLy®:IfI" eF,  Nflle =AY

then
E= Lp([Rd, W)[F[[Z(N)]] e L(s,5,A,r,(S,A,1).

For a quasi-Banach function space E on R? x N x S we define the quasi-Banach func-
tion space E4 on S by

||f||Eg =11pagxi0 ® fllE feLo(S).
Let p € (0,00)’ and w: [1,00)¢ — (0,00). We define the quasi-Banach function space

BYY:={feLo(S): sup wRIIfllL,, m0r) <o} (2.6)
Re[1,00)¢

which is an extension of (a slight variant of) the space B? considered by Beurling in [26]
(see [205]).
Let p, q € (0,00)¢. We define Wag: [1,00)¢ — R, by

—tr(Aj)/qj
5 )

; Re[1,00)°.

o
waq(R):= R4 - 'H1R
Jj=

The quasi-Banach function space BZ’WA"’ — Ly, 4,10c(R?) introduced in (2.6) will be con-
venient to formulate some of the estimates we will obtain. Note that, if p € [1,00), then

BYM(X) — &' (RY; X).

Lemma 2.3.5. LetE€ ¥ (ey,e_, A1, (S, o, 1) and A € (—o00,€4). For F = (fy)n € E and
g =Y, 2" £, we have
[160,n8)nllE SIIFIlE- 2.7

| — E2[Ly ¢ 10c RD)] with

r\Wa,r

Moreover, g € E3[B,

rw <
1811 570y SIIFIIE. 2.8)
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Remark 2.3.6. Suppose that €, >0 and A € (0,€;) in Lemma 2.3.5. Let 0 < k < ryjp be
such that || - || is a x-norm. Then, in particular, 2™ f,, € E4 [B:l’w’“] with |27 f,,| | paggTvar
® A

||F||E, so that

<
]~

EQ[B;’WA,T EQ[B:WAJ] o

[e) [e) 2 a o) 4
> I full =3 272 Ll <Y 27MIFl g SHIFlg.
n=0 ! n=0 n=

Remark 2.3.7. Let E € F(e4,e-,A,r,(S,47,u)). Similarly to the proof of Lemma 2.3.5
(but simpler) it can be shown that

E; — EJ[B}"* 1.

Proof of Lemma 2.3.5. This can be shown similarly to [119, Lemma 1.1.4]. Let us just
. . . ApIrj
provide the details for (2.8). As |B4i (x;, R))| =~ RN

; ,j=1,...,¢, for any x € R% and

R € (0,00)¢, we have

¢
tr(A))/7;
Lpaom @118l o S TTR M), Relloo.
j=1
Therefore,
1, ® war(RIIGIL, BA0.R)) < Mf(g), Re[l,00),
so that
lpag ® ||g||B;va,r < M;l(g),
It thus follows that

A
||g||E£[B;vWA,r] = ||1BA(0,1)><{0} ® ||g||B;vWA,r ||E S_, ||M,- (60,ng)n||E-

Using the boundedness of M2 on E in combination with (2.7) we obtain the desired
estimate (2.8). O

Definition 2.3.8. Suppose thate,,e_>0andlet E€ #(e4,e_, A, 1, (S, <, u)). We define
Y LA(E; X) as the space of all f € Ly(S; L, MOC([Rd ; X)) which have a representation

o0
f=Y fo in Lo(SLys10c®R% X))
n=0

with (f)n € Lo(S;. %’ (R%; X)) satisfying the Fourier support condition
2 A n+1
supp fn, < B (0,2"7%), nenN,
and (f,), € E(X). We equip Y LA(E; X) with the quasinorm

“f“YLA(E;X) = inf”(fn)”E(X),

where the infimum is taken over all representations as above.
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Definition 2.3.9. Supposethate,,e_>0andlet Ee€ ¥ (e4,e_,A,1,(S, <7, ). We define
ﬁA(E; X) as the space of all f € LO(S;Lr,L{,loC(Rd;X)) for which there exists (g,), € E+
such that, for all x* € X*, (f, x*) has a representation

F,x=Y forn 0 Lo(SLrg1oc®RD)

n=0

with (fy* n)n € Lo(S; ' (R%)) satisfying the Fourier support condition
£ =4 n+1
supp fx*,n < B (0,2"77), nenN,
and the domination | fy+ | < ||x*||g,. We equip ﬁA (E; X) with the quasinorm

”f“ﬁ*‘(EX) =infl|(gn)llE,
where the infimum is taken over all (g,), as above.

Remark 2.3.10. Suppose thate,,e_ >0, let E€ F(es,e_,A,r,(S,</, 1) andlet 0 <k <
Fmin be such that || - ||g is a x-norm. Then the following statements hold:

() YLAE; X) c YLA(E; X) with induced norm.

(i) Let fe Y LA(E; X) with (fn)n asin Definition 2.3.8 with ||(f,) xllEx) = 2||f||YLA(E;X).
Let 7 € (0,00)¢ be such that

Eey(ng,E,,A,F,(S,,Q{,/j)). (29)

Then, by Remark 2.3.6, as

7, wA,;

E2(B)"* (X)) = Lo(S; L, ¢ joc R X)) = Lo(S; Lizr. 410 R X)),

F,wa 7

% (X)) with

there is the convergence f =37, f in EA(B

1rdll S”(fn)n”E(X)52||f||YLA(E;X)-

Fwg

EAB, T X))
In particular, Y LA(E; X) does not depend on r and

Y LAE; X) — EA(B™VAr (X)).

(iii) Let fe 17VLA(E; X)with (g), € E+ and {fy* n}(x*,n) asin Definition 2.3.9 with ||(g,) »llE <
F,LUA,,N-

2||f||ﬁA(E'X). Let 7 € (0,00)¢ satisfy (2.9). Then || f]Ix < Z?f:o gn,sothat f € Eg(BA (X)) c
Lo(S; L, £ 10c RY; X)) with

Fwg SH(gn)n”ESZHfHﬁ

EAGBY AT (X)) AEx)
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by Remark 2.3.6. By (ii) it furthermore holds that

F,xy=Y fern i Lo(S; Li g 1oc RD).
n=0

Therefore, 17VLA(E; X) does not depend on r and

YL (E; X) — BABT VA (X)).

Definition 2.3.11. Let E € F(e4,e_,A,r,(S, <7, 1)). We define YA(E; X) as the space of
all f € Lo(S;%'(R%; X)) which have a representation

()
f=Y fa in LySS RY X))
n=0
with (f)n < Lo(S; &' (R?; X)) satisfying the Fourier support condition
s —=A
supp fo < B (0,2)
supp fu < B (0,2")\BA©0,2" Y,  n=1,
and (f,), € E(X). We equip Y4 (E; X) with the quasinorm

||f||yA(E;X) = inf”(fn)”E(X)»
where the infimum is taken over all representations as above.

Proposition 2.3.12. Suppose that €,,e_ >0 and let E € ¥ (ey,e_,A,1,(S, <, 11). Then
Y LA(E; X) and ﬁA(E; X) are quasi-Banach spaces with

YIAE; X) « Y1 (B, X) — EABL4; X)),
where Y LA(E; X) is a closed subspace of vi* (E; X).
Proof. By Remark 2.3.10,
YLAE; X), YL (B; X) — EA(B""; X)). (2.10)

That YLA(E; X) < YL (E; X) with || fllyiaEx for all f € YLA(E; X) fol-

= IIfIIﬁA(E;X)
lows easily from the definitions. So it remains to be shown that Y LA(E; X) and ﬁA (E; X)
are complete.

Let us first treat Y LA(E; X). To this end, let the subspace E(X) 4 of E(X) be defined
by

B a1={(fudn € B0 fu € Lo(S; ' ®RE X)), supp f < B 0,27} 1D
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By Lemma 2.3.5,
o0
2:E(X)a — ELILr R, w))(X) = Lo(S; Ly, £10c R X)), (fadn— Y fn
n=0

is a well-defined continuous linear mapping. As
YLAE; X) = E (X)A/ker(Z) isometrically,

it suffices to show that E(X) 4 is complete.

In order to show that E(X) 4 is complete, we prove that it is a closed subspace of the
quasi-Banach space E(X). Put w(x) := Hle(l +04, (xj))tr(Aj)/rj' Then it is enough to
show that, for each ke N,

E(X)a — Lo(S$;BCRY, w; X)), (fidn — fie (2.12)

continuously, where BC(R?, w; X) = {h € C(R%; X) : wh € Lo (R%; X)}. Indeed, BC(R?, w; X) —
S (RY; X).
In order to establish (2.12), let (f,), € E(X) 4. By Corollary 2.A.2,

sup  Ifullx < MAUIfll) (),
zeBA(O,Z*”)

so that

Ifu@lx S inf  MAIfullx)(x+2)
z€BA(0,271)

)

ntr(A)-r~! A
Sz ||Mr (an“X)'|Lryd(BA(x,2‘"))'
For R € [1,00)¢ we can thus estimate
A)-r! A
Sup ||fn(x)||X Szl’ltl’( ) r ||Mr (”f””X)l|er(BA(0,cA[R+2*"1]))

zeBA(O,R)

ntr(A)-r~! A
<2 [MZ Ul 10N, a0,264m0

ntr(A)-r~t . A
S2 ZeBl,I}(E B | |Mr (1 fnllx) | \LM(BA(O,ch(ch)R))

< 2ntr(A).r71 RYT(A)r’l inf )Mf(Mfl(IlanX))(z) (2.13)

zeBA(O,R

The latter implies that
-l -1
Lgag,r) @ I fallr BA0,R);x) < gnrArr T gurAr M;q(M,I-q(”fn“X))

forRe |1, oo)e . It thus follows that

Il EA Lm0, RX) = Hlsﬂ(o,mxm} ® 11 full oo B4 0,R)0) ‘ )E

-1 -1
< 2mr A g (50 MAUfullx) kg
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< 2T REAT ) G k.
Let us finally prove that ﬁA(E' X) is complete. To this end, let 0 < x < ryin be such

that || - ||g is a x-norm. Then || - ||~ and || - ||EA[Lr(Rd w)](x) are K-norms as well.

7ilE; X
It suffices to show that, if (f) ey © Y12 (E; X) satisfies 20 ||f(k)|| ) < 0o, then

Y, f® is a convergent series in YL (E; X). So fixsuch a (f(k))keN. As a consequence
of (2.10),

[0}
(k) x (k)
s IIEQ[Ler)]NZIIf [

As EQ[L, (IRd, w)] is a quasi-Banach space with a x-norm, Z‘]’Co:o f(k) converges to some
Fin EA[L,(R%, w)]. To finish the proof, we show that F € ﬁA(E ; X) with convergence
F=Y2, f®in YL (E;X).

For each k € N there exists (g(k))n € E, with ||(g(k)) llE < 2||f(k)||Y~LA(E X such that,

v’ (E; X)

for every x* € X*, (f®, x*) has the representation
(f®,x*) = Z f,in Lo(SiLy,g10cRD)

for some (f( ) Jn€Ea with If(k)nl <|lx* ||g(k) By Remark 2.3.10,

x*

i M8

f o, fnf”“n A
= U ESL (R, w)]Nk:0 YL (EX)

As EAIL, R, w)] — LO(S;L,,,[_IOC(Rd)) — Ly(S x RY) is a quasi-Banach space with a k-
norm, we thus find that F = ZOO *,n i Lo(S; Ly, L{IOC([Rd)) with Fyx , := f(k)

Lo(R% x S) satisfying | Fy+ ,,| < f(k) =X, gﬁlk) As Episaclosed subspace of
the quasi-Banach function space E on R? x N x S with x-norm, it follows from

(e @)
S NGEE D ally < l1x*|IF Z||f”“||~,,
k=0

YL (E; X)

that (Fy* p)p = f(k) in E and thus that (Fy+ ), € E4. Moreover, G, := p Og,(f)
defines (Gy), € E+ w1th

(0]
K k (k)
< 2
||(Gn)n||E<kZ:0||(gn)n“E Z“f “YL (E:X)
and |Fy- | < ||x*||Gp.. This shows that F € YL" (E; X) with convergence F = Y2, f®in
YLA(E X). O
The content of the following proposition is a Littlewood-Paley characterization for

YA(E; X). Before we state it, we first need to introduce the set ®4(R%) of all A-anisotropic
Littlewood-Paley sequences ¢ = (¢ ) nen-
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Definition 2.3.13. For 0 < y < § < co we define CIJ}’,1 5(Rd) as the set of all sequences
¢ = (@n)nen © < ([R?) that can be constructed in the following way: given ¢g € & (R%)
satisfying

0<s@o=<1, @) =1ifpa@) =7y, po&)=0if pa(é) =6,
(@n)n=1 € F([RY) is obtained through

@n = P1(Ag-n+1+) = Po(Ag-n+) — Po(Ag-n+1+), n=1.
We define @4(RY) := Up<y<s<co qn;{ s®D).

Let ¢ = () nen € @35(Rd). Then ¥°° ¢, = 1 in O (RY) with

supp Po C {€:pa@) <yl suppPnci&:2" Yy <pa@) <28}, n=1,
To ¢ we associate the family of convolution operators (S,,) en = (S%) nen € Z(F' (RY; X), &' (RY; X))
given by
Snf= S(ngZ Pn*f= g_l[(i)nf]-
Proposition 2.3.14. LetE€ F(ey,e_, A, 1,(S,9, 1) and ¢ = (Pn) nen € ®ARY) with as-
sociated sequence of convolution operators (Sp,) nen. Then

YAE X) = {f € Lo($;' R X)) : (Snf)n € E(X)}
with
Nfllyagx) = 1(SnfinllEx)-
Before we go the proof of Proposition 2.3.14, let us first consider:

Example 2.3.15. In the following three points we let the notation be as in Example 2.3.4.(i),
Example 2.3.4.(ii) and Example 2.3.4.(iii), respectively. We define:

(i) Fygq@®R?, w;X):= YAE;X) for E = L, R, w) [¢5(N)];

(i) Byg®R?, w;X):= YA X) for E = £5(N)[Lp R, w));
(i) FyRY, w; F; X) = YAE; X) for E = Ly, R, w) [F[£5(N)]].

Restricting to special cases we find, in view of Proposition 2.3.14, B- and F-spaces that
have been studied in the literature:

(D&(i): (a) Incase £ =1, w=1and X = C, Fy4(R?, w; X) and B4 (R?, w; X) reduce to
the anisotropic Besov and Triebel-Lizorkin spaces considered in e.g. [56, 71].
The latter are special cases of the anisotropic spaces from the more general
[22, 34, 35] by taking 24 as the expansive dilation in the approach there.

(b) In case ¢ = d, A = diag(a) with a € (0,00), w=1and X =C, Fi,’lg([Rd, w; X)
and B;,'f7 ([Rd, w; X) reduce to the anisotropic mixed-norm Besov and Triebel-
Lizorkin spaces considered in e.g. [130, 131].
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(c) Incase A= (arly,...,arl,) witha€ (0,00), Fy4(RY, w; X) and By4 (R, w; X)
reduce to the anisotropic weighted mixed-norm Besov and Triebel-Lizorkin

spaces considered in [156, 159] and in Chapters 5 and 6.

(d) Incasef/=1and A=1, F;,’f,(Rd, w; X) and B;,’,’;([Rd, w; X) reduce to the weighted
Besov and Triebel-Lizorkin spaces considered in e.g. [38-40, 115-118, 162,
163, 228] (X = C) and [182, 186, 187] (X a general Banach space). In the
case w = 1 these further reduces to the classical Besov and Triebel-Lizorkin

spaces (see e.g. [219, 233, 234]).

(iii): (@ Incasefl=1,A=1,pe(1,00),ge€(l,00], w=1,FisaUMD Banach function
spaceand X =C, [F;‘:, (Rd, w; F; X) reduces to a special case of the generalized
Triebel-Lizorkin spaces considered in [148].

(b) Incase ¢ =1, A=1, pe(l,00), =2, we A,,(IR{d), F is a UMD Banach
function space and X is a Hilbert space, [F;,’f,(le, w; F; X) coincides with the
weighted Bessel potential space H ;,([Rid, w; F(X)) (which follows from a com-
bination of (3.6) and (3.13)).

The proof of Proposition 2.3.14 basically only consists of proving the estimate in the
following lemma. We have extracted it as a lemma as it is interesting on its own. A
consequence of the lemma for instance is that the Fourier support condition in Defini-
tion 2.3.11 could be slightly modified.

Lemma 2.3.16. Let E € F(e4,e-,A,r1,(S,9,1), c € (1,00) and ¢ = (¢n)neN € AR
with associated sequence of convolution operators (Sy)pen. For all f € Ly(S; L' RY; X))
which have a representation

=Y fu in LyS; %' ®RY X))

n=0
with (fu)n < Lo(S;.%' (RY; X)) satisfying the Fourier support condition
supp fo < B"(0,0)
supp f < B2 (0,c2M\ BA©,c"12"),  n=1,

there is the estimate
NSnNullecy SN nllEx)-

Proof. This can be established as in [156, Lemma 5.2.10] (also see [233, Section 2.3.2]
and [237, Section 15.5]), using a combination of Corollary 2.A.2 and Lemma 2.A.3. O

Proof of Proposition 2.3.14. Let f € YA(E;X). Take (f,,), as in Definition 2.3.11 with
N(f)nlleco =21 fllyagx)- Lemma 2.3.16 (with ¢ = 2) then gives

1SnPnllzco SN Fdalleco <201 fllyagx)-
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For the reverse direction, let f € LO(S;y’(IRd;X)) be such that (S, f), € E(X). Pick
¥ = (W) nen € PARY) such that

supp o< B (0,2),  supp¥nc B 0,2\ BA©0,2" ), n=1,
and let (T,) ,en denote the associated sequence of convolution operators. Then
supp 7/"07C§A(0,2), supp JWCEA(O,Z")\BA(O,Z”%), n=1, (2.14)
Picking c € (1,00) such that
supp Qo CEA(O, ), supp @, CEA(O, c2Mm\BA(0,c712"), n=1,
we furthermore have
supp S/,FCEA(O, c),  supp S/n\fCEA(O, c2M\BA0,c 12", n=1.
As f=Y%,Snfin Lo(S; &' (R%; X)), Lemma 2.3.16 gives
(T P nlleco SNSnHnllEco-
Since f =Y ,S,f in Lo(S; ' (R%; X)) with (2.14), it follows that f € Y4(E; X) with
Ifllyagx < T falleco SIS fullEx)- O

Theorem 2.3.17. Let E € F(e4,e_,A,1,(S, 97, u). Suppose that €, > tr(A)- r1-1),.
Then

—~ A r

YL (B X) — EABL 4™ (X)) = Lo(S; Liar,d.10c R X)) (2.15)

and

YAEX) — EAB, "™ (X)) — &' RE EAX))
— PR Lo (S; X)) = Lo(S;.' (RY; X)) (2.16)

and there is the identity
YAE; X) = YIAE; X) = Y1 (B; X). 2.17)
We will use the following lemma in the proof of Theorem 2.3.17.

Lemma 2.3.18. Let the notations and assumptions be as in Theorem 2.3.17. If (fu)n €
E(X) 4 (see (2.11), then ¥ ,en fn is a convergent series in Lo(S; (Bil'w’“Al (X)) with

(e e} (e e}
HngoanEg(B;'wAv”\l(X)) = H ’;OHfHHXHEg(BzwA,r/\I) SJ ||(fn)n||E(X)A
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Proof. It suffices to prove the second estimate. We may without loss of generality as-
sume that r € (0,1]°. Choose k > 0 such that E4 has a k-norm. For simplicity of notation
we only present the case ¢ = 2, the general case being the same.
Let (fu)n € E(X)a. LetR € [1,00)%. Asa consequence of the Paley-Wiener-Schwartz
theorem,
Epa 02 REX) — COR%;824, 02 R X) N CORA; 64, 02 R%; X)).

In particular, as in (2.13) we find that

1 faCen, 22)l1x S @R IME M (Ll 10) 0, 22) (2.18)
for all x1, y; € B4(0,Ry) and z; € R4, and

1 falzrx)llx S @"R) ™A 202 (MZ2 (1 fal10) (21, y2) (2.19)

for all x5, y» € B42(0,Ry) and z € R%.
Then, for z € BA(0, R),

/ 1 fn ()l x dx
BA(O,R)

=/ / [l fn(x1, x2) || x dx1dxz
BA2(0,R,) J BA1(0,R))

(2.18)
< tr(AD/ry1-n Al r-1
(2" R0/ /BAZ(OR)M’“W]( A UG 210 &)

/ I frn (1, 22) 11y dxy dxa
BAL(O,Ry)

ntr(A)(1-r1)/r ptr(A)/n .

BA2(0,R,)

2.19) o
= Zn(tr(Al)(lfrl)/rl+tr(A2)(17r2)/r2)Rtr(A)r

RV Al Ap 1-1
M e MM ™, i e (Ll 21, 22

. ngA2 Az Ay T
M Mo Mo M UL fal b0 1, 2)

-1 -1
< 2n(A) (r I)Rtr(A)r [M;l]4(||fn||X) (2).

This implies that

NE
Lpron® | | (OR)Z||fn(x)||XdX<Rtr(A)r 202"“” U IMAA 1 fallx0)-
n n=

Since £, > tr(A) - (r~ ! — 1), it follows that

@n A4
S NAMAT U1 fallx))nl

1,
x| g,

SHEMNE- O
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Proof of Theorem 2.3.17. We may without loss of generality assume that r € (0,1]¢.

As Lo(S; B[II’WA'”‘1 (X)) — Lo(S;.%'(R%; X)), the first inclusion in (2.16) follows from
Lemma 2.3.18. So in (2.16) it remains to prove the second inclusion. To this end, let us
first note that

FRY) — BB, (X), X), g (-, ).

This induces
FRY) — BEABL " (X)), EAX), p— (-, ).

Therefore, f — [¢p — (f,¢)] is a continuous linear operator from EQ(BL’WA"“ (X)) to
L (L (RY); EA(X)), which is a reformulation of the required inclusion.
As Ly(S; B}l’ WA s Lo (S; Ly 4 10c (RD), the inclusion

YA(E) — EABL"4™)
follows from Lemma 2.3.18. We thus get a continuous bilinear mapping
YLNE, X) x X* — YLAE) — Lo(S; %' ®RD), (f, x*) — (f,x").
and a continuous linear mapping
ﬁA(E,X) — Lo($; L RE X)), f— Ty, (2.20)

defined by
(X, Tr@) = (f,x) (), PeFRY,x"eX".

Let us now show that f+— T (2.20) restricts to a bounded linear mapping
YL (B, X) — YAE X, f— T 2.21)

To this end, let f € ﬁA(E; X) and put F := T¢. Let (gx)» and (fx* »)(x*,n) be as in Defini-
tion 2.3.9 with [1(gn)nlle < 211f 1l 54 4 -

for n€ Zy. By Lemma 2.3.18, as (fy+,n)n € Ea and B;’w‘“” — ' (RY),

It will convenient to put g, := 0 and fx+ ,:=0

(f,x)=Y fer in Lo(S;B ") = Lo($; %' ®RY),  x"eX*.
k=0

Now let (Sy,)en be as in Proposition 2.3.14. There exists h € N independent of f such
that S, fy+ x=0forall x* e X*, neNand k€ Z.,,_j,. Let x* € X*. Then

(X%, SpFY = Sp(x™ , F) = Sp{f, X"y =Sn Y fer k= 2 Sufrek

k=0 k=0
o0 o0
= Z Snfe k= Z Snfx* k+n-h
k=n— k=0

h



42 2. AN INTERSECTION REPRESENTATION

with convergence in Lo (S;.%' (R%)). Together with Corollary 2.A.6, this implies the point-
wise estimates

(k=h). X tr(Aj)(,ij—n

[(x*, SpF)| < Z 1Snfes ken—nl S Zz M (fern—nx*)

(k=4 X6 tr(A-)(%—l)
<|lx* ||Zz ’ T M G n—n)-

Taking the supremum over x* € X* with [|x*|| < 1, we obtain

(k=h)+ X5 (AN (E=1)

1Sn Fllxe+ < Z 2 M2 (ks n-n).

k=0

Picking x > 0 such that E has a k-norm, we find that

NSnE) nllxeey = |[UISn fllx=<)n] |5

Zx(k—hpz;:ltrmj)(%j—l)

ngf

< || MA (ks n—i)n| [

k=0

Since

|52 (gl k<h,
1S " grrn-nllp k= h,

< (25 0Rs s pmee I 1)l

||Mr{l(gk+n—h)n||5 = ||(gk+n—h)n||5 f,{

—e4(k=h
5’2 o )+||f”YL (E;X)

for all k € N, it follows that

&= K(k—h)+(2§=1tr(Aj)(%j—l)—&)

||(snF)n||;(Xm§kZ2 I
=0

vit EX)

Ase, > Z tr(A])( L _ 1), we find that N(SnF)nllece < and thus that F €
YAE; X**) with ||F||YA(E x) SIfll o
desired (2.21).

Next we prove that

W54 5%

FiExD) (see Proposition 2.3.14). So we obtain the

YLAE X) — YAE; X). 2.22)

Solet f e ﬁA(E; X). A combination of (2.21) and (2.16) gives that F := Ty € Ly(S; X**)).
Since f € LO(S;Lryd,loc([Rd;X)) with (x*, F) = (f, x*) for every x* € X*, it follows that

F=FeLo(SBy"*" (X*") N Lo(S Ly, 1 10c® X)) < Lo (S; B “*™ (X)).
Therefore, by boundedness of (2.21),

VLA (B X) — {ge YAE X g€ Ly(S;.% R X))} = YAE; X). O



2.3. DEFINITIONS AND BASIC PROPERTIES 43

For a quasi-Banach function space E on R xN x S and a number o € R we define the
quasi-Banach function space E° on R? x N x § by

N(f)nllee = 112" fi)nllg, (fadne LoRY xNx ).
Note that E° € F(e4 +0,e- +0,A,1,(S, o, )) when E€ F(e4,e_, A, 1, (S, o, ).

Proposition 2.3.19. LetE€ F(e,,e_, A1, (S, o, 1) and o € R. Lety € O (R?) be such
thatw (&) = pa&) forpa€) =1 andw (&) #0 forpa(é) < 1. Thend(D) € L(Ly(S; L (RY; X))
restricts to an isomorphism

¢(D): YAE?; X) = YAE; X).

Proof. UsingProposition 2.3.14 and Lemma 2.A.3, this can be proved as [156, Lemma 5.2.28]
(also see [233, Theorem 2.3.8]). O

Lemma 2.3.20. Let V be a quasi-normed space continuously embedded into a sequen-
tially complete topological vector space W. Suppose that V has the Fatou property with
respect to W, i.e. for all (v,) neny € V the following implication holds:

lim v, = vinW, liminf||v,|ly <co = ve V, |Iflly <liminf||f,||v.
n—o00 n—o00 n—o0

Then V is complete.

Proof. Suppose that (v,),en is @ Cauchy sequence in V. Then, on the one hand, liminf, . [[vlly <
sup,, [lvxlly < oco. On the other hand, (v,),en is also a Cauchy sequence in the sequen-
tially complete topological vector space W because of V — W, whence converges to
some v in W. By the Fatou property of V with respect to W, v € V. To finish the proof
we show that we also have convergence v, "2° v with respect to the quasi-norm of V.
To this end, let € > 0. Choose N € N such that |[|v; — vi|ly s e forall [,k = N. Then, for all
k = N, itholds that v; — vy € E, liminf;_ . ||v; — villvy < € and v; — vy - v in W. So
applying, for each k = N, the Fatou property of V (with respect to W) to the sequence of
differences (v; — v) jeny We obtain that ||v — vi ||y < e forall k= N. O

Proposition 2.3.21. LetEe€ ¥ (ey,e_,A,1,(S, %, 1). Then
YAE; X) — &' RY EA(X) — ' (RY; Lo (S; X)) = Lo (S; &' RY; X))

and YA (E; X), when equipped with an equivalent quasi-norm from Proposition 2.3.14,
has the Fatou property with respect to Ly(S; & ’([Rd;X)). As a consequence, YAE; X) isa
quasi-Banach space.

Proof. The chain of inclusions follow from a combination of Theorem 2.3.17 and Propo-
sition 2.3.19.
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In order to establish the Fatou property, suppose that Y4 (E; X) has been equipped
with an equivalent quasi-norm from Proposition 2.3.14. Let fi — f in Lo(S; S (RY; X))
with liminfg . [l fxllyag.x) <oo. Then

Snf = lim Sufi in Lo(S; OmRY; X)) — Lo(S; L joc (R X)) — LoR? x $; X),
— 00

so that
(Snf)nety = lim (Sp fidnen  in Lo[®RY x S; X).

By passing to a suitable subsequence we may without loss of generality assume that
(Snfi)nen — (Snf)nen pointwise a.e. as k — oco. Using the Fatou property of E, we find

Flyagzx = [|USefIlx)nl|z = ||li]gg1f(||snfk||x)n||5

< liminf||(1Su fillx) n|| p = iminf|| fiellyag.x)- m
k—o0 k—o0

2.4. DIFFERENCE NORMS

. . . A . . .
In this section we several estimates for Y LA4(E; X) and YL" (E; X) involving differences...
. The main interest lies in the estimates involving differences, as these form the basis for
the intersection representation in Section 2.5.

2.4.1. Some notation

Let X be a Banach space. For each M € N>; and h € R% we define difference operator
AY on Ly(R% X) by A) := (L, - DM = ¥ M (=1 (¥ Liv—iyn, where Ly, denotes the left
translation by h:

M 4 i M . d
Ay fZZ(—l) ; fG+M-i)h), f e Ly([RY; X).
i=0

For N € N we denote by 32‘1‘\1, the space of polynomials of degree at most N on R%. We
write 9’1‘\1,(@) c 9’1”\1, for the subset of polynomials having rational coefficients.

Let M €Nzy. Let F = Ly, 4 = Ly, ,(R?) with p € (0,00)’. Let B = R be a bounded Borel
set of non-zero measure. For f € Lo([Rd) we define

Em(f,B,F):= inf |I(f-m1pllr= inf |I(f=-m)lgllF

nePy el | (Q)
and Evi(f. B,F)
sy M y
& ,B,F):= ———.
MU B = g LB F)

We define the collection of dyadic anisotropic cubes {Q;‘; W nezxzd BY

QA= Apn (10,17 + k).
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For b € (0,00) we define {Q2 (D)}, pyezxzd bY

Qi (b) = Ag-n (10,)(b) + k),

where [0,1)%(b) is the cube concentric to [0,1)? with sidelength b:

1-b 1+b\4

dipy—
(0,1) (b)-—[ 5

We furthermore define the corresponding families of indicator functions { X‘: W nlezxzd

Ab .
and {Xn,k}(n,k)ezxzd'

A . _ Ab ._
Xk = IQ;‘,k and Xk = lQﬁk(b)'
Definition 2.4.1. Let E € #(e4,e_,A,r,(S, <7, u)). We define yA(E) as the space of all
(Sn k) (n,kyenxzad < Lo(S) for which (X cza sn’kx;:k)ngl\l € E. We equip yA(E) with the
quasi-norm

A
Gk oMl yacg) = H( Z Sn,k%n,k)n P
kezd

Definition 2.4.2. Let F be a quasi-Banach function space on the o-finite measure space
(T, %B,v). We define .Z);(X*; F) as the space of all {Fy+}y+cx* < Lo(T) for which there
exists G € F, such that |Fy+| < ||x*||G. We equip F\(X*; F) with the quasi-norm

[{F5} ||§M(x*;F) :=infl|Gl|F,
where the infimum is taken over all majorants G as above.

In the special case that F = E € ¥ (e4,e-, A, r, (S, 7, 1)) in the above definition, it will
be convenient to view %\ (X*; E) as the space of all {gy* n}x*, mex*xn € Lo(S) for which
there exists (g,), € E+ such that |gy« »| < [|x*||g,, equipped with the quasi-norm

[1{gx* ntx,m) ||9M(X*;E) =inf||(gn)nllE

where the infimum is taken over all majorants (g,), as above.
Note that the corresponding properties from Definition 2.3.1 for .%y(X*; E) are in-
herited from E.

Definition 2.4.3. Let E€ S(e,e_,A,1,(S, <7, 1)). We define J7A(E; X) as the space of all
(S, mb) (e m ke x xiixzd © Lo(S) for which (¥ geza Sx+n kX s (I nen € Fm(X*; E). We equip
yA(E; X) with the quasi-norm

A
Sy* SA(E-Y) = E Sy .
I1(sx ,n,k)(n,k)“y (E;X) H(kezd x ,n,an,k)n Ty (X*3E)
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2.4.2. Statements of the results

Theorem 2.4.4. Let E € F(e4,e_,A,r1,(S,9,1) and suppose that e,,e_ > 0. Let p €
(0,00)" and M € N satisfy e, > tr(A)-(r~'=p~!) and MA2, > e_. Given f € Lo(S; Ly s ([RY; X)),
consider the following statements:

(i) feYLAE;X).
(ii) Thereexist(sp,i)n,k) € YA (E) and (by, k) g, ez < Lo(S; CM ([1-1,21%)) with |Ibn,k||C£4 <

1 such that, setting a i := by, (Azn - —k), f has the representation

f= Y spkanx in Lo(SiLyRYX)). (2.23)
(n,k)eNxz4

(iii) f € Ey(X) ﬂLo(S;Lp,,f,loc(Rd;X)) and (df,,’p(f)n)nﬂ € E(N>1), where
Ap oy ._ ontr(A)-pt M
dpgh () =210 |z AT |Lp,,,(BA(O,2*”);X)’ nen.
Then = (i) © (ii) = (iii). Moreover, there are the following estimates:

A, _
||f||E0(X) + ||(de;l(f))nzll|E(N21) S ”f”YLA(E;X) ~ ”(sn,k)(n,k)”yA(E)-

Theorem 2.4.4 is partial extension of [119, Theorem 1.1.14], which is concerned with
YL(E)with E € &#(e4,e_, I, r). That result actually extends completely to the anisotropic
scalar-valued setting YLA(E) with E € #(e,,¢_, A, r). However, in the general Banach
space-valued case there arises a difficulty due to the unavailability of the Whitney in-
equality [119, (1.2.2)/Theorem A.1] (see [246, 247]) and the derived Lemma 2.4.9. We
overcome this issue in Theorem 2.4.5 by extending [119, Theorem 1.1.14] to ﬁA(E; X).
This was actually the motivation for introducing the space ﬁA(E; X), which is con-
nected to Y LA(E; X) and Y 4(E; X) through Theorem 2.3.17.

Theorem 2.4.5. Let E € S (e4,e_,A,r,(S,97, 1)) and suppose that e,,e_ > 0. Letp €
(0,00)¢ and M e N satisfye, > tr(A)-(r~'—p~!) and MAA. > e_. Given f € Ly(S; Ly s ([RY; X)),
consider the following statements:

0 fe VL EX).

(I) There exist(sx+ i) (nk) € VA (E; X) and (b k) (x+ mprexs xnixzd < Lo(S; CH([-1,2]9)
with ||bx*,n,k||(j£/1 < 1 such that, setting ay«  x := by x(A2n - —k), for all x* € X*,
(f,x*) has the representation

(fx= Y Seakleank  in Lo(SLyRY).
(n,k)eNxz4

@D f € Eo(X) N Lo(S; Lp 4 10cRE; X)) and

P (Pl mexs ey € Pm(X EN21),
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where

ntr(A)-p~! M *
Mx n(f) =2 14 ||Z»—>AZ <f,x >||Lp'4(BA(0,27"))' neN.

(V) f€Ey(X)NLo(S; Ly, g 10c®R? X)) and

18" P mexesive, € (X" ENz1)),

where

&gt () 1= En(f,x"), BAX2™, L), X" €X",neN.

(V) f € Eg(X) and there is {Ttx+ y ik} (x* n, e X* xNay x2 € Poy_, Such that

gx n - Z |<fx> nx nk|1QA 3)’ nzl,
kezd

satisfies {gx* n}(x*, mex*xNx; € FMX™; E(N=1)).

For f € Ly(S; L,J{(Rd;X)) it holds that (V) = (I) & (II) = (III) & (IV) with corresponding
estimates
g0 + ||(de AN mllzyxsp + ||g]€f’§*’n(f)}(x*,n)ex*xNzl||yM(X*;E(N21))
S gy = 1Gxr n ) o n o |5y
SUANE o + | [{8xr nb ot mex xivan || 2+ Euny ) -
Moreover, for f of the form f =Y ;cr1s; ® fU with (S;)ic; < &/ a countable family of

mutually disjoint sets and (f”])iel € L,,,[yloc([R{d;X), it holds that (1), (IID), (IV), (1) and
(IT) are equivalent statements and there are the corresponding estimates

AN g4 x) = 1 Gxtn i) @ m o 154 )
~ g0 + H{de e mexs xie || 2 o)
=~ fllzaco + || b a2
=0 + | |18 nd e mexs xisy HﬁM(X*;E(Nzl))'

Corollary 2.4.6. LetEe€ ¥ (e.,e_,A,r,(S, </, 1) and suppose that €. > tr(A) - rl-1,.
Let p € (0,00]¢ and M e N satisfy e, > tr(A) - (r~' = p~!) and MAA. > e_. Then, for each

min

f € Lo(S; Ly s (RY X)) of the form f = ¥ e s, ® f1 with (S;)ie; € & a countable family
of mutually disjoint sets and (f'") e € Ly 1 10c R X),

A,
||f||yA(E;X) ~ ||f||YLA(E;X) ~ ||f||E0(X) + ||(dM’l:l(f))n21”E(N21)-
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Theorem 2.4.7. Let E € F(e4,e-,A,1,(S,.<7, 1) and suppose that e,,e_ > 0. Let p €
(1,00l and M €N satisfy e, > tr(A)-(1—p~ 1) and MAA._>e_. Write

min
L) =240 /B o M T AD € Lo(S Lo ®T X0

Then

||f||yA(E;X) ~ “f”YLA(E;X) ~ ||f||ﬁA(E;X)
_ A
=B o + Uy ) =11l BN ;20
A,
=~ e+ ||(dMZ(f))nzl||E(Nzl;X)

r\Wwa,r

A 1(X) (see Remark 2.3.7).

forall f € Eg(X) — E; — E4[B

Proposition2.4.8. LetE€ ¥ (e.,e_,A,r,(S, </, 1)) and suppose thate,,e_ > 0. Let c € R.
Letp € (0,00)¢ and M € N satisfy e, > tr(A) - (r"' —p™') and M > e_. Then

dy? (Phallzco SUfllyagx),  f€Lo(SiLr s RE X)),

and
it co Vel zgocsm SUFG A f € Lo(SiLy g ®EX),
where
dl?/i,’;,n(f) = Zmr(A)‘p_l | |Z = chA]zwf| |Lp,¢f(BA(0,2*”;X))
and

dyt o n (D)= 2" P |2 Lo (20|

M,c,x*,n ¢ (B4(0,277)"

2.4.3. Some lemmas

Lemma 2.4.9. Let p € (0,00] and M € Nxy. Then there is a constant C = Cyy, p,q such that:
if f € Lpjoc(RY) and Q = Ay ([0,1) + b) with A € (0,00) and b € R?, then thereism € P8,
satisfying (with the usual modification if p = c0):

1/p
|f—n|1Qsc(][ IA]ZWflpdz)
BA(0,1)

+c(][ ][ IAMFIPdydz
BA(O,M) J Q)

Proof. The case A =1 is contained in [119, Lemma 1.2.1], from which the general case
can be obtained by a scaling argument. O

1/p

From Lemma 2.4.10 to Corollary 2.4.12 we will actually only use Corollary 2.4.12 in
the scalar-valued case in the proof of Theorem 2.4.5. However, although the scalar-
valued case is easier, we have decided to present it in this way as it could be useful for
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potential extensions of Theorem 2.4.4 along these lines. In the latter the main obstacle
is Lemma 2.4.9.

We write .0)’1‘\1,(}() ~ XMna where My g :=#ac N9 : |la| = M}, for the space of X-
valued polynomials of degree at most N on R%.

Lemma 2.4.10. Let (T,%,v) a measure space, F c L,(T) a finite dimensional subspace,
Ec Ly(T; X) a topological vector space withF ® X c E such that

FxX—E(pfl—fox
and
H:XIE_’LI(T;X)y(frg)Hfg’

are well-defined bilinear mappings that are continuous with respect to the second vari-
able. ThenF ® X is a complemented subspace of E.

Proof. Choose an orthogonal basis by,..., b, of the finite dimensional subspace [F of
L,(T). Then

n
mE—Eg—),
i

/ b;(H)g(ndv(r)| ® b;,
T

is a well-defined continuous linear mapping on E, which is a projection onto the linear
subspace F® X cE. O

Corollary 2.4.11. IfE in Lemma 2.4.10 is an F-space, then so is (F ® X,Tg). As a conse-
quence, if T is a topological vector space topology on F ® X with (F® X, 1) — (F® X, 1),
then the latter is in fact a topological isomorphism.

Corollary 2.4.12. Let B = [-1,2]%, N € N and q € [1,00). Set By := Ay-n(B + k) for
(n,k) eNx Z%. Then

7 (Azn -+l ez S 2" AN ) e, TEPRXD, (k) eNx ZC,
Proof. Let us first note that a substitution gives
17w (Ag-n - +I)IL,(B;x) = 2mr("l@)/q||7T||L,,(B,l,k;)(),
while 7 (Ay-» - +k) € P]’]‘\Z,(X). Applying Corollary 2.4.11 to F = .9?’]‘\1,, viewed as finite di-
mensional subspace of Ly(B), and E = C,IZV(B;X) and 7 the topology on 2y (X) =F® X

induced from L,;(B; X), we obtain the desired result. O

Lemma2.4.13. Letq,p€ (0,00), 4 < p, be (0,00) and M € Nxy. Let f € Ly 1oc(R?) and let
{ﬂn'k}(n,k)ENde [ !@]@_1 such that

A
”f_”n'k“Lq(Q::k(b)) = ng(fr Qn'k(b); Lq);
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and let {pn, i} jyenxzd < Loo(R%) be such that supp ¢, < Q,’;k(b), Ykezd Pni =1, and
l1pn,kllLo, < 1. Then, for (fu)nen < Lo(S) defined by

fui= 2: T, kPn,kr

kezd
there is the convergence f =1im,_. fn almost everywhere and in Ly, oc.
Proof. This can be proved as in [119, Lemma 1.2.3]. O

Lemma 2.4.14. Let E€ #(e4,e_,A,1,(S, 47, 1)), b € (0,00) and suppose that €.,,e_ > 0.
Let p € (0,00)¢ satisfy e, >tr(A) - (r~' — p~1). Define the sublinear operator

X d X d
Ty Lo($)™ " — Lo(8;10,00D)™ %, (s, tnk = (n k) (m.k)»

by 1
o ontr(A)p~ A
tn,k~—2nr( )-p HZ|Sm'l|x"”HL
m,l pd

and the sum is taken over all indices (m, 1) € N x Z% such that Q;;‘l ;< Q:l‘k(b) and m = n.
Then T;,“ restricts to a bounded sublinear operator on yA(E).

d
Proof. Let (sp,i)(n,y € YA (E) and (£,1) (n,) = Ty [(Sn, ) (n ] € Lo(S;[0,00) ", We need
to show that || (£, 1)l yAE) S YAE)- Here we may without loss of generality assume
that s, ;. = 0 for all (n, k).

Set
1 -1 -1
5:= E(&—tr(A)-(r -p ) €(0,00).
Define
gm = Z sm,len,IELO(S): meN.
lezd
Then
ntr(A)p~! f 2.24)
fog <2 H . :
mk 2,8, (2 by

As the the right-hand side is increasing in p by Hélder’s inequality, it suffices to consider
thecasep=r.
Several applications of the elementary embedding
[%(N)‘_)[‘;l (N)) SO>51,670,671€(0y00],

1

in combination with Fubini yield that

oo oo
<Y ptmmmo A - (2.25)
H mZ:n g’”| ’L,,_d(Q,’:_k(b)) ~ mZ:n ||gm||Lp,zf(Qn,k(b))

In order to estimate the summands on the right-hand side of (2.24), we will use
the following fact. Let (Ty,%1,v1),...,(T¢, B¢, ve) be o-finite measure spaces and let
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Ii,...,1I, be countable sets. Put T =Ty x...x Tpand I = I x... x I,. Let (¢i)je; = C and,
foreach je{l1,...,¢}, let (A(] el ) Bj be a sequence of mutually disjoint sets. Then

l oL 1
||Z CilA(”x,,,xA@ HL,,(T) < (S}lp H |A2)| pj T ) HZ CilA(.“x...xA(“i)||Lr(T)' (2.26)
iel n i iel j=1 iel  Th ie
Indeed,

|12 el AL . xA([HLp(T)

iel
p21/p1 pelpe-1
)3 |A§})||c,-|"1) )

i1eh

lpy

- @
=| X 14,1

ig€ly

r;/r[_l I/r[

ralr
Z|A“’|’1’Pl|c|“) )

ireh
2l relTe—y
1
11X |A§.l)||c,-|”) )

irelh

p Z |A(Z)|I‘[/p[( X

igely

l/r/

1
(supl_[ |A(])|p] rl) Z |A([)|

iel j=1 igely

¢
_ ()
—(SUPH|A |,7] )||ch ,,XA(."’HL,(T)'
. T l[
Let us now use the above fact to estimate || gl L@ ( )
’ n,

A
lgmllz, @4 wn = H 2 Sm’leJHL ®)
' le24:Q4 QA (2 -

@. 26) o-mir(A)-(pt )

A
Sm,lxm,lH

Ly (®R%)
lez4:Q} nQ} (DD r

—mtr(A)~(p’1—r’1)
=2 18mllL, .4, w+2)

_ _ _ (n-1l_p—1
:z(m n)((e4—20))—ntr(A)-(p r )Hgm||Lr‘,,(Q2k(b+2))) (2.27)

Putting (2.24), (2.25) and (2.27) together, we obtain

2 (m=n)((e~8))+ntr(A)-r~"

P18

A A
Ink X,k < 18mllL, @ b+2) Xnk

m=n

o0
Spay Y, 2 mE0 pA (g (2.28)

m=n

Since
o0

Y omm ey, )| =Y 21E 708 MA[(gn) nen],

m=n neN  i=0
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it follows that (¢, ) € yA(E) with

K _ A X
kezd

<Y 2K s ) MA (g ] 11

18

1l
(=]

2—Ki5))||(gn)n||1é g ||(gn)n||2

A
™8

1l
(=]

_ K
= ”(sl’l,k)”yA(E)r (2.29)

where « is such that E has a x-norm. O

Corollary 2.4.15. Let E € F(ei,e_,A,r,(S, o, 1) and suppose that e,,e_ > 0. Let p €
(0,001 satisfy £, > tr(A) - (r™' = p™"). Given (s,1)(n5) € YA (E), set gn = Lyeza Sn kX iy
Then 357 18nl in Lo(S; Lp,d,loc(ﬂ%d)) and the series Y., gn converges almost everywhere,
and in Lo(S; Ly, 410c(R?)) (when p € (0,00)°).

Proof. This follows from (2.29), see [119, Corollary 1.2.5] for more details. O

Lemma 2.4.16. Let E € S (e4,e_,A,1,(S,%7,1), b € (0,00) and A € (e_,00). Define the
sublinear operator

X d X d
Ty : Lo(NF — Lo(S; 10,000, (s = (k) (ko

by

Aln—
tn,k:ZE 2Mn m)|5m,l|,
m,l

the sum being taken over all indices (m, ) € N x Z% such that Qg (D)= Q;‘llk and m < n.
Then T restricts to a bounded sublinear operator from yA(E) to yA(E).

Proof. This can be proved in the same way as [119, Lemma 1.2.6]. O

Lemma 2.4.17. Letr € (0,1]¢ and p €(0,1) satisfy p < rmin. Let (y,) nen be a sequence of
measurable functions onR? satisfying

0<y,(x) <A +2"pa(x)" 4P,
d
If (s, n k) € Lo, 80 = X ez S kX ANd hn = ¥ eza |Sn k| Yn(- = Az-nk), then
hn S MA(g), neN.

Proof. We may of course without loss of generality assume that r = (r,...,r) with r €
(0,1]. Now the statement can be established as in [119, Lemma 1.2.7]. O
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Lemma 2.4.18. Let M €N, A € (0,00) and ® € CM(R%; X) be such that
A+paDMDPOW)IIx <1, xeR%|BI< M,

and let ¥ € #[R?) be such that¥ L 2% . Set¥,:= " A)W (A, ) for t € (0,00). Then

A
[A min M

D+, ()lx S xeRY te(0,1].

A +pa(x)t

Proof. As V¥ is a Schwartz function, there in particularly exists C € (0,00) such that
I¥(x0)| < CA+palx) L +[x)"@HMD xeRr?
The desired inequality can now be obtained as in [119, Lemma 1.2.8]. O

Lemmas 2.4.19 and 2.4.20 are the corresponding versions of Lemmas 2.4.14 and
2.4.16, respectively, for )7A(E; X) instead of yA(E; X).

Lemma 2.4.19. Let E € #(e4,e_,A,1,(S,47, 1)), b € (0,00) and suppose that €,,e_ > 0.
Let p € (0,00]" satisfye, >tr(A)- (r~! — p~1). Define the sublinear operator

* d * d
Ty Lo($)X ™8 — Lo(8;10,00D* M (50 i) ey = (e k) (v )

by 1
- tr(A)-p~ A
tx*,n,k.—Zn (A-p H E |Sx*,m,l|)(m,lH
m,l Lpa

and the sum is taken over all indices (m, ) € N x 79 such that an 1= Q‘;k(b) and m=n.
Then T;,‘l restricts to a bounded sublinear operator on }7A(E).

Proof. Let & € (0,00) be as in the proof of Lemma 2.4.14. Let (s, 1) e*,nk) € J2A(E) and
" d
(tern i) k) = Ty [Sxt ) v m ko] € Lo(S510,001) X *N*27 Define

A
germ = D Syt miXim €Lo(S),  meN.
lezd

Then (8x*,m)(x*,m) € Fm(X*; E) with 1(8gx*,m) (x*,m) ||,Q-‘M(X*;E) = ”(Sx*,n,k)(x*,n,k)||J7A(E)- So
there exists () m € E+ with [|(gn) m!l < 211(Sx* ,n,1) (x*, 1,5 | |yA(E) such that gy« ml < [1x*|1gm-
By (2.28) from the proof of Lemma 2.4.14,

o0
A - ) A
Lo n ke X ke Sb,A,r Z 2m=mes ))Mr (8x*,m)

m=n

(e}
<llxtll Y 20 M (g,

m=n

As (2.29) in proof of Lemma 2.4.14, we find that (£« , 1) (x*.n.1) € 72 (E; X) with

||(tx*,n,k)(x*,n,k)||J7A(E;X) S 1(gm)mll = 2||(sx*,n,k)(x*,n,k)||)7A(E)- O
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Lemma 2.4.20. Let E € F(e4,e_,A,1,(S,%7,1), b € (0,00) and A € (_,00). Define the
sublinear operator

s d * d
Ty: Lo($)X N2 — Ly(8;10,000) X M2 (spe mi) et by = (et k) (e m k)

by
Iy nk i= Z Zl(n_m”sx*,m,l'»
m,l
the sum being taken over all indices (m, ) € N x Z% such that Qg,l(b) o) Qr’:k and m < n.
Then T, restricts to a bounded sublinear operator on 74 (E; X).

Proof. This can be proved in the same way as [119, Lemma 1.2.6]. O

Lemma 2.4.21. LetE€ S (e4,6-,A,1,(S,47,)) and let k € LLC([Rd) fulfill the Tauberian
condition .
k@1>0,  feRY,Z<pa@<2e,

for some € € (0,00). Lety € % (R?) be such that supp{  {& : € < pa(&) = B} for some B €
(€,00). Define (kp)nen and W) nen by ky := 2" A k(Apn ) and yy, 1= 2" Ay (Apn ).
Then

N@Wn* fdnllzco SNKn* fallexy, — f € Lo(S; Ly toc R X)).

Proof. Pick n € CX(R?) with suppn < BA(0,2¢) and n(¢) =1 for pa(é) < 3. Define me
S (R by m(&) := (&) —17(A25)]1Ac(£)‘1 if% < pa(é) < 2e and m(¢) := 0 otherwise; note
that this gives a well-defined Schwartz function on R? because 1 —1(Az -) is a smooth
function supported in the set {{ : % < pa(&) < 2¢} on which the function ke BUC™®(R%)
does not vanish. Define (m;,) ,en by my, := m(Az-» -). Then, by construction,

n+N R

Y miki©) =n(Ay-wem &) —N(Ag-nn &) =1

I=n
for 2"e < pa(&) < 2"N~13¢, ne N, N e N. Since supp v, c £ : 2" < pa(é) < 2" B} for
every n € N, there thus exists N € N such that Z?:év myk; = 1 on supp @, for all n € N.
For each n € N we consequently have

n+N n+N N
Vn=wnx| Y myxk|= ) Wariyxki= ) Wn* Mg kn.
I=n I=n 1=0

Asy,me F(RY), we obtain the pointwise estimate

N N
Nwn* Fllx < Y W * et * kner = flix S Y MAMA (ka1 * £11)).
1=0 =0

It follows that

N
N * Palleco S Y [|(MAMA knsr = F11)) ]| 2
=0
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N N
S Y Nkner * Palleco S Y275 N tkn * Hallec
=0 =0

Sk * Hallec- O

2.4.4. Proofs of the results in Section 2.4.2
Proof of Theorem 2.4.4. (i) = (ii): Fix w € C2°((~1,2)%) with the property that
Z wx-k) =1, xeR?,
kezd
Let (f,), be as in Definition 2.3.8 with ||(f,)xllEx) < 2||f||YLA(E;X). For each (n,k) €
N x Zd, we put

a(I’l,k =w(An (- — AZ*”k))fn» Snk = ”Zin,k(AZ’n ')||C;7\4(Rd;x))

and

. an,k
an ke := —— Lis, k20
Sn,k

Note that

|sn,k| = ||&n,k(A2‘” ')“CS/I(Rd;X) =lw(- - k)fn(AZ‘" ')”C;}\/I(Rd;X)

5 llw(-— k)”cﬁ/f(ﬂqu)nfn(AZ_” ')||C£J([—l,2]d+k;X)

Ssup  sup  [IDY[fr(Az-n )W
lal=M ye[-1,219+k

Given x € Qﬁk and X = Aynx € [0,1)d+k, forye [—1,2]d + k we can write y = X + z with
z=y-X=(y-k) - G-k e[-1,217-10,1)%, so, in particularly, p4(2) < C,.

Combining the above and subsequently applying Lemma 2.A.1 to f;,(A2-» -), whose Fourier
support satisfies supp F [ f;,(Az-» )] B4(0,2), we find

Isnil S sup  sup  ||ID¥[fy (A )X+ 2)|Ix
|ll|SMpA(Z)SCd
< M fn(Az-n )Ix] (A2nx) = MAU1 full ) ()
for x € QA . Therefore, (sp,) (k) € y*(E) with

) mbllyag < | BEAAFall0)a] | SUEDnllEco < 21 Flly Lag-

Finally, the convergence (2.23) follows from Corollary 2.4.15 and the observation that

o0 [ee)
=Y f=Y Y spkank in Lo(S;Lyg10c R X))
n=0 n=0jezd
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(i) = (i): Set gn := Lyezalsnklx?, for n € N. For n € Z, set f, := 0 and g, := 0.
Pick x € (0,00) such that E has a xk-norm. Pick A € (0,00) such that d/A < rmin A 1. Pick
¥ = (Wn)nen € @A (RY) such that

supp o < B4(0,2), supp ¥, c BA(0,2""1)\ BA(0,2"71), n=1,
and set ¥, := Z”tr(Ag))U/o(Agn -) for each n € N. Note that
ani* V= [by*V](An - —k)

and
Ank * Wm = Dk * Wm-nl(Agn - —k), n<m.

An application of Lemma 2.4.18 thus yields that

1
ani* Vo (0)llx < -
Il nk n llx (1+2npA(x—A2—nk))/1
and
2—(m n)’lmmM
an, i * lx < , n<m. 2.31
Nank*Wm@llx < (1+27pa(x — Ap-n k) (2.31)
Now put

~ an k * Y, n=m,
a =
mk,m Ank*WYm, nN<m.
Let us define

fam:= Y Snklnkm n,meN,m=n.
kezd

By construction (also see [119, Theorem 1.1.14(iv)=(i)]),

mz=n Z Z fm—l,m-

1=0m=I1

HM8

By a combination of (2.30), (2.31) and Lemma 2.4.17,

M A
Y ASmtel l@m—1 ke, mllx S27 o M (8m-1).

kezd
Therefore,
ot metl B S 2 na ||(M;‘(gm_l))mzl||E(sz)
_ memmM| (S0 (M (gm)) men]| 5
<Z-I(Af:,mM—eJ||(gm)meNI|E
= 27 M= (5, ) (0 A -
Since

SUPP fin—1,m < SUpp ¥ < BA(0,2™H),
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it follows that F;:= Y7 fin—1,m defines an element of Y LA(E; X) with

1A M-
WEilly g x) S2 i M E_)”(sn,k)(n,k)”yA(E)-

As A4

A M>e_ wefindthat f =Y, F; € YLA(E; X) with
”f”YLA(E;X) ,S ||(3n,k)(n,k)||yA(E)-

(ii) = (iii): We will write down the proof in such a way that the proof of Proposi-
tion 2.4.8 only requires a slight modification. Combining the estimate corresponding to

(i) = (i) with Y LAE; X) 22 Ey(X), we find

||f||E0(X) 5 ||(5n,k)(n,k)||yA(E)-

So let us focus on the remaining part of the required inequality. To this end, fix c € R and
A
set R:= (|c|+ M) *min. Then (note |c| + M = 1)

pa(tz) <Rpa(z), zeR% rel0,c|+M].

Put

Ap ._ onir(A)-p~! M
Apg,en(f) =2 7|z Leon?' f] |pr,{(BA(0,2*”);X)' nen.

Now let f has a representation as in (ii) and write %, 1=} ;.c7a Sy, kGn k- Then

n-1
Ap <2”tf(A>-P‘1H — LeAMh H
dM,C,n(f)(x)N z ,,;0” czBz m(X)HX Lp_,f(BA(O,Z’”))

p1 o
4+ pntr(A)yp HZH Y LAY i (0)11x

m=n

|| . 2.32)
L ¢ (BA0,27)

We use the identity
M M
LezAY b () = Y (-)M! i+ e+ D2)
=0

to estimate the second term in (2.32) as follows

p1 S
ontr(A)-p HZH y IIchAyhm(x)“XHL

m=n p,d (BA(0,27)

M e}
<Y 2Pz S e+ e+ DK
ngo mZ:n " XL, BA027m)

<2 77| 3 il
~ m=n Ly, 4 (BA(x,R2™M))

< 2ntr(A)op‘1

o0
Ismillxlon ]
n;nkéd kX O IL, ,(BA,R2-m)

A)-pL
< pnra-p Hznsm,,nxlm (3>H ,
m,l mI W
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where the last sum is taken over all (i, [) such that Qﬁ 13) intersects B4(x, R2~")) and
m = n. From this it follows that

2 AP |2e Y LAY Rl |

mZ’n ez BmiX||L BA©2m)

< Z zntr(A)-p‘1
kezd

lsmillx1oa H 1oa ) (2.33)
l’%’l ml Qm,l(s) Lp,d Qn,k(SR)

where the sum is taken over all (m, [) such that Qﬁl 1(3) c Qﬁk(3R) and m = n.
In order to estimate the first term in (2.32), note that

AMp,, (%) :/ DMhy(x+ (t +...+ ta)2)(2,...,2) d(1y, ..., ty)
[0,1]M

and thus that
HAM By (0)llx < sup [IDMhy(x+t2)(z,..., 2)Ix
te(0,M]

= sup ||DM[hyo0Ay-m](Agmx+ tApm2)(Apmz, ..., Apm2)||
te[0,M]

< sup sup ||D*[hmo Ap-m](Apmx + tAm2)|| | Azm 2™,
te[0,M] |al<M

from which it follows that
ILezAY A (X)llx S sup  sup [|D% [ 0 Ap-m](Apmx + (c+ t)Asz)||X|A2mZ|M
te[0,M] |a|<M
= sup sup |[D o Agl(Agnlx+ D) |l Azn 2.
yeBA(O,Rpa(2) lal=M

Forme{0,...,n—1}and z € BA(0,2~") this gives

A
NLe:AY hm(0llx S sup  sup ||D¥[hmo Ap-m](Agm[x+ YD) || 0 a(Azm 2) min
yeBA(0,R2~M) lal=M

< sup  sup ||D(Tmo Ag-m)(Agm [x+ y))|| 2 mMOm)

~

yeBA(0,R2~M) lal=M

Since

||D¥ 1A 0 Ag-m](Agm[x+ YD||x = X NSmillx1 -y gy (Azm X+ Y1)
lezd

= Z ||5m,l||XlQA 1(3)(x+ ),
lezd i

it follows that

. n-1
ontr(A)-p HZ_, [LezAM By ()1 H
mZ:o czBz 'm X prd(BA(O,Z’"))

n—1
A —
5 Z sup ||LCZA]thm(x)”X21mmM(m n)

m=0zeBA(0,277)
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AL M(m-
<Y MM s,
m,l

where the last sum is taken over all (m, [) such that Q";‘l 1(3) intersects B4(x, R2~")) and
m < n. From this it follows that

i n-1
ontr(A)-p ||Z_, y IIchAyhm(X)HXH S lsmllx, (2.39)
m=0 m,l

Ly, 4(BA(0,271)

where the last sum is taken over all (m, [) such that Qﬁl 1 (B)oand m< n.
A combination of (2.32), (2.33), Lemma 2.4.14, (2.34) and Lemma 2.4.16 give the de-
sired result.
O

Proof of Theorem 2.4.5. The chain of implications (I) < (II) = (III) with corresponding
estimates for f € LO(S;Lr,d(IRd ; X)) can be obtained in the same way as Theorem 2.4.4
with some natural modifications; in particular, Lemmas 2.4.14 and 2.4.16 need to need
be replaced with Lemmas 2.4.19 and 2.4.20, respectively. Furthermore, (II) = (IV) can be
done in the same way as [119, Theorem 1.1.14], similarly to the implication (II) = (III)
(see the proof of (ii) = (iii) in Theorem 2.4.4).

Fix g € (0,00) with g < Fmin A Pmin (HI):‘7 and let (IV); be the statements (III) and (IV),
respectively, in which p gets replaced by ¢ := (g, ...,q) € (0,00)’. Then, clearly, (III) =
(III)Z and (IV) = (IV)Z.

To finish this proof, it suffices to establish the implication (V) = (IV); for f € Lo(S; Ly, +(R%; X))
and the implications (HI);*7 = (V) and (IV);*7 = (I) for f of the form f =3 ;¢ 15, ®f”] with
(Si)ie; € & a countable family of mutually disjoint sets and (f[”)ig € Lr,,[,loc([Rd; X).

W) = (IV);: For this implication we just observe that, for x € Qﬁk andn =1,

Exi e (D) SEMUL,X"), QL 3), Lg) S Mt (gae ) (X) < MA (e ) ().

()} = (V) for f of the form f = ¥je; 15, ® f'") with (S;)je; © &/ a countable family of
mutually disjoint sets and (f”])l-el € Lr,dyloc(Rd;X): By Lemma 2.4.9, for each i € I and

(x*, 1, k) € X* xNsj x Z4 there exists a ngl k€ 916[_1 such that

1/q
0. . A, j
|<f[”,x >_7[£cl’1,n,k|lQA (3)< f[l])+(]€A " dM,Z*,n(f[l])(.V)qdy
nk

Defining 7+ 5,k € Lo(S; 3?’1@_1) by 7+ k1= Xierls; ® ni"l’n,k, we obtain

|<f'x*> _”x*,n,kl 1Q3k(3) Sd Mx n(f) + MA(de n(f)) = 2A4A(de n(f))

Since
#kez?:xe Q) 3} <1, xeR%neN,
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it follows that

| |{gx*,n}(x*,n)eX* xNx1 | igo‘M(X*;E(Nzl))
SIHMAdy". (Il e mexs xis,

A,
SHdaghe et mexs <y

FMm(X*;ENz1))

FMX*HENz1)"

(IV)z = (D) for f of the form f = ¥ e1 15, ® U with (S;)ic; < < a countable family of
mutually disjoint sets and (f'")ic1 € Ly 410 ®%; X): Let w € CX([-1,2]%) be such that

Z wx-k) =1, xeRd,
kezd

and putw, i := w(Azn - —k) and Q‘;l’k = Az—n([—l,Z]d+k) for (n, k) € Nde; sosupp (wp,x) ©
Qy - Define

Lyp={lez?:Q2,nQY_ ,#0},  (nk)eNzy x2Z%,
Then #1,, ;. < 1 and there exists b € (1,00) such that
@ QA (b)nQA | (b) 1€, (nk) €Ny x 2% (2.35)
n,k nk n-1,1\") n,k» 1, >1 . .
Furthermore, there exists rng € N> such that
QL buQL, (B cBAx, 27", xeQ¥  (nkeNxZ?  (236)
For each i € I, let us pick (”gl,n,k)(x*,n,k)ex* «Nxzd € {@1’\1/1_1 with the property that

[T =Tkl i, o = 26m (S, X", Q) (B), Lg) 2.37)

and put wy+ , x := Yjer ls; ®n£jl,n'k € LO(S;‘O])I(\i/I—l)' Define
wn,kzlezd Wp1,1[Txx p k= Ty p1,1l, 1> ng,
Ux*,nk = @nkTx*,nk n=ny,
0, n < ng.

Let x* € X* and (1, k) € Nspy11 x Z%. Let [ € I, .. For x € QY we can estimate

(2.35)

”T[x*,n,k_nx*,n—lvl”Lq(Q‘;:’k) ,S ||<f,x*)—ﬂx*,n,k“Lq(Q;‘:k(bn

+ ”(fr x*> - nx*,nfl,l”Lq(Q;;tLl(b))

(2.36),(2.37)
<4, x*), BA(x, 27, L),
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implying
0T ke = Tt 1,1 (A= + K oy 290

S 2 gy ((f, ), B, 2700, L)
in view of Corollary 2.4.12. Since #I, . < 1, it follows that

1ty ke (Ao - + )l gy S Em(Cf,x"), BAx,277), L)

=&yt (), xeQY,. (2.38)

M,x*,n—ngy
For n = ny we similarly have

[l2tx* pg,k (A2-n0 - +k)||Cl]7V[([—1,2]M) S ||<f’X*>||Lq’¢(BA(x,1))
S MU f11x) (x)
<l IMAAIAIO®,  xeQy L. (2.39)

Define Sx* nk = ||ux*,n,k(A2"’ . +k)||C2/I([—1,2]M)’

W» Sx*nk 70,
Ax* nk = xmk
Or Sx*,n,k = 0)
and bys  k := Uy p k(A2-n - +k). Then bys i € CY([-1,2]9) with ||bys pllem < 1 and
b
(Sxt.nk) (conk) € FA(E; X) with

(2:38),239)
Wsxnida nblljagy S IMEASIONE
Aq
+ ||{€M’x*'n_no (N} xs mex* xNsp, ||32M(X*;E(Nzno+1))

A
S +28’"0H{é"M,Z*,n(f))}(x*,n)

Fm(X*ENz1))"
Note that, for n = ng + 1,

Z Sx*,n,k Ax*,n,k = Z Ux* nk

kezd kezd
= Z T x* n,kWx* n,k Z Wp-1,1— Z Wp, k Z Tx* pn—-1,10n-1,1
kezd lezd kezd lezd
= Z T x*,n,kWn,k — Z T x*,n-1,1Wn-1,1-
kezd lezd

In combination with Lemma 2.4.13 and an alternating sum argument, this implies that

(e )
(fx=Y ¥ sepkaxnk 0 Lo(SiLaloc®).
n=0ezd
The required convergence finally follows from this with an argument as in (the last part
of) the proof of the implication (i) = (ii) in Theorem 2.4.4. O
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Proof of Corollary 2.4.6. This is an immediate consequence of Theorems 2.3.17, 2.4.4,
2.4.5 and the observation that

A, A,
Iy (D mll 2 < 1@y (Mnz1llEN)- m

Proof of Theorem 2.4.7. The estimates

Wy agx = I llyag ) = 1l g g
follow from Theorem 2.3.17. Combining the inclusion

YLAEx) E0 By x)

with the estimate corresponding to the implication (i)= (iii) in Theorem 2.4.4 gives

A,
f g0 + ||(dMZ(f))n21||E(N21;X) SUAlyragx-

As it clearly holds that
1. (Dlix <dy” (), neN,

it remains to be shown that

fllyagx) SIFIE ) + ||(Ijé[,n(f))nzluE(Nzl;X)- (2.40)

Put K := 154(0,1) and K2 := T M1 ()} (M) Ry 1, where K, := 1K (~¢-) for 1 €
(0,00). Furthermore, put

KA, ="K (A )« f+ (—DMRO)f, e (0,00).

