
Delft Center for Systems and Control

CONFIDENTIAL

Local Accuracy in Global
Uncertainty
The Design of a Particle Filter Based Hybrid Metric-
Topological Mapping and Localization Framework

Remco Roozendaal

M
as

te
ro

fS
cie

nc
e

Th
es

is

mscconfidential

Local Accuracy in Global
Uncertainty

The Design of a Particle Filter Based Hybrid Metric-Topological
Mapping and Localization Framework

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Remco Roozendaal

October 13, 2016

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

This thesis is supported by Robot Security Systems and Robot Care Systems. Their cooper-
ation is hereby gratefully acknowledged.

Copyright c© Delft Center for Systems and Control (DCSC)
All rights reserved.

Delft University of Technology
Department of

Delft Center for Systems and Control (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled
Local Accuracy in Global

Uncertainty
by

Remco Roozendaal
in partial fulfillment of the requirements for the degree of

Master of Science Systems and Control

Dated: October 13, 2016

Supervisor(s):
Prof. dr. R. Babuska (DCSC)

Ir C.J. Lekkerkerker (RCS)

Reader(s):
Dr. J Alonso Mora (DCSC)

Prof. dr. ir. P. Jonker (BMechE)

Abstract

Mobile robots need to interact with their environment to perform their tasks. To be successful
they often need to know what their surrounding looks like, and where they are located in that
surrounding. The act of simultaneously estimating both the state of the robot and the state
of the environment is called Simultaneous Localization And Mapping (SLAM). The SLAM
problem has been intensively researched since it is one of the key prerequisites for correct
functioning of mobile robots.
Popular mapping algorithms use Kalman or particle filters to describe the robot state and the
environment with probability distributions. When the mapped environment becomes larger
these algorithms need more computational resources and have trouble recognizing known
locations. This is mostly because the stored map becomes too large to process and the
uncertainties have become too big to properly be described or used in the SLAM framework.
This work proposes a Hybrid Metric-Topological (HMT) mapping method to solve problems
regarding place recognition and computational resources commonly experienced when map-
ping large environments. The framework will create local maps using a particle filter and
connect the local maps in a graph constrained with edges. The local environment is mapped
accurately, while the relative uncertainties are stored in the edges. In this work the devised
framework is called "Forced Resampling hybrid Metric-Topological Mapping" or FoRMeT
Mapping. It is characterized by being an approximate solution to the SLAM problem that
makes justifiable assumptions to be a lightweight HMT framework. The biggest innovation is
the forced resampling strategy which allows the particle filter ambiguity to be stored in the
last two visited local maps, while keeping all other maps in a shared topology.
An implementation of the framework is devised in C++ with ROS (Robot Operating System)
and tested on a real world environment containing a large loop, and a simulated large scale
environment. The same experiments are also performed with the commonly acknowledged
mapping algorithm "GMapping" for comparison. FoRMeT Mapping outperforms GMapping
on all performance criteria. FoRMeT uses about 3 times less computational resources for each
task and the local areas look as good as GMapping’s local areas, with exceptions around the
loop closure areas where FoRMeT looks better with less discrepancies. It can be concluded
that FoRMeT can close large loops, map large environments and outperform GMapping while
remaining a lightweight SLAM framework.

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

ii

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

Table of Contents

Preface xiii

1 Introduction 1
1-1 Mapping and localization . 1
1-2 Thesis statement . 2
1-3 Design specifications . 2
1-4 Thesis outline . 2

2 Background Information 5
2-1 SLAM . 5

2-1-1 Interaction variables . 5
2-1-2 Map appearance . 6
2-1-3 Traditional SLAM . 7

2-2 Particle Filter SLAM . 7
2-2-1 Rao Blackwellized particle filter . 7
2-2-2 Resampling . 8
2-2-3 Loop closure . 8
2-2-4 Rao Blackwellized particle filter . 9

