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Abstract
We present a pioneering investigation into the relation between passenger flow distribu-
tion and network properties in public transport systems. The methodology is designed in a 
reverse engineering fashion by utilizing passively measured passenger flow dynamics over 
the entire network. We quantify the properties of public transport networks using a range 
of centrality indicators in the topological representations of public transport networks with 
both infrastructure and service layers considered. All the employed indicators, which origi-
nate from complex network science, are interpreted in the context of public transport sys-
tems. Regression models are further developed to capture the correlative relation between 
passenger flow distribution and several centrality indicators that are selected based on the 
correlation analysis. The primary finding from the case study on the tram networks of 
The Hague and Amsterdam is that the selected network properties can indeed be used to 
approximate passenger flow distribution in public transport systems to a reasonable extent. 
Notwithstanding, no causality is implied, as the correlation may also reflect how well the 
supply allocation caters for the underlying demand distribution. The significance and rel-
evance of this study stems from two aspects: (1) the unraveled relation provides a parsimo-
nious alternative to existing passenger assignment models that require many assumptions 
on the basis of limited data; (2) the resulting model offers efficient quick-scan decision sup-
port capabilities that can help transport planners in tactical planning decisions.

Keywords Public transport systems · Passenger flow distribution · Network properties · 
Topology · Centrality · Complex network science

Introduction

Estimation and prediction of passenger flow distribution is one of the most significant top-
ics in the field of public transport (PT) research given its critical role in assisting plan-
ning and management. The conventional approach, like that in the road traffic research, 
is to develop passenger assignment models which take demand profiles—typically in the 

 * Ding Luo 
 d.luo@tudelft.nl

1 Department of Transport and Planning, Faculty of Civil Engineering and Geosciences, Delft 
University of Technology, P.O. Box 5048, 2600 GA Delft, The Netherlands

http://orcid.org/0000-0003-2661-0926
http://crossmark.crossref.org/dialog/?doi=10.1007/s11116-019-09990-w&domain=pdf


2758 Transportation (2020) 47:2757–2776

1 3

form of origin–destination matrices—as input and then distribute the demand across the 
network (Ortúzar and Willumsen 2011). These models are normally referred to as transit 
assignment models in the transport research community, and their core pertains to mod-
eling travelers’ route choices in PT systems as functions of network conditions and travel 
preferences (Liu et  al. 2010). Two types of static equilibrium transit assignment models 
have been mostly developed over the past decades, namely the frequency-based and sched-
ule-based. The major distinction between them lies in the representation of public transport 
networks (PTNs) given their substantial impact on the passenger loading procedure (Gen-
tile et al. 2016). More specifically, the frequency-based approach represents PTNs at the 
route-level with corresponding frequencies (e.g., Nguyen and Pallottino 1988; Spiess and 
Florian 1989; Cepeda et al. 2006; Schmöcker et al. 2011), while the schedule-based one 
enables a more detailed representation of time-dependent specific vehicle runs (e.g., Nuz-
zolo et al. 2001; Zhang et al. 2010).

Notwithstanding the continuous development of transit assignment models, other pos-
sibilities for understanding and further modeling the passenger flow distribution in PT sys-
tems to a network-wide extent have remained underexplored. Presumably, this is a result of 
the longstanding data scarcity in the field. Under this “data-poor and assumption-rich” situ-
ation (Vlahogianni et al. 2015), the conventional modeling approach has undoubtedly pro-
vided the most feasible solution to this challenging problem. Nonetheless, as the capabil-
ity in measuring the PT passenger flow dynamics in a large spatiotemporal scale becomes 
increasingly available owing to emerging PT demand data sources, such as the automatic 
fare collection data (Pelletier et al. 2011), it is now worth investigating whether there can 
be alternative ways to model the passenger flow distribution in PT systems.

