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Abstract
Vegetation activity plays a key role in the water cycle, with transpiration accounting for 50–80% of
total terrestrial evaporation globally. Yet many conceptual hydrological models neglect phenology, es-
timating transpiration as a function of relative soil moisture and assuming constant vegetation activity.
This simplification leads to systematic errors, particularly in winter, when conventional models often
overestimate transpiration.

Because transpiration is strongly correlated with sap flow, this study developed three methods to in-
corporate tree phenology into a semi-distributed conceptual hydrological model. The model structure
distinguished between coniferous and deciduous trees. Sap flow dynamics were included either dir-
ectly, using sap flow data, or indirectly, using temperature as a proxy for seasonal variation.

To address the limited availability of sap flow data, a Generalized Additive Model (GAM) was developed
to predict normalised sap flow. Using temperature, relative humidity, incoming shortwave radiation,
volumetric soil water content, and normalised accumulated growing degree-day as predictors, the
model reliably reproduced sap flow dynamics for both tree types. In addition, the GAM framework
enabled separate analysis of each predictor’s relationship with sap flow, providing clearer insights into
the underlying processes and the relative influence of individual variables.

The results show that including tree phenology improves the ability of conceptual hydrological models
to represent transpiration seasonality and vegetation dynamics. Although discharge simulations were
not substantially improved, the added internal realism reduces equifinality and makes the model more
robust under changing conditions.

Among the three developed methods, the direct inclusion of sap flow dynamics resulted in the highest
model performance, particularly in transpiration simulations. This highlights the added value of the sap
flow prediction model itself, which provided a robust link between environmental drivers and vegetation
dynamics, thereby strengthening the integration of phenology into conceptual hydrological modelling.
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1
Introduction

Water is a fundamental component of the Earth system. Understanding its distribution and movement
through the hydrological cycle is essential for managing natural resources such as forests, predicting
flood and drought risks, and sustaining ecosystems. Hydrological processes govern the availability of
freshwater and are highly sensitive to climate variability, land-use changes, and vegetation dynamics.
In light of the increasing impacts of climate change, hydrology plays a critical role in both environmental
science and water resource management.

1.1. Background and motivation
In hydrology, hydrological models are developed to quantify and simulate hydrological processes. They
are used to predict discharge, groundwater recharge, floods, and droughts, among other things. Addi-
tionally, they can help improve the physical understanding of the system’s behaviour. However, due
to the complexity of the hydrological cycle and its interacting processes, these models are necessarily
simplified representations of reality. As such, they inevitably include uncertainties and limitations.

1.1.1. Hydrological models
Hydrological models can be classified into three categories. The first category is black-box models,
which use statistical relations between the input and output without explicit knowledge of the underlying
processes. Therefore, they do not aid in the physical understanding of the system’s behaviour (Liu et al.,
2019). The second and third categories are both process-based models, namely the conceptual and
physically basedmodels. Physically-basedmodels describe the system from amicro-scale perspective,
explicitly representing as many processes as possible (Hrachowitz and Clark, 2017). The CATFLOW
hydrological model, for example, uses the Darcy-Richards and Saint-Venant equations to represent
soil water and surface runoff, respectively (Loritz et al., 2022). These micro-scale processes are then
integrated to catchment scale using a spatial grid, which comes at a computational cost and requires
detailed input data. Conceptual models are in between the black-box and physically based models.
They provide a macro-scale description of the hydrological system, using a more abstract and more
simplified representation of the processes involved by combining micro-scale processes into a macro-
scale manifestation (Hrachowitz and Clark, 2017). These models can be spatially lumped or (semi-)
distributed.

Because conceptual models are more simplified, they have lower computational costs and lower data
requirements compared to physically basedmodels. At the same time they still provide a better physical
understanding of the system’s behaviour than black-box models.

It could be argued that physically-based models should always produce an accurate result based on
their detailed representation of reality using micro-scale physics. Although this might be true on point-
scale, these models encounter multiple issues at larger spatial scales (Beven, 2001). This suggests
that micro-scale properties and processes do not necessarily produce accurate results on a large spatial
scale, such as a catchment. This is also related to heterogeneity, as some properties can be highly
variable over a spatial domain while this data is not always available at the required scale. Additionally,
these complex models are essentially ‘unverifiable’ at catchment scale (Blöschl, 2001). Another issue
is equifinality, the concept that the same outcome can be achieved in different ways, e.g., different
combinations of (calibrated) parameters. This is often linked with over-parametrisation of a model,
which is common for complex physically-based models. As a result, a model might produce promising
results for the wrong reasons (Beven, 2001; Blöschl, 2001).

1



2 Chapter 1. Introduction

These problems are not only limited to physically-based models, as conceptual models are also
affected—albeit to a lesser degree. Where physically-based models might have hundreds or thou-
sands of parameter values to be specified, conceptual models require far fewer parameters, reducing
the issue of equifinality. Furthermore, by focusing on macro-scale effects, such as the hydrological pat-
terns shaped by the catchment’s self-organising capacity, conceptual models can effectively capture
the dominant system dynamics through calibration. This allows them to implicitly include the combined
effects of complex, micro-scale processes and heterogeneities without the need to explicitly model
them. This makes conceptual models more robust.

1.1.2. Transpiration and phenology
Evaporation (E) is the transport of water from the Earth’s surface into the atmosphere and consists of
two major processes. The first, evaporation, is the conversion of liquid water from a variety of surfaces
to water vapour. This includes evaporation from open water (Eo), soil (Es), and interception (Ei). The
second process is transpiration (Et), a biological process where water contained in plant tissues is
vaporized and removed to the atmosphere (Allen et al., 1998).

Transpiration plays a crucial role in plant physiological processes such as photosynthesis (Shao et
al., 2023). Photosynthesis takes place in the leaves of trees. Using the chlorophyll in its leaves, it
absorbs sunlight and combines CO2 with water to produce glucose, producing oxygen as a by-product.
The needed CO2 is obtained by opening the stomata in the leaves, which also leads to water loss
through transpiration. To compensate for this loss, water (with dissolved minerals) is transported via
the xylem from the roots to the rest of the tree. This flow through the xylem is called the sap flow. Only
a tiny fraction of the water taken up is used within the tree, with the remaining water being used for
transpiration (Allen et al., 1998). Therefore, sap flow is strongly correlated with tree transpiration and
its water use, and can be used as an indicator of plant water status (Gimenez et al., 2005; Köstner
et al., 1992).

There are two main categories of trees: deciduous and coniferous, each with its own phenology—the
seasonal development and activity. Deciduous trees shed their leaves annually while coniferous trees
typically have needles and retain them year-round, resulting in different transpiration behaviour through-
out the year. In the early spring, deciduous trees still have to develop their leaves. After budburst, when
new leaves emerge, the transpiration rates gradually increase. In autumn, they undergo abscission,
the process where deciduous trees shed their leaves to conserve water and energy during the winter.
Because coniferous trees do not lose their leaves, they have a higher transpiration rate at the beginning
and end of, as well as outside, the growing season. Deciduous trees, however, usually have a higher
transpiration rate during the growing season. Furthermore, the timing of these phenological events is
highly sensitive to temperature (Polgar and Primack, 2011).

1.1.3. Impact of vegetation
Tree activity is a key component of the water cycle, with transpiration accounting for 50–80% of total
terrestrial evaporation globally (Coenders-Gerrits et al., 2014; Good et al., 2015; Wei et al., 2017). A
change in vegetation can significantly impact the water balance and stream flow in a forest ecosys-
tem (Breil et al., 2023; Juice et al., 2016). Higher transpiration rates reduce runoff, resulting in lower
discharge. This change in vegetation can either be intentional or unintentional.

Intentional tree species conversion is a common technique in forest management, which can strongly
influence catchment discharge (Rahmat et al., 2018). A change from coniferous to deciduous, or vice
versa, can increase or decrease the annual runoff. Additionally, the distribution of runoff over a year
can also change due to differences in phenology between coniferous and deciduous trees.

Tree species conversion can also happen unintentionally. One example occurred in central Massachu-
setts (United States) and was investigated by Daley et al. (2007). Here, eastern hemlocks (coniferous)
were infected by hemlock woolly adelgid, which can be fatal for this species. Black birch (deciduous)
has been found to be the dominant replacement in this region. During the peak growing season, the
daily rates of transpiration were 1.6 times higher in black birch. This shift in tree species is expected to
significantly alter the region’s water balance, particularly during the peak growing season, potentially
reducing stream flow in late summer due to increased water uptake by black birch. As a result, stream
flow in previously low- or moderate-flow streams may become unsustainable during this period.
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Furthermore, climate-driven forest die-off from drought and heat stress is expected to increase with
climate change, impacting forests worldwide (Anderegg et al., 2013). Changes in temperature and pre-
cipitation strongly influence the relationships between trees and insects, such as bark beetles, causing
widespread forest mortality (Jaime et al., 2024). For example, stressors such as heat and drought
activate stress hormones and proteins in Norway spruce, which attract bark beetles (Ips typographus).
These bark beetles cause extensive tree mortality in European Norway spruce forests (Netherer et al.,
2021). Bearup et al. (2014) found that changes in forest transpiration due to mountain pine bark beetle
infestations in the Rocky Mountains of North America strongly influenced the streamflow. The fractional
late-summer groundwater contributions to stream flow increased by 30 ± 15% after infestation.

1.1.4. Actual evaporation in hydrological models
Determining the actual amount of evaporation (Ea) is difficult as measuring it is neither easy nor cheap.
It is easier to determine the maximum possible evaporation based on available energy and assuming
water is not limiting. This is called the potential evaporation (Ep). By definition, actual evaporation can
never exceed the potential evaporation (Ea ≤ Ep).

In conceptual hydrological models, Ea is often estimated by scaling Ep with a reduction factor that usu-
ally depends on the soil moisture content (Bouaziz et al., 2021; Jayathilake and Smith, 2020; Zhao
et al., 2013). This approach neglects dynamic vegetation processes such as phenology, which signi-
ficantly influence transpiration rates. It treats Ea not as an important process but as a static quantity to
estimate, whereas in reality, vegetation activity is a major part of the total evaporation. This highlights
a key limitation of such models.

As E consists of several different processes, dynamic partitioning of E into Et and other evapor-
ation components is a common practice in more complex models to increase their accuracy (e.g.,
Shuttleworth-Wallace, ENWATBAL, Cupid-DPEVAP, SWEAT, TSEB, FAO dual Kc model, HYDRUS-1D
(Kool et al., 2014)). However, the implementation of these dynamic partitioning methods in conceptual
models has not been sufficiently investigated.

Previous research by Mert (2021) and Pierik (2022) showed promising results when combining concep-
tual models with a dynamic partitioning based on phenology. Mert (2021) developed three methods
to partition E in conceptual models. The first method uses a part of the Jarvis model developed by
Jarvis and McNaughton (1986), using stomatal responses to temperature to partition evaporation. The
second method was based on the crop evaporation method developed by Allen et al. (1998). Here, the
leaf area index (LAI) was used to identify the growing stages of vegetation, which were used to partition
the evaporation. The third method was a combination of the first two methods. These methods were
implemented in lumped FLEX and GR4J models for two catchments. The modified models were able
to provide discharge simulations as accurate as those of models that do not include plant phenology,
while their internal transpiration was more accurate. Furthermore, discharge simulations from the mod-
ified FLEX models were slightly closer to observations during spring months. Pierik (2022) tested the
suggested method based on Allen et al. (1998) developed by Mert (2021) on 28 catchments located in
the United States and found similar results.

1.2. Problem statement
Conceptual hydrological models are highly simplified representations of hydrological systems. Because
they are process-based, they provide a better physical understanding of the system’s behaviour com-
pared to black-box models. They have advantages over physically-based models due to their lower
data requirements and computational costs. However, assumptions are necessary to implement these
simplifications. One of these assumptions is the fixed partitioning of evaporation, neglecting the phen-
ology of vegetation. As a result, even though the model might provide accurate discharge simulations,
the internal transpiration flux might be unrealistic, while this is a key hydrological process. Research by
Mert (2021) and Pierik (2022) demonstrated the potential to improve the accuracy of the model’s tran-
spiration estimates by incorporating phenological information. Both studies focused on homogeneous
land cover.

Although the results were promising, Pierik (2022) emphasised the need for further research on al-
ternative methods to incorporate phenological information into conceptual hydrological models. They
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also recommended extending the analysis from catchments with relatively homogeneous land cover to
those with more heterogeneous conditions.

1.3. Research objectives and questions
Transpiration and sap flow are strongly correlated. Therefore, sap flow is a possible candidate to include
tree phenology in a conceptual hydrological model. However, sap flow data are usually temporally
limited, whereas conventional hydrological models require several years of data.

The objective of this study is to incorporate tree phenology into a conceptual hydrological model for a
heterogeneous forest catchment by using environmental variables to represent sap flow dynamics.

Hypothesis
It is hypothesised that incorporating tree phenology into a conceptual hydrological model through envir-
onmental variables representing sap flow dynamics will improve the model’s performance in simulating
both discharge and transpiration, compared to models without vegetation dynamics.

Research questions
1. How can environmental variables representing sap flow dynamics be used to include tree phen-

ology in a conceptual hydrological model for a catchment with heterogeneous tree coverage?
2. How can sap flow be predicted based on environmental variables?
3. How do conceptual hydrological models that include phenology information perform on discharge

and transpiration simulations compared to the conventional conceptual hydrological model?

1.4. Thesis outline
Chapter 2 describes the methodology of this study. This chapter first describes the study area and how
the required data were obtained and prepared for use in the developed models. Next, the structure
of the conventional lumped model is described, along with how it was modified to a semi-distributed
structure. Furthermore, it explains how phenology was incorporated into this model using three different
methods. Subsequently, it is described how the models were calibrated and evaluated. Finally, the
model developed to predict normalised sap flow from environmental variables is presented.

Chapter 3 includes the results obtained from the methodology. To start, the sap flow prediction model
was analysed and its outcomes evaluated. Next, the methods for incorporating phenology are de-
scribed. Finally, the conventional and modified hydrological models are evaluated. This includes a
sensitivity analysis and assessment of the discharge and transpiration simulations.

Chapter 4 discusses the results of each part of the study, interprets the findings, and highlights their
implications and limitations.

Chapter 5 presents the conclusions of this study.



2
Methodology

This chapter outlines the methods used to investigate the incorporation of tree phenology into a con-
ceptual hydrological model for a heterogeneous forest catchment. It starts with a description of the
study area (Section 2.1). This is followed by a description of the datasets obtained and the procedures
used to prepare continuous time series for model inputs (Section 2.2). Next, a conventional conceptual
hydrological model was chosen and modified to fit this study’s requirements (Section 2.3). Three meth-
ods were then developed to modify the conventional model, incorporating sap flow dynamics directly or
indirectly (Section 2.4). After that, Section 2.5 describes how the models were calibrated and validated.
Finally, the development of a sap flow prediction model is presented (Section 2.6), which allowed the
extension of limited sap flow observations to the longer period required for the modified hydrological
models.

2.1. Study area
TheWeierbach Experimental Catchment (WEC) in Luxembourg (49°49’38”N, 5°47’44”E) is a fully fores-
ted catchment covering 0.45 km2 and drains south into the Attert River, a tributary of the Alzette River.
It lies within the Ardennes massif and is characterised by deep V-shaped valleys. The slopes range
from 0.6° to 31° with a mean of 5.86° (Schoppach et al., 2021). Elevation in the catchment ranges from
458 to 514 m a.s.l. with a mean of 498 m a.s.l. (Martínez-Carreras et al., 2016; Pfister et al., 2017), as
illustrated in Figure 2.1a.

The WEC has a semi-marine climate with a mean annual temperature of 8.9 °C. The mean monthly
temperatures range between 0.8 °C in January to 17 °C in July (2007–2019) (Schoppach et al., 2021).
Between 2006 and 2014, the mean annual precipitation was 953 mmyear−1, the mean annual potential
evaporation was 593 mmyear−1, and the average annual stream discharge was 478 mmyear−1 (Pfister
et al., 2017). Mean monthly precipitation between 2007 and 2019 ranged from 39 mmmonth−1 in April
to 103 mmmonth−1 in December (Schoppach et al., 2021). Higher evaporation with lower precipitation
rates during the summer result in discharge seasonality, with the lowest streamflow between July and
October.

The vast majority of the catchment is covered by deciduous forest, composed of a mix of European
beech (Fagus sylvatica) and pedunculate and sessile oak (Quercus robur and Quercus petraea).
Douglas fir (Pseudotsuga menziesii) and Norway spruce (Picea abies), both coniferous, cover the
remaining part of the catchment (Fabiani, 2022). Here, the Douglas fir is located in the south-east of
the catchment while the spruce trees grow in smaller stands across the catchment. In the remainder
of this report, these species will be referred to by their common names: beech, oak, Douglas fir, and
spruce.

Estimates of tree species coverage within the catchment vary slightly across studies. Hissler et al.
(2021) reports 70% coverage for the beech-oak forest, 15% for Douglas fir, and 15% for spruce. In
contrast, Schoppach et al. (2021) estimates 89% for beech-oak, with only 6% and 5% for Douglas fir
and spruce, respectively. Jiménez-Rodríguez et al. (2024) estimated 77.6% coverage for the beech-
oak forest and 22.4% combined coverage for Douglas fir and spruce. Martínez-Carreras et al. (2016)
found similar coverages, with 76% for beech-oak and 24% for coniferous stands.

In this study, the combined estimates of 76% for beech-oak and 24% for Douglas fir and spruce are
adopted, in line with Martínez-Carreras et al. (2016). These values closely match those derived from
digitizing the vegetation cover figure in Schoppach et al. (2021) using QGIS, based on aerial imagery

5
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(a) Location and elevation of the catchment.

Stream
Deciduous
Coniferous
Beech (B)
Oak (O)
Douglas fir (D)
Spruce (S)

Legend

(b) Tree distribution and numbering.

Figure 2.1: (a) Elevation of the Weierbach Experimental Catchment (WEC) and its location within
Luxembourg. (b) Distribution of deciduous and coniferous forest within the catchment, including the
number of trees monitored for sap flow in 2019 and 2020.

from Esri (2022). Notably, the spatial distribution visible in the figure appears inconsistent with the
percentages reported in the text, supporting the use of an independently derived estimate.

The WEC is the most instrumented and studied catchment in Luxembourg, with high-frequency hydro-
climatological information recorded since 2009 (Hissler et al., 2021). Additionally, tree physiological
functioning, including sap flow, wasmonitored during the 2019 and 2020 growing seasons. An overview
of the measurement locations is shown in Figure 2.1b.

2.2. Data availability & preparation
Several different time series were needed for the sap flow prediction model and the rainfall-runoff model
(see Sections 2.3, 2.4 and 2.6). For the variables listed below, multiple datasets were obtained.

1. Temperature
2. Relative Humidity
3. Incoming Shortwave Radiation
4. Soil Volumetric Water Content
5. Discharge
6. Precipitation
7. Sap flow velocity
8. Transpiration

Some of the data were retrieved from the Administration des Services Techniques de l’Agriculture
(ASTA, 2025), which operates several automatic meteorological stations in the area (Figure 2.2a) with
measured parameters varying between stations. The locations of monitoring sites within the WEC are
shown in Figure 2.2b.

This section describes how this data were obtained and prepared to be used as inputs for the models in
study, as these require continuous time series. First, hydro-meteorological and soil data were prepared,
followed by data related to vegetation water usage.
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Figure 2.2: (a) Locations of nearby meteorological stations used in this study. (b) Monitoring sites
within the Weierbach Experimental Catchment, including hydrological, soil, and vegetation measure-
ment points.

2.2.1. Hydro-meteorological and soil data
This subsection describes the data obtained for climatic and soil-related variables. The data includes
temperature, relative humidity, incoming shortwave radiation, soil moisture, discharge and precipitation.
Additionally, potential evaporation was derived from the temperature dataset.

Temperature
Temperature data from within the WEC were retrieved from Hissler et al. (2021). Here, four HMP
45 C (Vaisala Oyj, Vantaa, Finland) probes were installed (sites 8–11 in Figure 2.2b) that measured
temperature and relative humidity at a resolution of 15 minutes from 2012–2019. The distance from
one probe to the next is approximately 60 m on average. Therefore, it is expected that the probes show
similar patterns. It was observed that data from location 11 were shifted by 12 days between March
2016 and December 2019. This shift was corrected for by shifting the data back, resulting in missing
values for location 11 at the end of December 2019.

In addition to the publicly available dataset covering the period 2012–2019, supplementary data for
the years 2020–2022 was obtained directly from the Luxembourg Institute of Science and Technology
(LIST) upon request. This data come from the same probes and locations but with a higher temporal
resolution of 5 minutes. Both datasets were combined into one merged dataset ranging from 2012–
2022. Afterwards, the resulting dataset was resampled to an hourly frequency by taking the hourly
mean values. Finally, a single time series was created by taking the mean values of all four locations.