2-3 FastSLAM . 9
2-3-1 RBPF based occupancy grid mapping 9

2-4 Topological SLAM . 10
2-4-1 Topological maps . 10
2-4-2 Semantic maps . 10

2-5 Hybrid metric-topological SLAM . 11
2-5-1 HMT with traditional SLAM . 12
2-5-2 HMT with RBPF SLAM . 14

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

iv Table of Contents

3 The FoRMeT Framework 17
3-1 Local mapping algorithm . 17

3-1-1 Adjustments to RBPF SLAM . 18
3-2 Map size and separation . 22

3-2-1 Map size . 22
3-2-2 Node traversal and map generation . 22

3-3 Traversal candidates . 23
3-4 Traversal . 24
3-5 Optimization . 25

3-5-1 Edge updating . 25
3-5-2 Graph optimization . 26

4 The Implemented FoRMeT Framework 29
4-1 Sample from motion model . 29
4-2 Filter update . 30
4-3 Weight update . 30

4-3-1 Pose optimization . 31
4-4 Map update . 31
4-5 Resampling . 32
4-6 Forced resampling . 33
4-7 Node traversal . 33

4-7-1 Selection of traversal candidates . 34
4-7-2 Sampling of match points . 34
4-7-3 Matching of match points . 34
4-7-4 Sampling of traversal action . 35
4-7-5 Execution of traversal action . 35

4-8 optimization . 35
4-9 parameters . 35

5 Experiments 37
5-1 Experimental setup . 37
5-2 Experimental design . 38

5-2-1 Datasets . 38
5-2-2 Experiments . 39
5-2-3 Comparison . 40

5-3 Experiment 1: IDE small loop . 40
5-3-1 GMapping with standard parameters . 41
5-3-2 GMapping with tuned parameters . 42
5-3-3 FoRMeT Mapping . 42

5-4 Experiment 2: IDE large loop . 45
5-4-1 GMapping . 45
5-4-2 FoRMeT Mapping . 48

5-5 Simulated large scale experiments . 52
5-5-1 GMapping . 52
5-5-2 FoRMeT Mapping . 53

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

Table of Contents v

6 Conclusion 57

7 Discussion and Recommendation 59
7-1 GMappping performance . 59
7-2 Similarity to HMT-SLAM . 59
7-3 Limitations . 60

7-3-1 Network of maps . 60
7-3-2 In between maps . 60
7-3-3 Map exploration condition . 61
7-3-4 Empty maps . 61

7-4 Improvements . 61
7-4-1 Tilted environment in new maps . 61
7-4-2 Uncertainty ellipses . 62
7-4-3 Code improvements . 62
7-4-4 Improved localization and optimization 62

7-5 Future research . 62
7-5-1 Continuous mapping . 62
7-5-2 Navigation . 63
7-5-3 Dynamic maps . 63
7-5-4 Autonomous exploration . 63

A Bayes Filter 65
A-1 Bayes Theorem . 65
A-2 Bayes filter . 65

A-2-1 Motion and observation model . 65
A-2-2 Beliefs . 66
A-2-3 Markov assumption . 66
A-2-4 Bayes filter . 66

A-3 Kalman filter . 67

B Introduction to Kalman Filter SLAM 69
B-1 EKF SLAM . 70
B-2 Data association . 70
B-3 Loop closure . 71
B-4 Computational complexity . 71

C Introduction to Particle Filters 73
C-1 Resampling . 74

D Monte Carlo Localization 75
D-1 Monte Carlo localization . 75
D-2 Adaptive MCL . 76

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

vi Table of Contents

E Shortest Path Algorithms 77
E-1 Dijkstra’s algorithm . 77
E-2 Dijkstra for grid maps . 78
E-3 Other algorithms . 78

F Homogeneous coordinates 81
F-1 Notation . 81
F-2 Operations . 81

G Iterative Closest Point 83

Glossary 87
List of Acronyms . 87

Index 89

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

List of Figures

2-1 A map containing the robot odometry (dashed), the corrected path (red line), the
real (blue), and the estimated (red) locations of the landmarks. From [1] 6