This study hence examines a research question: Can passenger flow distribution be esti-
mated solely based on network properties in PT systems? While the answer to this ques-
tion looks apparent, it has not been empirically investigated to a sufficient extent. One can 
make an underlying assumption that transport network properties should of course corre-
spond to passenger flow distribution since networks are supposedly designed to efficiently 
accommodate prevailing demand patterns in PT systems (van Nes et al. 1988). However, 
it shall be stressed that a range of other factors, such as travelers’ behavior, historical net-
work development and physical constraints, also have non-negligible influences on demand 
and network structure in any transport systems. In fact, the discussion about whether traf-
fic flows can be approximated by network properties in urban street networks has lasted 
for decades among urban planning researchers (e.g., Hillier et al. 1993; Penn et al. 1998; 
Turner 2007; Jiang and Liu 2009; Kazerani 2009; Gao et al. 2013). Recent evidence was 
provided by Gao et al. (2013) based on the traffic volume derived from the GPS-enabled 
taxi trajectory data from a Chinese city. Their study concludes that the betweenness cen-
trality, which has been commonly employed as a local indicator of network properties, is 
not a good predictive variable for urban traffic flow and the gap can be explained by the 
spatial heterogeneity of human activities and the distance-decay law. In addition, a limited 
amount of research attempts have also been made by scholars from various fields in the 
past few years to examine the relation between network properties—mostly limited to the 
betweenness centrality—and the traffic flows in urban road traffic systems. (e.g., Altshuler 
et al. 2011; Puzis et al. 2013; Ye et al. 2016; Zhao et al. 2017; Wen et al. 2017; Akbarza-
deh et al. 2017). No such comparable effort, however, has been made in the context of PT 
systems, which therefore necessitates dedicated investigations into the proposed research 
question above.

To this end, we conduct this study with the methodology developed in a reverse engi-
neering fashion, which unravels the correlative relation between passenger flow distribution 
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and network properties in PT systems. Differing from previous studies, we examine a vari-
ety of network properties by considering the centrality indicators in different topological 
representations of PTNs. We show how concepts originating from the domain of complex 
network science can be applied and interpreted in the context of PT systems. We further 
apply the proposed methodology to two real-world tram networks in The Netherlands, i.e., 
The Hague and Amsterdam, where passenger flow observations are available. Regression 
models capturing the correlation between passenger flow distribution and several centrality 
indicators are first developed using the data from The Hague, and are then evaluated for 
both networks separately. Note that no causality is implied by the models. It is the cor-
relation—rather than the causation—between PTN properties and passenger flow distribu-
tion that is essentially investigated. Moreover, the unraveled relation and developed models 
have the potential to serve as a complementary tool for PT operations management, while 
it is inappropriate to apply them to the long-term passenger flow forecasting.

The remainder of this paper is organized as follows: second section displays the pro-
posed methodology. Third section  describes the case study networks and experimental 
setup, which is followed by the presentation of the results and discussion in fourth sec-
tion. The conclusions are drawn in final section with some remarks on the future research 
directions.

Methodology

Overview

An overview of the research structure is shown in Fig. 1 with the workflow and components 
of the methodology sketched. In the beginning, the representation of PTNs is described in 
“Representation of public transport networks” section to lay the foundation. Then, “Inde-
pendent variables: time-dependent centrality indicators of PTNs” and “Dependent variable: 
time-dependent passenger flow distribution” sections are respectively dedicated to illustrat-
ing the independent and dependent variables in this study, namely centrality indicators of 
PTNs and passenger flow distribution, both of which are considered in a time-dependent 
manner. The model development is later described in “Model development” section, fol-
lowed by the model evaluation in “Model evaluation” section.

Representation of public transport networks

We first clarify that the term “public transport network” in this study is referred to as the 
combination of two layers: the infrastructure network (i.e., road and rail) and the ser-
vice network superimposed on the physical layer (i.e., routes). We then define a PTN as 
a directed graph with a triple G = (V ,E,R) , where V,  E,  R represent the set of nodes, 
links, routes, respectively. Each node v ∈ V  represents a stop, while each link e ∈ E is 
defined by an ordered pair of nodes (u, v), where u and v, respectively, denote the source 
and target nodes. Each route r ∈ R is characterized by an ordered sequence of stops 
r = (vr,1, vr,2,… , vr,|r|) as well as an ordered sequence of links r = (er,1, er,2,… , er,|r|) . Note 
that a link can be utilized by multiple routes, and the direction of a route is also distin-
guished. In addition, the stop in this definition refers to a service location which can con-
tain more than one individual boarding and alighting spot in the operational network.
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Based on the fundamental representation of PTNs, we further apply two topological 
representations, the � - and �-space (von Ferber et al. 2009), to characterize the topology 
of PTNs’ two different layers, i.e., infrastructure and service. These topological networks, 
which can be represented by adjacency matrices, are suitable inputs for further analyses. 
As Fig.  2 illustrates, the �-space is a straightforward representation of PTNs’ physical 
infrastructure. Each node represents a stop, and a link between two stops is formed if two 
stops are adjacent on an infrastructure segment (i.e. road or rail). Moreover, duplicate con-
nections between nodes are not allowed. The �-space is constructed solely based on the 
service layer designed by PT operators/agencies, i.e., routes. The nodes in this space also 
represent stops, and two nodes are linked if they are served by at least one common route. 
In this sense the neighbors of a node in this space are all stops that can be reached with-
out performing a transfer. In order to make the use of these two topological representa-
tions more informative in the context of this study, we replace the terms “ �-space” and 
“ �-space” with “space-of-infrastructure” and “space-of-service” in the remaining of this 
paper.