Additionally, temperature data were retrieved from ASTA (2025) for nearby meteorological stations
located in Holtz, Roodt and Arsdorf. These datasets have an hourly resolution and measurements were
taken at 2 m above the surface. Roodt and Arsdorf data were obtained from 2012 to 2022. Temperature
data at Holtz were available from 15 October 2015 onwards and were obtained from 2015 to 2022.

Lastly, temperature data from the ERA5 reanalysis product was retrieved fromHersbach et al. (2023) via
the Copernicus Climate Change Service (C3S) Climate Data Store for the WEC area. The temperature
was calculated in kelvin for an elevation of 2 m by interpolating between the lowest model level and
the Earth’s surface, where atmospheric conditions are also taken into account (Copernicus Climate
Change Service, Climate Data Store, 2023). This dataset has an hourly resolution and was obtained
for 2012 to 2022.

The resulting time series were compared. It was noticed that the temperatures measured in Arsdorf
often had much lower minimum daily temperatures than the other time series, while the daily maximum
temperatures were similar. Furthermore, it was noticed that daily maximum temperatures measured
in the WEC were a few degrees lower during the summer compared to the other time series. This is
possibly caused by the thermal insulating function of forests (Renaud et al., 2011).
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A selection was made from these temperature datasets. Data from Arsdorf was not used because of
its deviation compared to the other data. Temperature data from the WEC were also excluded due
to the suspected thermal insulating effect of the forest. Because photosynthesis occurs in the canopy
and temperatures in the WEC were measured below the canopy, these measurements might be an
underestimation of the temperature at the canopy level.

A continuous temperature time series was constructed ranging from 2012 to 2022 using a hierarchical
gap-filling approach based on three data sources, prioritizing direct observations over modelled data.
Data from the Holtz station was chosen as primary dataset, which served as the main reference tem-
perature due to its proximity to the WEC. Data gaps in the Holtz time series were initially filled using
observations from the Roodt station. Any remaining gaps were subsequently filled using the ERA5
reanalysis dataset, ensuring full temporal coverage.

Relative humidity
Relative humidity data from within the WEC were retrieved from Hissler et al. (2021) for 2012–2019.
These data were measured at the same locations and by the same four HMP 45 C probes (Vaisala
Oyj, Vantaa, Finland) as the temperature with a resolution of 15 minutes. Data from 2020–2022 were
obtained directly from LIST upon request and had an increased resolution of 5 minutes. As also done
for the temperature data, both datasets were combined into one merged dataset ranging from 2012–
2022. Afterwards, the resulting dataset was resampled to an hourly frequency by taking the hourly
mean values. Finally, a single time series was created by taking the mean values of all four locations.

Additionally, hourly relative humidity data were retrieved from ASTA (2025) from two nearby meteorolo-
gical stations (Roodt and Arsdorf) for 2012–2022. These are the same stations used for the temperature
data. However, data were not available for the Holtz station. Outliers in the data from the Roodt station
were removed.

Lastly, the relative humidity was calculated using the hourly 2 m dew point temperature and the already
obtained 2 m temperature, both from the same ERA5 reanalysis product. First, the saturated vapour
pressure es was calculated in kPa using the Clausius-Clapeyron equation (Koutsoyiannis, 2012), shown
below as Equation 2.1. Here, es is a function of temperature (T ) in °C. Afterwards, the actual vapour
pressure ea was calculated using the same equation but using the dew point temperature. Finally, the
relative humidity was calculated using Equation 2.2, where h is the relative humidity as a percentage.

es(T ) = 0.61exp
(

19.9T

T + 273

)
(2.1)

h =
ea(T )

es(T )
· 100% (2.2)

The resulting time series were compared. Local measurements in the WEC showed a high number
of hourly values where the relative humidity was 99% or higher (33%). For Arsdorf this was 19% and
for Roodt 12%. The ERA5 time series had the lowest percentage with 3% of the values being above
99% relative humidity. Furthermore, the relative humidity measured in Arsdorf often had a much higher
daily maximum value compared to the other time series, while the daily minimums were similar. It was
also noticed that the relative humidity measured in the WEC itself was often higher than that in the
other datasets, even when excluding values above 99%. This is possibly caused by the same thermal
insulating function of forests that affected the local temperature measurements (Renaud et al., 2011).

The Roodt and ERA5 datasets were selected to construct a continuous time series. The Arsdorf dataset
was excluded because of its deviation compared to the other data. Due to its high number of values
above 99% relative humidity and the suspected thermal insulating effect of the forest, data from the
WEC was also excluded.

The continuous relative humidity time series for 2012–2022 was constructed using the same hierarch-
ical gap-filling approach as used for the temperature. Again, direct observations (Roodt dataset) were
prioritized over modelled data (ERA5). Therefore, data from the Roodt station was chosen as the
primary dataset where gaps were filled using the ERA5 data.
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Incoming shortwave radiation
Incoming shortwave radiation (Rs) is the total solar radiation arriving at the Earth’s surface from the
sun and the sky. This includes both direct and diffuse shortwave radiation. Diffuse shortwave radiation
is sunlight that was scattered in the atmosphere before reaching the surface, while direct shortwave
radiation is sunlight that directly reaches the surface without scattering.

Rs can be expressed in two ways, namely irradiance and irradiation. Irradiance is the short-wave
radiation flux (radiant energy flow per unit time, e.g., inWm−2) and irradiation is the integral of irradiance
over a time period (typically an hour) and can be expressed in the unit Whm−2 (Page, 2012). In this
study, Rs is expressed as irradiance in Wm−2.

The first dataset was obtained directly from LIST upon request and had a resolution of 5 minutes. It
contained the incoming shortwave irradiance in Wm−2 for Roodt from 2018–2021. This data were
resampled to an hourly resolution by taking the hourly mean. In this dataset, only the last two years
(2020–2021) were actual measurements, measured using a CMP3 pyranometer (Kipp & Zonen B.V.,
Delft, The Netherlands). The first two years (2018–2019) were estimations based on sunshine duration
and showed an overestimation for this period compared to the datasets described below.

The second dataset contains hourly global shortwave irradiation (reported as Globalstrahlung) in
Whm−2 for 2012–2022. It was retrieved from ASTA (2025) for meteorological stations in Eschdorf,
Harlange and Useldange, which are the closest stations where this data were available. Measure-
ments at Harlange were available from early 2015 onwards. The data were converted to an hourly
mean irradiance in Wm−2. Data from Useldange and Eschdorf showed minimal seasonality between
2012 and early 2017, while showing strong seasonality afterwards. Data from Harlange showed the
expected seasonality.

The third dataset was the Surface solar radiation downwards dataset from the ERA5 reanalysis product
and was retrieved from Hersbach et al. (2023) via the Copernicus Climate Change Service (C3S) Cli-
mate Data Store for the WEC area. The dataset spans 2012–2022 and provides hourly values of solar
radiation accumulated over one hour, expressed in Jm−2. This data were converted to Wm−2.

From these datasets, the Roodt dataset was excluded from further usage because it contained two
different methods and the exact moment where the method was changed is unknown. Furthermore,
data from Eschdorf and Useldange between 2012 and February 2017 were excluded due to its lack of
seasonality.

Harlange, Eschdorf, and Useldange are located around the WEC at similar distances: 11 km North,
11 km North-East, and 14 km South-East, respectively. To approximate Rs at the WEC, the inverse
distance weighting method was applied (Equation 2.3). In this approach, the value at the target location
(Xo) is estimated as a weighted average of m surrounding observations (Xi), where the weights are
inversely proportional to the distance (ri) raised to the power n. A power of n = 1 corresponds to linear
inverse-distance weighting, which was used here. In cases of missing data from one or more stations,
only the available stations were included in the calculation.

Xo =

m∑
i=1

Xi

rni
m∑
i=1

1

rni

(2.3)

The continuous time series for Rs was created using the remaining data. In contrast to previous time
series, no hierarchical gap-filling approach was used due to the differences in temporal data availability.
Here, ERA5 data were used between 2012 and February 2015. From March 2015 until February 2017
data from Harlange were used. The remaining time span (March 2017 until December 2022) was filled
with data resulting from the inverse distance approach described above. Remaining gaps were filled
with ERA5 data.
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Soil volumetric water content
Soil volumetric water content (θ) in m3m−3 was retrieved from Hissler et al. (2021). This dataset con-
tained θ measurements from 7 locations (sites 7–13 in Figure 2.2b) at multiple depths using CS650
reflectometers (Campbell Scientific Ltd, Logan, UT, USA), with data recorded at 30-minute intervals.
At site 7, θ was measured at a depth of 10 cm from 2011 to 2019. At sites 8–13, θ was measured at
depths of 10, 20, 40 and 60 cm (θ10, θ20, θ40, θ60, respectively) from 2012 to 2019. A continuation of
this data for 2020–2022 was obtained directly from LIST upon request. Both datasets were combined
and resampled to an hourly resolution by taking the hourly mean, and outliers were removed. Because
θ reacts relatively slowly, especially at greater depths, and data gaps generally had a short time span
(order of days), gaps were filled using linear interpolation.

Per location, θ showed very similar temporal variation, with differences in baseline values between
depths. Generally, θ was higher at shallower depths and fluctuated more. At greater depths, θ was
more stable. The values were highest from autumn to spring and lowest during summer, when θ10 was
sometimes lower than at the other depths.

In general, the different locations also showed very similar temporal variation, again with differences in
the baselines. A potential explanation for this is the terrain, as the sites located at a lower altitude (e.g.,
site 9) were generally wetter than ones located further uphill (e.g., site 11). However, site 12 showed
the highest θ values while being located uphill, contradicting this hypothesis.

Because the absolute θ values varied considerably between locations, averaging across sites for a
given depth would neglect spatial variability and introduce bias. Instead, θ was spatially interpolated
for each time step and depth using squared inverse distance weighting to approximate catchment-
wide values (Equation 2.3 with n=2). Due to the spatial variability in slopes of the terrain, squared
inverse distance was chosen over its linear version to put more weight on the distance. This results in
continuous hourly time series for depths of 10, 20, 40, and 60 cm across the catchment.

Discharge
Discharge data were obtained in m3 s−1 at a 15-minute interval from Hissler et al. (2021). They were
measured using ISCO 4120 flow loggers (Teledyne ISCO, Lincoln, NE, USA) at multiple locations within
the WEC (sites 2, 3, 15 & 16, see Figure 2.2b). Recordings at site 2 ranged from September 2009 until
December 2019. For sites 3, 15, and 16 recordings ranged from September 2015 until December 2019.
A continuation of this data for 2020–2022 was obtained directly from LIST upon request. Both datasets
were combined and resampled to a daily resolution in m3 d−1 using daily means.

The CAMELS-LUX dataset (Catchment Attributes and MEteorology for Large-sample Studies – LUX-
embourg) (Nijzink et al., 2025) was used for additional discharge data, ranging from November 2004
until October 2021. This dataset wasmostly based on the same observation points as the data provided
by Hissler et al. (2021) and contained interpolations for periods of missing data. For details on the in-
terpolation methods, see Nijzink et al. (2025). The dataset had a 15-minute temporal resolution and
was available in m3 s−1. It was resampled to a daily resolution in m3 d−1 by taking the daily mean.

It was noticed that discharge had a higher base flow and peaks during November–April, with May–
October showing a low base flow with occasional higher peak flows, depending on the year. This was
in line with the seasonality described previously in the study area description (Section 2.1).

The two discharge datasets were combined into a single continuous time series. Observations from
Hissler et al. (2021) and LIST were used as the primary data, with gaps filled using information from
Nijzink et al. (2025). The resulting continuous time series was converted from m3 d−1 to specific dis-
charge in mmd−1 using the catchment area (0.45 km2).

Precipitation
Precipitation data were obtained from Hissler et al. (2021) which were measured in Holtz between 2009
and 2019 in mm using an OTT Pluvio2 L weighing precipitation gauge (OTT HydroMet GmbH, Kempten,
Germany). The temporal resolution between 2009–2015 was 15 minutes, which was increased to 10
minutes between 2016 and 2019. Data from 2020–2022 were obtained directly from LIST upon request
and had a reduced resolution of 15 minutes. Outliers were removed and both sets were resampled to
a daily resolution by taking daily sums.
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Additional precipitation data for Holtz were retrieved from ASTA (2025) which was available from 2015
onwards. The hourly data were resampled to daily total precipitation by taking the daily sum.

Both datasets showed similar precipitation patterns. Monthly precipitation was generally higher during
winter than during summer, although the seasonal contrast was less pronounced than for discharge,
as precipitation occurred throughout the year.

These datasets were combined into one continuous time series, where data obtained from Hissler et al.
(2021) and LIST were used as the primary dataset. Gaps were filled using data for Holtz retrieved from
ASTA (2025), resulting in a continuous daily time series from 2012–2022 in mmday−1.

Potential evaporation
Numerous methods exist to estimate potential evaporation, and several studies have compared their
performance across contexts (Oudin et al., 2005; Tanguy et al., 2018). A widely used method is the
Penman-Monteith equation (Monteith, 1965) because of its physically-based mechanism. However, it
has a high information requirement and is sensitive to errors in the input data. Furthermore, Zhao et al.
(2013) compared different studies that analysed the sensitivity of several conceptual hydrological mod-
els and found that temperature-based methods often improved the models’ performances compared
to the Penman-Monteith method. For this reason, an alternative method was chosen.

Hamon (1961) developed a method based on mean air temperature and hours of daylight for a given
day to calculate the potential evaporation. Two years later, this method was slightly updated by Hamon
(1963), see Equation 2.4. The hours of daylight can be calculated, making the mean daily temperature
its only variable. This method was chosen because Oudin et al. (2005) showed that it performs well
for different conceptual models. Additionally, it was also used by Fenicia et al. (2008) to estimate the
potential evaporation as input for their conceptual model of the Alzette river basin, of which the WEC
is a sub-catchment, further supporting this choice.

Although a function of T , the calculation of Ep using Hamon involves several steps. The main equation
is shown below as Equation 2.4. Here, the hours of daylight (N ) and the saturated water vapour density
(ρvs) have to be calculated.

The daily total potential evaporation was calculated in mmday−1 using the daily mean temperature from
the continuous temperature time series.

Ep = cNρvs (2.4)
where:
Ep Potential evaporation [mmd−1]
c Constant (= 0.1651) [−]
N Hours of daylight [h]
ρvs Saturated water vapour density [gm−3]

The hours of daylight (N ) were calculated using Equations 2.5–2.7. Here, Equations 2.5 and 2.6 were
according to Allen et al. (1998), and Equation 2.7 according to Hodges and Ritchie (1991).

N =
24

π
ωs (2.5)

ωs = arccos (− tan (ϕ) tan (δ)) (2.6)

δ = 0.409 sin
(

2π

365
J − 1.39

)
(2.7)

where:
N Hours of daylight [h]
ωs Sunset hour angle [rad]
ϕ Latitude (= 49.8 for WEC) [rad]
δ Solar decimation [rad]
J Day of the year [−]
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The saturated water vapour density ρvs was calculated using Equation 2.8 (Wiederhold, 2012).
Here, the saturation vapour pressure es was calculated using Equation 2.1.

ρvs =
216.7es

T + 273.16
(2.8)

where:
ρvs Saturation vapour density [gm−3]
es Saturation vapour pressure [kPa]
T Temperature [°C]

2.2.2. Vegetation data
In addition to hydro-meteorological and soil data, data on vegetation water use were also obtained.
These variables provide insights into the role of trees in catchment-scale water fluxes and are essential
for linking phenology with hydrological processes. They include sap flow velocity and transpiration.

Sap flow
The dataset used for sap flow velocity was retrieved from Klaus et al. (2024). This dataset contained
the dasometric data of monitored trees, hourly sap flow velocity (cmh−1), and tree surveys carried out in
the WEC. In total, 36 trees were monitored during the 2019 and 2020 growing seasons. This included
3 Douglas Fir, 6 spruce, 13 oak, and 14 beech (36 trees in total). The tree locations are shown in
Figure 2.1b.

The sap velocities were determined based on the heat ratio method (HRM) using SFM1 sap flow
sensors (ICT International Pty Ltd, Armidale, NSW, Australia). The sensors consist of a central heating
needle and two needles with thermistors to record the temperature upstream and downstream of the
heater. The needles were positioned in a straight line vertically above each other with 0.5 cm spacing.
The sensors were installed at breast-height (1.3 m above the ground). Further technical details of the
sensors and the sap velocity calculations can be found in Fabiani et al. (2022) and Schoppach et al.
(2021).

The sap flow velocity time series had an hourly resolution, and outliers were removed. Most series
started in April–May 2019 and continued until December 2019, while in 2020, they generally ran from
May to November, with some series missing for certain trees. Many time series also contained gaps
ranging from days to months. A more detailed overview of start and end dates, as well as gaps, is
provided in Appendix A, Table A.1.

Noticeable were the data gaps in most time series, especially during 2019. Furthermore, significant
differences in sap flow velocity were noticed between 2019 and 2020 for a few trees. While some trees
showed a strong increase in sap flow velocity (e.g. beech tree B2, see Figure 2.3), others showed a
strong decrease. This was likely due to recalibration or replacement of measurement probes.

It was also noticed that the beech trees generally had a higher sap flow velocity than the other tree
species. Furthermore, deciduous trees showed lower values early in the growing season, increasing
over time with their maximum in July. Afterwards, the sap flow velocity started to decrease again.
Some coniferous trees showed a similar temporal pattern but already had a higher rate at the start of
the growing season.

The sap flow velocity (vsf) of trees is influenced by tree-specific characteristics such as sapwood area.
Larger trees often have a higher vsf than smaller ones, and rates may also vary between tree species.
These differences between trees complicated direct comparison. As described above, inspection of
the data revealed that vsf values for the same tree could differ substantially between years, likely due
to recalibration or replacement of measurement probes.

To account for these inconsistencies, and to facilitate the analysis of vsf responses to environmental
conditions—as well as comparisons between individual trees and species—the vsf time series were
normalised per year using min-max scaling to a range between 0 and 1 (Equation 2.9). This approach
has also been employed in related studies (Fabiani et al., 2022; Wang et al., 2020).
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Figure 2.3: Sap flow velocity example plot: the sap flow velocity for tree B2 (beech) for 2019 and 2020.

Xn,y =
Xy −Xmin,y

Xmax,y −Xmin,y
(2.9)

where:
Xn,y Normalised values in year y
Xy Original values in year y
Xmin,y Minimum value in year y
Xmax,y Maximum value in year y

This normalisation approach assumed that both the minimum and maximum possible sap flow velo-
cities occurred within each year’s selection of data for each tree. For the minimum value, this was a
reasonable assumption as the lowest value would be 0 cmh−1, which was commonly observed in the
dataset. The maximum, however, was less likely to be captured consistently within each year, espe-
cially as the data contains gaps for some trees. The real physiological maximum vsf only occurs under
ideal conditions, which were not likely to occur every year.

This first assumption was justified based on practical constraints and the goal of enabling comparisons
of vsf dynamics between different trees. Although the maximum possible rate may not have been ob-
served each year, the scaled sap flow (vsf,n) still captured the shape and timing, which were considered
to be the most important properties for further analysis.

A second assumption was that each tree’s vsf response remained comparable under similar environ-
mental conditions across both years. This assumption may not always hold, as trees grow over time,
increasing their sapwood area and potential maximum sap flow. Other factors such as disease or
physical damage can also alter their vsf capacity.

The second assumption was primarily justified based on practical constraints. Moreover, since the vsf
dataset only spans 2 years, no significant changes in tree sizes were expected. Additionally, scaling
was applied separately for each year, which helped to minimize the influence of gradual physiological
changes. By normalising per year, the focus was on relative dynamics within each year, rather than on
the absolute difference across years.

Transpiration
Transpiration data were obtained from the NASA Global Land Data Assimilation System (GLDAS, (Li
et al., 2020)) for the WEC area between 2012 and 2022. GLDAS used satellite and ground-based
observational data (data assimilation) and land surface models to simulate processes like water and
energy exchange between land and the atmosphere. It had global coverage at a high resolution of
0.25°.

GLDAS-2 has three sub-versions. Here, version 2.0 uses only meteorological fording data and covers
1948–2014. Version 2.1 combines model and observational data, starting in 2000. Version 2.2 utilizes
data assimilation: the total terrestrial water anomaly observation from Gravity Recovery and Climate
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Experiment (GRACE) was assimilated (Li et al., 2019). This study used version 2.2 because of the
inclusion of data assimilation. For more detailed information about the working of GLDAS-2.2, see Li
et al. (2020).

The obtained transpiration data had an hourly temporal resolution in kgm−2 s−1. This was converted to
mmd−1, assuming the density of water to be 1000 kgm3.

The data showed strong seasonality, with Et being near zero between November and March. Most
years, Et started to increase between the middle and end of March and went to zero between October
and November. Furthermore, it showed a strong fluctuation between April and October with sharp
peaks.