2-2 A pointmap containing projected range measurements points. 6
2-3 An occupancy grid map. White cells are free, black cells are occupied and gray

cells are unknown. From [2]. 7
2-4 Topological examples. 11
2-5 Uncertainty projection of different routes between two nodes in [3] 12
2-6 An improvised illustration of different line elements grouped by color forming local

maps. The projected uncertainty for each map is visualized in red. The robots
uncertainty overlaps with the uncertainty of two other maps. 13

2-7 Every existing map in Atlas [3] is in one of these states and can move from state
to state in the direction of the arrows. 14

2-8 Maps created by HMT-SLAM [4], blue lines go from features to map nodes to
indicate which features are grouped to one map. Nodes are shown in blue and
edges in green. 15

2-9 Node locations with corresponding maps projected from current node (15) in HMT-
SLAM [4]. Optimization is performed for global consistency. 16

3-1 Two maps, one where the particle has the correct path and can close the loop.
The other particle had a biased resampling, halfway it can already be seen that the
particle will not be able to close the loop. 19

3-2 Simplified example of particle paths. Most left, all particles share the same path.
Most right, all particles have their own pose. 20

3-3 Simplified example of particle paths and their maps. Here the particle that initial-
izes the forced resampling is circled in red . 20

3-4 One step after forced resampling. 21
3-5 The current map with the map traversal threshold as a dashed line. Possible

particle poses depicted as arrows in which the green poses will be considered for
traversal and the red poses not. 23

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

viii List of Figures

3-6 Particle in red, with different traversal hypothesis after matching with the candi-
dates 2 and 3 from the uncertainty projection. 25

3-7 Traversal with the robot pose in map 1 in blue and the matched robot pose in map
2 in green . 26

3-8 map 1 and map 2 constrained with transform from matching. 26
3-9 An unoptimized interconnected network of maps. The green lines are the shortest

paths to the target maps and the dashed ones have no use in the Dijkstra algorithm
because these nodes can be better reached with other edge combinations. For
simplification no rotated maps are shown. A Dijkstra unused edge is an edge not
present in Dijkstra’s solution tree. 27

3-10 An optimized interconnected network of maps. The green lines are the shortest
paths to the target maps and the dashed ones have no use in the Dijkstra algorithm
because these nodes can be better reached with other edge combinations. 28

4-1 Model used to describe odometric evolution. 29
4-2 Likelihood field describing the measurement model. 30
4-3 Grid map laser beam example for likelihood determination. (a) Beams used for

weight calculation. (b) End points of beam 5 and 6 and their closest match in the
grid map . 31

4-4 An example of grid cells updated with two observations and visualized with an
occupancy threshold of 0.4. 32

4-5 Determination of candidate map. This map becomes a candidate because of the
green sample points falling inside the map square 34

4-6 Samples drawn in the matchable area . 34
4-7 Laser endpoints falling on a straight wall. A scan taken from the IDE dataset (5-2-1). 36

5-1 The SAM1 robot. 38
5-2 The first floor of the IDE faculty at the TU Delft looking down at the central

square at the ground floor. [5] . 38
5-3 A simplified floor plan of the dataset area at the first floor of IDE. The gray areas

represent the hallways. A trial indicates where Figure 5-2 is taken. A green arrow
indicates the path to close the first loop and the blue arrow indicates the continued
path to close the second loop. 39

5-4 The simulated environment with three Willow Garage worlds 39
5-5 A raw point map of the small loop at IDE. Constructed from laser point projection

from pure odometry. The trajectory is shown in red with a square at the start point. 41
5-6 A map of the small loop at IDE created by GMapping with standard parameters.