Note that
A _rAy—n
Ly ,(N=Ky@",f), neN. (2.41)

As KA (0) = XML =D Y)R©0) = (-DM*R(0) # 0, we can pick ¢, ¢ € (0,00) such
that K™ fulfills the Tauberian condition

IFK@lze ceR S <patd) <2e.
So there exists N € N such that k := 2Vtr(4%) gA™ (Apn ) = KA € LLC([Rd) satisfies
A c a0
Ik(€)|z§>0, ¢eR ,§<pA(cf)<26,

for 8 :=2Ve > 0. Let ¢ = (@) nen € PA(RY) be such that supp @1 < {€ : 26 < pa(&)} (see
Definition 2.3.13). Let (kp) nery be defined by k, := 2"7A%) k(Ayn -). Then, by construc-
tion,

kn# f =K@V, 1) kg N PEV I DT (D, neN,
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An application of Lemma 2.4.21 thus yields that

N(@n* FazillENe:x) SHKn * =1l EN:x)
SNUpg e N Dzt B0 + TR, () nz1 BNz x0
S@EN L DNUY Dzl Eqe i x)- (2.42)

As [l@o * fllx < MA(Ifllx), it furthermore holds that

oo * fllg,co SIfllEyx)- (2.43)
A combination of Proposition 2.3.14, (2.42) and (2.43) finally gives (2.40). O

Proof of Proposition 2.4.8. Using the the estimate corresponding to the implication (i)
= (ii) in Theorem 2.4.4, the first estimate can be obtained as in the proof of the im-
plication (ii) = (iii) in Theorem 2.4.4. The second estimate can be obained similarly,
replacing Theorem 2.4.4 by Theorem 2.4.5. O

2.5. AN INTERSECTION REPRESENTATION

Let Ee S(ey,e-, A1, (S, o, 1) with e,,e_ > 0. Let ] be a nonempty subset of {1,..., ¢},
say J = {jl,...,jk} with 1 < j1 <...=< jk < ¢. Put L{] = (cfjl,...,tfjk), d] = |£[]|1 Aj =
(Ajs..., Aj), 1= (rjy,..., 1) and

Sy, ey, pip) := RV, BRI“U), Ay @ (S, )

Furthermore, define E|,;; as the quasi-Banach space E viewed as quasi-Banach func-
tion space on the measure space R” x N x S;. Then

E[t{,]] Ey(8+r€—yA]vr]y (S],M,ﬂ]))

By Remark 2.3.10,

1;WA,r

VI (B %) — EABL A (X)) = Lo(S; Ly, 4 joc R X)).

In the same way,

— A Lwar
YL (Epg;; X) — E5 (B (X)) = Lo(S; Ly, 10 (R X)),
In particular, it makes sense to compare ﬁAJ (Erg:j7; X) with 17LA(E; X).

Theorem 2.5.1. LetE€ ¥ (ey,e_,A 1, (S, <, 1) withe,,e_ >0. Let{Jy,...,J1} be a par-
tition of {1,...,¢}.

(i) There is the estimate

0 0 = W gy 1€ s

forall f € Lo(S; Ly 4 10c(R%; X)).
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(ii) There is the estimate
L
- < -
I 724 0 = 1—21 115z, Elgyy1:%0

forall f e LO(S;Lr,,[,loc([Rd;X)) of the form f =Y ;c11g, ®f[” with (Si)ier € & a
countable family of mutually disjoint sets and (f'");c; € L,,t{,loc([Rd; X).

In particular, in case (S, </, 1) is atomic,

—~— A L S5 Ay
YL (E;X) =YL (B g, X)
=1

with an equivalence of quasi-norms.

Proof. Letus start with (i). Fix /€ {1,..., L} and write J:= J;. Let f € ﬁA(E' X). Lete>0.
Choose (gn)n and (fi* n)x*,n) as in Deﬁnmon 2.3.9with [[(g)nlle = (A +e)||f||YL &X'
As fyr n € Lo(S; ' (R?)) with supp fx*,n < BA(0,2"*1), we can naturally view f+ ,, as an
element of Lo(Sy;.%' (R4%)) with supp fy+,, € B4 (0,2"*1). Since

Lo(S; Ly joc®D) = Lo(Ss; Ly i 10c ®Y)),
it follows that f € YL (4 y; X) with
115381,y S M@ nllE = 18dnll < A+ 1Sl

Let us next treat (ii). We may without loss of generality assume that L = ¢ and that
Ji={l} foreach l € {1,..., £}. We will write Ej, j; = Ez;(jy-

Let f e N’_, VLY (i, X) be of the form f = ¥c/1s, ® il with (S)je; « o a
countable family of mutually disjoint sets and (f')e; € L, s10¢(R%; X). In order to es-
tablish the desired inequality, we will combine the estimate corresponding to the impli-
cation (III) = (I) from Theorem 2.4.5 for the space ﬁA(E; X) with the estimates from
Proposition 2.4.8 for each of the spaces ﬁAi (Eig;j;; X). To this end, pick M € N with
MAA. > e_. Now, let us define (gx+,n) (v, mex+xn and (ge.x*,n, j) (x*,mex+xn, With j €

min
{1,...,¢} and c e R, by

gl n=o,

8x*,n = dAr (f)' nzl,

{M,x*,n
and d[d;j],A,»,rj (), n=0
8c.x n]":{ ([)dx]]OAj,r] ’ )
Mcx N (f) nzl,

where the notation is as in Theorem 2.4.5 and Proposition 2.4.8.
For n =0 we have

gxt 0 = dA r o(f) < [Oz s M[z[ HiB A,](d[[)c[xl]OAl,rl (f))
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< MAAY (O] = Mg 0], cER (2.44)

Now let n = 1. We will use the following elementary fact (cf. [236, 4.16]): there exist
Ce (0,00), KeNand {c;k]}j:L.,,,g;k:O_m,K <R such that

¢
IAMR()|<C Z Z ‘AW N ICEDY Ci‘k]‘ltf;nzi)’

k=0j i=1
forall he LO(R”’). Applying this pointwise in S to (f, x*), we find that

Ar _ ontr(4)-r71 ‘M *
8x* déMx n(f) =2 HZH AZ <f’x >||Lr,,;f(3“‘(0,2’”))

L, +(BA(0,277))

4
ntr(A)-r- —
S Z 22 ||Z [HLC[k]lwzlzz l[ﬂfjlzf<f
i=1

k=0j=1

H — L %;ﬂzi (f,x*)

C] [[tl’]]zj

K ¢
< Z Zzntr(Aj)/r][O M[t[l] A,]

~

k=0j=1

K ¢ a
=) LM

k=0j:1

g
-3y upa

[11' i1LAj,
]k]]*r] N = ZZM [ c 1 e n]] (2.45)
k=0 j=
A combination of (2.44) and (2.45) gives

tf j1,Aj
n < Z ZMA JLAT (f) Z Z M [gc}k],x*,n,j

[k]*
k=0j=1 M.c k=0j=1

Ly, (BY 0.27) ]

2ntr(Aj)/rj

Ly, (8% 0,27) ]

M *
Zj LL‘[klt,{ 12 jAL[‘{;j]Zj<frx )

for all (x*, n) € X* x N. Therefore,

K ¢
gzt mllyoreim S X ];1I{Mﬁ‘[gc;kl,x*,n,]-]hx«m

;E)

K
Z’ Z ||{gc}k],x*,n,j

K ¢
g ; i|{gC}kl'x*'nyj}(x*,n)i|._?M(X*;E[,[;j])'

The desired result now follows from a combination of Theorem 2.4.5 and Proposition 2.4.8.
O

As an immediate corollary to Theorems 2.3.17 and 2.5.1 we have:

Corollary2.5.2. LetEe€ ¥ (e4,e_,A,1,(S, o, w) withe,,e_ >0and (S, </, 1) atomic. Let
{J1,...,J1} be a partition of {1,...,0}. Ife, > tr(A) - (r-'=1),, then

L
YAE; X) = YIAE X) = VLA X) = () VLY (B, X)
=1
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L L
= N YLY1 (B, X) = () YY1 By X)
I=1 I=1

with an equivalence of quasi-norms.

Theorem 2.5.3. Let E€ F(e4,e-,A,1,(S,97, 1) withe,,e- >0. Let{],,...,J1} be a par-
tition of {1,...,¢}. Then

L
YAE X) = YIAE X) = VLA X) = () VLY (B3 X)
=1

L
YL (B X) = lﬂ Y1 (B 37,5 X)
1 =1

=

1

with an equivalence of quasi-norms.

Proof. In view of Theorem 2.3.17, this can be proved in exactly the same way as Theo-
rem 2.5.1, using Theorem 2.4.7 instead of Theorem 2.4.5. O

Example 2.5.4. In light of Example 2.3.15, the intersection representation

L
YAEX) = (YY1 (B X)
=1
from Corollary 2.5.2 and Theorem 2.5.3 extends the well-known Fubini property for the
classical Triebel-Lizorkin spaces F;,, q([Rd) (see [236, Section 4] and the references given
therein). It also covers Theorem 2.1.1 and thereby (2.4), the intersection representation
from [63, Proposition 3.23]. The intersection representation [156, Proposition 5.2.38]
for anisotropic weighted mixed-norm Triebel-Lizorkin is a special case as well. Further-
more, it suggests an operator sum theorem for generalized Triebel-Lizorkin spaces in
the sense of [148].

2.A. SOME MAXIMAL FUNCTION INEQUALITIES

Suppose that R% is d-decomposed with 4 € (Zzl)g andlet A= (A,,..., A¢) bea d-anisotropy.

Lemma 2.A.1 (Anisotropic Peetre’s inequality). Let X be a Banach space, r € (0,00)¢,
KcR%a compact set and N € N. For all « € N" with |a| < N and f € y/([R%d;X) with
supp (f) € K, there is the pointwise estimate

[ID? f(x + 2)|lx < sup IIf(x+2)llx

" zerd TG, (1+ pa; () A7)

S[MAUIfIO] ), xeR?

su
zerd TG (1+ pa; ()47

Proof. This can be obtained by combining the proof of [131, Proposition 3.11] (which is
actually only a reference to [221, Theorem 1.6.4], the two-dimensional case that easily
extends to arbitrary dimensions) for the case 4 = 1 with the proof of [35, Lemma 3.4] for
the case ¢ =1. O
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For f € F 18R X), r € (0,00, R € (0,00 we define the maximal fuction of
Peetre-Fefferman-Stein type f*(A,r,R; -) by

IIf(x+2)llx

)tr(A]-)/rj :

f*(Ar,R;x):= sup
zeR4 H] 1A +Rjpa;(z))

Corollary 2.A.2. Let X be a Banach space and r € (O,oo)é. Forall f € y’(Rd;X) and
R € (0,00)¢ with supp (f) < BA(0, R), there is the pointwise estimate

fHArR ) Sar [MAIfIIO] (),  xeR?

Proof. By a dilation argument it suffices to consider the case R = 1, which is contained
in Lemma 2.A.1. O

Lemma 2.A.3. Let X and Y be Banach spaces. For all (Mp)peny € F LY(R% B(X,Y)),
(R™) ,en € (0,00)Y, c € [1,00) and (f) nen € F L&' (RY; X), there is the pointwise estimate

|[LF (M, f)l ()]

¢
<c = ’sup/ ||Mn(AR(n)J/)||98(X,Y)l_[(l"'PAj(J/j))/lj dy
keN j=1

I1fn(x + 2)[1x
su l 1 R(n) . Aj :
zeR4 szl( +C ] PA](J/]))

Proof. This can be shown as the pointwise estimate in the proof of [156, Proposition 3.4.8],
which was in turn based on [182, Proposition 2.4]. O

The following proposition is an extension of [131, Proposition 3.13] to our setting,
which is in turn a version of the pointwise estimate of pseudo-differential operators due
to Marschall [170]. In order to state it, we first need to introduce the anisotropic mixed-
norm homogeneous Besov space B;;f,(Rd AR

Let Z be a Banach space, p € (1,00)’, g € (0,00] and s € R. Fix () ez < & (R?) that
satisfies ¢y = /(Ay-k ) — P (Ay-kn -) for some y € F CP(RY) with ¢ = 1 on a neighbour-
hood of 0. Then B ‘3([!12‘1 Z) is defined as the space of all f € [#'/ 2] ([Rd Z) for which

sk
2% i * ez \eq(Z)[L,,,,{md)J(Z) <00

1158 g, 7) = 1€
Proposition 2.A.4. Let X and Y be Banach spaces and r € (0, 1)¢. Putt:= Fmin € (0,1].
For all b e (R B(X,Y)), ue€ ' [R%X), c € (0,00) and R € [1,00) with supp (b) c
BA(0, ¢) and supp (1) c BA(0, cR), there is the pointwise estimate

Yl uApnGE-n
IBMD)ux)lly Sar (R0 7 b]| s wanLoa [MAlullx)] (x)
B j=1 T

REB(X,Y))

1,7

for each x € R?.
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In the proof of Proposition 2.A.4 we will use the following lemma.

Lemma 2.A.5. Let X be a Banach space and p,q € (0,00) with p < q. For every f €
#'([R%; X) and R € (0,00)¢ with supp (f) < BAO,R),

¢ AL -L4ix

pj 4j’
”f“Lq,,{(Rd) Spad ] Rj

”f”L,,y,[([Rd;X)
Jj=1

Proof. By a scaling argument we may restrict ourselves to the case R = 1. Now pick
¢ e SR with p=1o0nB4(0,1). Then f = ¢ f and the desired inequality follows from
an iterated use of Young’s inequality for convolutions. O

Proof of Proposition 2.A.4. 1t holds that
b(D)u(x)Z/ b(y)u(x—y)dy, xeRY,
R4

For fixed x € R?, by the quasi-triangle inequality for p 4 (with constant cy),
supp (Z[y — b(y)u(x— y))) € Ba(0,¢) + Ba(0,cR) < BA(0,ca(R +1)c).
Therefore,

IbD)u)lly < ly — by ux— Yl @,

Yl uApnGk-n .
< (ca(R+1)c) 7=t A5 ||y»—>b(y)u(x—y)||Lr't{(Rd)

tr(Aj)(%jfl)

i Y
S (R ly—bux=lig, @i (2.46)

where we used Lemma 2.A.5 for the second estimate.
Let (¢px) kez be as in the definition of the anisotropic homogeneous Besov space B,s,‘f,
as given preceding the proposition. Then Y37 _ ¢r(=-) =1 0on R4\ {0}, so that

1/t

Ibux =, gy <| 2 lldr(=) butx— Il (2.47)
' kez

rd (R
Since

sup pk (= bWNlzx,v) < I1F  Pe (=) DIl @ecax.vy)
yeER

= 2m) " NF Pl wemix. vy

and supp (px) € BA(0,2F+1), it follows from a combination of (2.46) and (2.47) that

1/t

) R v
> Ngr(=)Dule=I] o
kezZ ’

C (A (E-1
1Dy < (Re)== "5



2.A. SOME MAXIMAL FUNCTION INEQUALITIES 69

T)I/T

kXl A

Y tr(A)(E-1) Fiag-1rt. B
< (RS (z 2 TIF el
keZ
—(k+Dtr(Aj) &
sup2 J ||lBA(O‘2k+1)u(x_ ')”L,,{(Rd)
kez '
YO trANGE-1)
<(Ro)y ™7 DI 50 wiapytoa (M7 lull 0] ().

B 7 RGBX,Y))

1,7

O

Corollary 2.A.6. Let X and Y be Banach spaces, r € (0,11 and v € CE’O([Rd;QB(X, Y)).
Put yy := w(A,-«-) for each k € N. Then, for all (fi)ren < y’([ﬂgd;X) with supp fk c
BA(0, r2k) for somer € [1,00), there is the pointwise estimate

zﬁzltr(Aj)(rij—l

D) fe@lly <7 "IMAURIIO] ), xeRe

Proof. Let c € [1,00) be such that supp (w) c BA(0, ). Applying Proposition 2.A.4 to b =
Wi, u= fr and R = r2¥, we find that

YO trApGE-D
Iy (D) fie)ly S (er2®) ™= g £{ [MAIfellx0] (0.
B, I (R4)

1,7
Observing that

—kxl_ AL -1
— j=1
Nyl suapta = 2 !

||1//|| 4 1
>- (A))+5,A ’
J (Rd) 5 ]:1tr T

J d
1T 1T ®Y)

we obtain the desired estimate. O
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DIFFERENCE NORMS FOR VECTOR-VALUED BESSEL
POTENTIAL SPACES

This chapter is based on the paper:

N. Lindemulder. Difference norms for vector-valued Bessel potential spaces with ap-
plications to pointwise multipliers. ]J. Funct. Anal., 272(4): 1435-1476, 2017.

In this chapter we prove a randomized difference norm characterization for Bessel poten-
tial spaces with values in UMD Banach spaces. The main ingredients are & -boundedness
results for Fourier multiplier operators, which are of independent interest. As an appli-
cation we characterize the pointwise multiplier property of the indicator function of the
half-space on these spaces. All results are proved in the setting of weighted spaces.

2010 Mathematics Subject Classification. Primary 46E40; Secondary 42B15, 42B25, 46B09, 46E30, 46E35
Key words and phrases. Bessel potential space, difference norm, pointwise multiplier, UMD space, random-
ized Littlewood-Paley decomposition, Fourier multiplier, Z-boundedness, A,-weight
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3.1. INTRODUCTION

Vector-valued Sobolev and Bessel potential spaces are important in the L”-approach
to abstract evolution and integral equations, both in the deterministic setting (see e.g.
[5, 195, 251]) and in the stochastic setting (see e.g. [69, 191, 192]). Here a central role is
played by the Banach spaces that have the so-called UMD property (unconditionality of
martingale differences); see Section 3.2.1 and the remarks below. The class of Banach
spaces that have UMD includes all Hilbert spaces, LP-spaces with p € (1,00) and the
reflexive Sobolev spaces, Triebel-Lizorkin spaces, Besov spaces and Orlicz spaces.

Let X be aBanach space, s € Rand p € (1,00). The Bessel potential space H;([Rd; X)is
defined in the usual Fourier analytic way via the Bessel potential operator _#; = (I—-A)*'?
based on the Lebesgue-Bochner space L ([Rd;X); see Section 3.2.3. If X has UMD and
k € N, then we have Hy(R%; X) = W*R?; X), where W5 (R?; X) denotes the k-th order
X-valued Sobolev space on R? with integrability parameter p; see [126], which also con-
tains some converse results in this direction. Furthermore, if X has UMD and s = k+60
with k € N and 6 € [0,1), then H; (R%; X) can be realized as the complex interpolation
space

Hy, (R X) = Wy R X), Wy ™ R X))l

In the scalar-valued case X = C, Strichartz [230] characterized the Bessel potential
space H;, (R%) = H",(Rd;(ﬁ), with s € (0,1) and p € (1,00), by means of differences. The
characterization says that, for every f € L” (R%;C), there is the equivalence of extended
norms

0 2dt\1/2
_ -2s| ,—d
||f||H;(Rd;@~||f||U,([Rd;@+||(/0 il /B(O,nHAthth] ) I | R RY

where Ay, f = f(-+h)—fforeach h e R9. This extends to Hilbert spaces [242, Section 6.1].
In fact, given a Banach space X, the X-valued version of (3.1) is valid if and only if X is
isomorphic to a Hilbert space. Indeed, the X-valued version of the right-hand side of
(3.1) defines an extended norm on L” (R%; X) which characterizes the Triebel-Lizorkin
space F;yz (R%; X) [220, Section 2.3]. But the identity

s mpd. _ s d.
H,R™; X) =F,,R"; X), (3.2)

i.e. the classical Littlewood-Paley decomposition for Bessel potential spaces, holds true
if and only if X is isomorphic to a Hilbert space [112, 212]. However, if X is a Banach
space with UMD, then one can replace (3.2) with a randomized Littlewood-Paley de-
composition [187] (see (3.13)), an idea which for the case s = 0 originally goes back
to Bourgain [30] and McConnell [174]. In [187] this was used to investigate the point-
wise multiplier property of the indicator function of the half-space on UMD-valued
Bessel potential spaces. The randomized Littlewood-Paley decomposition will also play
a crucial role in this paper to obtain a randomized difference norm characterization for
UMD-valued Bessel potential spaces; see Theorem 3.1.1.



3.1. INTRODUCTION 73

Since the early 1980’s, randomization and martingale techniques have played a fun-
damental role in Banach space-valued analysis (cf. e.g. [43, 48, 59, 124, 126, 127, 135,
149, 190, 211]). In particular, in Banach space-valued harmonic analysis and Banach
space-valued stochastic analysis, a central role is played by the UMD spaces. Indeed,
many classical Hilbert space-valued results from both areas have been extended to the
UMD-valued case, and many of these extensions in fact characterize the UMD prop-
erty. In vector-valued harmonic analysis, (one of) the first major breakthrough(s) is
the deep result due to Bourgain [28] and Burkholder [41] that a Banach space X has
UMD if and only if it is of class #9J, i.e. the Hilbert transform has a bounded ex-
tension to LP (R; X) for some/all p € (1,00). As another major breakthrough we would
like to mention the work of Weis [244] on operator-valued Fourier multipliers on UMD-
valued LP-spaces (p € (1,00)) with an application to the maximal LP-regularity prob-
lem for abstract parabolic evolution equations. A central notion in this work is the -
boundedness of a set of bounded linear operators on a Banach space, which is a ran-
domized boundedness condition stronger than uniform boundedness; see Section 3.2.1.
In Hilbert spaces it coincides with uniform boundedness and in LP-spaces (p € [1,00)),
or more generally in Banach function spaces with finite cotype, it coincides with so-
called #2-boundedness. It follows from the work of Rubio de Francia (see [208-210] and
[95]) that £2-boundedness in L” (RY) (p € (1,00)) is closely related to weighted norm in-
equalities; also see [92].

Randomization techniques also play an important role in this paper. As already
mentioned above, we work with a randomized substitute of (3.2). This approach nat-
urally leads to the problem of determining the Z2-boundedness of a sequence of Fourier
multiplier operators. The latter forms a substantial part of this paper, which is also of
independent interest; see Section 3.3.

The results in this paper are proved in the setting of weighted spaces, which includes
the unweighted case. We consider weights from the so-called Muckenhoupt class A,.
This is a class of weights for which many harmonic analytic tools from the unweighted
setting remain valid; see Section 3.2.2. An important example of an A,-weight is the
power weight wy, given by

wyx, XN =1xl’, (1) eRY=RxR, 3.3)

for the parameter y € (-1, p — 1). In the maximal LP-regularity approach to parabolic
evolution equations these power weights yield flexibility in the optimal regularity of the
initial data (cf. e.g. [179, 180, 186, 197]).

The following theorem is our main result. Before we can state it, we first need to
explain some notation. We denote by {¢} jen a Rademacher sequence on some proba-
bility space (Q, %,P), i.e. a sequence of independent symmetric {-1, 1}-valued random
variables on (Q, %,P). For a natural number m = 1 and a function f on R4 with values
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in some vector space X, we write
AP f(x) = Z( 1)1( )f(x+(m ph),  xeR% heR?
Theorem 3.1.1. Let X be a UMD Banach space, s >0, p € (1,00), w € Ap (R%) and meN,
m > s. Suppose that
* K=1_, 4 in the unweighted case w = 1; or
e Ke y([Rd) is such that fR K(y)dy # 0 in the general weighted case.

Forall f € LP (R, w; X) we then have the equivalence of extended norms

LP(QLP RY,w; X))
(3.4)

J .
”f”H;;(Rd,w;X) ~ ||f||Lp(|Rd,w;X) +S]1€1£H Zlszjs/ K(h)Az thth
]:

Remark 3.1.2. If f € H;,(Rd, w; X), then the finiteness of the supremum on the RHS
of (3.4) actually implies the convergence of the sum Z 1€ ]21 S [pa K(WAM . fdh in

LP(Q; LP (R4, w; X)). Moreover, (3.4) then takes the form

2-/h

N
1 g @) ~ W o e iy + ‘ ) Z 2’ / KAy ”lfdh‘ LP@LP R, w; X))
This follows from the convergence result [154, Theorem 9.29] together with the fact that
LP(R?, w; X) (as a UMD space) does not contain a copy c¢p.

Remark 3.1.3. We will in fact prove a slightly more general difference norm character-
ization for H;, R%, w; X), namely Theorem 3.4.1, where we consider kernels K satisfy-
ing certain integrability conditions plus an %-boundedness condition. Here the 2-
boundedness condition is only needed for the inequality '>". In the case m = 1 it corre-
sponds to the Z2-boundedness of the convolution operators {f — K; * f: t =2/, j =1} in
B(LP([RY, w; X)), where K; = 4K (¢-). For more information we refer to Section 3.4.2.

To the best of our knowledge, Theorem 3.1.1 is the first difference norm character-
ization for (non-Hilbertian) Banach space-valued Bessel potential spaces available in
the literature. In the special case when X is a UMD Banach function space, the norm
equivalence from this theorem takes (with possibly different implicit constants), by the
Khinthchine-Maurey theorem, the square function form

B s o172
W W = W Vo + || (3 12 [ KO0 A P) 7

see Section 3.4.4. In the unweighted scalar-valued case X = C, this a discrete version for
the case g = 2 of the characterization [234, Theorem 2.6.3] of the Triebel-Lizorkin space
Fpq (R%) by weighted means of differences (recall (3.2)). Furthermore, in the unweighted
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scalar-valued case X = C, one can also think of it as a discrete analogue of Strichartz’s
characterization (3.1).

As an application of Theorem 3.1.1, we characterize the boundedness of the indica-
tor function lgd of the half-space R? = R, xR?~! as a pointwise multiplier on H ;,([R{d Jw; X)
in terms of a continuous inclusion of the corresponding scalar-valued Bessel potential
space H;, (R, w) into a certain weighted L”-space; see Theorem 4.4.1. The importance
of the pointwise multiplier property of lRf lies in the fact that it served as one of the
main ingredients of Seeley’s result [224] on the characterization of complex interpola-
tion spaces of Sobolev spaces with boundary conditions. As an application of an ex-
tension of Seeley’s characterization to the weighted vector-valued case one could, for
example, characterize the fractional power domains of the time derivative with zero ini-
tial conditions on LP (R, Wy; X).

Theorem 3.1.4. Let X # {0} be a UMD space, s € (0,1), p € (1,00) and w € A,,([Rid). Let
ws,p be the weight on R = Rx R given by W, p(x1, X') := %17 Pw(xy, X') if |x1| < 1 and
ws,p(xl,x/) = w(xy,x") iflx1| > 1. Then IM is a pointwise multiplier on H;(Rd, w; X) if
and only if there is the inclusion

HYR?, w) — LP R?, ). (3.5)

In Section 3.5.2 we will take a closer look at the inclusion (3.5). Based on embed-
ding results from [185], we will give explicit conditions (in terms of the weight and the
parameters) for which this inclusion holds true. The important class of power weights
(3.3) is considered in Example 3.5.5.

In the situation of the above theorem, let wj ;, be the weight on R x R%1 defined by
Ws,p(x1,X') := [x1]7*Pw(x1, x'). Note that, in view of the inclusion H;,([Rd, w) — LP[RY, w),
the inclusion (3.5) is equivalent to the inclusion

HyR?, w) = LP R, W ).

In the unweighted scalar-valued case, the above theorem thus corresponds to a result
of Triebel [233, Section 2.8.6] with g = 2, which states that the multiplier property for
F ;,, q(Rd) (recall (3.2)) is equivalent to the inequality

1= 151l f Dl ey S llgg @y f € Fpg®.

Similarly to Strichartz [230], who used (3.1) to prove that 1a acts a pointwise multiplier
+
on H3(R?) in the parameter range
1

1 1 1
- <s< -, where —+—,:1,3
p p

3This result is originally due to Shamir [226]. However, Strichartz [230] in fact obtained this result as a corollary
to a more general pointwise multiplication result (in combination with a Fubini type theorem for Bessel
potential spaces).
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Triebel used a difference norm characterization in his proof. Our proof is closely related
to the proof of Triebel [233, Section 2.8.6].

An alternative approach to pointwise multiplication is via the paraproduct tech-
nique (cf. e.g. the monograph of Runst and Sickel [215] for the unweighted scalar-valued
setting). Based on a randomized Littlewood-Paley decomposition, Meyries and Ver-
aar [187] followed such an approach to extend the classical result of Shamir [226] and
Strichartz [230] to the weighted vector-valued case. They in fact proved a more gen-
eral pointwise multiplication result for the important class of power weights wy (3.3),
Y € (-1, p—1), in the UMD setting, from which the case of the characteristic function
1Rf can be derived. Their main result [187, Theorem 1.1] says that, given a UMD Banach
space X, pe(l,o0)andye (-1,p—1), IRﬁf is a pointwise multiplier on H;([Rd, wy; X) in
the parameter range

1+y 1+ 1
1Y 5« Y where —+—=1,9/=-—1_

p' p p p p-1

For positive smoothness s = 0 this pointwise multiplication result is contained in Exam-
ple 3.5.5, from which the case of negative smoothness s < 0 can be derived via duality.

The paper is organized as follows. Section 3.2 is devoted to the necessary prelim-
inaries. In Section 3.3 we treat Z-boundedness results for Fourier multiplier opera-
tors on LP (R4, w; X). The results from this section form (together with a randomized
Littlewood-Paley decomposition) the main tools for this paper, but are also of indepen-
dent interest. In Section 3.4 we state and prove the main result of this paper, Theo-
rem 3.4.1, from which Theorem 3.1.1 can be obtained as a consequence. Finally, in Sec-
tion 3.5 we use difference norms to prove the pointwise multiplier Theorem 4.4.1, and
we also take a closer look at the inclusion (3.5) from this theorem.

Notations and conventions. All vector spaces are over the field of complex scalars C.
| Al denotes the Lebesgue measure of Borel set A c R%. Given a measure space (X, <, ),
for A € .o/ with u(A) € (0,00) we write

1
du=—— 1| du.
7{;” u(A)/A”

For a function f: R4 — X, with X some vector space, we write f(x) = f(—x) and, unless
otherwise stated, f;(x) = t f(¢x) for every x € R and ¢ > 0. Given a Banach space X, we
denote by L°(R%; X) the space of equivalence classes of Lebesgue strongly measurable
X-valued functions on R?. For x € R% and r > 0 we write Q[x, 7] = x + [-r,7]¢ for the
cube centered at x with side length 2r.

3.2. PREREQUISITES

3.2.1. UMD Spaces and Randomization

The general references for this subsection are [126, 127, 149].
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A Banach space X is called a UMD space if for any probability space (Q, %,P) and
p € (1,00) itholds true that martingale differences are unconditional in L? (Q; X) (see [43,
211] for a survey on the subject). It is a deep result due to Bourgain and Burkholder that
a Banach space X has UMD if and only if it is of class #£°F, i.e. the Hilbert transform has
a bounded extension to L (R; X) for any/some p € (1,00). Examples of Banach spaces
with the UMD property include all Hilbert spaces and all L7-spaces with ¢ € (1,00).

Throughout this paper, we fix a Rademacher sequence {¢} jcz on some probability
space (2, #,P), i.e. a sequence of independent symmetric {-1, 1}-valued random vari-
ables on (Q, %,P). If necessary, we denote by {s/j} jez a second Rademacher sequence
on some probability space (', &’,P") which is independent of the first.

Let X be a Banach function space with finite cotype and let p € [1,00).* The Khinthchine-
Maurey theorem says that, for all xo, ..., x, € X,

H(é'xﬂz)mez HjiogffoLp(Q;X)' 3.6)

In the special case E = L9(S) (g € [1,00)) this easily follows from a combination of Fu-
bini and the Kahane-Khintchine inequality. Morally, (3.6) means that square function
estimates are equivalent to estimates for Rademacher sums.

The classical Littlewood-Paley inequality gives a two-sided estimate for the LP-norm
of a scalar-valued function by the L”-norm of the square function corresponding to
its dyadic spectral decomposition. This classical inequality has a UMD Banach space-
valued version, due to Bourgain [30] and McConnell [174], in which the square function
is replaced by a Rademacher sum (as in (3.6); see the survey paper [124]). One of the
main ingredients of this paper is a similar inequality for Bessel potential spaces, namely
the randomized Littlewood-Paley decomposition (3.13).

Let X be aBanach space and p € [1,00]. As a special case of the (Kahane) contraction
principle, for all xy,...,x, € X and ay, ..., a, € C it holds that

J

n n
a;eixi <2|a || £-x-|| . 3.7
‘Z:o J€J ]||L,D(Q;X) |aloo Eb el LP(Q;X) @7

A family of operators 9~ < %(X) on a Banach space X is called 2-bounded if there
exists a constant C = 0 such that for all Ty,..., Ty €  and xy,..., xy € X it holds that

N
|2 275
i=o

(3.8

N
SCH £jXj .
2(Q;X) ];] I 2 @sx)

The moments of order 2 above may be replaced by moments of any order p. The result-
ing least admissible constant is denoted by 2, (97). In the definition of Z-boundedness
it actually suffices to check (3.8) for distinct operators Ty,..., TN €T .

say that X has finite cotype if it has cotype g € [2,00). The cotype of L? is the maximum of 2 and p. Every
UMD space has finite cotype.
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A Banach space X is said to have Pisier’s contraction property or property (a) if the
contraction principle holds true for double Rademacher sums (for some extra fixed mul-
tiplicative constant); see [149, Definition 4.9] for the precise definition. Every space LP
with p € [1,00) enjoys property (a). Further examples are UMD Banach function spaces.
However, the Schatten von Neumann class .#), enjoys property (a) if and only if p = 2.

A Banach space X is said to have the triangular contraction property or property (A)

if there exists a constant C = 0 such that for all {xivf}?jzo cX

see [134]. The moments of order 2 above may be replaced by moments of any order
p. The resulting least admissible constant is denoted by A, x. Every space with Pisier’s
contraction property trivially has the triangular contraction property. For vector-valued
LP-spaces we have Ay, 1r(s;x) = Ap x. Furthermore, every UMD space has the triangular
contraction property.

Let X be a Banach space. The space Rad(X) is the linear space consisting of all se-
quences {x;}; < X for which }_ ;en€;x; defines a convergent series in L2(Q; X). Tt be-
comes a Banach space under the norm [[{x;} l|radx) := IIZjeN €jxjllizq;x) see [127,
132, 149].

n
SCH g x;
12(QxQ;5X) i;o L V)

Z 81'69-)61',]'

0<j<isn

12(QxQ":X)

3.2.2. Muckenhoupt Weights

In this subsection the general reference is [103].

A weight is a positive measurable function on R that takes it values almost every-
where in (0,00). Let w be a weight on RY. We write w(A) = fA w(x) dx when A is Borel
measurable setin R, Furthermore, given a Banach space X and p € [1,00), we define the
weighted Lebesgue-Bochner space LP (R?, w; X) as the Banach space of all f € L°(R%; X)

for which
1/p

”f”LP([Rd,w;X) = (/Rd“f(x”'?(uj(X)dx < oo.

For p € [1,00] we denote by A, = A, (R%) the class of all Muckenhaupt A,-weights,
which are all the locally integrable weights for which the A -characteristic [w]4,, € [1,00]
is finite; see [103, Chapter 9] for more details. Let us recall the following facts:

* Aco =Upe(,00) Ap, Which often also taken as definition;

1

e For p € (1,00) and a weight w on R4 we Ay if and only if w r1e Ap, where
1,1
—+-=1;
pp

* For a weight w on R and 1 > 0: (wWA)]a, =W,

« For pe[l,00) and w € Ao®Y): R & 1P RY, w);
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* The Hardy-Littlewood maximal operator M is bounded on L” (R%, w) if (and only
if) we Ap.

An example of an A-weight is the power weight w, (3.3) for y > —1. Given p €
(1,00), we have wy € A, ifand only if y € (=1, p —1). Also see (3.48) for a slight variation.

A function f : R? — R is called radially decreasing if it is of the form f(x) = g(|x|)
for some decreasing function g : R — R. We define .# (R%) as the space of all k € L! (R)
having a radially decreasing integrable majorant, i.e., all k € L' (R%) for which there exists
aradially decreasing v € L' (R%)* with |k| < 1. Equipped with the norm

1Ky ey = inf{nwnLl(Rd) cy € L'®Y)* radially decreasing, | k| < w},

2 (R%) becomes a Banach space. Note that, given k € % (R%) and t > 0, we have k: =
1k(t-) € A RY) with |1 k¢l] Ly gay = 11Kl g ga)-
Let X be a Banach space. For k € % (R?%) we have the pointwise estimate

/d kG = HFWIx dy <KLy ey MUIfIl) (), feL}, R X), xeR?
R

As a consequence, if p € (1,00) and w € A,,(IRd), then k gives rise to a well-defined
bounded convolution operator kx*: f— k * f on L”(Rd, w; X), given by the formula

k*f(x)=/dk(x—y)f(y)dy, xeR?,
R

for which we have the norm estimate |1k * || (1p a1 x) Sp.d,w 1Kl g gay-

~

3.2.3. Function Spaces

As general reference to the theory of vector-valued distributions we mention (6] (and
[5, Section I11.4]). For vector-valued function spaces we refer to [126, 220] (unweighted
setting) and [187] (weighted setting) and the references given therein.

Let X be a Banach space. The space of X-valued tempered distributions .%'(R%; X)
is defined as y’(Rd;X) =L (& ([R{d),X), the space of continuous linear operators from
& (R%) to X, equipped with the locally convex topology of bounded convergence. Stan-
dard operators (derivative operators, Fourier transform, convolution, etc.) on %’ (R%; X)
can be defined as in the scalar-case, cf. [5, Section I11.4].

Letp e (1,00) and w € A, (R?). Then WP = e Ay, so that & (R%) oy R4, wl-r.
By Holder’s inequality we find that Lp([Rd, w; X) — &' ([Rd;X) in the natural way. For
each s € R we can thus define the Bessel potential space H; (RY, w; X) as the space of all
fe &'(R%; X) for which Isf € LP[RY, w; X), equipped with the norm ||f||H’§(Rd,w;X) =
IIJSfIIL,;(Rd,w;X); here ¢ € L&' [RY; X)) is the Bessel potential operator given by

Ff = F A+ P2 f1,  fesREX).
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Furthermore, for each n € N we can define the Sobolev space W,;l (R?, w; X) as the space
of all f € &'(R%; X) for which 6% f € LP([R?, w; X) for every |a| < n, equipped with the
norm | f 1l @, w;x) = Lial<n [10% 1l p e w;x) - Note that HYR, w; X) = LPR?, w; X) =
W) (R?, w; X). If X is a UMD space, then we have H)!(R?, w; X) = W;(R?, w; X). In the
reverse direction we have that if H;,([R; X) = Wl} (R; X), then X is a UMD space (see [126]).

For 0 < A < B < oo we define ® 4 p (R%) as the set of all sequences @ = (@) pen <
& (R%; X) which can be constructed in the following way: given ¢, € .% (R%) with

0<p<1, @) =1if|§I< A @) =0if|{| =B,
(@n)n=1 is determined by
Prn=¢127" )=o) =P, n=zl
Observe that
suppPo < {¢:1¢|< B} and supp@,ci:2"'A<[¢|<2"Bln=1. (3.9

We furthermore put ®(R?) := Uy« 4<B<oo P 5 ([RY).
Let @ = (@) nen € P(R?). We define the operators {S,} neny © Z(F' (RY; X), Oy (RY; X))
by
Sufi=gnxf=F " 1@uf), feS'®REX),
where € M(Rd;X) stands for the space of all X-valued slowly increasing smooth func-
tions on R%. Given s € R, pell,), gell,oo] and w € Aoo(Rd), the Triebel-Lizorkin
space F;,yq(le, w; X) is defined as the space of all f € %' (R%; X) for which

115 @30 1= 127 S nenll L @e wyteampc < 00

Each choice of ¢ € ®(R?) leads to an equivalent extended norm on .’ (R%; X).
The H-spaces are related to the F-spaces as follows. In the scalar-valued case X =C,
we have
Hy R, w)=Fy,RY,w),  pe(l,00,we Ap. (3.10)

In the unweighted vector-valued case, this identity is valid if and only if X is isomorphic
to a Hilbert space. For general Banach spaces X we still have (see [182, Proposition 3.12])

Fy | R, w; X) — HyR?, w; X) = F, o (R, w; X),  pe(l,o0),weA,®RY, (3.11)
and

(7@®%x0,11- ||F;Y1(Rd,w;x)) — PR, w;X),  pell,00),we Ac. (3.12)

For UMD spaces X there is a suitable randomized substitute for (6.31): if p € (1,00) and

w € Ap, then (see [187, Proposition 3.2])

fe s R X). (3.13)

N
Y €,2"Suf
n=0

d - x) ~ SU ’
11 b3 i) ~ o LP(QLP RY,w;X)

Moreover, the implicit constants in (3.13) can be taken of the form C = Cx, p.d,s([W] A,,)
for some increasing function Cx,p.d,s - [1,00) — (0,00) only depending on X, p, d and s.
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3.2.4. Fourier Multipliers

Let X be a Banach space. We write L1 (R%; X) := % 1L (R?; X) c &' (R%; X). For a symbol
me L°°([R€d) we define the operator T,, by

Ty : LLRY X) — LIRY; X), f— F Hmf).

Given p € [1,00) and w € AOO(R”I), we call m a Fourier multiplier on LP(RY, w; X) if Tm
restricts to an operator on L'(R?; X)L (RY, w; X) which is bounded with respect to the
LP(R?, w; X)-norm. In this case T}, has a unique extension to a bounded linear oper-
ator on LP ([Rd, w; X) due to the denseness of =V([R‘i;X) in Lp([Rd, w; X), which we still
denote by T;,. We denote by .4, ,,(X) the set of all Fourier multipliers m € L®(R%) on
LP (R, w; X). Equipped with the norm ||m||‘/ﬂpyw(x) = IITmIIQ(Lp(Rd’w;X)), Mp,1w(X) be-
comes a Banach algebra (under the natural pointwise operations) for which the natural
inclusion ), ;,(X) — AB(LP (R%, w; X) is an isometric Banach algebra homomorphism;
see [149] for the unweighted setting.
For each N € N we define .#y (R%) as the space of all m € cN®4\ {0}) for which

lmll g, = lmll_y @a) := sup sup & D*m(&)] < oo.
la|<N E£0

If X is a UMD Banach space, p € (1,00) and w € Ap(Rd), then we have .#,;,» (R —
Mp,w(X) with norm < Cyx,p,q([w] a,), where Cx,p,q : [1,00) — (0,00) is some increasing
function only depending on X, d and p; see [187, Proposition 3.1].

3.3. Z-BOUNDEDNESS OF FOURIER MULTIPLIERS

At several points in the proof of the randomized difference norm characterization from
Theorem 3.1.1 we need the Z-boundedness of a sequence of Fourier multiplier opera-
tors on L” (R%, w; X). In this section we provide the necessary Z-boundedness results.

In many situations, the Z-boundedness of a family of operators is proved under the
assumption of property (@) (see e.g. [48, 98, 149, 240]). Concerning operator families on
LP(T%; X) or LP(R%; X), the necessity of property (a) for a number of conclusions of this
kind is proved in [128]. For example, in the the setting of Fourier multipliers it holds true
that every uniform set of Marcinkiewicz multipliers on R4 is Z-bounded on L? (R%; X) if
and only if X is a UMD space with property (a). In particular, given a UMD space X, in
the one-dimensional case d = 1 one has that .#; (R) — .4, 1, (X) maps bounded sets to
Z-bounded sets if and only if X has property (a). Regarding the sufficiency of property
(a) for the Z-boundedness of Fourier multipliers, in the weighted setting we have:

Proposition 3.3.1. Let X be a UMD space with property (a) and p € (1,00).

(i) Forallweightsw € Ap([R{d), ///d+2(Rd) — Mp,w(X) maps bounded sets to R -bounded
sets.
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(ii) Let w e A;,“(Rd), i.e. w is a locally integrable weight on R which is uniformly
Ay in each of the coordinates separately; see [150]. Write RY = [R\ {0}%. If # <
LR N CHRY) satisfies

C 4 := sup supsup [{¥||D¥m(&)] < oo,
Me# a<1 {eR‘f

then .# defines an #-bounded collection of Fourier multiplier operators I 5 =
(Trg: M e A} in BILP R, w; X)) with R(Tz) Sx,pdwCu-

Proof. (i) Let w € Ap,. For each N € N we define RM nRY; B(X)) as the space of all
operator-valued symbols m € CcN R\ {0}; BB(X)) for which

Imll.ay = 1Ml 1 ;0 = 24161 DT M) 1§ #0, ]l < N} < co.

If Y is a UMD space, then Z.# 4., RY; B(Y)) — My (Y) (as remarked before [187,
Proposition 3.1]). Using this for Y = Rad(X), the desired result follows in the same spirit
as in [98, Section 3] (also see [124, 149]).

(ii) Put I; := [-2/,-2/"") U (2/71,2/] for each j € Z. For each k € {1,...,d} it can
be shown that {1y, 1jxRd-k} jez < AMp,w(X) and that the associated sequence of Fourier
multiplier operators {A¢[I;]} jez defines an unconditional Schauder decomposition of
LP(RY, w; X); see e.g. [156, Chapter 4]. Since {Ar[I]}jez and {A;[I}]} jez commute for
k,1 € {1,...,d} and since X is assumed to have property (a), it follows (see [248, Re-
mark 2.5.2]) that the product decomposition {H?zl Ay 1]} is an unconditional Schauder
decomposition of LP ([Rd, w; X). One can now proceed as in the unweighted case; see e.g.
[149, Theorem 4.13&Example 5.2]. O

As we will see below, for general UMD spaces it is still possible to give criteria for
the Z-boundedness of a sequence of Fourier multipliers. Before we go to the Fourier
analytic setting, we start with a general proposition which serves as the main tool for
the Z-boundedness of Fourier multipliers below. In order to state the proposition, we
first need to introduce some notation.

Let Y be a Banach space. For a sequence {T}} jen < 98(Y) we write

n
I{T} jenlly —Rad(v) :=inf{C: ) > Sjij‘ =Cliylly,ye€ Y}
j=0

L2(QY)

and

Lz(Q.Y)’”EN’VO"“’ynE Y}.

n n
I{T}} jenlIRad () —y = inf{C: H].;)ijjHY = CH;)b‘jJ’j

In the following remark we provide an interpretation of these quantities in terms of the
space Rad(Y), which gives a motivation for the chosen notation.
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Remark3.3.2. 1dentifying {T}} jen with the linear operator T: Y — 2O(N; X), y=(Tjy)jen,
we have

KT}y —Radv) = I{Tj (v, Rad(v)) = IITllm(v,Rad(¥))»
where || - || (v, Rad(y)) IS, in the natural way, viewed as an extended norm on L(Y, 2O(N; X)),

the space of linear operators from Y to ¢°(N; X). Similarly, identifying {T i} jen with the
linear operator Tt coo(N; X) — Y, (¥j)jen— ZjeN T;y;, we have

t
IHT i Rad(v)—y = IHTjlzRad(v), ) = T ll2Rad(v), 1)

where || - || zRad(v),v) is viewed, in the natural way, as an extended norm on L(cgo(Y), Y).
Using that the natural map i : Rad(Y*) — Rad(Y)* is a contraction (see [127]), we
find that

I{TjHIRad(v)— Y 1T zRadv),v) = (T * v+ Rad(v)) = lli© ({T;})tH@(Y*,Rad(Y)*)

< ||({T;})t|L%(Y*,Rad(Y*)) = ||{T;}||Y*—»Rad(Y*)'

If X is K-convex with K-convexity constant Kx,® then i is an isomorphism of Banach
spaces with ||i~!|| < Kx (see [127]), so that

1
T Hly—Rady) = TllgyRadvy) = 1T lz®adv), v = T 1o i llmmadr)®, v

IA

Kx T} Hlzg@adcr),v+) = KxIHT; HIRad(y)— v+

Proposition 3.3.3. LetY be a Banach space and let{U} jen and {V} jen be two sequences
of operators in B(Y).

(i) The following inequalities hold true:

n

RAUD = U Mlinadcr—v = U lInagianory < sup sup || Y e;u5||,  3.19)
n Ej:il j:O
n

ZU{UH = MUy ~Radv) = I{Uj}IRad(@(v)) < sup sup EjUjH (3.15)
nogj=+1 j=0

and
I{U; Vi}jenllRad(v)—v < I{Uj} jenlIRad(@(v) Z{V}} jen)- (3.16)

(ii) Suppose that E has property (A). If
C1:=1{Uj}jenllRad(v)—y <00 and Cz:=|l{Vj}jenlly—~Rad(v) <00,

then {27=0 U Vi} is R -bounded with Z-bound < AgC;1Cs.

5For the definition of K- -convexity we refer to [126, 172]. All UMD spaces are K-convex.
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Proof. Exceptfor (3.15), where we follow the estimates from the proof of [187, Lemma 4.1],
the proposition follows easily by inspection of the proof of [134, Theorem 3.3]. Let us
provide the details for the convenience of the reader.

(i) The third inequality in (3.14) is trivial and the second inequality in (3.14) is just the
inequality (3.16) with V; = I for all j. For the first inequality in (3.14), let yo,...,yn € Y.
For every {¢} jen € {1, 1}"*1 we have

n

D €Y

j=0

n
Hj;oijjyjHYSH{Uj}j(-:N“Rad(Y)—»Y) 2y
because {¢ j};-lzo and {e;e f};‘l:o are identically distributed. Plugging in £; = £;(w) and
taking L2-norms with respect to w € Q, the desired inequality follows.

In (3.15) we only need to prove the first inequality; the other two inequalities are
trivial. For this we use the fact [99, Lemma 3.12] that for any {yj,k};'l,kzo c Y one has the
inequality

|

Now let yy,..., ¥n € Y. Denote by {L~Ij} c B(L*(Q;Y)) the sequence of operators point-
wise induced by {U;}. Using Fubini one easily sees that |[{U}}ll2(q.y)—Rradz2@:v) <
I{U}y —Rad(v)- Invoking (3.17) with y; x = Uy y;, we thus find

n n

!
2 €y LZ(Q'Y)SH 2 Efgkyj’k‘
j=0 ’ J k=0

(3.17)

L2(QxQ;Y)

n n
| X &3] = || X ety
iYiVill 20 IR 2 ;
= 2(©;Y) i [2(QxQ;Y)
(A
o~
Z k k(z ]y])‘ 200/-72(0)-
= 120 L2(Q)L2(QY))
n
< Uitlly— | EjYj .
[I{ ]}”Y Rad(Y) ng iYi 12(Q:Y))

For (3.16) note that if yy,...,y, € Y, then

E

n n
(Z fof) (Z £jViy;
Jj=0 Jj=0

n
ICARTIN
j=0 %

n n
< E'U" H eiViyi
‘ Z T @iy Z Vi sy
j=0 7=0
n
< ||{Uj}||Rad(38(Y))%({Vf})) 2 €Yi|| iy’
= @)

(ii) Write Sy := Z?:o U;V;foreach ke N. Forall yy, ...,y € Y we have

n
> exSkyk .
= 12(Q;Y)

n n
oy |];)Uf];.gkvjyk
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n n
< Cl‘ > €5 ) exVive
) ]k=j L2(Q;L2(Q;Y)
n n
< AYCIH Z E,-Vj Z Ex Yk
=0 U L2 L2(Q5Y)
n
< AVGG|| Y e ,
yC1Ca kgb 73| P
which proves the required 2-bound. O

For later reference it will be convenient to record the following immediate corollary
to the estimates (3.14) and (3.15) in (i) of the above proposition:

Corollary 3.3.4. Let X be a Banach space, p € (1,00) and w € A,,([R{d). Let {mj}jen <
My, 1w(X) be a sequence of symbols such that

n

K :=sup sup

ejij <00 (3.18)
n g]-:J_rl j:() -/ﬂp,w(x)

Then {mj}jen defines an #-bounded sequence of Fourier multiplier operators {Tpm } jen
onY = LP (R, w; X) with %-bound

R ({Tm,; ) = T} IRad(v)—v V I{TjHy—Rad(v) < IH{Tj}HIRadc () < K.

If X isa UMD space, p € (1,00) and w € A, (R%), then we have .#.,2(RY) — M}y, (X).
So the number K from (3.18) can be explicitly bounded via the Mihlin condition defining
My.+>RY). In particular, for a bounded sequence in .#Zy.,»(R%) which is locally finite in
a uniform way we find:

Corollary3.3.5. Let X bea UMD space, p € (1,00) and w € Ap(Rd). Let{mj}jen < L®(RY)
be a sequence of symbols such that:

(a) There exists N € N such that every¢ € R\ {0} possesses an open neighborhood U c
R4\ {0} with the property that#{j : mj|ly #0} < N.

(b) {mj}jen is a bounded sequence in ///d+2([Rd).

Then {mj}jen defines an #-bounded sequence of Fourier multiplier operators {Tpm} jen
on LP (R%, w; X) with Z-bound

R({Tm;}) <sup sup

n Ej:il

n
Zejijﬂ (X)SCX,p,d([W]Ap)Ns_up||mj||///d+2;
j=0 pw jeN

where Cx,p, g : [1,00) — (0,00) is some increasing function only depending on X, p and
d.

An example for the "uniform locally finiteness condition’ (a) from the above corollary
is a kind of dyadic corona condition on the supports of the symbols:
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Example 3.3.6. Suppose that {m;} jen < L®(R%) satisfies the support condition
supp moc {¢: 1€l <c} and suppm;ci{é:c3™'2/ T < (<2}, j21, (3.19)

forsome ¢ > 0and J € Z5¢. Then supp m;nsupp m; = @ forall j, ke Nwith | j—k| = J+1.
In particular, condition (a) of Corollary 3.3.5 is satisfied with N = J.

Example 3.3.7. Suppose that m € cg”z (R?) and m; € cg“z (R4 \ {0}). Set mj = m@E=7)
for each j = 2. Then {m;} je fulfills the conditions (a) and (b) of Corollary 3.3.5, where
(a) follows from Example 3.3.6 and (b) from the dilation invariance of the Mihlin con-
dition defining .#;,,(R%). In particular, given ¢ = {¢ itjen € ®(R%), Corollary 3.3.5 can
be applied to the sequence of symbols {m} jen = {(} jen, whose associated sequence of
Fourier multiplier operators is {S;} jen.

Up to now we have only exploited Proposition 3.3.3(i) in order to get Z-boundedness
of a sequence of Fourier multipliers. However, in many situations the condition (3.18)
is too strong. It is for example not fulfilled by the sequence {m; = m@E=7 ) jen, Where
m € C°(RY) is a given symbol which is non-zero in the origin; this follows from the fact
that 4}, 1, (X) — L®°(R%). The case that m is constant on a neighborhood of the origin
can be handled by the following proposition (see Corollary 3.3.10), of which the main
ingredient is Proposition 3.3.3(ii):

Proposition 3.3.8. Let X be a UMD space, p € (1,00) and w € A,,(Rd). Let {mj}jen <
Mp,w(X) be a sequence of Fourier multiplier symbols which satisfies the support condi-
tion (3.19) for some ¢ >0 and J € N. Write T; = Ty, for the Fourier multiplier operator on
Y = LPRY, w; X) associated with mj foreach j € N. If

K:=|{Tj}Irady)—y A T}y —Rad(y) <00, (3.20)

then the collection of partial sums {Z;‘zo Tj: neN} is Z-bounded with Z-bound < (2] +
DCx,p,a(lwla,) K for some increasing function Cx,p q : [1,00) — (0,00) only depending
onX,pandd.

Proof. Due to scaling invariance of the Ap-characteristic, we may without loss of gen-
erality assume that ¢ = % Fix ¢ = (@) jen € (Dl,% (R%) and denote by {S;}jen the corre-
sponding convolution operators. For convenience of notation we put ¢ :=0and S;:=0
for every j € Z<p. For each j € N we define R; := ZL_] Sj+¢. By Example 3.3.7 (and
Corollary 3.3.5), there exists an increasing function Cx,p,a : [1,00) — (0,00), only de-
pending on X, p and d, such that

(3.14),3.15) ~
[1{SjHIRad(v)—v V IS}y —Rad(v) = x,p.d((W]a,),

and thus
I{R}HIRad(v)—~v V IHR Iy ~Rad(v) = CJ + 1)6X,p,d([w]Ap)- (3.21)
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As a consequence of the support condition (3.19) and the fact that

J 3 J X 3 .
Y @e(&)=1for |§|sE and Y (Z)j+g(€)=lfor2]_]s|£|sEzf,jzl,
[—_

= =7

we have T;R; = R;T; = T; for every j e N. Since {T;} and {R;} are commuting and since

Ay =p Ay,p = Ax,p < oo (X being a UMD space), the required Z2-bound follows from

an application of Proposition 3.3.3(ii) with either U; = T; and V; = R; or U; = R and

Vi=T;j. O
] J

Remark 3.3.9. The condition (3.20) in Proposition 3.3.8 may be replaced by the condi-
tion that {T} is Z-bounded with Z-bound K: under this modification, it can be shown
that the collection of partial sums is 2-bounded with 2-bound < (2]+ 1)2 Cx,p,a(lw] A,,) K
for some increasing function Cy, p,d : [1,00) — (0,00) only depending on X, p and d. In-
deed, in the notation of the proof above, we have
(3.16)
I{Tj HRadv)—y = IHRjTiHlRadv)—y = IHRj}HIRadB8(v)ZUT;H
(3.21) ~
= @2+ 1DCx,p,a(wla,)ZUT;}).

An alternative approach for the Z-boundedness condition would be to modify the
proof of [48, Theorem 3.9] (or [248, Theorem 2.4.3]), which is a generalization of the
vector-valued Stein inequality to the setting of unconditional Schauder decompositions.
Via this approach one would get linear dependence on J instead of quadratic.

Corollary 3.3.10. Let X be a UMD space, p € (1,00) and w € Ap([Rd). Suppose that
M € C4*2(R4) is constant on a neighborhood of 0 and put M; = M2~/ -) foreach j € Z.
Then {Mj}jez defines an #-bounded sequence of Fourier multiplier operators {Tn;} jez
in BLP R, w; X)) with % -bound <mMm Cx,palwla,), where Cx,p, 4 Is the function from
Proposition 3.3.8.

Proof. By the scaling invariance of the Ap-characteristic, it suffices to prove the %-
boundedness statement for {M;} jen instead of {M;}jez. Indeed, for each K € Z.o we
then in particular have that {M;} jen defines an 2-bounded sequence of Fourier multi-
plier operators {TMj}jeN in B(LPRY, w2 X.); X)) with Z-bound <M Cx,pa(lwla,), or
equivalently, that {M;} ;> defines an #-bounded sequence of Fourier multiplier oper-
ators {Tjy;}j>x in B(LP R, w(2K -); X)) with Z-bound <y Cx,p,a(wla,).

Define the sequence of symbols {m} jen by mo := M, m; := mo(271-)—my, and mj:=
ml(Z‘fJrl -) for j = 2. Then {m;j}en is a bounded sequence in M 4.+> which satisfies
the support condition (3.19). By a combination of Corollary 3.3.5, Example 3.3.6 and
Proposition 3.3.8, the collection of partial sums {Ty, : i € N} = {Z;'C:O T, - i €N} is -
bounded in B(LP ([R%, w; X)) (with the required dependence of the Z-bound). O

With the following theorem we can in particular treat dilations of symbols M belong-
ing to the Schwartz class y([R{d) without any further restrictions. Note that this would
be immediate from Proposition 3.3.1(i) in case of property («).
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Theorem 3.3.11. Let X be a UMD space, p € (1,00) and w € Ap(Rd). Let M € CRY N
CH*2(R\ {0}) and set M; = M(@27/-) for each j € Z. Suppose that there exist 59,50, > 0
such that

Co:= sup IE7IM@E)-M@O)|v sup sup [¢[Y°|D*ME)|<c0  (3.22)
0<|él=1 1<|al=d+20<|é|<1
and
Coo:= sup sup |¢]'*H0=| DM (&) < co. (3.23)
lal=d+2|¢1=1

Then{Mj} jez defines an %-bounded sequence of Fourier multiplier operators {Tn} jez in
B(LP R, w; X)) with & -bound < Cx,d,p,60,600 (W4, [IIM]looV CoV Cool, where Cx 4,p,5,,6
[1,00) — (0,00) is some increasing function only dependingon X, p, d, 69 and é «.

o *

Remark 3.3.12. In the proof of Theorem 3.3.11 we use the Mihlin multiplier theorem
Mo — My (X). The availability of better multiplier theorems would lead to weaker
conditions on M. For example, using the classical Mihlin multiplier condition |[D*m| <
|E||"‘|, a € {0, 1}d, we could treat symbols M € C([R{d) nca (Rd \ {0}) satisfying (3.22) and
(3.23) with the suprema taken over « € {0, 1}4 instead of || < d +2; as in the unweighted
case, forw € A;,ec (R%) it can be shown that this classical Mihlin condition is sufficient for
m to be a Fourier multiplier on L” (R%, w; X) (see [156, Chapter 4]). In the unweighted
case one could even use multiplier theorems which incorporate information of the Ba-
nach space under consideration [99, 123]. In Theorem 3.3.14 (and Corollary 3.3.15) we
will actually use the Mihlin-Hélder condition from [123, Theorem 3.1] (which is weaker
than the Mihlin-H6rmander condition) for the one-dimensional case d = 1.

Proof. As in the proof of Corollary 3.3.10, it is enough to establish the Z-boundedness
of {M}jen. Put C:= || M|l V Cp V Coo. Pick { € CSO(Rd) with the property that y(¢) = 1 if
[é]<1and (&) =0if |¢] =3/2. Then

M := M(0), +{(M - M@©0)J) + (1 - ) (M- M(©0)) = MM + M+ MBI,

Foreachi € {1,2,3} we define {M][.”}jeN by M][.i] := M'(27J.). By Corollary 3.3.10, {M}”}jeN
defines an 2-bounded sequence of Fourier multiplier operators in (L” (R?, w; X)) with
Z-bound Sx q,p,w¢ IM(0)| < C. In order to get Z-boundedness for i = 2,3 we use
Corollary 3.3.4 (in combination with .Z;,, — Mp,w(X)). To this end, let € = {Ej};V:O €

{-1,3V*1, N e N, and put M,Ef] = Z;V:O ejM][.” for each i € {2,3}. In order to obtain a

uniform bound for Méi] in .# ., we note that:
o MP? e CRY) nC42 R4\ {0}) with supp M c B(0,2) and

C?= sup sup|g] ™D M )] Sr.00,80 Ci
|lalsd+2 E#0
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o MBle cd*+2(R%) with MB! (&) = 0 for |&] < 1 and

C®:= sup suplé'® 0= DM (&) <t 5,6, C
lal<d+2 E#£0

For notational convenience, for each j = N + 1 we write £; = 0.
Thecasei=2:1let|a|<d+2.Forée B(0,2) we have

00 o . .
D MA@ < Y IYIDIMP @)1=} 127 ¢ DM 27T g))
j=0 j=0
(&) . o0 .
< c® Z |277¢)% = ¢l Z 27400 | |£|00
j=0 j=0
0
< oo 2"
- 1-27%

and for ¢ € B(0, 24\ B(0,2h), [ e N, we similarly have, now using the support condition
supp M®?! < B(0,2),

IA

Z |f||a‘|DaM][.2] &)= Z |2—jgt||a\|DaM[2] (2—]'5”
Jj=0 j=0

€' D* M2 (&)

= Y R7DIMI T <Y 1277¢
il j=1
e (f 2—160) P < cl2!

oy 1-20"

Hence, [|[M?)]| 4., = CP12%(1 —27%0)1,
The case i = 3: Fix [ € N. Since M®® =0 on B(0, 1), we have

!
MI©) =Y e;MP©,  ¢eB©,2)\B0,2".
j=0

Forall |a| < d+2 and & € B(0,2%) \ B(0,2'~1) we thus find

l l
e ME@ = 1e| Y e;p M @) < Y 161Dt M)l
j=0 j=0

l . . l .
2 1277 DM 7T < €Y 27 g 0
j=0 j=0

IA

I ! _
cB! Z (2—J+l—1)—5oo = B9l Z 2= 000(l=])
j=0 =0
1 2500
CBI200 Y 70k < cBl_—
k=0 1270

As | € N'was arbitrary and M"! = 0 on B(0, 1), this shows that || M g, < CPI20 (1~

2—5w)—1‘ O
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Note that Theorem 3.3.11 does not cover the symbol M(¢) = H?Zl sinc(¢;), where
sinc is the function given by sinc(#) = &t(” for t # 0 and sinc(0) = 1; see the end of Sec-
tion 3.4.2 for the relevance of this symbol, which is the Fourier transform of Z_dl[_lylld.
However, as already mentioned in Remark 3.3.12, in the unweighted one-dimensional
case we can use the Mihlin-Hélder multiplier theorem [125, Theorem 3.1] in order to
relax the conditions from Theorem 3.3.11. This will lead to a criterium (Corollary 3.3.15)
which covers the symbol M = sinc; see Example 3.4.5.

For each k € Z and j € {-1,1} we define Ixj=] [2k‘2,2k+2]. For y€(0,1) and M €
Cp(R\ {0}) we put

Mly:= sup 2M[Ml; Jera,,) and  [IMIlly = [IMlloo + [M],.
kezZ,j=+1
Since
IM(&) = M( = h)l < 4[Mly |RI"IEITY, 1E]> 21hl,

the following lemma is a direct corollary of the vector-valued Mihlin-Ho6lder multiplier
theorem [125, Theorem 3.1]:

Lemma 3.3.13. Let X be a UMD space and p € (1,00). Then there exists yx € (0,1), only
depending on X, such that the following holds true: if y € (yx,1) and if M € Cp(R\ {0})
satisfies |||M llly < oo, then M defines a Fourier multiplier operator Ty on LP(R; X) of
norm || Tyl e @:x) Sx.poy 1M1

Using this lemma, we find the following variant of Theorem 3.3.11:

Theorem 3.3.14. Let X be a UMD space p € (1,00). Lety € (yx,1), whereyx € (0,1) is
from Lemma 3.3.13. Let M € C,(R) and set M, := M(2™":) for each n € Z. Suppose that
there exist 8¢, 0 > 0 such that

Co:= sup [EI7°IMEO-MOIv sup 28070 (M|p e, ;) <oo
0<|¢|=1 k=-1,j==*1
and
C. = 5ooM 2k(7+5oo) M
oo :=sup [¢°®[M(S)| v sup (Ml ;ler ) < oo.
1¢é1=1 k=0,j=%1

Then {My}nez defines an Z-bounded sequence of Fourier multiplier operators {Ty,}nez
in B(LP (R; X)) with Z-bound Sx,p.v,q,y,80,60 Ml V Co V Cool.

Proof. This can be shown in a similar fashion as Theorem 3.3.11, now using the (Mihlin-
Holder multiplier theorem in the form of) Lemma 3.3.13 to treat the cases i = 2,3. O

50ne can take Yx =7V q', where T € (1,2] and q € [2,00) denote the type and cotype of X, respectively. Here
one needs the fact that X, as a UMD space, has non-trivial type and finite cotype; see [126].
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Corollary 3.3.15. Let X be a UMD space p € (1,00). Lety € (yx,1), whereyx € (0,1) is
from Lemma 3.3.13. Let M € C,(R) N C*(R\ {0}) and set M, := M(2™"*-) for each n € Z.
Suppose that there exist §y,00, > 0 and 0 € [0, 1] such that

Co:= sup [E7%IM(&) - M) v sup &' |M'(&)| <00 (3.24)
0<¢l=1 [¢l=1
and
L max{&oo,(y+600)%%g} Y+0o)2 | 7 11
Ceo:=supls| M| v sup €] 7| M'(&)] < oo. (3.25)
[&]=1 1&]1=1

Then {My}nez defines an Z-bounded sequence of Fourier multiplier operators {Ty,}nez
in B(LP (R; X)) with #-bound Sy, pa 780,600 1Moo V Co V Ceol.