The transpiration data had already been converted to mmd−1. Furthermore, the dataset contained no
gaps and had a daily resolution. Therefore, no additional processing was required for future usage.

2.3. Conventional FLEX model
There are many different conceptual hydrological models with various levels of complexity. For this
research, the catchment was modelled using the base structure of the FLEXI (Flux Exchange) model
described by Fenicia et al. (2008), which was based on Fenicia et al. (2006). The base structure is
explained below in Section 2.3.1.

This research made a distinction between deciduous and coniferous trees in the catchment based on
their different phenology (see 2.4.1 Tree categorisation). For this reason, the lumped model structure
was reconfigured into a semi-distributed framework. This is explained in Section 2.3.2.

This semi-distributed model served as a reference model, showing how a conventional model structure
behaves when phenology is not included. This made it possible to evaluate the influence of pheno-
logy inclusion in the modified models (see Section 2.4). It should be mentioned that this model was
influenced more by vegetation coverage than the original (lumped) model because the semi-distributed
structure was based on vegetation cover. However, phenology was still not accounted for, as the ve-
getation parameters were constant over time. Thus, the model was considered to serve sufficiently
well as a reference model.

It was chosen to not use a lumped model of the catchment as a reference because the process of
modifying it from lumped to semi-distributed may also influence the outcomes, limiting the analysis of
the phenology integration influence itself.

The model was run at daily time steps. This was preferred over hourly steps, as it reduces the total
number of steps by a factor of 24, resulting in a much faster runtime. Reducing runtime is particularly
important for the calibration method used (see Section 2.5 Model calibration).

The model took precipitation (P ) and potential evaporation (Ep) in mmd−1 as input and simulated the
discharge (Q) in mmd−1.

2.3.1. Base structure
The FLEXI (Flux Exchange) model described by Fenicia et al. (2008) is a lumped conceptual model that
is composed of four interconnected reservoirs which indicate various water storages and their scales.
These reservoirs are the interception reservoir (IR), the unsaturated soil reservoir (UR), the fast reacting
reservoir (FR), and the slow reacting reservoir (SR).

Interception reservoir
The interception reservoir IR takes interception processes into account. Precipitation first runs through
this reservoir. The storage of IR is referred to as Si with a maximum capacity of Imax in mm, which value
needs to be determined through calibration. After the precipitation P is added to Si and Si reaches Imax,
excess precipitation results in throughfall Ptf (Equation 2.10). During periods of no precipitation, water
evaporates from Si at a rate that is either limited by Ep or Si (Equation 2.11).

Ptf =

{
0 if Si ≤ Imax

Si − Imax if Si > Imax
(2.10)
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Ei =

{
0 if P > 0

min [Si, Ep] if P = 0
(2.11)

Unsaturated reservoir
To determine the flow into UR, throughfall is partitioned into various components using an effective
runoff coefficient Cr. This coefficient is expressed as a S-shaped function (Equation 2.12) that depends
on the ratio between current storage of UR (Su) and its maximum storage (Su,max), and where β is a
shape factor (Figure 2.4). Values of both Su,max and β are determined through calibration. The part of
Ptf that infiltrates into UR (recharge of UR: Rur) is determined by Equation 2.13. When UR is filled to
capacity, the excess water is routed to FR.

Cr =
1

1 + exp
(
−Su/Su,max + 0.5

β

) (2.12)

Ru = (1− Cr) · Ptf (2.13)
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Figure 2.4: The relationship between the effective runoff coefficient (Cr) and relative soil moisture
(Su/Su,max) for different values of shape parameter β.

There are two outflows for UR. The first one is percolation Ps, which is modelled as a linear function of
the relative soil moisture (Equation 2.14) and is routed to SR. The maximum percolation rate (Ps,max)
is found through calibration.

Ps =

(
Su

Su,max

)
· Ps,max (2.14)

The second outflow is transpiration (Et). In Fenicia et al. (2008), Et was modelled using Equation 2.15,
regarding Et to be independent of Ei. Here, Ce represents the limit of Su relative to Su,max below which
vegetation experiences water stress. When Su is above Su,max · Ce, soil moisture is not limiting and
transpiration can occur at the rate of potential evaporation. The value of Ce is determined by calibration.

Et = min
[
1,

Su
Su,max · Ce

]
· Ep (2.15)
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Fast and slow reacting reservoir
The remaining part of Ptf that did not infiltrate is partitioned into preferential recharge Rsr to SR and
runoff Rfr routed to FR. This is done using a runoff partitioning coefficientD, resulting in Equations 2.16
and 2.17.

Rsr = (Ptf −Rur) ·D (2.16)

Rfr = (Ptf −Rur) · (1−D) (2.17)

Originally, the FLEXI model by Fenicia et al. (2008) included two lag functions, one for each reservoir.
This introduced two additional parameters that required calibration, increasing the model’s equifinality
issue. Considering the daily time steps of the model and the small size of the WEC (0.45 km2), it was
therefore decided not to include time lags.

Both SR and FR are modelled as linear reservoirs, meaning their discharge is linearly related to their
storage (Ss and Sf, respectively). This is done using Equations 2.18 and 2.19 whereKs andKf are the
timescales of the slow and fast reservoirs respectively. A summation of the slow discharge Qs and fast
discharge Qf results in the total modelled (or simulated) discharge Qm (Equation 2.20).

Qs =
Ss
Ks

(2.18)

Qf =
Sf
Kf

(2.19)

Qm = Qs +Qf (2.20)

2.3.2. Model coupling
The original model described by Fenicia et al. (2008) is a lumped model. As described in Section 2.1
(Study area), the WEC consists of a forest subdivided into deciduous and coniferous parts. This dis-
tinction is important because the study focuses on integrating phenology, and these tree categories
exhibit different phenological behaviour. For this reason, the original model was modified into a semi-
distributed model. The multiple coniferous stands across the catchment were combined into a single
lumped coniferous component (see Section 2.4 for details).

The semi-distributed model had a parallel structure based on the FLEXT model by Gao et al. (2014).
Two lumped models were run in parallel, except for the slow reservoir (SR), which was considered
to be shared. Consequently, both parts of the model shared the same structure and equations but
with differences in parameter values to allow for vegetation specific differences. The resulting model
structure is shown in Figure 2.5.

Qm = Qs +Qf (2.21)

The lumped model has eight parameters that need to be determined by calibration. Using the structure
suggested above for the semi-distributed model, this would have resulted in a total of fifteen parameters
to calibrate (Ks was shared). Increasing the number of calibration parameters increases the issue of
equifinality and calibration complexity.

Most of these parameters were not (strongly) dependent on vegetation type but were mainly soil or
terrain characteristics. Because of the small size of the catchment and because coniferous stands were
located across the catchment, these parameters were considered to be catchment-wide parameters
which did not depend on the vegetation category. Therefore, only Imax and Ce were defined as specific
to vegetation. This reduced the total of parameters to ten.

Imax was considered to be vegetation specific because of the difference in leaves and canopy structure
between deciduous and coniferous trees. Ce influenced when and how much Et was limited by soil
moisture, which depended on the vegetation and could have been influenced by multiple factors (e.g.,
root depth, maximum transpiration rate).

Hereafter, the coupled semi-distributed model described above is referred to as the conventional model.
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Figure 2.5: Semi-distributed structure of the conventional model. Deciduous and coniferous sub-
catchments each use the same lumped model structure with partially differing parameters, sharing
a single slow reservoir. Total discharge is calculated as the sum of the two fast discharges and the
shared slow discharge.

2.4. Phenology inclusion
The conventional model described in Section 2.3 did not include phenological dynamics. It had a semi-
distributed structure based on tree category (deciduous/coniferous). The reasoning behind this is first
described in Section 2.4.1.

To include phenology, three methods were designed. The first one involved using normalised sap flow
data, replacing the relative soil moisture factor used in the transpiration equation (Equation 2.15). This
is explained in Section 2.4.2. The second method used the growing degree-day as an indication of
the annual development stages of deciduous trees, which was used to dynamically partition potential
evaporation Ep in interception evaporation Ei and transpiration Et. This is explained in Section 2.4.3.
Finally, the third method combined the sap flow and dynamic partitioning methods and is explained in
Section 2.4.4.

2.4.1. Tree categorisation
As described in Section 2.1 Study area, there are four main tree species (beech, oak, Douglas fir and
spruce). Although both deciduous trees, beech and oak trees each have their own water use strategy.
Fabiani et al. (2022) found that the beech trees in the WEC exploit a shallower and seasonally less
persistent water source than oak trees. This was attributed to the shallower root system of beech trees
compared to the oaks. However, because the beech and oak are completely mixed, no clear distinction
could be made in terms of modelling. Therefore, the mixed beech and oak forest was lumped into one
deciduous forest.

Douglas fir and spruce trees were lumped into a single conifer category due to the limited number
of trees with sap flow measurements (3 Douglas fir and 6 spruce), compared to the deciduous trees
(14 beech and 13 oak). Although Douglas fir and spruce may differ in phenology, root structure, and
water-use strategies, their physiological contrast with deciduous trees is likely to be more influential,
as suggested by Schoppach et al. (2021). Furthermore, coniferous trees accounted for 24% of the
catchment area. Dividing them into separate categories would likely result in minimal influence of each
species on the catchment’s total discharge.

As described above, the model was divided into two vegetation categories (deciduous and coniferous)
to capture key phenological differences, while avoiding an overly detailed representation that would
have been impractical given the available data and likely minimal influence on catchment-scale results.
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2.4.2. Sap flow method
As described in the introduction (Section 1.1.2), transpiration is closely linked to photosynthesis. Pho-
tosynthesis requires the stomata to open for CO2-uptake, during which water is lost via transpiration.
To compensate for this loss, water is transported via the xylem from the roots to the canopy, resulting
in a sap flow. In this study, sap flow velocity—the speed of sap movement in the xylem—is hereafter
referred to simply as sap flow (SF or vsf) for brevity, except where the full term is needed for clarity.
This means that transpiration and sap flow are positively correlated: when transpiration is high, the sap
flow will also be high (Köstner et al., 1992). For this reason, transpiration and sap flow have the same
general pattern.

Under the same atmospheric conditions, different trees can have different sap flow velocities. For
example, the diameter at breast height, landscape characteristics have been identified as drivers for
tree-to-tree variability (Fabiani et al., 2022; Schoppach et al., 2021). Schoppach et al. (2021) also found
indications that larger oaks accessed deeper water sources than the smaller ones. This complicates
the upscaling of sap-flow data from individual trees to stand- or even catchment-scale.

The conventional hydrological model used relative soil moisture and potential evaporation to calculate
transpiration (Equation 2.15). In this formulation, Et equalled Ep under non-water-stressed conditions,
since Ep was multiplied by one (i.e. stomatal resistance is neglected). This meant that Et occurred
at its maximum rate. When no soil moisture was available for vegetation, Ep was multiplied with a
(near-)zero value, resulting in Et that was also (near-)zero. In this first method of phenology inclusion,
it was hypothesised that the normalised sap flow velocity (vsf,n) could be used as a replacement of the
factor that is multiplied with Ep.

The sap flow was scaled between 0–1 using Equation 2.9, resulting in vsf,n. So, the maximum sap flow
value was converted to 1. Normalisation was applied separately for each year, assuming that the true
maximum vsf occurred within that year. While this assumption may not always hold, it helped account
for physiological changes in trees. For example, the maximum vsf increase when trees grow larger. If
one would normalise over a time series spanning multiple years, the maximum rate would have never
been reached in the early years because the tree itself was smaller. Another scenario could be that
a tree was damaged, reducing its maximum vsf. By applying normalisation per year, these changes
affected the other years in the time series to a lesser extent, as the scaling adapted to the new situation
(i.e., new maximum rate).

Next to physiological changes to the trees themselves, inconsistencies were observed in the meas-
urement of vsf. Dix and Aubrey (2021) found that most tree sap flow publications did not apply or use
calibration, reducing the accuracy of these estimates. Therefore, the actual values of these meas-
urements may be inaccurate, but by normalising vsf, the general response dynamics to a changing
environment were still usable.

Another benefit of using vsf,n over vsf was the possibility to compare and use data from different trees
simultaneously. Because vsf is strongly influenced by the characteristics of the trees themselves, such
as its size, it is difficult to upscale. Taking the mean vsf of multiple trees per time step does not ne-
cessarily reflect the mean vsf over the catchment. However, it is likely that vsf of multiple trees shows
the same relative response, meaning it increases and decreases at the same moments when better or
worse conditions present themselves. In other words, they show the same response but not in absolute
values. By normalising vsf to vsf,n, the response in vsf of different trees to environmental changes could
be compared in order to upscale to catchment size.

Coniferous and deciduous trees showed different transpiration rates during a year. As explained in the
Introduction (Section 1.1.2), and also observed in Section 2.2.2, coniferous trees had a higher Et at
the start of the growing season, as deciduous trees were still developing their leaves during this time.
Therefore, both categories each had their own vsf,n input.

To implement this inclusion of vsf,n in the conventional model, only the transpiration equation (Equa-
tion 2.15) was modified. The term related to the relative soil moisture was replaced by vsf,n. Here, vsf,n
was the vsf,n of the corresponding part of the model (deciduous/coniferous).

Et = vsf,n · Ep (2.22)
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Due to the modification, this model required two vsf time series as forcing data, one deciduous and
one coniferous, in addition to the standard precipitation and potential evaporation forcing. Additionally,
the vegetation specific calibration parameter Ce was removed, reducing the total number of calibration
parameters from ten to eight.

Hereafter, this method is referred to as the SF method.

2.4.3. Evaporation partitioning method
Deciduous trees have a strong seasonality. They start the year with no leaves. During the spring, when
temperatures rise, they come out of dormancy and begin developing their leaves. There is a substantial
variation in timing for budburst and leaf-out within and between tree species, but the leaf development
of most temperate trees is highly sensitive to temperature (Polgar and Primack, 2011). These events
generally occur earlier during warmer years than during cooler years, making accumulated temperature
a useful indicator to predict the timing of these events.

Accumulated growing degree-days
The growing degree-days (TGDD) method is frequently used to estimate and describe the timing of
biological processes such as leaf development. It is more accurate than counting calendar days due
to the strong influence of temperature. TGDD is usually calculated using Equation 2.23. Here, Tmax is
the daily maximum air temperature, Tmin the daily minimum air temperature and Tbase the threshold
temperature below which the biological processes do not progress (McMaster and Wilhelm, 1997), in
this case leaf development. The value of Tbase is species specific. For beech and oak, a value of 5 °C
is often used (Fu et al., 2019).

TGDD,avg =

(
Tmax + Tmin

2

)
− Tbase (2.23)

Equation 2.23 uses the daily minimum and maximum temperatures to assess whether the temperature
exceeded the threshold, and thus whether leaf development occurred. If the minimum temperature
is low enough, no development would be expected, while it is possible that temperatures during the
afternoon exceeded Tbase. Therefore, in this study a slightly modified version of Equation 2.23 was
used.

Here, TGDD was calculated using an hourly integration approach, comparing the hourly temperature
measurement Ti with Tbase. For each hour, the temperature difference ∆T = Ti −Tbase was computed.
Negative values were excluded, as temperatures below the threshold do not contribute to leaf develop-
ment. The daily TGDD value was then obtained by summing all positive ∆T values and dividing by 24,
converting the units from [°Ch] to [°C d]. This procedure is equivalent to a Riemann sum approximation
of the continuous-time integral. The resulting equation is shown below as Equation 2.24.

TGDD =
1

24

24∑
i=1

max [0, Ti − Tbase] (2.24)

Using an hourly time scale to calculate TGDD results in different outcomes compared to the daily scale
from the original method. This is especially true when the minimum temperature is below Tbase, as
shown in Figure 2.6. When the daily minimum temperature is above Tbase, both methods show similar
results.

Accumulated TGDD (TCGDD) is the summation of TGDD over time, starting from 1 January. It can serve
as a proxy for the timing of certain stages in plant development, such as the budburst and leaf-out
of deciduous trees (Crimmins and Crimmins, 2019). There are no exact TCGDD values at which these
events occur, as they are also influenced by other factors (e.g., the chilling requirement, where a warmer
winter can delay the start of development (Dantec et al., 2014)). Furthermore, TCGDD thresholds are
species-specific.

For the reasons mentioned above, this study did not define specific TCGDD thresholds for the start of
different stages in tree development. Instead, the general S-shaped pattern of TCGDD was used. At the
start of the year, TGDD accumulation was low due to cold temperatures. As temperatures rose, TGDD
increasedmore rapidly, producing a steeper slope of TCGDD (higher first derivative). The rate of increase
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(a) Daily average TGDD: 0.36 °C day
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(b) Hourly integrated TGDD: 1.61 °C day
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Figure 2.6: Visualisation of two different methods to determine Growing Degree-Days (GDD). (a) The
original method using an daily average. (b) The Hourly GDD method used in this study.

then decreased (second derivative decreased), which was assumed to correspond approximately to
full leaf development. Midway through the summer, temperatures began to decline, reducing TGDD and
flattening the slope of the TCGDD curve. The peak of the first derivative was considered the tipping point,
and the subsequent minimum of the second derivative marked the approximate end of the growing
season, after which vegetation activity, such as transpiration, slowed.

The TCGDD over the year has a shape similar to a logistic curve, a common sigmoid function (Equa-
tion 2.25) with an analytical solution. Therefore, observed temperature can be used to calculate TGDD,
which in turn can be used to compute TCGDD, onto which a scaled sigmoid function can be fitted. As
a result, the first and second derivatives can be determined analytically (Equations 2.26 and 2.27), as
shown in Figure 2.8. This allows an explicit definition of the tipping points described above based on
the local minima and maxima of the first and/or second derivative.

f(t) =
L

1 + e−k(t−t0)
(2.25)

df
dt

(t) =
Lke−k(t−t0)(
1 + e−k(t−t0)

)2 (2.26)

d2f
dt2

(t) = − Lk2e−k(t−t0)(
1 + e−k(t−t0)

)2 +
2Lk2e−2k(t−t0)(
1 + e−k(t−t0)

)3 (2.27)

where:
f(t) Logistic function (TCGDD curve) [°C d]
L Maximum value (scaling parameter) [°C d]
k Steepness of the curve [d−1]
T Time [d]
t0 T -value of the function’s midpoint [d]

During a warm year, the fitted function has a higher value for L, a lower value for k, and a smaller t0,
resulting in an earlier start and a longer growing season. In cooler years, the opposite occurs.

Partitioning factor Kv
The Food and Agriculture Organization (FAO) has presented guidelines to calculate the crop evapora-
tion (Et,c) where a reference crop evaporation (Et,0) is multiplied with a crop coefficient Kc, shown in
Equation 2.28 (Allen et al., 1998). Here, Et,0 is the atmospheric water demand for a reference crop and
therefore similar to Ep. The FAO refers to this method as the single crop coefficient approach.



2.4. Phenology inclusion 21

Et,c = Kc · Et,0 (2.28)

By using a Kc that depends on vegetation cover, Et,0 can be used to determine the transpiration of a
different crop, asKc is crop specific. The value ofKc also changes over time, depending on the growing
stage of a crop. Early in the season,Kc will be low as the crop is still small and other evaporation terms
will be dominant. Mid-season, transpiration is higher as the crops are larger, increasing its relative
importance compared to other evaporation terms. This is shown in Figure 2.7.

Figure 2.7: The FAO generalised crop coefficient (Kc) curve for the single crop coefficient approach
(Source: Allen et al. (1998)).

Mert (2021) and Pierik (2022) modified this approach by using the leaf area index (LAI) as an indication
for the growing stages of vegetation in a catchment. The values of Kc for different growing stages
were determined through model calibration. Next, Kc was used to partition Ep between Ei and Et. To
do so, Ep was replaced by [(1−Kc(t)) · Ep] in Equation 2.11. In Equation 2.15, Ep was replaced by
[Kc(t) · Ep].

One downside of using LAI is the limited spatial and temporal resolution, as it is usually determined
using remote sensing. Because the WEC is small and the coniferous stands are located within the
deciduous forest, it is not possible to reliably obtain LAI data for the tree categories separately.

Therefore, instead of LAI, the TCGDD curve was used to approximate the growing stages. The cor-
responding values of each growing stage, previously defined as Kc, was replaced by Kv for clarity,
indicating vegetation instead of crops. The shape of the first derivative of TCGDD was used for the
shape of the Kv curve.

Instead of using a constant value during the initial stage and a linear interpolation during crop devel-
opment, the initial and crop development stages were combined into a single developing stage. The
first derivative of TCGDD defined the shape of this stage. Although it technically started at 1 January
with zero, the curve remained near zero until temperatures began to rise, at which point TGDD and
consequently the TCGDD slope increased. The mid-season stage began when the second derivative of
TCGDD reached its maximum, represented by a plateau. This was assumed to correspond to full leaf
development in deciduous trees, resulting in the maximum Kv. After this point, the mid-season ended,
and theKv curve decreased following the shape of the first derivative of TCGDD, approaching near zero.