Red rectangles indicate the areas of the close-ups which are visualized on the right. 41
5-7 performance results of GMapping with standard parameters 42
5-8 Maps created at the IDE small loop. (a) GMapping with tuned parameters. (b)

global FoRMeT Mapping tuned for hybrid performance. 43
5-9 Performance plot of experiment 1. GMapping in red, global FoRMeT in green and

hybrid FoRMeT Mapping in blue . 44
5-10 A raw point map of the small and large loop at IDE. Constructed from laser point

projection from pure odometry. The trajectory is shown in red with a square at
the start point. 45

5-11 GMapping in experiment 2, unsuccessful loop closure. 46

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

List of Figures ix

5-12 Close ups of Figure 5-11 loop closure points. Red arrows indicate misalignments. 46
5-13 GMapping in experiment 2, successful loop closure 47
5-14 Close ups of Figure 5-13 loop closure points. Discrepancies circled in red. 47
5-15 FoRMeT Mapping in experiment 2 . 49
5-16 The current map from Figure 5-15. 49
5-17 FoRMeT Mapping in experiment 2, a run where a larger mismatch was corrected. 50
5-18 Performance plot of experiment 2. GMapping in red and FoRMeT in blue. 50
5-19 A close up of CPU samples 200-300 in experiment 2. GMapping in red and FoRMeT

in blue. 51
5-20 A close up of the last 200 CPU samples in experiment 2. GMapping in red and

FoRMeT in blue. 51
5-21 The Gazebo environment with the three Willow Garage worlds. The robot is in the

middle and the traveled path is shown as a line with color changing from yellow at
the start to purple at the end. There are seven loop closure points present, they
are shown as red circles. 52

5-22 A GMapping created map of the simulated environment in experiment 3. The close
up of Figure 5-23 is located in the red rectangle 53

5-23 A partial map created by GMapping, the local environment in Figure 5-22. The
loop closure offsets are visualized with red arrows. 53

5-24 A FoRMeT created map of the simulated environment in experiment 3. The
uncertainties projected from the current local map are indicated as red ellipses.
The Figure 5-25 close up is indicated with a red rectangle. 54

5-25 A part of the map created by FoRMeTMapping , the local environment in Figure 5-24. 55
5-26 Performance plot of experiment 3. GMapping in red and FoRMeT in blue. 55
5-27 A close up of CPU samples 800-1000 in experiment 3. GMapping in red and

FoRMeT in blue . 56
5-28 A close up of CPU samples 5000-5200 in experiment 3. GMapping in red and

FoRMeT in blue . 56

7-1 Robot traveling between the map match threshold and the map border of both maps. 60
7-2 Robot driving between the map match threshold and the map border of both maps 61

A-1 The Kalman filters prediction, measurement and correction step 68

B-1 The robot pose at different time steps and corresponding landmark observations 69
B-2 Typical distributions from motion models. Adopted from [2] 70
B-3 Left: estimated robot and landmark poses with covariance, right: covariance matrix 70
B-4 The uncertainties of the landmarks and the estimate of the robot poses before and

after loop closures. 71

C-1 particles sets (in blue) with their distribution shapes 74

D-1 Particle distribution over two similar hallways, and robot observation. 75
D-2 Particle distribution over two similar hallways, and robot observation including box. 76

E-1 . 77

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

x List of Figures

E-2 Dijkstra’s algorithm for grid maps . 79

F-1 A point and two coordinate frames in a 2D world 81

G-1 Two iterations of the ICP algorithm. Alignment set in red, reference set in blue,
pairs indicated with arrows . 84

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

List of Tables

2-1 Results from the HMT-SLAM [4] algorithm on two datasets. 16

4-1 Parameters in the implementation of FoRMeT Mapping 35

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

xii List of Tables

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

Preface

Since the classical times cartographers and alike have tried to abstract the world around
them into maps to be used for navigation, strategic warfare, science and more. As we know
now with satellite imaging, these maps are not always accurate on a global scale. Even the
rectangular map we nowadays often use is not accurate since the earth is round. Nevertheless
people know how to get from place to place using this map, because the local areas on the
map are accurate enough. With the rivers, mountains, forests and coastlines as landmarks in
the map people can navigate from local area to local area without even knowing their global
map is skewed and deformed.