Proof. Forevery ke Z and j € {-1,1} we have

280700 (M1, Teray, ) Sy 2800 2KE Mg oo = sup 1€ IM )]
Sely;

and
. 1-
2]€(Y+5 )[M“k,j]cy(lk,j) < 2k(Y+5co)2 7||M|[k]||ooy||M|ij||7
k(y+000) 122 Ky +600)y
Sy 28T IM g oo + 25OV IIM I oo

5@@ 500,
=~ sup [E]7 T M(&)] + sup 16170 M (@)
EEIk,j EEIk,j

The result now easily follows from Theorem 3.3.14. O

3.4. DIFFERENCE NORMS

3.4.1. Notation

Let X be a Banach space. For each m € Z5; and h € R? we define difference operator
A}’ on LO[R%; X) by A= (Lp =DM = zmo( 1)1( )L(m~jn,» where Ly, denotes the left
translation by h:

AT f(x) = Z( 1)1( )f(x+(m ),  feLl’®%X),xeRY,

Letp € (1,00), w € Ap(RY), me Z>1,and K € # (R?). Forevery ¢ >0, K. = ¢*K(—c") €
H (R gives rise to a (well-defined) bounded convolution operator f — K. f on LP (R?, w; X)
of norm <p dw IIKCII o ®dy = Kl ¢ gay which is given by the formula

I?c*f(x)=/dﬁc(x—y)f(y)dyz/dK(h)chlhf(x)dh, xeR%;
R R
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see the last part of Section 3.2.2. Defining K2 := I G (DK ey € # RY), for
each ¢ > 0 the operator

m—1 . _ R
f—= Kn(t, )= Kf_l * f+(=D"K(©O)f = ZO -1/ (7)K[(m_jm_l * f+(=1)"K(©O)f
]:

isbounded on L? RY, w; X) of norm < p,d,w,m 1Kl A (RI) and the following identity holds
K (2, f)(x) = /Rd K(mA™ f(x)dh,  xeR%.

Given f e LP (R, w; X), the functions K, (t, f) may be interpreted as weighted means of
differences of f.
For f € LP (R4, w; X) we set

]
(m,K) o ojs —j H
d Jeh sz:f]z K@% Dl e, wny

Hy R, w;X) *

and

A5 sz = 1 Mt s + UV ey

3.4.2. Statement of the Main Result

The following theorem is the main result of this paper. As already announced in the
introduction, it is (indeed) a more general version of Theorem 3.1.1 thanks to the 2-
boundedness results Theorem 3.3.11 and Corollary 3.3.15; see Examples 3.4.4 and 3.4.5.

Theorem 3.4.1. Let X be a UMD Banach space, s >0, p € (1,00), w € A,,([Rd), meZs,
and K € # RY).

(i) Suppose thatK € L' R?, (1 +|-)4*2) and that KA fulfills the Tauberian condition
m €
| ZKY ©lzc, EeRY, 5 <ll<2e, (3.26)
for some e, c > 0. Then we have the estimate

”f”H;(IRd,w;X)rngfH (IZ,;(IU?d,w;X)’ fELp(IRd, w; X). (3.27)

(ii) Supposethatm > s, K € L'(RY, (1+|-)9*3™) and that {f — K27, f): j€Zs1}
B(LP ([Rd, w; X)) is Z-bounded. Then we have the estimate

171l ;’}g’(’[;’d,w;x) Sl @ty FELPRE, wiX). (3.28)
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Remark 3.4.2. The Z-boundedness condition in (ii) of the above theorem may be re-
placed by the (at first sight) weaker condition that

N N
eikm27,8))|| S| 2| ,  NeN,
H ]; iKm @ 8D|| L 1o @ iy ~ ]ZZI I83|| o @, wix)

for all {gj}j=1 LP(R?, w; X) with Fourier support supp §; < {§: [¢| = c27}, where ¢ > 0
is some fixed number. But the Z-boundedness condition in (ii) is in fact implied by
this condition. Indeed, this condition implies the Z-boundedness of the sequence of

Fourier multiplier operators associated with the the sequence of symbols {[(1- )W 127 )}

where { € CSO([R{d) is a bump function which is 1 on a neighborhood of the set {¢ : [£| = c}.
On the other hand, we have (I?A\m € Cf*z (R?) in view of KA ¢ FLIRY, (1+]- D92 <
CZ*Z (R%), so that we can apply Theorem 3.3.11 to the symbol { KA™ . We thus find that
the sequence of symbols {I?ZA]W = KA @2/ 9} i1 defines an #-bounded sequence of

Fourier multiplier operators on L”(R%, w; X), which is of course equivalent to the %-
boundedness condition in (ii).

Remark 3.4.3. Let X be a Banach space, s >0, p € (1,00) and w € Ap([R{d). For each
f e LP(R?, w; X) we put

J
mKyz . H 205g 21K, (27 H
[f] =sup j;}ff €j m@,f) LP@LP RY,w; X))

d
HS([R{ wX) JeN

(m,K) < ](m K);Z

Hy (R, w;X) Hy (R, w
(m K);z (m,K)

On the other hand, [- ]H;,([Rd 3 o NE IILp(Wz wx) ]H‘([Rd,w,X)

K271, f): j € Z} is a uniformly bounded family in %(L”([Rd, w; X)). In Theorem 3.4.1

z
we may thus replace ||| “l%(md 0 by||'||LP(Rd,w;X)+[ ]%(Iu?dw)()

On the one hand, [-] thanks to the contraction principle (3.7).

because s >0 and {f —

Example 3.4.4. Let K € # (R?) and m e Zs,.

(i) Notethat.ZK2" € C,(R?) with . Z K" (0) = L DI ()R ©) = (=)™ K (0). So
for KA™ to fulfill the Tauberian condition (3.26) for some g, ¢ > 0 it is sufficient that
K(0) #0.

(ii) Let X be a UMD space, p € (1,00) and w € A (R%). Note that the Z-boundedness
conditition in Theorem 3.4.1(ii) is equivalent to the Z-boundedness of the con-
volution operators {f — KZAjm ¥ 1] €Zs1} c BILPRY, w; X)). By Theorem 3.3.11,
for the latter it is sufficient that K € L ([RY, (1 +]| - N9+%) ﬁ‘lcg”(ﬂ%d) fulfills the
condition

sup sup(l+ &N IDERE)] < 0o (3.29)
lal=sd+2Eerd

for some & > 0; in particular, it is sufficient that K € & (R%).

j=1
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Under the availability of better multiplier theorems than .#;., RY) — Mp,w(X),
the condition (3.29) can be weakened; see Remark 3.3.12. For example, in the one-
dimensional case d = 1 we can use .# (R) — .4, ;,(X), resulting in the weaker condition
that

sup (1+1E)*01RP ©)] <00

k=0,1
for some & > 0. However, this condition is still to strong to handle the kernel K =2711;_; 1, €
LPRY) < # RYN.ZF 1 CP (R?) with Fourier transform K = sinc, where sinc(#) = sin(#)/ ¢
for ¢ # 0 and sinc(0) = 1. As already announced, in the unweighted case this K can be
handled by Corollary 3.3.15:

Example 3.4.5. Let X be a UMD Banach space, p € (1,00) and K = 2‘d1Q[0,1]. For every
m € Z3 itholds that {f — Km(Z’j,f) 1jeZic B(LP(R?; X)) is Z-bounded.

Proof. 1t is enough to show that {TI”((IZ*JV) rjezZ,le{l,.. . miy={f—Kppj*xf:j€
Z,0efl,...,m}}is Z-bounded in B(LP (R%; X)). By the product structure of K it suffices
to consider the case d = 1. So we only need to check that M :=sinc = 9% 1-1,1 € CP(R)
satisfies the conditions from Corollary 3.3.15. In the notation of Corollary 3.3.15, let y €
(yx,1) be fixed. The condition (3.24) is fulfilled for 6y = 1 because sincis a C L_function

n [—1,1]. Furthermore, the condition (3.25) is fulfilled for any o, € (0,1 —7) and 6 =
Y. O

Still consider K = Z_de[O,I] € L®[R%) < # [R?). The Z-boundedness condition
from Theorem 3.4.1(ii) is fulfilled provided that, for each ¢ € {1,..., m}, the set of con-
volution operators {f — Ky * f: t = £712],j € Z1} € B(LPR?, w; X)) is %-bounded.
A nice way to look at the convolution operator f — K,-1 * f, r > 0, is as the averaging
operator A, € @(Lp(Rd, w; X)) given by

Arf(x):zj[ fndy, felPRY w; X), x e RY.
Qlx,r]

This leads to the following natural question:

Question 3.4.6. Given a UMD space X, p € (1,00), w € Ap([Rd) and ¢ > 0, is the set of
averaging operators{A, :r = cZ‘j,j € 71} R-bounded in %(LP(R‘I, w; X))?

Three cases in which we can give a positive answer to this question are:
(i) XisaUMD space, pe(1,00) and w=1;
(i) X isa UMD space with property (), p € (1,00) and w € A*“RY);

(iii) X is a UMD Banach function space, p € (1,00) and w € Ap, ([Rd);

7"Recall that A;,ec is the class of weights on R4 which are uniformly A, in each of the coordinates separately.
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Here case (i) follows similarly to the proof of Example 3.4.5, case (ii) follows from an ap-
plication of Proposition 3.3.1(ii), and case (iii) can be treated via the Banach lattice ver-
sion of the Hardy-Littlewood maximal function by using the fact that Z-boundedness
coincides with #?-boundedness in this situation (see Proposition 3.4.11 for a more gen-
eral result in this direction). Note that in the cases (ii) and (iii) one in fact has %-
boundedness of {A, : r > 0} in B(LP RY, w; X))

3.4.3. Proof of the Main Result
Below we will use the following notation:
Xpw:=LP (G LPRY, w; X)) = LPRY, w; LP (Q; X)).
Xpw®RE) = LP (@ LP RY, w; X)) = LP(RY, w; LP (O X)).
Proof of Theorem 3.4.1(i).

Lemma 3.4.7. Let X be a UMD space, s € R, p € (1,00) and w € Ap([Rd). Suppose that
ke # RY ALY RY, (1+| - N?*?) fulfills the Tauberian condition

~ &
1k@®1>0, €€Rd,5<|£|<26,

orsomee€ > 0. ror | € , W5 we can then estimate
0. F LP (R?, w; X) th timat
J .
1 g0 530 S 1o e g+ sup | 2 27Ky ] (330)
JeN T j=1 pw

Proof. Pick ¢ = (@) jen € (D([R{d) such that supp ¢, c {£ : [¢] = 2¢}; see (3.9). Using (3.13)
in combination with Sy € Z8(LP ([Rd, w; X)), we get

J .
NN s e 30 S W p e, +sup|| ) 5]'2]ssij .
P JeN T j=1 Xpw

In view of the contraction principle (3.7), it is thus enough to find an N € N such that

1|iff2j55ff)1x,, SHHZ]vijjskf*fHX, . fel’®Lw;X),JeN. (331
=1 w TS pw

In order to establish (3.31), pick n € CS"(Rd) with suppn < B(0,2¢) and n(¢) =1 for
&l = 3. Define m € C42(RY) < M 442 (RY) by m(é) := [n(&) —nQOIkE) L if § <[] < 2¢
and m(¢) := 0 otherwise; note that this gives a well-defined C?*?-function on R? be-
cause 7 —17(2-) is a smooth function supported in the set {{ : § < [{| < 2¢} on which
the function k € C‘”Z([R{d) does not vanish, where the regularity ke Cd+2([Rd) is a conse-
quence of the assumption that k € LYRY, (1+]- )9+, By Example 3.3.7, the sequence of
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(dyadic) dilated symbols {m; := m@E=1-)} j=1 defines an Z-bounded sequence of Fourier
multiplier operators {T; m; }j=10nLP (R?, w; X). Furthermore, by construction we have
Jj+N R . . . .
Y miki©=n@ VN —ne I =1 for2/e<|é =2/tV 136, j>1,NeN.
I=j

Since supp @; < {¢: 2le < €] < 2J B} for every j = 1for some B > ¢, there thus exists N € N
such that Z{:}N myk;=1o0n supp @; for all j = 1. For each j = 1 we consequently have

J+N N
Sj=Tp; = Ttﬁf(Z{f,{V mikr) IZ Top Ty Ty, = IX;‘)Sj Timjoilkjer -] in BELPRY, w; X)).
= :] =
Using this together with the 2-boundedness of {S;} jen and {ij }j=1 (see Example 3.3.7),
for each f e LP (R%, w; X) we obtain the estimates

J

N .
;)szzlejzfssﬂmw[kjﬂ *f]HXW

J

N .
ZH Zejzfskﬁ,*fHXp’w

=o' j=1
JEN
IS .
'Y 2/ ks« f]]
j=1 pw

J .
|| > 5-2”S~fH
j& o)
= X

A

A

O

Proof of Theorem 3.4.1(i). In view of (3.26) and the fact that .%# KA € Cy(R?), there ex-
ists IV € N such that the function k € Jif([Rd) n Ll(Rd, aQ+]- |)d+2) determined by k=
FKA" (27N .)— ZKA" fulfills the Tauberian condition

- 1)
k@)1= 5>0,  ¢eR?Z <ll<25,
for 6 := 2Ve > 0. Since

kj* f (KXo * f + (=1)™R(0) 1 - [KY) * f+ ()™ RO) f]

Kn@ U™V, f—Kn@7, 0, jz1,

with Lemma 3.4.7 it follows that

Lo

N
Il @t wxy S ”f”LP(Rd,w;X)“‘}pHZEJ'ZJ kf*fo,,w
j=1 :

A

J . ,
NN o @, ix) +SUP2~N° Z£j2“+M5Km(2‘”+N),f)HX
J j=1 pw

I ‘
+ supH Y gjszKm(:z—f,f)H
e Xpw
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(3.7

N (mK)
< Wl + @+ DU T -

Proof of Theorem 3.4.1(ii).

Lemma3.4.8. Let X bea UMD space, p € (1,00) and w € A (Rd). Lety € Cgo([Rd\{O}) and
ne CS"(Rd). ForeachneZ<yand h e R we define the sequence of symbols {M]}.””}jez c
L®(RY) by
(elZ'jh'f —Dy@ Dy, n+j=1
M@ =1 (2 M 1y, n+j=0
0, n+j<-1

Then each symbol M ]}.l’" defines a bounded Fourier multiplier operator T jh’” =T, on
7

LP(RY, w; X) such that the following Z-bound is valid:

@{T}"”:jeZ}§2”(1+|h|)d*3, heR¥ nez.. (3.32)

Proof. By construction, {M ;l’”} jez < cg%ned) satisfies condition (a) of Corollary 3.3.5 for

some N € N independent of n € Z—y and h € R. Therefore, it is enough to show that
IMI™ 1],y S2PA+IRDYS, heR% neZ,jeZ. (3.33)

We only consider the case n+j = 1in (3.33), the case n+ j = 0 being comletely similar
and the case n+ j < —1 being trivial. Let h € R%, n € Z- and j € Z with n+ j = 1 be given.
Fix a multi-index a € N% with |a| < d + 2. Using the Leibniz rule, we compute

€1 DM €)

2-J
=& Dg (zh-g‘ / e”h’fdsx(z‘(””)f))
0

2-J
=3 Z Cg'ﬂfllﬁlD?(h &) |E||}’|D3f’ (/ ezsh-cfds) |§||a|*‘ﬁ|*|Y|D?_ﬁ_Y [X(Zf(nJrj)E)]
Bt+y<a 0

2=
=1 hecil / (sh)Y e'* ¢ ds |2 D gl DY y 2= Dg)
Ysa 0

2-J
+ 1 Z ngy|€|hﬁ|§|W|/ (lsh)YelSh'de|2—(Vl+])f||w|—|ﬁ|—|)’|[Da—ﬁ—YX](z—(ﬂ*'])g).
0

B+y=a;|fl=1

Picking R > 0 such that supp y < B(0, R), we can estimate

DM@ S Y IR 10 TP 1 1y,

~J
Y<a
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+ Z |h|IY|+12—j(|Y|+1) 180.R) (2—(ﬂ+j)gr) |5|IY|+1 WXz,
Bry=a;lfl=1

Y=a

n=0

< 2"+ A9,
This proves the required estimate (3.33). O

Proof of Theorem 3.4.1(ii). Given f € LP(R?, w; X), write f,:= S,,f for ne Nand f, :=0
for n € Z<o. For each j € Z.o we thenhave =3 ,c7 fu+jin L”([Rd, w; X), from which it
follows that

Higjzszm(Z‘f,f)HX <y (ZsjszKm(z j fn+])H (3.34)
=1

pw nez' j=

We first estimate the sum over n € Z- in (3.34). Using the Z-boundedness of {f —
K271, f): j =1}, we find

J . . J .
H Z szjsKm(z_J»fnﬁ)H s o= ns Z 5j2(n+1)sfn+jH < 2_m||f||Hs ®e w0
o Xp,w = Xpw P

Since s > 0, it follows that the sum over n € Z in (3.34) can be estimated from above by
Cllfll HS R, w;X) for some constant C independent of f and J.

Next we estimate the sum over n € Z-( in (3.34). To this end, let y € CC°°(Rd \ {0}) and
1€ CX be such that y =1 on %supp @1 and 1 = 1 on supp Q. For every A € C we define
the function e; : R? — C by e (¢) := e}*. Foreach n <0, h€ R% and j = 1, we then have

A e = T eyg-ip - l)mfn+j]
F M (epin-x@ D))" furil, n+jz1;
- T zz-jh—1)77(2_(n+j)'))mfn+j , n+j=0;
0, n+j<-1.
= Mh,nfn+j;

J

where M]h" is the Fourier multiplier symbol from Lemma 3.4.8. For each n < 0 we thus
get

IA

H ilgjszKm(zj’fMj)HXp /[Rd K] H igl ]sAthfnﬂ( )H
J= j=1

/ IK(h)| H 251215 '”hnf,HJ

] an

(3.32)
< nim- ”/ IK(W)|(1+ k)43 gy
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J .
([
j=1 pw

3.13) n(m-s)
S 2 S W ez e s

Since m — s > 0, it follows that the sum over n € Z<; in (3.34) can be estimated from
above by C||f]| HS (RY, w; X) for some constant C independent of f and J. O

The idea to do the estimate (3.34) and to treat the sum over n € Z-g and n € Z,
separately is taken from the proof of [220, Proposition 6], which is concerned with a
difference norm characterization for F,f,y q(Rd 3 X).

3.4.4. The Special Case of a Banach Function Space

In the special case that X is a Banach function space, we obtain the following corollary
from the main result Theorem 3.4.1:

Corollary 3.4.9. Let X be a UMD Banach function space, s >0, p € (1,00), w € Ap R%)
andmeN, m > s. Suppose thatK € # (RY)NL'(RY, (1+]-)@*+3™) satisfies the Tauberian
condition (3.26) for some c,e > 0. For all f € LP (R%, w; X) we then have the equivalence
of extended norms

(S8 . . 1/2
— Jjs =] 2
||f||H;,<Rd,w;X)~||f||Lp<Rd,w;X)+H(]_Z:llz K@ P) |t 339

Proof. By the Khintchine-Maurey theorem, the right-hand side (RHS) of (3.35) defines

an extended norm on LP (R?, w; X) which is equivalent to ||| - |IIZ§’(I§¢ i) Therefore, we
SR, w;

only need to check the Z-boundedness condition in Theorem 3.4.1(ii). But this follows

from Proposition 3.4.11 below (and the discussion after it). O

Remark 3.4.10. Let X be a UMD Banach function space, s >0, p € (1,00), w € Ap, (R%)
and meN, m > s. Suppose K € # (R%)* \ {0}. Then it is a natural question whether we
can replace K, (Z_j,f) by dI’("(Z‘j,f) in the RHS of (3.35), where

de(t,f)(x)::/ KMWIAPfx)ldh,  t>0,xeR?.
Rd

In view of the domination |Kj,(t, f)| < de(t, f), this is certainly true for the inequal-
ity ’<’ in (3.35). For the reverse inequality ‘<’ one could slightly modify the difference
norm characterization that is obtained from a combination of Theorem 2.4.7 and Exam-
ple 2.3.15.(iii). (b).

Proposition 3.4.11. Let X be a UMD Banach function space, p € (1,00) and w € Ap ([Rd).
Then # (R%) — B(LP R, w; X)) maps bounded sets to & -bounded sets.
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Proof. In the unweighted case w = 1 this can be found in [193, Section 4]. However,
the Banach lattice version of the Hardy-Littlewood maximal operator is bounded on
LP([RY, w; X (¢?)) for general w € Ap, which which is implicitly contained [94]; also see [232].
Hence, the results from [193, Section 4] remain valid for general w € Ap. O

Recall that, given k € K RY), forall t > 0we have k; = t%k(t-) € # (RY) with || k| |y ®ay =
[1kll s ®a)- So, under the assumptions of the above proposition,

RAf — k= f1t>00 Sxpaw Ikl yge, in BELPRY, w; X))

In particular, if m € Z>; and K € 2 (R?), then the choice k = K2" leads to the %-
boundedness of {f — K, (t, f) : t > 0} in B(LP (R?, w; X)).

3.5. le AS POINTWISE MULTIPLIER
+

3.5.1. Proof of Theorem 4.4.1

Besides Theorem 3.1.1 (or Theorem 3.4.1), we need two lemmas for the proof of Theo-
rem 4.4.1. The first lemma says that the inclusion (3.5) automatically implies its vector-
valued version.

Lemma 3.5.1. Lets=0, p € (1,00) and w € Ap([Rd). Let ws,p be the weight from Theo-
rem 4.4.1. IfH;([R%d, w) — LP[RY, Ws,p), then there also is the inclusion

H®R?, w; X) — LP(RY, wg p; X) (3.36)
for any Banach space X.

Proof. This can be shown as in [185, Proof of Theorem 1.3,pg. 8], which is based on
the fact that the Bessel potential operator #_; (s = 0) is positive as an operator from
LP(RY, w) to H;,([Rd, w) (in the sense that _¢_f = 0 whenever f = 0). O

The second lemma is very similar to Theorem 3.4.1(ii) and may be thought of as an

R4 -version for the case m = 1.

Lemma 3.5.2. Let X be a UMD Banach space, s € (0,1), p € (1,00) and w € Ap([Rd). Let
Ke X RYNLYRY, (1+] - )*3). For each f € LP(R?, w; X) we define

# - Js i
[f]H;(RE,w;X) 1y HS(Rde) i‘;,g” Z €2 Keg (2" f)||Xpw(Rd

where we use the notation

Kpa (8, f)(x) := / Kh)Ayf(x)dh, t>0,x€ Rﬁz.
* {hiz—x1t71}

Ifif = Kixf:t=271,j€Zs1} c BILPRY, w; X)) is #-bounded, then we have the esti-
mate

# < PRe
[f]H;,(IRf,w;X)Nllf“H;)(Rde;X)’ fEL (R, w; X).
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Proof. Note that, for each 1 >0, f — Kpa (2, f) is a well-defined bounded linear operator

on L? R4, w; X) of norm S,p,d,w 1K1l ¢ (may- Using that s > 0, for f € LP (R, w; X) we can
thus estimate

J , . J . .
| X ez Kgae, p| St + || X 727 Kga @72, 1|
= j=1

Xp,w®Y) Xpw®RD'

Now fix f € LP(RY, w; X) and write fn:=Suf forneNand f;, :=0for neZy. Then

J . .
| Y &2/ Kga @7, )|

J . .
€i25K 427, )) < (3.37)
H]; 77 TRE ! Xp,0(RY) ngz =t Xp,w
We first estimate the sum over n € Z- in (3.37). Since
Kga @77, s )(0) = Kyoj * (Lga ) (0 + ( /{ _— K(h)dh) farj (),
1=2—X1

we can estimate
] ) , J .
| 22 ej27 Kga @7, fos )| < || X 27 Rees x (g fue|
j=1 * Xp,w j=1 * Xp,w

o= Tet ([ xoan) puwseo],
{h1=—x127}

j=1 pw

For the first term we can use the assumed Z-boundedness of the involved convolution
operators and for the second term we can use the contraction principle, to obtain

Joo , S U
oJs “jfo < oJs . olsg
szzlgfz Kq 2 ’f””)HX,,_w ~ HJ;EJZ L frs ’LP(Q;LP(Rd,w;X))+"j;£]2 T

IA

J .
227 ZlEjZ(nﬂ)sfnﬂ“Xp,w
]:

S 2_m||f|le](Rd,w;X)'

Since s > 0, it follows that the sum over n € Z in (3.37) can be estimated from above by
Cllfll HS R, w;X) for some constant C independent of f and J.
We next estimate the sum over n € Z< in (3.37). For each n < 0 we have

J . .
|2 227 Kga @7, fue )|
j=1 * Xp.w

IA

IA

/Rd |K(h)| Hx-—» ijIEijsAzjhfn+j(x)”XW dh,

I
[~ Zgjzfs/ 2y 0 (O KU Ag fore ) |
j=1 R4 X

J .
/R KU 3 32 €727y 000 e 0|
]:

[

Xpw

pw

dh
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where we used the contraction principle (3.7) in the last step. We can now proceed as in
the proof of Theorem 3.4.1(ii) to estimate the sum over n € Z-( in (3.37) by C|| f| IH; R, 1w:X)
for some constant C independent of f and J. O

Proof of Theorem 4.4.1. In view of Lemma 3.5.1, we need to show that 1. is a pointwise
+

multiplier on H;,([Rd, w; X) if and only if there is the continuous inclusion (3.36). Defin-
ing wsp as the weight on R x R4-1 given by w; p (x1, x") = x117%Pw(xy, x), the inclusion
(3.36) is equivalent to the inclusion

HR?, w; X) — LP(R?, W, p; X) (3.38)

because H;([Rd, w; X) — LP[RY, w; X). So we must show that 1ga is a pointwise multi-
+
plier on H;([R{d, w; X) if and only if there is the continuous inclusion (3.38).
Stepl. Let K € & (R?) satisfy K (0) # 0. For a function g onR? we write g° for the reflec-
tion in the hyperplane {0} x [Rd_l, i.e. g9(x):= g(—x). Then 1pa is a pointwise multiplier
on H;([Rd, w; X) if and only if

b= (2

jez

. 2\1/2
2 / kdn| ) Nl o S ey 339
{thy<—x,2J} P

LPRY,v)

for f € LPRY, v; X), v € {w, w®}, k € {K, K®}.
Step I.(a) 1q is a pointwise multiplier on H;(Rd, w; X) if and only if

d .

[IR‘if]H;,(R‘i,w;X) gllf”H;([Rd'w;X)) fELp(IR ,w)X), (340)

where
J . .
oy i=SU ei2I°Ky (277, H B
U g e i k,{,’”}.;] RS LP QL RY, w;X)
: (1,K);Z _ p p 1/p _

Since [g]H;;([Red,w;X) - ([g]H;(M,w;X) *lgl H;(Ri,w;X)) ~ 8y e wix) + 18] Hy RS, w;X) for

ge L’”(Rd, w; X), it follows from Theorem 3.1.1 (and Remark 3.4.3) that

_ a ...
81113 et i) ~ 18N Lo et iy + 181 a3 e, wixy * 8y @t iy 8 € LP RS, wi XD,
(3.41)
First we assume that (3.40) holds true. For all f € LP (R?, w; X) we can then estimate

3.41
||1jof||Hf,([Rd,w;X) ( 5) ||1[Rzzf||LP(Rd,w;X) + [I[Rzzf]m + uuqeff][ﬂzi
< WA L e w30 + 1 q + pa flgd + ga flga
(3.40),(3.41)
S

8Recall from Section 3.4.1 that Ki (1, f)(x) = .]W KWA, f(x)dh.
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Next we assume that IM is a pointwise multiplier on H;J (R?, w; X). Then the in-
equality in (3.40) for Rf follows directly from (3.41). Since lpa =1- 1Rf’ the inequality
in (3.40) for R? follows as well.

Step I.(b) (3.39) < (3.40). We only show that the inequality in (3.40) for R? is equiv-
alent to the inequality in (3.39) with v = w and k = K, the equivalence of the other
inequalities being completely similar. We claim that the inequality in (3.40) for R? ¢ is
equivalent to the estimate

J ;
sup||x— " ejsz/ K(h)dhf(x)” vty S W lgma iy f LV w0,
JeN j=-7 hy<—x12]
(3.42)
Let us prove the claim. Note that, in view of the identity
K127, 1pa /)(0) = Ka 77, /() + / K(hydh f(x),
+ + {hls—xlzf}

we have the inequalities

Mea £l e a1 vr < LAY +sup||x— gzﬁ/ KW dh f)|
R+f HS(RY, w;X) pr(Rf,w;X) b Z J hy=—x121} f Xp,w(®%)

JeN j=J
(3.43)
and
supl[v 37 &2 [ x|, =gt Ul
JeN j=-J {h =—x12J} H) RS, w;X)
(3.44)

Furthermore, note that the £2-boundedness condition from Lemma 3.5.2 is fulfilled
since K € % (R%); see Example 3.4.4. Plugging the estimate from Lemma 3.5.2 into (3.43),
we see that (3.42) implies the inequality in (3.40) for R?. The reverse implication is ob-
tained by plugging the estimate from Lemma 3.5.2 into (3.44).

Using the claim, this step is now completed by the observation that

J .
HllZ/nfn

= || (].212" /,

{his-x12J}

2\1/2
Kdn|') Il ||

PR, w)’

Step IL. Let K = KM @ K12 € C®(R?), where KV € CP(R) and K € C°(RYY) satisfy
KW = kM (=), 1111 < KM <155, and K121(0) = 1. Then (3.39) is equivalent to (3.38).
In view of the reflection symmetry K = K¢, we only need to show that

(X

JjeZ

. a1z
215/ K(h)dh( ) =y, yeR,. (3.45)
{h=—y2i}
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By the choice of K,
[[=(1 A y27), —y2]]| s/h ZjK(h)dh < |[-@nay2)),-y2l|,  yeR..
1=-Y:
For every b > 0 we have
(£ onretoptl)* = ([Tt onnhoyeipd)™
(/:y 25—yt H? %)1/2

0 dr\1/2
b—(s+1) =S / —-25=2,_ 1 2 .
Y ( 1 T (@ ) T )

J

<oco

So we obtain (3.45) by taking b =1, 2. O

3.5.2. A Closer Look at the Inclusion H ;, (R, w) — LP(R?, Ws, p)

In this section we give explicit conditions, in terms of w, s and p, for which there is the
continuous inclusion (3.5) from Theorem 4.4.1. These conditions will be obtained from
the following embedding result.

Theorem 3.5.3. ([185, Theorem 1.2]) Let wy, w1 € Aso(RY), sg > 51,0 < Po < p1 < oo, and
qo, q1 € (0,00]. Then there is the continuous inclusion

R, we) = FS R, wy)

PO qo0 Pl q

if and only if
sup 27707V w0 (Qu,m) PP w1 (Qum) P! < 00,
veN,mez4
where Qy,m = Q[Z_"m,Z‘V‘l] cR4 denotes forveNand m € 79 the d-dimensional cube
with sides parallel to the coordinate axes, centered at 2~ m and with side length 27" .

Proposition 3.5.4. Let s >0, p € (1,00) and w € Ap([R{d) Suppose that wy,,(x,x") =
|x117P w(x1, x) defines an Ax-weight on RY =R x R4-1 f
1

sup 27V —nun— 1x117%” w(x) dx < oo, (3.46)
veN, me{0}xzd-1 wQv,m) JQ,

then there is the continuous inclusion H;, (R%, w) — LP(RY, Wws p). In case that wgp € Ap,
the converse holds true as well.

Proof. For the inclusion H;,([Rd, w) — LPRY, ws,p) it is sufficient that F;yz([Rd, w) —

6.31)

F2,1(Rdr ws,p). This follows from the identity F;;,z([Rd' w) H;,([Rd, w), denseness of
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, . . 3.12
(R in Hf,(le, w), the inclusion (% ®RY), || - /] o | ®,w, ) R LP([R?, ws ) and the fact
b, » Ws,

that H;,([Rd, w) and LP (RY, ws,p) are both continuously included in the Hausdorff topo-
logical space L°(R%). In the case that ws,p € Ap, there are the identities F;‘Z(Rd, w) =
H;, (R, w) and LP(RY, Ws,p) = Fg,z (RY, ws,p) (see (6.31)), so the inclusion H;,([Rd, w) —
LP(RY, wy, p) just becomes F;yz(Rd, w) — FS,Z(IR”Z , Ws,p). Therefore, in order to prove the
proposition, it is enough to show that, for every g € [1, <], the inclusion

F;,Z (Rd’ w) — Fg,q([Rd; ws,p) (3.47)

is equivalent to the condition (3.46).
By Theorem 3.5.3, the inclusion (3.47) holds true if and only if

LUs,p(Qv,m))I/p o
W(Qv,m)

sup 27| x— |x1|_sl|Lp(Q 1 —w) = sup 2_”(
veN,mez4 VI wQv,m) veN,mez4

But this condition is equivalent to (3.46). Indeed, for everyv e Nand m € 79 with mp#0
we have

-V 1 -V
xilz(ml=1/2)27" = Zlm 1275, x€Qum,
implying that
2—VS — =S < 25 =S < 25'
[l — |x1] ||Lp(QVv'nvw(leym)W)< lmy| ™" =
O
Let d = n + k with n, k € N. For a, > —n we define the weight v, g on R by
[x|* if x| <1, d_mn .ok

)= ) €R? = R" x RF 3.48
Va5 ) { e >, Y * (3.48)

Given p € (1,00), we have vq g € Ap if and only if a, B € (—n, n(p — 1)); see [116, Proposi-
tion 2.6]. For n=1and k = d - 1, we have vy, = wy (3.3) for every y > —1.

Example 3.5.5. Let s >0and p € (1,00).

(i) Suppose w = w; ® w, with wy € A(R) and w; € Ap(le‘l). Then (3.46) reduces to
the corresponding 1-dimensional condition on w;:

1
sup2™ VP —— [t]75P w1 (t) dt < oo (3.49)
veN w1(Qv,0) J gy,

(ii) Let a,B € (—1,p—1). Consider the weight w = Va,p from (3.48) forn=1and k =
d—1. There is the inclusion H;,([Rd, w) — LP (R4, ws,p) if and only if s < “T“. Given
a UMD space X, by Theorem 4.4.1 we thus have that 1. is a pointwise multiplier

+

on Hy(R?, vg,p; X) if and only if s < ”7"‘. In the case a = § this is precisely [187,
Theorem 1.1] restricted to positive smoothness; note that the general case a,ff €

(=1, p—1) can be deduced from the case a = f € (-1, p - 1).
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Proof of (ii). By (i) we may without loss of generality assume that d = 1. Note that wy
is the the weight v,y g (3.48) forn=1and k= 0.

First assume that there is the inclusion Hy,R?, w) — LP(R?, w; ;). Since C°R?) <
H;, ([Rd, w), it follows that Va—sp,p = Ws,p € L}OC([R"Z). Hence, a —sp > —1.

Conversely, assume that s < “T“. Then a - sp € (-1, p—1), so that w; ), = Va-sp,p €
Ap. Using that s < ”T“, a simple computation shows that (3.49) holds true for w = v, g.
By Proposition 3.5.4 we thus obtain that Hy, R4, w) — LP(RY, wy p). O
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COMPLEX INTERPOLATION WITH DIRICHLET BOUND-
ARY CONDITIONS ON THE HALF LINE

This chapter is based on the paper:

¢ N. Lindemulder, M. Meyries, and M.C. Veraar. Complex interpolation with dirich-
letboundary conditions on the halfline. Mathematische Nachrichten, 291(16):2435-
2456.

In this chapter we prove results on the complex interpolation of the first order Sobolev
space on the half line with Dirichlet boundary condition. Motivated by applications in
evolution equations the results are presented for Banach space-valued Sobolev spaces
with a weight. The proof is based on recent results on pointwise mutipliers in Bessel
potential spaces, of which we provide a simpler proof as well. We apply the results to
characterize the fractional domain spaces of the first derivative operator on the half line.
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4.1. INTRODUCTION

The main result of the present paper is the following. Let WO1 " (R.; X) be the first order
Sobolev space over the halfline with values in a UMD Banach space X vanishingat ¢ = 0,
where p € (1,00). Then for complex interpolation we have

L R X), Wy P (R X)lg = HyRy; X),  0€(0,1), 0#1/p,

see Theorems 4.6.7 and (4.15). Here Hg 'P denotes the fractional order Bessel potential
space with vanishing trace for 0 > 1/p, and H' = H®P for § < 1/p. In more general-
ity, we consider spaces with Muckenhoupt power weights w, (¢) = t¥, where the critical
value 1/p is shifted accordingly.

In the scalar-valued case X = C, the result is well-known and due to Seeley [224].
The vector-valued result was already used several times in the literature without proof.
Seeley also considers the case 6 = 1/p, which we ignore throughout for simplicity, and
the case of domains Q < R?. The corresponding result for real interpolation is due to
Grisvard [104] and more elementary to prove.

At the heart of complex interpolation theory with boundary conditions is the point-
wise multiplier property of the characteristic function of the half-space Tr, on HOP(R; X)
for 0 <0 < 1/p. Itis due to Shamir [226] and Strichartz [230] in the scalar-valued case.
In [187] by the second and third author, a general theory of pointwise multiplication of
weighted vector-valued functions was developed. As a main application the multiplier
result was extended to the vector-valued and weighted setting. An alternative approach
to this was found by the first author in Chapter 3 and is based on a new equivalent norm
for vector-valued Bessel potential spaces. In Section 4.4 we present a new and simpler
proof of the multiplier property of g, , which is based on the representation of fractional
powers of the negative Laplacian as a singular integral and the Hardy-Hilbert inequality.

For future reference and as it is only a minimal extra effort, we will formulate and
prove some elementary assertions for the half space Rf for d = 1 or even domains, and
general A, weights w. In order to make the presentation as self-contained as possible,
we further fully avoid the use of Triebel-Lizorkin spaces and Besov spaces, but we point
out where they could be used. We will only use the UMD property of X through standard
applications of the Mihlin multiplier theorem. Several results will be presented in such
a way that the UMD property is not used. A detailed explanation of the theory of UMD
spaces and their connection to harmonic analysis can be found in the monograph [126].
In their reflexive range, all standard function spaces are UMD spaces.

The complex interpolation result has applications in the theory of evolution equa-
tions, as it yields a characterization of the fractional power domains of the time deriva-
tive D((d/dt)?) and D((-d/dt)?) on R,. Here the half line usually stands for the time
variable and X is a suitable function space for the space variable. For instance such
spaces can be used in the theory of Volterra equations (see [195, 250, 251]), in evolu-
tion equations with form methods (see [70, 89]), in stochastic evolution equations (see
[192]).
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In order to deal with rough initial values it is useful to consider a power weights
wy (t) = t¥ in the time variable. Examples of papers in evolution equation where such
weights are used include [11, 52, 141, 159, 186, 197, 200]. The monographs [168, 198]
are an excellent source for applications of weighted spaces to evolution equations. In
order to make our results available to this part of the literature as well, we present our
interpolation results for weighted spaces. For the application to evolution equations it
suffices to consider interpolation of vector-valued Sobolev spaces over R, with Dirichlet
boundary conditions and therefore we focus on this particular case. In a future paper
we extend the results of [104] and [224] to weighted function spaces on more general do-
mains Q € R?, in the scalar valued situation, where one of the advantages is that Bessel
potential spaces have a simple square function characterization.

OVERVIEW
 In Section 4.2 we discuss some preliminaries from harmonic analysis.

e In Section 4.3 we introduce the weighted Sobolev spaces and Bessel potential
spaces.

¢ In Section 4.4 we present an elementary proof of the pointwise multiplier theo-
rem.

¢ In Section 4.5 we present some results on interpolation theory without boundary
conditions.

 In Section 4.6 we present the main results on interpolation theory with boundary
conditions and applications to fractional powers.

NOTATION

Rﬁf = (0,00) x R4~! denotes the half space. We write x = (x1,X) € R? with x; € R and
% € R%~1 and define the weight wy by wy (x1,X) = |x; |Y. Sometimes it will be convenient
to also write (t,x) € R? with r € R and x € R4"!, The operator F denotes the Fourier
transform. We write A <), B whenever A < C, B where C, is a constant which depends
on the parameter p. Similarly, we write A<, Bif A, Band B S A.

4.2. PRELIMINARIES

4.2.1. Weights

A locally integrable function w : R? — (0,00) will be called a weight function. Given
a weight function w and a Banach space X we define L (IRd ,w; X) as the space of all
strongly measurable f : R — X for which

1
”f”Lp([Rd,w;X) = (/”f(x)”pw(x) dx) Y
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is finite. Here we identify functions which are a.e. equal.

Although we will be mainly interested in a special class of weights, it will be natural
to formulate some of the result for the class of Muckenhoupt A,-weights. For p € (1, 00),
we say that w € A, if

[Wla, = supL wx)dx- (L/ w(x)_ﬁ dx)p_1 < oo.

" g 1QlJo QI /o
Here the supremum is taken over all cubes Q < R? with sides parallel to the coordinate
axes. For p € (1,00) and a weight w : R — (0,00) one has w € A, if and only the Hardy-
Littlewood maximal function is bounded on LP(R?, w). We refer the reader to [101,
Chapter 9] for standard properties of Aj,-weights. For a fixed p and a weight w € Ap,
the weight w' = w="/®-D ¢ Ay is the p-dual weight. By Holder’s inequality one checks
that

/ £ CNIZ A < 1F 1 1o o 18N 1 gt 4.1)

for f € LP(R%, w) and g € L”' (R4, w'). Using this, for each w € A, one can check that
LPRY, w; X)L (R X).

loc
The following will be our main example.

Example 4.2.1. Let
wy(x, 0 =xl", xeR TR

Asin [101, Example 9.1.7]) one sees that w) € Ap ifand only if y € (-1, p — 1).

Lemma4.2.2. Letp€ (1,00) and w € Ap. Assume ¢ € Ll([Rd) andfq)dx =1. Letpp(x) =
n¢(nx). Assume ¢ satisfies any of the following conditions:

1. ¢ is bounded and compactly supported
2. There exists a radially decreasing functiony € L' (R?) such that|p| <y a.e.

Then for all f € LP(R%; X), ¢ * f — f in LP(R?, w; X) as n — co. Moreover, there is a
constant C only depending on ¢ such that ¢, * f|l = CM f almost everywhere.

Proof. For convenience of the reader we include a short proof. By [126, Theorem 2.40
and Corollary 2.41] ¢, * f — f almost everywhere and [|¢p,, * f| < ||1//||L1(R4)Mf almost
everywhere, where M denotes the Hardy-Littlewood maximal function. Therefore, the
result follows from the dominated convergence theorem. O

4.2.2. Fourier multipliers and UMD spaces

Let #(R%; X) be the space of X-valued Schwartz functions and let %’ (R X) = L (LR, X)
be the space of X-valued tempered distributions. For m € L®(R%) let T}, : #([R%; X) —
#'(R%; X) be the Fourier multiplier operator defined by

Ty f =F L (mf).
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There are many known conditions under which T;, is a bounded linear operator on
LP(R%; X). In the scalar-valued the set of all Fourier multiplier symbols on L?(R%) for
instance coincides with L®(R%). In the case p € (1,00) \ {2} a large set of multipliers
for which T, is bounded is given by Mihlin’s multiplier theorem. In the vector-valued
case difficulties arise and geometric conditions on X are needed already if d = 1 and
m(&) = sign($); in fact, in [31, 42] it was shown that in this specific case the boundedness
of T, on LP (R; X) characterizes the UMD property of X. Since the work of [31, 42, 174] it
is well-known that the right class of Banach spaces for vector-valued harmonic analysis
is the class of UMD Banach spaces, as many of the classical results in harmonic analysis,
such as the classical Mihlin multiplier theorem, have been extended to this setting. We
refer to [43, 126] for details on UMD spaces and Fourier multiplier theorems.

All UMD spaces are reflexive. Conversely, all spaces in the reflexive range of the clas-
sical function spaces have UMD: e.g.: L?, Bessel potential spaces, Besov spaces, Triebel-
Lizorkin spaces, Orlicz spaces.

The following result is a weighted version of the Mihlin multiplier theorem which
can be found in [187, Proposition 3.1] and is a simple consequence of [113].

Proposition 4.2.3. Let X be a UMD space, p € (1,00) and w € Ay,. Assume that m €
CH*2(RA\ {0}) satisfies

Cmi= sup supl¢l|DYm(&)] < oo.
lalsd+2 {#0

Then T,, is bounded on LP ([Rd, w; X) and has an operator norm that only depends C,,, d, p, X, [w] Ap-

4.3. WEIGHTED FUNCTION SPACES

In this section we present several results on weighted function spaces, which do not
require the UMD property of the underlying Banach space (except in Proposition 4.3.2).

4.3.1. Definitions and basic properties

For an open set Q € R? let 2(Q) denote the space compactly supported smooth func-
tions on Q equipped with its usual inductive limit topology. For a Banach space X,
let 2'(Q; X) = £(2(Q), X) be the space of X-valued distributions. For a distribution
u € 2'((; X) and an open subset Qg < Q, we define the restriction ulg, € 2'(Qo; X) as
ulay (f) = u(f) for f € 2(Qy).

For p € (1,00) and w € Ap let wkpP(Q, w; X) € 2'(Q; X) be the Sobolev space of all
feLP(Q,w;X)with D® f € LP(Q, w; X) for all |a| < k and set

I lwer@uwx = 2 1D fllrr@uwx),

lal<k

[f] wkp(Quw;X) = Z ”Daf”LP(Q,w;X)-
lal=k
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Here for « e N9, D% = 97! ...63’1.

Let _#; denote the Bessel potential operator of order s € R defined by
jsf = (1 — A)S/Zf = [F_l(l + | . |2)S/2]’c\,

where fdenotes the Fourier transform of f and A = Zj?:l 6?. Forpe(l,00),seRand we
Ap let HSP (R, w; X) € .%'(R%; X) denote the Bessel potential space of all f € #'([R%; X)
for which g f € LP (R?, w; X) and set

||f||Hs,p(Rd,w;X) = ||fsf||Lp(Rd,w;X)-
In the following lemma we collect some properties of the operators _g;.

Lemma 4.3.1. Fix s > 0. There exists a function G : R — [0,00) such that Gs € Ll([Rid)
and g_sf = G * f for all f € &' (R%; X). Moreover, G has the following properties:

1. Forallly| =2, Gs(y) Ss,a e

2. For|x|<2,
|x|s=4, se(0,d),
Gs(x) Ssa i 1+log(d), s=d,
1, s>d,

3. foralls> k=0 and all|a| < k, there exists a radially decreasing function ¢ € L' (R%)
such that |D* G| < ¢ pointwise.

In particular, ifd =1, pe (1,00), ye (-1,p—1) and s > HTY, then Gy € LP' (R, w;,).

Proof. The fact that the positive function G; € Ll(Rd) exists, together with (1) and (2),
follows from [101, Section 6.1.b].
To prove (3), we use the following representation of G (see [101, Section 6.1.b]):

b S
Gs(x):Cs,d/ e lte a2 —,
0

By induction one sees that D*G(x) is a linear combination of functions of the form
Gs,zj(x)lxlﬁ with |f] = j < k. Therefore, by (2) for |x| < 2, ID*Gs(%)| Ss a0 |x|€=% for
some ¢ € (0,d). On the other hand for |x| = 2, |ID*G(x)| Ssa.a leﬁe‘% Sd,s.k e‘%.
Now the function ¢(x) = Cllxlf‘d for |x| = 2 and ¢(x) = Cge‘% for certain constants
C1,Cy > 0. satisfies the required conditions.

To prove the final assertion for d = 1, note that the blow-up behaviour near 0 gets
worse as s decreases. Therefore, without loss of generality we may assume that s €
(HTY, 1), in which case (2) yields

s—)p-y

/ ( p 1+y
/ == -1+ (s—=1)
IGs(x)Ip w,, (x) A<Js, } x| P 1 =]x| p-1 P
Y pY

for |x| = 2.

which is integrable. Integrability, for |x| > 2, is clear from (1). O



4.3. WEIGHTED FUNCTION SPACES 113

The following result is proved in [187, Proposition 3.2 and 3.7] by a direct application
of Proposition 4.2.3.

Proposition 4.3.2. Let X bea UMD space, p € (1,00), k€ No, w € Ay,. Then HP (R w; X)
wkP R, w; X) with norm equivalence only dependingond, X, p, k and [w]Ap.

The UMD property is necessary in Proposition 4.3.2 (see [126, Theorem 5.6.12]).
Sometimes it can be avoided by instead using the following simple embedding result
which holds for any Banach space. The sharper version WkPRY, w; X) — HSPRY, w; X)
if s < k and k € Ny. can be obtained from [182, Propositions 3.11 and 3.12] but is more
complicated.

Lemma 4.3.3. Let X be a Banach space, p € (1,00), k € Ny, s € (k,00) and w € A,. Then
the following continuous embeddings hold

WP RY, w; X) — HRPRY, w; X), HYP®Y, w; X) — WEPRY, w; X),
with embedding constants which only depend on d, s, k and [w]Ap.

Proof. The firstembedding is immediate from /5 f = (1-A)¥ f and Leibniz’ rule. For the
second embedding let f € H” (R?, w; X) and write f; = J;f € LP(R%, w; X). By Lemma
4.3.1 (3) and Lemma 4.2.2, for all |a| < k,

ID® fllx = ID“Gs * fslx < * Il fsllx = CpMU 511 x),

where ¢ € L'(R?) is a radially decreasing function depending on «, k and s. There-
fore, by the boundedness of the Hardy-Littlewood maximal function, we have D% f €
LP([RY, w; X) with

”Daf“LP([Rd,w;X) gp,[wup “fS”U’(Rd,w;X) = "f”HW([Rd,w;X)'
Now the result follows by summation over all a. O

We proceed with two density results.

Lemma 4.3.4. Ler X be a Banach space, p € (1,00), se Rand w € Ap. Then FRY; X) —
HSP (R4, w; X) — &' (RY; X). Moreover, C®°(R?%) ® X is dense in HYP (R4, w; X).

Proof. Firstwe prove that LR X) — HYP[RY, w; X). Tt suffices to prove this in the case
s = 0 by continuity of _Z; = (1-A)*'? on #(R%; X). In the case s = 0, the continuity of the
embedding follows from

2\— 2
||f||Lp([Rd,w;X) <A+ 1x) n”Lp([Rd_w) 11+ x| )nf”LOO(Rd;X)
Sanmpw Y. supllx®f(0)]

lal<2n xeR4

for n e Nwith n = dp (see [182, Lemma 4.5]).
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To prove the density assertion note that L (R%, w) ® X is dense in LP (R?, w; X) and
S (RY) is dense in L” (R?, w) (see [101, Exercise 9.4.1]) it follows that #(R%) ® X is dense
in LP(R?, w; X). Since J~* leaves & (R?) invariant, also . (R%)® X is dense in H¥P (RY, w; X).
Combining this with LR X) — HYP(R?, w; X) and the fact that CS"([R{d) is dense in
F(RY) (see [79, Lemma 14.7]) we obtain the desired density assertion.

To prove the embedding Hs"”([l'\Pd, w; X) — y’(Rd;X) it suffices again to consider
s =0. In this case from (4.1) and y([R”’%—»L”l (R, w') densely, we deduce

PR, w; X) — L7 R, w'), X) — L(FRY, X) = ' R X).
O

Lemma 4.3.5. Ler X be a Banach space, p € (1,00), ke N and w € A,. Then SR X) —
WhP(RY, w; X) — &' (R?; X). Moreover, C°(R%) ® X is dense in W*P (R?, w; X).

Proof. The case k = 0 follows from Lemma 4.3.4 and the case k = 1 follow by differenti-
ation.

Let¢g e CSO([R%d) be such that fRd ¢dx =1 and define ¢, := nd(p(n-) for every n e N.
Then, by Lemma 4.2.2 and standard properties of convolutions, f;, := ¢, * f — f in
WEP (R, w; X) as n — oo with ¢, * f € WP (R?, w; X) = Nien WHP(RY, w; X). In par-
ticular, W2k*2P (R4 w; X) is dense in WP ([R?, w; X). This yields H**1P R4, w; X) KA
wkrP®Re, w; X) by Lemma 4.3.3. The density of ch([de) ® X in WkP R4, w; X) now fol-
lows from Lemma 4.3.4. O

Lemma 4.3.6. Let X be a Banach space, p € (1,00), s€ Rand w € Ap. Assume ¢ € CZ°(R)
with [ ¢pdx=1. Let ¢, (x) = n%p(nx). Then, for all f € H*PR?, w; X),

lpn * fll prsr e, w;x) Ssoptwh,a 11 se @e,w;x)
withu f — f in HYP R, w; X) asn — oo with ¢y + f € HP (R, w; X) = Nyer H'P (RY, w; X).

Proof. The first part of the statement follows from Lemma 4.2.2 and _%s(¢p,, * f) = ¢y *
_Zsf. For the last part, note that ¢, * f = _£_[, * _Z; f1 € HP (R?, w; X) by basic prop-
erties of convolutions in combination with Lemma 4.3.3. O

The following version of the Hardy inequality will be needed (see [182, Corolllary 1.4]
for a related result). The result can be deduced from [185, Theorem 1.3 and Proposition
4.3] but for convenience we include an elementary proof.

Lemma 4.3.7 (Hardy inequality with power weights). Lety € (-1,p—1) andse (0,1). Let
wy(t,x) = |t|" for t e R and x € R?~1. Then HP (RY, wy; X) — LP RY, wy—p; X).

Proof. Itsufficesto prove || Gs*f||Lp(wy75p;X) gp,sm ”f”L,n(wy;X), where Gy is asin Lemma
4.3.1and f € L?(wy; X). Since G; = 0, by the triangle inequality it suffices to consider the
case of scalar functions f with f =0.
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To prove the result we first apply Minkowski’s and Young’s inequality in R4~!:

| Gs * f(t, ')”Lp(Rdfl) = / 1Gs(t—7,) ||L1(Rd—1) ”f(T, ')”Ln(Rdfl)dT =gs* P(7).
R

Here gs(1) = 1Gs(¢,) ;1 ga-1y and ¢(7) = | f(7,) I pga-1y- Then for || <2, by Lemma
4.3.1 (1) and (2),

gs(r)gs,d/ (|t|+|x|)5‘ddx=|t|5‘1/ A +1xDdx=Clt|*Y,
Rd*l Rd*l

where we used s < 1. For |£| > 2, by Lemma 4.3.1 (2) and | (¢, x)| =~ |£| + | x|, we find
L _lx _ld
gt Ssae 2/ e 2dx~ge 2.
[Rd

Finally by the weighted version of Young’s inequality (see and [136, Theorem 3.4(3.7)])
in dimension one, we find that

IGs * f”LF’(Rd,wY_sp) =|lgs* ¢||LP([R,WY,S,,) = C”(,DHLP(IR,W},) = C”f”Lp([Rdywy)»
where C = sup, g |]'~*gs(1) < co. O
We end this section with a weighted version of the classical Hardy-Hilbert inequality.

Lemma 4.3.8 (Hardy-Hilbert inequality with power weights). Let p € (1,00) and y €
(=1,p—1). Let wy(x1,X) = |x1|" and k(x,y) =
¥ =(1,)). Then the formula

1 _
i P a—gmae Where x = (x1,X) and

Ith(x) = /d k(x,yh(y)dy
R

yields a well-defined bounded linear operator Iy, on LP (R?, wy).

Proof. 1t suffices to consider h = 0. Moreover, by symmetry it is enough to consider
X1, 1 > 0. Thus we need to show that

e /[Rd KGO DR Yo gd ) Spdy Wl 7€ LPRE, wy), 0.

Step I. The case d = 1. Replacing k by

wy P wy (NP (xiPly1 P
(11 + 1y lxl+1yl’

kg(x,y) =

with g =y/p, it suffices to consider the unweighted case.
To prove the required result we apply Schur’s test in the same way as in [96, Theorem
1

5.10.1]. Let s(x) = t(x) = x »” . Thensince -1 < f8— pi <0

~ swPkpopd mxﬁﬁy_ﬁd 0 (227 ey i
f = —_— — [ = t .
/0 s(x)Pkp(x,y)dx /o g x=1(y) /0 771 z=Cppt(y)
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Similarly, since -1 < -8 — % <0

o ' oo)clﬁy_ﬁ_% (2P ,
1 ks, dy= | X —dy=s@P dz=C v,
/0 N" kp(x, ) dy /0 ty y=:s) /0 o2 z=Cp,ps(x)

Step II. The general case. By Minkowski’s inequality we find

* F, 9 AP A\Up
”I'“f(xl')””""*d’”sfo (/Rd(/w Gy irgean ) @ an

Fix y; > 0 and let g,(3) = f(y1,ry). Setting r = x; + y; and substituting u := X/r and
v:=y/r we can write

f(yl;j;) \P
d d
/Rd(/w (x+ 1z gpae Y ) az

— —p+d-1 &r(v) d pd
' /Rd—l(/w—l Triu—vpn 2] 4

—-p+d-1 p 2y=d/2,p — - p
<P g 1 e N+ = Capr P sy

where we applied Young’s inequality for convolutions. Therefore,

< | f (1, M ppga-1
= PR gy,
X1+

1k f o1, ) ooty = Cap /
0
Taking L”((0,00), wy)-norms in x; and applying Step I yields the required result. O

Remark 4.3.9. Actually, the kernel k of Lemma 4.3.8 is a standard Calder6n-Zygmund
kernel, because k is a.e. differentiable and

IV k(x, )+ IVyk(x, I < 1x—yI™Y x#y.

Although we will not need it below let us note that [113, Corollary 2.10] implies that I is
bounded on L”([Rd, w) forany we Ap

4.4. POINTWISE MULTIPLICATION WITH ﬂRd
Y

In this section we prove the pointwise multiplier result, which is central in the character-
ization of the complex interpolation spaces of Sobolev spaces with boundary conditions
in Section 4.6. Let wy (x1,X) = |x1|?, where x; e Rand X € RA-1L,

Theorem 4.4.1. Let X be a UMD space, p € (1,00), y € (-1,p—=1), ¥ = -y/(p-1), and
czssume—%’,1 <s< 7—;1. Then for all f € HYP(R?, wy; X) N LP (RY, wy; X), we have Ty f €
HSPRY, wy; X) and

[ ﬂ[Rff” HSP (R, wy;X) Sxpys ”f”HSvP([Rd,wy;X)’

and therefore, pointwise multiplication by Tpa extends to a bounded linear operator on
+
HYPRY, wy; X).
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To prove this the UMD property will only be used through the norm equivalence of
Lemma 4.4.2 below.

Lemma 4.4.2. Let X bea UMD space, p € (1,00), S€ER,0 =0, we Ay. Then
(-0)7"%: FREX) — S REX), f— T HE— 1G9 ]

defines for each r € R (by extension by density) a bounded linear operator from H*%P R?, w; X)
to H"P(R?, w; X), independent of r and w (in the sense of compatibility), which we still
denote by (—A)?'?. Moreover; f € H*%P (R4, w; X) ifand only if f,(=A)°'? f € HSP (R4, w; X),
in which case

— al2
"f”HW([Rd,w;X) ~s,p,w,d, g, X ”f”HS—U,p([Rd'W;X) +[1(=4A) f”HS—U,p(Rd’w;X)-

Proof. All assertions follow from the fact that the symbols

: 117 ¢ 1 o O 1§22
(L+IgP2e (L+[g2)2/o’ 1+51°
satisfy the conditions of Proposition 4.2.3. O

In the proof of Theorem 4.4.1 we will use the norm equivalence of the above lemma
via (a variant of) a well known representation for (-A)?'2 as a singular integral. For
f € H2P(R?) this representation reads as follows:

(-8)°"2f = lim cd(,/ Tl =1 4,
r—0* " Jravpo,y R
with limit in LP (R?) (see [151, Theorem 1.1(e)]); here T}, denotes the left translation and
Ca,s is a constant only depending on d and o.

In the proof we want to use a formula as above for f replaced by HM f, which in gen-
eral is an irregular function even if f is smooth; in particular, a priori it is not clear that
ﬂlR‘f f € H>P(R%). We overcome this technical obstacle by Proposition 4.4.4 below, which
provides a (non sharp) representation formula for (—A)?’? in spaces of distributions.

For the proof of Proposition 4.4.4 we need the following simple identity.

Lemma 4.4.3. Foreach o € (0,1) there exists a constant c¢g, € (—00,0) such that

elh'f_l
o _ d
I€] _Cd’a/[Rd —|h|d+‘7 dh, e R”.

Moreover; for all ¢ € & (R%)

thS _
119 = [ p©de=cap [ | [ oo dcan @2
Rd rd Jr R4

=:Cd,o /
R4

elhf_l
& W] (p) dh.
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Proof. Letée R4\ {0} and choose R € O(n) with Ré=|éle;. Then h-E=Rh-RE=|E|RB-e;
and the substitution y = ||Rh yields

et _q e -1
/ —re =|<f|0/ — g Ay
rd |h|4+9 rd |yl4*e
Observing that the integral on the right is a number in (—oo, 0), the first identity follows.
Next we show (4.2). Given ¢ € & (R%), the first identity gives

thé _
[5*—>Ifla](¢)=/ Iflgd)(f)df:Cd,o/ / e—dldh¢)(f)d5-
R4 Rd Jrd |h|4FO

Since ¢ € .#(R%) and

ths _

le 1| (d— _
Wshhlglh (d H1E1 42 1 51 1R d+o),

we may invoke Fubini’s theorem in order to get

lhf_ elhf_l
5 |E| ((P)—Cda/ / |h|d+0 ([)(f)dfdh—cdo/ lEH |h|d+g

as desired. O

(P)dh,

For f € #'R%; X) let 6, f = T, f — f, where T}, denotes the left translation by k. For
0<r<Rlet A(r,R):={x€R?: r <|x| <R} be an annulus.

Proposition 4.4.4 (Representation of (—A)%). Letp e (1,00) and o € (0,1). Foralls=0
and f € HSP(RY) ® X = LP(RY; X) we have

0
(-MZf=— lim x'—>/ h];(x) dh] in H*PRY X),
Cd,oc "™\O,R/o0 A(r,R) |h|dto

where cq ; is the constant of Lemma 4.4.3.

The weights are left out on purpose, because translations are not well-behaved on
weighted LP-spaces. Moreover, no UMD is required in the result above.

Proof. We prove this proposition by proving the following three statements:
1. The linear operator

Onf

f — [h - | h|d +0

is bounded from H*?([R%; X) to L' (R?; HS~>P(R?; X)) for all s € R and thus gives
rise to a bounded linear operator

)

_ Onf
Iy HYP(RE X) — HT2PRY; X), H/
ot HYP (R X) ®EX), [~ | i
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2. For all s =0 we have

1)
Iof= lim |x— / n/ () dh] in H2P®R% X)
™\0,R /o0 AR |hI9+0

for every f € H*P(R%; X) < LP (R%; X).
3. Forall fe H®P(RY) & X,
Iof=cag(-NZ f in ' REX), 4.3)
where ¢4 » is the constant of Lemma 4.4.3. Here H™°P (RY) = UseR HSPRY).

(1): To prove this it is enough to establish the boundedness from H”(R%; X) to
LY (RY; H2P(RY; X)). As the Bessel potential operator J#s commutes with dj, we may
restrict ourselves to the case s = 2. Since by Lemma 4.3.3 H?P ([Rd; X) — Wl'p([R{d; X), we
only need to estimate

167 f 1 1p@a;x) Lp pd
/[Rd T A Sdop Iflwirgex, — FEWTREX). (4.4)

To this end, let f € WHP(R?; X). Then

Onf —d-1+0) [
Thio = Lip<1lhl A Ttn

h
me] dt+ 11 1h "9 (T, f - £),

where the integral is an LP (R%; X)-valued Bochner integral. It follows that

||6hf||L]9(Rdx) i 1
—|h|d+‘7 < 1|m51|h| d 1+g)/ [ Tth"vfllxd ”LP([Rd) dt
0

+ 1jpys1 @) (I Tnflr®x + 1 Fllr@sx)
=Ly b @10 IVFllpp g xay +2 - L1 1B N fll i) -
Integrating over h gives (4.4).

(2): Lets=0and f € HYP (R%: X)  LP (RY; X). By the first assertion and the Lebesgue
dominated convergence theorem,

)
Iof= lim / i oan i SRR @Y X), (4.5)
rNO,R /00 J oy |19+

where the integrals fA(r,R) ”‘j‘% dh are Bochner integrals in H2P(R%; X). As fe L (R%; X),

h— I;EIZ{" isin L1 (A(r, R); L? (R%; X)) for every0 < r < R < oo. Since L RY; X), H 2P (RY; X) —

' (R%; X), it follows that the integrals i) ACR) mﬁ\}Tfﬂ dh in (4.5) can also be considered as

. . . . ) 1)
Bochner integrals in L?(R%; X), implying that fA(r,R) Ihl% dh = [x»—» fA(r‘R) % dh
(see [126, Proposition 1.2.25]).
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(3) By linearity it suffices to consider the scalar case f € HP(R?) for some s € R. By
the density of #(R%) < H%P(R?) (see Lemma 4.3.4) it suffices to consider f € & (R%).
Indeed, this follows from the boundedness of .%; and (-A)°/2 (see (1). Now (4.3) fol-
lows from well-known results (see [151, Theorem 1.1(e)]). For convenience we include a
direct proof. Using Lemma 4.4.3, for each f € Z[RY; X) we find

1z an
/ e T
= / 7 e S g | an- / O
=Cdo Rd |h|d+af =Cdo Rdlhld“’ ’

where all integrals are in y’(le;X). By (1), for every f € y([REd;X) c HO"”(IR”I;X) we
have Z; f = [pa “fl’jl]:d dh, where the integral is taken in H~1?(R%; X) — &' (R%; X). This

proves (4.3), as desired. O

A2 f =7 e 180 fl=F

Finally we are in position to prove the pointwise multiplier result.

Proof of Theorem 4.4.1. We only consider s = 0. The case s < 0 follows from a duality
argument using [187, Proposition 3.5].
By Lemma 4.3.4 it is enough to prove "lI]RZf"Hs,p(Rd,wy;X) Sspdy, X ”f”HS,p(Rd,wy;X)
for an arbitrary f € #(R?) ® X. Let g := Tpa f € LP(R%) ® X. By Lemma 4.4.2, we have
+
18 s e, wy:x) Ss.pidiy.x 181 Lp @ wyix) + ”(_A)S/Zg”LP([Rd,wy;X)‘

Clearly, gl » ®,10,;X) <|fl LP(RY, wy;X) from which we see that it suffices to show

2
128l o e, wyix) Sspdey 1 1 prsr @, wy:x)- (4.6)

By Proposition 4.4.4,

jsng:z [x»—»/ (T;llﬁia—i) d]’l] ( A)s/z in Hs_z’p([Rd;X)Qy,(Rd;X).
A

In order to finish the proof, it is thus enough to show that ., j& converges in L? ([Rd, wy; X)+
L (RY; X) — &' (R%; X) to some G satisfying
I G”L”([Rd,wy;X) ,Ss,p,d,y,X ”f” HSvV(Rd,wY;X) . 4.7

Indeed, then (-A)*?g = G and (4.6) holds.
Defining

={(y,2)€R*:[z<-yandy > 0] or [z>-yand y < 0]}
we have

ys,jg:Gl,j"‘Gz,j
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flx+h)

= ﬂRf']S:jf—i_ W

x— —sgn(x;) 1s(x1, 1)
AGLD

dh] , (4.8)

where % ; f is defined analogously to .%; ; g:

)
Ny
Al j |hl

We first consider {Gy, j} jen. Since Fs ; f 2% (=A)%2 f in LP (RY; X) by Proposition 4.4.4,
itfollows that Gy := Tga (—A)Slzf =lim;j_,o Gy, in LP[RY; X). By Proposition Lemma 4.4.2,

ys,jf::

/2
G ”Ll’(Rd,wy;X) <I(-4)° f”LP([Rd,wy;X) ,Ss,p,d,y,X ”f”HS'P([Rd,wY;X)‘
We next consider {G,j} jen. Observing that
|hl = (hyl? + RIDY? = (£ + | hy + £)? + |RID?

forall h = (hy,h) € R and r € R with (¢, hy) € S, we find

I f(x+h)llx dhs/ If(x+h)llx
R

1s(x1, 1) dh
/A(},j) L |h|d+s

d ~, d+s
((Ix1]+1hy + x1)% + |h|?) 2

~ If ) lx
_/[Rd ., dxs dy
(x1l+1yD2+1y-X12) 2

< /d kCo NIn =S Ilfwmix dy,
R

d
where k(x,y) = ((Ix1] + y1)? + 17— X>) 2. Applying Lemma 4.3.8 to the function ¢(y) =
[»117°1 f (1)l x we thus obtain

If G+ Blix
[~ /A (%J)ﬂsm, hl)ldeh”md’wy) < Nkl 1y o,

Spdy 191 @d,w))

= ”f”U’(IRd,wy,Sp;X)‘

Sp,d,y ”f”HS'p(Rd,wy;X)’

where in the last step we applied Lemma 4.3.7. It follows that the limit G, :=lim; .o, G2,
exists in LP (RY, wy; X) and, moreover,

G2l b e, wy:x) Spadiy 1 esw @d,wy:x)-

Finally, combining the just obtained results for {G;, j}jen and {Gy j} jen, We see that
G:= G+ Gy =limj_co F ;g in LPRY, wy; X) + LP(RY; X) — &' (R; X) and (4.7) holds as
desired. O
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4.5. INTERPOLATION THEORY WITHOUT BOUNDARY CONDITIONS

For details on interpolation theory we refer the reader to [23, 235]. In this section we
present some weighted and vector-valued versions of known results.