Further enrichment of the topological networks of PTNs is performed by adding link 
weights related to PT service attributes. The space-of-infrastructure is enriched in two 
ways, including the in-vehicle travel time as a type of link cost and vehicle frequency per 
time unit as a type of link importance. With common routes considered, the weight of a 
link’s ultimate frequency is determined by summing up the frequencies of all the routes 
traversing it, i.e., labeling the link with the respective joint frequency, which is consistent 
with the definition of space-of-infrastructure representation. For the space-of-service, the 
expected waiting time for a PT vehicle during a given time slice is considered as a type 
of link cost, which is defined as half of the planned headway with joint vehicle frequency 

Fig. 1  Illustration of the overall research design and methodology
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between stop pairs considered. This definition is based on the assumption that (1) pas-
senger arrival at stop is random in the context of urban high-frequency services, and (2) 
arrival times of vehicles serving different lines is independent, i.e. no systematic synchro-
nization is performed in the context of urban high-frequency services. Both unweighted 
and weighted topological networks will be used in the following subsection.

Independent variables: time‑dependent centrality indicators of PTNs

Since the introduction of the “centrality” concept by Bavelas (1948), a variety of network 
centrality indicators have been proposed in the past decades. In principal, all these indica-
tors are designed to capture distinct aspects of what it means to be “central” in a network 
for individual nodes. Based on this concept, this study employs several different centrality 
indicators for both space-of-infrastructure and space-of-service networks as the proxies of 
different properties of PTNs. The combination of different topological representations and 
centrality indicators enables a concise way to quantify a range of fundamental properties 
of PTNs. Moreover, some centrality indicators are computed in time-dependent weighted 
networks, which correspondingly reflect time-dependent characteristics of PTNs.

A summary of all the employed centrality indicators is shown in Table 1 and detailed 
descriptions are presented in the following subsections. General definitions of the 
selected centrality are first given, followed by their interpretation in different topological 

Fig. 2  Illustration of the �-space and �-space representations of the exemplary PTN on the top, which con-
sists of three routes and six stops (adapted from von Ferber et al. 2009). The �-space essentially represents 
the infrastructure layout, while the �-space characterizes the PT service layer: stops that are directly linked 
require no transfer to reach each other. In order to make the use of these two topological representations 
more intuitive in the context of this study, we replace the term “ �-space” and “ �-space” with “space-of-
infrastructure” and “space-of-service” in the remaining of this paper
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representations of PTNs. In addition, all the centrality indicators of the nodes are scaled by 
having the division over the sum for comparability and transferability reasons.

In/out‑degree centrality

For unweighted directed networks, the in/out-degree centrality is an indicator that deter-
mines the importance of a node based on the number of links connected to it in an inbound/
outbound manner. This indicator can be further extended by adding weights to the network 
as proposed by Barrat et al. (2003), which is coined by them as strength. We stick to the 
term “degree in weighted networks” in the remaining of this study for the consistency with 
other indicators. The calculation of the in/out degree centrality in a weighted network can 
be based on the adjacency matrix A of it shown as follows:

where d̃+
i
 and d̃−

i
 respectively denotes the in- and out-degree centrality of node i in a 

weighted network. wij denotes the value of weight of the corresponding link. When there 
is no weight considered , namely wij = 1 , the indicators are degraded to the in- and out-
degree centrality of node i in an unweighted network, denoted by d+

i
 and d−

i
.

• ��,+∕− : In/out-degree centrality in the unweighted space-of-infrastructure network
  This indicator corresponds to the number of road or rail links that directly lead in or 

out of a given stop. It thus directly relates to the underlying physical infrastructure of 
PTNs.

• �̃�,+∕− : In/out-degree centrality in the weighted space-of-infrastructure network
  Links are weighted by the time-dependent vehicle frequency between two adjacent 

stops with all the routes considered. Hence, this indicator quantifies the scheduled ser-
vice intensity in terms of PT vehicle flows.