Next, the Kv curve was normalised for each year, scaling it between 0 and 1 using Equation 2.9. The
resulting curve is the normalised Kv shape function, which is shown in Figure 2.8.

The actual Kv values (Kv,a) were determined using Equation 2.29. Here, Kv,max is the maximum Kv
value that was reached during the mid-season and was obtained through calibration. This allowed Kv
to be transformed into Kv,a without changing the seasonality shape.
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Figure 2.8: Overview of the functions used to derive the normalised Kv shape function. (a) Fitted logistic
function on the TCGDD curve. Its first derivative is shown in (b) First derivative of the logistic function.
(c) Second derivative of the logistic function. (d) Normalised Kv shape function.

The method described above was only applied for deciduous trees as they have a strong seasonality
due to their annual phenological cycle of growing and shedding leaves. Coniferous trees also have an
annual phenological cycle, but its influence on Et is weaker because they do not shed their needles
or enter full dormancy like deciduous species. For this reason, this method strongly simplified the
coniferous seasonality by assigning a constant Kv during the year. Kv,a was determined in the same
way as for deciduous trees, using Equation 2.29 with its own Kv,max and constant Kv.

Kv,a = Kv ·Kv,max (2.29)

Finally, Kv,a was implemented similarly to the approaches of Mert (2021) and Pierik (2022). Equa-
tions 2.30 and 2.31 show the modified functions for Ei and Et, which were incorporated into the con-
ventional model. This method required one additional forcing time series (Kv) and two extra calibration
parameters (Kv,max), one for each tree category, resulting in a total of 12 calibration parameters.

Hereafter, this method is referred to as the Kv method.

Ei =

{
0 if P > 0

min [Si, (1−Kv,a) · Ep] if P = 0
(2.30)

Et = min
[
1,

Su
Su,max · Ce

]
· (Kv,a · Ep) (2.31)
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2.4.4. Combined method
The third method to include phenology into the conceptual model was a combination of the SF method
and Kv method. In summary, the SF method used vsf,n to replace the relative soil moisture factor in
the original Et equation (Equation 2.15) in order to represent the transpiration more accurately, directly
using sap flow dynamics. In the Kv method, Kv(t) was used to partition the availability of Ep between
Ei and Et, indirectly using sap flow dynamics. It used TCGDD to approximate the growing stages and
corresponding vegetation coefficientKv. At the start of the year,Kv was low, resulting in a small fraction
of Ep being allocated to Et, as Ei was dominant. During mid-season, Et was more dominant, requiring
a larger fraction of Ep, resulting in a lower Ei.

These methods worked at different parts of the equations for a different reasoning. The third method,
referred to as the Combined method, integrates both approaches. Both vsf,n and Kv represent season-
ality by multiplying Ep by a factor between 0 and 1. Applying both directly would overly restrict Ep, as
multiplying two values between 0 and 1 produces an even smaller result. To avoid this, the mean value
of Kv and vsf,n was used. The modified equations are shown in Equations 2.32 and 2.33.

Ei =

0 if P > 0

min
[
Si,

(
1− vsf,n +Kv,a

2

)
· Ep

]
if P = 0

(2.32)

Et =

(
vsf,n +Kv,a

2

)
· Ep (2.33)

The combined method had ten calibration parameters, the same number as the conventional model.
The original vegetation specific calibration parameter Ce was replaced by Kv,max, where both were
defined per tree category (deciduous/coniferous).

2.5. Model calibration
Conceptual models usually contain parameters whose values need to be obtained during calibration.
In this case, calibration is the process of adjusting the calibration parameters in order to align the model
outcomesmore closely with observed outcomes or real-world data. This is often done by using objective
functions to assess the performance of the model, where the outcome of the objective function must
be maximised or minimised, depending on its formulation. Instead of using one objective function, it
is also possible to use multiple functions, called multi-objective calibration (also called multi-objective
optimization).

2.5.1. Objective function
A widely used method to assess model performance in hydrology is the Nash-Sutcliffe efficiency metric
(NSE, or NNSE), introduced by Nash and Sutcliffe (1970). It quantifies the degree to which the simu-
lated discharge from the model (Qm) matches the observed discharge (Qo) using the mean observed
discharges (Qo) as shown in Equation 2.34. The NSE ranges from −∞ to 1, with 1 indicating a perfect
match, 0 indicating that the model performs no better than using the mean observed discharge, and
values below 0 indicating performance worse than the mean. According to Ritter and Muñoz-Carpena
(2013), values between 0.65 and 0.8 indicate acceptable performance, 0.8–0.9 good performance, and
0.9–1.0 very good performance.

NNSE = 1−
∑n

i=1 (Qo,i −Qm,i)
2∑n

i=1

(
Qo,i −Qo

)2 (2.34)

The NSE is highly sensitive to large deviations and consequently strongly influenced by high peaks.
Therefore, using only NSE during calibration results in a model that is mainly fitted to peak flows, pos-
sibly resulting in a model that has problems predicting low flows. The logarithmic version of NNSE
(logNSE, orNlogNSE) applies a natural logarithm transformation on both observed and simulated values
prior to calculating the model performance. This reduces the influence of peak flows, increasing the
model’s accuracy for low flow. Due to the usage of a logarithm, input values should be positive.

Discharge observations showed that the WEC had a low flow during the summer with occasional peak
flows. Discharge was higher during winter with more peak flows. Due to the occurrence of both high
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and low flows, both NNSE and NlogNSE were used in a multi-objective function during calibration.

A third metric was included in the objective function to assess how well the model partitioned precipita-
tion in runoff and evaporation. The monthly runoff coefficient (Cmr) expressed the fraction of precipita-
tion that results in discharge (Equation 2.35). The remaining part of the precipitation either evaporated
or resulted in storage change. The NSE was computed using the observed and simulated monthly Cmr
values, providing a measure of the model’s ability to reproduce the temporal variability in precipitation-
runoff partitioning. High NNSE,Cmr values indicated that the model accurately represented the seasonal
distribution of precipitation into discharge versus evaporation and storage changes, independent of the
absolute magnitude of precipitation.

Cmr =
Q

P
(2.35)

The multi-objective function was calculated using the Euclidean distance in a three-dimensional per-
formance space, using NNSE,Q, NlogNSE,Q and NNSE,Cmr . Using these three performance indicators as-
sesses the model on peak flow, low flow and seasonal precipitation-runoff partitioning performance
simultaneously. In order to minimise the multi-objective function, each individual metric was subtrac-
ted from 1, resulting in the multi-objective function Fobj shown in Equation 2.36.

Fobj =

√
(1−NNSE,Q)

2
+

(
1−NlogNSE,Q

)2
+ (1−NNSE,Cmr)

2 (2.36)

2.5.2. Calibration procedure
Model calibration was performed using a Monte Carlo simulation approach. For each calibration para-
meter, a realistic range of values was defined. During each Monte Carlo iteration, a random value for
each parameter was drawn from a uniform distribution within its predefined range using a fixed random
seed to ensure reproducibility. The range is shown per parameter and per model in Table 2.1.

The model was run for 2012–2022, using the years 2012–2014 as a warm-up period to minimise the
influence of initial storage conditions. Model performance was assessed for the calibration period
(2015–2019) using the multi-objective function Fobj (Equation 2.36), which combined the Nash-Sutcliffe
Efficiency (NSE) for daily discharge, the NSE for log-transformed daily discharge, and the NSE for
monthly runoff coefficients.

A total of 90 000 parameter sets were evaluated for each model. Parameter sets with an objective
function value below a predefined threshold during the calibration period were subsequently evaluated
for the validation period (2020–2022). For these selected runs, an overall performance score was
computed as the mean of the calibration and validation objective values. The parameter set with the
lowest overall score was selected as the final calibrated model.

2.5.3. Model validation and comparison
This study used one conventional model and three models in which phenology was integrated, each
using a different method. This resulted in a total of four models. In order to validate and compare each
model, multiple methods were used.

First, the model parameter sensitivity for each model was analysed using scatterplots, showing all
combinations tried during calibration which resulted in an overall performance score below 0.6. This
provided insights into the model’s sensitivity to slight changes in the corresponding parameters value.

Next, simulated discharges were evaluated using the NNSE,Q and NlogNSE,Q metrics. Additionally, the
Root Mean Squared Error (NRMSE) was calculated to provide an absolute measure of model error. Be-
sides the annual performance (January–December), the year was divided in two subsets based on the
hydrological year which starts 1 October. The first subset covered the winter semester (October–March)
and the second covered the summer semester (April–September). Splitting the dataset in seasons al-
lowed for an analysis of the seasonal performance using the same set of metrics. Furthermore, the
discharge time series were visually compared.

Finally, the daily simulated transpiration was be evaluated using the NNSE, NlogNSE and NRMSE metrics.
To do so, transpiration data obtained from the NASA Global Land Data Assimilation System (GLDAS,
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Table 2.1: Overview of model parameters estimated during calibration for each model, including units
and realistic value ranges.

Parameter Unit Value range per model
Conventional SF Kv Combined

Catchment
Su,max [mm] (100, 600) (100, 600) (100, 600) (100, 600)
β [−] (0.01, 0.1) (0.01, 0.1) (0.01, 0.1) (0.01, 0.1)
Ps,max [mmd−1] (0.001, 1.2) (0.001, 1.2) (0.001, 1.2) (0.001, 1.2)
Kf [d] (0.0, 7.0) (0.0, 7.0) (0.0, 7.0) (0.0, 7.0)
Ks [d] (0.0, 50.0) (0.0, 50.0) (0.0, 50.0) (0.0, 50.0)
D [−] (0.0, 1.0) (0.0, 1.0) (0.0, 1.0) (0.0, 1.0)

Deciduous
Imax [mm] (1.0, 5.0) (1.0, 5.0) (1.0, 5.0) (1.0, 5.0)
Ce [−] (0.2, 1.0) N/A (0.2, 1.0) N/A
Kv,max [−] N/A N/A (0.0, 1.0) (0.0, 1.0)

Coniferous
Imax [mm] (1.0, 5.0) (1.0, 5.0) (1.0, 5.0) (1.0, 5.0)
Ce [−] (0.2, 1.0) N/A (0.2, 1.0) N/A
Kv,max [−] N/A N/A (0.0, 1.0) (0.0, 1.0)

(Li et al., 2020)) were used as observational data. Following the same approach as for discharge, the
metrics were used to assess the annual and seasonal performances. Furthermore, the transpiration
time series were visually compared using a 7-day rolling mean. Additionally, the contributions of the
coniferous and deciduous parts of the models were compared with each other.

2.6. Sap flow prediction model
Conceptual hydrological rainfall–runoff models typically rely on internal fluxes and storages (e.g., soil
moisture), which respond dynamically to meteorological inputs. To simulate these processes, the mod-
els require initial conditions for each storage component; however, these values are often unknown
or imprecise. To address this limitation, models are generally run through a warm-up period, allowing
internal states to adjust from arbitrary starting values toward more realistic conditions. The warm-up
period typically ranges from one to several years, depending on the accuracy of the initial conditions
(Kim et al., 2018). Consequently, several years of input data are usually needed—not only to ensure an
adequate warm-up, but also to support robust model calibration and validation. In this study, a three-
year warm-up period (2012–2014) was used, followed by a five-year calibration period (2015–2019)
and a three-year validation period (2020–2022).

Two of the designed models required normalised sap flow vsf,n as input (see Section 2.4). Direct sap
flow measurements were only available for the 2019 and 2020 growing seasons, which was insufficient
for running the designed models. Other inputs required for the model were available for multiple years,
making sap flow data the limiting factor.

Limited temporal coverage is common in sap flow datasets. The SAPFLUXNET database, the first
global compilation of whole-plant transpiration data from sap flow measurements, contains sap flow
time series for 2714 plants (mostly trees) of which 50% is shorter than three years (Poyatos et al.,
2021). Moreover, these datasets are often restricted to the growing season only.

To address this challenge, a model to predict normalised sap flow was designed. This predictive model
enabled the extension of the sap flow time series, allowing for its incorporation into the hydrological
models.
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Awide range ofmodelling approaches exist. Multiplicativemodels such as the popular Jarvismodel mul-
tiply stress functions that depend on environmental factors, acting as reduction factors (Jarvis, 1976).
A downside of the multiplicative nature is that a (wrong) near-zero value of any of the stress functions
will cause a near-zero outcome.

Machine learning models are another option. A major downside of these models is their ‘black-box’
structure. The model internals are not interpretable and they can produce physically inconsistent pre-
dictions (Daw et al., 2020).

In this study, an additive model was chosen to predict vsf,n. Specifically, a Generalized Additive Model
(GAM) was chosen as these allow for the use of smooth functions (see Section 2.6.1). GAMs add
different functions that can depend on environmental variables together to predict the outcome, which is
visualised in Figure 2.9. The additive structure allows separate analysis of each predictor’s relationship
with sap flow. This gives a better understanding of the internal processes of the model and the influence
of each variable. Additionally, adjustments to the model can be made informed by this information (e.g.,
introducing constraints). GAMs have been used in previous research but mostly to analyse the relation
of sap flow with environmental variables (e.g., Luo et al. (2022), Tian et al. (2018), Flo et al. (2022) and
Ohana-Levi et al. (2020)). In this study, it is hypothesised that if the influence of environmental variables
on sap flow can be analysed using GAMs, the reverse should also be possible: the fitted model could
predict sap flow based on the derived relationships and the same environmental variables.
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Figure 2.9: An example of partial dependence plots. If the conditions (x1, x2, x3) = (0.5, 0.8, 0) occur,
themodel predicts a value by taking the sum of the partial dependency functions: 0.58+1.0+0.55 = 2.13.

2.6.1. Generalized additive models
The relationship between a response variable Y and one or more predictors X can be modelled using
linear regression. With only one predictor, the model is a simple linear regression. A flexible gener-
alisation of linear models was formulated by Nelder and Wedderburn (1972) as Generalized Linear
Models (GLMs), unifying various other statistical models such as linear regression, logistic regression
and Poisson regression.

A GLM has threemain components. First, the linear predictor η combines the input variables (predictors
X) to a linear equation, using coefficients β as weights (Eq. 2.37). Here, the parameters are estimated
by maximum likelihood. Second, the distribution of the response variable Y which can follow any
distribution of the exponential family. Third, the link function g(·) that links the linear predictor η to the
expected value µ = E [Y ] (Eq. 2.38). As η has a domain of (−∞,+∞), the link function maps it to the
domain of the response variable. For example, a logarithmic link function is often used in combination
with Gamma and Inverse Gaussian distributions, to ensure µ > 0 (Dunn and Smyth, 2018).

The linear predictor for a set of predictors X1, X2, . . . , Xn can be expressed by:

ηi = β0 + β1x1,i + · · ·+ βnxn,i → η = β0 +

n∑
i=1

βiXi (2.37)
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and the GLM itself can be expressed by:
g(E [Y ]) = η (2.38)

Generalized Additive Models (GAMs), introduced by Hastie and Tibshirani (1986), extend the traditional
Generalized Linear Models (GLMs) by replacing linear predictors (Eq. 2.37) with a set of smooth func-
tions (Eq. 2.39) where f(X) are smooth functions. This allows greater flexibility in capturing complex,
non-linear relationships between predictors X and the response variable Y that may be difficult to rep-
resent with purely parametric functions. The distribution of the response variable and the link function
are not changed compared to GLMs.

η = β0 +

n∑
i=1

fi(Xi) (2.39)

A widely adopted approach for estimating the smooth functions are penalized B-splines (basis splines),
or P-splines (Eilers and Marx, 2002). Introduced by Eilers and Marx (1996), P-splines combine the
flexibility of B-spline basic functions with a penalty on the spline coefficient to control the smoothness.
This penalty helps to avoid overfitting by limiting the wiggliness while still capturing the complex (non-
linear) relations. Therefore, it balances the fit and complexity of the model.

B-splines are constructed from polynomial pieces, joined at certain values of x, called the knots. Each
B-spline is only non-zero for a limited domain, giving it local control. Using these B-splines, a smooth
curve s(x) can be constructed by taking a weighted sum of multiple B-splines as shown in Equation 2.40
below.

s(x) =

n∑
j=1

βjBj(x) (2.40)

where Bj(x) is B-spline basis function j and βj its corresponding scaling coefficient. For a set with m
datapoints (xi, yi) on a set of n B-splines, the least square objective function (Fbs) to minimize becomes
Equation 2.41.

Fbs =

m∑
i=1

yi − n∑
j=1

βjBj(xi)

2

(2.41)

Using too many knots leads to overfitting while too few knots lead to underfitting. To make the results
less flexible, Eilers and Marx (1996) proposed to introduce a penalty based on finite differences of
the coefficients of adjacent B-splines (hence, P-splines). The least square objective function (Fps) to
minimize becomes Equation 2.42.

Fps =

m∑
i=1

yi − n∑
j=1

βjBj(xi)

2

+ λ

n∑
j=k+1

(∆kβj)
2 (2.42)

where∆k is the k-th order derivative of the coefficients and the parameter λ for control over the smooth-
ness of the fit. As the smoothness penalty increases, the differences between neighbouring coefficients
will decrease, reducing the overall flexibility of the model. This is indicated by the effective degrees of
freedom (EDoF), which quantifies the model’s flexibility in fitting the data. A lower EDoF indicates a
smoother, less complex fit. When there is no penalty introduced (λ = 0), the EDoF will be equal to
the number of splines used in the smooth function and can therefore not be larger than n (Baayen and
Linke, 2020). A visual representation of how P-splines work and the effect of λ is shown in Figure 2.10.

2.6.2. Model input
Lopushinsky (1986) found that the seasonal variations in sap flow velocity for coniferous trees (Douglas
fir and ponderosa pine) were significantly related to T , Rs and vapour pressure deficit (Dvp) when soil
moisture was not limiting. As soil moisture decreased during the summer, vsf no longer followed the
evaporative demand. Juice et al. (2016) had similar findings for deciduous trees (northern red oak).
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Figure 2.10: Illustration of the impact of the penalty on B-splines. Both plots have the same number of
B-splines but a different penalty. The upper plot uses has a lower penalty than the lower, resulting in a
smoother fit for the latter one.

They found that soil and air temperature explained the largest amount of variance in vsf, with h, Rs, and
Dvp also having a significant effect, but smaller.

Studies that used GAMs to analyse the relation between environmental variables and vsf often con-
sidered these same variables (e.g., Luo et al. (2022), Tian et al. (2018), Flo et al. (2022) and (Ohana-
Levi et al., 2020)). Additionally, several studies included a variable that was strongly linked to seasonal-
ity such as the Normalised Difference Vegetation Index (NDVI) and proved to be statistically significant.

In this study, similar environmental variables were considered as input for the sap flow prediction model,
namely T , Rs, h, and θ at 10, 20, 40, and 60 cm depth. Seasonality was represented using the yearly
normalised cumulative Growing Degree-Days (TCGDD,n). This was the normalised version of the TCGDD,
which was also (indirectly) used to represent seasonality in theKv methods for the hydrological models
(see Sections 2.4.3 and 2.4.4). Yearly normalisation allowed TCGDD,n to serve as an indicator of phen-
ological events. For example, leaf development started earlier in years with a warm spring, which was
reflected by TCGDD,n reaching the same value earlier in the year.

Another considered variable was the vapour pressure deficit (Dvp), which is the difference between the
amount of moisture in the air and the amount it could hold at saturation. It is a function of both T and
h, and often used to describe Et. Since Dvp is a function of T and h, including it could result in their
over-representation. Therefore, Dvp was excluded.

Finally, a weighted average of θ (θavg) was considered for multiple reasons. The root architecture
is species specific but is also influenced by other variables such as soil type, terrain characteristics,
and competition with trees from a different species (Hackmann et al., 2025; Zhiyanski, 2014). This
difference in root architecture also influences the trees ability for water uptake. For example, Douglas
fir is more drought resistant than Norway spruce by accessing deeper water sources (Hackmann et al.,
2025).

Due to uncertainties regarding root depths, a weighted average was calculated based on the thickness
of the soil layer represented by each measurement depth. Data were available at 10, 20, 40, and 60
cm, and the weighted average was computed for the 0–70 cm soil profile. The 70 cm lower boundary
was chosen because most of the root structure was located above this depth and to avoid over- or
under-representing data from the 60 cm measurements relative to the other depths.
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The depth intervals were defined based on the midpoints between adjacent sensors, such that the 10
cm measurement represented the 0–15 cm layer, the 20 cm measurement the 15–30 cm layer, the 40
cm measurement the 30–50 cm layer, and the 60 cm measurement the 50–70 cm layer. The weighted
average (θavg) was then calculated as the sum of the products of each layer’s mean θ and its thickness
(∆z), divided by the total profile thickness (Equation 2.43).