The following extension operator will allow us to reduce the half space case R to the
full space R%.

Lemma 4.5.1 (Extension operator). Let X be a Banach space. Let p € (1,00), and m € Ny.
Let w € Ap be such that w(-x1,%) = w(x1,X) forx; eRand X € R4, Then there exists an
operator " : LP (Rf, w; X) — LP R, w; X) such that

1. Forall f € LP (R%, w; X), CHIVESE
2. forallk€f0,...,,m}, M : WP (RY, w; X) — WhP(RY, w; X) is bounded,

Moreover, if f € U’([Rif, w; X)N C’”([R%Z; X), then &} f is m-times continuous differentiable
onR<.

By a reflection argument the same holds for R?. The corresponding operator will be
denoted by &™.

Proof. Theresultis a simple extension of the classical construction given in [2, Theorem
5.19] to the weighted setting. The final assertion is clear from the construction of &7*. O

To define Bessel potential spaces on domains, we proceed in an abstract way using
factor spaces.

Definition 4.5.2. Let F — 2’ (R%; X) be a Banach space. Define the restricted space/factor
space to an open set Q € R as

FQ):={f€2' R, X):3g€F, f = glo}
and let
I fllF =infllgllF: gla = f}-
We say that & is an extension operator for [F(Q) if
1. forall feF(Q), (Ef)a=f;
2. &:F(Q) — Fis bounded.

For p € (1,00), w € Ap and an open set Q R4, we define the Bessel potential space
H*P(Q, w; X) as the factor space

H™(Q, w; X) == [H™P R?, w; X)) ().

By Lemma 4.5.1 and for w as stated there, we find that W*? (R%, w; X) can be identi-
fied (up to an equivalent norm) with the factor space [Wk'p (Rd, w; X)] ([Rf), where an ex-

tension operator can also be found. Indeed, let WfI;'C’zor(R’f, w; X) = [WEPRE, w; X)) (Rf)
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denote the factor space. For f € Vl/f];’cfor(ﬂ%d, w;X) let g € wkP(@®RE, w; X) be such that
gIRz = f. Then

1 lwier @t wix) = 18l wer@d,w;x)-

Taking the infimum over all of the above g, we find

”f”Wk'p([R{‘i,w;X) = "f”Wk,p

factor

®R,w;X)"

Next let f € WP (R?, w; X). Then &, f € WEP(R?, w; X) and

11 v ®%,w;x) = 16+ fllwtr@a,wix) = CI lwer @d,wix)-

factor

Next we present two abstract lemmas to identify factor spaces in the complex in-
terpolation scale. The result is a straightforward consequence of [235, Theorem 1.2.4].
We include the short in order to be able to track the constants. For details on complex
interpolation theory we refer to [235, Section 1.9.3].

Lemma 4.5.3. Let (X, X;) and (Yy, Y1) be interpolation couples and let Xg = [Xo, X1l
and Yy = [Yy, Y1lg for a given 8 € (0,1). AssumeR: Xo+ X1 — Yo+ Y1 andS: Yp+ Y, —
Xo + Xy are linear operators such that S € £(Y}, Xj), Re £(Xj,Y;) and RS is the identity
operator on Y; for j € {0,1}. Then SR defines a projection on Xg and R is an isomorphism
from SR(Xp) onto Yy with inverse S. Moreover, the following estimates hold:

Cs'ISyllx, < ylly, < CrlISYllx,, € Yp,
IRxlly, = Crllxllx,, x€ Xp,
lxlxy = CsllRxlly,, x€SR(Xp),

where Cr = maXjejo,1 Rl #(x;,v;) and Cs = maXjeio,1} ISl 2x;,v))-
Proof. By complex interpolation we know
ISl £(vy, %9 = Cs, and Rl (xy,vp) < Cr

and RS is the identity operator on Yy. This proves the upper estimates for S and R. To
see that SR is a projection note that (SR)(SR) = SR. The lower estimate for S follows
from

lylly, = IRSylly, = CrllSyllx,, yE€ Y.
To prove the lower estimate for R note that for x := SRu € SR(Xyp)

lxllx, = ISRSRullx, < CslRSRully, = CsllRx| x,.
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Lemma 4.5.4. LetF°,F! — 2'(R%; X) be two Banach spaces. For0 € (0,1), let
FO = [F°,F',.
Let Q € RY be an open set, and define F (Q) as in Definition 4.5.2, and assume there is an
extension operator & forF*(Q) for s € {0,1}. Then [F°(Q),F' (Q)]lg = F(Q) and
CH 1 fllgo iy < I f lpocrr g < 1 lIpo

where C only depends on the norms of the extension operator. Moreover, & is an extension
operator for F?(Q).

Proof. Define R :F/ — F/(Q) by Rf = flg and S: F/(Q) — F/ as S = &. Then |R| <
LS|l < C and RS = I. From Lemma 4.5.3 we conclude that for all f € [F°(Q),F!(Q)]g

C S llpoy < €18 fligo < Il ipocy 1 -

Conversely, let f € F(Q). Choose, g € F? such that Rg = gl = f. Since |R| <1, by
complex interpolation we find

”f”[[FO(Q),[Fl(Q)]g = ||g||[[F0,[F1]9 =1Iglpo

Taking the infimum over all g as above, the result follows.

To show the final assertion, note that & € £ (Q),F?) by the above. Moreover, for
feF' Q) NFY(Q), (f)|a = f. By density (see [235, Theorem 1.9.3]) this extends to all
feF Q. O

Proposition 4.5.5. Let X be a UMD space, p € (1,00), k € Ny and assume w € Ap, is such
that w(x;,X) = w(—x1,%) forx; eRandX € R4, Then Hk’p([Rf, w; X) = Wk"’(lRf, w; X)

Proof. This is immediate from Proposition 4.3.2 and the fact that wkp ([Rf, w; X) coin-
cides with the factor space [W*? ®R9, w; X)](RY). 0

Next we identify the complex interpolation spaces of H”(Q, w; X). Here the UMD
property is needed to obtain bounded imaginary powers of —A.

Proposition 4.5.6. Let X be a UMD space and p € (1,00). Let w € A, be such that
w(—x1,%) = w(x, % forall x; eR and ¥ e R4,

(1) LetfO€0,1] and sy, s1,s € R be such that s = so(1—-0) +516. Then forQ = RY orQ = [R{f
one has
[HP(Q, w; X), HP(Q, w; X)lg = HYP (Q, w; X)

(2) Foreach m €Ny there existsan &7 € £ (H™"™P (R, w; X), H-™P R?, w; X)) such that

o forallls| < m, & € L(H*P RY, w; X), HYP RY, w; X)),
e forallls|<m, f— (& f)Iga equals the identity operator on HSP (R, w; X).
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Moreover, if f € LP(RY, w; X) 0 C™(R%; X), then &7 f € C"(RY; X).

By a reflection argument the same holds for R%. The corresponding operator will be
denoted by &™.

Proof. (1): For Q = R4, the result follows from [187, Proposition 3.2 and 3.7] (see [126,
Theorem 5.6.9] for the unweighed case).
(2): Fix m € N. We first construct é"Z" € L(H™P[R?, w; X)) such that

(i) &7 e L(HP(RY, w; X)) forall |s| < m;
(i) & flga = flga;
(iii) EMf =0if flga =0;

Given &7 we can define &7 : HY? R%, w; X) — HSP (R, w; X) by &™ f = E™ f where
fe HSP(RY, w; X) satisfies flm = f. This is well-defined by (iii).

In order to construct gf let0<A; <...<Aypms2 <ocoand by,...,by,42 € Rbe as in
[235, 2.9.3]. For A € R\ {0} we write T) f(x) = f(—Ax1,X). Let éf € L(LP[R?, w; X)) and
E"e L(LP (R, w'; X*)) be defined by

2m+2 2m+2

g_:anHsz+1]Rg Z bjT/ljfv ETngﬂle(g+ Z bj/l}lT;L;Ig).
j=1 j=1

Then one can check that
EMf,g)=(f,E"g, fel’P®R% w;X), geLl’ R w;X"). (4.9)

Moreover, by the special choice of by, ..., bo 42 itis standard to check that gf e LWMPRE, w; X))
and ET € $(Wm”’/ (R4, w'; X*)). In view of (2) for Q = R? and Proposition 4.3.2, com-

plex interpolation gives (‘:afl € L(HP (R, w; X)) and ET € $(H5"’/ (RY, w'; X*)) for all

O<s<m.

Recall that H? (RY, w; X) = (H P (R4, w'; X*))* (see [187, Proposition 3.5]), X be-
ing reflexive as a UMD space (see [126, Theorem 4.3.3]). By the duality relation (4.9) we
find that gjf extends to a bounded linear operator on H*? (R?, w; X) for each s € [-m, 0].
Therefore, (i) follows and moreover (ii) follows by a density argument. To check (iii) let
f e H™P[R?, w; X) with f|[R€ff =0 be given. Let ¢ € C°(R?) be such that J$pdx=1and
set ¢y, = n‘d(/)(n-) for n € N. Then, by Lemma 4.3.6, ¢, * f — f in H™P R, w; X) and
bp* feLP (R?, w; X). Now since bp * fIM =0 it follows that gfr"flm =lim;,_ gf’qbn *
f|Ri =0.

Finally, note that for f € L’ ®R%, w; X) n C"R% X), & f € C™(R%; X) & C"(R%; %)

with
2m+2

g;;f'qu =f and é";lﬂm = Z b]TlJf
j=1

and by the special choice of by, ..., b2 12, one can check that f € Cm([Rd;X).
Now (1) for Q = Rf follows from Lemma 4.5.4 and (2). O
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For an open set Q € R?, and s € R let H, 'p(Rd wy; X) be the closed subspace of
HSP(R?, wy; X) of functions with support in Q.

Proposition 4.5.7. Let X be a UMD space, p € (1,00), k € N, w(—x1,X) = w(x,%) for all
x1€ERandxe R4!, Lerf €[0,1] and $0,51, S € R be such that s = so(1—0) + 510. Then the
following identity holds with equivalence of norms

(P @, w; X), B PR w; X))o = HoY (R, w; X).

Proof. To show this we consider the case of [Rf. The other case can be proved in the
same way. Let & be the (reflected) extension operator of Proposition 6.3.7 with m the
least integer above max{|so|, |s1[}. Define R : H"0P(RY, w; X) — HD;‘;ASI"”(R‘{, w; X) by

4

Rf:= f— & (flpa)

andletS: H[;‘;Ml'p(Rd, w; X) — HO"$0P (R4, w; X) be the inclusion operator. For each €

+

[soAs1, m], Rand Srestrict to bounded linear operators R : HP (R?, w; X) — ’p PR, w; X)

and S: H”"(Rd w; X) — HYP(R?, w; X) with the property that SR(H*? R%, w; X))— (Rd w; X).

Using Lemma 4.5.3 in combination with Proposition 6.3.7 we find that R restricts to an
isomorphism from H PRY, w; X) = SR(HP (RY, w; X)) to [H s“ PR, w; X), Hsl P(RY, w; X)g.

Since Rf = f for all f € Hs (R4, w; X), this proves the requlred identity for the inter-

polation space. The norm equlvalence follows from the estimates in Lemma 4.5.3 as
well. O

To end this section we present a variation of a classical interpolation inequality.
The result can be deduced from the weighted Gagliardo-Nirenberg type inequality [182,
Proposition 5.1]. We provide a more direct proof which also yields additional infor-
mation. The unweighted and scalar-valued case can be found in [145, Theorem 1.5.1].
However, the proof given there does not extend to the weighted setting. The lemma can
also be deduced from Proposition 4.2.3, but this would require X to be a UMD space (cf.
the proof of [93, Corollary 5.3]).

Lemma 4.5.8 (Gagliardo-Nirenberg inequality). Let X be a Banach space and k € N. Let
Q=R orQ = Rf. Let w € Ap be such that w(-x1,X) = w(x1,X) ifQ = [R{f. Then for all
ue WoP(Q,w; X) and je1,...,k-13,
< 1’% %
[u] Wj'P(Qyw;X) Np,k,[w]Ap ” u"Lp(Q,w;X) [u] kap(Q,w;X) .

Proof. By an iteration argument one sees that it suffices to consider j =1 and k = 2 (see
[145, Exercise 1.5.6]).

First consider the case Q = R?. For u € W>” (R4, w; X), it follows from Lemma 4.3.3
that

[Wwrp@a,wx) < Ttllwir@d,wx)
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Spitwla, 1l g2 @ w0 < 10 o @d,w;x) + W wze @d,wix)-

For A >0let u)(x) = u(Ax) and wy = w(Ax) and note that [w]Ap = [w;L]Ap. Then apply-
ing the estimate to u, and the weight w), a substitution yields

-1
[t wip wd,w;x) Sp'n'[w]/\p ANl pp g yx) + Atz @d, 1, x) -

Minimizing over A > 0 the result follows.

In the case Q = R? we use a standard extension argument. Let &2 be the exten-
sion operator from Lemma 4.5.1. Then by [2, Theorem 5.19], &2 has the following ad-
ditional property: for all |a| < 2, D*&? = E, D%, where E, is an extension operator for
w2l (Rf, w; X). Therefore, from the case Q = R¢ applied to é"f u and the boundedness
of the extension operators we find that

n n,1/2 n,1/2
[u] leP(R‘j,w;X) = [g+ u]WLp(Rd,w;X) Sp?dl[w]Ap "é'b-%- u”Lp(Rd,w;X) [£’+ u] W2P (R, w;X)

n : o 2 _ o
Clearly, || £ ””LP(Rd,w;X) <| uIIU,(RZ,w;X). Moreover, since D&% = EgD?,

n _ a
L ”]WZvP(Rd,w;X)—HZ IEo D™ ull 1o e, w0;x) = [l w2p @ 1, x)-
al=2

Therefore, the result follows if we combine the two estimates. O

4.6. APPLICATION TO INTERPOLATION THEORY AND THE FIRST DERIVA-
TIVE

For p € (1,00), s € R and a weight w € Ap, let Hy” (R, w; X) denote the closure of C®(R\
{0}; X) in Hg'p (R, w; X). In this section we characterize the complex interpolation space
[LP (R, wy; X), Hé’p (R+, wy; X)1g. Moreover, we use this to characterize the domains of
fractional powers of the first derivative.

4.6.1. Results on the whole real line
For k € Ny let

WL R X) = (fe WM R X) : F(0) =... = FF(0) =0}

loc,0 loc

Since f(y) - f(x) = f )g/ f'(¢)dt, it follows that f has a version which is uniformly contin-
uous on bounded intervals, and hence f () (0) for j€10,...,k} is defined in a pointwise
sense

We will need the following simple lemma.

Lemma 4.6.1. Let X be a Banach space and k € Ny. If f € Wl’;l’l(ﬂ%; X) satisfies f(0) =
.= f®0) =0, then 1g, f € W (R; X) with

loc

A, NV =1g, f9,  jell,... k+1}.
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Proof. Using an inductive argument we may reduce to the case k = 0. So suppose f €
Wl (®; X) satisfies £(0) = 0. Then f(x) = [; f'(t)dt for all x € R, from which it follows

loc

that .
ﬂmf(x):/ Tr, f()dt,  x€R.
0

This shows T, f € W, (®; X) with (Ig, f)' = 1g, f'. O

Proposition 4.6.2. Let X be a UMD Banach space, p € (1,00) andy € (-1, p—1). Assume
s> HTY —1 and k € Ny are such that 2L —1+ k< s < HTY +k. Forall f € HP (R, wy; X) N

p
WlkJrl’1 (R; X) we then have
oc,0

1T, fllEP @ 10y530 Ss,py,x N 5P @ 1w0y5%0-

As a consequence, Tr, is a pointwise multiplier on Hg’p (R, wy; X). Moreover, for all f €
Hy?®, wy; X) it holds that

(r, AV =1, fU,  je(0,...k}. (4.10)

Proof. As in [187, Proposition 3.4] one checks the following equivalence of extended
norms on %' (R; X):

”f”HSvp(R,w X)) ~sy,p X ”f” s—k,p .yt ”Dkf” s—k,p .
Y Y.p H=kP R, 10y;X) H=bP®R,wy;X) 4.11)

_ k j
~sy,p,X Zj:O ||D]f||Hs—kyp([Rz_wy;X)'

Let f € H%P(R, wy; X) N W7 1! (R; X) Using (4.11), Lemma 4.6.1 and Theorem 4.4.1

we find

N0, £l @330 Sy x 8 £l st @ 0,530 + 105 Oy P -t @30
= I Tg, f"HS*k,p([Rywy;X) + 1 g, Dkf”Hsfk.n([R,wy;X)
SsprX 1 U prs-on @0 + 1D Fll s g0
,Ss,p,y,X ||f||H5'P([R,wY;X)-
By a density argument we find that Tg, is a pointwise multiplier on H, " (R, wy; X).

Finally, to check that (4.10) holds for f € Hg’p([R, wy; X), observe thatfor 0 < j < k, by
(4.11) and the above estimate

ID! (O, Ol s=tep @,,,3) = ClR, Fl s @10y < CIF ISP @104 ) -

Therefore, if f € Hg'p(lR, wy; X), then letting f,, € C2°(R\ {0}; X) be such that f;, — f in
Hy? ®, wy; X), we find that D/ (g, fn) — D/ (Ig, f) in HS*P (R, wy; X). Since D/ f,, —
DJ f in H"FP(R, wy; X), by Theorem 4.4.1 also Tz, D’ f,, — Tg, D/ f in HS"FP®R, wy; X).
The validity of (4.10) for functions from Cg°(R\{0}) and uniqueness of limits in H s=k.p (R, wy; X)
yields (4.10) for general f € Hg’p([R, wy; X). O
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Proposition 4.6.3. Lety e (—1,p—1) and s € R. Assume k € Ny satisfies k + HTY <s. Then
the following assertions hold:

(1) Tre: HYP (R, wy; X) N C¥R; X) — X* given by Tri.f = (£(0), £/(0), ..., f®(0)) uniquely
extends to a bounded linear mapping Tr. : H*P (R, wy; X) — Xkl

(2) If f € HYP (R, wy; X) satisfies fl,5) =0 or fls,0) = 0 for some >0, then Tri. f = 0.

(3) There exists a bounded mapping exty. Xk+l  gSP(R, wy; X) such that Tri(exty) is
the identity on X**1,

Proof. We first prove (1). By Lemma 4.3.4, it is enough to establish boundedness of
Trye : (H™P (R, wy; X) 0 CHR; X, 1 - s @ wyix) — X5

Choosing x; € X* with [x7] = 1 and I £ = (f(f)(O),x}f> for each j € {0,...,k} we
have (f, x7) € H*P (R, wy) n C(R) with

IF PO =120, x)1 =1, )P IKF XD N b5 @ wy) < 1 50 @ y:50-

So we may restrict ourselves to the case X = C. Recall from [187, Proposition 3.4] that
d/dt is a bounded linear operator from H”P (R, wy) to H VP (R, wy) for every o € R.
By differentiation it thus suffices to prove that, given 0 € (HTY, HTY + 1), the following
estimate holds

1F O S0 1 ooy feHP@®wy)nCR).

Here we actually only need to consider f € HOP(R, wy) N C¢(R); indeed, given 17 € C°(R)
withn(0) = 1, f — nf defines by complex interpolation (see Proposition 6.3.7) abounded
linear operator on H” (R, wy) and we may consider 7 f instead of f. Using Lemma 4.3.6
together with [100, Theorem 1.2.19] one can check that C°(R) is dense in H?? (R, wy) N
C.(R), where C.(R) has been equipped with the supremum norm. It thus is enough to
estimate

|f(0)| Sﬂ,y,p ”f”Hg'l’([R,wy;X)’ f € CEO(R)

To this end, let f € CX(R) c #(R) and put g := (1-A)?2f € #(R). Then, letting Gy €
L' (R) be the kernel Lemma 4.3.1, we find

fO)y=qQ —A)_elzg(O) =Gy*g(0)= / Go(x)g(—x)dx.
R
By Lemma 4.3.1 we find

HOIE /[R 1Go (01§ (=)1dx = NGoll g1 V8127 @0y S0.30 1 1190 -

To prove (2) consider the case that f = 0 on (0,8). Let ¢p € C*°(R) be such that
f(,b(x) dx =1 and ¢ is supported on (-2, —-1) and put ¢, (x) := n¢(nx). By Lemma 4.3.6,
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P fll Hsp @ wy; %) N I 5P @, w50 With ¢ f — fin HSP (R, wy; X). Clearly, ¢, x f €
C*®(R; X) and by the support conditions one sees that ¢, * f(0) = 0 for all n > 251,
Therefore, Try (¢, * f) = 0 and the result follows by letting n — oo and using the conti-
nuity of Try.

To prove (3) choose ¢y, ..., P € CZ(R) such that gb;.") (0)=bj,forall0<j<kand0=
n < k and let exty (x;) ?:1 = Z;FZO ¢;x;. This clearly satisfies the required properties. O

We can now give a characterization of Hg’p (R, wy; X) in terms of traces. For it will be
convenient to say that the statement Try f = 0 for k < —1 is empty.

Proposition 4.6.4. Let X be a Banach space, p € (1,00) andy € (-1,p—1). Let s€ R be

such that k + I;;Y <s<k+1+ I;Y withk€Z,k=>—1. Then

Hy" R, wy; X) = {f € H*P R, wy; X) : Tr f =0}
Note that Try f is well defined by Proposition 4.6.3.

Proof. Clearly, Tri f = 0 for every f € CZ°(R\ {0}; X). By continuity this extends to every
fe Hg'p (R, wy; X) (see Proposition 4.6.3) and hence “c” follows. To prove the converse,
let f € HP(R, wy; X) be such that Trif = 0. By Lemma 4.3.4 we can find {gy}nen <
CP(R) ® X such that g, — f in HP (R, wy; X) as n — oo. Let exty be as constructed in
the proof of Proposition 4.6.3 and put h,, := g, — extk(g(])(O));?zo for each n € N. Then
hy € {th € C°(R) : Trih = 0} ® X and, by Proposition 4.6.3, h;, — f - extk(O)j?zo = fin
HP (R, wy; X) as n — oo.

It remains to show that we can approximate a function / € C°(R) satisfying Tryh =0
by a function in C°(R\ {0}) with respect to the norm of H*? (R, wy). Writing h = Tp, h +
Tr_h =: ho + hy, it follows from Proposition 4.6.2 that hg, h; € H*P (R, wy; X) and hence it
suffices to approximate each of the terms /¢ and £, . Fix ¢ € C2°(R) with fR ¢dx=1and
supp ¢ < [1,00) and define ¢, := n¢p(n-) for each n € N. Then ¢, * hp € CZ°(R\ {0}) with
¢n * hg — ho in H*P (R, wy) as n — oo by Lemma 4.3.6. A similar argument can be used
for h;. O

We can now prove the main result of this section:

Theorem 4.6.5. Let X be a UMD space and y € ( 1,p—1). Let0 € (0,1) and sy, s1 >
—1+er Lets=sy(1—6) +5,6. Ifso,sl,seél\lo+ , then

[H" (R, wy; X), Hy'" (R, wy; X)1g = Hy? R, wy; X). (4.12)
Proof. Assume sp, 51, ¢ No + ypl and let Egrgd = [gf R, wy; X) x Hy PR, wy; X), 0 €R,

for shorthand notation.
Leto > -1+ Ypl witho ¢ N0+ By Proposition 4.6.3 Trj vanishes on u‘.\:;p(R, wy; X)

for integers k € [0,0 — T)' Thus, in view of Proposition 4.6.4, the map

R: Egr(r))d (()Lp([R! wy; X), R(g,h):=g+h,
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is a well-defined contraction. That the map

S:HYP®wy; X)—Ely, Sfi=(lgaf Tgaf),

is well-defined and continuous follows from Propositions 4.6.2 and 4.6.4. Since R™! = §,
the result follows from Proposition 4.5.7. O

4.6.2. Results on the positive half line

Lety e (—1,p—1) and s € R. Assume k € N satisfies k + HTY < s. By Proposition 4.6.3, if
fl,fz € H¥P (R, wy; X) satisfyf”m = fz|R+, then Trkfl = Trkfg. Therefore, Try : HP (R, wy; X) —
Xk+l gives rise to a well-defined bounded linear operator Try. ;. : H*? (R, wy; X) — xk+1
given by T, f = Tr f whenever ]?IIRQ = f. After reducing to the scalar-valued case,
Proposition 6.3.7 shows that

Tt f = (F0), £0),.... fP0),  feHPRy, wy; X)NCH([0,00;X);  (4.13)
in the case X = C we simply pick the least integer m = |s| and observe that Try . = Try o
&em.
Let Hg’p(R+, wy; X) denote the closure of CZ°((0,00); X) in HSP(R,, wy; X).

Proposition 4.6.6. Let X be a Banach space, p € (1,00), y € (-1,p—1) and s € R. Assume
k € Ny satisfies k + HTY <s<k+1+ HTY. Then

HYP Ry, wy; X) = {f € HYP Ry, wy; X) : Try, . f = 0}.

Proof. Clearly, < holds. To prove the converselet f € H*P (R, wy; X) be such that Try , f =
0. Pick f € H*P (R, wy; X) with fir, = f. Then Tr f = Try . f = 0. By Proposition 4.6.4 we
thus get f: limy oo fn in HSP (R, wy; X) for some sequence (fn)neN from C°(R\ {0}; X).
Now fy, = fur, € C((0,00); X) with f, — f in HSP (Ry, wy; X) as n — co. O

Theorem 4.6.7. Let X be a UMD space, p € (1,00) andy € (-1,p—1). Let0 € (0,1) and
S0, 81> -1+ Y—;l. Lets=so(1—-0)+510. If so, 51,5 ¢ No + %1, then

[Hy"P R, wy; X0, Hy'P Ry wys X)lg = Hy” R, wy; X). .

Proof. Let mbe the leastinteger such that m = max{|sy|,|s1]}. Foreacho > -1+ YTJ;I with

1
Ialsmandaé.l\l0+%,

S:Hy PRy, wy; X) — Hy PR wy; X), Sf:=&"f,
is a well-defined bounded linear operator thanks to Propositions 4.6.4 and 4.6.6. For

eachoeR,letR: Hg’p([R, wy; X) — Hg’p([ﬂh, wy; X) denote the restriction operator. Us-
ing Theorem 4.6.5, the proof can now be completed as in Proposition 4.5.7 (2). O
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4.6.3. Fractional domain spaces
Forpe(l,o0) andye (-1,p—1) let
WP Ry, wy; X) = {f € WP Ry, wy; X): £0) = FP©0) =... = f*D0) =0}
If X is a UMD space, then it follows from Propositions 4.5.5, 4.6.6 and (4.13) that
WP Ry, wy; X) = HyP Ry, wy; X). (4.15)

Let us now briefly recall the H*°-calculus for sectorial operators, for which there are
several conventions in the literature. For a survey and an extensive treatment of the
subject we refer the reader to [245] and [110, 127, 149], respectively.

For each 6 € (0, ) we define the sector

Yp:={1eC\{0}:|arg(1)| < 6}.

A closed densely defined linear operator (A, D(A)) on X is said to be sectorial of type
o € (0, ) if it is injective and has dense range, £,_, < p(—A), and for all ¢’ € (o, 7)

sup{IAA+A) 1 €3, o} <oo.

The infimum of all o € (0,7) such that A is sectorial of type o is called the sectoriality
angle of A and is denoted by ¢ 4.

Let H*®(Xy) denote the Banach space of all bounded analytic functions f : Xy — C,
endowed with the supremum norm. Let Hg°(Zg) denote its linear subspace of all f* for
which there exists € > 0 and C = 0 such that

|z|®

Clz
[f(2)] =< —(1+|Z|)25’Z€29‘

If A is sectorial of type o € (0,7), then for all o € (0¢,7) and f € HgO(ZU) we define the
bounded linear operator f(A) by

-1 -1
flA):= Py /az,, fR(z+A) " d=z.

A sectorial operator A of type g € (0, 7) is said to have a bounded H* (Z;)-calculus
for o € (0g, ) if there exists a C € [0,00) such that

IfF AN < fllaee,,  feHy ).

In this case the mapping f — f(A) extends to a bounded algebra homomorphism from
H*®(Z,) to B(X) of norm < C. The H*-angle of A is defined as the infimum of all ¢ for
which A has abounded H*(Zy)-calculus and is denoted by ¢

Below we will make use of the following fact. Let A be an operator on a reflexive
Banach space X. If A is a sectorial operator having a bounded H*-calculus, then so is
A* with ¢ = ¢
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Theorem 4.6.8. Let X be a UMD space, p € (1,00) andy e (-1,p—1).

1. Therealization ofd; on LP (R, wy; X) with domain W(]l'p(R+, wy; X) has a bounded
H®°-calculus of angle n/2 with D(6§) = Hg’p(ﬂh, wy; X) for every s > 0 with s ¢
1+y
— +Np.

p

2. Therealization of —0; on LP (R, wy; X) with domain WLP(R,, wy; X) has a bounded
H®*-calculus of angle n/2 with D((—=0,)°) = H*P (R, wy; X) for every s > 0.

For y € [0, p — 1) the case % follows from [197, Theorem 4.5]. For y € [0, p — 1) the
case —% follows from [179, Theorem 2.7]. Below we present a proof that works for all
Y € (=1, p— 1), in which (1) is derived from (2) by a simple duality argument.

Proof. Let us first establish the assertions regarding the H*°-calculus. We start with (2),
from which we will derive (1) by duality.

For (2) we denote by A the realization of -9, on L” (R, wy; X) with domain WwbrP(R,, wy; X)
and by A the realization of —d; on L” (R, wy; X) with domain WbhP (R, wy; X). As in [149,
Example 10.2], using Proposition 4.2.3, one can show that A has a bounded H*-calculus
of angle /2. So it is enough to show that C, < p(—A) with

A+A ' f=RA+ADTEf =SV f, AeCy fell’Rs,wyX),

where E € B(LP R,, wy;X),L”(IR, wy; X)) is the extension by zero operator, and R de-
notes the operator of restriction from R to R... Foreach A € C,, S(1) defines alinear oper-
ator from LP Ry, wy; X) to WP (R, wy; X) with the property that (A+ A)S(A) = 1. So, fix-
ing A € C4, we only need to show that ker(A+ A) = {0}. To thisend, letu € wbhbP(R,, wy; X)
satisfy (1 —0;)u = 0. By basic distribution theory (cf. [79, Theorem 9.4]) we find that
u is a classical solution in the sense that u € C®(Ry; X) with v’ = Au, implying that
u = cexp(A-) for some c € X. Since exp(1-) ¢ LP (R, wy), it follows that u = 0.

For (1) we denote by A the realization of 9; on LP (R, wy; X) with domain Wol’p (R4, wy; X)
and by B the realization of —d; on LY Ry, wyr; X*) with domain whr Ry, wyr; X*). Re-
call that [LP (R, wy; X)]* = 04 (R4, wyr;X*) with respect to the natural pairing (see [187,
Proposition 3.5]), X being reflexive as a UMD space (see [126, Theorem 4.3.3]). In-
tegration by parts (see Lemma 4.6.9 below) yields A ¢ B*. By (2) (and the fact that
duals of UMD spaces are again UMD) it is enough to establish the reverse. By [85,
Exercise 1.21(4)], for the latter it suffices that A + A is surjective and A + B* is injec-
tive for some A € C. To this end, let us establish this for some fixed A € C,. Then
A € p(—B) = p(-B*) by (2); in particular, A + B* is injective. As in (2) we can find a
linear operator S(1) : L” (R, wy; X) — wbhPR,, wy; X) such that (A + A)S(A) = I. Then
the operator T(A) : LP (R, wy; X) — Wol'p([R%Jr, wy; X) given by

T f:=SA)f-[SA) f1(0) exp(—A-),

satisfies (1 + A)T(A) = I, which shows that A + A is surjective.
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Finally we will identify the fractional domain spaces. From the definitions it follows
that D@%) = WP Ry, wy; X) and D((-0,)F) = WP (R, wy; X) as sets for every k € N.
Moreover, it follows from Lemma 4.5.8 and Young’s inequality for products that there is
also an equivalence of norms. The assertions concerning the fractional domain spaces
subsequently follow from [110, Theorem 6.6.9], Proposition 4.5.5 and Theorem 4.6.7. O

Lemma 4.6.9 (Integration by parts). Let X be a Banach space, p € (1,00) and w € Ap. For
1

allue WhP Ry, w; X) and ve WhP' Ry, w'; X*), where w' = w™ 71 is the p-dual weight
of w, there holds the integration by parts identity

/ _ !
W0 1 @0, @iy = ~HOVOI =G VD @ i, 10 @y sy

Proof. By the remark preceding this lemma and Lemma 4.3.5, Cgo(@Jr) ® X is dense in
WbLP(R,, w; X) and ch(m) ® X* is dense in Wl’p,([RJ,, w'; X*). The desired result thus
follows from integration by parts for functions from C° (Ry). O
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THE HEAT EQUATION SUBJECT TO THE DIRICHLET
BOUNDARY CONDITION

This chapter is based on the paper:

N. Lindemulder and M.C. Veraar. The heat equation with rough boundary condi-
tions and holomorphic functional calculus.

In this chapter we consider the Laplace operator with Dirichlet boundary conditions on
a smooth domain. We prove that it has a bounded H* -calculus on weighted L -spaces
Jfor power weights which fall outside the classical class of Ap-weights. Furthermore, we
characterize the domain of the operator and derive several consequences on elliptic and
parabolic regularity. In particular, we obtain a new maximal regularity result for the heat
equation with rough inhomogeneous boundary data.
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5.1. INTRODUCTION

Often solutions to PDEs can have blow-up behavior near the boundary of an underlying
domain & c R4, Using weighted spaces with weights of the form w}‘,ﬁ (x) := dist(x,00)Y
for appropriate values of y, one can create additional flexibility and even obtain well-
posedness for problems which appear ill-posed at first sight. PDEs in weighted spaces
have been considered by many authors (see e.g. [75, 139, 143, 144]). Moreover, the H*-
functional calculus properties of differential operators on weighted space have been
treated in several papers as well (see e.g. [14, 18, 19, 155, 171]).

The development of the H*°-calculus was motivated by the Kato square root prob-
lem (see [175] for a survey) which was eventually solved in [17]. An H*-calculus ap-
proach to the solution was obtained later in [21]. Since the work [134] it has turned out
that the H*°-calculus is an extremely efficient tool in the L”-theory of partial differential
equations (see the monographs [63, 198] and references therein).

In this paper we study the boundedness of the H*-calculus of the Laplace operator
with Dirichlet boundary conditions Ap;; for bounded C?-domains ¢. This operator and
its generalizations have been studied in many papers (see [58, 59, 149]. Our contribution
is that we study Ap;; and its functional calculus on weighted spaces which do not fall
into the classical setting, but which are useful for certain partial differential equations.
In particular, we prove the following result.

Theorem 5.1.1. Let O be a bounded C?-domain. Let p € (1,00), y € (-1,2p—1)\{p—1}
and set wyﬁ(x) = dist(x,00)Y. Then the operator —Apy on LP (0O, wf) with D(Apjiy) =
Wé’if (0, w},ﬁ ), has a bounded H* -calculus of angle zero. In particular, Api; generates an
analytic Cy-semigroup on LP (O, w};ﬁ ).

A similar result holds on the half space [Rf or small deformations of the half space.
The range y € (p — 1,2p — 1) falls outside the classical A,-setting and Theorem 5.1.1 is
new in this range. The range y € (-1, p — 1) can be treated by classical methods, and it
can be derived from the general Aj,-case which will be considered in Section 5.4.

The boundedness of the H*-calculus has many interesting consequences for the
operator Ap;; on LP(0, w;j ). Loosely speaking, the boundedness of the H*-calculus
can be used as a black box to ensure existence of certain singular integrals. In particular,
the boundedness of the H*°-calculus implies:

¢ Continuous and discrete square function estimates (see [127, Theorems 10.4.4 &
10.4.23]), which are closely related to the classical Littlewood-Paley inequalities.

¢ Well-posedness and maximal regularity of the Laplace equation and the heat equa-
tion on LP (0, w{,ﬁ) (see Corollaries 5.5.8, 5.5.10, 5.6.3).

¢ Maximal regularity for the stochastic heat equation on LP (0, wf ) (see [192, The-
orem 1.1]).
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On bounded domains we analyse the spectrum of Ap;; and in particular we show that
the analytic semigroup generated by Ap;; is exponentially stable. Additionally we use
the functional calculus to characterize several of the fractional domain spaces.

The main difficulty in the proof of Theorem 5.1.1 in the non- A, setting is that stan-
dard tools from harmonic analysis are not available. For instance, the boundedness of
the Hilbert transform, the boundedness of the Hardy-Littlewood maximal function op-
erator, and the Littlewood-Paley decomposition all hold on LP (R¢, wf ) if and only if
Y € (=1,p—1) (see [101, Chapter 9] and [218]). Here one also needs to use the fact that
the Ap-condition holds if and only if y € (-1, p — 1). As a consequence, we have to find
a new approach to obtain the domain characterizations, sectoriality estimates and the
boundedness of the functional calculus.

We have already mentioned that Theorem 5.1.1 implies maximal regularity results.
As a further application we will derive a maximal regularity result for the heat equation
on weighted spaces with rough inhomogeneous boundary conditions. The main reason
we can allow much rougher boundary data than in previous works is that we allow y €
(p—1,2p —1). Maximal regularity results can be used to study nonlinear equations in
an effective way (see e.g. [199] and references therein). The result below is a special
case of Theorem 5.7.16. In order to make the result transparent without losing the main
innovative part of the result, we state the result in the special case 4y =0, f =0and p =g
and without weights in time.

Theorem 5.1.2. Let O be a bounded C?>-domain. Let A = 0. Let p € (1,00) and y €

(-L2p-1D)\{p-1,2p-3tandsetd =1- ?—py. Assume

geB) R L7 @O N L (Ry; By, (00)),

with g(0,-) = 0 inthe casey € (—1,2p—3). Then there exists a uniqueu € WP (R, ; LP (0, w},ﬁ))m
LP(R,; W2P(O, wf)) such that

u+A-Nu = 0, onR;x0,
trzou = g, onRixad0,
u@@ = 0, ond.

Conversely, the conditions on g are necessary in order for u to be in the intersection
space. Note that § € (0,1) can be taken arbitrarily close to zero by taking y arbitrarily
close to 2p—1. Moreover, if y € (2p—3,2p—1) then the compatibility condition g(0,-) =0
also vanishes.

Theorem 5.1.2 was proved in [61] and [243] for y = 0, and in this case the smooth-
ness parameter equals 6 = 1 — ﬁ. In [61] actually the general setting of higher order
operators A with boundary conditions of Lopatinskii-Shapiro was consider. In [159] the
first author extended the latter result to the weighted situation with y € (-1,p - 1), in
which case § € (%, 1) can only be taken arbitrarily close to % by taking y close to p — 1.
It would be interesting to investigate if one can extend special cases of [159] to other
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values of y. In ours proofs the main technical reason that we can extend the range of
Y’s in the Dirichlet setting is that the heat kernel on a half space has a zero of order one
at the boundary. The heat kernel in the case of Neumann boundary conditions does
not have this property. Moreover, the Neumann trace operator is not well-defined for
Y€ (p—1,2p—1). It is a natural question to ask for which kernels associated to higher
order elliptic operators with different boundary conditions one has similar behavior at
the boundary. In such cases one might be able to allow for rougher boundary data as
well.

There exist several theories of elliptic and parabolic boundary value problems on
other classes of function spaces than the L9(L”)-framework of the above. The case that
L? is replaced by a weighted Besov or Triebel-Lizorkin space is considered by the first
named author in [163] in the elliptic setting and in [162] in the parabolic setting. The
advantage in that setting is that one can use Fourier multiplier theorems for A,-weights.
The results in [162, 163] are independent from the results presented here since in the
non- Ay setting Triebel-Lizorkin spaces do not coincide with Sobolev spaces. For results
in the framework of tent spaces have been obtained in [10, 15, 20] for elliptic equations
and in [16] for parabolic equations. Here in some cases the boundary data is allowed to
bein LP or L.

The paper is organized as follows. In Section 5.3 we present some results on traces,
Hardy inequalities and interpolation inequalities which will be needed. In Section 5.4
we consider the half space case with Aj,-weights. In Section 5.5 we consider the half
space case for non-A,-weights. We extend the results to bounded domains in Section
5.6, where Theorem 5.1.1 can be derived from Corollary 5.6.2. In Section 5.7 we con-
sider the heat equation with inhomogeneous boundary conditions and, in particular,
we will derive Theorem 5.1.2. In many of our considerations we consider the vector-
valued situation. This is mainly because it can be convenient to write Sobolev spaces as
the intersection of several simpler vector-valued Sobolev spaces.
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NOTATION

[Rﬁf = (0,00) x R4-1 denotes the half space. We write x = (x1,X) € R4 with x1 € R and
% e R%"1, The following shorthand notation will be used throughout the paper

wy(x) = x1]" and wf)(x) =dist(x,00)".

For two topological vector spaces X and Y (usually Banach spaces), £ (X, Y) denotes
the space of continuous linear operators. We write A S, B whenever A < C, B where C),
is a constant which depends on the parameter p. Similarly, we write A<, B if A S, B
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and B S, A. Unless stated otherwise in the rest of the paper X is assumed to be a Banach
space.

5.2. PRELIMINARIES

5.2.1. Function spaces and weights

Let X be a Banach space. For an open set & R4 let 9(0’; X) denote the space of com-
pactly supported smooth functions from & into X equipped with its usual inductive
limit topology. Let 2'(0; X) = £(2(0), X) be the space of X-valued distributions. Let
Ccx (0; X) be the space of infinite differentiable functions which vanish outside a com-
pact set K < 0. Furthermore, % (R%; X) denotes the space of Schwartz functions and
F! ([Rd;X) E A (Rd), X) is the space of X-valued tempered distributions. We refer to
[6, 9] for introductions to the theory of vector-valued distribution.

A locally integrable function w : & — (0,00) is called a weight. A weight w will be
called even if w(—x;,%) = w(x;, %) for x; >0and X e R L,

Although we will be mainly interested in a special class of weights, it will be natural
to formulate some of the result for the class of Muckenhoupt Ap-weights. For p € (1,00)
and a weight w: RY — (0,00), we say that w € A if

1 1 _1 p-1
= — dx-|— r-1d < oo.
(w]a, stép|Q|/Qw(x) X (lQl/Qw(x) x) foe}

Here the supremum is taken over all cubes Q < R? with sides parallel to the coordinate
axes. For p € (1,00) and a weight w : R — (0,00) one has w € A, if and only the Hardy-
Littlewood maximal function is bounded on LP[R%, w). We refer the reader to [101,
Chapter 9] for standard properties of A,-weights. For a fixed p and a weight w € A,
the weight w' = w™ ¥V ¢ Ay is the p-dual weight. Define Ay, = Up>1 Ap. Recall that
wy (x) := |x1]7 is in Apifandonlyifye (-1,p-1).

For aweight w: & — (0,00) and p € [1,00), Let LP (0, w; X) denote the Bochner space
of all strongly measurable functions f: & — X such that

1/p
W fllieo,wx) = (/ﬁlf(x)lpw(x)dx) < o00.

For a set Q < R? with nonempty interior and w : Q — (0,00) let Lll0 JL2X) denote the set
of all functions such that for all bounded open sets Qg € Q, we have f|q, € LY (Qo, w; X).
In this case f is called locally integrable on Q. If the p-dual weight w' = w="®"=Y (' =1
when p = 1) is locally integrable on &, then LP (0, w; X) — 2'(0; X).

For p € (1,00), an integer k = 0 and a weight w with w' = w="®-V ¢ Llloc(ﬁ), let
WkP (0, w; X) € 2'(0; X) be the Sobolevspaceofall f € LP (0, w; X) with D* f € LP (0, w; X)
for all |a| < k and set

"f“wk.p(@w;x) = Z ”Daf“L!’(ﬁ,w;X)’

lal<k
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[f]Wk'l’(ﬁ,w;X) = Z ”Daf”Lp(ﬁ,w;X)’
lal=k

WkP(0, w; X) is a Banach space. We refer to [146, 147] for a detailed study of weighted
Sobolev spaces. Finally, for a set Q < R4 with nonempty interior we let W1]<§c1 Q, w; X)
denote the space of functions such that D% f € LIIOC(Q, w; X) forall |a| < k.

Let us mention that density of C2° (5; X) in WYP (&, w; X) is not true in general, not
even for w € A A sufficient condition class is w € A, (see [238, Corollary 2.1.6]). Fur-
ther examples and counterexamples can be found in [146, Chapter 7 & 11] and [252].

We further would like to point out that in general wkp (@, w) does not coincide with
a Triebel-Lizorkin space F”,fyz(ﬁ, w) if w ¢ Ap. Moreover, in the X-valued setting this is
even wrong for w = 1 unless X is isomorphic to a Hilbert space (see [112]).

5.2.2. Localization and C* -domains

Definition 5.2.1. Let & c R% be a domain and let k € NgU{oo}. Then & is called a special
C*-domain when, after rotation and translation, it is of the form

O=1{x=yx)eR%: y>h(x)} (5.1)

for some C*-function h : R4~! — R. If h can be chosen with compact support, then &
is called a special C*-domain.

For later it will be convenient to define, given a special Cf-domain O with k € Ny,
the numbers
[ﬁ] ck = i%fllhllcg(wd—l) (52)

where the infimum is taken over all i € CX¥(R9~1;R) for which &, after rotation and trans-
lation, can be represented as (5.1).

Definition 5.2.2. Let k € Ny U {oo}. A domain & < R? is said to be a CX-domain when
every boundary point x € 04 admits an open neighborhood V with the property that

ONV=WnV and 00NnV=0WnV

for some special C*-domain W c R¥.

Note that, in the above definition, V may be replaced by any smaller open neigh-
borhood of x. Hence, we may without loss of generality assume that W is a Cf-domain.
Moreover, if k € Ny then for any £ > 0 we can arrange that [W] .« <&.

If U,V cRY are openand ®: U — Vis a Cl-diffeomorphism, then we define @, :
() — L. (V) by

loc

1
Lloc

(@ f,8) = ([, jogo®), feLl (U),geCc(V),

where jp = det(V®) denotes the Jacobian. In this way @, f = fo®™!.
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Now assume h € CX(®R9~1) with k = 1 and
0 ={(x1,%) :XeR" x> h(D)}. 5.3)
Define a C*-diffeomorphism @ : & — R? by
@(x) = (x1 = h(X), X). (5.4)

Obviously, det(V®) = 1. For a weight w : RY — (0,00), let we : 0 — (0,00) be defined by
we(x) = w(®(x)). In the important case that w(x) = |x1|", we have

we (x) = |x1 — h(%)|” = dist(x,00)Y, x€ 0.
In this way for k € Ny, the mapping @.. defines a bounded isomorphism
@, : WEP (0, we) — WEPRY, wy)

with inverse (®71)..

In the paper we will often use a standard localization procedure. We will usually
leave out the details as they are standard. In the localization argument for the func-
tional calculus (see Theorem 5.6.1) we do give the full details as a precise reference with
weighted spaces seems unavailable.

Given abounded C*-domain ¢ with k = 1, then we can find 7 € CX(0) and {nn}lryzl c
Cgo([R{d) such that supp (n,) c V,, foreach n € {1,..., N} and ZQ’:O 77%1 =1 (see [145, Ch.8,
Section 4]). These functions can be used to decompose the space Ej := wkrg, wf; X)
as

N
Fi:= WP RE X) 0 @ WEP (6, wd"; X)
n=1

The mappings .¥ : Ex — Fy and €2 : Fj, — E} given by

N
If=Wafhy and  P(f)yo= ) Mafn. (5.5)
n=0
satisfy 2. = I, thus £ is a retraction with coretraction .#.

5.2.3. Functional calculus

Let 2, = {z € C:|arg(z)| < ¢}. We say that an unbounded operator A on a Banach space
X is a sectorial operator if A is injective, closed, has dense range and there exists a ¢ €
(0,7) such that o (4) € X, and

sup [IAR(A, A)|l < oo.
AEC\Zd,
The infimum over all possible ¢ is called the angle of sectoriality and denoted by w(A).
In this case we also say that A is sectorial of angle w(A). The condition that A has dense
range is automatically fulfilled if X is reflexive (see [127, Proposition 10.1.9]).
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Let H*(Z,) denote the space of all bounded holomorphic functions f: %, — C and
let || fll go(z,) = sup ey, |f(2)|. Let H3®(Zy) € H®(Z,) be the set of all f for which there

exists an € >0 and C > 0 such that | f(z)| < C 11‘1'28 .

If Ais sectorial, w(A) < v <w, and f € Hi°(Z,) we let

1
f= i . SR, A)dA,

where the spectrum is assumed to be on the right of the integration path. The operator
Ais said to have a bounded H*° (X)) -calculus if there exists a constant C such that for all
feHP (o)

I f (AN = Clifll geoz,)-

The infimum over all possible w > w(A) is called the angle of the H*°-calculus and is
denoted by w g~ (A). In this case we also say that A has a bounded H*°-calculus of angle
W pyoo (A) .

For details on the H*-functional calculus we refer the reader to [110] and [127].

The following well-known result on the domains of fractional powers and complex
interpolation will be used frequently. For the definitions of the powers A% with a € C we
refer to [110, Chapter 3]. For details on complex interpolation we refer to [23, 126, 235].

We say that A has BIP (bounded imaginary powers) if for every s € R, A'S extends to
a bounded operator on X. In this case one can show that there exists M,o = 0 such that
(see [110, Corollary 3.5.7])

IAS]| < Me®S,  seR. (5.6)

Let wpp(A) = inf{w € R: 3M > 0 such that for all s € R | AS|| = Me®™!}. One can easily
check that wgp(A) < w gy (A).
The next result can be found in [110, Theorem 6.6.9] and [235, Theorem 1.15.3].

Proposition 5.2.3. Assume A is a sectorial operator such that A has BIPR Then for all
0€(0,1) and0 < a < B we have

[D(A%), D(AP)]g = D(A1-0)7+0F),

where the constant in the norm equivalence depends a, B, 0, the sectoriality constants and
on the constant M and o in (5.6).

For two closed operators (A, D(A)) and (B, D(A)) on X we define D(A+ B) := D(A)n
D(B) and (A+ B)u = Au+ Bu. Often it is a difficult to determine whether A + B with
the above domain is a closed operator. Sufficient conditions are given in the following
theorem which will be used several times throughout this paper (see [78, 201]).

Theorem 5.2.4 (Dore-Venni). Let X be a UMD space. Assume A and B are sectorial
operators on X with commuting resolvents and assume A and B both have BIP with
wpip(A) + wprp(B) < . Then the following assertions hold:
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(1) A+ B is a closed sectorial operator with with w(A+ B) < max{wgip(A), wpp(B)}
(2) There exists a constant C = 0 such that for all x € D(A) n D(B),
| Ax|l + | Bx|l = CllAx + Bxll,
and if0 € p(A) or0€ p(B), then0€ p(A+ B).

The following can be used to obtain boundedness of the H*°-calculus for translated
operators ((1) is straightforward and (2) follows from [133, Proposition 6.10]):
Remark5.2.5. Let o € (0, ) and assume A is a sectorial operator of angle < o

(1) If Ahas abounded H*°-calculus of angle < o, then for all A = 0, A+ A has a bounded
H®°-calculus of angle < g.

(2) If there exists a A > 0 such that A+ A has a bounded H*®-calculus of angle < g, then
forall A >0, A+ A has a bounded H*°-calculus of angle < o.

5.2.4. UMD spaces and Fourier multipliers

Below the geometric condition UMD will often be needed for X. UMD stands for uncon-
ditional martingale differences. One can show that a Banach space X is a UMD space if
and only the Hilbert transform is bounded if and only if the vector-valued analogue of
the Mihlin multiplier theorem holds. For details we refer to [126, Chapter 5]. Here we
recall the important examples for our considerations.

e Every Hilbert space is a UMD space;

e If X is a UMD space, (S,Z, ) is o-finite and p € (1,00), then L”(S; X) is a UMD
space.

e UMD spaces are reflexive.
For m € L°(R%) define
Tp: SREX) - S REX),  Tpf =F Hm)).

For p € [1,00) and w € Ay, the Schwartz class . (R%; X) is dense in L (R%, w; X) (see
Lemma 5.3.5).

The following is a weighted version of Mihlin’s type multiplier theorem and can be
found in [187, Proposition 3.1]

Proposition 5.2.6. Ler X be a UMD space, p € (1,00) and w € Ap. Assume that m €
Ca*2(RY\ {0}) satisfies

Cm= sup suplé|'¥D¥m(&)| < oo. (5.7)
lal<d+2 E#£0

Then Ty, extends to a bounded operator on LP ([Rd, w; X), and its operator norm only de-
pendsond, X, p, w and Cy,.



146 5. THE HEAT EQUATION SUBJECT TO THE DIRICHLET BOUNDARY CONDITION

Proposition 5.2.7. Ler X be a UMD space. Let q € (1,00) and v € A4(R). Then the follow-
ing assertions hold:

1. Theoperator % with D(4) = W9 (R, v; X) has a bounded H® -calculus with  po (<) <
b/

2

2. The operator % with D(%) = W[)l’q(ﬂ&, v; X) has a bounded H® -calculus with
d b4
Ll)Hoo(E) < 2.

Here Wol'q([RJr, v; X) denotes the closed subspace of wbd(R,, v; X) of functions which
are zero at r =0.

Proof. (1) follows from Proposition 5.2.6 and [127, Theorem 10.2.25]. (2) can be derived
as a consequence by repeating part of the proof of Theorem 4.6.8 where the case v(t) =
|£]Y was considered. O

For p € (1,00), w € Ap and s € R, we define the Bessel potential space HPRY, w; X)
as the space of all f € .%'(R% X) for which F-![(1+]-[2)*2f € LP(R%, w; X). This is a
Banach space when equipped with the norm

-1 2\8/2 7
1 s @ iy = IE LA+ 122 1 o et i) -

For an open subset & < R? the space H®” (¢, w; X) is defined as all restriction f|, where
f e HYP(0,w; X). This is a Banach space when equipped with the norm

1 W esp(0,w;x) = IDEIE I rsp e, i x) 8l = [}
The next result can be found in [187, Propositions 3.2 & 3.5].
Proposition 5.2.8. Let X be a UMD space, p € (1,00) and w € Ap. Then
H™P R w; X) = W™PRY, w; X)  forall meN.
Moreover, for all s € R, one has [H*P R4, w; X)1* = H™ 5P (R4, w'; X*).
The UMD condition is also necessary in the above result (see [126, Theorem 5.6.12]).

Proposition 5.2.9 (Intersection representation). Letd,d;,dz, n =1 be integers such that
d+dy=d. Letwe Ap(R™). Then

WP R, w; X) = WP RY, w,LP (R%; X)) 0 LP (R™, w; WP (R™; X)).

In the above we use the convention that w is extended in a constant way in the re-
maining d, coordinates. In this way w € A, (R%) as well.
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Proof. — is obvious. To prove the converse Let ¢ be a multiindex with k := |a| < n.
It suffices to prove | D% ullrraw:x) < CUlullr v x) + Z?zl IID;?uIILn(W;x)). This follows by
using the Fourier multiplier m:

@2n)*

m($) = .
1+ X9, @rp(€ )¢k

Here p € C*°(R) is an odd function with p =0 on [0,1/2] and p = 1 on [1,00]. Now using
Proposition 5.2.6 one can argue in a similar way as in [126, Theorem 5.6.11]. O

5.3. HARDY’S INEQUALITY, TRACES, DENSITY AND INTERPOLATION

In this section we will prove some elementary estimates of Hardy and Sobolev type and
obtain some density and interpolation results. We will present the results in the X-
valued setting, and later on apply this in the special case X = L?([R%"!) to obtain ex-
tensions to higher dimensions in Theorem 5.5.7.

Details on traces in weighted Sobolev spaces can be found in [137] and [159]. We will
need some simple existence results in one dimension.

5.3.1. Hardy’s inequality and related results

1
Lemma 5.3.1. Let p € [1,00) and let w be a weight such that |w™ 7~ || ;1 ©0,n < oo forall
t€ (0,00). Then WhP (R, w; X) — C([0,00); X) and for allu e W"P R, w; X),

sup lu)l = Crpwlulwirg,,wx), ¢E€I[0,00)
x€(0,1]

Moreover, the following results hold in the special case that w(x) = wy(x) = |x1|":

(1) Ifyel0,p—1), then u(x) — 0 as x — oo and for allu e WP (R, Wwy; X),

sup w0l = Cpyllullwrem,,wy;x)-
x=0

() Ify < -1, then for all u € LP (R, wy; X) N C([0,00); X), u(0) = 0.
Note that the local L!-condition on w holds in particular for w € Ap.

Proof. Let ue WYP)R,, w; X). By Holder’s inequality and the assumption on w we have
LP((0,1), w; X) — LY(0, £; X). In particular u and u' are locally integrable on [0,00). Let

S
v(s) :/ u'(x)dx, s€(0,0).
0
Then v is continuous on [0, ] and moreover v’ = ©/ on (0, ¢) (see [126, Lemma 2.5.8]).

It follows that there is a z € X such that u = z+ v for all s € (0, ). In particular, u has a
continuous extension % to [0, f] given by = z + v.
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To prove the required estimates we just write u instead of u. Let x € [0,00). Define {
as{(x)=1-xforxe[0,1] and { =0 on [1,00). Then for x € [0, t], we have

1 1 1
u(x):/ i(u(s+x)((s))ds:/ u’(s+x)((s)ds+/ u(s+x)'(s)ds
o ds 0 0 )

~~ ~~

T T

Then by Holder’s inequality

1
1/p _ no1/v
||T1|IS(/ 1/ (s+ DI wis+x)ds) s — wis+n OV E
o :
< Cuiplt I Lr @y, wix)

!
where C;t’p = lw VPV 110,141 Similarly, | 21| < Cu,e,pllull Lr ®, ,w;x)- Therefore, the
required estimate for sup,¢ o, ll(x) || follows.
The estimate in (1) follows from

1 1
/Owy(s+x)_”(”_”dss/(; wy ()" VPV ds=:Cp,.

Moreover, u(x) — 0 as x — oo because [ wy(s+x)""?~D ds— 0 as x — co.
To prove (2) note that

1 t
(0)] = lim —/ lu(s)ll ds.
t—oo [ 0

Now by Hélder’s inequality we have

/ y+1

I 1 Lo \UP _ra
= [ uldss Sl [ 577 ds) S Clulg,u 7
0 0

and the latter tends to zero as t — 0. O

Next we state two well-known consequences of Hardy’s inequality (see [96, Theorem
10.3.1] and [146, Section 5]).

Lemma 5.3.2. Assume p € [1,00). Let u€ WP Ry, wy; X). Then
Nl r @,y pix) < Cpyltd | o @, wy;x)-
ifty<p-landu(0)=0)ory>p-1.
In the above result, by Lemma 5.3.1, u € C([0,00); X) ify < p—1.

Proof. First consider y < p— 1. Writing u(#) = fot u'(s)ds, it follows that

t
||u(t)||XS/ ' (s) xds.
0

Now the result follows from Hardy’s inequality (see [96, Theorem 10.3.1]). The case
y > p — 1 follows similarly by writing u(?) = |, too u'(s)ds. Here we use the fact that, by
approximation, it suffices to consider the case where u = 0 on [1,00). O
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For other exponents y than the ones considered in Lemma 5.3.1 another embedding
result follows. Note that this falls outside the class of A,-weights.

Lemma5.3.3. Letp € [l,00) andy € (p—1,2p—1). Then W2P(R,, wy; X) — Cp([0,00); X)
and forall u e WP R, wy; X), u(x) — 0 as x — oo and

sup lu()ll = Cypyllullwrg,, wy;X)*
x=0

Proof. ByLemma5.3.2 [u® [l 1r@®,,w,- ;% < Cpy It Vlly2p@,,u,:x) for k€ {0,1}. There-
fore, u € WhHP (R, Wwy-p; X). Now the required continuity and estimate of || u(x)|| for
x € [0,1] follows from Lemma 5.3.1. To prove the estimate for x € [1,00), we can repeat
the argument used in Lemma 5.3.1 (1). Indeed, for x = 1,

1 1
/Owy(s+x)_”(”_l)dss/0 wy(s+)VPVds=:Cp,. O

5.3.2. Traces and Sobolev embedding

For u e Wloc ([RZ ; X) we say that tr(u) = 0 if tr(pu) = 0 for every ¢ € C* with bounded

support in [Rflr. Note that pu € w0, 00); L ([R?d‘l;X)) whenever, u € Wl'p([R{ﬁf, w; X).
Thus the existence of the trace of ¢ u follows from Lemma 5.3.1.
For integers k € Ny, p € (1,00) and w € Aj, we let

WEP®RY, w; X) = fue WP RY, w; X) : tr(u) = 0}, (5.8)

WP ®Y, w; X) = (ue WP ®RY, w; X) : tr(D%w) = 0 for all || < k.

The traces in the above formulas exists since W57 ([sz, w; X) — Wllgcl (Rf;X ).

We extend the definitions of the above spaces to the non-Ap-setting. For p € [1,00),
Ye(p—-1,2p—1)and ke Np let

1
WEP®RY, wy; X) = {ue WP RY, wy; X): tr(w) = 0if k> %}

+1
Wy P ®Y, wy; X) = {ue WEPRY, w; X) : tr(D%u) = 0if k— |a| > YT}

Here the trace existsif j:=k—a > %1 since then j = 2 and, by Lemmas 5.3.1 and 5.3.3,
WP RS, wy; X) — WP Ry, wy; LP R X)) — C([0,00); LP R X)).
For y € (—oo,—1) and k € Ny we further let
WEP®E, wy; X) = WP RE, wy; X) = WEPRY, wy; X0.

This notation is suitable since for k € N;, by Lemma 5.3.1,

WRPRY, wy; X) — WEP Ry, wy; LP R X))
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< {ue C([0,00; X); LP (RY™1)) : u(0) = 0}.

Using the C*-diffeomorphisms ® of Subsection 5.2.2 and localization one can ex-
tend the definitions of the traces and function spaces Wéi' f (0, we; X) and Wok’p (O, we; X)
to special C¥-domains ¢ and bounded C*-domains.

The following Sobolev embeddings are a direct consequence of Lemma 5.3.2 and a

localization argument (also see [146, Theorem 8.2 & 8.4]).

Corollary 5.3.4. Let p € [1,00), ke Ny andy € R. Let O be a bounded C*-domain or a
special CX-domain. Then

k, 0 k-1, o . ;
Wy P (O, wy; X) = WP (o, wy_ 5 X),  ify<p-1,
whkro,wl; X)— wkro,wl i x),  ify>p-1,

k, j k-1, j . . .
WP 0,w? i X)— Wy PO, wl i X),  ifyeljp—1:jeN)

5.3.3. Density results

Lemma5.3.5. Letw € Ay, and p € [1,00). Let O be an open subset ofR?. Then C°(0)® X
isdense in LP (O, w; X).

Proof. Since LP(0,w) ® X is dense in LP (0, w; X) it suffices to setting the scalar set-
ting. We claim that it furthermore suffices to approximate functions which are com-
pactly supported in 0.

To prove the claim, let f € LP(J, w) and let (K;),en be an exhaustion by compact
sets of 0. Observe that f1x, — f by the dominated convergence theorem. Therefore, it
suffices to consider functions f with compact support in &'. Extending such functions
f by zero to R?, the claim follows.

Let g € (p,00) be such that w € A;. Then for all functions f € LP (R, w) with compact
support K € &, by Holder’s inequality one has

a-p
1N e e,y < W fll paga, ) w(EK) 9.

Therefore, it suffices to approximate such functions f in the L9(R%, w) norm. To do so
one can use a standard argument (see Lemma 4.2.2) by using a mollifier with compact
support. O

Lemma5.3.6. Letp € (1,00), we Ay and k € Np. Let © = R? or a bounded C* -domain or
a special Cf—domain with k € Ny U {oo}. Then Cf(ﬁ) ® X is dense in WP (0, w; X).

Proof. The case & = R? follows from Lemma 4.3.5. In all other situations, by localiza-
tion, it suffices to consider & = [Rﬁf. This case can be proved by combining the argument
of Lemma 4.3.5 with [145, Theorem 1.8.5]. O

The density result [146, Theorem 7.2] can be extended to the vector-valued setting:
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Lemma 5.3.7. Let p € (1,00) andy = 0. Let O be a bounded C°-domain or a special

CY-domain. Then CX(0; X) is dense in WhP (0, w)‘,ﬁ;X).

Next we will prove a density result for power weights of arbitrary order using func-
tions with compact support in Q.

Proposition 5.3.8. Lety € R\{jp—1:j€N;}. Let O be a bounded C*-domain or a special
Ck-domain with k € Ny U {oo}. Then CK(0; X) is dense in Wok'p(ﬁ, wy; X).

Proof. By a standard localization argument it suffices to consider & = R%. To this end,
let u e Wok’p (Rf, wy; X). By a simple truncation argument we may assume that u is

compactly supported on Rﬁf. To prove the required result we will truncate u near the
plane x; = 0. For this let ¢ € C*°([0,00)) be such that ¢ =0 on [0,1/2] and ¢ =1 on
[1,00). Let ¢p,(x1) = ¢p(nx;) and define u,(x) = ¢, (x1)u(x). We claim that u,, — u in
wkp ([R{frl, wy; X). This will be proved below. Using the claim the proof can be finished as
follows. It remains to show that each u € W? ([Rf, wy; X) with compact support can be
approximated by functions in Cgo(lRif ; X). Foreach v € Wk’p(ﬂ%f , Wy; X) with compact
support K it holds that

” V” kap([R{f,wy;X) ;K,}/ ” U” Wk,p([mi;x) . (59)

Therefore, it suffices to approximate u in the Wk"”(l]%{ﬁir ; X)-norm. This can be done by
extension by zero on R4 followed by a standard mollifier argument (see Lemma 4.2.2).

To prove the claim for convenience we will only consider d = 1. Since ¢, does not
depend on X the general case is similar. Fix m € {0,..., k}. By Leibniz formula one has
(Pnw)™ = o ci,m(/);m_” u'?. By the dominated convergence theorem ¢, u” — 1™
in LP (RY, wy; X). It remains to prove that d= Dy  0fori€10,..., m—1}. By Corollary
5.3.4 .

u® e W) P Ry, wy; X) = LP Ry, Wy—(m—iyp3 X)-

Now we find

1/n
||¢§zm_l) u(z) ||LP([R+,wy;X) :/ n’”(m—”|¢(m‘”(nx)|p||u(’)(x)llplxly dx
0

1/n
<1p™ Vs / 1P 1P 1Y~ 0P .
0
The latter tends to zero as n — oo by the dominated convergence theorem. O

In the next result we prove a density result in real and complex interpolation spaces.
It will be used as a technical ingredient in the proofs of Lemma 5.3.14 and Proposition
5.3.17.