This document is a part of my Master of Science graduation thesis. The subject came into
existence after a talk with the people at Robot Security Systems who had trouble mapping
large environments because of increasing computational complexity and inaccuracies. I set
out to develop a framework in which the robot does not create a single global map, but a
network of local maps. The result of which is visible in this work.

I want to express my thanks to the people at Robot Security Systems for letting me pursue
this project at their offices and for making my thesis time enjoyable. I want to thank Pieter
Jonker for connecting me with the company giving me the opportunity to graduate there. I
would like to thank Robert Babuska for helping me focus my thesis subject and for making
the arrangements for my graduation. And also I want to thank my daily supervisor Koen
Lekkerkerker for the times he lend me his knowledge about both SLAM and programming in
C++.

The Hague, Remco Roozendaal
October 13, 2016

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

xiv Preface

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

I would like to dedicate this work to my parents Bernard Roozendaal and Ineke Roozendaal
Koelemeijer who raised me free and unconditionally, facilitating my curiosity and creativity.

Chapter 1

Introduction

Our lives are surrounded with machines using advanced technology. We are entering an age
where nobody is surprised anymore about the improvements made between mobile phone
releases, where everybody expects their lives to be made easier soon by all sorts of robotic
applications and where some already have the possibility to take their hands of the steering
wheel at the highway. It is undeniable that computers, electronics and mechanics combined
can excel in specific tasks in a way humans would never be able to. The entrepreneurial
opportunities lay in fields where robots can do human work with reduced costs, efforts or
increased safety. Many robotic applications are being developed to fill the human need for
automation, and research is being done in all parts of this multidisciplinary field. Soon also
mobile robots will show up in our daily lives, if they are not there already. A characteristic
of mobile robots is that they need to interact and move around in the environment to per-
form their task. To be successful they often need to have an understanding of what their
surrounding looks like and where they are located in the environment. The research in this
field is referred to with the words mapping and localization.

1-1 Mapping and localization

A large body of literature is available, and still being supplemented, about mapping and
localization. It is regarded as one of the key prerequisites for the functioning of a mobile
robot, but it is a difficult problem to solve and it involves many disciplines. Mapping and
localization are tightly interwoven, because the output of either one is necessary to solve the
other. For the robot to know where the wall is in the which he observes w.r.t. itself he needs
to know where he is in the map. And when he reobserves this wall later, the difference in
relative location of the wall indicates a difference in the robots pose. Because of uncertainties
in sensor data the location and map can not always be estimated accurately and the mapping
and localization is commonly solved as an estimation problem with uncertainties in the states.
Because of this inaccuracy robots often produce a skewed and deformed map when mapping
larger areas. Also the production of a large global map often requires a lot of computation

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

2 Introduction

power. Therefore this work will focus on creating a network of accurate local maps, and
keeping the uncertainty in the relative location of the maps by use of a graph with nodes and
edges.

1-2 Thesis statement

Future robots should be able to perform their tasks regardless of the size or layout of their
environment. This thesis will produce a framework that will efficiently represent the environ-
ment as a network of small local maps. The small maps will be attached to topological nodes
which are defined relative to each other with edges carrying uncertainty. It is hypothesized
this localization and mapping framework can handle larger environments than other modern
localization and mapping methods.

1-3 Design specifications

The design specifications are given below.

• The robot should be able to map larger environments than other modern mapping
methods while using similar resources.

• The map should be globally consistent by approximation for human interpretation.

• The lower the computational load the better, there is room for offline processing.

• The framework should not limit itself to a specific environment but be general.

• A grid based map representation is desired for easy human interpretation.