• ��,+∕− : In/out-degree centrality in the unweighted space-of-service network

(1)d̃+
i
=
∑

j

wjiAji

(2)d̃−
i
=
∑

j

wijAij

Table 1  Summary of the centrality indicators used in this study

PTN representation Notations Centrality indicators Weight Weight attributes

Space-of-infrastructure ��,+∕− In/out-degree ✗ –

�̃�,+∕− In/out-degree ✓ Vehicle frequency

�� Betweenness ✗ –

�̃� Betweenness ✓ In-vehicle travel time

��,+∕− In/out-closeness ✗ –

�̃�,+∕− In/out-closeness ✓ In-vehicle travel time
Space-of-service ��,+∕− In/out-degree ✗ –

�� Betweenness ✗ –

�̃� Betweenness ✓ Waiting time
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  This indicator measures the number of stops that can be reached without transfer 
for a given stop. It thus directly relates to the underlying service design of PTNs.

Betweenness centrality

The betweenness centrality is a widely used indicator that was initially proposed 
by Freeman (1977) for social network studies. It quantifies the importance of a node in 
a network by measuring the proportion of the shortest paths between all node pairs in 
the network that pass through it. Assuming that flow travels through a network along 
the shortest path, nodes that lie on many shortest paths will undertake a high proportion 
of traffic, thus becoming more central in the network. In this sense, such a node might 
play a significant role in the passage of traffic through the network. The definition of the 
betweenness centrality is given as follows:

where bi denotes the betweenness centrality of node i. �st is the total number of shortest 
paths from node s to node t and �st(i) is the number of those paths that pass through i.

Computing the betweenness centrality involves searching for all the shortest paths 
between node pairs. In this study, instead of leveraging on one single betweenness cen-
trality indicator, the betweenness centrality indicators in both topological representa-
tions i.e. the space-of-infrastructure and the space-of-service—are considered. The 
major advantage is that through their inclusion, we are able to directly estimate the con-
tribution of each cost component: in-vehicle time (weighted space-of-infrastructure), 
number of transfers (unweighted space-of-service) and waiting time (weighted space-
of-service). Consequently, their contributions to model prediction power are disentan-
gled without pre-specifying any behavioral trade-offs in this process. An additional 
advantage is that the computational burden of the betweenness centrality is also greatly 
relieved in this way since the algorithm proposed by  Brandes (2001) can be easily 
applied in our case. The betweenness centrality indicators in different topological net-
works are explained below.

• �� : Betweenness centrality in the unweighted space-of-infrastructure network
  The share of shortest paths that traverse a certain stop when path length is measured 

in terms of the number of stops traversed. Given some evidence (Guo 2011), this indi-
cator may coincide with how travelers choose their routes in complex PTNs using the 
map provided by agencies/operators as a mean to approximate travel time.

• �̃� : Betweenness centrality in the weighted space-of-infrastructure network
  With the network weighted by the in-vehicle travel time, this indicator corresponds 

to the share of shortest paths in terms of on-board travel time that traverse the respec-
tive stop. Note that no regard is made to line configuration and thus the number of 
transfers induced.

• �� : Betweenness centrality in the unweighted space-of-service network
  This indicator relates to the interchange (hub) function of the respective stop. It 

therefore pertains to one of the most important and unique properties of PT systems, 
namely transfers.

• �̃� : Betweenness centrality in the weighted space-of-service network

(3)bi =
∑

s≠i≠t

�st(i)

�st
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  The share of shortest paths measured in terms of the average waiting time that trav-
erse a given stop. The path cost consists of the waiting time at the first stop for the route 
chosen and the waiting time at all subsequent transfer locations.

In/out‑closeness centrality

The intuition of the closeness centrality is that two nodes in a network are maximally 
close—in a topological sense—if they share a direct connection, whereas two nodes that 
are only tied indirectly through many intermediate nodes are topologically distant (Bavelas 
1950). Given this logic, the topological distance between two nodes can be defined as the 
number of links on the shortest path between them. Hence, a node becomes topologically 
central if it is able to interact with many network elements via only a few links, namely 
having a short average path length. More formally, the closeness centrality of a node can be 
defined as the inverse of its average shortest path length (Beauchamp 1965):

where ci denotes the closeness centrality of node i. lij is the shortest path length, or topolog-
ical distance, between nodes i and j. N is the number of nodes in the network. In directed 
networks, if we define that lij is the shortest path from node j to node i, then Eq. 4 depicts 
the closeness centrality according to the shortest paths that are incoming to node i, which 
is defined as the in-closeness centrality. Similarly, the out-closeness centrality is based on 
the paths outgoing from node i, in which case we would instead sum over lji for j = 1, ...,N 
in Eq. 4. In weighted networks, the closeness centrality can be estimated by searching the 
shortest weighted path length between regions, where the weight of the path is determined 
by the sum of the link weights on that path.