Lemma 5.3.9. Let p € (1,00), y e R\ {jp—1:jeNg}, g €[1l,00) and k € N\ {0}. Let
O be a bounded C*-domain or a special C¥-domain with integer k = 2 or k = oo and
let ¢ €1{0,...,k}. If0 € (0,1) satisfies kO < Y—;l then the space CF(0; X) is dense in both
(LP (O, wy; X), WP (O, wy; X))g,q as [LP (O, wy; X), WOP (O, wy; X)]g.
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Proof. First consider the real interpolation space. In the case y < —1 the result follows
from WOP (0, wy; X) = W:"’(ﬁ, wy; X), Proposition 5.3.8 and [235, Theorem 1.6.2].
In the case y € R\ {jp —1: j € Ny}, it suffices to consider & = R? by a localization
. d
argument. Write Y; = Wf’p([Rf, wy; X) for j € Ny. Since Y, — (Yo, Y¢)g,q (see [235, The-
orem 1.6.2]), by Lemma’s 5.3.6 and 5.3.7 it suffices to consider u € CZ"(IRﬂ;X) and to
approximate it by functions in C®(R%; X) in the (Yp, Y/),4-norm. Moreover, note that

1-0 0
11l (v, ¥0)0,4 = CllVliy, " IVllYy,

forall v € Yy (see [235, Theorem 1.3.3]). Therefore, it suffices to construct v,, € CSO(IRf;X)
such that ||v, — ulI%,O‘e lv, — ull?,[ — 0 as n — oo. As in Proposition 5.3.8, letting u, = ¢, u,
it suffices to show that | u, — u|| gg |y, — ull(;[ — 0 as n — co. Note that, for example in
the case d = 1, for one of the terms

1/n 1/p _y+l
1 @n =Dl r @,y < [P llolUlloo / " dx) " < I plloaCypn 7
0
and similarly,
¢ -2
163 Ul ot xS 1 P 1 ool oo,

Now we obtain that there is a constant C independent of n such that

_ 1-0 @, 10 R ]
I(prn—1) u||Lﬂ(R+,wy;X) Py u"LP([Rf,wY;X) =Cn »r .
The latter tends to zero by the assumptions. The other terms can be treated with similar
arguments. Finally one can approximate each u, by using (5.9) and the arguments given
there.
The density in the complex case follows from

(LPO, wy; X), WEP (O, wy; X)), > [LP (O, wy; X), WEP (6, wy; X)g

(see [235, Theorems 1.9.3 (c) & 1.10.3]). O

The next standard lemma gives a sufficient condition for a function to be in Wli)cl R4 X)
when it consists of two le)cl -functions which are glued together. To prove the result one
can reduce to the one-dimensional setting and use the formula u(#) — u(0) = fot u(s)ds.
We leave the details to the reader.

Lemma 5.3.10. Let u € LIIOC(IR”Z;X) be such that uy := ulpa € Wll'l(Rf;X) and u_ :=
T + oc
ulpa € WL (R X). Iftr(uy) = tr(u-). Then ue Wb R X) and

C

Doyl Ditus), onRY;
/ Dj(u.), onR%;
] -/ —
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Finally we will need the following simple density result in the A,-case.

Lemma 5.3.11. Let O be a bounded C*-domain or a special C*-domain with k € Ny U
{oo}. If p € (1,00), w € A, and k € Ny, then Ey : WO""’(@’, w; X) — WhP(RY, w; X) given
by the extension by zero defines a bounded linear operator. Moreover, Wok”!J (O, w; X) =
ckwo; x).

Proof. By localization it suffices to consider & = [Rﬁf. Ifue Wok'p ([Rf, w; X), then, by
Lemma 5.3.10, Equ € Wllgcl (R‘f_;X) and

D%*Eyu = EyD%u, lal < k.

In particular, this shows that Ej is bounded.

For the final assertion let u € Wok’p (R¢,w). By a truncation we may assume u has
bounded support. Take { € CEO(IM) such that f(dx =1 and set {,(x) = n%¢(nx). Then
{n * Egu — Eou in WEP([R?, w; X) (see Lemma 4.2.2). Since {,, * Egu € C2°([R%; X), the
result follows. O

5.3.4. Interpolation
We continue with two interpolation inequalities. The first one is Lemma 4.5.8.

Lemma 5.3.12. Let p € (1,00) and let w € Aj, be even. Let 0 = RY or 0 = I]'\Pf. Then for
everykeN\{0,1}, je{l,....,k—1}andue WkP(0, w; X) we have
A
(Wi o,wx) = Cptwia, 1 Lo 510 W 6,0

The above result holds on smooth domains as well provided we replace the homo-
geneous norms [-Jyykp by || - lyykp. In order to extend this interpolation inequality to a
class of non-Aj,-weights, we will use the following pointwise multiplication mappings
Mand M~

Let M : CP(RY; X) — C2(R?; X) be given by Mu(x) = x; u(x). By duality we obtain a
mapping M : 2' R%; X) — 2'(R%; X) as well. Similarly, we define M~! on C(R%; X) and
2'R%; X).
Lemma5.3.13. Letp e (1,00),y € (—1,2p-1) andk € {0,1,2}. Then M : W*P (RY, wy; X) —

WEP(RY, wy_p; X) is bounded. Moreover, M : Wok‘p(Rﬁf, wy; X) — Wok’p([Rf, Wy—p; X) isan
isomorphism.

Proof. Since the derivatives with respect to x; with i # 1 commute with M, we only prove
the result in the case d = 1. Observe that ||Mu||Lp([R+,wy_p;X) = uIIU,(M,wY;X). Moreover,

by the product rule, we have (Mu)W = ju(j’n + Mu'Y for j €10,1,2}. Therefore,

k
IMullykr @, w,_;x) = IMUILP R wy,—pix) + Y IvwyW P @, wy-p; X)
=1
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k
. i—1 i
< lulr @, wyix + 2 1 P lr@, w,pix + 1 Mu
J=1

I2r @y, w0y X)

k
< lulr@, w0 +C 2 N @, w0
j=1

=(C+D] u||Wk'P(R+,wY;X)’

where we applied Lemma 5.3.2. This proves the required boundedness of M.

By density of CZ°(R4; X) in Wok’p (R+, wy; X) (see Proposition 5.3.8 and Lemma5.3.11)
it follows that M : Wok'p Ry, wy; X) — Wok'p (R4, wy—p; X) is bounded. It remains to prove
boundedness of M~ : Wok’p(R+, Wy—p; X) — Wok’p(R+, wy; X). By Proposition 5.3.8 and
Lemma 5.3.11 it suffices to prove the required estimate for u € C:°(R,; X). By the prod-
uct rule, we have (M~ 1)) = Z{:o ¢i,jM~ =iy Therefore,

1Ml 00 = Zu(M— WM L@, w0
Jj=0

|| [\/]a-

J
i i
Z 1M1yl l)||Ll’(R+,wY;X)

1
< Clulwip@,,w,_ 0 * Z Z ™ 1o @ 1y g1y
j=0i=1

Now it remains to observe that by Lemma 5.3.2 (applied i times)

147N @y i < CHUP N @,y i < Clltllyin @, o, ix)-
O

Lemma 5.3.14. Let p € (1,00) andy € (—p—1,2p—-1)\{-1,p—1}. Then for every k €
N\{0,1}, jefl,...,k—1} and ue WP (RY, wy; X) we have

ul u .
[l @ wyi0 = Crpkl ”Ll’(Rd wY;X)[ ]Wkn([de wy;X)

Proof. By an iteration argument as in [145, Exercise 1.5.6], it suffices to consider k = 2
and j = 1. Moreover, by a scaling involving u(A-) it suffices to show that

1/2 1/2
l u'lwl,p(Rg'wy;X) =Gyl uIIU,(M’wY;X) llull W2r @, wyiX)" (5.10)
The case y € (-1, p—1) is contained in Lemma 5.3.12, where we actually do not need
to proceed through (5.10). So it remains to treat the case y e (-p—1,-1)U(p—-1,2p—1).

By standard arguments (see e.g. [235, Lemma 1.10.1]), it suffices to show that

2, 1,
(LP(R+r w)/)X) W p(R+y W}/,X))%l W p([R+)w}/rX)-
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We first assume that y € (p—1,2p —1). Using Lemma 5.3.13 and real interpolation of
operators, we see that M is bounded as an operator

(PR, wy; X), WP RS, wy; X))y ) — (LPRY, wy—p; X), WHP R, wy— i X0) -

By a combination of [235, Lemma 1.10.1] and (5.10) for the case y € (-1, p—1), the space
on the right hand side is continuously embedded into W'? (R, wy_,; X). Therefore, M
is a bounded operator

. d . 2, d . 1, d .
M: (LP (RS, wy; X), WHP RS, wy; X)) 1y — WP RS, wy—p; X). (5.11)

From Lemma 5.3.9 and the fact that MC?O([Rf;X) c C‘?O(Rf;X) c Wol’p([R{ﬁf, wy_p; X), it
follows that M is a bounded operator

1,
M: (LR, wy; X), W2P RS, wy; X))y | — WP RY, wy—p; X).

Combining this with Lemma 5.3.13 we obtain (5.10).
Next we assume y € (—p —1,—1). As (5.11) in the previous case, M~! is a bounded
operator

M (LPRE, wys X), Wy P RY wyi X))y | — Wy P Y, wysp; X).

Combining this with W"'p(Rf, wy; X) = Won’p([Rf, wy; X) (n €N) and Lemma 5.3.13 we
obtain (5.10). O

Proposition 5.3.15. Let X be a UMD space, p € (1,00) and y € (-1,p—1). Let & be
a bounded C*-domain or a special C*-domain with k € Ng U {oo}. Then for every j €
{0,..., k} the following holds:

0. k,p 0. _hp 0.
(LP (O, Wy ; X), W, (O, wy ,X)]% =Wy (0, wy ; X).

Proof. By a localization argument it suffices to consider the case & = R%. The operator

0 on L ®%, wy; X) with domain D(31) = W, ” R+, wy; L ®?~"; X)) has a bounded H*-
calculus with o (81) = % by Theorem 4.6.8. Moreover, D((01)™) = W,"¥ Ry, wy; LP (R™1; X))
for all n € N. For the operator Ag_; on LP (RY, wy; LP (R?71; X)), defined by

d
D(Ag-1) = LP Ry, wy, WP R X)), Agoyui= Y By,
k=2
itholds that —A4_; abounded H*®-calculus with  geo (—A4_7) = 0. Moreover, D((-Ag_1)™"'?) =
LP Ry, wy; WP (RA~Y; X)) for all n € N. Tt follows that (1+3,)% with D((1+01)%) = WP R, wy; X)
is sectorial having bounded imaginary powers with angle < 7/2 and that (1 - Ay_1)*/?
with D((1-A4-1)%?) = LP R+, wy; WEP (R?1; X)) is sectorial having bounded imaginary
powers with angle 0. By a combination of Proposition 5.2.3 and [86, Lemma 9.5],

(L7 RS, wy; X), WEP Ry, wy; IP R X)) 0 LP Ry, wy; WEPRET; X))]

I~
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= [LP(Rf’ w}/,X),D((]_ +61)k) N D((]_ _ Ad_l)k/z)] X

I~

=D((1+0)))ND(1-A4-1)'")
= WP Ry, wy; LP R X)) 0 LP Ry, wys WP R X))

Now the result follows from the following intersection representation for n € N:
W' RE, wy; X) = Wy Ry, wy; LP R X0) 0 LP Ry, wy; WP R X)).

Here — is clear. To prove the converse let u be in the intersection space. We first claim

that u € W""’(Rf, wy; X). Using a suitable extension operator it suffices to show the
result with R, and R¢ replaced by R and R respectively. Now the claim follows from
Proposition 5.2.9. To prove u € Won‘p(IRf, wy; X) let|a| < n—1and write @ = (a1, @). Itre-
mains to show tr(D%u) = 0. By assumption and the claim D*' u € W[)l’p(R+, wy; LP (R41; X))
and DY ue WP (R, wy; W= R47D)). It follows that DY u € W, P Ry, wy; W1~ (R4))
and therefore, we obtain D%u € WO1 PR,; LPR71)) as required. O

Now we extend the last identity to the non- A, setting for j =1and k = 2.

Proposition 5.3.16. Let X be a UMD space, p € (1,00) Yy € (-p—-1,2p—-1)\{-1,p—-1}.
Let O be a bounded C?-domain or a special C?-domain. Then the complex interpolation
space satisfies

p . 2,p . — kP .
[L (ﬁ) wer)r WO (ﬁr wy; X)]% - WO (ﬁr wj/) X)'

Proof. The case y € (-1, p—1) is contained in Proposition 5.3.15. For the case y € (jp —
1,(j +1)p—1) with j =1 or j = —1 we reduce to the previous case. By a localization
argument it suffices to consider ¢ = R¢. By Lemma 5.3.13 and since the complex inter-
polation method is exact we deduce
d . le d .
[LP(R+) w}/rX))WO (R+) wer)]%

i —i2,
= MTLP®RYE, wy—p; X0, MIW P RE, wy— s X))

1
2

= M ILP @S, wy- i X, Wy RS, wy-jp; X1
:M‘fWOLp(Rf,wy—ij):WoLp(Ri’wY;X)' -

Next we prove a version of Proposition 5.3.16 without boundary conditions by re-
ducing to the case with boundary conditions.

Proposition 5.3.17. Let X bea UMD space, p € (1,00), vy € (-p—1,2p—1)\{-1,p—1}. Let
O be bounded C?-domain or a special C? -domain. Then the complex interpolation space
satisfies

(LP (O, wy; X),W?P (O, wy; X))y = WhP (0, wy; X).
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Proof. By a localization argument it suffices to consider & = R¢. The case y € (-1,p —
1) follows from Propositions 4.5.5 and 6.3.7 and the case y € (—p — 1,—1) follows from
Proposition 5.3.16.

It remains to establish the case y € (p —1,2p —1). The inclusion — follows from
Proposition 5.3.16 and Wol’p([RZ, wy; X) = Wl"’(lRf, wy; X). To prove —, by Lemma 5.3.9
it suffices to show that

00 (.
Neellyp @, wy;x) = ClUll e @e, w30, w2r @ wyix - WE Ce R X).
2

Since Wol’p([Rﬁf, wy; X) = Wl"’(lRf, wy; X), using Lemma 5.3.13 twice and the result for
the Ap-case already proved, we obtain

Nl o @ w0 S MU o @ 0,30 S MU L0 @d 0,0, w2 @ w301
2

S lull [Lﬂ(Rf,wy;X),wzvﬂ(R‘Z,wy;Xn% :
O
Next we turn to a different type of interpolation result. It unifies and extends several

existing results in the literature. The case py = p; and wy = w; can be found in [187,
Proposition 3.7].

Theorem 5.3.18. Let X;j bea UMD space, p; € (1,00), wj € Ap; ands;j € R for j € {0,1}. Let
0 € (0,1) and set Xy = [Xo, X119, % = lp;f+%, w= wél_g)p/po wfp/pl ands=(1-0)sy+0s;.
Then

[P R?, wo; Xo), HP'RY, wi; X1)lg = HYP (R, w; Xp).

Observe that w € A), by [101, Exercise 9.1.5]. The proof of the theorem will be given
below.

As a corollary of Proposition 5.3.17 and Theorem 5.3.18 we obtain (using the identi-
fication from Proposition 5.2.8) the following mixed-derivative theorem:

Corollary 5.3.19. Let X be a UMD space, p € (1,00), Yy € (—p—1,2p—-1)\{-1,p—1} and
d=2. Then

W2P R LP R, wy; X)) N LP R WP R, wy; X))
— WP R, WP R, wy; X))
Proof. By Proposition 5.2.8, Theorem 5.3.18, and Proposition 5.3.17,
PR WP Ry, wy; X)) W2P R LP R, wy; X))
= HOP R, W2P Ry, wy X)) 0 H2P RS LP (R4, wy; X))
= [HPRTE WP Ry, wy; X)), HHP R LP Ry, wys X0y
= H'"PRI [W2P Ry, wy; X), LP (R, wy; X)11)

= WP RTL WP R, wy; X)). O
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For the proof of Theorem 5.3.18 we need two preliminary results. The first result
follows as in [235, Theorems 1.18.4 & 1.18.5].

Proposition 5.3.20. Let (A, </, ) be a measure space. Let Xj be a Banach space, p; €
(1,00) and w; : S — (0,00) measurable for j € {0,1}. Let 8 € (0,1) and set Xy = [Xo, X1lg,

1_16,06  _ (-0plp Oplp o
= po T W= Wy wy ands=(1-0)sy+0s,. Then

[LP° (A, wo; Xo), LP' (A, wy; X1)lg = LP R?, w; Xp).
For the next result we need to introduce some notation. Let (¢4) x>0 be a Rademacher

sequence on a probability space Q. Let o : N — (0,00) be a weight function, p € (1,00)
and let Rad”” (X) denote the space of all sequences (xi) =0 in X for which

n
” (xk)kEOHRada,p(X) = igrl) H kzzogka(k)xk”LP(Q;X) <00

The above space is p-independent and the norms for different values of p are equiv-
alent (see [127, Proposition 6.3.1]). If o = 1, we write Rad”(X) := Rad””(X). Clearly
(XK) k=0 — (0(k)Xt) k=0 defines an isometric isomorphism from Rad”’” (X) onto Rad” (X).
By [127, Corollary 6.4.12], if X does not contain a copy isomorphic to ¢y (which is the
case for UMD spaces), then (xi) =0 in Rad”” (X) implies that )"y~ €0 (k) x;. converges
in LP(Q; X) and in this case

e k20l jagor x) = H gbgka(k)xk HLP(Q;X)'

Interpolation of the unweighted spaces
[Rad (Xp),Rad”! (X;)]g = Rad” (Xp) (5.12)

holds if X, and X; are K-convex spaces (see [127, Theorem 7.4.16] for details). In par-
ticular, UMD spaces are K-convex (see [126, Proposition 4.3.10]). We need the following
weighted version of complex interpolation of Rad-spaces.

Proposition 5.3.21. Ler X; be a K-convex space, o j :N — (0,00) and let p; € (1,00) for
j€10,1}. Let@ € (0,1) and set Xy = [Xo, X11p, % = 1,;—09 + % ando = o009, Then
[Rad?®P(Xp),Rad’"'P1 (X;)]g = Rad”” (Xp).
Proof. We use the same method as in [235, 1.18.5]. Let
T :F_(Rad?®"(Xp),Rad’ "' (X7),0) — F_ (Rad”° (Xp), Rad” (X3),0)

be defined by
Tf(k,2)=0o(k) o1(k)*f(k, z).

Then f— T f(,0) is an isomorphism
[Rad?>P°(Xp),Rad’ P! (X1)]g — [Rad”’ (Xp),Rad”! (X;)lg = Rad” (Xp),

where we used (5.12) in the last step. O
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Proof of Theorem 5.3.18. Set Y; = LPi(R?, w;, X;)) for j € {0, 1} and let Yg = LP (RY, w, Xp)).
Then by Proposition 5.3.20 Yy = [Yp, Y1]p. Let 0 j(n) = 2%" and let (@) =0 be a smooth

Littlewood-Paley sequence as in [187, Section 2.2] and let ¢p_; = 0. By [187, Proposition

3.2] and [127, Theorem 6.2.4] we have f € H%'Pi (R, wj; X;) if and only if (g * fr=0 €

Rad?/Pi(Y;) and in this case

” ((Pk * f)kzO”Radaj'pj(yj) ~ “f”HXj'pj ([Rd,luj;Xj) (5.13)

with implicit constants only depending on pj, Xj, s;, [w;] A, Now to reduce the state-
ment to Proposition 5.3.21 we use a retraction-coretraction argument (see [235, The-
orem 1.2.4] and Lemma 4.5.3. Let v, = ZZ:_lgbk for n =0, and let ¥_; = 0. Then
W = 1 on supp (¢py) for all k =0, and supp (o) S { : |é] < 2} and supp () € {£: 252 <
€| < 2%*1} for k = 1. Let R: Rad”/Pi(Y;) — H%"Pi R?, w}; X;) be defined by R(f7) =0
YrsoWe * fr and let S : H%Pj (RY, wj; Xj) — Rad?Pi"?i(Y;) be given by Sf = (¢ * f)i=o0-
The boundedness of S follows from (5.13). We claim that R is bounded and this will be
explained below. By the special choice of ¥ we have RS = I. Therefore, the retraction-
coretraction argument applies and the interpolation result follows.

To prove claim let E; = LPi(€Q;Y;)). Due to (5.13) and by density it suffices to show
that, for all finitely-nonzero sequences (f¢)¢>o in Y; and all n =0,

Y ex2%* fi

k=0

n
sik
H Y €28 (pk*zi//[*f[”ElSC‘ HE (5.14)
k=0 =0 7 J
Below, for convenience of notation, we view sequences on N as sequences on Z through
extension by zero. Under this convention, by the Fourier support properties of (@)
and the R-boundedness of {¢* : k = 0} (see [187, Lemma 4.1]) and the implied R-

boundedness of {y * : k = 0}, we have

n 2 n
& &
HZfSkZS’ P * ZW*fz”E_S > HZ&«ZS’ Pk* Yeej * |
k=0 =0 i =20 j

2 n
S Y| X era |
j==2"k=0

§| Y ex2%* fi

k=0

Ej

.
Ej

where in the last step we used the contraction principle (see [126, Proposition 3.24]). O

5.4. Apj; ON R? IN THE Ap-SETTING

Let pe (1,00) and w € Ap([Rid). We consider the Dirichlet Laplacian Ap;; on L”(Rf, w; X),
defined by

d
2,
D(Apir) := Wil RS, w; X),  Apiru:= Y du.
J=1
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Let G, : R? — R denote the standard heat kernel on R%:

1 2
G,(x) = ————¢ /12 z€Cy.
2(X) (Anz)dr +
Itis well-known that |G,  f| < cos~%/?(arg(z)) M f, where M denotes the Hardy-Littlewood
maximal function (see [127, Section 8.2]). Therefore, f — G;* f isbounded on L’”([R%d, w; X)
forany w e Ap.
Define T'(z) : LP (R%, w; X) — LP R%, w; X) by

T(2)f(x):=H;* f(x):= /d Hz(x,y)f(y)dy=/d G.(x-yf(ydy, zeCy, (5.15)
R4 R

with f(y) = sign(y) f(ly1], 7) and
H,(x,3) = G, (x1 — y1,X— ) - G (x1 + y,X— ), x,y€RY. (5.16)

By the properties of G, the operator T(z) is bounded on LP(R?, w; X) for any w € Ap
with || T'(2)] < ||M||33(Lp(w))cos_dlz(arg(z)). In Theorem 5.4.1 we will show that T'(z) is
an analytic Cy-semigroup with generator Ap;;. Moreover, in case X is a UMD space we
characterize D(Apir) and prove that Ap;; is a sectorial operator with a bounded H®-
calculus of angle zero.

Recall that a weight w is called even if w(—x1,X) = w(x,X) for x; >0and X € R4-1,

The next result is the main result of this section on the functional calculus of —Ap;,
on LP-spaces with Aj,-weights. The result on the whole of R is well-known to experts,
but seems not to have appeared anywhere. By a standard reflection argument we de-
duce the result on R?. It can be seen as a warm-up for Theorem 5.5.7 where weights
outside the Ay-class are considered.

Theorem 5.4.1. Let X be a UMD space. Let p € (1,00) and let w € A, be even. Then the
following assertions hold:

(1) —Apjr is a sectorial operator with w(—Apjir) = 0, D(Apir) = Wé’if (Rﬂf, w; X) with equiv-
alent norms, the analytic Cy-semigroup (e**Pir) ,ec, is uniformly bounded on any sec-
torX, withw € (0,7/2) and

e“Air f = T(2)f, zeC,.
(2) ForallA =0, A— Apir has a bounded H*® -calculus with w goo (A — Apir) = 0.

Moreover, all the implicit constants only depend on X, p, d and [w]Ap.

For the proof we use a simple lemma on odd extensions. For u € LP(R?, w; X), the
functions u and E,4qqu denote the odd extension of u:

U(—x1,X) = Eggqu(—x1,%) = —u(x,x) forx; >0and X € R4,

For k € Ny let Wokc‘lﬁ (R?, w; X) denote the closed subspace of all even functions in wkr (R, w; X).
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Lemma5.4.2. Letp € (1,00) and let w € A, beeven. Letk € {0,1,2}. Then Eyqq : ng'f(u@f, w; X) —
WOkAZ(Rd, w; X) is an isomorphism and

el wer®d,w:x) < 1 EoddUllweprd, w:x) < zllpllullwk,p(ﬂd’w;x)-
Moreover, {u e C (I]?f) :u(0,) =0} ® X isdense in ng’rp([Rf, w; X).
Proof. The case k =0 is easy, so let us assume k € {1,2}. For u € ng'rp([ﬂif, w; X) one has
D U(x) = (sign(x)' """ (D W) (1x11,%), lal < k. (5.17)

Indeed, this follows from Lemmas 5.3.10 and 5.3.1.

From (5.17) we find that i € W2P R4, w; X) and that the stated estimates hold.

If e WEPRE, w), then by Lemma 5.3.6 we can find u, € Cg’o([R{d) ® X such that
U, — uin W»P(R?, w; X). Then also u,(—,-) — u in W»P[R?, w; X). Now v,, := (uy +
un(—-,-))/2 satisfies v, € CEO(Rd;X) and v,(0,") =0and v,, — uin Wz”’([Rf, w; X). Since
tr(vy,) = 0 the continuity of the trace implies tr(u) = 0 as well. This part of the prove also
implies the desired density result. O

Proof of Theorem 5.4.1. Let us first consider the result on R?. Then —A with D(A) =
Wz’p([R{d, w; X) is a closed operator which is sectorial of angle zero (see [93, Theorem
5.1] and Proposition 5.2.6). Moreover, by Proposition 5.2.6 and [127, Theorem 10.2.25]),
one can has that —A has a bounded H*-calculus with w g (—A) = 0. Moreover, by Re-
mark 5.2.5 the same holds for A — A. Now the half space case follows by a well-known
reflection argument, which we partly include here for completeness.

Since Eodd(Apir f) = (AEodd f), Eoda : Wik R, w; X) — WP ®?, w; X) is an isomor-
phism (see Lemma 5.4.2), A : Wj&ﬁ(Rd, w;X) — LV RY, w; X), and DAl ®d,wix) =

2,p mod ;.
W, 44 R, w; X), one has
p(A) € p(Apir), R, Apin) f = (R(A,A)Eoddfﬂm and D(Apiy) = Wé}f(Rf,w;X)-
All the statements now follow. O

Corollary 5.4.3 (Laplace equation). Let X bea UMD space. Let p € (1,00) and let w € A,
be even. Forallu e Wrz)'if (Rf, w; X) there holds the estimates
[u] WZ'F’([R{‘i,w;X) :X,p,d,w ”Au”LV([Rz,w;X)' (5.18)

Furthermore, forevery f € U’([Rf, w; X) and A > 0 there exists a unique u € Wé’if ([Rff, w; X)
such that Au— Apjru = f and

lfllal a
I;zl/1| 271D u”LP(R‘jf,w;X) SXpdw ”f”LP(Ri,w;X)' (5.19)
al=s



162 5. THE HEAT EQUATION SUBJECT TO THE DIRICHLET BOUNDARY CONDITION

Proof. We first prove (5.18). Let u € WS’if(Rf, w; X). For r > 0 we put u; := u(r-) and
wy := w(r-). Then w, € Ap with [wr]a, = [W]a,. So we can apply Theorem 5.4.1 with
wy instead of w to obtain

lal-4 a _
Z r P ”a u"Lp(le,w;X) = ” Ur I|W2yp(Rf,wr;X)
|la|<2

~xpdyw Nl o d 0,0 AU o @d 4 x)

d d
1 2—-£
=r r ||u||L,,(R,1’w;X) +ror ||Au||W2,,,(R,1‘wr;X).

Dividing by rz_% and taking the limit r — oo gives (5.18).

The existence and uniqueness in the second claim follow from the sectoriality in
Theorem 5.4.1. Moreover, together with (5.18), the sectoriality yields the estimates for
|lal =0 and |a| = 2 in (5.19). The case |a| = 1 subsequently follows from Lemma 5.3.12.

O

Corollary 5.4.4 (Heat equation). Let X be a UMD space. Let p,q € (1,00), v € A4(R),
weA p(IRd) and assume w is even. Let ] € {R,R,}. Then the following assertions hold: For
allA>0and feL9(],v; L’”(Rﬁf, w; X)) there exists a unique u € w4, v, LP ([Rf, w; X))N
Li(J, v; W;'if ([R{f, w; X)) such that u' + (A — Apy)u = f, u(0) = 0 in case ] = Ry.. Moreover,
the following estimate holds

! 1—1\a| a
el La g, v0 @4, i + > AT2ID Ul Lag,v:00 @4, ;)

|la|<2
Spauvwd ”f”Lti(J,y;LP(Ri,w;X))-

Proof. Since Lp([Rf, w; X) is a UMD space, by Proposition 5.2.7, d/dt had a bounded
H-calculus on L9(J, v; LP ([R{f, w; X)). Therefore, from Theorem 5.4.1, Remark 5.2.5 (1),
and Theorem 5.2.4

!

NN 0,050 @ w0 + 1A= BV Ul a0 e 50) Spavwdlf Nzae,v;00 @2, w50
Now the result follows from Corollary 5.4.3 applied pointwise in t. O
Remark 5.4.5.

(i) The same result as in Corollary 5.4.4 holds for A on the whole of R?. For results on

elliptic and parabolic equations with Aj,-weights in space we refer to [111].

(i7) Due to Calderén-Zygmund extrapolation theory one can add A,-weights in time
after considering the unweighted case (see [44]).

(iii) Tt would be interesting to extend Corollary 5.4.4 to spaces of the form LP(R x
[Rf, w; X) where w depends on time and space. For some result in this direction
concerning the maximal regularity estimate we refer to [74].

(iv) The estimate in Corollaries 5.4.3 and 5.4.4 also hold for A = 0. However, solvability
does not hold for general f.
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5.5. Apir ON R? IN THE NON-A,,-SETTING

In this section we will extend the results of Section 5.4 to weighted LP-spaces with wy(x) =
|x1|” where y € (p—1,2p—1). This case is not included in the A,-weight and is therefore
not accessible through classical harmonic analysis. The reflection argument cannot be
applied since the weight is not locally integrable in R?.

5.5.1. The heat semigroup

Let T(z2) : Lp(Rf;X) — L”(Rf;X) be defined by (5.15). We first show that T(z) is also
bounded on L”(Rf, wy) with wy (x) = |x;|" for y € (-=p—1,2p - 1) and that this range is
optimal. Note that wy € A,(R?) if and only if y € (-1, p - 1).

Proposition 5.5.1. Letp € [1,00) andy € (-1 - p,2p—1). For every |p| <m/2, (T (2))zez,
defines a bounded analytic Cy-semigroup on L’”([l'\Pf, wy; X).

Proof. First we consider p € (1,00). The result for y € (-1, p — 1) follows from Theorem
5.4.1. In the remaining cases by duality it suffices to consider y € [p—1,2p—1).
Let |5| < ¢ and write z = te’® for t > 0.

Step 1: Reduction to an estimate in the case X = C. In this step we show that it is
enough to prove the estimate

” |HZ| * ”f” ”LP([RZ,WY) S(P,%P ”f”Lp([Rf,wy) (520)
forall feC, (Rf). Having this estimate, we get
” T(Z)f”Lp(Rz,w}/;X) = |||HZ| * ”f”X”L!’([RZ‘f,wY) = C([),y,p”f”Lp(Ri‘wy;X)

for all f € C.(R?) ® X, from which the analyticity and strong continuity follow. Indeed,
note that for g€ C.(Ry) ® X, z— (T'(2) f, g) is analytic on 24 and continuous on Z_(/, by
Theorem 5.4.1 with w = 1. Therefore, in case X = C, the weak continuity of T on Z_(/,
follows by density in the case p € (1,00) and by weak*-sequential density of C, in L™
in case p =1 (see [213, Corollary 2.24]). This in turn implies strong continuity by [85,
Theorem 1.5.8]. For general X, the continuity of T(z) f for f € C.(R%) ® X is clear from
the scalar case, yielding the case of general f € L” (R%; X) by density. The analyticity of
T on X follows from [12, Theorem A.7].

Step 2: Reduction to the case d = 1. Writing H; for the kernel of T(z) in case d =1
and Gf‘l for the standard heat kernel in dimension d — 1, we have

IHzl*IfI(xl,f)=/ IH;(xl,yl)l/d le_l(f—jf)lf(J/bJ“/)Ideyl-
0 Rd-

Taking L” (R~1)-norms for fixed x; € R,, and using Minkowski's inequality and Young’s
inequality, we obtain

IE ] | f1(x1, ) pp a1y
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5/ IHZI(X1,J/1)|”7€H/ G E=DIf 01 DI A0
0 RA-1

r (Rdfl)

00
= C</>/ |Hzl(xlry1)|”f(yl:')”LP(Rd—l)dyl,
0

where Cy = sup s " I Gg‘l II L1 (Rd) < O0. Therefore, it remains to prove (5.20) in the case
d=1.

r+l r+l
Step 3: The cased = 1. Setting g(x) :=x 7 |f(x)], k;(s,y) :=y(x/y) P |H;(x,y)| and

00 d
ha(x) = / k.(x, g <L,
0 Yy

we see that (5.20) holds if and only if IIhZIIL,,(R+ dxy §¢, ||g||L,,([R+ dxy. To prove this, by
Schur’s test (see [96, Theorem 5.9.2]) it is enough to show )

o0 d
sup / kor, Y < 4, (5.21)
x>0J0 y

© dx
sup/ k;(x,y)— <B. (5.22)
y>0.Jo X

In order to prove these estimates, observe that with z = reld,

1/2 —lx—yl2e” 0 —lx+y|2e”i0
(4me) IHZ(x,y)Izie 1 —e &
7\xfy\2cos(§) _xyeiié
=e 4t |1 —e T |

(5.23)
—\x—y\zcos(t?) xylt 5
<e & e*SCOS( ) ds
0

= @4n0"?cos(8) ' Hycos(6) (X, 1)

Therefore, by replacing x and y by (4¢/cos(6))"/?x and (4¢/ cos(8))'/?y, respectively, in
(5.21) and (5.22) it suffices to consider t =1/4 and 6 = 0.
From now on we write

k(x,y) = y(x,y)%(e—lx—yﬁ oty 2 y(x/y)%leu—yﬁh_ o—41y|
One can check that |1 — e™**Y| < min{1, 4x y}. Therefore, k satisfies
k(x,y) < y(x/y)L:'1 eIy min{l,4xy}
It follows that

/ k(x,y)7ys/ (x/y)yr’ e 1y min{l,4xytdy
0 0

x/2 y+1 ) oo y+l )
s/ (x/y) 7 e ¥V 4xydy+/ (x/y) 7 e ¥ ay
0 x/2
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=T+ T5.

The first term satisfies
x/2
y+1 y+1
I/ 1= 2 42
Tls4/ x 7 YT e gy =CixPe M < 4y,
0

where we used 1 — 7—;1 > —1. Since y > —1, the second term satisfies

*© 2 © 2
T2§C2/ €7|x7y| dyZCZ/ eilyl dy:Az
- )

o0

Next we estimate the integral over the x-variable. For y € (0,1), we can write

> d o T+
/ k(x,y)—xs/ (x/y)? 1e"x_y‘z4xydx
0 X 0
54/ x%ly e P gy
0
© Yl y+l
:/ x+y) 7y e ax
-y

el
=/ x+1)7 e P dx<B,
—00

whereweusedZ—y—;l20andy+120. For y = l,since%1 =1 we have

o0 d o e
/ k(x,y)—xs/ (xly) 7 e gy
0 X 0

S 1
:/ (’—yc+1)%_lefx2dx
-y

o0 L‘*’l,l _x2
< (IxI+1) 7 e dx<B,.
—00

Step 4: The case p = 1: One can still reduce to the case d = 1 by Fubini’s theorem.
Moreover, instead of using Schur’s lemma, by Fubini’s theorem it suffices to show that

© dx
sup k(x,y)— <oo.
y>0.Jo X

The case y € [0,1) can be treated in the same way as in the above proof. In case y € (-2,0)
we argue as follows:

© dx *© 2 o0 2
/ k(x,y)— S/ xiy)Ye " Wdx< ZY/ e Wax=cC.
yi2 x yi2 —00

On the other hand, since y +2 > 0, we have

yi2 d yi2
/ k(x,y)—x 5/ (x/y)”e"x_y|24xy
0 X 0

yi2
2 - 2
<4e7V'y 7’“/ X ldx=4ye™ V4, O
0
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In the next example we show that the range for y in Proposition 5.5.1 is optimal.

Example 5.5.2. Let p € (1,00) and y ¢ (—p —1,2p —1). We give an example of a func-
tion f € Lp([R{f, wy) such that for all £ >0, T(t)f ¢ L? ([Rﬁf, wy). Here T(1)f is defined
by (5.15). By duality we only need to consider Yy =2p—-1. Let B € (1/p,1) and set
fx) = xl‘zllog(xl)l ﬁﬂQ(x), where Q = [0, 1]9. Then, on the one hand, fe L”([Rf; wy).
On the other hand, for x € Q¢,

_|2

_ —X1n _2 7[3
T(Ofx)=cpa [I1—e "¢ ]y “llog(ynD " dy
Q

1
=5z,d/ yr Hlog(y) 7P dy; = oo;
0

in particular, T(¢)f ¢ LP (Rﬁf, wy).

Let — A denote the generator of the semigroup (7' (z)), of Proposition 5.5.1. Then by
standard results of analytic semigroups we see that A is sectorial with w(A) =0
In the case of a X is a UMD space, — A even has a bounded H*-calculus:

Proposition 5.5.3. Let X be a UMD space. Let — A be the generator of the heat semigroup
on Lp([R‘f, wy; X) given in Proposition 5.5.1 with p € (1,00) andy € (-1 - p,2p—1). Then
A has a bounded H® -calculus with w g (A) =

Proof. The case y € (-1, p—1) follows from Theorem 5.4.1. For the other values of y we
use a classical perturbation argument (see [142]).

Step 1: Let0 <o <w <m/2Let ¢ € H°(Z,) with w € (0,7/2) satisfy [|pllo < 1 and let
I' = 0Z,. By definition we have

¢(A) = L,/(,l)(/l)R(/l,A)d/l: L SR, A)dA, (5.24)
27l Jr 2mi Jr,ur.

where I'y = {re*?: r € (0,00)}.
1

1 p
Fix f € C,(RY; X)) and let g = w) f and y(x, y) = %Tw - 1). Then for x € RY

w} ()

1

PA) f(x) = %(x1)¢(A)(w”f)(x) +w, v (x1)P(A) (wy (x1) - wf)f)(x)
= w, P DBAE) () + w, P )b () 2) ().
Therefore,
IPCA) fllLr @y, wy;x) < IP(A G Ly @y ;) + 12— P(A) (W (X, )8 (D) NI Lr ;%)

The first term on the right-hand side can be estimated by the boundedness of the H*-
calculus in the unweighted case (see Theorem 5.4.1):

lP(A gl rw,;x) = Clglrw,;x) = ClfllLr®,,wy;x)-
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Therefore, it remains to show

|x— o rgw)| < Cllgl®.ix) = Clflr@e yi0- (5.25)

LP(R;X)

Step 2: To prove (5.25) we estimate the integrals over I'y in (5.24) separately. By
symmetry it suffices to consider I'y. Let § = (m —0)/2. For A = re!” with r > 0 and
h e LP (R, wy; X), we have the following Laplace transform representation for the resol-
vent (see [85]):

RAAh=A-A) " h=—e' "+ A h
) . . o [0 —is is
— —el‘s(re_“s+e’5A)_1h= eté/ g tre™ p-te Ahdt.
0

Observe that by (5.23) we can write
| / PR, Ay (x, ) dA|
I,

< / IR(re', A)(w(x,-)g)(x)dr
0

< / / le e Ae=tre™ (y(x, ) ) () xd tdr
0 0

1 / / e—tcos(é)A”w(x’ Vgl () e—trcos(ﬁ)dtdr
0 0

cos(0)
/ e‘”““”nw(x,-)gn(x)%.
0

=

1
cos?2(8)

Below we will write x = (x1,X) and y = (y1,)). Using the kernel representation of the
semigroup we can write

/ et DAy (1, g (0 L
0 t
°° dt
=/ e My x, gl —
0 t
e _ _ dt
:/ /d (Ge(x1 —y1, X =P —Ge(x1 + y1, X = PNw(x, I igy) ||ajy7
0 Jrd
« dt B
:/d/o (Gt(x1 = y1,7) — Ge(ar +y1,J7))7|1//(x1,y1)| lg(y, - Pldy
R+

-a [ [ ! - . i/ 1| 1gon 2
Vra Nl Lyl 1aly+Lylypd) yd

dy
—a

=: Cl/d 1!y, yIy) gy, =M
R4 1

_ d
= Cl/ 0(x1/y1,5) IIg(yl,x—yl)’?)II—y,
R? n
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where we used

o0 dt © 2 dt e s ds
/ Gy(x) — =/ @nt)~ V2 I == =/ @Am)~ V254273 Z2 574 = ¢y x| 4.
0 z 0 t 0 S

Now,

Hx—» /IRZ l(x1/y1,y) ||g(J/1,55—J’157)||%H

LP®Y)

s“xl /f(xl/Y1»%||g(y1’ —J’1J~’)||LP(Rd1X)Cj,yH

+

_ dn .
=~ /R N / £<x1/y1,y')||g(y1,->||LPW,1;X)?dy”m”

x1*—>/ /é(yl,y)ng(xl/yl, T m W]

LP([R4)

LP([Ry)

le/ /é(yl,if)yl(xl/yl)vng(xl/yl. My sy 2 o Mg

PRy, L)
< Sty |1 = CaryoPigea iy, e N 45
= Rd?l o y 1 ’ LP(R ; X) Lp(R+vdT)il) _)/1

:/ /“z(yl,ff)y”Hxlﬁxr’“g(xl,.)“ . ” dn g
rd-1 /o 1 1 PRS0 e, L) Ty,

= C2lIglpwe;x)-

Here we use -1 - p <y <2p—1to obtain

C2: _// [(J’lviﬂy’” n

1
ylyy =1
/ /[Redl I(yl—ljmd |(y1+1)7)|d) yJ’l N

| 1
=C3/ ( - )| w1y N o,
o ‘ym-=1 Iy+1i »n

where C3 = fRd-l a+ |}7|)’d dyif d = 2 and C3 = 1 otherwise. Combining the above esti-
mates we obtain the required estimate

pJ’I

Clglr®r,;x
Hx /r +¢()L)R(/1,A)(1l/(x, )g)(x)d)L”Lp(R+;X)s o

5.5.2. The Dirichlet Laplacian on R,
Proposition 5.5.4. Let p € (1,00) andy € (p—1,2p—1). Then Apyr, defined as
D(ADII‘) :_ Dlr (IR+! w’)/)X)) ADiI‘u:: u//)

is the generator of the heat semigroup on LP Ry, w,; X) given in Proposition 5.5.1.
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For the case y € (—p — 1, —1) we refer the reader to Section 5.5.5.

Proof. Let —A denote the generator of the heat semigroup T of Proposition 5.5.1. We
first show that Apir € — A, that is, WS (R4, wy; X) € D(A) and for u € WP Ry, wy; X)
one has —Au = Apj;;u. From Theorem 5.4.1 we see that for u € C3°(R4; X),

t
THu—u= / T(s)Apiruds.
0

Therefore, % (T(H)u—u) — Apjruin LP (R, wy; X) by strong continuity of (T'(s)) s=0. There-
fore, u € D(A) with —Au = Apj;u. Now for u € W;'if([&, wy; X), using Proposition 5.3.8,
we can find a sequence (u)p=1 in C(R4; X) such that u, — u in Wé’if([ﬂh, wy; X).
Then —Au, = Apirty, — Apirtt in LP (R4, w; X). Therefore, the closedness of A yields
that u € D(A) and — Au = Apj U.

Next we show —A € Apj;. Using Apj; € —A, for this it is enough that 1 + A is injective
and 1 — Apj; is surjective. Being the generator of a bounded analytic semigroup (see
Proposition 5.5.1), A is sectorial, implying that 1 + A is injective. For the surjectivity of
1 — Apjr we consider the equation u — Ap; u = f, for f € LP ([Rf, wy; X).

Let us first consider f € C°(R4; X). Let £ denote the odd extension of f. Clearly,

? €eCPR;X) c L ([R; X). So we can_deﬁne ue S®X) by u:= F L& — Eg], yielding
a solution of the equation u-u"= f. Since u is odd, it also satisfies the Dirichlet con-

dition u(0) = 0. By restriction to R, we obtain a solution u := U, € Wé’if (R4, wy; X) of
the equation (1 - Apj)u = f. As Wé‘if R, wy; X) is complete and C2°(R; X) is dense in
L? (Rf, wy; X) (see Proposition 5.3.8), it suffices to prove the estimate || u|| W2P R4, w,; X) <

"f”Ll’(Rﬁf,wy;X)'
To finish, we prove this estimate. As Apj; < A, we have u € D(A) with (1-A)u = f,

so u=R(1,A)f. It follows that [[ull Lr @, ,w,;x) < £l ®,,w,;x)- Since u'" = u- f we find
that U lLr®,,wy;x) S IfIlLp®,,wy;x)- By interpolation the same estimate holds for '
(see Lemma 5.3.14). O

Corollary 5.5.5. Letp e (1,00) andy € (p—1,2p—1). ForallA>0 and f € LP (Ry; wy; X)
there exists a unique u € Wé’if (R, wy; X) such that A\u—u" = f and

2 .
1-4 i
A2 1D ullr . wyix) Spoy 1 ILr ®5wy:- (5.26)
=0

J

Proof. This can be done in the same way as the second statement in Corollary 5.4.3. O

Combining Propositions and 5.5.4 and 5.5.3, we find the following result in the one-
dimensional case:

Corollary 5.5.6. Let X be a UMD space, p € (1,00) andy € (p—1,2p—1). Then —Apj; has
a bounded H* -calculus on LP (R, wy; X) with @ geo (—=Apj) = 0.
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5.5.3. The Dirichlet Laplacian on R¢

The main result of this section is the following theorem. Note that the case y € (-1, p—1)

was already considered in Theorem 5.4.1. See Section 5.5.5 for the case y € (—p—1,-1).
Before we state the theorem, let us first define the Dirichlet Laplacian Ap;; on LP ([Rf » Wy; X)

with pe(l,00)andye (p—-1,2p—1):

D(Apir) := WP RY, wy; X),  Apiu:=Au.

D1r

Theorem 5.5.7. Let X bea UMD space, p € (1,00) andy € (p—1,2p—1). Then the follow-
ing assertions hold:

1. Apj; is the generator of the heat semigroup from Proposition 5.5.1.
2. Apy is a closed and densely defined linear operator on L (R?, wy; X) with
D(Apir) = Dlr PRY, wy; X)
WP Ry, wy; LP(RY™Y X0) 0 LP Ry, wy; W2P R X))
with an equivalence of norms only depending on X, p,d,y.

3. Forall A =0, A — Apj; has a bounded H* -calculus with w ge (—Apjy) = 0.

Proof. Note that (3) follows from (1) by Proposition 5.5.3 and Remark 5.2.5. So we only
need to prove (1) and (2).
Below we will frequently use and Fubini’s theorem in the form of the identification

LPRY, wy; X) = LP R+, wy; LP (R X)) = LP R LP R+, wy; X)),

and that UMD-valued LP-spaces have UMD again. By Corollary 5.5.6, for the operator
A1,pir on LP (RY, wy; X), defined by

D(A1pir) := W2l Ry, wy; LP R X)), Aypirte:= 03w,

it holds that —A; pjr a bounded H*-calculus with w geo(—=A} pir) = 0. By [127, Theorem
10.2.25], for the operator A;_; on LP (R+, wy; X), defined by

d
D(Ag-1):=LP Ry, wy, WPRIL X)), Agoyui= ) du,
k=2
it holds that —A;_, a bounded H*°-calculus with w g~ (—A4_1) = 0. The operators A pir
and D(A4-;) are clearly resolvent commuting. Therefore, by Theorem 5.2.4 for the op-
erator sum Az = A1 pir + Ag—1 with D(ADH) = D(A1,pir) N D(Ag4-) itholds that — ADH is
a sectorial operator with angle w(— ADH) = 0. Moreover,

z .
e!pir = e!M1Dirpthd-1 >, (5.27)
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Writing H} for the kernel in (5.16) in dimension 1 and G¢~! for the standard heat
kernel in dimension d — 1, (5.27) and Proposition 5.5.4 give

[e™5ir £](x) = / H} (x1,¥1) / 1 IG‘;"I(%— P, Pdydy
0 R4

=/ Hi(x, ) f(y)dy
o

forall f e Lp([Rf, wy; X). Therefore, AZDir is the generator of the heat semigroup from
Proposition 5.5.1.
We now show that

DAL = WP Ry, wy; PRI X)) 0 LP Ry, wy; WP RITE X))

— WP (pd .
= Wi, R, wy; X)

Xz

with an equivalence of norms. Note that then Apj; = A%, and the assertions (1), (2)

Dir
follow. Since A3 = Ay pir + Ag—y with D(A%, ) = D(A1,pir) N D(Ag-1), the first identity
follows from the domain descriptions of A p;; and A;_;. The second identity follows

from Corollary 5.3.19. O

Corollary 5.5.8. Let X be a UMD space, p € (1,00) andy € (p—1,2p—1). Forallu e
Wé’if RY, wy; X) there holds the estimates

(Wl y2p@d 1y:x) Xopdy 1AU a4 ) (5.28)

Furthermore, for every f € LP(R%, wy; X) and A > 0 there exists a unique u € W’ R, wy; X)
such that A\u— Apjru = f and

1-1lal a
lalz<2|/1| 2 ”D u"L”(Rf,wy;X) S_,X,p,d,y ”f”U’([Rf,wy;X)' (529)
Proof. This can be done in the same way as Corollary 5.4.3, now using the explicit for-
mula wy (r+) = r¥ wy in the scaling argument. O

Remark 5.5.9. The second statement in Corollary 5.5.8 also follows from [143, Theo-
rem 4.1 & Remark 4.2]. In our setting it follows from operator sum methods involving
bounded imaginary powers (obtained through the H*-calculus).

Now using Theorem 5.5.7, as in Corollary 5.4.4 we obtain the following maximal reg-
ularity result for the weights wy, with y € (p —1,2p —1). The case y € (-1,p—1) was
already considered in Corollary 5.4.4.

Corollary 5.5.10 (Heat equation). Ler X be a UMD space. Let p,q € (1,00), v € A4(R),
Ye(p—1,2p—1). Let J € {Ry,R}. Then the following assertions hold:

(1) % — Apir is a closed sectorial operator on L9(J, v; LP (R4, wy; X)) which has a bounded
H™®-calculus with w e (4 — Apy) < Z.
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(2) ForallA>0andfeL9(], v;L’”(Rf, wy; X)) there exists a unique u € wbha, v, LP (Rf, wy; X))N
LU, v; WP RY, wy; X)) such that u' +(A—Api)u = f, u(0) = 0 in case ] = R,.. More-
over, the following estimate holds

1-1lal ) Ha
Z A2 D u"Lq(],y;LP(M,wy;X))

!
NN 2 g, 0,00 @4, wy:0) T
la|<2

5P,quv%d “f”Lq(],v;LP(Rf,wy;X))'

Remark 5.5.11. In the case v = 1, Corollary 5.5.10 (2) reduces to [144, Theorem 0.1],
where it was deduced using completely different methods. Let us mention here that in
[144, Theorem 0.1] and [75, Theorem 2.1] more general elliptic operators with time and
space-dependent coefficients have been considered.

Problem 5.5.12. Letp € (1,00).

1. Characterize those weights w for which e’ extends to a bounded analytic semi-
group on LP RY, w).

2. Characterize those weights w for which Apj; has a bounded H*™ -calculus on LP (R4, w).

3. Characterize those weights w for which Api; on LP (Rf, w) is a closed operator with
2,
D(Apir) = WP RY, w).

Given the results of Sections 5.4 and 5.5 it would be natural to conjecture that all
weights of the form w(x) = vo(x) + x; v1(x) with vy, v1 € Ap are included.

5.5.4. Extrapolation of functional calculus

As soon as one knows the boundedness of the functional calculus of a generator on a
space L?(R?,du) for some doubling measure g, then, if the heat kernel satisfies Gaus-
sian estimates with respect to u, one can extrapolate the boundedness of the functional
calculus to LP ([Rf, wdp) for p € (1,00) and w € Ay (u). Here Ay (p) is the weight class as-
sociated to the measure p on R%. The above is presented in the setting of homogeneous
spaces in [83] in the unweighted setting and in [171, Theorem 7.3] in the weighted set-
ting. Extension to the setting without kernel bounds can be found in [19, 27].

In order to apply [171, Theorem 7.3] to our setting, we set du(x) = x; dx. The reason
to take this measure is that the kernel H,(x, y) as defined in (5.15) has a zero of order one
at x; = 0. Then y is doubling and one can check that wg (x) := x{ is in A, (u) if and only
if @ € (=2,2p —2). From Theorem 5.5.7 we know that on L?(R, u) one has —Apj; € A
with w e (—Apiy) = 0. So in order to extrapolate the latter to LP ([Rf, wdy) for p € (1,00)
and w € Ap(uw) it suffices to check the kernel condition of [171, Theorem 7.3]. For this
(due to (5.23)) it suffices to show that there exist constant C, ¢ > 0 such that

Hi(x,y) _ Ce eyt

< . x,yeR? r>0. 5.30
X pB ) TYER (530
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Here the nominator x; is due to the choice of the measure p. First consider x; > 2,
After renormalization the condition (5.30) is equivalent to

—lx1-y? —lx1+y? , ;
e —-e I _72 ol l2
e XTI < cemelxyl,

X1
. _e~tan .
Since lex—l < min{l,4y}, we find
e_lxl_yll2 _e—|x1+y1|2 = =2 21— e 4%y 2
e IXT=VI7 = plx=yI < g 1Y

X1 X

as required. The case x; € (0, t!/?) can be proved by similar argument. As a consequence
we obtain the following result.

Theorem 5.5.13. Letdu = x1dx, p € (1,00) and w € Ap(u). Then the heat semigroup
given by (5.15) extends to an analytic semigroup on L (R, w) and its generator — A has
the property that A has a bounded H* -calculus with o g (A) = 0.

Note that this does not directly imply the same for —Ap;; because it is unclear whether
A = —Apj; in the above setting, because we do not know whether the domains coincide.
Note that the approach presented in Theorem 5.5.7 also works for weights of the form
w(x) := x] v(X) with v € Ap,.

Instead of applying Theorem 5.5.7 in the above situation one could also apply the
simpler Theorem 5.4.1 with du(x) = xf dx with € (0,1). Indeed, then wy € Ap(u) ifand
onlyif -1 <a+ B < Bp+ p— 1. Again one can check condition (5.30) with left-hand side
x_lﬁ |H,(x, y)| and for the new measure u. Therefore, choosing f arbitrary close to 1, we

1

obtain —Apj, € A on LP (Rf, wy) for y € (=1,2p — 1). Finally, let us remark that some
work needs to be done in order to obtain Theorem 5.5.13 in the vector-valued setting
using the above approach.

5.5.5. Some comments on the casey € (—p—1,-1)

In Theorem 5.4.1, Proposition 5.5.4 and Theorem 5.5.7 we have characterized the gener-
ator of the heat semigroup from Proposition 5.5.1 for the case y € (-1,p—1)U(p—1,2p—
1) as the Dirichlet Laplacian Apj; with domain D(Apy;) = Wé'if (Rf, wy; X). In this sub-
section we will discuss the failure of this domain description for the case y € (-p—1,-1).

Let us start with the one-dimensional case. The point where the proof of Propo-
sition 5.5.4 does not work for the case y € (—p —1,—1) is the fact that F,qq(R+; X) Q

WP (R, wy; X) in that case, which is illustrated by the following example.

Example 5.5.14. Let p € [1,00) and y € (-p —1,-1). Suppose u € ¥(R;; X) satisfies
u(0) = u"(0) = 0. Then u, u” € L” (R, wy; X), but

ue WP Ry, wy; X) < u'(0)=0.
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Proof. Note that u, u" € W()l’p(R+, Wy p; X). So u,u” € LP (R, wy; X) by Lemma 5.3.2 (or
Corollary 5.3.4). In the same way, u' € L (R, wy; X) if 4'(0) = 0. On the other hand,
u' € LP (R, wy; X) only if u'(0) = 0 by (the proof of) Lemma 5.3.1 (2). O

As a consequence of the above example,
WP Ry, wy; X) G {ue LP Ry, wy; X) i U € LP Ry, wy; X)} (5.31)

for p € [1,00) and y € (—p—1,—1), despite of the interpolation inequality from Lemma 5.3.14.
Note that here W2P (R, wy; X) = W;’if([R{Jr, wy; X).

A duality argument yields that the right-hand side space in (5.31) actually is the "cor-
rect” the domain for the Dirichlet Laplacian Ap;; on LP (R, wy; X) wheny € (-p—1,-1):

Proposition 5.5.15. Let p € (1,00) andy € (—p—1,-1). Then Ap;,, defined as
D(Apiy) :={ue LP(Ry, wy; X) : u” € LP Ry, wy; XD}, Apjrue:=u",
is the generator of the heat semigroup on L Ry, w,; X) given in Proposition 5.5.1.

Proof. Lety' = p_—j/l € (p' - 1,2p' - 1) be the p-dual exponent of y and let Af,, be the
Dirichlet Laplacian on LY R, wyr; X *):

D(Ai)lr) = W]?)'p (R-H wy’;X*); A],Jiru = u”.

ir

Then, viewing L (R, wy; X) as closed subspace of [L’”' (R4, wy/;X*)] *, we have that Apj,
coincides with the realization of [Af)ir] *in LP(R,, wy; X). To see this, denote the latter
operator by A. Given v € D(Apjr), we have, for all u in the dense subspace C°(R,) ® X*

2,p' 2,p' .
of D(AL,) = WP Ry, wy; X*) = Wy'P (R4, wy; X*) (see Proposition 5.3.8),
li —n
(Apj Uy U>(LP'(R+,wy/;X*),LP(R+,wy;X)) ={u’, V>(LP’(Rhwyl;x*)'LP(Rhwy;X))
=W, V) o®,;xH2 ®,:X)
=, V") o®,:x).2 ®,:X)
_ "
= WV 00 @y, LP @, w007

showing that Ap;; [A;)ir]*, and hence Ap;; € A. Given v € D(A), we have, for all u €

CP®,)®X* c DAL,
(U, AV) @R, X2 R,;X) = <u’AV)(LP'([R{+,er;X*),LP[[R+,wY;X))
Al
= Bpirth U (10! @ 10,15, LP @ 10y
o
= (U VY b @y x0) L @4y 0)

"
= (U, V) @R.;X*),2'R;X))

I
=AU V) (@R;X*),2 Ry X))
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and thus Av = v”, showing that A < Apj;. Since the heat semigroup on L” (R, wy; X)
from Proposition 5.5.1 is the restriction to L” (R4, wy; X) of the strongly continuous ad-
joint (in the sense of [239, page 6]) of the heat semigroup on L” ®,, wy; X*) from Propo-
sition 5.5.1, the required result follows Proposition 5.5.4 and [239, Theorem 1.3.3]. O

Let us next turn to the d-dimensional case.

Proposition 5.5.16. Let X be a UMD space, p € (1,00) andy € (—p—1,-1). Then Apj,
defined as

D(Apir) = (ue LP®RY, wy; X) : Aue LPRY, wy; X)), Apirte:=Au,

is the generator of the heat semigroup on LP (R, wy; X) given in Proposition 5.5.1. More-
over,
D@Api) = {ue PRy, wy; WP RIS X)) 03w e P RY, wy; X

with an equivalence of norms only dependingon X, p, d, y.

Proof. The first statement can be proved in the same way as Proposition 5.5.15, using
Theorem 5.5.7 (1) instead of Proposition 5.5.4. The second statement can be proved
using the operator sum method as in Theorem 5.5.7, using Proposition 5.5.15 instead of
Proposition 5.5.4. O

5.6. Apjr ON BOUNDED DOMAINS

In this section we will use standard localization arguments to obtain versions of The-
orems 5.4.1 and 5.5.7 for bounded C?-domains ¢ < R?. In particular it will be shown
that the Dirichlet Laplacian Ap;; on LP (&, wy) with domain Wéf (0, wy) is a closed and
densely defined linear operator for which —Ap;; has a bounded H*°-calculus of angle
zero. Moreover, (e“Dir) zec, is an exponentially stable analytic Cy-semigroup.

5.6.1. Main results

Let the Dirichlet Laplacian Ap;; on LP (0, wf ; X) be defined by
Y e WP 0. oy e—
D(ADII‘) = WDir (ﬁ, w}/ ; X), ADH-LL.— Au.

Here, w{,ﬁ (x) = dist(x,00)".
The main result of this section is the following version of Theorems 5.4.1 and 5.5.7
for bounded C?-domains.

Theorem 5.6.1. Let & be a bounded C*-domain, X a UMD space, p € (1,00) and y €
(-1,2p-1)\{p—1}. Then

(1) Apj is the generator of an analytic Cy-semigroup on LP (O, wf ; X).
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(2) Apir is a closed and densely defined linear operator on L” (O, wf ; X) with

D(Apir) = Wl (0, wf; X)

ir
with an equivalence of norms only dependingon X, p,d,y and ©'.

(3) For every ¢ > 0 there exists a A € R such that for all A = A the operator A — Api; has a
bounded H* -calculus with w gjeo (A — Apjir) < .

In the scalar case Theorem 5.6.1 implies the following result where we obtain addi-
tional information on the value of .

Corollary 5.6.2. Let & be a bounded C?-domain, p € (1,00) andy € (-1,2p—1)\{p—1}.
Then the following assertions hold:

(1) o(—Apir) ={A;:i € Ng}, whereb, >0 and A; = § s are not depending on p € (1,00)
andye(-1,2p-1D\{p-1}.

(2) ForallA> -6 4, A — Apjir has a bounded H* -calculus of angle zero.

3) Apj is a closed and densely defined operator on LP (R, wf ) for which there is an
equivalence of norms in D(Apjr) = Wé’if (O, wﬁ) and Apjir generates an exponentially

stable analytic Cy-semigroup on LP (0, wyﬁ ).

(4) ForeveryA=0and f e LP(O, wf ) there exists a unique u € Wé}f 0, wf ) such that
Au—Apiru = f, and there exists a constant C 07,6 such that

_1
Z A+D! glaI“D“uHLp(ﬁ,wf) < pryyﬁﬂf””(ﬁ,wyﬁ).

la|<2

Proof. (3): All assertions follow from Theorem 5.6.1 except the exponential stability. The
latter will follow from (2).

(2): Fix ¢ > 0. Then, by Theorem 5.6.1, for A > 0 large enough, 1 — A € A with
wpeo (A —A) < ¢. Next we will show that this holds for small values of A as well. For this
we first prove (1). Note that

compact
s

D(Api) = Wh! (0, wf) — WP (6, w))

ir

LP(6,wy),

where the compactness follows from [194, Theorem 8.8]. We obtain that (1 — Apip)~Lis
compact for A € p(Apj;). By Riesz’ theory of compact operators (see [214, Chapter 4]),
we obtain that (1 — Ap;) ! has a discrete countable spectrum {u; : 1 = 0} and for every
i #0, u; is an eigenvalue of (1 — Apir) L. Moreover, 0 is in the spectrum of (A — Apj;) ™!
and is the only accumulation point of the spectrum. We find that o (—Apj;) = {,ul.‘1 -A:
i = 0 with y; # 0}. In the case p =2 and y = 0, it is standard that the spectrum has
the required form as stated in (1) (see e.g. [87, Theorem 6.5.1]). Now arguing as in [57,
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Corollary 1.6.2] one sees that the spectrum is independent of y € (-1,2p—-1) \ {p—1} and
p € (1,00).

By the analyticity of z— (z—A)~! for C\ (oo, —4] and the sectoriality of u — A with
angle < ¢, it follows that for any A > —§ 5 and any ¢’ > ¢, the operator A — A is sectorial
of angle < ¢'. Therefore, Remark 5.2.5 implies that for any 1 > =64, A — A € A with
wg~(A—A) < ¢'. Finally, since ¢ is arbitrary (2) follows.

(4): By the sectoriality of — %6 ¢ — Apir, we have

1
(A + 266’)” u”Lp(ﬁ,w};ﬁ) = C”f”Lp[ﬁ‘w}(?)
for all A = 0. On the other hand,

1803l 1y 1) S €+ DUl (10

2,p

Therefore, since D(Apy) = Wi ( 0, wf ) and Apj;; is invertible we can deduce

<
”u"VVIZ)'i‘f(ﬁ,w}}ﬁ) ~ ”f”Lp(ﬁ,wyﬁ)‘
Finally, the estimates for the first order terms follow from Lemma 5.6.10 below. O

Asin Corollaries 5.4.4 and 5.5.10, Corollary 5.6.2 has the following consequence. This
time we can allow A = 0 since the semigroup is exponentially stable. A similar maximal
regularity consequence can be deduced from Theorem 5.6.1 in the X-valued case, but
this time with additional conditions on A.

Corollary 5.6.3 (Heat equation). Letp,q € (1,00), ve A4(R) and lety € (-1,2p-1)\{p—
1}. Let J € {R4,R}. Then forall A =0 and f € L9(J,v; LP (O, wf)) there exists a unique
ue Whi(J,v; LP(0, wf)) NLI(J,v; Wé'if(ﬁ, wy)) such that u' + (A - Api)u = f, u(0) =0
in the case ] = R... Moreover, the following estimates hold

+ “u”Lq(],v;Wzi"(ﬁ,wyﬁ)) Sp,q,u,y,d,X ”f”Lq(],V;L”(ﬁ,wf))’

u . (73
I ||W1,q(],y,Lf’(ﬁ,wY ) Dir

and

l—llal a
\|Zl(/1+ b ””Lﬂu,v;mﬁ,wf’)) SpavrdX ”f”Lff(l,v;Lv(ﬁ,wf’))'
als

Remark 5.6.4. Maximal regularity results have been obtained in [140, Theorem 2.10],
[139] and [138, Theorem 3.13] for the case y € (p —1,2p — 1) for very general elliptic op-
erators A with time-dependent coefficient on bounded C'-domains. The boundedness
of the H*°-calculus in the weighted case seems to be new for all y € (-1,2p - 1).

5.6.2. The adjoint operator [Ap;]*

Recall that every UMD space is reflexive. Let X be a reflexive Banach space, p € (1,00)
and y € R. Then LP (&, wy; X) is areflexive Banach space with [LP (7, wy; X)]* = 4 (O, wys; X™)
(see [126, Corollary 1.3.22]). Here y' = p—__yl and we use the unweighted pairing

f.8) = /ﬁ (0, g () dx.
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Proposition 5.6.5. Let X be a UMD space, p € (1,00) andy € (-1,p—1). Let ADH be the
Dirichlet Laplacian on LP (O, wy; X) and let Ap,, be the Dirichlet Laplacian on L” (0, wyr; X*).
Then [Api]™ = Ap,.-

Proof. Integration by parts yields that

! —
(Apjthy V>(Ll"(IR{Jr,er;X*),LF’(RJr,wY;X)) = <u’AV>(Lﬂ’(R+,wyr;X*),LV(R+,wy;X)>

for all u € D(A};,) and v € D(Apjy), showing that Ap;, < [A
first inclusion glves AL =[A

and A;Du < [Apir]*. The
O

Dlr]

** < [Apil*. Hence, [Apj]* = A

Dir — D1r] Dir*

Proposition 5.6.6. Let X be a UMD space, p € (1,00) andy € (p—1,2p—1). Let Apj; be
the Dirichlet Laplacian on LP (0, wy; X). Then

DUApi) ) = {ue V'@, wy; X*): Aue 1V (0, wps XH}, [Api)“u=Aw.