θavg =

∑n
i=1 (θi ·∆zi)∑n

i=1 ∆zi
(2.43)

The Spearman’s rank correlation coefficient was used to determine how strongly vsf,n was correlated
with each of the environmental variables. Spearman’s rank correlation was chosen over the Pearson
correlation coefficient because not all variables were linearly related to vsf,n. Correlations were cal-
culated for each tree across all considered variables, and the averages are shown in Figure 2.11. A
detailed overview of coefficients per variable per tree is provided in Appendix B. The coefficients indic-
ated that T had a strong positive correlation, while h had a strong negative correlation with vsf,n. Rs had
a moderate positive correlation, and TCGDD,n a moderate negative correlation. θavg and θ at different
depths all exhibited similar weak negative correlations.
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Figure 2.11: Spearman’s rank correlation coefficient between normalised sap flow and temperature
(T ), incoming shortwave radiation (Rs), relative humidity (h), normalised accumulated Growing Degree-
Days (TCGDD,n), weighted average of volumetric water content (θavg) and θ at 10 (θ10), 20 (θ20), 40 (θ40),
and 60 (θ60) cm depth.

Although the different θ variables showed low correlations, θavg was included in the model because of
its limiting effect on transpiration, particularly during dry summer periods. Since θavg exhibited a similar
correlation to depth-specific θ, no additional depth-specific θ’s were included.

Hourly sap flow data were available for two growing seasons (2019 & 2020) for several trees. Although
the hydrological model operated on daily time steps and therefore required daily vsf,n input, the sap
flow prediction model was developed on an hourly scale. This provided more data points for calibration
and validation and allowed the model to better capture diurnal dynamics that would otherwise be lost
in daily averages. Consequently, the input data also had to be provided at an hourly frequency.

To conclude, the following variables were used as predictors for the GAM model:

1. Temperature (T )
2. Relative humidity (h)
3. Incoming shortwave radiation (Rs)
4. Weighted average of volumetric water content (θavg)
5. Normalised accumulated Growing Degree-Days (TCGDD,n)
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2.6.3. GAM implementation
While many published studies used the mgcv R package (Wood, 2011) for fitting GAMs, this study
adopted the pyGAM Python package (Servén and Brummitt, 2018) version 0.9.1. This decision was
primarily motivated by the author’s familiarity with Python, which allowed for a consistent and stream-
lined workflow across data preprocessing, modelling, and visualization.

Moreover, pyGAM implements the same core concepts of GAMs as introduced by Hastie and Tibshirani
(1986) and also supports the use of P-splines. Furthermore, pyGAM is partly based on Wood (2006),
written by the author of the mgcv package. Although mgcv provides a wider range of features, pyGAM
offers the flexibility and functionality needed for this study.

Input preparation
The hydrological model was semi-distributed, requiring distinct vsf,n inputs for the deciduous and con-
iferous parts. Accordingly, the sap flow prediction model produced two separate time series: one for
deciduous trees and one for coniferous trees. Because of differences in phenology and physiology,
each vegetation category was modelled separately.

The sap flow prediction model used five predictors (X) as input: T , h, Rs, θavg, and TCGDD,n. The re-
sponse variable was vsf,n (Y ). PyGAM required bothX and Y as input to estimate partial dependencies
between Y and X.

The GAM did not use time series but individual data points. Each data point consisted of the value of Y
and the corresponding values of X at which Y occurred. For each tree, every sap flow measurement
was matched with the concurrent environmental conditions, with θavg estimated at the tree location
using Equation 2.43 and the method described in Section 2.2. The resulting data points were defined
as:

Data point i = (Yi, Xi) = ([vsf,n,i] , [Ti, hi, Rs,i, θavg,i, TCGDD,n,i])

Analysis showed that sap flow was observed at temperatures below 0 °C. This flow was likely caused
by freeze-thaw cycles, which create pressure differences in the tree stem. Because stomata are closed
at low temperatures, such flow likely did not contribute to transpiration. Therefore, data from days with
minimum temperatures below 0 °C were excluded from the analysis.

Next, all data points for deciduous trees were aggregated into a single dataset, and those for coniferous
trees into another. These datasets served as input for the respective models. Both were split randomly
into training (80%) and testing (20%) subsets using a fixed random seed, ensuring reproducibility.

Structure & constraints
A GAM has three main components, namely the statistical distribution of the response variable, the
link function, and the linear predictor. First, a Gamma distribution was chosen to capture the positive,
continuous, and right-skewed nature of vsf,n. Next, a log link function was used, which is a common
combination with a Gamma distribution as it avoids the need for constraints on the linear predictor to
ensure non-negative results (Dunn and Smyth, 2018).

To prevent internal model errors arising from the logarithmic link function, all vsf,n values below 10−5

were replaced by 10−5. For deciduous trees, this adjustment affected 100 data points (0.047%), and
for coniferous trees, 29 data points (0.046%), and was therefore considered negligible.

The linear predictor was built using P-spline terms (s) for all predictors to allow for non-linear relations
between environmental variables and vsf,n (Equation 2.44). Here, the default number of 20 splines
and a λ value of 0.6 were used for each term, and an intercept was added. Initially the model was
created without constraints to detect the functional relationships and potential overfitting. Afterwards,
shape constraints were imposed to limit overfitting, smoothening the curves to better reflect biological
plausibility. Additionally, shape constraints gave more control on the extrapolation by influencing the
direction of the tails. This was important as pyGAM uses a linear extrapolation when the value of a
predictor falls outside the training range. For this reason, only the constrained models were used for
the prediction of vsf,n.

ηSF = β0 + s0(T ) + s1(h) + s2(Rs) + s3(θavg) + s4(TCGDD,n) (2.44)
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Like the smoothness penalty parameter λ, the introduction of shape constraints increased the smooth-
ness of the curves and reduced the EDoF. The constraints smoothed the curves sufficiently, eliminating
the need for the computationally intensive grid search to optimise λ. The used parameters and their
constraints are listed in Table 2.2.

Table 2.2: Overview of predictors with their corresponding unit and constraint as applied in the GAM
structure.

Predictor Unit Constraint

T [°C] Concave
h [%] Monotonically decreasing
Rs [Wm−2] Monotonically increasing
θavg [m3m−3] Concave
TCGDD,n [−] Concave

A concave constraint was applied to T , as vsf is known to increase with temperature up to an optimum,
above which stomatal closure causes vsf to decrease (Kubota, 2016). Although this behaviour was not
observed in the data, a concave constraint was considered the most realistic option.

A monotonically decreasing constraint was applied to h, as vsf decreases with higher humidity due to
the reduced vapour pressure deficit. Conversely, a monotonically increasing constraint was applied to
Rs, reflecting the expected increase in vsf with higher radiation availability.

A low θavg was expected to result in a low vsf, as transpiration is constrained by water availability. As
θavg increases, vsf also increases until water is no longer limiting. When the soil moisture becomes
too high, oxygen is displaced, and above a certain anaerobiosis threshold, root water uptake may be
assumed to cease (Feddes et al., 1976). For this reason, a concave shape constraint was imposed on
θavg.

Transpiration is low in winter and high in summer, causing vsf to increase with TCGDD,n at the start of
the year. Towards the end of the year, at high TCGDD,n, vsf decreases again, producing a concave
relationship. Therefore, a concave constraint was applied to TCGDD,n.

Prediction procedure
Each tree category had its own constrained model, where each model had the previously described
structure. These models were first fitted on their respective training datasets. The resulting models
predicted vsf,n given the environmental conditions.

As both models were trained on all trees in their own dataset, the models were used to predict vsf,n for
each tree in their datasets separately. The hydrological models needed vsf,n data for 2012–2022, so
the GAMs were used to predict the hourly vsf,n within this period. Next, the mean vsf,n was calculated
per hour per tree category, resulting in a single hourly vsf,n time series per category.

The hydrological models required daily values as inputs. Therefore, the predicted hourly vsf,n time
series were resampled to a daily mean. Because higher vsf,n values typically occurred only during the
afternoon and are much lower during the rest of the day, calculating daily means significantly reduces
the maximum predicted values. Therefore, each year was normalised back to values between 0 and
1. The two resulting daily time series were used as input for the hydrological models that required vsf,n
time series.

Model evaluation
Both the unconstrained and constrained models were evaluated. The first evaluation was based on the
partial dependence, allowing verification of whether the constraints listed in Table 2.2 were consistent
with the unconstrained partial dependencies and the expected relationships.

The models were fitted on their training datasets, allowing the testing datasets to be used for validation.
The first method to evaluate the models was comparing the coefficient of determination (NR2 ) and
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Root Mean Squared Error (NRMSE) between the training and testing sets, providing an assessment of
generalisability. A small difference in NR2 and NRMSE between the two sets indicates that the model
captured the underlying relationships without overfitting, whereas large differences suggests overfitting
or sensitivity to data variation.

Additionally, the Nash-Sutcliffe efficiency metric (NNSE, Equation 2.34), its logarithmic version (NlogNSE),
and NRMSE were calculated for 2019, 2020, and 2019–2020 combined to assess model performance
over these periods. The predictions were also visually compared with observations using one-to-one
plots and the 2019 and 2020 time series. The one-to-one plots were used for both hourly and daily
predictions to give insights into the potential difference in prediction between hourly and daily time
series. The other evaluation methods were performed on the daily time series.



3
Results

In this chapter, the results are presented. First, the sap flow prediction model is evaluated, including
its ability to reproduce observed dynamics and the role of environmental predictors. Next, the results
of incorporating phenology into the conceptual hydrological model are shown. The performance of the
conventional and modified models is assessed with respect to discharge and transpiration, using both
evaluation metrics and visual inspection of the simulated time series. Additionally, seasonal contribu-
tions of coniferous and deciduous trees to total transpiration are examined.

3.1. Sap flow prediction model
Two sap flow predictionmodels were developed to estimate the normalized sap flow (vsf,n) for deciduous
and coniferous trees in periods without data availability. The GAMs were trained on data from the 2019
and 2020 growing seasons. In this section, the fitted models are described based on their partial
dependencies. The performance of the models was evaluated using several metrics.

3.1.1. Normalised accumulated growing degree-day
The sap flow prediction model had five predictor variables: temperature T , relative humidity h, incom-
ing shortwave radiation Rs, weighted average of the volumetric water content θavg, and normalised
accumulated growing degree-day TCGDD,n.

TCGDD,n was derived from the temperature time series and is shown in Figure 3.1. This figure shows
that the curve was different for each year. In a colder year (e.g., 2013), the curve showed a delayed
increase compared to other years, whereas in a warmer year (e.g., 2020), the increase occurred earlier.
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Figure 3.1: Normalised accumulated growing degree-day (TCGDD,n) per year as used as input for the
Sap Flow Prediction Model.
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3.1.2. Partial dependencies
Separate GAM models were developed for the deciduous and coniferous trees. First, the models were
fitted without shape constraints. Afterwards, shape constraints were introduced based on the uncon-
strained fits and the known physical relationships between vsf and the predictor variables (Table 2.2).

0 10 20 30 40
T [°C]

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5

Ef
fe

ct
 o

n 
v s

f,n
 [-

]

Temperature

20 40 60 80 100
h [%]

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5

Ef
fe

ct
 o

n 
v s

f,n
 [-

]

Relative humidity

0 250 500 750 1000
Rs [W m ²]

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5

Ef
fe

ct
 o

n 
v s

f,n
 [-

]

Incoming shortwave radiation

0.05 0.10 0.15 0.20 0.25
avg [m³ m ³]

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5

Ef
fe

ct
 o

n 
v s

f,n
 [-

]
Volumetric water content

0.25 0.50 0.75 1.00
TCGDD,n [-]

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5

Ef
fe

ct
 o

n 
v s

f,n
 [-

]

Accumulated growing degree-day

Partial dependence plots - Deciduous (unconstrained)

Legend
Predicted
95% Confidence interval

(a) Fitted unconstrained deciduous GAM with an inter-
cept value of -1.887 [−].
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(b) Fitted constrained deciduous GAM with an intercept
value of -2.719 [−].

Figure 3.2: Partial dependencies of the predictors for the unconstrained and constrained fitted GAMs
for deciduous trees.

The unconstrained deciduous GAM (Figure 3.2a) showed that vsf,n increases with temperature but has
a negative slope near zero temperature. In general, relative humidity showed a decrease in vsf,n for
increasing h, reaching its lowest value at 100%. However, vsf,n decreased at 20% h and increased again
when h was slightly higher. vsf,n showed a steady increase with an increasing incoming shortwave
radiation. The partial dependence on θavg showed a strong increase in vsf,n when θavg was low and
increasing. It then reached a plateau around 0.20 m3m−3, after which vsf,n began to decrease again.
Finally, vsf,n increases with TCGDD,n for low values of TCGDD,n and gradually decreases after reaching its
peak vsf,n. vsf,n showed a strong decrease for TCGDD,n values above 0.90.

Some of the partial dependencies showed a wider range of the 95% confidence interval near the min-
imum or maximum variable values. Furthermore, the unconstrained GAM showed local fluctuations
around the general trends (‘wiggliness’).

The constrained GAM (Figure 3.2b) exhibited fewer local fluctuations, and the increased range of the
95% confidence interval was reduced compared to the unconstrained GAM. When constrained, the
small local irregularities (e.g., at T near 0 °C or h near 20%) disappeared. Once constrained, vsf,n
slightly increased with θavg followed by a gradual decrease above 0.20 m3m−3. After a strong increase
of vsf,n for low TCGDD,n, vsf,n showed a gradual decrease with increasing TCGDD,n and a sharp drop around
0.90.

The unconstrained GAM for coniferous trees (Figure 3.3a) showed similar trends as its deciduous
counterpart. However, the local fluctuations were stronger. The partial dependence curve for T showed
a plateau around 30 °C and increased further above 35 °C.

The θavg dependency plot exhibited the same initial increase in vsf,n as the unconstrained deciduous
GAM at low θavg. However, whereas the deciduous model showed a decreasing trend in vsf,n above
0.20 m3m−3, the coniferous model continued its upward trajectory.
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Another difference was observed in the TCGDD,n dependency plot, which did not display clear season-
ality like the deciduous GAM. For low TCGDD,n values, the coniferous model showed a slight increase
in vsf,n, followed by a strong decrease around 0.5, after which vsf,n remained approximately constant
(ignoring local fluctuations). Additionally, the overall influence of TCGDD,n on vsf,n was smaller than in the
deciduous model, as indicated by the reduced difference between its minimum and maximum values.
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(a) Fitted unconstrained coniferous GAM with an inter-
cept value of -1.403 [−].
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(b) Fitted constrained coniferous GAM with an intercept
value of -1.825 [−].

Figure 3.3: Partial dependencies of the predictors for the unconstrained and constrained fitted GAMs
for coniferous trees.

3.1.3. Model performance
Model performance was first assessed by comparing fitting metrics between the training and test data-
sets to evaluate the models’ generalisability. Prediction performance was subsequently evaluated us-
ing multiple metrics.

Model generalisability
The GAMs were fitted on a training dataset, of which the NR2 and NRMSE fitting metrics were calculated.
The same metrics were calculated when the fitted models were used on the unseen testing dataset.
Figure 3.4 shows the comparison of these metrics. Based on these fitting metrics, the deciduous GAMs
exhibited a better fit, as indicated by higherNR2 values. NRMSE values were very similar across models,
with only the constrained coniferous GAM performing slightly lower.

Results for unconstrained and constrained models were very similar, with differences of less than 1%
in NR2 and NRMSE.

Prediction Performance
The constrained models were used for the prediction of vsf,n. Their performance was evaluated based
on NNSE, NlogNSE and NRMSE. Both models performed better in 2019 compared with 2020. For the
deciduous model, NNSE and NRMSE were similar between the two years, while NlogNSE indicated lower
performance in 2020 (see Figure 3.5a). This suggests that the model predicted high vsf,n peaks well
(NNSE) but was less accurate for lower vsf,n values (NlogNSE).

Overall, the coniferous model had a lower performance, scoring lower on bothNNSE andNlogNSE metrics
and exhibiting higher NRMSE (see Figure 3.5b). Additionally, the model’s performance for 2020 was
lower than for 2019 on all three metrics. The NNSE score decreased significantly between 2019 and
2020 (0.93 to 0.78), indicating it performed lower on predicting the peaks in vsf,n for 2020. The model’s
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Figure 3.4: The NR2 and NRMSE fitting metrics for unconstrained and constrained GAMs, both for train
and test datasets.
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Figure 3.5: TheNNSE,NlogNSE andNRMSE prediction performancemetrics for the constrained deciduous
and coniferous GAMs.

performance on low vsf,n also decreased (lower NlogNSE), but this difference (0.87 to 0.80) was smaller
than for NNSE.

The time series of observed and predicted vsf,n for 2019 are shown in Figure 3.6. Visually, both the
predictions closely followed the observations, indicating that the models successfully reproduced them.
The deciduous time series showed that the GAM predicted near-zero vsf,n between January and mid-
March, as well as in November and December. vsf,n slightly increased between mid-March and mid-
April, followed by a stronger increase. The highest values occurred toward the end of June, after which
vsf,n gradually decreased.

The coniferous time series had higher vsf,n predictions at the start of the year compared to the deciduous
time series. In sharp contrast to the deciduous model, higher vsf,n peaks already occurred in February
and March. November and December showed low vsf,n values, but slightly higher than for its deciduous
counterpart.

For 2020, the time series of observed and predicted vsf,n are shown in Figure 3.7. The deciduous ob-
servations and predictions showed a similar seasonality as 2019, although vsf,n reached higher values
earlier in the year, showing a strong increase in April. From August onwards, predictions often slightly
overestimated vsf,n but still captured the small fluctuations. Visually, the model closely followed the
observations, indicating it was able to reproduce the observations.

As in 2019, the coniferous model predicted higher vsf,n values early in the year. However, the high
February peaks observed in 2019 did not occur in 2020. The model significantly overestimated two vsf,n
peaks in May. While it captured the small fluctuations at the peaks, the predicted peakmagnitudes were
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too high compared to the observations. However, directly after those peaks, vsf,n dropped, which the
model predicted well. During June and July the model underestimated vsf,n multiple times. In contrast,
themodel overestimated vsf,n frommid-July to the end of September while accurately predictingOctober.
Visually, predictions from the coniferous model generally followed the observations but often over- or
underestimated vsf,n in 2020, leading to lower performance than the deciduous model for that year.
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Figure 3.6: The 2019 time series with observed and predicted vsf,n for both coniferous and deciduous
trees.
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Figure 3.7: The 2020 time series with observed and predicted vsf,n for both coniferous and deciduous
trees.

The observations and predictions were also compared using one-to-one plots, shown in Figure 3.8.
The hourly plots show a larger spread compared to the daily plots. Visually, the deciduous model out-
performed the coniferous model in terms of model spread for both hourly and daily frequency. The daily
deciduous model, in particular, predicted values that closely followed the observations. Furthermore,
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the point clouds were spread around the 1:1 line with no change in the range of the spread for higher
values.

(a) Deciduous GAMs. (b) Coniferous GAMs.

Figure 3.8: Comparison of the hourly and daily vsf,n predictions to observations using one-to-one plots
for both deciduous and coniferous models. The red line indicates the 1:1 line, the theoretically perfect
fit.

3.2. Phenology inclusion
The first and third phenology integration methods used normalised sap flow as input. The second
and third methods used the Kv shape function as input. In this section, these additional inputs for the
modified hydrological models are evaluated.

3.2.1. Sap flow
Two of the modified hydrological models included vsf,n data as input. This data were partly predicted
using the developed sap flow prediction model based on data from the 2019 and 2020 growing seasons.
The predictions were compared to observations in Section 3.1. The vsf,n time series for 2012–2022 are
shown per year in Appendix C.

In general, vsf,n was higher for coniferous trees during the first months of the year (January–April).
From May until October coniferous and deciduous time series were very similar, generally following the
same fluctuations. During August and September, some years showed higher values for deciduous
trees. During November and December vsf,n was near zero, although coniferous trees still showed
small fluctuations.

3.2.2. Evaporation partitioning
Evaporation was partitioned between interception and transpiration using the Kv shape function and
scaling factor Kv,max. The latter factor is discussed in more detail in Section 3.3.1. The Kv shape
function was developed using the first and second derivatives of the logistic function fitted on the TCGDD
curve (Equations 2.25, 2.26 and 2.27). The fitted curve with its derivatives and final Kv shape functions
are shown in Figure 3.9.

The fitted logistic function showed that warmer years (e.g., 2018 and 2022) had the highest TCGDD at
the end of the year. Accordingly, warmer years had a higher maximum value of their first derivative.
The second derivatives generally had an earlier maximum for years that had a warmer spring, which
resulted in an earlier start of the plateau for the Kv shape function. Warm years did not always result
in an earlier growing season. For example, 2022 was a warmer year than 2014 on average, but 2014
had a warmer spring. As a result, its growing season likely started earlier, which was also indicated by
the early maximum of the second derivative and the resulting plateau in the Kv shape function.