• ��,+∕− : In/out-closeness centrality in the unweighted space-of-infrastructure network
  This indicator quantifies the phenomenon that passengers originating from the topo-

logically central stops can reach the others in the network with fewer intermediate ones.
• �̃�,+∕− : In/out-closeness centrality in the weighted space-of-infrastructure network
  The weight is determined by the scheduled in-vehicle travel time, thus making the 

shortest path more related to the PT service.

The closeness centrality in the space-of-service network is not included in model devel-
opment because it reflects a concept very similar to the one obtained through the degree 
centrality in the same space ( ��,+∕− ), namely identifying the stops that are most reachable 
with the least number of transfers.

Dependent variable: time‑dependent passenger flow distribution

The time-dependent passenger flow distribution at PT stops is leveraged as the dependent vari-
able, denoted by � . Here we define the passenger flow at a stop in PTNs as the sum of inflow, 
outflow and throughflow at this stop during specified time slices. Specifically, inflow and 
outflow respectively represent the amount of passengers entering (boarding)/exiting (alight-
ing) the PT system at a stop, while throughflow represents the amount of passengers that pass 
through a stop without leaving PT vehicles. This definition of the passenger flow sufficiently 
characterizes how intensively the stops are used across the network. In addition, the absolute 

(4)ci =
N − 1∑

j≠i lij
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passenger flows are converted into relative terms, i.e. flow share, at each stop divided by the 
sum of all stop flows across the network during the respective time slices. we do not attempt 
to directly predict absolute flow values based on scaled centrality indicators because the same 
centrality value may correspond to different contexts for different networks and time periods. 
Instead, we examine whether the distribution of passenger flows is correlated with service 
properties by considering each stop and time-period as a single observation. Absolute flow 
values are resorted by multiplying flow shares by the total passenger flow in the network.

Model development

The model development is performed in two steps, with the first being an exploratory analysis 
among variables based on the Pearson correlation coefficient, and the second being building 
regression models. The objective of the first step is to find out (1) which independent variables 
(centrality indicators) have higher correlation with the dependent variable (passenger flow dis-
tribution), and thus can be incorporated into the models to be developed; (2) the collinearity 
among independent variables. This is to ensure that variables that are mutually linearly cor-
related are not included in the models at the same time so that the developed models are as 
parsimonious as possible.

Following the exploratory analysis, we estimate regression models to capture the correla-
tive relation between passenger flow distribution and network properties. Each observation 
in the dataset corresponds to the flow share associated with a given stop for a given time 
instance. Hence, the dataset contains (balanced) panel data, which are time-dependent and 
cross-sectional. Panel data regression models are thus applied. Let us denote the number of 
time periods for which each element (i.e. stop) i is observed as Ti . Panel data models are most 
useful when the outcome variable is expected to depend on explanatory variables which are 
not directly observable but correlated with the observed explanatory variables. If such omitted 
variables are time-invariable, panel data estimators allow to consistently estimate the effect of 
the observed explanatory variables. A general formulation of the panel data regression model 
with specific individual effects is presented below:

where �i represents the ith invariant time individual effect and vit ∼ i.i.d(0, �2
v
) the dis-

turbance. There are several different estimators (e.g., fixed effects, random effects, mixed 
effects, etc.) for panel data models based on different assumptions, of which more details 
can be found in relevant literature (e.g., Hsiao 2007). In this study, the random effects (RE) 
model is applied in order to relieve the loss of degree of freedom during the estimation, as 
the number of units in our case is quite large (hundreds of PT stops). In RE models, the 
individual-specific effect is assumed to be a random variable that is uncorrelated with the 
explanatory variables, i.e., Cov(Xit,�i) = 0 and Cov(Xit, vit) = 0 for all i and t. The model 
can be then formulated as:

where �it = �i + vit represents the error term that includes the ith invariant time individual 
effects �i and the disturbance vit.