1-4 Thesis outline

This work will explain the proposed framework called Forced Resampling hybrid Metric Topo-
logical (FoRMeT) Mapping. Also an implementation of the framework in C++/ROS (Robot
Operating System) is discussed with which the experiments are done to check the perfor-
mance. For the readers that are not mapping and localization experts it is recommended
to read the background chapter 2, and supplement anything unknown with information in
the appendices. For the more experienced readers it is recommended to read into the HMT
mapping section (2-5) and continue to the explanation of the framework and further.

Chapter 2: Background The basics of probabilistic robotics are introduced here. It contains
definitions, and background information necessary for the subsequent chapters.

Chapter 3: Framework The proposed framework is treated here in its theoretical form.

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

1-4 Thesis outline 3

Chapter 4: Implemented Framework The implementation of the proposed framework used
to test the functionality is discussed here.

Chapter 5: Experiments The implemented framework is tested on different datasets.

Chapter 6: Conclusion Conclusions are made about the frameworks performance.

Chapter 7: Discussion and Recommendation What can be said about the framework,
what are the limitations, and where can improvements be made?

Appendices Appendices about the Bayes filter (A), Kalman filter SLAM (B), particle filters
(C), Monte Carlo localization (D), shortest path algorithms (E), homogeneous coordinates
(F) and iterative closest point (ICP) (G) are attached at the end to supplement the reader
with extra background information.

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

4 Introduction

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

Chapter 2

Background Information

This chapter will treat the information necessary to understand hybrid metric-topological
maps and their applications in robotics. First metric SLAM will be treated, then topolog-
ical SLAM and the hybrid combination of both on which this work focuses. For a more
detailed description of Kalman filter SLAM and Particle filter SLAM, the reader is referred
to appendices B and C.

2-1 SLAM

Mapping is the action of finding the state of the environment. For a mobile robot the state
of the environment includes the places it can and cannot travel and the objects it can use
for localization called landmarks. By using distance sensors the robot estimates the relative
distances of objects to its own coordinate frame. To create a map with these measurements
it needs to know its own location in the map. The estimate of its location based on its
motion sensors is called odometry . Since any sensor is prone to noise and the odometry
typically integrates motion to get distance, it gives a quite erroneous estimation. Landmarks
can be observed with the robots observation sensors and they are used to aid localization and
determine where the landmark is to create a map. We have now arrived at the origin of a large
body of research in mapping and localization, because the landmarks are used for localization,
and the localization is needed to estimate the locations of landmarks in the map. This chicken
and egg problem is referred to as Simultaneous Localization and Mapping (SLAM).

2-1-1 Interaction variables

The robot state is denoted as x, the state at time t is xt and the state evolves from t1
to t2 as xt1:t2 = {xt1 , xt1+1, .., xt2−1, xt2}. Notice the superscript notation to indicate the
sequence up to a time, and the subscript notation to indicate the value at a specific time.
The two other generalized variables are observation measurements and control input. The
control input contains the input given to change the robot state and therefore the observed

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

6 Background Information

world. The control input at time t is denoted as ut and evolves from t1 to t2 as ut1:t2 =
{ut1 , ut1+1, .., ut2−1, ut2}. Because the translation from control input to robot motion often
involves complex models, odometry is frequently taken as the source of the control input
variable. The observation measurement at time t is denoted as zt and evolves from t1 to t2
as zt1:t2 = {zt1 , zt1+1, .., zt2−1, zt2}.

2-1-2 Map appearance

The map will consist of the locations of the landmarks as estimated by the robot. These
landmarks can be represented with their mean and uncertainty ellipse derived from their
covariance. Such a landmark map is visible in Figure 2-1.

Figure 2-1: A map containing the robot odometry (dashed), the corrected path (red line), the
real (blue), and the estimated (red) locations of the landmarks. From [1]

Another popular map type is the point map, where observed points are projected into the
map as visible in Figure 2-2. This contains more information than a landmark map, but this
also means it uses more memory.