Proof. This can be shown in the same way as in the proof of Proposition 5.5.15. O

5.6.3. Intermezzo: identification of D((—Apj;) 5)

In order to transfer the results of the previous sections to smooth domains (and in par-
ticular to prove Theorem 5.6.1) we will use standard argument. However, in order to
use perturbation arguments we need to identify several fractional domain spaces and
interpolation spaces. In principle this topic is covered by the literature as well. However,
the weighted setting is not available for the class of weights we consider and requires
additional arguments.

We start with a simple interpolation result for general Aj,-weights. In the next result
we extend the definition of (5.8) to all k € Ny in the following way

WP R, wiX) = ue WRP RS, w; X) : tr(A w) = 0V j < k/2).

Proposition 5.6.7. Let X bea UMD space. Let p € (1,00) and let w € A, be even. Then for
any k€N and j €10,..., k} the following holds:

(LPRY, w; X0, WiEL RY, w; X))

Ip d .
o =Wl RY,w; X).

b
% (A,Dir

In particular, for any k € Ny, D((—Apjir)*/?) = (A Dlr) R, w; X).

Proof To identity the complex interpolation spaces recall from Lemma 5.4.2 that Eyqq :
(A Dlr) (IR S w; X) — Wokéﬁ (R?, w; X) is an isomorphism for k € {0,1,2}. Moreover, from
(5.17) we see that Ap;; commutes with Ey4q. Therefore, the above isomorphism extends
to all k € Np.
Therefore, by a standard retraction-coretraction argument (see [235, Theorem 1.2.4]
and see Lemma 4.5.3 for explicit estimates), it is sufficient to prove

[Lgdd(Rd'W;X)vW PR, w; X)]] = Wo]dﬁ(ﬂ%d, w; X).
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Define R: WP R, w; X) — W,V (RY, w; X) by Rf (x) = (f (x1,%) — f(~x1,%))/2 and let
S: Wil RY, w; X) — WP R, w; X) denote the injection. By the symmetry of w, R is
bounded. Moreover, RS equals the identity operator, and since by Proposition 5.2.8 and
Theorem 5.3.18 we have [L? (R¢, w; X), WEP([RY, w; X)]; = WiP([RY, w; X), the required
identity follows from the retraction-coretraction argumlént again.

The final assertion is clear for even k. For odd k = 2¢ + 1 with ¢ € Ny by Proposition

5.2.3, Theorem 5.4.1 and the result in the even case we can write

D((-Apin)¥"?) = [LPRY, w; X), D((-Apin) )] k

2€
= [LPRY, w; X), (M;r)(uqzi,w;xn%: W R, w; X).

We can now prove the two main results of this section.
Theorem 5.6.8. Let X be a UMD space. Let p € (1,00) andy € (p—1,2p—1). Then

D((-Api)'"?) = [LPRY, wy; X), D(Apir)] 1 = WP RS, wy; X).

Dol

D((-A3) = [LP (RY, wy; X), DIAA)]3 = {ue WP (RY, wy; X) : tr(w) = O}

3
4

Proof. By Theorem 5.4.1 —Ap;; has bounded imaginary powers. Therefore, by Proposi-
tion 5.2.3 D((—Apir)?'*) = [LP R, wy; X), D(ADH)] I for all integers 0 < j < k. It remains

to identity the complex interpolation spaces. For d =1 we can use Proposition 5.3.16
and the fact that 14 p(R+, wy; X) = D(Apyr), and W, p(R+, wy; X) = whb p(R+, wy; X) for
Y > p—1. For d = 2 we can use the d = 1 case and standard results about A;_; combined
with [86, Lemma 9.5] to obtain
D((~Apin'"?) = D(2 = Apin''?) = D(( = Apir, )" N D1 - Ag-1)"'?)
= WP Ry, wy; LP RS X0) 0 LP Ry, wys WHP R X))
= WP RY, wy; X).
To identity D((—Apj;)®’?) in the case y > p — 1 we first consider d = 1. By Theorem
5.5.7 and the previous case one has
D((~Api)*?) = {ue D(ADH) : Apirtt € D((=Apin) ')}
= (ue WP Ry, wy; X) s tru=0,u" € WYP (R4, wy; X))}
={ue WP RY, wy; X) : tr(u) = 0.

If d =2, then

D((-Api)*"®) = D((1 - Api)*')
={ue PR}, wy): (1 - Api)u € D(2 - Apin) "), tr(u) = 0}
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={ue WP RY, wy; X): 1 - Apiue WP R, y; X1,
Observe that
WP RE, wy; X) = WP Ry, wy; IP R X)) 0 LP Ry, wy; WHP R X)).

Thus by the d = 1 case, the boundedness of Apj 1 (1 — Api) ™! and Ag_1 (1 — Apir) ™! (see
Corollary 5.5.8), we obtain that for u € Wé’if(lR{‘f, wy; X), we have (1-Api) u € WP (RY, wy; X)
if and only if

ue W Ry, wy; LP R X)) n W2P Ry, wys WHP R X))
ALY Ry, wy; WP RV X)) n WP R, wy; W R X))
=W RY, wy; X),

with the required norm estimate. Therefore, the required identity for D((—Apj;)3/?) fol-
lows. O

5.6.4. Localization: the proof of Theorem 5.6.1

As a first step in the localization we prove the following result for Ap;; on small deforma-
tions of half-spaces.

Lemma 5.6.9. Let X be a UMD space. Let p € (1,00) andy € (-1,2p—1)\{p —1}. Forall
@ > 0 there exists an € > 0 and A > 0 such that if O is a special C?-domain with [0 1 < €
(see (5.2.1) and (5.2)), then the following assertions hold for Api; on LP (O, wﬁ; X):

(1) A— Apir has a bounded H* -calculus with w o (A — Apir) < .

(2) Apir is a closed and densely defined operator on LP ([Rf, f ; X) for which there is an

equivalence of norms in D(Apy) = Wéif(ﬁ, wﬁ;X).

Proof. Let 0 be a special Cf-domain with [0] 1 < €. Then we can choose & € Cg(Rd’l)
as in (5.3) with || h”cll](md—l) <e.
: D . a2l md. 2 d.
Let ® be asin (5.4). Let A™: Wi© (RY; X) — L (RY; X) be defined by

A =0 . A@Y,,

where ® is as below (5.3). Let A®. denote the restriction of A® to D(AS, ) = WP R, 75 X).
By the above transformations, it suffices to prove the result for A®on LP (Rf, f ; X). For
this we use the perturbation theorem [58, Theorem 3.2].

Without loss of generality we can take € € (0, 1). A simple calculation shows that

A% = A+|Vh|*05 —20,(Vh-V4_1) —(AR)6, (5.32)
B
=:A =:
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We first apply perturbation theory to obtain a bounded H*°-calculus for Ap;; + A. By the
assumption we have

!
"Au”L”(Rf,w{,ﬁ;X) = C£||u||w2.p(|Ri,w1¢/ﬁ;X) =Celd- A)u”LP(Rf,wYﬁ;X)’

where in the last step we used Corollary 5.5.8. This proves one of the required conditions
for the perturbation theorem. In particular, this part is enough to obtain that for any
¢ > 0 and for € small enough D(Apj; + A) = D(Apjr) and 1 — Apj; — A is sectorial of angle
< ¢ (see [168, Proposition 2.4.2]).

In order to apply [58, Theorem 3.2] it remains to show AD((1 — Apint*® < D1 -
Apin®) and

11— Api)* Aull < CIl(1 — Api) " %ull, we D((1 - Api)'*®). (5.33)

for some a € (0,1). We will check this for ¢ =1/2. Forany u € ngf(R+, wy 'X) we have

2
”Au”WLp(Ri,w},ﬁ;X) < C”hnci ” u”W3'l’(Rf,w}ﬁﬁ;X)'

Therefore, by Proposition 5.6.7 and Theorem 5.6.8, condition (5.33) follows. Here we
used the standard fact D((—Api)®*) = D((1 — Api)®), which is true for any sectorial op-
erator and a > 0. We can conclude that for € € (0,1) small enough, 1 - Ap;;— A has a
bounded H*-calculus of angle < ¢.

To obtain the same result for A —Ag for A > 0 large enough it remains to apply a lower
order perturbation result (see [149, Proposition 13.1]). For this observe

1,
IIBMIILp(Rg,wf;X) = IIhllci |Iu||W1,p(Rg,wf;X) = Cllhllci, ue Wle’(R+, wy ;5 X).
The required estimate follows since by Proposition 5.6.7 and Theorem 5.6.8,

PRY, w; X) = LP RY, w?; X0, Wik RY, w?; X))

D1r Dir

Nol—

= [LPRY, w{; X), D1 - Apir = A)ly = D((1 - Apir — A)'/?),

3
where in the last step we applied Proposition 5.2.3.
The two perturbation arguments give A > 0 such that 1 — ADH) has a bounded H*°-
calculus with w g (A— ADH) < ¢. Moreover, there is an equivalence of norms in D(ADH) =
D(Apjr) = W2P (R? %, wy; X). The desired results follow. O

The following lemma follows from Proposition 5.6.7 and Theorem 5.6.8 under a change
of coordinates according to the C2-diffeomorphism ® from (5.4) and a standard retration-
coretraction argument using (5.5).

Lemma 5.6.10. Let X be a UMD space. Let O be a bounded C?-domain or a special C?-
domain, p € (1,00) andy e (-1,2p—-1)\{p—1}. Then

(L7, wy; X), Wk (0,w]; X)]y = WX (0, wy; X).
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The next step in the proof of the above theorem is a localization argument. This
localization argument is a modification of the one in [58, Section 8] combined with the
one in [145, Ch. 8, Sections 4 & 5] and results in the next lemma. On an abstract level
the localization argument takes the following form.

Lemma5.6.11. Let A bea linear operator on a Banach space X, A a densely defined closed
linear operator on a Banach space Y such that A € #6%°. Assume there exists bounded
linear mapping?? : Y — X and .9 : X — Y such that the following conditions hold:

(1) @29 =1
(2) £D(A) < D(A) and ?D(A) < D(A).

(3) B:=(FA-AF)P:DA) — Y and C := F(AP — P A) : D(A) — Y both extend to
bounded linear operators [Y,D(A)]lg — Y for some@ € (0,1).

Then A is a closed and densely defined operator and for every ¢ > w e (A) there exists
1> 0 such that A+ p e A withwgeo (A+ ) < ¢.

Proof. Let ¢ > wpye (A). By a lower order perturbation result (see [149, Proposition
13.1]), there exist fi > 0 such that A+ B + fi € A with wp~(A+ B+ i) < ¢. From the
definition of B one sees

FA=(A+B). onD(A).

Since A+ B is closed, the injectivity of .# implies that A is closed. Since 2 is surjective,
we have

X=2Y =2D(A) < PD(A) < D(A)

Therefore, A is densely defined. Now we will transfer the functional calculus properties
of A+ B to A. For this we claim that for p large enough and A € C\ X we have A € p(A+p)
and

RAA+u) =PRANA+B+u).7.

This clearly yields that A+ p has a bounded H*°-calculus of angle < ¢.
In order to prove the claim we first show that given A € p(ﬁ + B), for u € D(A) and
f € X itholds that

A-Au=f = u=2RA,A+B)If. (5.34)

Indeed, if (A — A)u = f, then since .#(A— A) = (A - A— B).# on D(A), we obtain (A —
A-B).#u = .2 f and hence the required identity for u follows. We next prove that if
PR(A, A+ B).# : X — D(A) is injective, then (5.34) becomes an equivalence. and in this
case 1 € p(A) and

R(A,A)=2PR,A+B).S (5.35)

To prove the implication <=, define u = 2R(A, A+ B).# f and g = (A — A)u. Then by the
implication = we find u = 2R(A, A+ B).# g and thus by injectivity f = g as required
and additionally (5.35) holds.
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Next we prove that there exists u = g > 0 with the property that for all A € C\ Zy,
PR(A, A+ B+ u).¥ is injective. Let f € X be such that 2ii :== PR\, A+ B+ u).Zf = 0.
Observing that B = B.#2, we get Bii = 0. So (A+u—A)ii=.2f—Bii= % f, or equiva-
lently, i = R(A, A+ p).# f. It follows that

0=FA+pu-NPii=(FPA+u—A)+CRNA+w.If
=9f+CRAA+uIf.

Estimating

ICRA, A+ w2 flly SIRA, A+ I flliy piy,
<IIRA, A+w2 fIIVCIRA, A+ u)ffll?)@
SIA= O NE flly So 12 flly,

we see that CR(A, A + W& is a contraction from X to Y when p is sufficiently large, in
which case .# f = —CR(A, A+ p).# f implies that .# f = 0 and hence f = 0. This yields the
required injectivity. O

Proof of Theorem 5.6.1. In this proofwelet A= Ap;; on &. Lete > 0be asin Lemma 5.6.9.
Choose a finite open cover {V;;}Y | of 00 together with special C2-domains {0,}"_,
such that

onVy,=0,nV, and 00NV,=00,NnVy,, n=1,...,N,

and [0z <eforn=1,...,N. Let {n,,}ﬁ’:l c CgO([red), Y, 2 and .# be the objects associ-
ated to the above sets as in Subsection 5.2.2. Define the linear operator A: D(A) c Y —
Y as the direct sum A := EB]rY:O A, where Ay : D(Ag) © LPRY; X) — LP(RY; X) is defined
by

D(Ag):=W?*’(RY) and Au:=Au

and where, for each n € {1,...,N}, A, : D(A,,) < LP(O,, wyﬁ";X) — LP (0O, wf";X) is
defined by
D(An) =Wl (O, wl™;X) and Ayu:=Au.

Furthermore, we define B : D(A) — Y by Bu := ([A,nn]u)lryzo and C: D(A) — X by
Cu:=YN (1A n,a.

By Lemma 5.6.9, there exists > 0 such that u— A, € A with vy (u— A,) < ¢
forn=1,...,N. Since — A € A with w e (- Ag) = 0, it follows that A — U € A with
e (A— ) < ¢ (see [149, Example 10.2]). Moreover, by a combination of Lemmas 5.6.9
and 5.6.10, [Lp(ﬁn,wf";X),D(Zn)]% = WP (0, wl"; X). Since [LP REY), D(Ag)]y =
WP (R% X) by [126, Theorems 5.6.9 and 5.6.11], it follows that

N
Y, D(A)], = [LP ®R%; X), D(A)]) & DILP (0, wy"; X), DA,
n=1
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=W"PR%:X) @ é WP (O, 0l X). (5.36)
n=1
Note that .# maps D(A) into D(A) and that .# Au = A.# u+ Bu for every u € D(A). Also
note that 22 maps D(A) to D(A) and that A2 u = 22 Aui + Cu for every ©i € D(A). Since
each commutator [A,7,] is a first order partial differential operator with Cg°-coefficients,
it follows that .# A— A.# extends to a bounded linear operator from Wl;’if (0, wf ; X) to
Y. Since £ is a bounded linear operator from [Y,D(ﬁ)]% to er)'if(ﬁ, wfyﬁ;X) in view of
(5.36), it follows that (£ A— A.#)Z extends to a bounded linear operator from [Y, D(A)] 1
to Y. Similarly we see that .#(A2? — 2 A) extends to a bounded linear operator from
[Y,D(A)] 1 to Y. An application of Lemma 5.6.11 finishes the proof. O

5.7. THE HEAT EQUATION WITH INHOMOGENEOUS BOUNDARY CONDITIONS

In this section we will consider the heat equation on a smooth domain ¢ < R% with
inhomogeneous boundary conditions of Dirichlet type. In particular, Theorem 5.1.2 is
a special case of Theorem 5.7.16 below. The main novelty is that we consider weights of
the form w},ﬁ(x) = dist(x,00)" with y € (p — 1,2p — 1), which allows us to treat the heat
equation with very rough boundary data.

5.7.1. Identification of the spatial trace space
We begin with an extension of a trace result from [159] to therange y € (p—1,2p—1).

Theorem 5.7.1 (Spatial trace space). Let & be eitherR? or a bounded C*-domain. Let X
be a UMD space, £ € N1, k€ Np, p,g € (1,00), ve Ag(R) andy € (-1,2p—-1) \{p—1}. Put
wy = w}ff . Then try is a retraction from

WO R, v; LP (O, wy; X)) N LI R, v; WEP (0, wy; X))

to .
£ 1ty
55

Liy
P
Fpq

k—
®,v; LP@0; X)) N LR, v; B, , * (00;X)).
In order to prove this we need a preliminary result. On the compact C2-boundary

00, we define the Besov spaces B;,q(aﬁ; X), pe (1,00), g € [1,00] s€(0,2)\ {1}, by real
interpolation:

B} ,(00;X):= (WP (00, X), W' "P(00;X))p,q, s=6+n,0€(0,1),ne0,1}.

In the proof of this theorem we use weighted mixed-norm anisotropic Triebel-Lizorkin
spaces as considered in [159, Section 2.4]/Section 6.3.4 (see [156] for more details); for
definitions and notations we simply refer the reader to these references.

As in the standard isotropic case (see [163]), we have:
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Lemma5.7.2. Letl,keNy, p,qe (1,00), ve Ay(R) andy € (-=1,00). Then

Fl’(%'%)
P,@,1,(d, 1)

— W R, v; LPRY, wy; X)) N LI R, v; WEP RY, wy; X).

RY xR, (wy, v); X)

Proof. We cannot reduce to the R?-case directly since L” (R, wy; X) > Ll (R%; X) for
y = p—1 and therefore cannot be seen as a subspace of the distributions on R?. However,
we can proceed as follows. An easy direct argument (see [182, Remark 3.13] or [156,
Proposition 5.2.31]) shows that
"f“L‘?([R,y;LP(Rd,wY;X)) S 0,(

11
11,
ke d .
Fip 1,0, R (wy, 02X

forall f € #(R? x R; X). Using
LR, v; LPRY, wy; X)) — 2’ RY x R; X)

11
and using density of (R4 x R; X) in F_ ¥’

d ic-
L) (R* x R, (wy, v), we find that the restric
tion operator

. d . d .
R:2' R xR X) = D' RE X R; X), f = fipd o
restricts to a bounded linear operator
o)
R: F(p,q),l,(d,l)

By [159, Section 2.4] (see [156, Proposition 5.2.29]), this implies that R is also bounded
as an operator

R xR, (wy, v); X) — LI®R, v; LP RY, wy; X)).

R: Fl,(i,%)
“pa,1,(d,1)

— WM R, v; L RY, wy; X)) n LR, v; WP RY, wy; X)).

R xR, (wy, v); X)

The desired inclusion now follows. O

With a similar argument as in the above proof one can show the following embed-
ding for an arbitrary open set & < R%:

By (0, wy; X) — F§ (0, wy; X) = WEP (0, wy; X), (5.37)

where for keNp, y > —-1and p € [1,00).

In the proof of Theorem 5.7.1 we will furthermore use the following Sobolev em-
bedding, which is a partial extension of Corollary 5.3.4 to the case k = 0, obtained by
dualizing Corollary 5.3.4.

Proposition 5.7.3. Let X be a UMD space, p € (1,00) andy € (p—1,2p—1). Let O be a
bounded C' -domain or a special C! -domain. Then

LP(O,wy; X) — H P (O, wy_p; X).
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To prove this embedding we need a simple lemma.
Lemma5.7.4. Let X be a UMD space, p € (1,00) and let w € Ay be even. Let O <R bea
bounded C'-domain or a special C! -domain. Then H VP (0, w; X) is reflexive and
2(0;X) % H WP (0, w;X) % 90, %), (5.38)

Under the natural pairing, we have

D0, X)L H VP (0, w; 01" 2 2'(0;,X7), (5.39)

[H™VP (0, w; X)1* = WhP (0, w'; X7). (5.40)
Proof. The reflexivity of H -LP (@, w; X) follows from Proposition 5.2.8. The continuity
of the inclusions in (5.38) are obvious. The density in the first embedding of (5.38) holds

because of Lemma 5.3.5 and LP (0, w; X) < H Y0, w;X). The density of the second
embedding in (5.38) follows from the density of 2(€; X) in 2’ ('; X). The dense embed-
dings (5.39) follow from (5.38), 2(€; X)* =2'(0; X*) and 2’ (0; X)* = 2(0; X*) and the
reflexivity of HLVP (0, w; X). To prove (5.40), by density (see Lemma 5.3.11) it suffices to
prove

||f||[H*1yp(ﬁ,w;X)]* ~ ”f“wl,p’(Rdyw!;X*); fE@(ﬁ;X*). (5.41)
Let f € 2(0; X™). Then, by Proposition 5.2.8, for all g € 2(0’; X),

|<fv g>| = ”f”Wl,p’(Rd,wr;X*)”g”H—Lp(Rd,w;X)-

Taking the infimum over all such g and using (5.38), the estimate < in (5.41) follows. For
the converse we use Proposition 5.2.8 to obtain

1 i @t wrxes = Wi gt ey = W -0 e sy
For an appropriate g € H LP[RY, w; X) of norm < 1 we obtain

||f||W1,p’([Rd_wr;X*) S, |<f, g)l = |<fy gl[R2+>| = ||f|| [H™LP(O,w; X))*
where we used | gir, | g-1r (5, w:x) < 1. O
Proof of Proposition 5.7.3. Let us first note that X is reflexive as a UMD space. Put y’ :=
--L e (-p'-1,-1). Then (wy]' = wy and [wy_p]" = wyr,py, the p-duals weights of w,

p-1
and wy_p, respectively. Note thaty—p € (-1,p—1) andy'+p' € (-1,p'-1),s0 wy,_p, € Ap

and wy, € Ay . By Corollary 5.3.4 and Lemma 5.3.5,
wyr' o X)L LP (6, wy X7
pir \&> Wy'+p's Wy &)
Therefore, Proposition 5.2.8s and Lemma 5.7.4 give that
LP(O, wy; X) = [LP (O, wy; X)) — WS (O, w4 s X))

=[H "V (0, wy_p; X)I** = H VP (O, wy—p; X),

where we again used reflexivity of X. O
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Proof of Theorem 5.7.1. By a standard localization argument it suffices to consider the

case 0 =R?. The case y € (-1, p— 1) is already considered in [159, Theorem 2.1 & Corol-

lary 4.9] (also see [159, Theorem 4.4]), so from now on we will assume y € (p—1,2p —1).
Let us write

M:= WOIR, v; LP (RY, wy; X)) N LIR, v; WRP RY, wy; X))

and
1+y

k—
R, v; PR X)) NLIR, v B, 7 (R X)).

_elty
k- p

l
B:=F,,

By Theorem 5.3.18, Proposition 5.7.3, Corollary 5.3.4 and Propositions 4.5.5 and 6.3.7,
M — H{O- D4 QR; p: [LP([RY, wy;X)ka’p(Rii» wy; X)]1)
o B0 DA R; v [H VP RY, wy_ s X), WELP®RY, wy—p; X11)
= g0-1ha (g, v; LP (R4, wy—p; X)).
Therefore, once applying Corollary 5.3.4,
M — HOO 04 R, ;1P RY, wy—p; X)) 1 LR, v; WP RE, w5 X)), (5.42)

which reduces the problem to the A,-weight setting. By [159, Theorem 2.1 & Corol-
lary 4.9] (also see [159, Theorem 4.4]), tr ;4 is bounded from the last space to

1
C0=2) 14y-p 2 +y-p

(-7 oA,
p.a R X)) =B.

"Ry LPRTLX)NLYR, v By,

Finally, that there is a coretraction extpa corresponding to tr« simply follows from
a combination of [159, Theorems 2.1 & 4.6 & Remark 4.7] and Lemma 5.7.2. O

5.7.2. Identification of the temporal trace space
For pe(1,00), g€ [1,00],y€(-1,2p—1) and s € (0, 2) we use the following notation:
W, 4O, wy; X) = (LP (O, wy; X), WP (0, wy; X)) q- (5.43)

In the case y € (-1, p — 1) (with general Aj,-weight) these spaces can be identified with
Besov spaces (see [182, Proposition 6.1]). In the case y € (p —1,2p — 1) we only have
embedding result (see Lemma 5.7.9 below).

In the next result we identity the temporal trace space.

Theorem 5.7.5 (Temporal trace space). Let & be either Rf or a bounded C?-domain and

let ] beeitherR or (0, T) with T € (0,00]. Let X bea UMD space, p,q € (1,00), p€ (-1,g-1)
andye (-1,2p-1D\{p-1}. If1- HT“ # %HTY, then the temporal trace operator tri= :
u— u(0) is a retraction

2(1- 1)
W), v LP (O, wy; XN O LI, v W2P (O, wy; X)) — Wy, 7 (0, w);X). (5.44)
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It follows from the trace method (see [169, Section 1.2] or [235, Section 1.8]) that tr;—g
is a quotient mapping (5.44). The nontrivial fact in the above theorem is to show that it
is a retraction. In order to show this we want to apply [186, Theorem 1.1]/[197, Theo-
rem 3.4.8]. However, these results can only be applied directly in the special case that the
boundary condition vanishes in the real interpolation space. In the case y € (-1,p—1)
this difficulty does not arise because by using a suitable extension operator one can re-
duce to the case & = R%. To cover the remaining cases we have found a workaround
which requires some preparations. The first result is the characterization of the spatial
trace of the spaces defined in (5.43). The result will be proved further below.

Proposition 5.7.6. Let O be either R? or a bounded C?-domain. Let X be a UMD space,
pe(l,00),gell,00),ye(p—1,2p—1) andse(0,2). If s> 1”’ , then tryp extends to a

retraction
+Y

S (O wy; X) — B _7(66’).

In the setting of the above proposition we define, for s € (0,2) \ { 1+Y},
s . 1+Y
(6, s X) = Wp,q(ﬁ, wy; X), s<—+ 1p
Wp.q.i v {ue Wy ,(0, wy; X) : trgou =0}, s>%

For these spaces we have the following result which will be proved below as well.

Proposition 5.7.7. Let O be either R¢ or a bounded C?-domain. Let X be a UMD space,
pe(l,00),g€e(l,00),ye(p—-1,2p—1)andse (0,2)\ {HTY}. Then

(O, wy; X) = (LP (0, wy; X), Wil (€, wy; X)) 5 4

p q,Dir Dir

From Proposition 5.3.17 and reiteration (see [235, Theorem 1.10.2]) we immediately
obtain the following.

Lemma 5.7.8. Let O be either Rﬂf or a bounded C%-domain. Let X be a UMD space,
pel,0),gell,oo,ye(p—1,2p—1) and s€ (0,2)\{1}. If s=60+ n with0 € (0,1) and
ne€{0,1}, then

Wy (O, wy; X) = (WP (O, wy; X), WP (O, wy; X))g q-

Lemma 5.7.9. Let O be either R? or a bounded C?>-domain. Let p € (1,00), q € [1,00],
Yye(p-12p—1)andse(0,2). Then

By, (O, wy; X) = Wy (0, wy; X). (5.45)
The inclusion is dense if g < co.

Fory in the Ap-range (-1, p—1) itholds that B}, , (0, wy; X) = W}, (€, wy; X) (which
can be obtained from [182, Proposition 6.1]). However, the reverse inclusion to (5.45)
does not hold for y € (p —1,2p — 1), see Remark 5.7.14 below.
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Proof. By [38, Theorem 3.5] and a retraction-coretraction argument using Rychkov’s ex-
tension operator (see [163, 216]),

. — (0 . 2 . .
B;,q(ﬁy w)hX) - (Fp’l(ﬁ) wY;X)pr’l(ﬁ) waX))%Yqy

these references are actually in the scalar-valued setting, but the arguments remain valid

in the vector-valued setting. The inclusion now follows from (5.37). Density follows from
Lemma 5.3.7, (235, Theorem 1.6.2] and the fact that C2°(&; X) € By, (0, wy; X). O

Lemma 5.7.10. Let O be either [Rf or a bounded C?-domain. Let X be a UMD space,
pe(l,00),gell,o0l,ye(p—1,2p—1) andsc(0,2). Then
. -1 .
W;q(ﬁ, Wwy; X) — B;,'q (O, wy—p; X).
Proof. By Corollary 5.3.4 and Proposition 5.7.3
W,j,q(ﬁ, wy; X) = (LP (0, wy);X),Wz’p(ﬁ, wy;X))%,q
-1, . 1, .
— ((H p(ﬁr w’)/—p))X)rW p(ﬁr w’y—p)X))%yq
—1 .
= B;,q (ﬁ) w}’—p,X)r

where the last identity follows from [182, Proposition 6.1] and a retraction-coretraction
argument. O

Before we proceed, we recall some trace theory for weighted B-spaces, for which we
refer to [165]. Let s€ R, p € (1,00), g€ [l,00) andye (-1,p—1). If s = HTY + k + 0 with
keNgand#6 € (0,1), then try : u— (tru,.. .,tr(’i{c u) is well-defined on B;,'q([R{f, wy; X). For
such s we put

B}, ,o®Y, wy; X) := {u€ B}, ,(RY, wy; X) : trjeu =0},

For s < HTY weputB, RY, wy; X) = B;,yq([Rf, wy; X).
The following result follows from [165].

Lemma5.7.11. Let X be a UMD space, p € (1,00), g€ [1,00] andy € (—1,p—1). LetkeN
and 6 € (0,1) be such that kf ¢ No + =L Then

Bk@

k,
0 oY, wy; X) = (L RY, wy; X), Wy'P RE, wy; X))g,q-

LetOW]j,q([l'\Pf, wy; X) be defined as the closure of {u € Cgo(@; X): Upopd = 0}in W;,q([Rf, wy; X).
The following identities hold for the real interpolation spaces.
Lemma 5.7.12. Let X be a UMD space, p € (1,00), q € [1,00), y € (p—1,2p—1) and
s€ (0,2 \{5L}. Then

oW, o RE, wy; X) = (1P RY, wy; X0, Wik RE, wy; X)) 4

ir
and the map M, defined above Lemma 5.3.13, is an isomorphism

: d . d :
M: oW, RY, wy; X) — B 4 RE, wy_p; X).
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As a consequence of Lemmas 5.3.9 and 5.7.12 for p € (1,00), y € (p —1,2p —1) and
s€(0,L )we have

OW q(R+,wY,X) q(R+) w)/)X) (546)

Proof. We first show that

(P RY, wy; X), WP RS, wy; X)) 5, g — oW 4 RE, wy; X). (5.47)
By Proposition 5.3.8, C°°([R ; X) C Wélf([RJr, wy; X). Therefore, CSO([R%f;X) is dense in
(LPRY, wy; X), WP RY, wy; X)), 4 (see 235, Theorem 1.6.2]). As

(LPRY, wy X0, Wil RS, wy; X)) s g — W, RE, wy; X)

clearly holds, (5.47) follows.

Next we show that M is a bounded operator

M: oW, RS, wy; X) — RY, wy—p; X). (5.48)

qu

Lemma 5.3.13 and real interpolation yield that M is a bounded operator

M: Wy (RY, wy; X) — B, (RY, wy_p; X).

Since
Mt CR®RYE X) g0 = 01 € {u € CERYE XD typa = (011) g0 = 0}
< B 4o RS, wy_p; X),
(5.48) follows.

From a combination of Lemma 5.3.13 and Lemma 5.7.11 it follows that M1 is a
bounded operator
-1 2,
M :B) qo(R+rwy pr X) — (LP(R+,wy,X) Wle(RJr,wy,X))%,q
Combining this with (5.47) and (5.48) finishes the proof. O

Lemma 5.7.13. Let X be a UMD space, p € (1,00), q € [1,00), Y € (p—1,2p—1) and
SE (lﬂ/ 2). Then ITypd extends to a retraction
+

1+y

W3 (R, wy; X) — B, " ®4X)
with
(R+, wy; X)={uew, (IR+,w7,X) : traMu:O}. (5.49)

Moreover, there exists a coretraction E corresponding 1o trypa such that
+

IIuIIWx SR W) lull gs s @y X) ueker(I-Eo tramei)' (5.50)
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Proof. By trace theory of weighted B-spaces (see [165] and see [159, Section 4.1] for the
anistropic setting) and Lemmas 5.7.9 and 5.7.10, there is the commutative diagram

d
B}, o RY, wy; X) < W RY, wy; X) = By | RY, wy—p; X)

L |
tr 6IR£

1+y 1+y-p

P (d-1. — Iz d-1,

for some extension operator E. All statements different from (5.49) directly follow from
this. Next we claim that

da
{ue By, (RS, wy; X) : trypau =0} = {ue Wy (R, wy; X) : trypau = 0}.

Indeed, if ue W3 q([Rﬁf, wy; X) satisfies traRd u =0, then we can find u,, € B} q([R{f, wy; X)
such that u, — uin W} q(R+, wy; X). Now it remains to set v, = u,,— EtraRd U, € B} q(R+, wy; X)

and observe that traRz v, =0and Etrawf U, — 0in W3 q(R+, wy; X).

Since {u € C° (@; X) i Ugpa =0} is dense in the space on the left hand side by [165],
it follows from the claim that it is also dense in the space on the right hand side. This
density implies (5.49). O

Proof of Proposition 5.7.6. The statement simply follows from Lemma 5.7.13 by a stan-
dard localization argument. O

Proof of Proposition 5.7.7. A combination of (5.46) and Lemma 5.7.13 gives the desired
statement for the case & = R, from the general case follows by a standard localization
argument. O

Proof of Theorem 5.7.5. Let us first establish the asserted boundedness of tr;—q. It suf-
fices to consider the case J = R,, where the boundedness statement follows from [169,
Proposition 1.2.2] or [235, Section 1.8].

In order to show that there is a coretraction corresponding to tr;-, it suffices to con-
sider the case & = Rf and J = R. The case y € (-1, p —1) follows from [159, Equation
(38)], and therefore it remains to consider y € (p —1,2p —1).

Leté =2(1—- 1+“) In view of Theorem 5.5.7, we can apply [186, Theorem 1.1] or [197,
Theorem 3.4.8] to —Ap;; on LP (R? %, wy; X), which by Proposition 5.7.7 gives an extension
operator

Epir: W), i RE, wy; X) —WHIR, uﬂ;Lp(R‘i, wy; X))
nLq (RY Uyr Dll’ (R+) wyr X))
Ifé < HY , then qu DH(R+, wy; X) = q(R+, wy; X) and we can simply take &p;r as

the requlred coretraction.
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Finally, let us consider the case 6 > HTY. In the notation of Lemma 5.7.13, put 7 :=
Eotrypa. Then
+

W ,RE, wy; X) =ker(I-m) Wg

,q,Dlr(RJr’ wy; X) (5.51)

under the projection 7 with the norm equivalence (5.50) on ker( — 7). In view of [163],
we can apply [186, Theorem 1.1] or [197, Theorem 3.4.8] to the realization of I — A in
B), (R4, wy; X) with domain B, (R4, wy; X), which by real interpolation of weighted B-
spaces (see [38, Theorem 3.5]) gives an extension operator

Ega : BY R, wy; X) =W R, v BY | R, wy; X)) 0 LI R, 05 BS | (R, wy; X)),

By extension (using for instance Rychkov’s extension operator [216]) and restriction we
obtain an extension operator é’Rd which maps B g ([R % wy; X) into

Wh4(R, v; B | (RY, wy; X)) N LIR, 3 BS ) (RY, wy; X))
— WH R, vy; LP RY, wy; X)) N LIR, v WP RY, wy; X)),

where the embedding follows from (5.37). By (5.51) and (5.50), & := &pa 7 + Epir (I — 1)
defines a coretraction corresponding to trys. O

Remark 5.7.14. Let p € (1,00), g € [1,00), Y € (-1,2p—-1)\ {p—1} and s € (0,2) \ {HTY}'
Then
([R{Jr,wy,X)‘—»Bs R, wy;X) = ye(-1,p-1.

Proof. Assume there is the inclusion Ws ([R 1 wy; X) — BS ([R{ +, wy; X). Considering
the linear mapping u — u® x for some x € X\ {0}, we find WS q([R{ wy) — B;,’Oo(Rf, wy).
In particular,

s oD RS wy) = BS o RY, wy). (5.52)

Consider the interpolation-extrapolation scale {E; : ) € [-1,00)} generated by the
operator (1 — Apj;) on LP ([R?f, wy) and the complex interpolation functors [-, -], 6 €
(0,1), the interpolation-extrapolation scale {E; 4 : 1 € [-1,00)} generated by the opera-
tor (1 —Apj;) on LP ([R?f, wy) and the real interpolation functors (-, 6,90 0 €(0,1), and the
interpolation-extrapolation scale {F; , : 1) € [~1,00)} generated by the operator (1—Ap;;)
on Bg,w(Rf, wy) and the complex interpolation functors [-, -]g, 6 € (0,1) (see [5, Sec-
tion V.1.5]); the operator (1 — Ap;;) on Bgyoo(Rf, wy) is considered in [163]. By Proposi-
tion 5.7.7 and [163],

1+y
En’q =Wy DII(R LUY), ne 0,1\ W . (5.53)
and ) ) )
d +Y +Y +Y
Fnoo—B ooDlr(R+’wY)’ ﬂ€(§—1,$+1)\{g}, (5.54)
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respectively. Now (5.52), (5.53) and (5.54) imply Es g=Fs oo and by lifting we obtain

S
Epg = Fneor ne [§+Z] N[-1,00). (5.55)

By the reiteration property from [5, Theorem V.1.5.4], Ey = [E_1, Ej] 1. So, by [235, Theo-
rem 1.10.3.1],

Eo=[E1, Erly — (B, E1) o (5.56)

Doing a reiteration ([235, Theorem 1.10.2] and [5, Theorem V.1.5.4]), we find

(B-1, BV L o = (E-1, E1) 5 g0 (B-1 ED 541 )15 00
= ((E-1,[E-1, E1] %)%,q, ([Efl,EI]%;El)%,th%,oo

= ((EflrEO)‘zi'qr (EO)EI)E q)k%m

(5.55)
= (Eg—l,q»Ei,q)l—i,oo (Fs 1,00 F5,00)1-5 00

= (IFs 1,00 F5,00lno-3+1: [Fs -1, Fs1p) - s 41) L0
= (FUO,OO’Fm,oo)/l,oo (5.57)

for any n9,n; € R and A € (0,1) with ——1 <mo<mn < % and 0 = (1 -A)ng + An;. Now
pick 79,71 € R and A € (0,1) with 5 - 1 <1 <M1 <3 and 0 = (1 -A)ng + An; such that

No,N1 € (12+—£/ , 12-:3,) Then
5.54
(Fygro0 Fi oo ioo 2 (B, RY, wy), ol RY, wy)aco = BYoo R, wy)  (5.58)

by real interpolation of weighted B-spaces (see [38, Theorem 3.5]). Combining (5.56),
(5.57) and (5.58) gives

LP(RY, wy) — BY o (RY, wy). (5.59)

We finally show that the inclusion (5.59) implies y € (=1, p — 1). Taking odd exten-
sions in (5.59) (see [163]) gives

(Fodd®D, I o 1)) = BY oo R, wy).

Now a slight modification of the argument given in [182, Remark 3.13] gives C, ¢ > 0 such

that
1 1 I U
@/wa(x)dx-(@/()wy(x) p-1 dx) <C

for all cubes Q c Rf with |Q| < ¢. A computation as in [101, Example 9.1.7] shows that
vye(-1,p-1). O
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5.7.3. Weighted L7 -L” -maximal regularity

Let us first introduce some notation. Let & be a bounded C2-domain. Let p,q € (1,00),
ve Ayz(R) and y € (-1,2p—1). For an interval J < R we set IDq’p(]) =L9(J,v; LP(O, w},ﬁ)),

My () = W, v; LP (O, w ) N LU, v; WP (6, wy)

and
1+y

U, v; LP@O)nL(J, v; B " 00)).

1l
IBq p(]) — 2 p
For the power weight v = vy, with y € (- 1 qg-1), we simply replace v by p in the sub-
scripts: Dy () := DY (D, MY () := MJP () and BV () =877, ().

Theorem 5.7.15 (Heat equation). Let & be a bounded C?-domain. Let p,q € (1,00), v €
Ag®) andy e (-1,2p-1)\{p—-1}. ForallA =0, u— (u'+ (A - A)u, trysu) defines an
isomorphism ofBanach spaces MZ:]’,] (R) — Dq’p R) ® [EBq’p (R); in particular, forall A = 0,
fe [Dq p([l'\”) and g € [EB (IR), there exists a unique solutlon ue Mq’p([ﬂi) of the parabolic
boundary value problem

uw+A-MNu =f,
rppu =4g.

Moreover, there are the estimates

” u”MZ";)(IR) :p,q,v,y,d,/l ”f”DZ:;](R) + ”g”BZ:f(R)

Proof. The required boundedness of the mapping u — (1’ +(A—A) u, tryz u) follows from
Theorem 5.7.1 while the injectivity follows from Corollary 5.6.3. So it remains to be
shown that it has a bounded right-inverse, i.e. there is a bounded solution operator to
the associated parabolic boundary value problem. Using Theorem 5.7.1 we will reduce
to the case g = 0. After this reduction, the desired result follows from Corollary 5.6.3.
Finally, to give the reduction to g = 0, write U = u — exXlopd §) where DE [EBq'p (®) —
Mq’p (R) is the coretraction of trz; of Theorem 5.7.1. Then U satisfies U'+ (A-A)U=F
and tryo U = 0 where

d
F=f- (E +A- A)extaRig.
Now Corollary 5.6.3 gives
The corresponding estimate for u follows from this. O

As a consequence of the above theorem we obtain the following corresponding result
on time intervals J = (0, T') with T € (0,00] in the case of the power weight v = vy (with
te(-1,g-1)), where we need to take initial values into account.
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For the initial data we need to introduce the space

1+u
2(1-—5) 5.43
P =w,, 7 (0,wy) =

Yy p.q

2,
AP0, wp), WP (O, wp),_1ea

Recall from Lemma 5.7.9 that B}, (0, wy; X) — [IZ:;Z with equality if y € (-1, p—1).
Concerning the compatability condition in the space of initial-boundary data I][EBZ:f,’ )]
below, let us note the following. Assume 1 - s %H—Y Then, on the one hand, by

q p -
Proposition 5.7.6, there is a wlell-dtleﬁned trace operator try,s on ”Z:;’Z (N); in fact, tryp is
( _ﬁ)_ﬂ
a retraction from [IZif,’ to Bp, q a ? (00; X). On the other hand, as a consequence of

20—y 1ty

[186, Theorem 1.1], tr;=o : g — g(0) is awell-defined retraction from [EBZ:f () to prq a Poo;Xx).
Motivated by this we set

1+ 11+
BV (D = {(g, ug) € BT ()17 : g(0) = tryug when 1 - T“ > ETY }
Now we can state the main result for the initial value problem with inhomogeneous

boundary condition.
Theorem 5.7.16 (Heat equation). Let & be a bounded C*-domain and let J = (0, T) with

T € (0,00]. Let p,q € (1,00), € (~1,g—1) andy € (~1,2p—D)\{p—1} with 1- =1 # L 12X
ForallA =0,

MEP ) — DR eIBLY (D, u— (W + (A= DN u, try5u, u(0))

defines an isomorphism of Banach spaces; in particular, for allA =0, f € [[DZ:yp and g €

q,p . . . q,p N
By, , there exists a unique solution u € M, ofthe parabolic initial-boundary value prob-

lem
U+A-MNu =f,
tryou =g,
u0) =ug.

Moreover, there are the estimates

In the proof of the theorem we will use the following notation:

q.p I+p _ 1 1+y
B =] AT iy
wy geBLy(D: g0 =0}, 1-—F>35=T

and OMZ:)’f(I) ={ue MZ:;?(I) : u(0) = 0}, where I € {R,,R}. We will furthermore use the
following lemma.
Lemma 5.7.17. Let the notation and assumptions be as in Theorem 5.7.16. Then opera-

tor Ey of extension by zero from R, to R is a bounded linear operator from OIHSZ:Z;) R4) to
BP (®R).
Yy



196 5. THE HEAT EQUATION SUBJECT TO THE DIRICHLET BOUNDARY CONDITION

Proof. It suffices to show that

Lty Ly
P P

1-1 1-1
Eye BOoF,, " Ry, v LP0O)),Fy), " R vy LP(BO)).

Using [187, Theorem 1.3], which says that 1g, is a pointwise multiplier on F}, , R, vy; X)
for se (HT” -1, 1+—”) and a Banach space X, this can be shown as in [165]. We would like
to remark that this pointwise multiplier result could also be proved through a difference

norm characterization as in [233, Section 2.8.6, Proposition 1], using that F;y p (R, vy; X) —

LI(R, v 53 X) for s € (0, 7F) (see [182). O

Proof of Theorem 5.7.16. That u— (u' + (A— A)u, trysu, u(0)) is a bounded operator
My () — Dy (D e BT (D@L}

follows from a combination of Theorem 5.7.1 and Theorem 5.7.5. That it maps to [I]JZ:;7 ®

I][EBZ:f (/) can be seen as follows. Of course, we only need to show that

tri—othyo U = Waptri—ou,  ueMY (), (5.60)
when 1 - HT“ > %HTY So assume 1 — HT“ > %HTY By a standard convolution argument

and an extension and restriction argument, we see that W{; (U, vy; Wﬁy(ﬁ)) is dense in
M7¥ (), from which (6.62) follows.

Injectivity of u — (1’ + (A — A)u,trysu, u(0)) follows from the fact that Ap; gener-
ates a strongly continuous semigroup (see [85]) by Theorem 5.6.2. So it remains to be
shown that it has a bounded right-inverse, i.e. there is a bounded solution operator to
the associated parabolic initial-boundary value problem. Using Theorem 5.7.5 followed
by Theorem 5.7.1 and (6.62), we may restrict ourselves to the case 1y = 0. Furthermore,
by Corollary 5.6.3 we may restrict ourselves to the case f = 0. By extension and restric-
tion it is enough to treat the resulting problem for / = R;. We must show that there is a
bounded linear solution operator .7 : o[EBZf (R}) — OMZI;‘; (R;4), g — u for the problem

{ uW+A-Nu =0,
(5.61)
tryou =g.

Let Ep € QB(O[EBZ:f Ry), [HSZ:;’ (R)) be the operator of extension by zero (see Lemma 5.7.17)

andlet Sp: [EBZ:? (R) — MZ:? (R), g — ube the solution operator for the problem (5.61) on

R from Theorem 5.7.15.

It suffices to show that . o Ey maps to O[BZﬁ (R}) to OMZ:'Y” (R); indeed, in that case

S g :=(SEy8) R, is as desired. To do so we follow a modification of an argument given
in [176, Lemma 2.2.7].

Let g € 0B} (R,) and set u:= g Egg € M7 (R). Pick ¢ € C°(R,) with [ p(x)dx =1
and put ¢,(x) := n¢p(nx) for each n € N;. Now consider g, := ¢, * Fog € [HSZ:}”,’(IR) n
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C®(R; LP(00)) and uy, := ¢ u € W R, vy; W2P (0, wy)) € MY R)INC® (R; LP (O, wy)).
Then
u=lim u, in MJT®R) (5.62)

n—oo Y

and
{ U+ A=Nup, =¢p* W +A-Au) =0,

WoplUn =¢n*traggu =, *Epg,
so that u, = -“pg, by uniqueness of solutions. Furthermore, g,(0) = 0, implying that
Ty un(0)] = [trap unl(0) = g,(0) = 0, so that u,(0) € Wé’if(ﬁ, wy). Now, as A — Apj; is
exponentially stable, we may define v,, € 0MZ:5 (®) by

_ ) un(y—e' B0y, 0), =0,
vu(t) =
0, t<0.

But then v,, satisfies
v+ A-Nv, =0,
oo Un = 8n»
so that v, = Yrgn = U, by uniqueness of solutions. Therefore, u, € OMZ:f([R). We may

thus conclude that u € OMZ:)’,] (R) in view of (5.62). O

Remark 5.7.18. Theorems 5.7.15 and 5.7.16 also remain valid in the X-valued setting as
long as X is a UMD space and A = Ay, where 1y depends on the geometry of X.
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ELLIPTIC AND PARABOLIC BOUNDARY VALUE PROB-
LEMS SUBJECT TO LOPATINSKII-SHAPIRO BOUND-
ARY CONDITIONS

This chapter is based on the paper:

EB. Hummel and N. Lindemulder. Elliptic and Parabolic Boundary Value Problems
in Weighted Function Spaces. in preparation.

In this paper we study elliptic and parabolic boundary value problems with inhomo-
geneous boundary conditions in weighted function spaces of Sobolev, Bessel potential,
Besov and Triebel-Lizorkin type. As the main result, we solve the problem of weighted
Lg4-maximal regularity in weighted Triebel-Lizorkin spaces for the parabolic case, where
the spatial weight is a power weight in the Muckenhoupt A -class. Going beyond the
Ay -range, where p is the integrability parameter of the Triebel-Lizorkin space under con-
sideration, yields extra flexibility in the sharp regularity of the boundary inhomogeneities.
This extra flexibility allows us to treat rougher boundary data and provides a quantita-
tive smoothing effect on the interior of the domain. The main ingredient is an analysis of
anisotropic Poisson operators.

2010 Mathematics Subject Classification. Primary: 35K52, 46E35; Secondary: 46E40, 47G30
Key words and phrases. anistropic, Bessel potential, boundary value problem, Lopatinskii-Shapiro, maximal
regularity, mixed-norm, Poisson operator, smoothing, Sobolev, Triebel-Lizorkin, UMD, vector-valued, weight
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6.1. INTRODUCTION

6.2. INTRODUCTION

The idea to work in weighted function spaces equipped with temporal and/or spatial
power weights of the type

vy =t (te]) and w?,ﬁ(x) =dist(-,00)" (x€0), 6.1)

has already proven to be very useful in several situations. In an abstract semigroup set-
ting temporal weights were introduced by Clément & Simonett [52] and Priiss & Simon-
ett [197], in the context of maximal continous regularity and maximal L,-regularity, re-
spectively. Other works on maximal temporally weighted L,-regularity are [141, 153] for
quasilinear parabolic evolution equations and [180] for parabolic problems with inho-
mogeneous boundary conditions. Concerning the use of spatial weights in applications
to (S)PDES, we would like to mention [3, 36, 37, 46, 47, 75, 88, 139, 143, 144, 159, 162,
167, 173, 189] and Chapter 5.

An important feature of the power weights (6.1) is that they allow to treat "rougher"
behaviour in the initial time and on the boundary by increasing the parameter p and
Y, respectively. In [159, 162, 180, 197] and Chapter 5 this is for instance reflected in
the lower regularity of the initial/initial-boundary data that can be dealt with. In the
Ly-approach to parabolic problems with Dirichlet boundary noise, where the noise is
a source of roughness on the boundary, weights are even necessary to obtain function
space-valued solution processes [3, 88, 167].

Asin [159], in this paper we exploit this feature of the power weights (6.1) in the study
vector-valued parabolic initial-boundary value problems of the form

Oru(x, )+ (x,D, Hu(x,t) = f(x,1), XeO, te],
Bi(x',D,hu(x',t) =g;jx',0), x'€dl, te], j=1,...,n, (6.2)
u(x,0) =up(x), x€eO.

Here, J is a finite time interval, & < R" is a C*°-domain with a compact boundary d& and
the coefficients of the differential operator « and the boundary operators %y, ...,%n,
are %B(X)-valued, where X is a UMD Banach space. One could for instance take X = ch,
describing a system of N initial-boundary value problems. Our structural assumptions
on</,%,,...,9, are an ellipticity condition and a condition of Lopatinskii-Shapiro type.
For homogeneous boundary data (i.e. g; =0, j = 1,...,m) these problems include lin-
earizations of reaction-diffusion systems and of phase field models with Dirichlet, Neu-
mann and Robin conditions. However, if one wants to use linearization techniques to
treat such problems with non-linear boundary conditions, it is crucial to have a sharp
theory for the fully inhomogeneous problem.

Maximal regularity provides sharp/optimal estimates for PDEs. Indeed, maximal
regularity means that there is an isomorphism between the data and the solution of the
problem in suitable function spaces. It is an important tool in the theory of nonlinear
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PDEs: having established maximal regularity for the linearized problem, the nonlinear
problem can be treated with tools as the contraction principle and the implicit function
theorem (see [198]).

The main result of this paper is concerned with weighted L;-maximal regularity in
weighted Triebel-Lizorkin spaces for (6.2), where we use the weights (6.1). In order to
elaborate on this, let us for reasons of exposition consider as a specific easy example of
(6.2) the heat equation with the Dirichlet boundary condition

oiu—-Au =f on JxO0O,
UWeo =8 on Jx00, (6.3)
u0) =up on O,

where J = (0, T) with T € (0,00) and where & is a smooth domain in R” with a compact
boundary 0.

In order to introduce the weighted L,-maximal regularity problem for (6.3) in an
abstract setting, let g € (1,00), u € (-1, — 1) and E ¢ 2'(£) a Banach space of distri-
butions on & such that there exists a notion of trace on the associated second order
space F2 ={ueP(0): D*u €F,|a| <2} that is described by a bounded linear operator
Tryz : E> — F for some suitable Banach space.

In the Lg4,,-E-maximal regularity approach to (6.3) one is looking for solutions u in
the maximal regularity space

W, U, v B) N LU, v E%), (6.4)

where the boundary condition 1,3, = g has to be interpreted as Trypu = g. The problem
(6.3) is said to enjoy the property of maximal Lg,,,-E-regularity if there exists a (neces-
sarily unique) space of initial-boundary data Z; j, = L;(J, vy;F) x E such that for every
f € Ly(J,v;E) it holds that (6.3) has a unique solution « in (6.4) if and only if (g, up) €
9; p.- In this situation there exists a Banach norm on %; ;,, unique up to equivalence,
with

Dip. = LqU, vy F) ®F,

which makes the associated solution operator a topological linear isomorphism be-
tween the data space Lg(J, vy; E))® Z; p. and the solution space Wc} J,vywBINLg(J, vy; E2).
The maximal L, -E-regularity problem for (6.3) consists of establishing maximal L, ;-
E-regularity for (6.3) and explicitly determining the space Z; j,.

In the special case that E = L, (&, wgﬁ), F2 = Wg(ﬁ, w?ﬁ) and F = L,(00) with p €
(1,00) and y € (-1,2p - 1), L4 ,-E-maximal regularity is referred to as L ;- Ly ,-maximal
regularity.

The Lg - Ly, -maximal regularity problem for (6.3) has recently been solved (besides
some exceptional parameter values) in Chapter 5. Here, the boundary datum g has to
be in the intersection space

F) U, 5 Ly@0)) 0 Ly, v Bo, (00)) (6.5)
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with § = 6py =1~ =Y which in the case g = p coincides with W‘S(], vy,Lp(aﬁ)) N

Ly(J, vy Wg‘s(dﬁ)), here F;;'p denotes a Triebel-Lizorkin space and W’j = B;,'p a non-
integer order Sobolev-Slobodeckii space or Besov space.

Note that 6 € (0,1) can be taken arbitrarily close to 0 by choosing y sufficiently close
to 2p —1. In [159] the maximal Lq,'u-Lp,y-regularity problem with y € (-1,p — 1) was
solved for the more general (6.2), which in the special case (6.3) gives the restriction
5e(3,1).

The restriction y € (-1, p — 1) for the spatial weight waﬁ in [159] is a restriction of
harmonic analytic nature. Indeed, (—1,p —1) is the Muckenhoupt Ap-range for w‘m
given p € (1,00) and y € R, it holds that

wd? =dist(-,00) € A,R") <> ye(-1,p-1). (6.6)

The Muckenhoupt class A,,([R”) (p € (1,00)) is a class of weights for which many har-
monic analytic tools from the unweighted setting, such as Mikhlin Fourier multiplier
theorems and Littlewood-Paley decompositions, remain valid for the corresponding weighted
Lp-spaces. For example, the Littlewood-Paley decomposition for L, (R", w) with w €
Ap(R™) and its variant for W;(R”, w), k € N, can be formulated by means of Triebel-
Lizorkin spaces as

LyR",w)=Fp,R" w), W, R",w)=Fy,R",w). 6.7)

The main difficulty in Chapter 5 in the non- A setting is that these standard tools are no
longer available.

One way to avoid these difficulties is to work in weighted Triebel-Lizorkin spaces in-
stead of E= L p(ﬁ , wf,ﬁ). The advantage of the scale of weighted Triebel-Lizorkin spaces
is the strong harmonic analytic nature of these function spaces, leading the availabil-
ity of many powerful tools (see e.g. [38-40, 115-118, 162, 162, 182, 185, 186, 228]). In
particular, there is a Mikhlin-H6rmander Fourier multiplier theorem. That Mikhlin-
Hoérmander Fourier multiplier theorem

In the special case E = FS (O, w‘m) F2 = F”z(ﬁ w‘m) and F = L,(00) with p,r €
(1,00), y € (—1,00) andse(“Y 2, iy
F), ,-maximal regularity.

The Lgy-F), . -maximal regularity problem for (6.3) has recently been solved (be-
sides some exceptional parameter values) in [162]. Again, the boundary datum g has to
be in the intersection space (6.5), but now with § =8,y s:= 5 +1~ HTY.

As a consequence of (6.6) and (6.7), Lq,H-Fg‘ZYY-maximal regularity coincides with
Lg u-Lp-maximal regularity when y € (-1, p - 1). For other values of y the two notions
are independent. However, there still is a connection between the Lg,,-F), .. -maximal
regularity problem and the L -L, ,-maximal regularity problem provided by the fol-
lowing weakening of (6.7) to an elementary embedding combined with a Sobolev em-

bedding:

) L4, ,-E-maximal regularity is referred to as Ly, -

e+ X
Fy, " (0w = FE (0,89 — wko,uwl?),  v>y,rellco.  (68)
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Indeed, in view of (6.8) and the invariance

v-y
8=8pvs=0py,  s= ,

in connection with (6.5), in order to obtain a solution operator for (6.3) with f =0, 1y =0
it suffices to treat the Lg,,-F), . -case.

As the main result of this paper (Theorem 6.6.2), we solve the L, # Fp r,y-maximal
regularity problem for (6.2) with y € (—1,00) and s € (— +my —2m, py), where m =
Eord(d) and m, = max{ord(%),...,ord(%,)}. Be51des that the Lq,u-F;,,r'Y-maximal
regularity problem for (6.2) is already interesting on its own, it also contributes to the
corresponding L ;- Lp y-maximal regularity problem through the above discussion, re-
ducing that problem to the case g; = ... = g, = 0. The latter can be treated in an abstract
operator theoretic setting, leading to the problem of determining R-sectoriality or even
a stronger bounded H*°-calculus (see [198]). It would be very interesting to extend the
boundedness of the H*-calculus for the Dirichlet Laplacian on Lp(ﬁ , w?ﬁ) obtained in
Chapter 5 to realizations of elliptic boundary value problems corresponding to (6.2) and
thereby solve the Lg-Ly,-maximal regularity problem (at least for the case of trivial
initial datum ug = 0).

Whereas, giveny € (-1,p—1), Ly, F -maximal regularity coincides with L, -
Lj,y-maximal regularity in the scalar- valued setting (or even the Hilbert space-valued
setting), they are incomparable in the general Banach space-valued setting. However,
the main result of the paper (Theorem 6.6.2) also contains a solution to the Lq,,l-Hfm,-

1+y

maximal regularity problem for (6.2) with y € (-1,p—1) and s € (— + m, —2m, HTY),

yielding Lg ;- L -maximal regularity when s = 0. In the Ly ,-Lp,y- case the proof even
simplifies a bit on the function space theoretic side of the problem (see Remark 6.6.3),
yielding this in particularly yields a simplification of the previous approaches ([61] (i =
0,Y=0),[180] (g=p, p€l0,p—1),y=0) and [159]).

The main technical ingredient in is an analysis of anisotropic Poisson operators and
their mapping properties on weighted mixed-norm anisotropic function spaces. The
Poisson operators under consideration naturally occur as (or in) solution operators to
the model problems

orulx, )+ 1+« (D)u(x,t) =0, xeRY, teR,

6.9
BiDyu(x',1) =gj(x,1), xXeR™, teR, j=1,..,m, ©9

where </ (D) and %;(D) are homogeneous with constant coefficients. Moreover, they
are operators K of the form

Kg(xi, %', 1) = @m ™" / DT, &, D€, N dE T, ge SRIxR),
RP-1xR
(6.10)
for some anisotropic Poisson symbol-kernel k.
The anisotropic Poisson operator (6.10) is an anisotropic (x', t)-independent version
of the classical Poisson operator from the Boutet the Monvel calculus. The Boutet the
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Monvel calculus is pseudodifferential calculus that in some sense can be considered as
a relatively small "algebra", containing the elliptic boundary value problems as well as
their solution operators (or parametrices). The calculus was introduced by, as the name
already suggests, Boutet de Monvel [32, 33], having its origin in the works of Vishik and
Eskin [241], and was furhter developped in e.g. [105-107, 129, 206]; for an introduction
to or an overview of the subject we refer the reader to [107, 108, 223].

A parameter-dependent version of the Boutet de Monvel calculus has been intro-
duced and worked out by Grubb and collaborators (see [107] in the references given
therein). This calculus contains the parameter-elliptic boundary value problems as well
as their solution operators (or parametrices). In particular, resolvent analysis can be
carried out in this calculus.

In the present paper we also consider a variant of the parameter-dependent Poisson
operators from [107] in the x'-independent setting. Besides that this is one of the key
ingredients in our treatment of the parabolic problems (6.2) through the anisotropic
Poisson operators (6.10), it also forms the basis for our parameter-dependent estimates
in weighted Besov, Triebel-Lizorkin and Bessel potential spaces for the elliptic boundary
value problems

A+ (x,D)u(x) =f(x), xe€0

B;(X,D)u(x) =gj(x), ¥e€dd, j=1,..,m. (6.11)

These parameter dependent estimates are an extension of [163] on second order elliptic
boundary value problems subject to the Dirichlet boundary condtition, which was in
turn in the spirit of [67, 109].

In the latter the scales of weighted 28- and % -spaces, the dual scales to the scales of
weighted B- and F-spaces, are also included. These scales naturally appear in duality
theory and can for instance be used in the study of parabolic boundary value problems
with multiplicative noise at the boundary in a setting of weighted L,-spaces, see Re-
mark 6.7.7.

Outline.

The outline of the paper is as follows.

o Section 6.3: Preliminaries from weighted (mixed-norm anisotropic) function spaces,
distribution theory, UMD Banach spaces and L;-maximal regularity, differential
boundary value systems.

e Section 6.4: Sobolevembedding and trace results for mixed-norm anisotropic func-
tion spaces.

e Section 6.5: Introduction and basic properties of Poisson operators, solution op-
erators to model problems and mapping properties.

e Section 6.6: L4,,-maximal regularity for parabolic boundary value problems (6.2).



6.3. PRELIMINARIES 205

o Section 6.7: Parameter-dependent estimates elliptic boundary value problems (6.11).

Notation and convention.

N,N; Zy = {z€ C\{0}:|arg(z)| < ¢}.
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6.3. PRELIMINARIES

6.3.1. Weighted Lebesgue Spaces

A reference for the general theory of Muckenhoupt weights is [102, Chapter 9].

A weight on a measure space (S, .7, u) is a measurable function w : S — [0, 00] that
takes it values almost everywhere in (0,00). We denote by #/(S) the sets of all weights on
(S, <7, ). For w e #(S) and p € [1,00) we denote by Ly (S, w) the space of all equivalence
classes of measurable functions f: S — C with

1/p
Nfllr(s,w) = (/If(x)lpw(x) du(x)) < oo.
s

1
If p € (1,00), then w' = w;, = w P is also a weight on S, called the p-dual weight of w.
Furthermore, for p € (1,00) we have [L, (S, w)]* = L,/ (S, w') isometrically with respect to
the pairing

Ly(S,w) x Ly (S, w') —C, (f, 8) — / fgdu. (6.12)
S

Supppose (S,.<7, 1) = ®§.:1(Sj,,;a/j,uj) is a product measure space. For p € (1,00)"
and w e szl # (S;) we denote by Ly (S; x ... x S;, w) the mixed-norm space

Lyp(S,w):=Lp, (Sp, w)l...[Lp, (S, wi)l...],
thatis, L, (S, w) is the space of all f € Lo(S) with

)lem

1p
NF1L,s,w) = (/ ( | f Q)P ws (1) d iy (x1) wl(xl)d,ul(xl)) <oo.
S St

We equip Ly (S, w) with the norm || - || Lp(S,w)» which turns it into a Banach space. As

an extension (and in fact consequence) of (6.12), for p € (1,00) we have [Ly(S, w))* =
Ly (S, w;,) isometrically with respect to the pairing

Lp(S,w) x Ly (S, w;,)—»C, (f,g)»—»/fgdu, (6.13)
s
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where p' = (p’l,...,p;) and w;, = (w;gl,..., w;,l).

Given a Banach space X, we denote by L, (S, w; X) the associated Bochner space
Lp(S, w; X) 1= Lyp(S, w)[X] = {f € Lo®R"; X) : I fllx € Lp(S, w)}.

For p € (1,00) we denote by A, = A,,([R”) the class of all Muckenhoupt A,-weights,
which are all the locally integrable weights for which the A, -characteristic [w] Ay € [1,00]
is finite. We furthermore set Axo :=Upe(1,00) Ap-

For p € (1,00) we denote by A = A,*(R") the class of all rectangular Muckenhoupt
Ap-weights, which are all the locally integrable weights for which the Aj7°-characteristic
[w] arec € [1,00] is finite. Here [w] Aree is defined as [w] Ap by replacing cubes with sides
parallel to the coordinate axes by rectangles with sides parallel to the coordinate axes in
the definition.

The relevant weights for this paper are the power weights of the form w = dist(-,00)?,
where & is a C*°-domain in R” and where y € (—1,00). If & < R” is a Lipschitz domain
andy €R, p € (1,00), then (see [91, Lemma 2.3] or [189, Lemma 2.3])

w? = dist(-,00)Y € Ay <> ye(-1,p-1); (6.14)

in particular,
wf =dist(-,00) € Ay <> yE€(-1,00). (6.15)

For the important model problem case &' = R} we simply write w, := w$* =dist(-,0R}).
Furthermore, in connection with the pairing (6.12), for p € (1,00) we have

weA, << w/eApr — w,w'EAoo.

Let p € (1,00). We define [Aoo];, = [Aoo];?([ﬂi”) as the set of all weights w on R” for

1
which w;, =w P71 € Ax. If 0 cR"is aLipschitz domain and y € R, p € (1,00), then

Y

wfe[Aoo];g = y,i=- 1E(—l,oo) — ye(-oo,p-1) (6.16)

in view of (6.15).

6.3.2. UMD Spaces and L ,-maximal Regularity

The general references for this subsection are [126, 127, 149].

The UMD property of Banach spaces is defined through the unconditionality of mar-
tingale differences, which is a primarily probabilistic notion. A deep result due to Bour-
gain and Burkholder gives a pure analytic characterization in terms of the Hilbert trans-
form: a Banach space X has the UMD property if and only if it is of class HT, i.e. the
Hilbert transform H has a bounded extension Hy to L, (R; X) for any/some p € (1,00). A
Banach space with the UMD property is called a UMD Banach space. Some facts:

¢ Every Hilbert space is a UMD space;
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 If X is a UMD space, (S,Z, ) is o-finite and p € (1,00), then L, (S; X) is a UMD
space.

e UMD spaces are reflexives.
* Closed subspaces and quotients of UMD spaces are again UMD spaces.

In particular, weighted Besov and Triebel-Lizorkin spaces (see Section 6.3.4) are UMD
spaces in the reflexive range.

Let A be a closed linear operator on a Banach space X. For g € (1,00) and v € A4(R)
we say that A enjoys the property of

* L4(v,R)-maximal regularity if 0;+ Ais invertible as an operator on Lq(v,R; X) with
domain Wc} (R, v; X) N Lg(R, v; D(A)).

* Lg4(v,Ry)-maximal regularity if ; + A is invertible as an operator on Ly (v,Ry; X)
with domain OWL; (R4, v; X) N Lg(Ry, v; D(A)), where

oW, Ry, v; X) = {u € Wy Ry, v; X) : u(0) = 0}.

In the specific case of the power weight v = v, with g € (-1, g - 1), we speak of L, ;,(R)-
maximal regularity and L ;,(R.)-maximal regularity.