(5)yit = � + �Xit + �i + vit, i = 1,… , n, t = 1,… , Ti

(6)yit = � + �Xit + �it, i = 1,… , n, t = 1,… , Ti
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Model evaluation

Absolute passenger flows are used in the evaluation of the estimated models. These values, 
which are also time-dependent, are derived by multiplying the relative one (flow shares) 
that are obtained from the models by the total amount of flows in the network. Four evalu-
ation measures, including the mean absolute error (MAE), weighted mean absolute error 
(WMAE), weighted absolute percentage error (MAPE) and weighted mean absolute per-
centage error (WMAPE). The motivation for taking into account the weighted measures—
of which weights are determined by the magnitude of passenger flows at the corresponding 
stops—is that we want to reduce the bias caused by extreme error values at stops with low 
passenger flows. The applied measures are specified as below:

where ŷi and yi denote the predicted and actual passenger flows of stop i, respectively. wi 
represents the weight of stop i, namely the flow share. n denotes the total number of obser-
vations for the evaluation data set.

Studied networks and experimental setup

Networks and data

The tram networks of two Dutch cities—The Hague and Amsterdam—were used for this 
investigation given the rich data availability of the Dutch PT systems (van Oort et  al. 
2015). The data of the entire month of March, 2015 for The Hague, and that of the entire 
day of November 14th, 2017 for Amsterdam were leveraged. As Fig. 3 shows, automatic 
fare collection (AFC), automatic vehicle location (AVL), and general transit feed speci-
fication (GTFS) data were used as major sources to generate networks as well as highly 
aggregated spatiotemporal data sets of dependent and independent variables. The passen-
ger flow distribution (dependent variable) were obtained from the PT vehicle trajectories 
with passenger loads (Luo et al. 2018). A summary of the basic properties of the two net-
works, including the number of nodes, (directional) routes, links in space-of-infrastructure 
and space-of-service networks, is presented in Table 2.

(7)MAE =

∑n

i=1
�ŷi − yi�
n

(8)WMAE =

∑n

i=1
wi × �ŷi − yi�∑n

i=1
wi

(9)MAPE =
100%

n

n∑

i=1

||||
ŷi − yi

yi

||||

(10)WMAPE =
100%∑n

i=1
wi

n�

i=1

wi ×
����
ŷi − yi

yi

����
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Experimental setup

For the experimental setup, we selected 20 working days with normal demand patterns (out 
of 1 month) for The Hague. 15 working days were further randomly selected for the model 
development, with the data aggregated on an hourly basis from 6 a.m. to 12 a.m. (18 time 
slices). The rest 5-day data set of The Hague and the 1-day data set of Amsterdam were 
utilized for the model evaluation.

Results and discussion

The results of the exploratory analysis on the two employed networks are first shown in the 
first subsection. The second subsection then presents the results of model estimation, fol-
lowed by the model evaluation in the final subsection.

Exploratory analysis

To gain more intuition about the spatial distribution of passenger flow and centrality indi-
cators in the studied networks, the visualizations of them for the weekday morning peak (7 
a.m.–8 a.m.) are performed and presented in Figs. 4 (The Hague) and 5 (Amsterdam). Both 
size and color are used to make the distinction in magnitude remarkable. Out-degree and 

Fig. 3  Workflow of the data preparation

Table 2  Summary of the studied 
tram networks

Basic properties The Hague Amsterdam

Nodes 232 192
Directional routes 28 24
Links in space-of-infrastructure 520 418
Links in space-of-service 8901 6122
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out-closeness are omitted as they display the same pattern as their counterparts. Through 
the visualizations, it can be seen that considerable amount of passenger flows are loaded 
in the central area of both networks, though it is also observable that some corridors used 
by commuters also undertake a significant amount of flows, such as the one from center to 
the east in The Hague, and two horizontal corridors in Amsterdam with one on the middle 
of west and the other on the top of east. We can further notice that the in-degree central-
ity in the weighted space-of-infrastructure ( �̃�,+ ) and the betweenness centrality in both 
unweighted ( �� ) and weighted ( ̃�� ) space-of-infrastructure mostly match the flow distri-
bution pattern with clear distinctions among nodes across the networks. Some indicators, 
including the in-degree in the unweighted space-of-infrastructure ( ��,+ ) and the in-close-
ness in both unweighted ( ��,+ ) and weighted ( ̃��,+ ) space-of-infrastructure, show rather 
plain patterns. Besides, the betweenness in the space-of-service ( �� and �̃� ) makes the 
transfer locations in the networks really stand out.