The end of the growing season was defined as the moment when the slope of the TCGDD started to
decrease (i.e., the moment when the second derivative reached its minimum). The moment at which
this happened had less variance compared to the start of the growing season. The combination of start
and end of the growing season defined its length, and is shown in Table 3.1.
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In constructing the Kv shape function, the slope of the first derivative was used. This resulted in a
smooth increasing partitioning during the development stages of deciduous trees. The late-season
stage followed a smooth decreasing curve which ended near zero at the end of the year.
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Figure 3.9: (a) An overview of each fitted logistic function on the TCGDD curve. (b) The first derivative of
the fitted TCGDD curve. (c) The second derivative of the fitted TCGDD curve. (d) The Kv shape function
derived using TCGDD and its derivatives.

Table 3.1: Start and end dates of the growing seasons with duration in days based on the Kv shape
functions. The earliest start date, latest end date and longest duration are marked in bold text.

Year Start End Length (d)

2012 30-May 07-Sep 100
2013 13-Jun 07-Sep 86
2014 25-May 10-Sep 108
2015 03-Jun 02-Sep 91
2016 09-Jun 09-Sep 92
2017 28-May 31-Aug 95

Year Start End Length (days)

2018 01-Jun 04-Sep 95
2019 03-Jun 06-Sep 95
2020 30-May 11-Sep 104
2021 04-Jun 07-Sep 95
2022 01-Jun 08-Sep 99
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3.3. Hydrological models
In addition to the conventional conceptual hydrological model, three modified semi-distributed models
were developed using the three proposed phenology integration methods. All four models were first
assessed by a sensitivity analysis, indicating how sensitive the models were to a change in value of
calibrated parameters. Discharge and transpiration simulations were compared with observational data
using several metrics.

3.3.1. Parameter selection & sensitivity analysis
Each of the four models was calibrated using 90 000 Monte Carlo iterations. The parameter configura-
tion with the highest performance (lowest average objective value Fobj of the calibration and validation
period) was selected. These values are shown in Table 3.2. All evaluated parameter configurations
that resulted in Fobj ≤ 0.6 are shown in Figure 3.10.

Table 3.2: Overview of the selected model parameters estimated during calibration for each model,
including units. Selected values follow from a sample size of 90 000 random parameter configurations
based on a pre-defined realistic parameter range.

Parameter Unit Selected value per model
Conventional SF Kv Combined

Catchment
Su,max [mm] 469 368 371 330
β [−] 0.010 0.018 0.015 0.018
Ps,max [mmd−1] 0.10 0.23 0.24 0.19
Kf [d] 4.9 6.0 5.6 5.4
Ks [d] 20.9 17.4 8.6 23.7
D [−] 0.17 0.01 0.82 0.070

Deciduous
Imax [mm] 1.82 4.73 3.80 4.87
Ce [−] 0.73 N/A 0.21 N/A
Kv,max [−] N/A N/A 0.80 0.95

Coniferous
Imax [mm] 3.29 3.91 1.20 4.05
Ce [−] 0.83 N/A 0.51 N/A
Kv,max [−] N/A N/A 0.75 0.82

Most parameters had similar values between different models. Judging by only the table, one clear
outlier is runoff partitioning coefficientD for the Kvmodel. Where the other models found around 0.1, the
value found for the Kv model was 0.82, reversing the partitioning between preferential recharge Rsr and
runoff Rfr (see Equations 2.16 and 2.17). However, the sensitivity plots for D show an approximately
horizontal bottom boundary. This indicates that D had a low sensitivity with respect to Fobj, making it
more likely that values differ between versions.

For the catchment-wide parameters, all models showed that Su,max, β, Ps,max andKf were sensitive with
respect to Fobj, while showing a lower sensitivity for Ks and D. The vegetation parameter Imax showed
low sensitivity in all models for both deciduous and coniferous categories, except for the deciduous
Imax in the SF model. Here, the SF model showed a strong sensitivity for the deciduous Imax. Ce was
used in the conventional and Kv models and was sensitive for the deciduous part of the model, while
showing a poor sensitivity for the coniferous part. Kv,max was used in the Kv and combined models,
showing a strong sensitivity for deciduous trees and moderate for coniferous trees.
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(a) Conventional model. (b) SF model.

(c) Kv model. (d) Combined model.

Figure 3.10: Sensitivity analysis of calibrated parameters for the conventional and modified models.
Parameter configurations with Fobj ≤ 0.6 are shown in blue and the 10 best performing parameter
configurations in orange. The selected (best performing) configuration is shown in green. Lower values
of Fobj indicate better performance.

During calibration, Fobj was calculated for the calibration and validation periods. When both had an
objective value below 1.0, the parameter configuration was saved. This resulted in 52 353 saved
configurations for the conventional model, 16 390 for the SF model, 5 509 for the Kv model and 16 594
for the combined model. Although having the lowest number of saved configurations, the Kv model did
provide several parameter configurations that performed better than the conventional model and was
only outperformed by the combined model in terms of Fobj.

3.3.2. Discharge simulations
The discharge simulations were assessed using evaluation metrics (NNSE, NlogNSE, and NRMSE) and
their resulting objective function value. Next, the discharge time series were visually compared with
each other and observational data. An overview of atmospheric forcing (precipitation and potential
evaporation) with the predicted discharges per model is shown per year and per season in Annex D,
Figure D.1.
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Evaluation metrics
The discharge simulations were first evaluated using the NSE, logNSE and RMSE metrics and their
objective function value. These metrics were calculated for the calibration (2015–2019), validation
(2020–2022) and combined (2015–2022) periods, excluding the warm-up period (2012–2014) of the
model. Additionally, these sets were split into the hydrological winter (October–March) and summer
(April–September) semesters to assess seasonal performance using the same metrics. The results
are shown in Figure 3.11. In general, models performed better during the validation period than the
calibration period.
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Figure 3.11: The annual and seasonal performances of the conventional model (Conv), Sap flow model
(SF), Kv model (Kv) and the combined model (Comb) for the calibration, validation, and total period.
Used performance metrics are NNSE and NlogNSE on discharge (Q), NNSE on the monthly runoff coeffi-
cient (Cmr) with an optimal performance value of 1. Fobj is the objective function value which had to be
minimised. Annual: Jan–Dec, Winter: Oct–Mar, Summer: Apr–Sep.

Annually, the conventional model achieved similar performances as the Kv and combined models but
performed lower on NNSE,Cmr . The SF model was the lowest performing model during calibration but
showed similar performances as the other models during the validation period. The conventional model
performed lowest during validation. Overall, the combined model had the highest performances for the
annual dataset.
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During the winter period, the combined model generally performed highest over calibration, validation,
and in total. The Kv model performed similar but slightly lower. The conventional model performed bet-
ter than the SF model during the calibration period but lower during validation, although both showed
higher performance during validation. The largest difference between the conventional and other mod-
els was during the validation period for NNSE,Cmr .

The summer subset demonstrated lower performances for all models compared to the annual and
winter periods. The models scored especially low on the NNSE,Q and NNSE,Cmr metrics. Generally, the
SF model was the lowest performing model, specifically during calibration. In terms of the objective
value, the conventional model was the highest performing model during the validation and combined
sets, and showed a similar performance as the combined and Kv models during calibration.

The NRMSE was calculated for the calibration, validation, and combined datasets. Like for the metrics
discussed above,NRMSE was evaluated for the hydrological winter and summer in addition to the annual
time series to assess differences in seasonality. The results are shown in Figure 3.12. Here, models
showed a higher NRMSE during winter than during summer. A lower NRMSE indicates a smaller error
between the models and the discharge observations. During winter, models performed similarly over
the calibration, validation, and total sets. In contrast, theirNRMSE was lower during the calibration period
and higher during validation.

During summer, the conventional model performed equally (calibration) or better (validation) than the
modified models. For the total summer set, the conventional model achieved the highest performance
and the three modified models performed similarly to each other. All models were within 0.15 mmd−1
of each other.

During winter all models performed similarly. The SF model performed worse than the others during
calibration. The SF and combined models showed the highest performances during validation, with the
conventional and Kv performing lower. For the winter total set, all models were within 0.09 mmd−1 of
each other.

For the annual set, models displayed better performances during calibration than during validation.
During calibration, the conventional, Kv and combined models performed similar to each other, with
the SF model performing lower. The SF model performed highest during validation, while the Kv model
performed lowest. The conventional and combinedmodel performed similarly but slightly lower than the
SF model. Overall, all models were within 0.06 mmd−1 of each other, indicating similar performances
with no model being significantly better than the others based on NRMSE.
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Figure 3.12: The RMSE for discharge predictions compared with observations for the calibration (cal),
validation (val) and total period for each model. Conv = conventional model, SF = sap flow model,
Kv = Kv model, Comb = combined model. Annual: Jan–Dec, Winter: Oct–Mar, Summer: Apr–Sep.
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Discharge time series
The discharge time series for 2015–2022 are shown per year in Appendix D. To compare years with
each other, all figures were shown using the same scaling on the y-axis. For evaluation purposes,
zoomed in sections are shown in Figures 3.13 and 3.14.

The models performed similarly during 2015 except at the end of September. Here, the conventional
model simulated a peak in discharge where the modified models and observations did not. Two se-
quential peaks in January were both underestimated by all models. However, little precipitation was
recorded during this period.

The reverse occurred in March/April 2016. Here, significant precipitation was registered, but no imme-
diate peak was measured (Figure 3.13a). The models displayed a strong response to this precipitation,
resulting in an overestimation compared to the observations. The peak in June 2016 was simulated
well, but all models simulated a second peak after, which was not observed.

In 2017 the models were able to simulate discharges that closely matched the observations. No high
discharge peaks occurred during this year. The largest discharge was observed in December, which
was simulated quite well. Several small peaks were simulated during October and November by the
conventional and SF model, which were not observed. The Kv and combined model correctly did not
produce these peaks.

The discharge peaks during January 2018 were decently captured by the models. The modified mod-
els simulated the lower peaks during March and April better than the conventional model, which un-
derestimated these (Figure 3.13b). The first peak in December was significantly overestimated by the
conventional model while reproduced by the modified models. The second peak was simulated well
by all models.
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Figure 3.13: (a) Selection of two discharge peaks in 2016, with the first one missed by the observations.
(b) The underestimation of discharge by the conventional model early 2018. Conv = conventional model,
SF = sap flow model, Kv = Kv model, Comb = combined model.

In 2019, a sharp discharge peak occurred in February, which was underestimated by all models. The
models produced nearly identical responses to this event. A precipitation peak was observed, but not
of the magnitude that was expected to produce a discharge peak this strong. Two smaller peaks in
March and May were simulated well, with the latter one being simulated slightly better by the modified
models compared to the conventional model. In October the conventional model first produced a peak
that was not observed nor simulated by the other models. A second peak was produced by all models,
which was not observed in this magnitude. The Kv and combined model were closer to the observations
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than the conventional and SF model for this peak. November and December were simulated similarly
by all models.

Higher discharges occurred in February and March 2020 with several peaks. The higher discharges
were produced well by the models, but the peaks were underestimated. The remaining part of the
year was simulated similarly for all models, with the conventional model overestimating a small peak
in November.

In 2021, there were two peaks in January, which were not simulated by the models. During this time,
no peaks in precipitation were registered. Lower peaks during March and April were underestimated
by the conventional model, but overestimated by the modified models. All models overestimated the
peak in May, with the conventional model’s simulation being closest to the observations. A sharp
discharge peak occurred in July which was underestimated significantly by all models (Figure 3.14a).
The conventional and SF models produced similar results, which were closer to the observations than
the simulations by the Kv and combined models. Here, the Kv model only simulated a small peak. A
lower peak in November was overestimated by the SF model, simulated well by the conventional and
combined models, and underestimated by the Kv model. Discharge in December was underestimated
by all models.

The last simulated year was 2022. Here, peaks in January, February and April were underestimated
by the models. The modified models produced simulations closer to the observations than the con-
ventional model (Figure 3.14b). The observed peaks were not only higher, but also kept rising for a
longer time. The observational peaks still increased, while the simulations already showed decreasing
discharges.
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Figure 3.14: (a) Selection of three discharge peaks in 2021, with the first two being overestimated by
the models and the last peak being underestimated. (b) The better estimation of the modified models
compared to the conventional model for the peaks early 2022. Conv = conventional model, SF = sap
flow model, Kv = Kv model, Comb = combined model.
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3.3.3. Transpiration simulations
The transpiration (Et) simulations were first assessed using evaluation metrics (NNSE, NlogNSE, and
NRMSE), using transpiration estimates from the GLDAS-2.2 product as a reference. Next, the time
series were visually compared with each other and GLDAS-2.2 transpiration estimates using the 7-day
rolling mean. All model evaluation metrics were computed on the original daily values.

Evaluation metrics
Using the same approach as during the discharge evaluation, transpiration simulations were first eval-
uated using the NSE, logNSE and RMSE metrics. These metrics were calculated for the calibra-
tion (2015–2019), validation (2020–2022) and combined (2015–2022) periods, excluding the warm-
up period (2012–2014) of the model. Additionally, these sets were split into the hydrological winter
(October–March) and summer (April–September) semesters to assess seasonal performance using
the same metrics. The results are shown in Figure 3.15a.
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Figure 3.15: The annual and seasonal model performances on transpiration of the conventional model
(Conv), Sap flow model (SF), Kv model (Kv) and the combined model (Comb) for the calibration, valid-
ation, and total period. Annual: Jan–Dec, Winter: Oct–Mar, Summer: Apr–Sep.

The annual metrics displayed in Figure 3.15a showed that NNSE scores were generally higher than
NlogNSE scores. This indicates that the models performed better for higher (peak) transpiration than for
lower rates. During calibration, the conventional model performed slightly lower on NNSE than the Kv
and combinedmodels. The SFmodel was the only model that had a goodNNSE score during calibration,
performing significantly better than the other models. During this period, the SF model performed
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lower on the logNSE metric, but still considerably better than the other models. The simulation of the
conventional model was slightly better than using the mean transpiration. All models scored lower
during the validation years. The SF model performed significantly better on both metrics than the other
models. The conventional model performed similarly to the Kv model on NNSE, where the combined
model performed lowest. The logNSEmetrics showed a similar result as during calibration. For the total
set, the SF model was the only good performing model in terms of NNSE. The other models performed
similarly to each other on the NSE metric. Again, all models scored lower on NlogNSE than on NNSE.
The SF model performed the highest, the Kv and combined models performed similarly to each other
but lower, and the conventional model performed the lowest, similar to the mean.

The hydrological winter semester displayed negative values for both metrics during calibration, valida-
tion, and in total for the conventional, Kv, and combined models. These models performed lowest on
NNSE and higher onNlogNSE during all three periods. The SF model was the only model performing well
based on the NSE metric. Its scores on NlogNSE were low, but still positive.

Performances were higher during the summer semester. During the calibration period, the conventional
model performed higher than the Kv and combined models on NNSE, but lower on NlogNSE. The SF
model achieved a high performance onNNSE. It performed lower onNlogNSE but significantly better than
the other models. The models performed lower during validation, with the SF model still outperforming
the other models on both metrics. The conventional model scored better on NNSE than the Kv and
combined models. The latter two performed equally or lower than when using the mean. All modified
models performed better on NlogNSE than the conventional model. In total, the SF model had a good
performance on NNSE and lower on NlogNSE, but still better than the other models. The conventional
model scored the lowest on NlogNSE, but performed better on NNSE compared to the Kv and combined
models.

The annual and seasonal NRMSE values were calculated for the calibration, validation, and combined
time series for all models. The results are shown in Figure 3.16. It shows that the SF model performed
significantly better than the other models. Annually, the other models had double the NRMSE values
shown by the SF model, all three performing similarly. The conventional model had a significantly
larger error during the winter period than the modified models. In contrast, the SF model had a low
error during this time. During the summer, the conventional model performed better than the Kv and
combined models. Again, the SF model had the lowest errors.
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Figure 3.16: The NRMSE for discharge predictions compared with observations for the calibration (cal),
validation (val) and total period for each model. Conv = conventional model, SF = sap flow model,
Kv = Kv model, comb = combined model. Annual: Jan–Dec, Winter: Oct–Mar, Summer: Apr–Sep.

Transpiration time series
Time series were visually compared with each other and the reference GLDAS-2.2 transpiration es-
timates. For visualization purposes, the daily transpiration time series were smoothed using a 7-day
moving average to reduce short-term fluctuations and highlight seasonal dynamics. The time series
are shown per year in Annex E. Zoomed in selections from these time series are shown in Figures 3.17
and 3.18 for evaluation purposes.

During the first months of 2015, the conventional model simulated much higher transpiration rates than
the modified models and reference data. The Kv and combined models simulated higher rates too.
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The SF model was close to the reference data until April, but overestimated from May until July. Dur-
ing this period, the conventional model generally underestimated transpiration while the other models
overestimated. The peak in July was best simulated by the Kv model. From August to December, the
SF model was similar to the reference (see Figure 3.17a). The other models underestimated during
August and overestimated in the remaining months.

Transpirations were lower during 2016 compared to 2015. All models overestimated throughout the
year. Again, the conventional model overestimated the transpiration during the first months of the year
(Figure 3.17b). Between May and September, the SF model was closest to the reference data, while
the Kv and combined models showed the highest values. The models showed the same general shape
and timing as the reference, but with values that were too high. From September onwards, the SF
model closely resembled the reference.
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(a) 2015 transpiration selection (7-days rolling mean).
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(b) 2016 transpiration selection (7-days rolling mean).

Figure 3.17: Two selections from the transpiration time series from 2015 and 2016 showing the general
behaviour of the different models during different times of the year. Conv = conventional model, SF =
sap flow model, Kv = Kv model, Comb = combined model.

The SF and combined models overestimated transpiration peaks in June 2017. In contrast, the con-
ventional model simulated the first peak well but was insensitive to the second peak, underestimating
it. The Kv was closer to the reference. From July onwards, the SF model was close to the reference
data. The other models overestimated transpiration during this period.

Other years showed similar behaviour as described above for 2015–2017. Generally, the conventional
model overestimated the transpiration during the winter. The Kv and combinedmodels performed better
during the first few months but also overestimated during the last few months of the year. The SF model
was usually closest to the reference for thesemonths. During the summer, the conventional model over-
and underestimated peaks, seemingly not very sensitive to transpiration fluctuations displayed by the
reference data and other models. The combined model generally overestimated during this time, while
the Kv was often between the conventional and combined model. The SF model was usually closer to
the reference but often overestimated during May and June. From July onwards, the SF model was
generally similar to the reference.

The combined model showed anomalous behaviour during August and September in 2018, 2020 and
2022. Here, it showed events of strong decline, producing transpiration simulations zero as shown
in Figure 3.18a. The same occurred for the SF model towards the end of September 2020. A more
extreme example was 2022, shown in Figure 3.18b. Here, the combined model produced almost no
transpiration during August and October. The SF model did the same but dropped to zero later. Both
increased again in October in response to precipitation.

The semi-distributed structure of the models was based on the two tree categories (coniferous and
deciduous). In terms of covered area, the deciduous part of the catchment was larger (76%) than the
coniferous part (24%). Furthermore, each category had its own seasonality. Consequently, each part
contributed differently to the total discharge and transpiration.
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(a) 2020 transpiration selection (7-days rolling mean).
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(b) 2022 transpiration selection (7-days rolling mean).

Figure 3.18: Two selections from the transpiration time series showing transpiration anomalies for the
Kv and SF models in 2020 and 2022, both having periods of a zero transpiration simulation. Conv =
conventional model, SF = sap flow model, Kv = Kv model, Comb = combined model.

The individual in contributions to the total transpiration during 2015 are shown in Figure 3.19 for each
model. Most other years had similar behaviour as 2015, which was therefore used to describe the
contribution differences between models in general. All models showed a larger contribution by the de-
ciduous part of the model compared to the coniferous part. Furthermore, all models simulated higher
transpiration rates for both parts during summer than during the winter. The contribution as a percent-
age of the total transpiration (fractional contribution) of each part is shown in Figure 3.20 for 2015.

The conventional model simulated relatively high transpiration rates for the deciduous part during the
winter. The fluctuations in transpiration were mainly captured by the deciduous part of the model, as the
coniferous part showed a smoother time series. The relative contribution to the total transpiration did not
change over time as shown in Figure 3.20a, indicating no seasonal differences in relative contribution.

In contrast to the conventional model, the SF model captured the transpiration fluctuations in both parts
of the model. The deciduous part showed a larger contribution during the summer. The coniferous
part of the model contributed more during April than the deciduous part, even though it covered a
significantly smaller part of the catchment. Coniferous trees had the highest relative contribution during
January to March. In April the ratio changed, as deciduous trees started to contribute more.