Figure 2-2: A pointmap containing projected range measurements points.

As a more compressed format of the point map, the occupancy grid map is often used. In a grid
map each grid cell represents a square plane in space, and that cell can be either occupied, free
or unknown. Hence a ternary representation of space is obtained with a resolution depending
on cell size.

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

2-2 Particle Filter SLAM 7

Figure 2-3: An occupancy grid map. White cells are free, black cells are occupied and gray cells
are unknown. From [2].

2-1-3 Traditional SLAM

Traditional SLAM is based on the Kalman filter. It estimates the location of the robot
often referred to as robot pose, and the locations of the landmarks. More about the KF can
be found in appendix A. The KF is a linear solution, but the SLAM problem contains non-
linear motion and observation models, hence the pose distribution is not normally distributed.
Therefore the Extended Kalman Filter (EKF) can be used which linearizes the models is used
for traditional SLAM. The EKF linearizes the models at operating point so it can perform
the linear estimation, the result will be Gaussian estimates of th robot and landmark poses.
A more detailed description of the EKF can be found in appendix B.

The KF based solutions are nowadays not the standard anymore. The linearizations cause
the estimates to be suboptimal and the complexity grows quadratically with the amount of
observed landmarks (O(n2)). Also it assumes uniquely identifiable landmarks, therefore any
wrong data association will cause an erroneous map.

2-2 Particle Filter SLAM

This work will make use of a modern SLAM method, Particle Filter (PF) SLAM. PF SLAM
is based on the Particle Filter theory where a distribution is approximated by multiple hy-
potheses called particles. An introduction to particle filters is included in appendix C. Particle
filters work optimal when they are estimating only a couple of variables, therefore they are
not suited to do the estimation for the whole KF state vector including landmark locations.
But they are excellent to estimate the pose of the robot, just the x, y, θ variables. By sepa-
rating the estimation of robot pose and landmarks, the landmark locations can be estimated
by n Kalman filters with 2× 2 covariance matrices for every particle. Separating the SLAM
problem into a set of particles for the pose estimation and a Kalman filter for each landmark
per particle is called Rao Blackwellized Particle Filter (RBPF) SLAM.

2-2-1 Rao Blackwellized particle filter

Particle filter SLAM tries to avoid the chicken and egg problem where localization and map-
ping are continuously interwoven. It takes advantage of the fact that creating a map is easy
when the traveled path is known. PF SLAM decouples the SLAM problem into two separate
estimation problems [6]. One estimates the path of the robot, based on the measurements

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

8 Background Information

and the controls, and the other estimates the landmark locations based on all the previous.
The factorization of the SLAM problem in two estimation problems where the first part is
estimated by a PF and the second part by a EKF is known as Rao Blackwellization (eq. 2-1).

P (st, l|zt, ut, nt) = P (st|zt, ut, nt)
∏
k

P (lk|st, zt, ut, nt) (2-1)

Here the k landmarks are estimated based on a known path, simply all robot poses up to
time t. The new variable nt carries the associations between the landmarks which are needed
for correct estimation of both the map and the path. In particle filter SLAM the path st

is estimated with a particle filter. In KF SLAM the Markov assumption (A-2-3) is made,
which assumes that the previous pose is estimated perfectly and thus is the only necessary
parameter from the previous time steps. PF SLAM does not have to make this assumption
for previous poses because it estimates the whole path, all subsequent poses from t0 up to t.
It can however make the assumption that the landmark poses are conditionally independent
when all poses are known, allowing the factorization in equation 2-1.

2-2-2 Resampling

The resampling step is usually an computationally expensive step. In the classic particle
filter the resampling step is performed each iteration, however it is often found unnecessary
in RBPF SLAM because the particle set might describe the pose posterior well. Typically a
healthy particle set has many particles around a high state probability. This way there are
allways a couple of particles very accurate. However, when the particles evolve over time they
spread out, and not enough particles may be left around the true pose. RBPF SLAM chooses
the time to resampling based on a performance criterion, when the variance in particle scores
becomes too high, it resamples. This performance criterion is called the number of effective
particles, ηeff . This number is calculated as in Eq. (2-2), with wk begin the weight of a
particle.