The temporal variance in the dependent and independent variables for both networks 
is further displayed through the distribution plots in Fig. 6. Four different time slices are 
selected for each variable to demonstrate the distinction between peak (07:00–08:00 and 

Fig. 4  Visualization of the passenger flow distribution and the employed centrality indicators for the week-
day morning peak (7 a.m.–8 a.m.) of the tram network of The Hague

Fig. 5  Visualization of the passenger flow distribution and the employed centrality indicators for the week-
day morning peak (7 a.m.–8 a.m.) of the tram network of Amsterdam
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17:00–18:00) and non-peak (11:00–12:00 and 22:00–23:00) periods. For the dependent 
variable, i.e. share of passengers flow, a few nodes are traversed by a large proportion of 
the flows while the rest of them only share a small proportion. This pattern is persistent 
over all time periods and is observed for both networks. As for the independent variables, 
significant differences across the four time periods can be observed for �̃�,+ since it largely 
depends on the planned service frequency which varies over the day. Differences also hold 
for �̃� , albeit to a lesser extent, due to different traffic conditions.

We further visualize the correlation coefficient matrices among all the variables for both 
networks as shown in Fig. 7. With the passenger flow distribution � placed at the first place 

Fig. 6  Illustration of the temporal variation of the distributions of dependent and independent variables for 
both The Hague and Amsterdam tram networks. Four different time slices are selected to display mainly the 
difference between peak (07:00–08:00 and 17:00–18:00) and non-peak periods (11:00–12:00 and 22:00–
23:00)

Fig. 7  Illustration of the Pearson correlation coefficient matrices among different variables. a The Hague, b 
Amsterdam
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on both x and y axis, the sequence of the centrality indicators is arranged in a descending 
manner based on the correlation between them and � . The sequence for both diagrams is 
determined by the case of The Hague for the sake of model development.

According to Fig.  7, the in/out-degree centrality indicators in the weighted space-of-
infrastructure network ( �̃�,+∕− ) show the highest positive correlation with � in both The 
Hague and Amsterdam tram systems. This is consistent with the visual patterns from 
Figs.  4 and 5. It is also intuitive to interpret because the amount of passengers that is 
moved in the network depends on the PT vehicle flows. The following indicators are the in/
out-degree centrality in the unweighted space-of-service networks ( ��,+∕− ). Note that these 
two indicators also show high correlation with the previous ones. They are thus not consid-
ered when the in/out-degree centrality in the weighted space-of-infrastructure network are 
used in the model development.

The group of degree centrality indicators are followed by the betweenness ones. Note 
that in the case of The Hague (Fig.  7a), the values of betweenness centrality in both of 
the unweighted and weighted space-of-infrastructure networks ( �� and �̃� ) are higher than 
those in the unweighted and weighted space-of-service networks ( �� and �̃� ). This, never-
theless, is opposite in the Amsterdam system (Fig. 7b). In fact, the betweenness central-
ity in the space-of-infrastructure does not seem to be a good proxy to the passenger flow 
distribution for the Amsterdam tram network. It performs even worse than the closeness 
centrality in the space-of-infrastructure. The remaining centrality indicators are presented 
in the end as they do not show significantly high correlation with �.

Model estimation

The model estimation was performed using MATLAB, with the RE models estimated 
using the panel data toolbox developed by Álvarez et al. (2017). Note that the robust stand-
ard error estimation of the RE models was computed when accounting for heteroscedastic-
ity. Moreover, the variance inflation factor (VIF), which quantifies the severity of collinear-
ity in a regression model, was also computed for the parameters of Model 3 which includes 
several independent variables.

Three model estimations based on the training dataset from The Hague are presented 
and discussed in this section, with the detailed results displayed in Table  3. Note that 
Model 1 is estimated as an ordinary least squares (OLS) model. This is because of the fact 
that there is no temporal variance in the only independent variable ( �� ), and the temporal 
dimension of the independent variable ( � ) is correspondingly also canceled by summing up 
the flows over all periods. This model indicates to what extent it is possible to approximate 
the global passenger flow distribution using solely topological information without embed-
ding time-dependent service attributes. The other two models, Model 2 and Model 3, are 
estimated using RE models as explained in “Model development” section because both of 
them incorporate independent variables pertaining to frequency which is time-dependent. 
The third model has the highest prediction power also when accounting for the number of 
parameters included (Adjusted R2 ). It includes four centrality indicators: betweenness cen-
trality in the unweighted space-of-infrastructure ( �� ), in-degree centrality in the weighted 
space-of-infrastructure ( �̃�,+ ), betweenness centrality in the unweighted space-of-service 
( �� ), and in-closeness centrality in the unweighted space-of-infrastructure ( ��,+ ). The VIF 
values confirm that all the incorporated independent variables in Model 3 do not exercise 
significant collinearity since all the values are lower than 10 (Marquardt 1980).
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Model evaluation

The estimated models are evaluated for the tram networks of The Hague (evaluation data-
set) and Amsterdam. The results are summarized in Table 4. Note that the evaluation is 
performed based on the absolute flows obtained by multiplying the predicted relative flow 
shares by the total amount of flows in the network. Unsurprisingly, Model 3 largely out-
performs Model 1 and Model 2 regardless of the metric used. This suggests that models 
based on a single centrality indicator that does not incorporate information also from the 
space-of-service are not able to well capture the correlation. In addition, the discrepancy 
between weighted and unweighted metrics is striking, implying that significant predictive 
errors occur to stops with relatively low flows.