The Kv model had a relatively constant contribution of the coniferous part, but slightly higher during
the summer. The deciduous part contributed less during the winter and more during the summer. This
is also shown in Figure 3.20c, displaying clear seasonality. The relative contribution of coniferous
trees increased slightly during July and August, which was still during the plateau of the Kv shape
function. The plateau ends early September, which is also when the contribution by the deciduous
trees decreased.

The combinedmodel displayed similar behaviour as the Kv. Themain difference was that the coniferous
trees showed more fluctuations during the summer for the combined model. Where the Kv model
showed an increasing coniferous contribution during July, the combined model showed fluctuations in
contribution. These fluctuations were not visible in the fractional contribution figure of the SF model
(Figure 3.20b).

Noticeable was that the relative contributions for the modified models were not continuous between
December and the next year’s January. The Kv and combined models showed a small jump while this
difference is larger for the SF model.
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Figure 3.19: The contribution of the coniferous and deciduous parts of the models to the total transpir-
ation estimate for 2015. GLDAS-2.2 is the reference transpiration for the total catchment.
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Figure 3.20: The fractional contribution of the coniferous and deciduous parts to the total transpiration
per model for 2015.



4
Discussion

This chapter discusses the main findings of the study in relation to the research objectives. First, the
performance and limitations of the sap flow prediction model are considered, with particular attention to
the role of environmental predictors and model constraints. Next, the approaches used to incorporate
phenology into the hydrological models are evaluated, highlighting how differences between deciduous
and coniferous trees were captured. Finally, the conventional and modified hydrological models are
compared in terms of their ability to simulate discharge and transpiration, and the implications of these
results for modelling heterogeneous forest catchments are addressed.

4.1. Sap flow prediction model
This section discusses the developed sap flow prediction model. First, it discusses the normalised accu-
mulated growing degree-day, which was derived from temperature data. Next, the partial dependencies
are discussed, which show the relation between individual environmental predictors and predicted vsf,n.
Finally, the model’s performance is discussed.

4.1.1. Normalised accumulated growing degree-day
To predict vsf,n, TCGDD,n was needed as input. By using the normalised version of TCGDD, it became
possible to use the general shape as an indicator for seasonality. Warmer years such as 2014 and
2020 reached higher vsf,n earlier in the year, indicating an earlier start of the growing season.

Without scaling, 2018 and 2022 were the years with the highest TCGDD at the end of the year but also
in June, reaching 500 °C relatively soon. However, when scaled, this was not evident as both years
performed close to the average compared with the other years. Due to the scaling effect, years with a
high TCGDD at the end of the year were flattened more than colder years with a lower maximum TCGDD.
As warm years were flattened more, some cases occurred where the warmer spring did not clearly
show in TCGDD,n, limiting the capacity of TCGDD,n to predict the timing of phenological events such as
budburst and leaf-out.

TCGDD is potentially a more suitable indicator of phenological timing in spring, but its variability towards
the end of the year could reduce the accuracy of GAM predictions. A possible improvement could
involve the use of TCGDD as an indicator of the start of the growing season, and using a different indicator
to predict the end of the growing season.

4.1.2. Partial dependencies
The partial dependencies of the unconstrained GAMs generally showed expected trends and relations
between the environmental variables and vsf,n. Accordingly, the shape constraints matched the general
shapes of the unconstrained GAMs, indicating that these were the right constraints. This was further
supported by the small difference in fitting performance metric values between the unconstrained and
constrained models.

Based on literature, vsf,n was expected to increase with temperature up to an optimum of 20–25 °C,
followed by a decline as stomatal closure limited transpiration and sap flow. However, this pattern was
not evident in the partial dependencies derived from the GAMs. Scatterplots between temperature
and vsf,n (not shown) likewise failed to display the anticipated response. The reason for this deviation
remains unclear.

51



52 Chapter 4. Discussion

The relative humidity partial dependency plots for all GAMs showed a decrease in vsf,n with increasing
h, suggesting that sap flow and transpiration decline as relative humidity rises. This was expected,
since higher h corresponds to a lower vapour pressure deficit, which limits transpiration.

Incoming shortwave radiation generally exhibited a monotonically increasing relationship with vsf,n for
the deciduous GAMs. The unconstrained coniferous GAM followed the same overall pattern but dis-
played local deviations, particularly at the highest Rs values (above 900 Wm−2), where a moderate
negative slope appeared. This coincided with wider 95% confidence intervals, likely due to the limited
number of observations in this range. As this behaviour was absent in the deciduous GAMs and un-
supported by literature on stomatal closure under high Rs, a monotonically increasing shape constraint
was imposed. This adjustment removed the unexpected negative slope and enforced a more realistic
model response.

The weighted averaged volumetric water content (θavg) showed itself to be strongly limiting vsf,n at low
values, which was expected and in line with literature. For slightly higher θavg conditions, its influence
on vsf,n was approximately constant, showing a slight increase for higher θavg values. For this range
of values, the unconstrained coniferous GAM showed strong local fluctuations, likely caused by the
smaller dataset compared to the deciduous dataset, resulting in overfitting. Above 0.20 m3m−3 θavg,
the deciduous GAMs showed a strong negative slope. This behaviour was also observed by Tian
et al. (2018) for spruce trees, a coniferous species, while not observed in this study for coniferous
trees. The coniferous GAMs showed a limited negative slope above 0.20 m3m−3 θavg. The negative
slopes indicate that vsf,n decreased for higher θavg values. Following Feddes et al. (1976), this can be
explained by the decreasing oxygen levels in the soil for higher soil moisture rates, which limit water
uptake by the roots. The negative slopes at high θavg values supported the choice of a concave shape
constraint, as this increased the smoothness while maintaining the ability to show the general trends
for both coniferous and deciduous trees.

The partial dependence plots for normalised accumulated growing degree-days (TCGDD,n) revealed the
expected seasonal pattern for deciduous trees. At low TCGDD,n values, before the growing season,
TCGDD,n had a negative contribution to vsf,n, followed by a positive slope as the season progressed.
After the curve reached its maximum, vsf,n gradually declined, with a sharp decrease observed towards
the end of the year, corresponding to leaf shedding. This strong seasonality was not observed for
coniferous trees. These trees exhibited a slight increase in vsf,n at low TCGDD,n values, followed by a
gradual decline, similar to deciduous trees. In contrast to the deciduous trees, no distinct decrease
occurred at the end of the growing season. This pattern was consistent with the assumption that
coniferous trees display limited seasonality.

4.1.3. Model performance
The models’ performance was evaluated based on their generalisability and ability to predict vsf,n, which
was compared to observational data.

Model generalisability
The R2 and RMSE metrics (NR2 and NRMSE, respectively) were comparable between training and test-
ing, with differences of less than 1%. This suggests that the models effectively captured the underlying
data patterns without overfitting, as their performance remained consistent on unseen data. This also
indicated that

It is important to note that the original data were time series. Randomly splitting data points from the
series into two sets may produce very similar datasets, as conditions at a given time are often similar to
those just before or after. Consequently, assigning one point to set A and the surrounding points to set B
may result in comparable model performance. Alternative splitting strategies, such as using alternating
days, could provide a more distinct separation between datasets and improve model evaluation.

Prediction performance
The prediction performance of the constrained GAMs was evaluated based on three metrics. The NSE
metric mainly indicates how well the model performs on matching the peaks with the observations. The
logNSE uses a natural logarithmic transformation on the data before applying NNSE, making it a better
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indicator of performance on low vsf,n predictions. NRMSE is the average difference between predictions
and observations, and is an indication of the model’s accuracy.

The constrained GAMs both showed a lower model performance for 2020 compared to 2019. As
described in Section 3.1.3, the deciduous GAM overall had a better performance compared to the con-
iferous model. This is possibly the result of the smaller available data set for coniferous trees. Where
the deciduous dataset contained 27 trees, the coniferous dataset contained 6 trees. Furthermore, the
observed deciduous trees were spread across the catchment, while coniferous trees were all located
at the north or south borders of the catchment. Therefore, the coniferous dataset was more susceptible
to spatial biases. Both GAMs had a lower performance during 2020 compared to 2019. Furthermore,
both models had higher NNSE values compared to NlogNSE, indicating that the models performed better
in predicting higher vsf,n values.

A potential explanation for the difference between the 2019 and 2020 model performances is that the
models had more data from 2019 as more data were available that year. This could have biased the
GAMs more towards 2019. If this was the case, it would also imply that the GAMs were potentially not
as generalizable as previously suggested.

BothGAMs hadNNSE andNlogNSE scores above 0.80 for the total observational data range (2019–2020).
Following the model performance categorisation suggested by Ritter and Muñoz-Carpena (2013), this
indicates a good model performance over this period.

The time series showed that the models were able to reproduce the observations well, except for the
coniferous model in 2020 which often under- or overestimated vsf,n. The coniferous model for 2020
showed it was able to still capture small fluctuations at peaks during May, while underestimating the
magnitude. This would indicate that the model was able to perform precisely, but not accurately during
those circumstances. The deciduous model showed near zero vsf,n during the winter and early spring,
which was expected as no leaves were present during that time. This means that it was able to capture
this seasonality without being trained on data from these months. The coniferous model showed less
seasonality, which was expected because these trees do not shed their leaves.

The one-to-one plots indicated that the deciduousmodel predicts values closer to the observations. Fur-
thermore, the daily predictions exhibited less variability than the hourly time series. The point clouds
were distributed evenly around the 1:1 line, indicating no systematic tendency to under- or overestim-
ate values. In addition, the approximately constant scatter across the full range of observed values
indicates homoscedasticity of the model residuals, suggesting that predictive uncertainty remained ap-
proximately constant across the range of vsf,n values.

4.2. Phenology inclusion
Three methods were designed to incorporate tree phenology in the hydrological models, which were
based on two approaches. The first method involved direct inclusion of sap flow dynamics. The second
method indirectly included sap flow dynamics by partitioning evaporation based on seasonality, which
was derived from temperature.

4.2.1. Sap flow
Coniferous trees showed higher vsf,n values during the first few months of the year, which was expected
as deciduous trees were still in dormancy during that period. When deciduous trees came out of
dormancy, their sap flow increased. During May, both tree categories started to show very similar
behaviour. This could indicate that the deciduous trees had fully developed their leaves.

Compared with the deciduous trees, the coniferous trees exhibited lower vsf,n values during August
and September in some years. A possible explanation is the influence of soil moisture, as during
these months θavg is typically low. Oak trees generally have a deeper root system than beech and the
coniferous species (Fabiani et al., 2022). Due to their access to deeper water, oaks are less drought-
sensitive which could have influenced the deciduous sap flow, resulting in higher vsf,n compared to
coniferous trees. Although theoretically plausible, the partial dependence plots for θavg from the GAMs
(Figures 3.2 and 3.3) did not confirm this hypothesis.
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During November and December, vsf,n was near zero for deciduous trees, as expected because they
had shed their leaves by this time. Consequently, no sap flow was anticipated. For the same period,
coniferous trees also exhibited low vsf,n values but showed some fluctuations, indicating that limited
sap flow, and thus transpiration, occurred. This is plausible because, unlike deciduous trees, conifers
retain their leaves, allowing continued, albeit limited, photosynthesis when conditions are suitable.

4.2.2. Evaporation partitioning
The derived Kv shape functions captured an earlier start of the growing season in years with a warmer
spring, as expected. The end of the growing season indicated by the function typically occurred in
early September, coinciding with the end of summer. By basing the function on temperature, which
is strongly linked to phenological timing, the growing season was estimated dynamically, allowing for
interannual variation. This approach is more realistic than using fixed calendar days and, although a
rough estimate, likely represents an improvement over static evaporation partitioning.

This method roughly indicated if the growing season started earlier or was delayed compared to an
average year, but the exact timing was not determined using the Kv shape function. A more precise
timing, e.g., using TCGDD values, would likely show slightly different timing of the plateau. Additionally,
the gradual increasing/decreasing slope of the Kv shape function is a conceptualisation of changing
partitioning over time and was not based on specific literature. Therefore, this approach could, and is
recommended to, be improved in future research.

4.3. Hydrological models
In addition to the conventional model, three modified hydrological models were developed. First, para-
meter selection after calibration and the sensitivity analysis are discussed. This is followed by the
evaluation of discharge and transpiration simulations produced by the models.

4.3.1. Parameter selection & sensitivity analysis
The sensitivity analysis showed that several parameters had a poor sensitivity with respect to the ob-
jective function. This could indicate that the processes related to these parameters are unrealistic or
that the objective function was not suitable to assess these parameters. Furthermore, poor sensitivity
indicates the issue of equifinality, which is a common problem in hydrology. It increased the uncertainty
in the model’s correspondence with reality. Other parameters did show a strong sensitivity, indicating
a significant influence on the model’s internal processes. The sensitive parameters generally found
similar values across the four models.

A noticeable difference was observed in the sensitivity of Ce between coniferous and deciduous trees.
In both the conventional and Kv models, Ce for deciduous trees exhibited strong sensitivity, whereas for
coniferous trees it was weak. This suggests that deciduous trees may be more sensitive to limitations
in available soil moisture than coniferous trees, which is contrary to the general expectation that, on
average, deciduous trees are more drought-resistant (Jiménez-Rodríguez et al., 2024).

Another significant difference between the conventional and Kv models was that the conventional model
found higher Ce values during calibration, while the Kv found lower values. A possible explanation is
that the Kv compensated for the multiplication by the Kv,a factor through lower Ce values. A low Ce
value caused the min term in Equation 2.31 to return a value of 1 more often. Therefore, Et would have
followed the Kv shape function more closely.

There is a large difference in the number of parameter configurations that passed the thresholds to
save the configuration. The conventional model had over three times as many saved combinations
(58%) as the SF and combined models (both 18%). Under the same conditions, the Kv model saved
6% of its configurations. While the conventional model produced configurations with Fobj below the
threshold, it was not able to reach the same low objective values as the combined and Kv models.
This indicates that the conventional model was more robust but was still outperformed by the Kv and
combined models in terms of best found objective values.

Because the modified models are more sensitive to parameter configuration, they would require longer
calibration (larger Monte Carlo sample size) to find their optimal combination compared to the conven-
tional model.
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4.3.2. Discharge simulations
The discharge simulations generated by the conventional and modified models were evaluated based
on performance metrics and a visual inspection of the resulting discharge time series.

Evaluation metrics
In general, the models exhibited higher performance during the validation period than during calibra-
tion, which is counter-intuitive. Normally, a model trained on a calibration set would perform similarly
or worse on the validation set. However, this can be explained by the model selection method used in
this study. All parameter configurations that resulted in a Fobj below a set threshold during calibration
were tested during validation. The parameter configuration that resulted in the highest performance
over both calibration and validation was selected. Therefore, it is possible that the selected parameter
configuration was not the highest performing during the calibration period, but was compensated for
by a higher performance during validation. This selection method ensured that the model was gener-
alizable (good performance over both periods), but consequently can perform higher during validation
than calibration.

No significant differences in precipitation or potential evaporation were observed between the calibra-
tion and validation periods. However, the validation period spanned three years, compared with five
years for calibration. The selected models may have performed better during validation due to the
smaller dataset, potentially compensating for lower performance during calibration. As a result of the
selection method, the chosen models could have been biased toward the validation set.

The models showed higher performances during winter than during summer. Models scored lower on
NNSE,Q and NNSE,Cmr , specifically during this time compared to the winter. This is likely caused by the
low discharge during summer. With low discharge, the few peaks that did occur had a relatively large
influence on these metrics due to their sensitivity. The NlogNSE,Q is less sensitive to peaks as it typically
is stronger influenced by the low values. Therefore, the low base discharge had a lower impact on
NlogNSE,Q compared to NNSE,Q and NNSE,Cmr .

Generally, the Kv and combined models had higher performances than the conventional model for
NNSE,Cmr . This was expected as NNSE,Cmr is an indirect measure of actual evaporation (Ea). Because
the modifications were designed to improve Et and the partitioning between Ei and Et, Ea should
theoretically be more realistic. Consequently, NNSE,Cmr should indicate an improvement with respect to
the conventional model. The SF model performed lower than the conventional model for this metric
during calibration but higher during validation.

The models showed similar performances compared to each other in terms of annual NRMSE. The
combined and Kv were the highest performing models during winter. During summer, the conventional
model was the highest performing model with the modified models showing similar performances, but
slightly lower than the conventional model. The NRMSE was much lower during the summer for all
models, which was the result of the low discharge during this period compared to the winter.

Discharge time series
The comparison of observed and simulated discharges indicated that the models generally produced
similar results. Sharp and high peak discharges were consistently underestimated by all models,
whereas lower peaks were captured more accurately. During the summer, the modified models oc-
casionally simulated low discharges that were not observed, a phenomenon less frequent in the con-
ventional model.

Generally, the modified models produced slightly better discharge simulations between November and
April compared to the conventional model. In contrast, the conventional model performed slightly higher
between May and September compared to the modified models. This is in line with the calculated
performance metrics for the hydrological summer and winter semesters.

In some cases, high observed discharge peaks could not be explained by precipitation, suggesting
that rainfall occurred in the WEC but was not captured by the meteorological station, a common issue
in hydrology. Conversely, the models occasionally produced discharge peaks in response to heavy
rainfall that did not appear in the observations, indicating that the recorded precipitation at the station
missed portions of the catchment.
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4.3.3. Transpiration simulations
As also done for discharge, the transpiration simulations generated by the conventional and modified
models were evaluated based on performance metrics and a visual inspection of the resulting transpir-
ation time series. Additionally, the individual contributions of the coniferous and deciduous parts of the
models to the total transpiration were evaluated.

Evaluation metrics
The transpiration simulations were compared with GLDAS-2.2 data as a reference. However, this
dataset was generated using multiple land surface models and does not represent direct observations.
While GLDAS-2.2 provides a useful benchmark for evaluating model outputs, it is subject to uncertain-
ties stemming from both the underlying models and their input data. Consequently, differences between
the transpiration simulations and GLDAS-2.2 may reflect uncertainties in the reference dataset as well
as in the hydrological models.

The SF model achieved the highest scores for NNSE and NlogNSE, annually as well as seasonally. An-
nually, the conventional model performed similar to the Kv and combined models based on NNSE, but
performed lower for NlogNSE. This indicates that the conventional model was not able to simulate low
transpiration rates well (winter). During the summer, the conventional model performed higher onNNSE
but lower on NlogNSE compared to the Kv and combined models.

All models performed worse in winter than in summer, with all except the SF model yielding negative
NNSE and NlogNSE values. Negative values indicate that the simulations were less accurate than simply
using the mean transpiration over the given period. This outcome was driven by (near-)zero transpir-
ation during winter: when models simulated non-zero transpiration, it strongly affected the NNSE and
NlogNSE scores.

TheNRMSE further confirmed that the SF model was superior to the other models for simulating transpir-
ation. Like for NNSE and NlogNSE, the SF model performed higher for each time period. During summer
the conventional model performed slightly higher than the Kv and combined models, but much lower
during the winter. This was because the conventional model produced relatively high transpiration rates
during the winter, while in reality these were (near-)zero.

Transpiration time series
The time series analysis supported the metrics-based evaluation, indicating that transpiration was best
simulated by the SF model. Its simulations generally matched the reference data, particularly between
August and April. From May to July, the SF model often overestimated transpiration, but still remained
closer to the reference than the other models. The SF model relied on sap flow data generated by the
sap flow prediction model, which had been trained on 2019–2020 data. Importantly, its performance
was not noticeably better during those years than in others, suggesting that the sap flow prediction
model was generalizable.

The other modified models simulated winter transpiration more accurately than the conventional model,
although they generally still overestimated, particularly in October and November. They also captured
fluctuations in transpirationmore effectively, whereas the conventional model showed fewer fluctuations
and often failed to reproduce transpiration peaks.

During summer, the combined model typically produced the highest transpiration rates, overestimating
the transpiration. During transpiration peaks in June and July, the Kv model simulated lower rates than
the SF and combined models, generally falling between those models and the conventional model.

The SF and combined models showed anomalous behaviour during August and September in 2018,
2020 and 2022. Here, both models simulated transpiration values of zero while this should not happen
at these moments. Analysis of the internal fluxes and storages of these models indicate that the un-
saturated reservoir (UR) depleted at these moments, as shown in Figure 4.1. This issue did not occur
for the conventional and Kv models. These models used Equations 2.15 and 2.31 respectively, calcu-
lating transpiration based on the relative soil moisture and potential evaporation. Here, transpiration
decreased with a decreasing relative soil moisture, resulting in a slower depletion of UR. As the SF and
combined models used methods not directly limited by relative soil moisture, their UR depleted faster,
resulting in the zero transpiration simulations.



4.3. Hydrological models 57

Jun Jul Aug Sep Oct Nov
0

1

2

3

4

5

6

7
E t

 [m
m

 d
1 ]

2020 SF model

0

30

60

90

120

150

180

210

S u
 [m

m
]

Et, Dec
Et, Con

Su, Dec
Su, Con

(a) 2020 Transpiration anomaly (7-days rolling mean) for
SF model.
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(b) 2020 Transpiration anomaly (7-days rolling mean) for
combined model.