Note that L, (v, R)-maximal regularity and L, (v, R, )-maximal regularity can also be
formulated in terms of evolution equations. For instance, A enjoys the property of
Lg(v,R;)-maximal regularity if and only if, for each f € L, (v, R4; X), there exists a unique
solution u € WL} Ry, v; X) N Lg([Ry, v; D(A)) of

u'+Au=f, u(0)=0.

References for L, (R)-maximal regularity and L, (R, )-maximal regularity include [13,
188] and [77, 149]. Works on L4 (R, v)-maximal regularity include [44, 45, 90].

Lemma 6.3.1. Ler X be a Banach space, q € (1,00) and v € A4(R). Ler A be a linear
operator on X and let|||- ||| be a Banach norm on D(A) with (D(A),ll-1Il) — D(A). If

5t+A:W;(R, v; X)N LgR, v; (DA, N1-11D) — Lg (R, v; X)

is an isomorphism of Banach spaces, then |||-|[| < || - lIpa) and 1R c p(—A) with

&+ A Mzo < CeR.

1+(¢E|

In particular, A is a closed linear operator on X enjoying the property of L, (v, R)-maximal
regularity.
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Proof. Aslight modification of [188, Satz 2.2] gives a mapping R : R — 2(X, (D(A), Ill- 1))
with the property that

(W +ARE =Ix and [|IROlzax) S eR.

1+(él

Similarly to [77, Theorem 4.1], using [77, Theorem 3.7] modified to the real line, it follows
from the construction of R(¢) from [188, Satz 2.2] that also R(¢) (1€ + A) = Ip(a) for each
¢ € R. This shows that iR c p(—A) with (& + A1 = R(&). But then

Xl = RO Ax[I| S |Axllx < lIxllpy, — x€D(A). O

Lemma 6.3.2. Let X be a Banach space, q € (1,00) and v € A4(R). Let A be a closed linear
operator on X with C, < p(—A) enjoying the property of Ly(R, v)-maximal regularity,
whereC, ={z € C:Re(z) > 0}. Suppose that A — | A+ Al gx) is bounded on C.. Then —A
is the generator of an exponentially stable analytic semigroup on X and A also enjoys the
property of L4 (R4, v)-maximal regularity.

Proof. As A enjoys the property of Ly (R, v)-maximal regularity, Lemma 6.3.1 applies
with [[|-1Il = || - lIpca). Therefore, C; < p(—A) and A — (A+ A)~! and A — A(A + A)~!
are well-defined analytic functions C; — 28(X). Moreover, both mappings satisfy the
assumptions of the Phragmen-Lindelf Theorem (see [2 , Corollary 6.4.4]) so that both
mappings are bounded. Hence, it follows from Poisson’s formula that

sup [|(A+ ) llzzx) < supl16 + A7l <00
AeCy OeR
and
sup [[A(A+ A)_lllgg(x) <sup||10(160 + A)_IHQB(X) < 00.
AeCy OeR
It follows that — A is the generator of an exponentially stable analytic semigroup (e " =0
on X.

Finally, as — A is the generator of an exponentially stable analytic semigroup on X,
the variation of constants formula yields L,;(R,, v)-maximal regularity. Indeed, view-
ing OW; Ry, v; X)NLy(Ry, v; D(A)) and Ly (R4, v; X) as closed subspaces of W[} R, v; X)N
Ly[R, v; D(A)) and Ly (R, v; X), respectively, through extension by zero, the formula

t
[(6t+A)_1f](t)=/ e (9)ds,  feLsRv;X) teR,

—00
shows that (0, + A) ™' maps Ly(R+, v; X) to ¢ Wy (R, v; X) N Ly Ry, v; D(A)). O

As an application of its operator-valued Fourier multiplier theorem, Weis [244] char-
acterized L, (R,)-maximal regularity in terms of 2-sectoriality in the setting of UMD Ba-
nach spaces. The corresponding result for L, (R)-maximal regularity involves R-bisectoriality,
see [13]. Using [90, Theorem 3.5] and Theorem 6.A.1, these results carry over to the
weighted setting.
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Let us introduce the notion of R-boundedness. Let X be a Banach space. Let (€4) ren
be a Rademacher sequence on some probability space (Q2, %,P), i.e. a sequence of in-
dependent random variables with P(ex = 1) =P(ef = —-1) = % A collection of operators
I < B(X) is called R-bounded if there exists a finite constant C = 0 such that, for all
T(),...,TKEE‘/— andxo,...,xKeX,

K K
1Y ex Tixill @00 < CIl Y €xXkll L @0-
k=0 k=0
The least such constant C is called the R-bound of 9~ and is denoted by Z(9").
The space Rad, (N; X), where p € [1,00), is defined as the Banach space of sequence
(xt) keny for which there is convergence of ZZO:O £ Xk in Ly(Q; X), endowed with the norm

() K K
[1Cxk) kenilIRad,, (s x) 2= Z €k Xkllr,@x) =supll Z Z ExXkllL, @ x)-
k=0 K=0 [=0k=0

As a consequence of the Kahane-Khintchine inequalities, Rad, (N; X) = Rad,(N; X) with
an equivalence of norms. We put Rad(N; X) = Rad,(N; X). Note that collection of oper-
ators 9 < $B(X) is called R-bounded if and only if {diag(Ty,..., Tx) : Ty,..., Tk € T}
2(Rad(N; X)) is a uniformly bounded, in which case the R-bound coincides with that
uniform bound; here

diag(To, ceey TK)(xk)keN = (T()Xo,..., TKXK,0,0,0,.. J.

Furthermore, note that, as a consequence of the Kahane-Khintchine inequalities and
Fubini, given p € [1,00) and a o-finite measure space (S, <7, u), there is a natural isomor-
phism of Banach spaces

Rad(N; Ly (S; X)) = Ly (S;Rad(N; X)).

Having introduced the notion of R-boundedness, we can now give the definition of
R-sectoriality, which is an R-boundedness version of sectoriality.

Recall that an unbounded operator A on a Banach space X is a sectorial operator if A
is injective, closed, has dense range and there exists a ¢ € (0,7) such that Z,;_4 < p(-A)
and

sup JAA+A)~! | x) < oo.
AeZz—g

The infimum over all possible ¢ is called the angle of sectoriality and is denoted by w(A).
In this case we also say that A is sectorial of angle w(A). The condition that A has dense
range is automatically fulfilled if X is reflexive (see [127, Proposition 10.1.9]).

We say that an unbounded operator A on a Banach space X is an R-sectorial operator
if A is injective, closed, has dense range and there exists a ¢ € (0,7) such that Z,_¢ <
p(—A) and

RBAA+A) ez, gh<oo in BX).
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The infimum over all possible ¢ is called the angle of R-sectoriality and is denoted by
wRr(A). In this case we also say that A is R-sectorial of angle wr(A).

A way to approach Lg-maximal regularity is through operator sum methods, as ini-
tiated by Dore & Venni [78]. Using the Kalton-Weis operator sum theorem [134, Theo-
rem 6.3] in combination with [? , Proposition 2.7], we obtain the following result:

Proposition 6.3.3. Let X bea UMD space, q € (1,00) and v € A4(R). If A is a closed linear

operator on a Banach space X with 0 € p(A) that is R-sectorial of angle wr(A) < %, then

A enjoys the properties of L4(v,R)-maximal regularity and L4 (v,Ry)-maximal regularity.

6.3.3. Decomposition and Anisotropy
Letd=|d|y=di+...+dywithd = (&,...,d)) € (Z1)". The decomposition
R"=R4 x...xR%,

is called the & -decomposition of R". For x € R" we accordingly write x = (x1,...,x;) and
Xj= (xj,l,...,xj't[j), where x; € R% and xji €R(j=1,...,Li=1,...,4;). We also say that
we view R" as being 4 -decomposed. Furthermore, for each k € {1,...,1} we define the
inclusion map

= gty - RE —R", xp— (0,...,0,x4,0,...,0),

and the projection map
T =g - R — R%, x = (x1,..., X)) — Xg.
Given a € (0,00)!, we define the (£, a)-anisotropic dilation 6;‘['“) onR" by A >0tobe
the mapping 65{{’“) on R” given by the formula
6%‘“)35:: A% xy,...,A%x)), xeR™.
A (4, a)-anisotropic distance function on R” is a function u : R” — [0, 00) satisfying
(i) u(x)=0ifand onlyif x=0.
(i) u(6£{['”)x) = Au(x) forall x e R” and A > 0.
(iii) There exists a ¢ > 0 such that u(x + y) < c(u(x) + u(y)) for all x, y € R".

All (4, a)-anisotropic distance functions on R” are equivalent: Given two (4, @)-anisotropic
distance functions u and v on R”, there exist constants m, M > 0 such that mu(x) <
v(x) < Mu(x) for all xe R"

In this paper we will use the (£, a)-anisotropic distance function | - | 4 4 : R” — [0, 00)
given by the formula

1 1/2

2 .

led,a:=(2|x,-| ’“f) (xeR™M.
j=1
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6.3.4. Distribution Theory and Function Spaces

(7] (38] [156]

DISTRIBUTION THEORY AND SOME GENERIC FUNCTION SPACE THEORY

Let X be a Banach space. The spaces of X-valued distributions and X-valued tem-
pered distributions on R” are defined as 2'(R"; X) := £(2([R"; X)) and &'(R"; X) :=
Z (S (R"; X)), respectively; for the theory of vector-valued distributions we refer to [7]
(and [4, Section I11.4]).

Let E — 2'(U; X) be a Banach space of distributions on an open subset U < R".
Given an open subset V c U,

E(V):={fe2'(V;X):3g€E gv = f}
equipped with the norm

flleqvy :=inf{liglle: g€k, gv = f}

is a Banach space with E(V) — 2'(V; X). Note that f — fy defines defines a contrac-
tion E — E(V). Furthermore, note that, if E — F — 2'(U; X), then E(V) — F(V). More
generally, given Banach spaces E — 2'(U;; X1) and F — @' (U,; X2), T € %(E,F) and open
subsets V; c U;, V, c U, with the property that

Vf,8€L fivi = 8w = (T Hiv, = (T8w,

T induces an operator T € B(E(V,),F(V3)) satisfying (T f) Ve = T(ﬁvl) forall feE.

Given a Banach space Z, 0 (R"; Z) denotes the space of slowly increasing Z-valued
smooth functions on R". Pointwise multiplication (f, g) — f g yields separately contin-
uous bilinear mappings

OMREAB(X) x SRLGX) —  LREX), 6.17)

OMREB(X) x S REX) — FL(RGX). '
As a consequence, (m, f) — .Z~'[mf] yields separately continuous bilinear mappings
(6.17). We use the following notation:

Tonf =OP[mlf = m(D) f :=.F mgl.

Let E — 2'(U; X) be a Banach space of distributions on an open subset U < R". For
a finite set of multi-indices J  N“ we define the Sobolev space #/[E] as the space of all
f eEwith D*f € E for every a € ], equipped with the norm

1fllyrg = X 11D fll.

ac]
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Then #/[E] is a Banach space with #”/[E] — E — @' (U; X). Note that if F — 2'(U; X) is
another Banach space, then

E—F implies #”[E]— #/[F].

Given n € (Nzl)l, we define WL{”[[E] = #nd[E], where

1
],,yd:z{ae U ;)N < lajl < n; }

j=1

Suppose R" is 4 -decomposed as in Section 6.3.3. For a Banach space Z, a € (0,00)"
and N € N we define J%I(V‘[’“) (Z) as the space of all m € CV(R"; Z) for which

[[ml] = sup sup (1 +¢ls,a)“**|IDY M)l z < co.

d,a) 5 -
My (2) lal=N éeRn

When a = 1 we simply write 4 (Z) = Jl](\;[’l)(Z).
Let a € (0,oo)l. A normed space E ¢ &' (R"; X) is called (4, a)-admissible if there
exists an N € N such that

m(D)f €E with ||m(D)f||[ES_,”m”ﬂ[(\;i,u)”f”ﬂir (m, f) € On(R™) xE.

In case a = 1 we simply speak of admissible. _
To each o € Rwe associate the operators ¢/ € £('R"; X)) and_#1% € £(#' (R™; X))

given by

1
d;j — A ;
o= Z A+ g2 and gdefi= ) 0N
k=1

olay

We call j(;[ *“ the (4, @)-anisotropic Bessel potential operator of order o.
Let E — '(R"; X) be a Banach space. Given n € (Nl)l, s,ac (0,00), and s € R, we
define the Banach spaces 75 [E], 7 “ [E] — &' ([R"; X) as follows:

FSE ={fe SR :fs[f[;j]fe[E,j =1,...,103,

FEYE = {fe S RY: FIf €H),

with the norms
Lo i ‘
IIfIIJf;[[E] = lelfsj’ billl3 ||f||jf;'“[|E] =25 fllg.
]:

Note that ij [E] — Jﬁ;’“[[E] contractively in case that s = (s/a,, ..., s/ a;). Furthermore,
note that if F — .%/(R"; X) is another Banach space, then

E—F implies A5[E]— 75 (F), ;€] — 77 [F. (6.18)
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We write

7 4 . .
],,,,[:={0}U{L[L[;j]el. Trj=10,00 =1,...,¢{,-}, ne Nzt

L[‘
where eE. i is the standard i=th basis vector in R% , If E — S (R"; X)isa (4, a)-admissible
Banach space for a given a € (0,00), then

W = ZLE) = A5, seRn=sa"' € (@20, Tna T < Tna 6.19)
and
FESE = A7 E),  s>0,s=sa . (6.20)
Furthermore,
D" e BAYE, A, “IVUED),  seRaeN? (6.21)

FUNCTION SPACES

Anisotropic mixed-norm spaces Let X be a Banach space and suppose that R” is -
decomposed as in Section 6.3.3.

Let 0 = Hj.:l Oj cR" with & an open subset of R% for each j.Forpe (1,00)! and
a weight vector w € Hj.:l # (0}) with p-dual weight vector w;, € Hj.:l Ly 10c(O}), there
is the inclusion Lp(ﬁ, w; X) — 2'(0; X) (which can be seen through the pairing (6.13)).
So we can define the associated Sobolev space of order k € N/

WE(O, w; X) := W ®D (L, (0, w; X)),

An example of a weight w on a C*°—domain & c R” for which the p-dual weight w;y =

1
w P € L)1o:(0) is the power weight w?ﬁ = dist(-,00)Y with y € R. Furthermore, note
that w), € Aco(R") Ly joc(R") for w € [Acol),(R") > A (R").

d
Let p € (1,00) and w € [T}_, Ap;R%). Then w}, € Ay, so that #[R") = Ly ®", w},).
Using the pairing (6.13), we find that L, (R", w; X) — '(R"; X) in the natural way. For
ac (0, oo)l, seRand se€ (0, oo)l we can thus define the Bessel potential spaces

HS R w; X) = 705D L, R™, w; X)), HY* R, w; X) = 259 (L, R", w; X))

If X is a UMD space and w € H;zlApj (R%)3, then LP(R", w; X) is (a, d)-admissible
(see [90]). In particular, if X is a UMD space, then (6.19), (6.20) and (6.21) hold true
with E = L,([R", w; X).
Let a € (0,00)!. For 0 < A < B < oo we define @‘f"g(ﬂ@”) as the set of all sequences
@ = (Pn)nen < F(R™) which are constructed in the fdllowing way: given a ¢y € ¥ (R")
satisfying
0=@o =1, Po) =1if[¢l4,a = A, Po(&) =0if|{] 4 4 = B,

Swe Hﬁ':l Ap; ([Rdf ) should already work, but this is not available in the literature and not needed in this
paper anyway.
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(@Pn)n=1 <L (R") is defined via the relations
Pn(&) = P10\"2,8) = Po (83508 — Po (B0, 6), EeR"n=1.
Observe that
supp Po < { | 1éls,o <B} and supp @, c{E|2" 'A<|élsq<2"B}, n=1l.

We put @ 4R") := Up< a<peco @4 %(R"). In case | = 1 we write O*[R") = 4R,
DR") = B R"), @G ,(R") = ©Y%(R"), and D4 p(R") = DY, L (R").
To ¢ € ®%*(R") we associate the family of convolution operators (S;) nen = (8) pen ©

L' R X), O R"; X)) € Z(#'(R"; X)) given by
Suf=Shf=guxf=F gufl  (feS ®R";X). (6.22)

Itholds that f = Y2 | S, f in &' (R"; X) respectively in .# (R"; X) whenever f € &' (R"; X)
respectively f € #(R"; X).

Given a € (0,oo)l, pE [l,oo)l, gell,oc], seR, and w € ]'[;=1 AOO(IR’[/‘), the Besov
space B;,’,Z(R”, w; X) is defined as the Banach space of all f € &'(R"; X) for which

1A B3e @, wix) = 12" S ) nenill (1L, @7, wy1(x) < 00

and the Triebel-Lizorkin space FS P ¢@®", w; X) is defined as the Banach space of all f €
&'(R"; X) for which

._ ®
AN g2 @, w0 = 112" S50 ) nenll L, 2, w12, (1 () < 0O

Up to an equivalence of extended norms on &' ([R"; X), || - IIB;,::’(W,W;X) and||- “F’f,"f,(R",w;X)

do not depend on the particular choice of ¢ € ®*R").
Let us note some basic relations between these spaces. Monotonicity of £9-spaces
yields that, for 1 < gg < g; < 0o,

M J(R”,w X) — B;‘;I,,{(R",w;X), F;’yzo‘J(R",w;X)'—»F;"‘;I,K{(R”,w;X). (6.23)

For £ > 0 it holds that
B“‘ J(R”,w X) — BS f;’([re”,w X). (6.24)
Furthermore, Minkowksi’s inequality gives

s,a noy , RSA no... s,a
Bp,min{pl,...,pl,q},t[([R ,w; X) Bp,q,a’([R ,W; X) — Bp max(p1,..pdh J(R ,w; X).  (6.25)

The Besov space B;Z R, w; X) and the Triebel-Lizorkin space F® ‘:7 R, w; X) are
examples of (4, a)-admissible Banach spaces. In fact (see [156, Proposmon 5.2.26)), if
E=B%* (R",w;X)orE= F;'; ,®", w; X), then there exists an N € N, independent of

p.q.d
X, such that

1mD)flle Spg.aw 1l s g0 Flles— (m, ) € Ou®" BOO) XE. (6.26)
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Lemma6.3.4. Let X bea Banach space, a € (0,00)", pe [1,00)}, gell,oo), we H§:1 AOO(W[J‘),
@/ € {B,F} and s € R. There exists N € N, only depending on a,p,q,n,w, such that if
M < Oy (R™; B(X)) satisfies

||<%||%%1(\;1,a) = sup Z{(Q1+1¢lr,a)***D*m(é):E€R", me A},
la|l=sN

then
R me My Sap,qgnw ||%”@M1(\;{,a) in %(ﬂ;,q(R”,W;X))).

Proof. For simplicity of notation we only treat the case .« = F. Let N be as in (6.26) for
E= Ff,vq(ﬂ'\P", w;Rad(N; X))). Now consider .Z < 0 (R"; B(X)) satisfying ||.Z ||
oo. Let my,...,my € #. Then

e <
RM

m(¢) :=diag(m, (£),..., mp (&)

defines a symbol m € O (R"; B(Rad(N; X)) with [|mll_yy@®Radrx)) < A |00+ SO,
by (6.26), Ty, € %(F;,’,(IR", w;Rad(N; X)))) with

Tl (Es, @7, wiRadN:x0)) Sap.ginw 1A | gty

Now note that
F;,,q([R”, w;Rad(N; X)) = Rad(N;F;,q(R”, w; X))

as a consequence of the Kahane-Khintchine inequalities and Fubini. Finally, the obser-
vation that T}, = diag(Tyy,, ..., Tm,,) completes the proof. O

Leta € (0,00)’, pE [1,00)!, ge[l,00],and w e H;:l AOO([R‘{!’). For s, sp € Rit holds that

B R, wi X) =20 (B R, wi X)), Fy VAR, w; X) = A F R, w; X))

p.q.d 4 Up.qd p.q.d
(6.27)
Letpe (1,00) and we [T}, Ap, R?) If
e E= W;J(R”, w; X),neN!, n=sa1;or
_ psa Y-
e E= Hp]d(R", w; X); or
« E=Hy R",w;X),ac01), a=sa"’,
then we have the inclusions
S,a . y .
Fyi R, w; X) — E— Fyo, R, w; X). (6.28)

The following result is a representation for anisotropic mixed-norm Triebel-Lizorkin
spaces in terms of classical isotropic Triebel-Lizorkin spaces (see Paragraph 6.3.4).
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Theorem 6.3.5 ([157]). Let X be a Banach space, | =2, a € (0,00)2, p, g€ (1,00, s>0,
and w € ApRD) x Ay(R®). Then

oty p® w3 X) = Fyl52 @, w); LPRE, w13 X0) 0 LTRE, w3 Fylpt RY, wi; X)) (6.29)

with equivalence of norms.

This intersection representation is actually a corollary of a more general intersection
representation in [157]. In the above form it can also be found in [156, Theorem 5.2.35].
For the case X =C, 41 =1, w = 1 we refer to [64, Proposition 3.23].

In the parameter range that we have defined the function spaces H;;Z(IR", w; X),
H;'Z(IR”, w; X), By R", w; X) and F,;3(R", w; X) above, the corresponding versions on
open subsets & c R" are defined by restriction:

Hy*(0,w; X) = [Hy*R", w; X)1(0), Hy*(0,w;X) :=[Hy"R", w;X)]0],
B (O.wiX) =BA®L w0,  FOOwX) =R wXO).

Isotropic spaces

Parameter-independent spaces In the special case [ =1 and a = 1, the anisotropic
mixed-norm spaces introduced in Paragraph 6.3.4 reduce to classical isotropic Soboley,
Bessel potential, Besovand Triebel-Lizorkin spaces Wk(ﬁ’ w; X), H, (0, w; X), B}, (0, w; X),

00

F,, (0, w; X), respectively. In the case that & is a C*°-domain and w = wy“, we use the

notation:

wk (0;x)  =wko, waﬁ,X), HS, (0;X) = H3(0,wl 7. %),

(0;X) —Bsq(ﬁw iX), (0;X) —qu(ﬁw‘m,X)

pQY pt]Y

If X is a UMD space, p € (1,00) and w € A,(R"), then L,(R", w; X) is an admissible
Banach space of tempered distributions. By lifting, H; ;([R”, w; X) is admissible as well. In
fact, there is an operator-valued Mikhlin theorem for H;, (R", w; X) (obtained by lifting
from Lp([R", w; X)):

Proposition 6.3.6. Let X be UMD space, p € (1,00) and w € A,(R"). If m € Ca+2(Rn \
{0}; LB(X)) satisfies

limll%.i,,, = sup Z{¢|“DYm(§):¢ e R™\ {0}} <oo,

la|lsn+2

then
FR"; X) — Loo(R"; X), m— F mf],

extends to a bounded linear operator on H;,(IR”, w; X) with

I Tl (s @7, w050 SX,powin
s P
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Proof. The case s = 0 can be obtained as in [187, Proposition 3.1], from which the case
of general s € R subsequently follows by lifting. O

If X isa UMD space, n€N, p € (1,00) and w € Ap([R{”), then, as a consequence of the
admissibility,

Hg(IR", w; X) = W;(Rn, w; X). (6.30)

In the reverse direction we for instance have that, given a Banach space X, if H },([R; X) =

W; (®; X), then X is a UMD space (see [126]).
In the scalar-valued case X = C, we have

H;([R”,w) :F;,Z(R”,w), pe(l,00), we Ap. (6.31)

In the Banach space-valued case, this identity is valid if and only if X is isomorphic to a
Hilbert space. For general Banach spaces X we still have (see [182, Proposition 3.12])

Fo R, w; X) = HyR", w; X) = F  R", w; X),  pe(l,00,weApR"), (6.32)

Fy R, w; X) — Wy R", w; X) — Fp o R",w;X),  pe(l,00,we A,[R™, (6.33)

and (see [2, (7.1)])
Fy, (0;X) = W5 (0;X),  keN,pe(l,00)ye(-1,00), (6.34)

where 0 c R" is a C*°-domain with compact boundary.

For UMD spaces X there is a suitable randomized substitute for (6.31) (see [187,
Proposition 3.2])

Let & < R" be a Lipschitz domain, p € [1,00), rg,11 € [1,00], Y0,71 € (—1,00) and

S0, 51 € R. By [182, 185], if y1 > Yo and s = §1 + Y”;yl , then

i @ 0205 ) —

00,
S R, Wl X). (6.35)

Y

For the next result the reader is referred to [164, Propositions 5.5& 5.6].

Proposition 6.3.7. Let X be a UMD space and p € (1,00). Let w € A, be such that
w(-x1,%) = w(x),X) forall x; R and X € R4

(1) HYPRY, w; X) = WrEP(RY, w; X) for all k e N.

(2) LetB€[0,1] and sy, s1,s € R be such that s = so(1—6)+s516. Then for 0 = R% or 0 = [Rff
one has
(HYP (O, w; X), HVP (0, w; X)]g = HP (0, w; X)

(3) Foreach meN thereexistsan &' € %(H‘m"”(lRf, w; X), H™P[R?, w; X)) such that

e forall|s| < m, &M e BH>P RY, w; X), HSP (RY, w; X)),
e forall|slsm, f— (zg"J’r"f)le equals the identity operator on H¥P (R, w; X).
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Moreover, if f € LP(RY, w; X) 0 C™(R%; X), then &7 f € C"(RY; X).

Theorem 6.3.8 (Rychkov’s extension operator [217]). Let & be a special Lipschitz domain
inR™ or a Lipschitz domain in R" with a compact boundary and let X be a Banach space.
Then there exists a linear operator

&:D(&) D (0;X) — D' R"; X)
with the properties that
e (&fNo=fforall feD(E&);

o (O, w; X) € D(&) with& € B(A), 4(O, w; X), o), ,(R", w; X)) wheneverp € [1,00),
g€ [l,00] andw € Ax(R"). In particular, & (U; X) c D(&) with& € B(S(0; X), BC®([R"; X)).

Proof. The existence of such an operator for the unweighted scalar-valued variant was
obtained in [217, Theorem 4.1]. However, the proof given there extends to the weighted
Banach space-valued setting. O

Let O be either R? or a C*°-domain in R” with a compact boundary 0. Let X be
Banach space, p € [1,00), g € [1,00], ¥ € (—1,00) and s € R. It will be convenient to define

_ 4y _ 4y

00;X):=B,,” 06;X) and OF, (06;X):=F,," (00;X).

s
0B p.ay

p.ay

If &/ € {B,F}and s > HTY, then we have retractions

tryp : JZ{;q(Rn, wgﬁ;X) — a%ﬁq,y(aﬁ; X)
and

Trye : ;zipsyw(ﬁ; X) — ad;w(aﬁ; X)

that are related by trys = Trym 0 &, where & is any choice of Ryckov’s extension operator
(from Theorem 6.3.8). There is compatibility for both of the trace operators trs,» and
Try¢ on the different function spaces that are allowed above.

Let us now introduce reflexive Banach space-valued versions of the 98- and & -scales,
the scales dual to the B- and F-scales, respectively, as considered in [163]. Let X be a re-
flexive Banach space, p,q € (1,00), w € [Aoo];,(IR") and s € R. Recall that w; € A by
definition of [Aoo]’p([R?"). For &« € {B, F}, dp‘,fq, (R"™, w;?;X*) is a reflexive Banach space
with

FREX) S oS R W X — R X),
so that
Z(R"; X) L [dp_/fq/ R", w;,;X*)]* — ' R";X)
under the natural identifications. We define

N n . - =S n I oy xRy * N n . . -S n I . ykygk
B3, R, w; X) 1= (B, R", w); X)I* and  Fy,R", w; X) = [F,S (R", w); X*)]".
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For w € A, we have
N n . — N n . N n . — S n .
‘%p,q(R yw; X) =B, ,®R", w; X) and gpyq(IR yw; X) = Fp, ;(R", w; X). (6.36)

Notationally it will be convenient to define

B, o =B,
._| # J=F

BERBF —BEBF, o~ =y '
F J=%.

Let X be a reflexive Banach space, p, g € (1,00), y € (—oo, p— 1) and s € R. We put

_ 14y _I+y

00;X):=B,,” 06;X) and 0F;, (00;X):=F,," (06;X).

s
0% pay

pay

Parameter-dependent spaces 'We now present an extension to the reflexive Banach
space-valued setting of the parameter-dependent function spaces discussed in [163,
Section 6], which was in turn partly based on [109]. As the theory presented in [163,
Section 6] carries over verbatim to this setting, we only state results without proofs. The
reflexivity condition comes from duality arguments involving the dual scales that are
needed outside the Aj-range. Although for the B- and F-scales duality is only used in
Corollary 6.3.10, for simplicity we restrict ourselves to the setting of reflexive Banach
spaces from the start.

For o € Rand p € [0,00) we define Zf € (& (R"; X)) n £ (&' R"; X)) by

E0f=F G wOfl, feS REX),

where (&, ) = (1+ &> + p*) /2.
Let X be a reflexive Banach space and let either

(i) pell,o0), gell,00], we Ax(R™) and &7 € {B, F}; or
(i) p,gel,00), we [Aoo];g([R”) and <7 € {9, F}.

For s, s € R and p € [0,00) we define
=SS / .
||f||;z7;'5's°(R",w;X) = ”:"u Of“VQVnS'Oq(R",w;X)’ fES” (Ran)

and denote by <77 R", w; X) the space {f € &' R"; X) : || fl 5150 g ., < ©0} equipped
P4 W

with this norm. For the Bessel-potential scale we proceed in a similar way. Suppose that

X is a UMD Banach space and let p € (1,00) and w € A, (R"). We define

. e =SS0 .
”f”H;;l“O R, w; X) "~ ”—"u f”H;,O (R, w; X)
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and write H;,’”’SO (R", w; X) for the space {f € ' ([R"; X) : ||f||H;,u,so ®w:x) < oo} endowed
with this norm. In all the different cases we suppress sy when sy = 0.
It trivially holds that
=r . S50 rmpn . i) S—1,14,S0 n . . .
9y (R, w; X) Dy q (R",w; X), isometrically,

EL : H;’“’s" (R", w; X) — H,f,_t’”’s" (R", w; X), isometrically.

(6.37)

It furthermore holds that ,52%;,‘5’&0 R", w; X) = o7 ,®", w; X) as well as H;,‘”'SO (R, w; X) =
H,®R", w; X), but with an equivalence of norms that is u-dependent. If s, s, So € R with
So < Sy, then

PO R, w; X) — SO R, w; X)  uniformly in g € [0,00),
H;’”O R, w; X) — H;,’”'EO (R", w;X) uniformlyin y € [0,00).
For an open subset U < R" we put
AU, w; X) = [yt R, w; X)U),  Hy*™ (U, w; X) := [Hy*™ R, w; X)1(U).

If s = 59 and O is either R”, R” or a C*°-domain in R” with a compact boundary 6, then
it holds that

— $—So ;
“f”m;g“o(ﬁ,w;)() ~ Nl 0,0 + (0 ||f||<ca7;2,(ﬁ,w;X)’
1AW gm0 (i) = 1A a3 00 + 2N g0 6,0y €S R, € [0,00)
(6.38)

Let X be areflexive Banach space, p, g € (1,00), (w, &) € Axo (R"™)x{B, F}U [Aoo];,(R") x
{B,F} and B = o7°. For s, sg it holds that

[y ™ R", w; X)]* = ps; Y (R", w),; X*), uniformly in g € [0,00).

Next we consider a vector-valued version of the parameter-dependent Besov spaces
as introduced in [109], but in the notation of [163, Section 6]. Let X be a reflexive Banach
space, p € [1,00), q € [1,00] and s € R. For each p € [0,00) the norm || - ||[ﬂ§j;f,‘,(W;X) is
defined by:

”f”[Bz’f](R”;X) = <,LL> pHM/JfHBS R";X)» fey’(R";X),

where M, € ZL(Z R X)) N L (S (R"; X)) denotes the operator of dilation by (,u)‘l. We
furhtermore write [EB;,’Z(R"; X) for the space {f € &' (R"; X) : || f] |B;§.’2 ®x) < oo} equipped
with this norm. Then

BByl (R X) — B, /(R X), uniformlyin . (6.39)
If s > 0, then it holds that

||f||[ﬂg;l;(qun;x) ~ I flss ,@ex) + WA fll,®nx), €S R";X),uel0,00. (6.40)
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If pe (1,00) and g € [1,00), then
B,y (R™; X)]* = [B;/s"f;, (R";X*)  uniformly in p € [0,00). (6.41)

For a compact smooth manifold M we define [EB;,’Z(M) in terms of [EB;,’Z(R") in the
standard way. Then the analogues of (6.40) and (6.41) for [B;,’f; (M) are valid.
It will be convenient to write

_ 14y

STk
[B P ,X , B, ,
ad;gyy(aﬁ;X):: fv_qﬂu(aﬁ ), o €{B,%}
B,,” " (00;X), « €{FZF}
as well as
S,H S_HTY:H
OHy400iX):= By, " 0030

Proposition 6.3.9. Let X be a reflexive Banach space, let O be either R”} or a C*°-domain
in R™ with a compact boundary 00, let U € {R", 0}, let either

(i) pell,00), g€ [1,00], 7€ (-1,00) and < € {B, F}; or
(ii) p,q€ (1,00),v € (oo, p—1) and o7 € {B,F},

and letse (HTY,oo) and sy € (—oo, HTY). Then
trog: g > (U, wf,/j; X) — 047,14, ,(00;X)  uniformly in i € [0,00),
that is,
s < X 8,150 a0 .
||tr6ﬁf||6%ﬁg‘y(aﬁ;x) NHf“W,;"g'SO(U,w)‘?@;X)’ fEﬂp,l] (U, w ,X),ﬂE [0,00).

The respective assertion also holds for the Bessel potential scale if X is a UMD Banach
space and ifye (-1,p—1).

Corollary 6.3.10. Let X be a reflexive Banach space, p,q € (1,00), (y, <) € (—1,00) x
{B,F}U (00, p—1) x {8, F}, s € (—o0, =L —1) and sy € (5} —1,00). Then

siLs < StLp mpd-1.
”60 ®f||dp:g' O(Rn,WY;X) ~ ||f||6d;;‘l}v]ﬂ(ﬂd71;x)r f € adp,q,y ([R rX);N € [0,00)

6.3.5. Differential Boundary Value Systems
THE EQUATIONS

Here we introduce some of the notation and terminology that will be used in Sections
6.6 and 6.7 on parabolic and elliptic boundary value problems. In this thesis we for
simplicity of presentation only formulate these problems for boundary value systems
having BC*°-coefficients; we refer the reader for more general coefficients to the paper
[122] on which this chapter is based.
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Let X be a Banach space, & c R"” a C*°-domain with a compact boundary d& and
J <R an interval. Let m € N3 and let my,...,m,, € N satisfy m; <2m—1foreach i €
{1,...,m}.

Systems on O': For each a« € N", |a| <2m, i € {1,...,m} and B € N", |B| < m;, let
aq € BC®(0;%(X)) and b; g € BC®(00; B(X)). Put

(D)= Y, agD%
lals2m
B; (D) := Z b,‘yﬁtraﬁDﬁ, i=1,...,n,
Iﬁlsmi
We call («f (D), %81 (D), ..., B, (D)) a B(X)-valued BC*-differential boundary value sys-
tem (of order 2m) on 0.
Systems on O x J: For each a e N", |a| <2m, i € {1,...,m} and B e N", |B| < m;, let
aq € BC™(0 x J;A(X)) and b; g € BC*(00 x J; A(X)). Put
(D)= ) aqD%
la|<2m
Bi(D):= Y bigtrgeDP, i=1,...n,
|Bl=m;
We call («/ (D), %1 (D), ..., Bn(D)) a B(X)-valued BC*-differential boundary value sys-
tem (of order 2m) on O x J.

ELLIPTICITY AND LOPATINSKII-SHAPIRO CONDITIONS

Let us now turn to the two structural assumptions on ¢, %y, ..., %,. For each ¢ € [0, )
we introduce the conditions (E) and (LS).

The condition (E)4 is parameter ellipticity. In order to state it, we denote by the
subscript # the principal part of a differential operator: given a differential operator
P(D) =Yy i<k pyDY of order k €N, Py(D) = Yiyi=k pyDY.

(E)p Forall re J, xe€ 0 and |¢] = 1 it holds that o (e (x,¢, 1)) = Zgp. If 0 is unbounded,
then it in addition holds that o (< (0o, &, )  C, forall t € J and || = 1.

The condition (LS), is a condition of Lopatinskii-Shapiro type. Before we can state
it, we need to introduce some notation. For each x € & we fix an orthogonal matrix
Oy(x that rotates the outer unit normal v(x) of 8¢ at x to (0,...,0,—1) € R”, and define
the rotated operators («/¥,%8") by

" (x,D,1):= o (x,0} D, 1), B"(x,D,1):=B(x,0},D,1).

(LS)y Foreachte], xed0, AeZ, ¢ and ¢ e R4 with (1,¢') #0 and all he X", the
ordinary initial value problem

Aw(y) + <) (x,¢,Dy, hw(y) =0, y>0
,%;#(x,f’,Dy,t)w(y)lyzo =hj, j=1,..,n

has a unique solution w € C*°([0,00); X) with lim,, .o, w(y) = 0.
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In the scalar-valued case, there are several equivalent characterizations for the Lopatinskii-
Shapiro condition. It is a common approach to consider the polynomial

m
T E T 0= -1(E D)
j=1

where 71(x,¢’, 1),..., T (x,¢, 1) are the roots of the polynomial <7, (x,¢’, -, £) with posi-

tive imaginary part. If we write %87, (x,¢ ', 7, 1) for the equivalence classes of B 4(x,¢ "1,1)

in C[t]/ (M#V’Jr (x,¢,1,1)), then we can formulate the following result:

Proposition 6.3.11. The Lopatinskii-Shapiro condition is satisfied if and only if.%]Y 4(x,8,7,1)
(j=1,...,m) are linearly independentinC[r]/(ﬂJ*(x, &1, 1).
This condition is sometimes called covering condition. A proof for this statement

can for example be found in Chapter 3.2 of [207]. A similar condition can be formu-
lated using the so-called Lopatinskii matrix. If QBJV pes &', 1, 1) are the representatives of

.%}V mes &', 1, t) with minimal degree, then there degree is smaller than m. Hence, there is
a unique matrix L(x, &', r) € C™*™ guch that

B ,(x,¢,7,1) 70
=L(x¢, 1)
By, (6,87, 0) L

This matrix L(x, &', ) is called Lopatinskii matrix. From Proposition 6.3.12 one can easily
derive the following result:

Proposition 6.3.12. The Lopatinskii-Shapiro condition is satisfied if and only if the Lopatin-
skii matrix L(x, &', t) is invertible.

Using Proposition 6.3.12 one can easily see that if B; (x,¢', 7, 1) = 7771, then the Lopatinskii-
Shapiro condition is satisfied for all elliptic operators. In particular, this includes the
usual Dirichlet boundary conditions for second order equations. Also Neumann bound-
ary conditions satisfy the Lopatinskii-Shapiro condition. For further examples we refer
to Section 11.2 in [249].

6.4. EMBEDDING AND TRACE RESULTS FOR MIXED-NORM ANISOTROPIC
SPACES

6.4.1. Embedding Results

The following result is a partial extension of [183, Theorem 1.2] to the mixed-norm
anisotropic setting.

Proposition 6.4.1. Let X be a Banach space, p,p € (1,00)!, g,§ € [1,00], 5,5€R, a €
(0,00)!, and w, W € ]'[i.:1 Aco(R%). Suppose that
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* p1<p1, pj= ﬁj and wj= LT/ijTjE 2,...,0}
« wi(x1) = x| and W (x1) = |x1|77 for somey1,¥1 € (—dy,00) satisfying

Y 4 +y 4+
gsﬁ and —1~Y1<—1 n
|2 41 pP1 P

Ifs— aldl Yl >5— aldlpy' then
FS (R",w;X) — F>% ®R", w; X).
p,q,t[( ) p‘q‘l[( )

Remark 6.4.2. In this paper we only apply Proposition 6.4.1 in the case that p = p. In
this case the embedding result takes the form: if y; >y, and s =5+ a; Ylp_l " then

Fe (R, w;X) — Fg“g,‘[([@", iw; X).
One of the nice things about this embedding, which has already turned out to be a pow-
erful technical tool in the isotropic case (see e.g. [162, 163, 167, 186]).) , is the (inner)
trace space invariance in the sharp case s = 5§+ a; Ylp it , see Proposition 6.4.6 below. In
the two other embedding results in this section, Lemmas 6.4.3 and 6.4.4 below, there
also is such an invariance.

Proof of Proposition 6.4.1. The embedding can be proved in the same way as [183, The-
orem 1.2 (2)=(1)], as follows. It suffices to consider the case § = 1 and s — a ‘{1;;“ =
S—m ’ﬁﬁ;fl. Furthermore, in order to prove the norm estimate corresponding to the em-

bedding we may restrict ourselves to f € #(R"; X). Let 8 € (0, 1) be such that

Yl/Pl—(l 0)yi/p

T 190 >—d,
pon
let r be defined by pi = 1;—19 Q and let ¢ be defined by t — a ‘{1“’ =5-
that r € [p1,00), t € (—00,5), S =0t + (1-60)s and lev-i- 1= 0)p1 = ¥. Therefore, as

[183, Proposition 5.1] directly extends to the setting of mixed- norm anisotropic Triebel-
Lizorkin spaces,

“f”F;"ll‘[(R",ﬂz,X) ||f||FStl (Rn wX)“fHFta ([R”,(\lv,ﬂl'),X)' (6.42)
y 1 (rp"),rd

Furthermore, as a consequence [183, Proposition 4.1], since
):1 v 1—9(Y1 7/1)20,
p1 T 0

— no(d,a)
||f||F(’;j,,W(R",(|-|V,ﬁﬂ);X) =178y f)"€N||Lpf,,,r<n'\vd-ff1,mw,(N)[Lr(Rm-mn(X)
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< Sncld,a) _ N
~ ||(2 Sn f)n€N||Lp/,,1/(Rd_r[1vw’)[€ﬁ1 (N)[Lﬁl ([R‘fl,l-\Yl)]](X)
=1flg5egon (6.43)

here we apply [183, Proposition 4.1] to S'® f(-, x') for each x’ € %~ which is a Schwartz
function with Fourier support in [—¢2"®, c2"*]4 (with ¢ independent of f and n), to
obtain

(d,a) < na; arv_4in (d,a)
||S f( x)“L RA)-1V;:X) ~ (2 )T P ||S f( x)||L~ (R,]-71;X)

t-3 d,
=2"NSEDFC N o0

from which "<’ in (6.43) follows. A combination of (6.42) and (6.43) gives the desired
estimate

||f||F;7J(Rn,ﬁ,;X) S ”f”F;fM(Rn,w;X)- O
Lemma 6.4.3. Let X bea UMD Banach space, g, p,r € (1,00), v € A4(R), y € (-1,00), s€R
and p € (0,00). Put s, := max{s,0}, y+ ==y +(sy —S)pand o := % +1. Let § € (0,00) be
suchthaty, —-6pe(-1,p—1) and putn:= ﬁ& Then
a+%,(%,1) . 1 s s+p
F(p,q),1 Ry xR, (Wy, +yp, 1); X) — Wq (R, U;Fp,,([R wy); X)N Ly, v; F ([R wy); X).
(6.44)
Proof. By the Sobolev embedding from Proposition 6.4.1, (6.44) is equivalent to

0(1,)

e
Fip g1 ®EXR, (wy, v); X)nE, P ([Rﬁ xR, (wy, +np, v); X)

(pg),1
—  WyR vy, R, wy); X) N LeR, v; Fp\ RY, wy); X).

The latter embedding can be shown as in [162, Lemma 3.3] about the scalar-valued case.
Let us elaborate a bit.

Taking the X-valued version of [162, Lemma 3.2] for granted, [162, (27)] is the only
thing that needs an extra explanation. Its X-valued version reads as follows:

FO @R, v; Ly R, wy); X) — HJ R, v; Ly (R, wy; X)), (6.45)
where
[Ff,,l R, v; Ly (RY, wy); X)
={f e ®LyRE, wy; X)) : 7S} € LR, v; LyRY, wy; 10N X))}
The desired embedding (6.45) follows from [184, Proposition 3.2] and

Ly@®, v; Ly R, wy; €1(N; X)) = Lg(R, v; Ly R, wy; Rad(N; X))
= Rad(N; L (R, v; L, R”, wy; X)),



226 6. GENERAL ELLIPTIC AND PARABOLIC BOUNDARY VALUE PROBLEMS

where the space Rad(N; Z) is introduced in Section 6.3.2.
Concerning [162, Lemma 3.2], let us remark that X is reflexive as a UMD space, so
that the duality arguments given there remain valid. O

Lemma 6.4.4. Let X be a UMD Banach space, q,p € (1,00), v€ Ag(R), y € (-1,00), s€ R

and p € (0,00). If0 € 10,1] is such that s+ 8p € (0,00) N (HTY - ,HTY), then

W, R, v; ), o (R, wy); X) N LR, v; Fp b (R, wy); X)
_ -0
—  HYOR ULy RY, wy(5:00p): X) N Lg®, v; Hy P RY, wy—(516p)); X).
(6.46)

Note that s+60p € (HTY -1, HTY) isequivalenttoy — (s+0p)p € (-1, p—1), whichisin

turn equivalent to wy_(s19p)p € Ap-

Proof. The proof given in [162, Lemma 3.4] on the scalar-valued case carries over ver-
batim. O

6.4.2. Trace Results

Proposition 6.4.1 with p = p (see Remark 6.4.2) enables us to give an alternative proof
of the trace theorem [160, Theorem 4.6] for anisotropic weighted mixed-norm Triebel-
Lizorkin spaces. The special case 4; = 1 in Proposition 6.4.6 actually yields [160, Theo-
rem 4.6], which is the only case that is used in this paper.

For the statement of Proposition 6.4.6 we need some notation and terminology that
we first introduce.

SOME NOTATION

We slightly modify the notation from [160, Sections 4.3.1 & 4.3.2] to our setting.

The working definition of the trace Let ¢ € ®%%(R") with associated family of convo-
lution operators (Sg)ren € Z(&' (R™; X)) be fixed. In order to motivate the definition to
be given in a moment, let us first recall that f = Y22 Srf in & (R"; X) (respectively in
&' (R"; X)) whenever f € #(R"; X) (respectively f € &' (R"; X)), from which it is easy to
see that

(e
Fioxmn- = 2 (SkFjo, - 10 SREGX),  feSRX).
k=0 '

Furthermore, given a general tempered distribution f € %' (R"; X), recall that S,,f €
On(R"; X); in particular, each S, f has a well defined classical trace with respect to
{041 x R™ 4. This suggests to define the trace operator 7 = 7% : 2(y?) c %' (R"; X) —
S (R4; X) by

-[lﬂf = Z (Snf)l{odl}XRn_,{l (647)
n=0
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on the domain 2(7¥) consisting of all f € &'(R"; X) for which this defining series con-
verges in ./ (R"~%; X). Note that .Z "1&'(R"; X) is a subspace of 2(7¥) on which 7%
coincides with the classical trace of continuous functions with respect to {04} x R"~;
of course, for an f belonging to .# ~1&’ (R"; X) there are only finitely many S,, f non-zero.

The distributional trace operator Let us now introduce the concept of distributional
trace operator. The reason for us to introduce it is the right inverse from Lemma 6.4.5.

The distributional trace operator r (with respect to the plane {0} x R"~4) is defined
as follows. Viewing C(R“; 2’ (R"~4; X)) as subspace of 2'([R"; X) = 2'(R% x R"~4; X) via
the canonical identification 2'(R%;92'(R"%; X)) = @' RN x R"4; X) (arising from the
Schwartz kernel theorem),

CRYP' R X)) = 2'RY2' R4 X)) = 2' R xR"4;X),
we define r € Z(C(R;2' (R4, X)), 2'(R"~“; X)) as the evaluation in 0 map’
r:CRY2' R"™4; X)) — @' R"; X), f— evo f.

Then, in view of

CR™X) = CR xR"~; X) = CR; CR" ;X)) — CR; 2" R"4; X)),

we have that the distributional trace operator r coincides on C(R"; X) with the classical
trace operator with respect to the plane {0} x R4 je.,

riCR™X) — CR"™M;X), f = fio, eqn-a-
The following lemma can be established as in [131, Section 4.2.1].

Lemma 6.4.5. Let p € #(R%) such that p(0) = 1 and supp p < [1,2]4, a1 e R4, d €
(Z>0)"% with d = (dy,d), @ € (0,00)"4, and (Pp)pen € ©HERY4). Then, for each
ge S R X),
extg:= ) pR" )& (¢, * gl (6.48)
n=0

defines a convergent series in &' (R"; X) with

supp Z [p ® [po * gll < {¢ 1€l 4,q < c}

6.49
supp Z[p2" " )& [y x gll | 12" <|E| s 0 < 2" ,n=1, (6.49)

for some constant ¢ > 0 independent of g. Moreover, the operator ext defined via this
formula is a linear operator

ext: ' (R4 4; X) — Cp(R™; % (R4 X))

which acts as a right inverse of r : C(R4; ' (R4 X)) — &' (RI~4; X).
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THE RESULTS

We will use the following notation. We write d” = (d,..., ;). Similarly, given a € (0,00)’,
pell,oo) and we Hé.:leo([R‘[i), we write a” := (ay,...,a;), p:= (p2,...,p;) and w" :=
(wo,...,wyp).

Proposition 6.4.6. Let X be a Banach space, a € (0,00)}, p € (1,00)}, q € [1,00], 7 €

(—di,00) and s > %0{1 +7). Letwe H;:l Aco(R%) be such that wy (x1) = |x11Y and w" €

H§'=z Apiir; RY) for somer" = (ro,...,r;) € (0,1)!7! satisfyings—%(c{l+y) > Zj‘:z aja’j(rij—
1).* Then the trace operator T = 1% (6.47) is well-defined on F;'Z l[([RZ”, w; X), where it is

independent of ¢, and restricts to a retraction

_a "
S~ (1+y),a

T:F,qR", w;X) —F R"™, w"; X) (6.50)

q r".m

for which the extension operator ext from Lemma 6.4.5 (with d = d" and @ = a'") restricts
to a corresponding coretraction.

Proof. Using the Sobolevembedding from Proposition 6.4.1 with p = p (see Remark 6.4.2)
in combination with the invariance of the space on the right-hand side of (6.50) under
this embedding, we may without loss of generality assume that p; = g. So

Ly®R", w)[€q(N)] = Ly R"™, w")[€4(N)[L, R, | - V)],
Now the proof goes analogously to the proof of [156, Theorem 5.2.52]. O

Corollary 6.4.7. Let X be a Banach space, a € (0,00)!, p € (1,00)!, y € (=dy,di (p1 - 1))
and s > %(;{1 +7). Letw e Hi':l Apj (R%) be such that wi (x1) = |x1|7. Suppose that either

o F= W;’(IR”, w;X),ne (Zzl)l, n=sal;or
* E= Hy*(R", w; X); or
* E= HyR",w;X), s € (0,00}, a=sal.

Then the trace operator T = % (6.47) is well-defined on E, where it is independent of ¢,
and restricts to a retraction
s—%(l+7),a”

7T:E— F

d-1 ",
p”:plv‘{” (R )w )-X)

for which the extension operator ext from Lemma 6.4.5 (with d = d" and @ = a'') restricts
to a corresponding coretraction.

4This technical condition on w" is in particular satisfied when w'” € l'[é.:2 Ap; ®Y).
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Corollary 6.4.8. Let X be a UMD Banach space, q,p € (1,00), v € Ag(R), y € (=1,00),
s € (—oo, +7), p € (0,00) and BeN". Ifs+p—10] > lﬂ/ , then tropn o DP is a bounded
linear operator

‘(s+p 1BI-55),(3,0

n-1 .
El o ®R"™ xR, (1, 1); X)

Wy (R, ; Fy oo R, wy; X)NLg R, v; Fpch (RY, wy; X)) —
Proof. Let 0 € [0,1] be such that s+0p € (0,00) N (1” 1ﬂ/) Such a 6 exists because
s< 17 ands+p>s+p—I6]> 7' Using Lemma 6.4.4

1-0,(1,1

e’ n .
H(p,q) (IR+ XR)(WY) U))X)

we find that D is a bounded linear operator from
W, R, v; ) o (R, wy; X)) N LR, U; Fpcb (R, wy; X))

to
1-0-1181,(1,1)

Hp,g) PR X R (wy—(s40p)p) 1) X).

The desired result now follows from Corollary 6.4.7/[160, Corollary 4.9] and the obser-

vation that

1+[y—(s+0p)pl -

1 1+y 1
—(s+p=1Bl-—=)=01-0~-=I) -
p p—1B P pﬁ

6.5. POISSON OPERATORS

6.5.1. Symbol Classes

In this subsection we give the definition and derive some properties of the symbol classes
we want to work with. We will restrict ourselves to symbols with constant coefficients
and infinite regularity in the parameter-dependent case. For the main results of this pa-
per, treating the general symbol classes which are usually considered in the framework
of the Boutet de Monvel calculus is not necessary. Nonetheless we will treat them in a
forthcoming paper for the discussion of pseudo-differential boundary value problems.

In this section, our parameter-dependent symbols usually depend on a complex
variable. If we say that the symbol is differentiable with respect to that variable, we
interpret this complex variable as an element of R?> and mean that the symbol is dif-
ferentiable in the real sense. Likewise, if there is a complex variable appearing in the
Besselpotential, we treat it as a variable in R?.

Definition 6.5.1. Let Z be a Banach space, d e R and £ c C. Let further [ € Z5, 4 =
(d1,...,d)) € (Z=1)! such that |d| = nand a = (ay, ..., a;) € (0,00)".
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(a) The parameter-independent Hormander class of order d with constant coefficients
denoted by $(R"; Z) is the space of all smooth functions p € C*®(R"; Z) with

Ipl? = sup &y~ 1P IDE p(O)llz < 00

EeRM
lal<k

for all & € N". Here, as usual the Besselpotential is defined by () := (1 + £[%)/2.

(b) The anisotropic parameter-independent Hormander class of order d with constant
coefficients denoted by SZ a (R"; Z) is the space of all smooth functions p € C*(R"; Z)
with

d
Ipl§, == sup

&AERM T
lay \+m+|al|5k

O N ] PR

forall a; € (Zzl)d’C (k=1,...,1). Here, the anisotropic Besselpotential is defined by

O ga:=A+EH D+ 1 2,

Definition 6.5.2. Let Z be a Banach space, d €e R and X c C. Let further [ € Z;, 4 =
(d1,...,d)) € (Z=1)! such that |{|=nand a = (a, ..., a;.1) € (0,00) 1.

(a) The isotropic parameter-dependent Hormander class of order d and regularity co
with constant coefficients denoted by S¥*°(R" x X; Z) is the space of all smooth func-
tions p € C*°(R" x X; Z) with

Iple .= sup (60" @=1el=D)| DE D] p(&, )l z < 00

\a|+]<k

for all @ € N" and all j € N?. Here, the parameter-dependent Besselpotential is de-
fined by
©) 0= A+IEP+1uHM2,

(b) The anisotropic parameter-dependent Hormander class of order d and regularity
oo with constant coefficients denoted by SZ’Z"(R” x X; Z) is the space of all smooth
functions p € C*°(R" x X; Z) with

(d,o0) ._ (d-arlar|-...—ajlail-ag 1)) | e Q% Jj
Il ok = sup (00 N0 .0, 03 P& Ml z <00
EAeRT x

lay \+m+|al|+jsk

for all ay € (Zzl)”l’C (k=1,...,D), aj;; eNand all j € N2. Here, the anisotropic
Besselpotential is defined by

EMN g a=A+1EH D 415 g AP a2,

In the special case I = 1 we also omit 4 in the notation and write SZ'OO([R{" x 2; Z) and

(d,00) &
I plla,k instead.
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Definition 6.5.3. Let Z be a Banach space, d e Rand 1 < p < co. Let further [ € Z5,,
d=(d,...,d;) € (Z=1)"! with 4; = 1 such that || = nand a = (ay, ..., a;) € (0,00)".

(a) By Sd(R"‘l;jﬁLp (R+; Z)) we denote the space of all smooth functions
k:Re xR — Z, (x1,8) = k(x1,&)
satisfying

WKl sa @n-1;57,, @520/, m,m’
1
n—(d-m+m'-la' -1+ . '
= sup () Pllxy — x1" DY} D k(x1, ) w,,2) <00
&'eRP1 xR,

for all @ € N"~! and all m, m’ € N. The elements ode([R”_l;ﬂ’Lp (R4; Z)) will be called
parameter-independent Poisson symbol-kernels of order d + 1 or degree d.

(b) We denote by Sj a(IR”‘l;pr (R4; Z)) the space of all smooth functions
%:R_{. X Rn_l - Z; (xl,gf) — %(xl)fl)
satisfying

Ikl |sj,um,, (R+;2)),a,m,m’

—(d-(m-mYa-azlaz|—...—ajla;)+ar (L -1) e
:=sup(¢’) , " llx = X" DY) D k(x, 8D, ®y;2) < 00
) ’

forevery a’ = (ay,...,a;) e N" ! anall m, m' € N. The elements ofS? JRL SR 2)
will be called anisotropic parameter-independent Poisson symbol-kernels of order

d + a; or degree d. In the special case a; = ... = a; we omit 4 in the notation and
write SGR" ™ 71, R+ 2) and Kllsg s, @,;29),0,m,m' IDSC2A.

Definition 6.5.4. Let Z be a Banach space, d e Rand 1 < p < co. Let further [ € Z5;,
d=(d,...,d;) € (Z=1)! with 4; =1 such that |¢| = nand a = (ay,..., a;+1) € (0,00)*1.

(a) By S‘Z""’([R”_1 X Z;yLP (R+; Z)) we denote the space of all smooth functions
kR xR xZ— Z, (x1,&, ) — k(x1, &', )
satisfying

" k“sd,m(Rn—l ng;pr ([R+;Z)),a’,m,m’,y
—d+m—m’+|a’|+y—1+l

= sup (&,w Pllxy — x{" DY} D DZE(X1,§',M)|ILn(R+,Z) <oo

&eRn1 xR,
forall @ e N1,y € N? and all m, m' € N. The elements of S#*°(R"~! x %%, Ry; Z)
will be called parameter-dependent Poisson symbol-kernels of order d + 1 or degree
d and regularity oo.
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(b) We denote by SZ";O([R”‘l x %; 71, (Ry+; 2)) the space of all smooth functions
iRy xR x T — Z, (2,8, 1) — k(x1,&', )
satisfying

1Kl G (S, Re; 2!, mm'y
—(d—(m-m")a,-azlaz|—...—ajla;|-lylaj1)+a (7—1)
— sup f /DJ, 1—-azla2 Hegl=lylapq 1
X1 €R4 & eRN1
Aex

! ! ~
|11 — x{" D3} D, DY k(x1,&, ML, ®,;2) <00

for every ' = (az,...,a;+1) €N", m,m' e Nand y € N°. The elements ode°°(IR” Ly

%; 7, (Ry; Z)) will be called anisotropic parameter-dependent Poisson symbol -kernels
of order d+ a; or degree d and regularity co. In the special case a; =... = a; we omit

4 in the notation and write SZ’OO (R 1x3; 1, Ry; Z)) and ||kl Isz,oo
instead.

(F1p R 2)),0!,m,m'y

Lemma 6.5.5. Let X be a Banach space. For p € [1,00], m, m' € N let

||f||pr(IR+,X),m,m’ =|x— meT/f(x)||Lp(R+,X) (f e R4, X)).

Wewrite 1, R+, X) if we endow # (R+, X) with the norm generated by {|- IIpr ®Re X)mm’
m, m' € N}.

(@) The topology on & Ry, X) generated by the family {| - IIpr R X0, mm - m,m €N} is
independent of p.

(b) The symbol-kernel class Sdoo(R” lyy; YLp (Ry4; 2)) is independent on p. The respec-
tive assertion also holds in the isotropic or parameter-independent case.

Proof. (a): We simply show that y’Lp R4, X) — qu (R4, X) for all choices of p, g € [1,00].
If g < p we can use Holder’s inequality. Let m, m’' €N, r € [1,00] such that1/g =1/r+1/p.
Then, we have

/ _ ’
lx— x"D{" fF(OlL,m,,x) <X~ (x) Uigrllx — (x)x™D™ f(x) I, ®.,x

! !
< max{llx — x™ D f(x) Iz, @, x) 1~ ™D (x) Iz,®,x}

If g = p we use the embedding Wl} (R4, X) — Lg(R4, X) (cf. Proposition 3.12 in combi-
nation with Proposition 7.2 in [182]). This embedding yields

!
lx — me;n f(x)||L,,7(R+,X) Slx— mem ]c(-x)”[/Vl(RJr X)

! '
<max{llx— x" DI ()L, @, x), 1x— X" DI )L, @0, 12— X" DT fO)lL,®. 0

for all m, m' € N. Altogether, we obtain the assertion.
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(b): We will derive this from (a) by a scaling argument. For simplicity of notation
we restrict ourselves to the isotropic parameter-dependent case. Consider a smooth
function

Ry xR xZ— Z, (x1,&, ) — k(x1,¢', 1)

Let & € N, y € N* and put Ky, (x1,¢, 1) := D& D k(x1,¢,p) and Ry y (01, ) :=
ket (€', 1 11, ). Then

1 )~ ~
& Mk Co€ )y e = ity G 8 s 0z s 1, €N, p € [1,00].
Applying the seminorm estimates associated with (a) to ﬁa:,y(.,g" , 1) the desired result
follows.

O

Remark 6.5.6. (a) Occasionally, we will need the estimates in the definitions of the Pois-
son symbol-kernel classes with m being a non-negative real number instead of a
natural number. But the respective estimates follow by using Young’s inequality.
Indeed, for example in the anisotropic parameter-dependent case we have for all
0 €[0,1] that

(f A>(m+«9)a1 p(m+6) _ (S( Mm(l 0 ay pm(l 9)<€ /1>(m+1)0a1 {J(mﬂ)e

p(m+1)

< (=00, D) x ™ +0¢", A0

Using the triangle inequality for the L, (R, Z)-norm yields the desired estimate.

(b) Let g > 0. Then we have that S?’ SZLZZO and that Sd °°([R” lys; pr (R4; 2)), since

G 1 N e R
=0+ |¢z|2"f“2 o G PN AP I = g )]
The same assertion also holds in the parameter-independent case.

(c) Let m,m' €N, y € N? as well as ay € N% (k=1....,1) and a’ = (az,...,a;) € N1,
Then, it follows from the definition of the symbol-kernels that k — x{”DZ"D?,’DX%
is a continuous mapping

_ d—(m—-m)a, - azl@z|—..—ajla; |- , _
Stw R X% S, (R 2) — Sy ATl Ao @l 9 @®y;.2)),

The respective assertion also holds for the other symbol-kernel classes as well as for
the Hérmander symbols.

(d) Letd,,d, € Rand suppose that we have a continuous bilinear mapping Z; x Z, — Z
for the Banach spaces 7}, Z, and Z. Then, the bilinear mapping

STOR™ x 3, Z1) x SEPR" x 55 Z5) = ST O x 5.2, (p1, p2) — p-p

is continuous. The respective assertions also hold for the other classes of Hérman-
der symbols.



234 6. GENERAL ELLIPTIC AND PARABOLIC BOUNDARY VALUE PROBLEMS

Remark 6.5.7. Consider the situation of Definition 6.5.4. Suppose that X = X, is a sector
with opening angle ¢ > n/2 and let ke Sd"o(lR{” L3, 1, Ry; 2)). If we just take A =
1+i0 with 0 € R, then (x1,¢,0) — k(x,&',1 " i0) is an anisotropic Poisson symbol kernel
in the sense of Definition 6.5.3.

Proposition 6.5.8. Let Z bea Banach spaceandd € R. Let furtherl€ Zy,d = (4y,...,d}) €
(Z>1) with dy = 1 such that |d| = n and a = (ay,...,a;41) € 0,00)!*1. Ler g € N and
24:={27:z €3} for some open Z c C. Letke Sdm(R” 1y 241, Ry, Z)) an anisotropic

symbol. Then, the transformation A = u9 leads to a symbol in SZ{;OO([R"’I xZ; 97, Ry, 2))
\aq
where ag:= (qa1,...,qay, a;.1), i.e. we have that

[, &, ) — k(xy, & u)] € s"d""(%l).

Proof. First, we note that

q ~ .
pl = +ip)¥ =y (?),u‘f(iuz)”"’-
g=0\1
We show by induction on |y| with y € N? that a“’ay’lé(xl,f' 17 is a linear combination

|]|

of terms of the form p/ =" f(x1,&', u%) where j,i € N? such that j—i € N? and -L- +i| =

Iyl as well as f € Sd @’ g =(ljlai)/(g-1)

(#1,). Obviously, this is true for y = 0. So let
6Yk(x1, &', u?) be a sum of terms of the form p/ =/ f(x1,&’, q) where j,i € N? such that

d- 1(g-1
]—“'3'\I2 and l” p+i=lylaswellas feS, @’ g a'~(jlar)/(g-1)

summands separately Then, we have

(#1,). We consider the

6/_11 [“j_if(xly é"r l’tq)]
. .04 ~ _
=1 —i)e ! 7O f(x, & D) + ﬁuj_l( > (;)M? l(iﬂz)q_q)(amf)(xl,f',uq)-
=1
A similar computations holds for 8, [/~ f(x1,¢', u)]. Hence, by Remark 6.5.6 (c) the
induction is finished. Estimating such terms, we obtain

= / 1
||X1»—>mem ”J lf(xl,gt :uq)”L1<|H] ll({ 'uq> a’ o' —m-mha—(lag)(g-1)
=~ E q[d a’ pa'=(m-ma)-(qljlar)/(g=1)

d-la |a— —laj_1la (m=m")a;—(1jl/(g-D)+liDa
<<£||>q 1la -1laj-1— 1=(jl/ (g- 1+1

<§ | |>qd \allal w—laj_qlaj—(m—-m)a;—lyla;,

This proves the assertion. O



6.5. POISSON OPERATORS 235

Definition 6.5.9. (a) Given a Hérmander symbol with constant coefficients p or p,, :=
p(-, u) in the parameter-dependent case, we define the associated operator

Pf:=0P(p)f=F 'pZFf (fe S R" X)).
or
Puf:=OP(p)f=F 'puZ [ (feS' R",X)).
respectively.

(b) Given a Poisson symbol-kernel k or k;, := k(:,-, 1) in the parameter-dependent case,
we define the associated operator

K:=OPK(K)g(x):= 2m)' ™" / 1e"""f’%(xl,f’)ga‘g(f’) d¢ (xeR”, ge SR", X)).
R"-

or

K, := OPK(k,)g(x) := (2;:)1—"/ 1e"’“’f"lé(xl,<§’,mﬁ‘g(§’) dé' (xeR”, ge SR", X)),
R7=

respectively.

Definition 6.5.10. Let Z be a Banach space, d e Rand 1 < p < co. Let further l € Z;,
d=(d4,...,4) € (Z>1)! with 4; =1 such that |d/|=nand a = (ay,...,a) € (0,00)".

(a) We denote by SR1; 1., ®; Z)) the space of all smooth functions
piRxR" ' xZ— Z, (&1,8) — p&1,&)
satisfying

—(d —m —la’ ! /
Wpllsa o, wzn.amm = sup (&)~ @rm-m-la D||f'1ﬂD?Z Dy p(1,&)l <00
CeR™

for every a’ e N"! and m, m’ e N.

(b) We denote by SZ a(R”‘l;yLw (R; Z)) the space of all smooth functions

piRxR" ' xZ— Z, (&1,8) — p&1,&)
satisfying

o n—(d+(m-mNai-lazlaz—...—lajlap) | e m nm' ~a' /
”p'|S?ya(yLoo(R;Z))’a"m'm .= ?;;Qg(‘f >t[/’ur ”51 D'fl Dsﬂ p(élr‘f )” <00

for every @ € N” and m, m' e N.