Table 4  Results of the evaluation metrics for the selected models

Evaluation metrics The Hague Amsterdam

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

MAE (pax) 184 260 128 335 305 240
WMAE (pax) 520 841 283 804 715 452
MAPE (%) 77.6 248.3 70.9 71.4 155.7 68.8
WMAPE (%) 42.0 58.7 29.1 55.6 50.6 39.8

Fig. 8  Illustrations of the evaluation errors for Model 3. a Actual flow versus predicted flow plot for The 
Hague, b spatial distribution of the absolute errors for The Hague, c spatial distribution of the relative 
errors for The Hague, d actual flow versus predicted flow plot for Amsterdam, e Spatial distribution of the 
absolute errors for Amsterdam, f spatial distribution of the relative errors for Amsterdam
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Further, we plot the actual versus predicted flows for Model 3 in Fig. 8a, d. It can be 
observed that Model 3 is indeed well-able to predict passenger flows in both networks. It 
is also evident that the model performs particularly well when the predictions are made for 
the same network for which the data has been trained (The Hague).

The spatial distribution of evaluation errors in both absolute and relative terms are also 
visualized and presented in Fig. 8. Both negative and positive values are considered in the 
visualizations, corresponding to underestimations (blue) and overestimations (red), respec-
tively. Plots in Fig. 8b, e show absolute error terms, while those in Fig. 8c, f show relative 
error terms. In the case of The Hague, it can be observed from Fig. 8c that large relative 
over- or under-estimations occur at stops located further away from the center. However, 
these relatively large errors in relative terms are small in absolute terms as can be seen in 
Fig. 8b. In absolute terms, flows at stops in the core of the network tend to be underesti-
mated, while flows along corridors that offer cycles between main parts of the network such 
as along cross-radial lines are mostly overestimated. Similar overall patterns are observed in 
the case of Amsterdam, albeit with larger absolute deviations resulting from larger overall 
demand levels. Hence, flows in the very central core of the network around the central sta-
tion and the key tourist attractions are underestimated while the flows along the two half-
circular infrastructure is overestimated (in both relative and absolute terms for both cases).

Conclusions

This paper presents a pioneering investigation into the relation between passenger flow 
distribution and network properties in public transport (PT) systems. Differing from the 
traditional approach that consists of demand estimation and assignment, this study is 
performed in a reverse engineering fashion by directly examining the relation between 
the observed flow distribution and network properties that are quantified by centrality 
indicators in various topological representations of public transport networks (PTNs). 
This research capitalizes on the capability to measure PT systems using passively col-
lected PT data (e.g., AFC, AVL and GTFS). In addition, concepts and methods adopted 
from complex network science, including the topological representation of PT infra-
structure and service networks and centrality indicators, also play a key role in a sense 
that the combination of them provides a systematic and concise way to quantify the 
network properties of PT systems. All the employed centrality indicators are also inter-
preted in the context of PT systems, which enriches the application of complex network 
science in the transport research.

The major conclusion drawn from the case study on the tram networks from The 
Hague and Amsterdam is that the selected network properties can indeed be used to 
approximate the global passenger flow distribution across the network to a reasonable 
extent of accuracy using solely regression models. This however does not imply causal-
ity as it is likely that supply provision has been designed to correspond to demand pat-
terns and therefore the reflects the interplay between demand and supply distributions. 
Based on the evidence presented in this paper, several research directions can be further 
explored in the future. First, more real-world PT systems can be employed in order to 
further validate the finding. Second, the proposed approach can be instrumental in a 
range of PT applications. This includes conducting full-scan evaluations of the impact 
of planned disruption on the redistribution of passenger flows throughout the network, 
which can serve as a good complement to the prevailing tools, i.e., simulation models, 
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at a much lower computational cost and with fewer assumptions. Third, the extent to 
which PT supply is well designed to reflect passenger flow distribution can be consid-
ered as a network performance metric for monitoring system performance over time as 
well as comparing alternative networks.
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