Figure 4.1: The 2020 transpiration anomalies found in the SF and combined models. Transpiration
simulations were zero when the unsaturated reservoir (UR) was empty (Su = 0), and returned when Su
increased. Transpiration and storages are shown for both deciduous and coniferous model parts per
unit of area.

In terms of fractional contributions by the coniferous and deciduous parts of the models, the conven-
tional model showed no seasonal differences between the coniferous and deciduous components. It
also predicted transpiration during winter because Et was calculated solely as a function of relative soil
moisture and Ep. As a result, seasonality was not accounted for, leading to overestimation of Et during
winter, as clearly shown in the results.

The SF model showed a strong increase in the deciduous contribution in April, which persisted until
the end of the year. This increase coincides with leaf development in spring, indicating a realistic
representation of this process.

The Kv and combined model both showed a strong seasonality, with coniferous trees contributing 100%
of the transpiration at the start of the year. This contribution gradually decreased as the deciduous trees
became more dominant. From September onwards, the deciduous contribution decreased again. This
shape strongly corresponds with the Kv shape function, which is expected since both models use this
shape for the partitioning of Ep in the deciduous part of the model.

The analysis of coniferous and deciduous contributions to total transpiration showed that these were not
continuous. The relative contributions on 31 December differed from those on 1 January, resulting in an
artificial jump. Although transpiration was near zero at that time and thus the effect on the simulations
was negligible, such discontinuities are undesirable because they are unrealistic. These jumps arise
from different causes.

The jump in contribution shown by the SF model can be explained by the method used to predict
normalised sap flow. The prediction model relied on TCGDD,n as a seasonal indicator but was trained
only on data from April to mid-December, and thus did not cover the full year. As a result, it could not
derive a cyclic partial dependence for TCGDD,n, leading to a discontinuity between values of 1 and 0
(31 December to 1 January). If sap flow data were available year-round, the prediction model could
establish cyclic seasonality and remove this jump.

The Kv model’s jump was the result of the Kv shape function. This shape function started every year
at zero but did not end at zero. This was caused by the method used to derive the shape function.
A logistic function (Equation 2.25) was fitted to the TCGDD curve, using a parameter t0 to define the
midpoint of the shape. The actual midpoint of the year occurs after 183 days (2 July), whereas the
midpoints determined during fitting were typically around day 200 (19 July). As a result, the theoretical
maximum of the TCGDD curve was not reached by 31 December, leaving the slope of the Kv shape
function nonzero at year-end. This creates a slight discontinuity, producing the observed jump.
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The combined model used both the Kv and SF models approaches and therefore its jump has to be
explained by both reasons mentioned above. However, visually the discontinuity seems to be mainly
influenced by the Kv shape function (Figure 3.20c).

4.3.4. Model evaluations
The analysis of simulated discharge showed that the combined model was the highest performing
model during winter and annually. The Kv model showed very similar performances as the combined
model, but overall slightly lower. The SF model performed the lowest on discharge simulations, with the
conventional model performing higher. During the summer, however, the conventional model was the
highest performing model. Here, the combined model scored slightly lower, followed by the Kv model.
Here, the SF had the lowest performance again. It should be emphasised that, although the metrics
suggest some models performed better than others, no model was significantly superior or inferior; all
produced good and very similar discharge simulations.

Analysis of the models’ internal transpiration simulation was in sharp contrast with the discharge simu-
lations. The SF model consistently outperformed the others, achieving higher scores across all metrics,
both annually and seasonally. Its advantage was most pronounced in winter, when other models gen-
erally performed worse than using the mean (negative NNSE or NlogNSE values), while the SF model
maintained good NNSE scores. This low performance by the other models during winter was explained
by the overestimation of transpiration, as transpiration was typically near-zero during this time. The
conventional model typically performed worst of the four models.

The sharp contrast between the discharge and transpiration simulation scores was surprising. It was ex-
pected that more accurate transpiration simulations would improve the internal water balance, leading
to higher discharge performance. However, the highest performing model on transpiration (SF model)
performed worst on discharge. This suggests that other internal model processes compensated for
inaccuracies in transpiration estimates.
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Conclusion

The objective of this study was to incorporate tree phenology into a conceptual hydrological model for
a heterogeneous forest catchment by using environmental variables to represent sap flow dynamics.
To address this, a sap flow prediction model was developed to extend limited observations, and three
methods were tested to integrate phenological information into a conceptual hydrological model. It was
hypothesised that incorporating tree phenology would improve discharge and transpiration simulations
compared to a conventional model without vegetation dynamics.

The central questions for this research were as follows:

1. How can environmental variables representing sap flow dynamics be used to include tree phen-
ology in a conceptual hydrological model for a catchment with heterogeneous tree coverage?

2. How can sap flow be predicted based on environmental variables?
3. How do conceptual hydrological models that include phenology information perform on discharge

and transpiration simulations compared to the conventional conceptual hydrological model?

5.1. Sap flow prediction model
The sap flow prediction model was developed using a Generalized Additive Model (GAM) framework.
Separate models were created for coniferous and deciduous trees, each predicting normalised sap flow
(vsf,n) for its respective category. The models used environmental variables as inputs: temperature (T ),
relative humidity (h), incoming shortwave radiation (Rs), weighted average volumetric water content
over depth (θavg), and normalised accumulated growing degree-day (TCGDD,n), with the latter serving as
a seasonal indicator. The model successfully captured sap flow dynamics in both tree categories and
demonstrated generalizability, achieving similar performance on training and testing datasets.

Analysis of the fitted models showed that T and Rs were positively correlated with vsf,n. Higher tem-
peratures had a slightly negative correlation with vsf,n for coniferous trees, indicating they experienced
stress at higher temperatures. Deciduous trees did not show this behaviour, indicating they were less
sensitive to higher temperatures.

Both tree categories responded similarly to h, which was negatively correlated with vsf,n, consistent with
its role in regulating atmospheric demand. Furthermore, h had a larger influence on vsf,n than T or Rs,
confirming its importance in sap flow prediction.

Responses to θavg were comparable for both tree types. Low soil moisture strongly reduced vsf,n due to
water stress, while high soil moisture limited sap flow in deciduous trees, likely due to reduced oxygen
availability. Coniferous trees were less sensitive to high soil moisture.

The models showed a clear difference in seasonality between coniferous and deciduous trees. Based
on the relations between vsf,n and TCGDD,n, it can be concluded that deciduous trees had a strong
seasonality. In contrast, coniferous trees had limited seasonality.

Overall, the sap flow prediction model provides a reliable method to extend sap flow records. Therefore,
it can be concluded that vsf,n can be predicted using a GAM structure based on T , h, Rs, θavg, and
TCGDD,n.
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5.2. Hydrological model
To incorporate tree phenology into the hydrological modelling framework, the FLEXI model was first
adapted from a lumped into a semi-distributed structure, representing the two dominant vegetation
types in the Weierbach Experimental Catchment: deciduous and coniferous trees. This model was
referred to as the conventional model.

Three methods were developed to represent phenological dynamics in this model. The first method
(SF model) relied directly on normalised sap flow, replacing the conventional relative soil moisture
term in the transpiration equation. The second method (Kv model) used the temperature-based ac-
cumulated growing degree-day (TCGDD) as an indirect measure of sap flow seasonality. It dynamic-
ally partitioned potential evaporation into interception evaporation and transpiration. The third method
(combined model) combined the first two methods.

The performance on discharge simulations of the modified models was generally comparable to the
conventional model. During the hydrological winter (Oct–Mar), the Kv and combined models had the
highest performances based on discharge, followed by the conventional model. The SF model had the
lowest performance during this period. However, during summer the conventional model performed
better than the modified models. In terms of root mean square error, all models had similar perform-
ances during summer, winter and annually. Overall, all models performed well in simulating discharge,
with no model being significantly superior or inferior to the others.

In contrast, the inclusion of phenological dynamics had a significant impact on transpiration simulations.
The conventional model consistently overestimated transpiration during winter months, when decidu-
ous trees were leafless and no transpiration took place. The modified models were able to correct
this unrealistic behaviour, simulating (near-)zero transpiration outside the growing season of decidu-
ous trees. During the winter, the SF model simulated coniferous trees more accurately than the Kv and
combined models, which overestimated coniferous transpiration.

Among the three approaches, the SF model captured sharper seasonal transitions, such as the rapid
increase in transpiration during leaf-out, while the Kv and combined models represented more gradual
seasonal dynamics. During summer, the transpiration simulations of the SF model were closest to the
reference data, whereas the Kv and combined models tended to overestimate transpiration at both the
start and the end of the growing season. These differences reflect the contrasting strengths of direct
sap flow driven versus temperature-driven approaches.

The inclusion of phenological dynamics also revealed a more realistic partitioning of transpiration
between coniferous and deciduous trees. Whereas the conventional model assigned fixed contribu-
tions to each tree category, the modified models captured the dynamic shift in contributions as de-
ciduous trees enter and exit the growing season. This demonstrates that the inclusion of phenology
improves the internal realism of the model, making it better aligned with ecological processes, even if
the discharge simulations remain broadly unchanged.

Overall, the results indicate that incorporating tree phenology enhances the ability of conceptual hy-
drological models to represent transpiration seasonality and vegetation dynamics. While this did not
translate into major improvements in discharge simulation, it did improve the realism of the model.
Therefore, it reduces the issue of equifinality, making the model more likely to produce realistic simula-
tions under changing conditions.

Among the three approaches, the SF method performed best, particularly in capturing transpiration
seasonality. Because this method relies on the sap flow prediction model developed in this study, it
highlights the added value of directly linking environmental drivers to sap flow dynamics when incor-
porating tree phenology into conceptual hydrological models.
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A
Data availability

Table A.1: Sap flow data availability is shown for 2019 and 2020. The ”valid” columns report the per-
centage of available data for each tree over its recording period. Percentages indicating low availability
are colour-coded: orange (50–80% available) and red (<50% available).

Tree Start 2019 End 2019 Valid 2019 Start 2020 End 2020 Valid 2020

B1 2019-04-05 2019-12-19 82.0 % 2020-05-05 2020-11-05 96.0 %
B2 2019-04-05 2019-12-19 62.1% 2020-05-05 2020-11-05 90.7 %
B3 2019-04-05 2019-12-19 87.2 % 2020-05-05 2020-11-05 88.2 %
B4 2019-04-05 2019-12-18 82.8 % 2020-05-05 2020-11-05 94.0 %
B5 2019-04-05 2019-12-19 84.9 % 2020-05-05 2020-11-02 88.1 %
B6 2019-04-05 2019-12-19 61.1% 2020-05-05 2020-11-04 93.0 %
B7 2019-04-05 2019-12-19 87.9 % 2020-05-05 2020-11-05 90.1 %
B8 2019-04-05 2019-11-17 77.7% 2020-05-05 2020-11-05 93.3 %
B9 2019-04-05 2019-12-19 81.9 % 2020-05-05 2020-11-05 96.3 %
B10 2019-04-05 2019-12-19 66.8% 2020-05-05 2020-11-05 95.5 %
B11 2019-04-05 2019-12-19 61.7% - - -
B12 2019-04-05 2019-12-19 87.4 % 2020-05-06 2020-11-05 96.6 %
B13 2019-05-03 2019-12-19 60.9% 2020-05-06 2020-11-01 87.0 %
B14 2019-05-03 2019-12-19 84.4 % - - -

O1 2019-04-05 2019-11-07 82.0 % 2020-05-05 2020-11-05 86.8 %
O2 2019-04-05 2019-12-19 87.7 % 2020-05-05 2020-11-05 97.3 %
O3 2019-04-05 2019-12-19 62.4% 2020-05-05 2020-11-05 99.1 %
O4 2019-04-05 2019-12-19 74.8% 2020-05-05 2020-11-05 99.6 %
O5 2019-04-05 2019-12-19 70.6% 2020-05-05 2020-11-04 91.9 %
O6 2019-04-19 2019-10-15 51.3% 2020-05-05 2020-11-05 99.6 %
O7 2019-04-05 2019-11-21 46.1% 2020-05-05 2020-11-05 96.3 %
O8 2019-04-05 2019-12-07 69.4% 2020-05-05 2020-11-05 98.6 %
O9 2019-04-05 2019-12-19 81.2 % 2020-05-05 2020-11-05 93.3 %
O10 2019-04-05 2019-12-19 82.2 % 2020-05-05 2020-11-05 99.6 %
O11 2019-04-05 2019-12-19 87.3 % 2020-05-06 2020-11-05 95.7 %
O12 2019-04-05 2019-12-19 86.8 % - - -
O14 2019-05-03 2019-12-19 89.0 % - - -

S1 2019-04-05 2019-12-19 94.4 % 2020-05-06 2020-11-03 77.0%
S2 2019-04-05 2019-12-19 55.0% - - -
S3 2019-04-05 2019-12-19 67.0% 2020-05-06 2020-11-05 99.6 %
S4 2019-07-09 2019-12-19 72.3% 2020-05-05 2020-11-05 97.9 %
S5 2019-05-03 2019-12-19 85.5 % 2020-05-05 2020-11-05 99.6 %
S6 2019-05-03 2019-12-19 71.8% 2020-05-05 2020-11-05 98.4 %

D1 2019-07-09 2019-12-19 67.2% 2020-05-06 2020-11-05 99.4 %
D2 2019-05-03 2019-12-19 71.9% - - -
D3 2019-05-03 2019-12-19 94.4 % 2020-05-06 2020-11-04 81.9 %
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Pearson correlation coefficients
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Figure B.1: Spearman correlation coefficient between normalised sap flow (vsf,n) and temperature (T )
for each tree.
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Figure B.2: Spearman correlation coefficient between normalised sap flow (vsf,n) and incoming short-
wave radiation (Rs) for each tree.
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Figure B.3: Spearman correlation coefficient between normalised sap flow (vsf,n) and relative humidity
(h) for each tree.
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Figure B.4: Spearman correlation coefficient between normalised sap flow (vsf,n) and normalised accu-
mulated Growing Degree-Days (TCGDD) for each tree.
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Figure B.5: Spearman correlation coefficient between normalised sap flow (vsf,n) and weighted average
of volumetric water content (θavg) for each tree.
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Figure B.6: Spearman correlation coefficient between normalised sap flow (vsf,n) and volumetric water
content at 10 cm depth (θ10) for each tree.
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Figure B.7: Spearman correlation coefficient between normalised sap flow (vsf,n) and volumetric water
content at 20 cm depth (θ20) for each tree.
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Figure B.8: Spearman correlation coefficient between normalised sap flow (vsf,n) and volumetric water
content at 40 cm depth (θ40) for each tree.
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Figure B.9: Spearman correlation coefficient between normalised sap flow (vsf,n) and volumetric water
content at 60 cm depth (θ60) for each tree.



C
Normalised sap flow time series
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Figure C.1: Time series of the normalised sap flow (vsf,n) for 2012. Note: No predictions between
January and April were possible due to lack of data.
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Figure C.2: Time series of the normalised sap flow (vsf,n) for 2013.
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Figure C.3: Time series of the normalised sap flow (vsf,n) for 2014.
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Figure C.4: Time series of the normalised sap flow (vsf,n) for 2015.
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Figure C.5: Time series of the normalised sap flow (vsf,n) for 2016.
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Figure C.6: Time series of the normalised sap flow (vsf,n) for 2017.
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Figure C.7: Time series of the normalised sap flow (vsf,n) for 2018.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Date

0.0

0.2

0.4

0.6

0.8

1.0

v s
f,n

 [-
]

2019 Normalised sap flow
Deciduous
Coniferous

Figure C.8: Time series of the normalised sap flow (vsf,n) for 2019.
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Figure C.9: Time series of the normalised sap flow (vsf,n) for 2020.
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Figure C.10: Time series of the normalised sap flow (vsf,n) for 2021.
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Figure C.11: Time series of the normalised sap flow (vsf,n) for 2022.
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(a) Annual (Jan–Dec).

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

Year

0
100
200
300
400
500
600
700
800

Am
ou

nt
 [m

m
]

Winter discharge
Obs Conv SF Kv Comb

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

Year

Winter atmospheric forcing
P EP

(b) Winter (Oct–Mar).
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Figure D.1: Overview of total precipitation (P ) and potential evaporation (Ep) with total observed and
simulated discharge per model. Shown annually (Jan–Dec) at the top, during hydrological winter (Oct–
Mar) in the middle and during the summer (Apr–Sep) at the bottom.
Conv = conventional model, SF = sap flow model, Kv = Kv model, Comb = combined model.
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Figure D.2: Hydrograph of the observed and simulated discharges per model in the upper panel for
2015. The bottom panel shows the precipitation (P ) and temperature (T ) over this period.
Conv = conventional model, SF = sap flow model, Kv = Kv model, Comb = combined model.
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2016 Daily hydrograph: observed vs simulated discharge
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Figure D.3: Hydrograph of the observed and simulated discharges per model in the upper panel for
2016. The bottom panel shows the precipitation (P ) and temperature (T ) over this period.
Conv = conventional model, SF = sap flow model, Kv = Kv model, Comb = combined model.
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2017 Daily hydrograph: observed vs simulated discharge
Obs
Conv
SF

Kv
Comb

Winter Summer

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

25
50
75

100

P 
[m

m
 d

1 ]

2017 Precipitation and temperature

10
0
10
20
30

T 
[°

C]

Figure D.4: Hydrograph of the observed and simulated discharges per model in the upper panel for
2017. The bottom panel shows the precipitation (P ) and temperature (T ) over this period.
Conv = conventional model, SF = sap flow model, Kv = Kv model, Comb = combined model.
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2018 Daily hydrograph: observed vs simulated discharge
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Figure D.5: Hydrograph of the observed and simulated discharges per model in the upper panel for
2018. The bottom panel shows the precipitation (P ) and temperature (T ) over this period.
Conv = conventional model, SF = sap flow model, Kv = Kv model, Comb = combined model.
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2019 Daily hydrograph: observed vs simulated discharge
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Figure D.6: Hydrograph of the observed and simulated discharges per model in the upper panel for
2019. The bottom panel shows the precipitation (P ) and temperature (T ) over this period.
Conv = conventional model, SF = sap flow model, Kv = Kv model, Comb = combined model.
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Figure D.7: Hydrograph of the observed and simulated discharges per model in the upper panel for
2020. The bottom panel shows the precipitation (P ) and temperature (T ) over this period.
Conv = conventional model, SF = sap flow model, Kv = Kv model, Comb = combined model.
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Figure D.8: Hydrograph of the observed and simulated discharges per model in the upper panel for
2021. The bottom panel shows the precipitation (P ) and temperature (T ) over this period.
Conv = conventional model, SF = sap flow model, Kv = Kv model, Comb = combined model.
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Figure D.9: Hydrograph of the observed and simulated discharges per model in the upper panel for
2022. The bottom panel shows the precipitation (P ) and temperature (T ) over this period.
Conv = conventional model, SF = sap flow model, Kv = Kv model, Comb = combined model.
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Transpiration Figures
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Figure E.1: The 7-day rolling mean transpiration time series for 2015 with GLDAS-2.2 transpiration
data as reference.
Conv = conventional model, SF = sap flow model, Kv = Kv model, Comb = combined model.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

1

2

3

4

5

6

E t
 [m

m
 d

1 ]

2016 Observed vs simulated transpiration (7-day rolling mean)
GLDAS-2.2
Conv
SF

Kv
Comb

Winter Summer

Figure E.2: The 7-day rolling mean transpiration time series for 2016 with GLDAS-2.2 transpiration
data as reference.
Conv = conventional model, SF = sap flow model, Kv = Kv model, Comb = combined model.
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Figure E.3: The 7-day rolling mean transpiration time series for 2017 with GLDAS-2.2 transpiration
data as reference.
Conv = conventional model, SF = sap flow model, Kv = Kv model, Comb = combined model.
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Figure E.4: The 7-day rolling mean transpiration time series for 2018 with GLDAS-2.2 transpiration
data as reference.
Conv = conventional model, SF = sap flow model, Kv = Kv model, Comb = combined model.
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Figure E.5: The 7-day rolling mean transpiration time series for 2019 with GLDAS-2.2 transpiration
data as reference.
Conv = conventional model, SF = sap flow model, Kv = Kv model, Comb = combined model.
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Figure E.6: The 7-day rolling mean transpiration time series for 2020 with GLDAS-2.2 transpiration
data as reference.
Conv = conventional model, SF = sap flow model, Kv = Kv model, Comb = combined model.
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Figure E.7: The 7-day rolling mean transpiration time series for 2021 with GLDAS-2.2 transpiration
data as reference.
Conv = conventional model, SF = sap flow model, Kv = Kv model, Comb = combined model.
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Figure E.8: The 7-day rolling mean transpiration time series for 2022 with GLDAS-2.2 transpiration
data as reference.
Conv = conventional model, SF = sap flow model, Kv = Kv model, Comb = combined model.
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