Definition 6.5.11. Let Z be a Banach space, d e Rand 1 < p < oco. Let further / € Z,,
d=(d,...,d)) € (Z=1)! with 4; =1 such that |¢| = nand a= (ay, ..., a;+1) € (0,00)*1.
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(a) We denote by ShooRn-1 x 5. 1., ®; Z)) the space of all smooth functions
piRxR" I xT— Z,(&,8, 00— p, ¢, w
satisfying
IPllsace( 7, ®z),a,mm,y =
seuzbl,gez@u>"d+m’m/"“/'*'y"|IEI”D'" DY Dl p1,&, wll < oo
for every a' e N"!, m,m’' e Nand y e N2
(b) We denote by SZ:“’;’([R”‘l x %;.71,. ([®; Z)) the space of all smooth functions
piRxR" I xZ— Z,(&,E,) — pé,&, 1)

satisfying

”p”s""""(,sfioo RZ),a mmly

sup (¢, Al 4ronmalazle s laamy b em pm' pal pY e ¢ 1)) < oo

CeR™ uex
for every a e N", m,m' e Nand y € N2.
Lemma 6.5.12. We have the continuous embedding

d,0o qmpn—1 . . ., qd0omn .
S;{,a (R x Z,yLOO([R, Z)) Sa’,a R" x X; Z).

The respective assertion holds within the isotropic or parameter-independent classes.

Proof. We only prove the result for the anisotropic and parameter-dependent case, as
the other cases can be proven in the exact same way. For given a € N” and y € N? we

obtain

sup (f |/1|>£[(d arlay|—..—ajla;|— al+17)”a(xayp(€ A)”Z

EAER X
5 sup [<€ M|>[[(d alayl—...—ajla;|- al+1Y)”aaaYp(f N
EAERM XX
f[ (d-arlar|-...—ajlagl-ar 1)+
+-@d-alarl—...—ala] - apapl e T 620 pe 1)l 7]
< oo

O

Note that Lemma 6.5.12 shows us that we can define an operator to a symbol in

SZ’C;O(R"‘I x %;.71.. (R; Z)) by the means of Definition 6.5.9.
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Lemma6.5.13. Let X,Y bea Banach spacesandd € R. Letfurtherl € Zy, d = (4y,...,d)) €
(Zzl)l with dy = 1 such that|d| =n and a = (ay,...,a;+1) € (0,00)!*1. There is a continu-
ous linear mapping

ST x 5571, (Ry; B(X, V) — SRR x %571 (R BX, V), k= p,

which assigns to each k a p such that r, OP[p](§o ® -) = OPK(k). More explicitly, the
mapping% — p can be defined by means of the diagram

SIS x 2571, (Ry; BX, V) —F— STOR™ x X571, (R B(X, V)

szzo(u:@n—l x %71, R B(X,Y))

where E denotes the Seeley extension as in [225] and the space S Z"": R Ix %7, (R; B(X, Y)))

is defined analogously to S?‘: R x % 7, (Ry; B(X, Y))). The respective assertions also
hold within the isotropic or parameter-independent classes.

Proof. We only prove the result for the anisotropic and parameter-dependent case, as
the other cases can be proven in the exact same way. The proof consists of three steps:

(i) We show that the Seeley extension is bounded from SZ";O (R 1x3; S, R B(X,Y)))
to STOR x 2.7, (R B(X, Y))).

(i) We show that.%,,. ¢, is bounded from SZ"‘;O(R”_I x%; 77, (R; B(X, Y))) to SZ:ZO(R"‘l x
% 1 R B(X, Y))).
(i) We show that OP[Zy,._.¢, EK] (8¢ ® -) = OPK[k].
So let us prove the three steps one by one:
(i) For the Seeley extension we fix two sequences (a) xen, (D) ken < R such that
(i) bp<OforallkeN,
(ii) X2, lakllbl' <coforall €N,
(iii) X2, axbt =1forall €N,
(iv) by — —ocoas k — oco.

It was proven in [225] that such sequences indeed exist. Moreover, we take a func-
tion ¢ € C*°(R,) with ¢(f) =1 for 0 < t <1 and ¢(¢) = 0 for ¢ = 2. Then, the Seeley
extension for a function f € Sf‘;""f(lR”‘1 x 2,41, Ry; 2)) is defined by

(e8]

(EN@,E,A) =) arpbpt) f(bet, &' 0)  (£<0).
k=1
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The assertion regarding the smoothness has already been proved by Seeley in [225].
Hence, we only have to show that the estimates of the symbol classed are preserved
under the Seeley extension. But they indeed hold as

[l — x] D’" D‘i‘, DXEk(xl,f',/l) Iz, ®_,2x,v))

oo ~
= ”xl — x{"DJrg fo, DX kX: ak(b(bkxl)k(bkxl,fly A) “Ll(R,,%’(X,Y))
=1

00 m' .
= |x1—x{"DE D} Y ar Y- ( )b’” (D4, @) b)) DL B bex1, € V1 vy
1 q=0

k=
X m I~
= Z Z ( q )“xl — xl Da DY )Lzl(p)(bkxl)(D;? qk)(bkxlrflyﬂ') ”LI(R_,@(X,Y))
k=1 q=0
oo m' m , I~
<Y aby ) ( q )Hxl — x{' D, D} (DY, ) (brx)) (D, ) (biex1, €, V| 1, @ aax, v
k=1 q=0

|y = y"Dg DO, D B LE D, 6. ox,ry

m
q
[e) m' /
m'-m-1/p m q Y, ~m'-q7
SZ aib; Z q ”Dyl‘/’”L""(Rﬁ)”J’l_’yl DaD A(Dy, k)(yly‘f,’)[)“Ll(RJ,,gB(X,Y))
q:
m'

oo m'-m-1/p m d- (m+m)a q-lalza: lal;a;-ya
—m— 1= 202 —...—
= Z kbk Z ”Dyl(p”Lw([R”)Ca’ m,m’— qy(f |/1|> 1T

=1 —o\ 9
d -
C(é |/1|> (m+m)a1 q-lalzax—...~lal;a;—ya;41

(ii) This follows directly from the above computation together with the definition of
the symbol classes and the fact that % ,_.;, maps L1 (R, (X, Y)) continuously into
LOO([R) f%(Xr Y))-

(iii) Forall ge & [®R" 1) and all x € R” we have that
OP(F,,.c, ER) (B0 ® §)(x) = /R T g BR8] T B0 ©.8)
- /R LT R,  E) F o g€ dE
- /R Bk, g dE

:/ le’.xrfl%(xl,rf’,u)g(fl)df
R~
= OPK(k)g(x).

This finishes the proof.
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Remark 6.5.14. Note thatin Lemma 6.5.13 we can also apply r OP[p] (6 ® -) to elements
of #'(R"™1), cf. Section 6.3.4.

Lemma 6.5.15. Let Z, 7, Z,, Z3 be Banach spaces and d,, d»,ds € R. Let furtherl € Z5,,
d=(d,...,d) € (Zs1)" with & =1 such that|d| =n and a = (ay, ..., a;+1) € (0,00)*1. A
continuous trilinear mapping Z, x Z, x Z3 — Z induces by pointwise multiplication a
continuous trilinear mapping

ST R x 35 71)
X
SERRI X %571, (R Zp) — SEIETBOR (R x 5.7, (R Z2)),
X
SES R x 35 Zy)
where (p1, p2, p3) — p given by
PE1¢ W =p1E&Wp2EWpsE, .

It also holds that
OP[p] = OP[p1]10OP[p2] o OP[p3]

Again, the respective assertions also hold within the isotropic or parameter-independent
classes.

Proof. In order to keep notations shorter, we first show the assertion for constant ps.
Hence, we omit it in the notation and estimate the term

gy Df D i1, € Dp2(1,E Dz

By the product rule and the triangle inequality, it suffices to estimate expressions of the

form
D7 D§ '/ GRS /1)6’"D’" D ‘D] P21, Mz,

where |@'| +|@| = |&|, |j| +|j| = |j| and 7’ + /i’ = m'. But for such an expression, we
obtain
ID{" DS D’pl(él,f DY DY ‘D! P28 Dz

<, |/1|> mm lazlaz—.. —Iazlaz Ila ”filan D?, Apz(fl,f,,/l)”ZQ

<@, ap il e laey e i b3 Dl p, 0,6, )i,

+ldi - ay—lazlaz —...— lajla; — |jlajs1)+

+— ldi - a1 —-|azlaz—...—lajla;—| jlag ]+

Ié, Dm D ‘D] P21, 8 Mz,

<{ |A|>dl+d2 (' +m' - m)a)—(Aa+az)az—...—(&;+a)a;— (|]|+|]‘)ﬂl+1
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~ Y
+ldi-may—lazlaz —...—|lajla; = |jlajl+ -
7 d1+d2—(ﬁz’+m’—m)a1—(&’2+Ez)a2—...—(&Z+El)al—(|fl+|7|)alﬂ
@&, I
’ di+do—(m'-m)a;—azas—...—aja;—|jla
r<v<5’|7“>¢fa2 1—Qazaz 1ar—1j I+l

A similar computation shows the respective assertion for the case that p; is constant
and ps is arbitrary. The formula for the operators is trivial. O

6.5.2. Solution Operators for Model Problems

In this subsection we consider the boundary value model problems

(e+VMv+«[D)v =0, onRY
B I (6.51)
BijDyv =gj, onR", j=1,...,m.
with arbitrary but fixed £ > 0 and
oru+(1+«/(DHu =0 onR? xR,
M , (6.52)
BiDu =gj, onR" xR, j=1,.,n,

Here, o/ (D), % (D),...,%mx (D) is a constant coefficient homogeneous 28(X)-valued dif-
ferential boundary value system on R’ as considered in Section 6.3.5. In this subsection
we restrict ourselves to g1,...,8m € & (R"1: X) so that we can later extend the solution
by density to the desired spaces.

The following proposition and its corollary are the main results of this subsection.
They (together with the mapping properties that will be obtained in Section 6.5.3) show
that the Poisson operators introduced in Section 6.5.1 provide the right classes of oper-
ators for solving (6.51) and (6.52).

Proposition 6.5.16. Let X be a Banach space and assume that (£, %, ...,9B;) satisfies
mj+1
2m '

(E) and (LS) for some ¢ € (0, 7). Then there exist%j es 7, N

2m’2m’

R"1 x-S, (Ry; B(X))),
J=1,...,m, such that, for each A € Z,_,

m ~
j=1
is a solution operator for the elliptic differential boundary value problem (6.51). More-
over, there is uniqueness of solutions in & (R; X): ifu € #R; X) is a solution of (6.51),
thenu=Ky(g1,...,8m)-

Remark 6.5.17. Proposition 6.5.16 together with Proposition 6.5.8 shows that E belongs
to S~ bR x Z(u-p)r2ms Sty (R4, B(X))) after the substitution A = u2™ . To be more
precise:

2

62 = 1, &) — K (e, & 2™ € SRR X S gy s S, Ry, BX)).
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Corollary 6.5.18. Let X be a Banach space and assume that (f, %, ..., 9B;,) satisfies (E)

~ _m*t
and (LS) for some ¢ € (0,7%). Then there exist k; € S( 2 1)([R"—l x R;. S, (Ry; B(X))),
Zm > Tm
j=1,...,m, such that
m o~
K: R xR X)" — L R" xR; X), (81,...,&m) — Z OPK(k))gj,
j=1

is a solution operator for the parabolic differential boundary value problem (6.52). More-
over, there is uniqueness of solutions in & R} x R; X): ifu € (R} x R; X) is a solution of
(6.52), thenu=K(g1,...,8m)-

Proof. Under Fourier transformation in time, (6.52) turns into

1 +T)gt_.fu+d(D)§t_.Tu =0,
BiD)Ftru =Fi 18 j=1..,n

The result thus follows from Proposition 6.5.16 through a substitution as in Remark 6.5.7.
O

In order to prove Proposition 6.5.16, we use a certain solution formula (6.51). Fol-
lowing the considerations in [68] we can represent the solution in the Fourier image as

= e PN (h o) g,
where

e Ay is some smooth function with values in B(X2™ X2M) that one obtains from Ap
after some reduction to a first-order system,

e M is some smooth function with values in (X", X2™) which maps the values of
the boundary operator applied to the stable solution to the respective Dirichlet
traces,

e pis a positive parameter that can be chosen in different ways and in dependence
of ¢ and A,

e b=¢1p,o=1+A)/p*™and g, = (§1/p™,...,&m/ p"™™) 7.

Another operator that we will use later is the spectral projection &2_ of the matrix Ay to
the part of the spectrum that lies above the real line. This spectral projection hast the
property that &_(b,0) M(bo) = M(b,0).

For our purposes, we will rewrite the above representation in the following way: For
j=1,...,mwe write

gj®e

j®ej
p"

M, j(b,0)§j:= M(b,0)
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so that we obtain

. m .
i = e N (p o) g, = Y ePABDT N (b, 0) . (6.53)
j=1
The functions (¢, 1) — e!P 2% N, (b, o) (note that p, band o depend on (¢, 1) where
we oppress the dependence in the notation for the sake of readability) are exactly the
Poisson symbol-kernels k ; in Proposition 6.5.16. In the following, we will show that
they satisfy the symbol-kernel estimates in order to prove Proposition 6.5.16.

Lemma6.5.19. Let NeNandletX,,...,Zn < C be some sectors (or lines) in the complex
plane. Let further m: Hg\i 12 \{0} — C be differentiable and homogeneous in the sense
that there are numbers ay,...,ay, a € R such that

mr®xy,..,r%xy) =r*m(xy,...,xy) (r>0,x;€%;,i=1,...,N).
Then, we have
@m)(r®xy,...,r""xn) =r*"%o;m(xy,...,xy) (r=0,x;€%;,i,j=1,...,N).

Proof. Letr >0and x; € Z;fori=1,...,N. Define x = (x1,...,xn) and x(yy := (r* x1,..., 7% xp,).
Let further e; be the j-th unit normal vector. Then we have

(x(r + he)) s ey (x+ Tiey)

m(x + he; r, m(x+ he;

(0;m)(x(r)) = lim O imer—— - lim pema ) pamay (0;m)(x).
h—0 h h—0 h -0 h

O

. 1 1 . . ¢ e+A
Proposition 6.5.20. Let ay, a, > 0 such that ar s € N. Then the function (¢, 1) (<£, DT MZZ)
is a symbol in SY®([R" x £,C"*1).

Proof. The function

ex+ A
(x2/[lg + |€|2/a1 + |/1|2/a2)a2/2

m:RxR" xZ\{0}: (x,&,1) —

is homogeneous in the sense that

m(r®x,rEr®2A) = m(x, & A).

Moreover, since ail, alz € N'we also have that m € C*°(R x R” x £\ {0}, C). In particular, for

all @ € N” and k € N? we have that 6?6§m is bounded on the set

Sa:={(x,&,1) €RXR" x T\ {0} : /% + |24 + AP/ = 13
and satisfies

(agaﬁm)(razx’ rUE r ) = r—mlal—azlkl(a?a’/{m)(x,f,/l).
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Thus, we have the estimate

sup (&) 1920 m(1, ¢, )
(§,M)ER xZ
allal  aplk|
< sup @O AP e 10g0 mx, ¢, Q)]
(x,6,1)ERxR" x Z\ {0}

k
< ||6?0/1m||L00(S,,)

so that we obtain that (£,1) — ;;[)A is a symbol in S *(R" x Z,C). A simmilar approach

also shows the desired estimates for the other components. O

For the rest of this section, in (6.53) we fix

P& ) = g

& e+
! . ! .
b, A) = —<f’,/1)31 and o(',A) = 3 )L>2ma1
In particular, if we choose a = (a;, a») = (ﬁ, 1) then we obtain
& e+
b ) = and o A) = ———
@A & Ayg 0 (& A

so that (b, o) coincides with the function in Proposition 6.5.20.
Proposition 6.5.21. Let again a,, ap > 0 such that L ar a— e N and let A be smooth with

values in some Banach space Z. We further assume that A and all its derivatives are
bounded on the range of (b, d). Then, we have that

Ao(b,0) € SA®°R" ! x 2, 2).

Proof. We show by induction on |a/|+]y]| that D“ DY (Ao(b,0)) is alinear combination of

terms of the form (D“ DYA)O(b, 0)-f with f € Saalla I=azlyloo pn-1, 5y &' e Nl 'andye
N2, Obviously, this is true for|a’|+|y| =0. Solet j € {1,..., n—1}. By induction hypothesis,
we have that D:Z‘, DkA o (b,0) is a linear combination of terms of the form (D“ DYA) o
(b,0)-fwith f€ S, ull“' azlyloo mn=1, 5y G e N~ and ¥ € N*. Hence, forD]D?, Don
(b, 0) it suffices to treat the summands separately, i.e. we consider D; ((Dg‘, DXA) o(b,0):
). By the product rule, we have

D;((DE D} A)o (b,0) - f)
= (DE D] A)o (b, a))(D,f)+(Z(D,( )+ £+ 10105 0] Ao (b,0)])

By the induction hypothesis and Remark 6.5.6 (c) and (d) we have that

!
-1 )f € S;al(Ia’|+1)—az|yl,oo(Rn—1 < 3).

El
(Djf),(Dj;l)f,...,(Dj
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The same computation for d,, and d,, instead of d; also shows the desired behavior
and hence, the induction is finished. Finally, the assertion follows now from Proposition
6.5.20 and Remark 6.5.6 (c) and (d). O

Lemma 6.5.22. Let ny,ny € R and a = (a1, a») = (ﬁ, 1). Let further fy € SPV R x
z, B(X?™, X?™M) and gy € SR (R" ! x £, B(X, X*>™)). Then, foralla' e N"~! andy € N?
we have that

dg‘i‘,,d’ifo exp(ipAg(b,0)x1) P_-(b,0)go

is a linear combination of terms of the form

fexplipAq(b,0)x1) P_(b,0)gxl" P2
where f € Sgl—alIix"l—uzl?H(al—az)pz.oo(an x3, B(X2™M, X2M)) g € SZz—allﬁ’I—azl?l,oo(anx
2, B(X, X*™), 71+ Y1+ p2 = lyl and |&'| + [@'| + p1 = |

Proof. We show the assertion by induction on |a'| + |y|. Obviously, for |a’| + |y| = 0 the
assertion holds true. So let a’ € N"~! and y € N?. Let further

ag‘,’agfo exp(ipAg(b,0)x1) P_(b,0)go
be alinear combination of terms of the form
fexp(ipAg(b,0)x1) P_(b,a)gxl" P

Wheref € SZl_alIa,l_uz'?""(al_a2)p2v°°(Rn—l XZ,%(sz,sz)), g € SZZ‘“] |ﬁ'|—612|7\:00(|Rn—1 x
2, B(X, X>™), ¥l + 7|+ p2 = |yl and |@| + [@'| + p1 = |a'|. We treat the summands sepa-
rately. Then, for j =1,...,n—1 we have

aj [feipAo(b,(f)Jq P_(b, U)gxf] — 0]- [f P_(b, U)eipAO(b'”)xl P_(b, U)gxf1+p2]
= [0} f1P_(b,0)e PP 3_(p g)gxl
+ f10; P_(b,0)]e'P PN 2_(p, 5) gxP1 P
+ felPMbN B (b 5)[3ip Ag(b,0)]e PPN _ (b, o) gx TP
+ [ P_(b,0)e' P CDN P _(h,0)0;[P_(b,0))gx P
+ fP_(b,0)e P D% (b, g)[0;g1xP P2
Here, we used that the spectral projection &2_(b,0) commutes with elPAob,o)xy Using
Remark 6.5.6 (c) and (d) and Proposition 6.5.21 we obtain that in each summand, we
have that either |&@'|, [@'| or p; increases by 1. The same computation as above also

yields the desired estimate for d,, and d,,, where either |y|. |y| or p, increases by 1.
Hence, we obtain the assertion. O

Proposition 6.5.23. Let again a = (a;,ay) = (ﬁ, 1). Then, we have the estimate

ap c
rnk na' N LipAo(b,o)x ) k=mj-r=la'|-—=lyl ~£px
"xlelDE, D/le pao lMp‘](b,O')“@(va2m) < Cp a e 2 .

forallr,keNy, & NI andy e N3.
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Proof. By Lemma 6.5.22, we have that Dg/DXeipAO(b,O')xl M,,;(b,0) is a linear combina-

tion of terms of the form
felPAo(b,o)xl P_(b, U)gxp1+p2

—aimj-a|@'|-azlyl,c0

where f € S, ~ i@ |=az Y1+ pa (a1 2000 -1y 5 ga(x2m x2my ges, (R 1x
Z,%(X,sz ), 171+ 7]+ p2 = |yl and |&| + [@'| + p1 = |&’|. But for such a term, we have
that

+
lx] DX £, e P2CD% (b, 0)g (&, wx Pl gy x. x2m)
[p1+p2-1]
<CxIZII FE e PP B0 (b 6)[ip Ag(b,0)* (&, 1" TP N g xom
1=0
k ~1 =l A2 i~ = ap
< Cxlr Z pk—l—Mj—Ia I-la \—ﬂ(|Y|+|Y|)+p2—apze—cpx1 x;p1+l)2*l]+
1=0
k S I
<Cx! Zpkflfmjf[m+pzfl]+frf\a’|f|a =G (TI+F0+p2= g2 p2 =5 px1 [pr+pa=Lls=ipri+pe=ll=r
1
1=0

k . _ ~ —
Z mj—r—(|a’|+|a’|+p1)—%(k+k+p2)e—%pxl

Cpk mj—r— Ial—alyle prl

<
This is the desired estimate. O
. —(+mj)i2m, _
Corollary 6.5.24. We have that e’?40b:2x )\, (b, o) € S(l(/;m”f{)) O RIIXE; S (R, BX, X2M)).

Proof. This is obtained by computing the L;-norms in Proposition 6.5.23. O
Putting together the above gives Proposition 6.5.16:

Proof of Proposition 6.5.16. A combination of the solution formula (6.53) and Corollary 6.5.24
gives the desired result, where the uniqueness statement is clear from the construction

of the solution formula. O

6.5.3. Mapping Properties

Recall the notation from Section 6.4.2.

Theorem 6.5.25. Let X be a Banach space, dy =1, p € (1,00)!, r € [1,00], Y € (=1,00),
w' e ]'[ﬁ.:2 Axo(R%), s € R and a € (0,00)!. Then (k,g) — OPK(k)g defines continuous
bilinear operators

+d—a Y}au"{//
st SIRTL S, R B (X)))xF "o “ R, w'; X) — Eyt @Y, (wy, w"); X)
and

4y i

s+d-a ,a’,d
SEA RS, RGBOON X B, P R W X) — By R (wy, w"); X).
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Corollary 6.5.26. Let X be a UMD Banach space, q, p, 1 € (1,00), v € A4(R), y € (=1,00),
seRandpe(0,00). Letd = (1,n—1,1) and a= (%, 4,1). Then (k,g) — OPK(k)g defines
a continuous bilinear operator

Lis-Eh+d, 5,1
(P q,p
— W R, U;F), (R, wy; X)) N LgR, v; Fpyf RY, wy; X)).

1
d & RS, Ry BX)))xF, R"! xR, (1,); X)

Proof. Let sy, Y+, 0 and i be as in Lemma 6.4.3. Then note that we have the embedding
(6.44) while

11+ + 1 1+
a+2)+d———(Y+ UL N ik W)
p p p p p
Observing that
o+d &N #1011
F(p,ql;,lp (R+ XR;(WY++T[[J; v); X) = (ppq)ﬂlp (R4 XRXR’(WY++UP’LU);X):
the result thus follows from Theorem 6.5.25. O

Remark 6.5.27. Incase s =0, p = k € Z>; and r =1 in Corollary 6.5.26, the elementary
embedding

1(R+r wY)X) — Lp(R:l.r w}/;X)y p 1(R+y w)/)X) — W (R+y wY)X)

yield that (k, g) — OPK(k)g defines a continuous bilinear operator

1+y

CERY 1, Ry BOONXF D @1 g (1,030

p, 11) p
— W ®, v; Lp(RY, wy; X)) N Lg(R, v; W;“([Rf, wy; X)).

However, this could also directly be derived from Theorem 6.5.25 using the elementary
embedding ([? , Lemma 7.2])

<;1< )
(P q),1
— W R, v; LpRY, wy; X)) N Ly(R, v; Wk(IRJr,wy,X)).

Fl,(%,% Y

o1 ®e xRTTEXR, (wy,1,0); X) =

(R xR, (wy, v); X)

Theorem 6.5.28. Let X be a reflexive Banach space, d € R and p,q € (1,00). Let further
(/,7) € (B, F} x (~1,00) U{%, F} x (~00, p— 1), s € R and s € (55X ~1,00). Then (K, g) —

OPK(k)g defines a continuous bilinear operator
SILORYY A, Ry3 BX)) x 0y R, wys X) — oy, PO R, wy; X)

Lemma 6.5.29. Let X be a Banach space, i € {1,...,1}, a € (0,00)!, p € [1,00)!, g € [1,00],
Y € (—dj,00) and s € (—oo, a1 [’[lw 4 ]) Let w € Hl OO([R“rf) be such that wy(x;) =
|x1|Y. The linear operator

T: S R") — F'®R"), f—800f.
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aq+y /
-2 a
restricts to boundedlmearopemtorsfromB qi, e ) R4 w'; X) toB;’;l[([R”,w;X)
41+
sta t{l_liy a
and from F,, (t{, o R4, w'; X) toF (R, w;X).

Proof. The Besov case is contained in [160, Lemma 4.14]. So let us consider the Triebel-
Lizorkin case. Using the Sobolev embedding from Proposition 6.4.1, we may without
loss of generality assume that p; = g, so that

Ly ¢ R", w)[£g(N)] = Ly ¢ R"™, w')[£(N) [Lpp, RD, | - [)]].

Now the desired estimate can be obtained as in the proof of [160, Lemma 4.14(i)]. O

Lemma6.5.30. Let X be a Banach space, a € (0,00), SER, pe[1,00), g € [1,00] and d € R.
Then (f, p) — OP(p) f defines continuous bilinear mappings

s¢ R BX) x Fpa' R, w; X) — Fp " R, w; X)
and

s¢ R B(X) x By R, w; X) — By, S ®", w; X).

Proof. This follows directly from the fact that Fp,g 4 (R", w; X) and By ‘[(IRi", w; X) are
(4, a)-admissible Banach spaces of tempered distributions with (6. 27) O

Proof of Theorem 6.5.25. Let ke Sj_a”l ([R&"‘l;yLl (Ry;B(X))). Letpe Sj_a“‘ (R”_I;YLOO (R; B(X)))
be as in Lemma 6.5.13 for this given k; so OPK(k) = r, OP[p](8o ® -). Then, for every
o €eR,

OPK(K) = r, OP[p] £ % (59 -) X% = r, OP[p,1(6o® -) £5 %, (6.54)

where ps () := p(f)]f;’“” (¢"). By Lemmas 6.5.12 and 6.5.15, p — p, defines a continu-
ous linear mapping

STAR S, RBXN) TR ST AR, R BN — ST TR B(X)).
’ (6.55)
Choosing o € Rsuch that s—o < a; (1;—1Y —1), acombination of (6.54), (6.55), Lemma 6.5.29,
Lemma 6.5.30 and the lifting property of weighted mixed-norm anisotropic B- and F-
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spaces (see (6.27)) gives the desired result. Indeed, we obtain the commutative diagram:

1+ " all 1+
std—ay—L,a",d" 4".a std-o—ay =L a",d"

. e R w" X)X 5 F, e R w'": X)
P p1 PP
l((so@')

OPK(B) Fpi 704 @M, (wy, w'); X)

lOP[Pa]

Fptt @Y, (wy, w"); X) ¢———— Fyt ' ®", (wy, w"); X)

Proof of Theorem 6.5.28. We take p as defined in Lemma 6.5.13 so that we have the iden-
tity

r+ OP(p) (6o ® g) = OPK(k) g.
Now, for o € R we define
p7 =G 0 p (€ ST 1y ™)
so that we obtain
OPK(K) = r, OP(p) (6o ® -) = r. Zjy " S OP(p”)=j, TH 7 " (6p @ 1=,
By Lemma 6.5.15 and Lemma 6.5.12 we obtain that
STVOR S, Ry, BX)) — SPPR" x 2, p— p”

is continuous. We even obtain that (p“ (-, u)) ez defines a bounded family in SOR™).

Taking o > s — HTY in combination with Corollary 6.3.10 yields the desired result as can
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be seen in the following commutative diagram

642{5 \ul | @®Y, wy; X) e N ad;qﬂylul(u&, wy; X))

(60®-)

s—1—0,|ul,s
Dy R, Wy X))

=$=0-1-59

OPK(k)

50,11, S
’Q{p,oq,‘rl " (RY, wy; X))

OP[pos]

Dy PO R, w3 X)) s O R, wy; X0)
T+ ﬂ

6.6. PARABOLIC PROBLEMS

In this section we consider the linear vector-valued parabolic initial-boundary value
problem (6.2). As the main result of the paper, we solve the L, ,- H; p,y-Maximal regular-
ity problem and the Lq,'u-F;,,,YY-maximal regularity problem for (6.2) in Theorem 6.6.2.
This simultaneously generalizes [160, Theorem 3.4] and [162, Theorem 4.2].

Before can state Theorem 6.6.2, we first need to introduce some notation.

6.6.1. Some notation and assumptions

Let & be either R” or a bounded C*°-domain in R” and J = (0, T) with T € (0,00). Let X
be a Banach space and let </ (D), %, (D), ..., %, (D) be a 8(X)-valued BC*-differential
boundary value system on & x J as considered in Section 6.3.5 where the coefficients
satisfy certain smoothness conditions which we are going to introduce later. Put m, :=
max{my,..., Mpy}.

Let g € (1,00) and p € (-1, g — 1). Let E and E*” be given as either

(@) E= H,,(0;X) and B™ = H}"?™(0; X) with p € (1,00), Y € (-1,p—1) and s € ( +7+

- 2m, HTY) (the Bessel potential case); or
(b) E=Fj,,,(6;X) and 2" = F32"(0; X) with p,r € (1,00), y € (~1,00) and s € (7L +
ms —2m, HTY) (the Triebel-Lizorkin case),
and set

s+2m—mj_1+ye(01) i=1 m
mp 1), yeee, ML

KiE=XKj =
I PY,S om
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In the L, ,-E-maximal regularity approach in Theorem 6.6.2 we look for solutions

ue Wy, v N LeU, v E2™)

of the problem
oiu+of/(D)u =f, on0x],
BiDyu =gj, ondOx], j=1,..,m, (6.56)
u =uy, on0.

and find characterize the data g = (g1,...,8m) and up for which this actually can be
solved.

Let us now introduce some notation for the function spaces appearing in this prob-
lem. For an open interval I cR and v € A4(R), we put

Dg,v(LE) := Lg(I, v;E),
Myg,o (I;E) := Wy (I, v;E) 0 Ly (I, v;E2™),

Bg,v,j (IE) := Fpls (1, v; Ly(00; X)) n L U, u;Fﬁf‘,}E 00;X)), j=1,...m,

m
By,o (I;E) := DBy, (IE).
j=1
For the power weight v = v, with u € (-1, g — 1), we simply replace v by u in the sub-
scripts: Dg,u(LE) := Dg,p, (LE), Mgu(LE) := Mgy, (LE), By, j(LE) = Bg,y,,;(IE) and
Bg,u(LE) = [Bq_yﬂ(l ;). In this case we furthermore define

s+2m(1-1H)

. — q .
lgu(GE):=B, (0 X).
In Theorem 6.6.2 we will in particularly see that
Mg (B — By (B @l (B, u— (B(D)u, up),

which basically just is a trace theory part of the problem. In view of the commutativity
of taking traces, tryp o tr;—g = try=¢ = try», when well-defined, we also have to impose a
compatibility condition on g and up in (6.56). In order to formulate this precisely, let us
define
BIOD) = Y bjp0,)rgeDP,  j=1,...,m,
|Bl=m;
and

_ 1+
Bg,u(J;B) := {(g, up) € By (;B)®lgu(E) i tre=0gj — %}‘O(D)uo =0 when > T” }

Remark 6.6.1. Regarding the compatibility condition

- 1+
tr=08;j — @;*O(D) up =0 when « ;g > TH
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in the definition of IB, ,(J;E), let us remark the following. Suppose x ;¢ > HT”. Then
(g), Uo) — tri=ogj — %;:O(D) up is a well-defined bounded linear operator B, ,(J;E) ®
I]f/lv#(]; E) — Lp(dﬁ; X) as

Ba,u,j (1;E) — Fy 'y (1,043 Ly (303 X))

and
s+2m(1—1+7”)—m

J

DP:1,,U;E) — B

with

1 1 1
+y+ +y S +Y.
q 2mp p

1+pu
s+2m(1—7)—mj:2m KjE—

6.6.2. Statement of the Main Result

Theorem 6.6.2. Let the notations be as in Subsection 6.6.1 with v = vy, p€ (-=1,q—-1).
Suppose that X is a UMD space, that < (D), %8,(D),..., B, (D) satisfies the conditions
(E)g, (LS)y for some ¢ € (0,%), and that x jg # HT“ forall je{l,...,n}. Then the prob-
lem (6.2) enjoys the property of maximal Ly ,-E-regularity with 1B, ,(J;E) as the optimal
space of initial-boundary data, i.e.

Myu;E) — D (5 E) @ 1B (5 E), u— (8,1 + o (D)u, B(D)u, g)

defines an isomorphism of Banach spaces. In particular, the problem (6.56) admits a
unique solution u € Mg ,(J;E) if and only if (f, g, ug) € Dy, (J;E) ® 1B, , (J; ).

Remark 6.6.3. Inthe Lg,,-Lp-case the proof simplifies a bit on the function space the-
oretic side of the problem, yielding a simpler proof than the previous ones ([62] (1 =0,
Y=0),[181] (g=p, pe(0,p—1),y=0) and [160]).

Analogously to [162, Section 4.3], we obtain the following smoothing result as a
corollary to Theorem 6.6.2. It basically says that, in the case of smooth coefficients,
there is C*°-regularity in the spatial variable with some quantitative blow-up near the
boundary for the solution u when f =0 and uy = 0 (see the discussion after [162, Corol-
lary 1.3]).

Corollary 6.6.4. Let the notations and assumptions be as in Theorem 6.6.2. Then

{ueMy, (J;B) :0;u+/(D)u=0,uy =0}

1 s+t s+ Le2m
— ﬂl Wq,u(];Fp,l,v (ﬁ;X))ﬂLq,y(];prLv (0;X))
v>—
1 .k o0 . k2 00 .
- N [quy(],Wp (0, wy+(k—s)p’X))lelU’Wp+ "o, wy+(k—s)p’X)) .

keN
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6.6.3. The Proof of Theorem 6.6.2

For the proof of Theorem 6.6.2 we will first look at model problems on & = R}, from
which the general case can be derived by means of a localization procedure.

Proposition 6.6.5. Let X be a UMD Banach space and assume that (¢, 8., ..., Bm) is
homogeneous with constant-coefficients on 0 =R’} and satisfies (BE)p and (LS)y for some
¢€(0,7). Letge (1,00) and v e Ay(R). LetE and E2™ be given as in either (a) or (b) (with
O =R}). Thenu— (0,u+(1+</(D))u, B(D)u) defines an isomorphism of Banach spaces

Mg,o®RE) — Dy, (R;E) & By, (R;E),
whereM ,(R;E), Dy, (R;E), By, (R;E) are as in Subsection 6.6.1.

Proposition 6.6.6. Let X be a UMD Banach space and assume that (f, 8., ...,Bm) is
homogeneous with constant-coefficients on 0 = R"! and satisfies (E) and (LS)y for some
¢ €(0,%). Let J= (0,T) with T € (0,00]. Let q € (1,00) and p € (-1, —1). Let E and E*™
be given as in either (a) or (b) (with 0 =R}). Then u— (0;u+ (1 + < (D)) u, B(D)u, u(0))
defines an isomorphism of Banach spaces

Mg,u(E) — Dg,u(R;E) @ 1By, , (R E),
whereM ;,(R;E), Dg (R E), 1B, (R; E) are as in the beginning of this section.

Lemma 6.6.7. Let X be a UMD Banach space and assume that (of ,%,,...,PBm) is ho-
mogeneous with constant-coefficients on 0 = R} and satisfies (E)¢ and (LS)y for some
$€(0,%). Letge (1,00) and v e Ay(R). LetE and E?™ be given as in either (a) or (b) (with
O =R"?). Then

B(D) Mg,y ([R;E) — By, (R;E), u— (%1 (D)u, ..., Bnu), (6.57)

is a well-defined bounded linear operator and the differential parabolic boundary value
problem
{ diu+(1+a/(D)u =0, 658

BiDu =g, j=1,...,n

admits a bounded linear solution operator
y . Bq‘y(Ry[E) i Mq,y(R;[E)r (gl; . 7gm) — U,

where Mg, (®;E), B, ,(R;E) are as in the beginning of this section. Moreover, there is
uniqueness of solutions inMg,, & E): if u e My , (R;E) and g = (g1,...,8m) €
B,y (&) satisfy (6.58), thenu=.7g.

Proof. That (6.57) is awell-defined bounded linear operator follows from Corollary 6.4.8,

where we use the elementary embedding E — F;,IOOJ,([R{Q; X) and F?™ — F;,;%T,(Rﬁ; X)in

case (a). So we just need to establish the existence of a bounded linear solution operator
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S (LR X)™ || - ||lg) — M. But the existence of such a solution operator follows from
a combination of Corollaries 6.5.18 and 6.5.26, where we use the elementary embedding
Fy,, (R} X) —Eand F;ffym (R”; X) — E?™ in case (a).

Finally, let us prove the uniqueness of solutions. For this it suffices to show that
S (R} x R; X) is dense in M. Indeed, using this density, the uniqueness statement fol-
lows from a combination of (6.57), the uniqueness statement in Corollary 6.5.18 and the
continuity of our solution operator . : B — M.

For this density, note that Wt; (R, v;E2™) is dense in M by a standard convolution

argument (in the time variable). So
SR eI REX) E SR SE" EFRE™ L WR, v;E™) LM,
yielding the required density. O

Lemma 6.6.8. Let X be a Banach space, p,r € [1,00), w € Ax(R"™) and s € R. Suppose
A (D) = Y |q1=2m Aa D* with a, € B(X) is parameter-elliptic with angle of ellipticity ¢
and letp > ¢ ;. Then, for all s = (s1, 52, 53) € R® and a € N"*, we have that

Kqi= %{(&)‘“'Dg’“(sl + A+ S3lEP™M A+ A+ () A €T g E € [Rz”} <oo in B(X).
(6.59)

Proof. In order to establish (6.59), we define
[rRXR" x 2y g — BX), (6,6, = (5167 + 4+ 531 (P + A+ AT,
where ¢ < ¢’ < p as well as fp(x,&,A) := (x? + |£|2)|“”26?f(x,§,/1)
fa, &) = (P +EP)20L F(x,6,0) galx, &, A) 1= (6 + €17+ AM™)208 f(x, &, 1)

for a € N". By geometric considerations, we obtain that

|x2+ |§|2+/11/m|

cos (5 —max{,¢'})

2 +EP <

forall (x,¢,A) e Rx R" x X;_4. Hence, Kahane’s contraction principle yields

Ko =RB{fa(1,EN) A €2, €R"}
SRB{fa1,E,1): L€ Zy_p,& € R" such that || < |E1>™ or A < 1}
+R{8a(1,E,1) : L€ 24y, & €R" such that |A] = |E*™ and |A| = 1}.

Obviously, we have that f(cx, c¢, cAmay = f(x,¢,A) forall ¢ > 0. Lemma 6.5.19 shows that
the same holds for f, and g,. Hence, by choosing ¢ = (1 + |E12 + A ™M)Y2 and defining
1¢& A

Dy := Cl{(E’Z’cZ_’") :A€Z;-¢,¢ €R" such that |A] < IEP™ or || < 1},
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Dy := cl{(%, % Czim) : 1€ 2, g, €R” such that |A] = |E2™ and |A| = 1},
we obtain
Ko SR(f(D1)) +R(f(D2)).
But since fy is holomorphic on
R x R" x Ty \{(0,0,c3) 1 c3€ X} D Dy
and since g, is holomorphic on
RxR" xZ; ¢ \{(c1,¢2,0): c1 €ER, c2 €R"} 2 Dy
we obtain that [60, Proposition 3.10] implies
Ka S R fa(D1)} + R1ga(D2)} < co.
by the compactness of D; and D5. O

Lemma 6.6.9. Let X be a Banach space, p,r € [1,00), w € Ax(R"™) and s € R. Suppose
A (D) = ¥ |qj=2m Ga D" with a, € B(X) is parameter-elliptic with angle of ellipticity ¢y .
Let A be the realization of /(D) in Fy, . (R", w; X) with domain D(A) = F;j’,zm([R”, w; X).
Then0€ p(1+ A) and 1+ A is R-sectorial with angle wr(1+ A) < .

Proof. By Lemma 6.6.8 and Lemma 6.3.4, we have
R{(s1+ 24+ S31EP™ L+ A+ AT i e Ty} < oo (6.60)

For (s1, 52,53) = (0,1,0) this shows the Z#-sectoriality of 1 + A. Hence, it only remains
to show that D(A) = F;f,zm([R{", w; X). But Kahane’s contraction principle together with
(s1,52,53) = (v/2,0,v/2) in (6.59) shows that

Ka::%{(f)‘“lD?(l+ﬂl+a¢(£))_l:AEZH_¢,§€Rn}<oo in BX), aeN" |al<2m.

Using Lemma 6.3.4 together with (6.27), we obtain that (1+ A+ AL maps F;,’r([R”, w; X)
into F"?"™(R", w; X). This shows that D(A) = F3%*"([R", w; X). O

Proof of Proposition 6.6.5. We first show that the differential parabolic boundary value
problem
oiu+(1+oLD)u = f,

. (6.61)
BiDu =gj, j=1...,n,

admits a bounded linear solution operator

T :LgR u;E)eB— M, (f,81,...,8m) — u
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To this end, for k € {0,2m} let

—k H;+k(u‘e", wy;X), incase (a),
E = s+k qmn . :
FyR", wy; X),  incase (b),

and put M := WL} ®, v;E) N Ly, U;Ezm). The realization of 1 + /(D) in E with domain
Ezm has 0 in its resolvent and is R-sectorial with angle < Z, which in case (b) is contained
in Lemma 6.6.9 and which in case (a) can be derived as in [60, Corollary 5.6] using the
operator-valued Mikhlin theorem for H;, (R", wy; X) (see Proposition 6.3.6). As a conse-
quence (see Section 6.3.2), the parabolic problem

0+ +(D)u=f on R'xR
admits a bounded linear solution operator
R:LyR,v;E) — M, f — 7
Choosing an extension operator
8e€B(LyR v;E), LR, v;E)),

recalling (6.57), denoting by r,. € (M, M) the operator of restriction from R” xR to R” xR
and denoting by . the solution operator from Lemma 6.6.7, we find that

T(f, 81, 8m) =T+ ZEf — S BD)r: ZEf +.L(81,.--,8m)

defines a solution operator as desired.
Finally, the uniqueness follows from the uniqueness obtained in Lemma 6.6.7. O

Lemma 6.6.10. Let X be a UMD Banach space and assume that (of , %y, ..., Bn) is ho-
mogeneous with constant-coefficients on 0 = R} and satisfies (E)¢ and (LS)y for some
$€(0,%). Letge (1,00) and v e Ay(R). LetE and E2™ be given as in either (a) or (b) (with
O =R1). Let Ap be the realization of o/ (D) inE with domain D(Ag) = {u € E2" : B(D)u =
0}. Then there is an equivalence of norms in D(Ag) = {u € E2" : B(D)u = 0}, —(1 + Ap)
is the generator of an exponentially stable analytic semigroup onE and 1 + Ap enjoys the
property of L4 R+, v,)-maximal regularity.

Proof. Asaconsequence of Proposition 6.6.5, 1+ Ap satisfies the conditions of Lemma 6.3.1
with [||- ]Il = || - ||gzm. Therefore, there is an equivalence of norms in D(1+ Ap) = D(Ap) =
{ue 2™ : B(D)u = 0} and 1 + Ap is a closed linear operator on [E enjoying the property
of Ly (R, v)-maximal regularity. Moreover, it follows from Lemma 6.6.9 together with
Proposition 6.5.16 that C; < p(1 + Ap) and that A — (1 + 1+ Ap)~! is bounded. Thus,
1+ Ap satisfies the conditions of Lemma 6.3.2 and the desired result follows. O

Lemma 6.6.11. Ler the notations be as in Subsection 6.6.1 with v = vy, pe (-1,q-1),
and suppose that X is a UMD space. Then tri=g : u— u(0) is a retraction

1120 : Mg u (s B) — Uy u U3 ).
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Proof. This can be derived from [186, Theorem 1.1]/[198, Theorem 3.4.8], see [160, Sec-
tion 6.1] and [162, Lemma 4.8]. O

Proof of Proposition 6.6.6. That u— (1’ + (1 + </ (D))u, (D) u, u(0)) is a bounded oper-
ator

Mg,u(RE) — Dgu(Re;B) @ By, (RS E) @14, (E)

follows from a combination of Proposition 6.6.5 (choosing an extension operator M ,,(R4; E) —
My, (®;E)) and Lemma 6.6.11. That it maps to Dy, (R;E) @ 1B, ,(Ry;E) can be seen as
follows: we only need to show that

tri-0B;j(D)u=B;(D)tr;—ou,  uEMyuR;E), (6.62)

when x g > HT“ (also see Remark 6.6.1), which simply follows from

d
W u R E™) = Mg u R E).

Here this density follows from a standard convolution argument (in the time variable)
in combination with an extension/restriction argument.

Let Ap be as in Lemma 6.6.10. Then there is an equivalence of norms in D(Ap) =
{u e B2 : B(D)u = 0}, —(1 + Ap) is the generator of an exponentially stable analytic
semigroup on [E and 1+ Ap enjoys the property of L, (R, v,)-maximal regularity. Now
the desired result can be derived from Proposition 6.6.5 as in Theorem 5.7.16. O

Proof of Theorem 6.6.2. This can be derived from the model problem case considered in
Proposition 6.6.6 by a standard localization procedure, see [176, Sections 2.3 & 2.4] and
[159, Appendix B]. O

6.7. ELLIPTIC PROBLEMS

6.7.1. Some notation and assumptions

Let & be either R” or a bounded C*°-domain in R”. Let further X be a reflexive Ba-
nach space and let «/(D), %, (D),...,%m(D) be a %(X)-valued differential boundary
value system on & as considered in Section 6.3.5, where the coefficients satisfy certain
smoothness conditions which we are going to introduce later. Put m, := max{my,..., my}.
Let p,q € (1,00). For s € Rlet F* and dF° be given as either

A) FS:= H;_y(ﬁ, X) and OF° := GH;,,Y((?@ X)wherey € (-1, p—1) and X is a UMD space.

B) F*:= ,;zfpsyqy},(ﬁ, X)and OF° := 0.7

p,w(aﬁ’, X) where (y,.27) € (—1,00) x{B, F}U(—00, p—
1) x {8, F}.
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6.7.2. Parameter-dependent Estimates

Theorem 6.7.1. Let the notations be as in Subsection 6.7.1. Let further sy € (HTY 1ﬂ/)

and s\ € [sg,00). Suppose that also (E)y and (LS)y are satisfied for some ¢ € (0, 7). Then,
thereis a Ay >0 such that for all A € Z,_yp, t € [s9, $1] and all

m
(f,81,--» 8m) € F & @D OF+2m )
=1

there exists a unique solution u € F'*2"™ of the problem

{(A+A¢+w‘(-,D))u =f on0, (6.63)

Bi(D)u =g; ond0, j=1...,m.

Moreover, for this solution there are the parameter-dependent estimates (independent of
1)

[zl |prezm AT Nl ~ I fllge +1A1Z w 11 1Fso

t+2m-m; —H—Y

+Z 1185l grezmm; + I 20 lIgjllL, 000 |-

In the proo of the above theorem we will use the following Lemmas.

Lemma 6.7.2. Let X be a reflexive Banach space, p, q € (1,00), (w, &) € Ax(R™) x {B, F}u
[Aoo] (R™) x {9B,F} and sy, t € R with t = sy. Let «/ (D) be a differential operator of order
2m wzth constant 98 (X)-valued coefficients satisfying (E)y for some ¢ € (0,7]. Given f €
A% R, w; X) letu:= (A+ /(D)) f. Then, for all A > 0 we have the estimate

2m+1t—s,

it _ =5

” u”d;}'f’”(u&”,w;X) + |A| 2m ” u”&%;%(R",w;X) ~ Ay ”f”siptyq([R”,w;XJ + |A| 2m ”f”Q/;Oq(R",w,X)
orevery L€ (Ag+Zp.
Ty ¢

Proof. We substitute A = y?>™ so that (¢, u) — (u?™ + </ (£))"! is a parameter-dependent
Hoérmander symbol of order —2m and regularity co. Hence, if we define

Pam (& 1) = (& > (WP + oA (£) 1 = &y AT (UM 4 o () THE

then (p(-, 1)) yes pl2m and (p(-, u)‘l) pes,/2m are bounded families in the parameter-independent
Hoérmander symbols S°(R”, 2(X)) of order 0. In particular, by (6.26) together with a du-
ality argument for the dual scales, we have that
_ 2m -1
||u||d;:r]2m,\u\,xo ®,w,X) l(u=™ + /(D)) f||d;:r]2m,\u\,xo ®R",w:X)

—So—t—=2m ——5
==y op(pam(-WEy, " f ”,Qf”z’""”“o ®R",w;X)

—I—$0

= ” Op(pZm( l’t)—'p f” Q{SO (R", w; X)
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—=t=%
~ 1=y, f||y/;°q(R",w;X)
- ”f”ﬂ;{\lﬂ\vs() R, w; X)"

Using the equivalence (6.38) we obtain
[ u”ﬂ/pt,gz’"(ﬂii”,w;X) + (,U) t=2m=so I u”d;ﬂ,(n&",w;){) ~ ”f”JZ{pz,q([R”,w;X) + <ll> f=s0 ||f||=27;2](R",w;X)'
Replacing p?™ by A again yields the assertion. O

Lemma6.7.3. Let X bea UMD Banach space, p,q € (1,00), w € A,([R"), 5o, t ER with t =
So. Suppose that </ (D) is a homogeneous differential operator of order 2m with constant
coefficients in %B(X) satisfying (E)y for some ¢ € (0,7]. Given f € H;O R, w; X) let u :=
A+ d(D))’lf. Then, for all 1y > 0 we have the estimate

2m+i-sg =50
Il gz o, s )+ VA2 Wl g0 o, ) 0 1 W kg o, sy 1127 F 0 o,
forevery A e (Ag +Zy.

Proof. The proofis almost the same as the one of Lemma 6.7.2. But instead of (6.26) we
use Proposition 6.3.6 together with Lemma 6.6.8. O

Proof of Theorem 6.7.1. First, we consider case (B). By localization, we only have to treat
the case of a homogeneous system with constant 9(X)-valued coefficients on &' = R”.
Taking Rychkov’s extension operator & (see Theorem 6.3.8), we can represent the solu-
tion as

m ~
u=ri(A-oL(DNg& f+ Y OPK(k;j2)(g) — trgn-1 B; (D) (A + L (D)) & f).
j=1

Here, (1 —of (D))ui% denotes the resolvent in the whole space as in Lemma 6.7.2 and k A
are the Poisson symbol kernels as in Proposition 6.5.16. For the estimate, we treat the
summands separately. We write

up:=r.(A—od (D)Ngr & f,
Up, ; := OPK(K; 1) trgn-1 B; (D) A+ (D)jh £ f,
uz,j := OPK(k;j1)g;-

First, by Theorem 6.3.8 and Lemma 6.7.2 we have that
t+2m-sp 1-59
et llgyteam oy + A2 Ml oo @iy =1 F ot @i + A2 S fll g0 @ oy x)

=
S Mg, @ AP0 g x)-
(6.64)
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For u, we substitute A = pz’” again. Then, Theorem 6.5.28, Proposition, Lemma 6.7.2
and Theorem 6.3.8 yield

1421 sz 3 < 1B DY+ (DGR E SNy

Pay RYX)
<A+« (D 1& 2
”( ( ))[R" f” pt:;mws(ﬁm](Rn wa)
< ”f” tlul so+m;
)
P”IY ([Rn X
= Ny i+ DT NE oy

.’7 qay
-
S ez, @ + M f Lz gnx)-

Substituting A = ™ again yields
+2m—
142,11yt i +|ﬂt|i||uz]||ﬂs0 L S llogs s + 1A & 1Lz @i
Finally, it follows from Theorem 6.5.28 that

I u3]|| t+2m I, S0 (R X) ~ IIg] || oy rEmem il

n.
p.ay R;X)

so that (6.40) together with the substitution A = y?™ yields

||u3]||£{t+2m(ﬁx]+|l| ||u3]||%v0 AO:X)
t+2m—m~1+—y
SUgll_ramom  + A7 ligjlly, 60,
Moest2mmi o) * MNrp005x:

. _ m .
Summing up u = u; ijl u,j + ug,j yields

t+2m-sgy

12l cygszm iy + 1A 2 o

Sy, e+ |/1|W||f||<9f;%yy(Rf;X)

t+2m—m<—l+—y

Al e S
+]Z1 ”gj”ag/m" " (R ) +IA m gL, errx)

The inverse estimate follows from Proposition 6.3.9 together with the estimate
S, 1, S < S+2m, U, s .
” (A + 'Q{(D)) u”%p,g,yo (Rﬁ,X) = ” u”%p:ﬁy ] (RQYX)

Case (A) can be carried out in almost the exact same way. One just has to use the
extension operator from Proposition 6.3.7 instead of Rychkov’s extenstion operator, use
Lemma 6.7.3 instead of Lemma 6.7.2 and use the elementary embedding F?* o Y([R{”, X)—

p'y (R", E) for the Poisson operators estimates. O
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6.7.3. Operator Theoretic Results

The L4-maximal regularity established in Theorem 6.6.2 for the special case of homoge-
neous initial-boundary data gives L,-maximal regularity and thus R-sectoriality for the
realizations of the corresponding elliptic differential operators:

Corollary 6.7.4. Let O be either R} or a bounded C*-domain in R". Let X be a UMD
Banach space and let («f (D), %1 (D), ..., Bm (D)) be a B(X)-valued differential boundary
value system on O as considered in Section 6.3.5 and put m, := max{my,...,my}. LetE
and E%™ be given as in either (a) or (b) as in Section 6.6.1. Let («/ (D), %, (D), ..., %Bm (D))
be a B(X)-valued differential boundary value system of order 2m on O that satisfies (E)
and (LS)y for some ¢ € (0, 7). Moreover, we assume that the coefficients satisfy the condi-
tions (SDP)s, (SDL)s, (SBP);s and (SBL) from Section 6.7.1.° Let Ag be the realization of
o/ (D) in E with domain D(Ap) = {u € E2™ : B(D)u = 0}. For every 0 € (¢, ) there exists
o > 0 such that pg + A is R-sectorial with angle wr(1g + Ap) < 0.

Proof. This is a direct consequence of Theorem 6.6.2 and Proposition 6.3.3. Indeed, if
we write o (x, D) = ¥ |q1<2m 4o (x) D% and %;(x, D) = Z|ﬁ|gmj bjg (x)DB, then it follows
from our assumption that d, := a, ®1; and b 6= bjp®]1;satisfy the conditions (SDP),
(SDL), (SBP) and (SBL) from Section 6.6.1. O

The following result is an immediate corollary to Theorem 6.7.1.

Corollary 6.7.5. Consider the situation of Theorem 6.7.1 with s = sy = s1. Let Ap be the
realization of < (D) in F* with domain D(Ap) = {u € FS*?>™ : B(D)u = 0}. For every 0 €
(¢, ) there exists pg > 0 such that g + Ap is sectorial with angle ¢y, 4 < 6.

Remark6.7.6. From the R-sectoriality and sectoriality in Corollary 6.7.4 and Corollary 6.7.5,
respectively, one can derive boundedness of the H*°-functional calculus using inter-
polation techniques from [76, 133]: [133, Corollary 7.8] respectively [76, Theorem 3.1]
gives a bounded H*-calculus of the part of Ap in the Rademacher interpolation space
(E, D(A))g respectively in the real interpolation space (E, D(A))g,4. In this way one could
improve the R-sectoriality to a bounded H*°-functional calculus in Corollary 6.7.4 and
the sectoriality to a bounded H*°-functional calculus in the B- and 98-cases Corollary 6.7.5.
However, the required knowledge of interpolation with boundary conditions does not
seem to be available in the literature at the moment.

Remark 6.7.7. The scales of weighted 98- and & -spaces, the dual scales to the scales
of weighted B- and F-spaces, naturally appear in duality theory. In [163] they were
used to describe the adjoint operators for realizations of second order elliptic opera-
tors subject to the Dirichlet boundary condition in weighted B- and F-spaces (see [163,
Remark 9.13]), which was an important ingredient in the application to the heat equa-
tion with multiplicative noise of Dirichlet type at the boundary in weighted L,-spaces

5Here, we identify Case (a) and Case (b) from Section 6.6.1 with Case (A) and the Triebel-Lizorkin version of
Case (B) from Section 6.7.1, respectively.
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in [167] through the so-called Dirichlet map (see [163, Theorem 1.2]). The incorporation
of the scales of weighted 98- and & -spaces in Theorem 6.7.1 and Corollary 6.7.5 would
allow us similarly to describe the adjoint of the operator Ag from Corollary 6.7.4, which
could then be used to extend [167] to more general parabolic boundary value problems
with multiplicative noise at the boundary.

6.A. A WEIGHTED VERSION OF A THEOREM DUE TO CLEMENT AND PRUSS

The following theorem is a weighted version of aresult from [51] (see [126, Theorem 5.3.15]).
For its statement we need some notation that we first introduce.

Let X be a Banach space. We write EST’(R”;X) = f‘lcgo([R”;X) and fl(IR";X) =
Z 1LY R"; X). Then

L1 joc R B(X)) x CRR"; X) — LIR"; X), (m, ) — F imf] =: Ty f.

For p € (1,00) and w € A, (R") we define .4 L,(R", w; X) as the space of all m € Ly joc(R"; %(X))
for which T, extends to a bounded linear operator on L, (R", w; X), equipped with the
norm

ML, ®nwx) = 1 Tmllaw,®m,wx)-
Theorem 6.A.1. Let X be a Banach space, p € (1,00) and w € AP(R”). For all m €
M LyR", w; X) it holds that
{m(¢) : ¢ is a Lebesgue point of m}
is R-bounded with
Il @ 00) < Zp (1M(&) : & is a Lebesgue point of m}) <Sp,w 1mllaL,®n,w;x)-

Proof. This can be shown as in [126, Theorem 5.3.15]. Let us comment on some modi-
fications that have to be made for the second estimate. Modifying the Hoélder argument
given there according to (6.13), the implicit constant Cj,;, of interest can be estimated
by

Cpyw < liminfe|lpe )z, @n,uw W ENL, @),

where ¢,y € #(R") are such that ¢, i are compactly supported with the property that
f $rdé = 1. By a change of variable,

d
e NlpE N, mr,w 1Y €L, @r,w) =Pl @ wen WL, @, w), e

Since #(R") — Lp(I]'\P", w) with norm estimate only depending on n, p and [w]Ap (as
a consequence of [182, Lemma 4.5]) and since the Aj,-characteristic is invariant under
scaling, the desired result follows. O
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SUMMARY

The subject of this thesis is the maximal regularity problem for parabolic boundary
value problems with inhomogeneous boundary conditions in the setting of weighted
function spaces and related function space theoretic problems. This in particularly in-
cludes weighted L,;-L,-maximal regularity but also weighted L;-maximal regularity in
weighted Triebel-Lizorkin spaces. The weights we consider are power weights in time
and in space, and yield flexibility in the optimal regularity of the initial-boundary data
and allow to avoid compatibility conditions at the boundary.

The first part of this thesis, Part I, consists of Chapters 2 and 3 and is completely
devoted to harmonic analysis and function spaces.

In Chapter 2 we introduce a new class of anisotropic vector-valued function spaces
in an axiomatic setting a la Hedberg&Netrusov [119], which includes weighted anisotropic
mixed-norm Besov and Triebel-Lizorkin spaces. The main result is an intersection rep-
resentation, which in the special case of the classical Triebel-Lizorkin spaces yields an
improvement of the well-known Fubini property. The motivation comes from the L4-
maximal regularity approach to parabolic boundary value problems with inhomoge-
neous boundary conditions in Part II, where weighted anisotropic mixed-norm Triebel-
Lizorkin spaces occur as the optimal space of boundary data.

In Chapter 3 we study weighted Bessel potential spaces of tempered distributions
taking values in UMD Banach spaces. The main result is a randomized difference norm
characterization for such function spaces H; ;(Rd ,w; X) with s > 0, extending a classical
square function difference norm characterization from the unweighted scalar-valued
case due to Strichartz [230]. The main ingredients are R-boundedness results for Fourier
multiplier operators, which are of independent interest. As an application of the ran-
domized difference norm description we characterize the pointwise multiplier property
of 1ga on H;,([Rd, w; X).

In Chapter 4 we prove results on the complex interpolation of weighted Sobolev
spaces of distributions taking values in UMD Banach spaces spaces on the half line
with Dirichlet boundary condition. The weights that we consider are A,-power weights,
where p is the integrability parameter under consideration. The proof is based on the
pointwise multiplier property of IM on the corresponding weighted Bessel potential
spaces H,, (R%, w; X), of which we provide a new and simpler proof as well. We apply the
results to characterize the fractional domain spaces of the first derivative operator on
the half line.

The second part of this thesis, Part II, consists of Chapters 5 and 6 and is devoted to
the study of elliptic and parabolic boundary value problems in weighted function spaces
of Sobolev, Bessel potential, Besov and Triebel-Lizorkin type.
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In Chapter 5 we study the Laplace operator subject to Dirichlet boundary condi-
tions on a smooth domain in a weighted L,-setting with power weights that fall out-
side the classical class of Muckenhoupt A,-weights. We prove boundedness of the H*-
calculus. Furthermore, we characterize the domain of the operator and derive several
consequences on elliptic and parabolic regularity. In particular, we obtain a new maxi-
mal regularity result for the heat equation with rough inhomogeneous boundary data.

In Chapter 6 we consider infinite-dimensional systems of elliptic and parabolic bound-
ary value problems with inhomogeneous boundary conditions under assumptions of
Lopatisnkii-Shapiro type as considered by Denk, Hieber & Priiss [59, 61]. The main re-
sult provides a solution to the problem of weighted L,;-maximal regularity in weighted
Lp-based UMD Banach space-valued Bessel potential and Triebel-Lizorkin spaces for
the parabolic equations. Here the spatial weights, which are the same power weights
as in Chapter 5, are restricted to the Muckenhoupt A,-class in the Bessel potential case
and to the Muckenhoupt Ay -class in the Triebel-Lizorkin case. The use of scales of
weighted Triebel-Lizorkin spaces enables us to treat rough inhomogeneous boundary
data and also provides a quantitative smoothing effect for the solution on the interior
of the domain. For the elliptic equations we furthermore obtain parameter-dependent
estimates. The main technical ingredient is an analysis of parameter-dependent and
anisotropic Poisson operators.



SAMENVATTING

Het onderwerp van dit proefschrift is het maximale regulariteitsprobleem voor rand-
waardeproblemen met inhomogene randvoorwaarden binnen het kader van gewogen
functieruimten en gerelateerde functieruimtetheoretische problemen. Dit bevat in het
bijzonder gewogen L,-L,-maximale regulariteit maar ook gewogen L,-maximale reg-
ulariteit in gewogen Triebel-Lizorkin ruimten. De gewichten die we beschouwen zijn
machtsgewichten in tijd en ruimte, en leveren flexibiliteit in de optimale regulariteit van
de begin-rand data en laten het toe compatabiliteitsvoorwaarden op de rand te vermij-
den.

Het eerste deel van dit proefschrift, Part I, bestaat uit Chapters 2 en 3 en is volledig
gewijd aan harmonische analyse en functieruimten.

In Chapter 2 introduceren we een nieuwe klasse van anisotrope vectorwaardige func-
tieruimten in een axiomatisch raamwerk a la Hedberg&Netrusov [119], welk gewogen
anisotrope gemixte-norm Besov and Triebel-Lizorkin ruimten bevat. Het hoofdresul-
taat is een doorsnederepresentatie, welke in het speciale geval van de klassike Triebel-
Lizorkin ruimten een verbetering van bekende Fubini-eigenschap oplevert. De moti-
vatie komt van de L,-maximale regulariteitsbenadering van parabolische randwaardeprob-
lemen met inhomogene randvoorwaarden in Part II, waar gewogen anisotrope gemixte-
norm Triebel-Lizorkin ruimten opduiken als de optimal ruimte van randdata.

In Chapter 3 bestuderen we gewogen Bessel potentiaal ruimten van getempereerde
distributies die waarden aannemen in OMV Banach ruimten. Het hoofdresultaat is een
gerandomiseerde differentienorm karakterisatie voor zulke functieruimten H,, R4, w; X)
met s > 0, welk een uitbreiding is van een klassieke kwadraatfunctie differentienorm
karakterisatie uit het ongewogen scalarwaardige geval van Strichartz [230]. De hoofdin-
grediénten zijn R-begrensdheidsresultaten voor Fourier vermenigvuldigingsoperatoren,
welk van onafhankelijke interesse zijn. Als een toepassing gerandomiseerde differen-
tienorm beschrijving karakteriseren we de puntsgewijze vermenigvuldigingseigenschap
van IRf op H;([Rd, w; X).

In Chapter 4 bewijzen we resultaten op het gebied van complexe interpolatie van
gewogen Sobolev ruimten van distributies die waarden aannemen in OMV Banach ruimten
op de reéle halve met Dirichlet randvoorwaarden. De gewichten die we beschouwen zijn
Ap-machtsgewichten, waar p de integreerbaarheidsparameter onder beschouwing is.
Het bewijs is gebaseerd op de puntsgewijze vermenigvuldigingseigenschap van IR‘f op
de bijbehorende gewogen Bessel potentiaal ruimten H;([R{d, w; X), waarvan we tevens
een nieuw en simpeler bewijs geven. We passen de resultaten toe om fractionele domein-
ruimten van de eerste afgeleide-operator op op de reéle halve te karakteriseren.

Het tweede deel van dit proefschrift, Part II, bestaat uit Chapters 5 en 6 en is gewijd
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aan de studie van elliptische en parabolische randwaardeproblemen in gewogen func-
tieruimten van Sobolev, Bessel potential, Besov en Triebel-Lizorkin type.

In Chapter 5 bestuderen we de Laplace operator onderworpen aan Dirichlet rand-
voorwaarden op een glad domein binnen een gewogen L,-kader met machtsgewichten
die buiten de klassike klasse van Muckenhoupt Aj-gewichten vallen. We bewijzen de
begrensdheid van de H*°-rekening. Verder karakterizeren we het domein van de oper-
ator en leiden verscheidene gevolgen af met betrekking tot elliptische en parabolische
regulariteit. In het bijzonder verkrijgen we een nieuw maximaliteitsresultaat voor de
warmtevergelijking met ruige inhomogene randdata.

In Chapter 6 beschouwen we oneindig-dimensionale systemen van elliptische en
parabolische randwaardeproblemen met inhomogene randvoorwaarden onder aannames
van Lopatisnkii-Shapiro type als beschouwd door Denk, Hieber & Priiss [59, 61]. Het
hoofdresultaat verstrekt een oplossing van het probleem van gewogen L,-maximale
regulariteit in, op gewogen Lj,-gebaseerde, OMV Banach ruimtewaardige Bessel poten-
tiaal and Triebel-Lizorkin ruimten voor de parabolische vergelijkingen. Hier de ruimtelijke
gewichten, welke dezelfde machtsgewichten zijn als in Chapter 5, zijn beperkt tot de
Muckenhoupt A, -klasse in het Bessel potentiaalgeval en tot de Muckenhoupt A, -klasse
in het Triebel-Lizorkingeval. Het gebruik van schalen van gewogen Triebel-Lizorkin
ruimten maakt het mogelijk ruige inhomogene randdata te behandelen en geeft ook een
kwantitatief gladmaakeffect voor de oplossing op het inwendige van het domein. Voor
de elliptische vergelijkingen verkrijgen we bovendien parameterafhankelijke afschattin-
gen. Het voornaamste technische ingredient is een analyse van parameterafhankelijke
en anisotrope Poisson operatoren.
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