ηeff = 1∑n
k=1(wk)2 (2-2)

By only resampling at these strategic moments, RBPF SLAM reduces computational load
while maintaining a healthy particle set. The resampling happens the same as in the classic
particle filter, the chance for a particle to be sampled is proportionate to its weight, hence
the resampled set is expected to have more particles with higher weights.

2-2-3 Loop closure

The loop closure for a Kalman filter has been described in B-3. For a particle filter loop
closure works a bit differently because an observation cannot change the pose, it can only
weigh a particle. The right particle must thus already be present at the moment of a loop
closure and the observation is used to point out which one is right.

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

2-3 FastSLAM 9

2-2-4 Rao Blackwellized particle filter

The estimation of the robot path by particle filter has been covered now. To solve the full
SLAM problem the landmark locations still need to be estimated. Due to the high dimen-
sionality of this problem, particle filters are not suitable for this, and in practical algorithms a
Kalman filter is typically used to estimate the landmark positions. A particle filter SLAM al-
gorithm will therefore have k particles containing the robot pose xkt , and an Extended Kalman
Filter with mean µkj,t and covariance Σk

j,t for each landmark lj .

2-3 FastSLAM

Montemerlo et al. have written the FastSLAM [6] and FastSLAM 2.0 [7] algorithms which are
RBPF based SLAM algorithms. FastSLAM 2.0 is an improved version published five years
after its predecessor FastSLAM.

It maintains M particles and N landmarks by a set of MN + 1 low dimensional filters, which
require a constant update cost regardless of the path length. Because for each particle the
map is calculated to estimate landmark positions, only 2x2 covariance matrices have to be
calculated, in stead of an NxN matrix which grows quadratically with every landmark. The
MN + 1 update cost is when known data association is assumed. When data association is
efficiently implemented the computational complexity of FastSLAM will becomeO(M logN)).

During the resampling step the history, poses and landmark estimates, of another particle
need to be copied, which can be a costly operation for large maps and trajectories. FastSLAM
avoids most copying by pointing to the location of the landmarks and poses and using an
ancestry tree structure for looking them up.

FastSLAM became popular for it’s benefits over EKF SLAM. It could handle multiple pose
hypothesis’, is was more likely to recover from wrong associations because of its ability to
pursue multiple data associations in different particles, it could handle significantly more
landmarks because it did not add them to the big covariance matrix, but examines them per
landmark per particle.

FastSLAM 2.0 overcomes some deficiencies of its predecessor. The motion update to sample
the particles into their new pose now also incorporates the latest measurement besides the
odometry information. So a measurement update has already been incorporated into the
motion sampling. This makes for more particles being sampled in the posterior distribution
and thus for a higher accuracy of the particle filter.

2-3-1 RBPF based occupancy grid mapping

Currently the most used open source mapping algorithm is GMapping, which uses a form of
RBPF SLAM to perform occupancy grid mapping [8]. The GMapping software library is open
source available on ROS1. The path traveled by the particles is recorded, and the observations
are projected from these poses. The occupancy grid mapping algorithm identifies which grid
cells are occupied and free for each observation, and keeps the average stored in each cell.

1http://wiki.ros.org/gmapping

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

10 Background Information

When the average is over a certain occupation threshold this cell can be regarded as occupied.
The landmark estimation is thus a mere average of projected observations, but it works
well in practice. No data association algorithms are necessary to identify landmarks, just a
projection of the observations into the map to update grid cell averages. GMapping is based
on FastSLAM 2.0 and also uses an ancestry tree with poses to store particles dependencies
on each other. The map visualized at runtime, which is the map of the best scoring particle,
is constructed real time with this tree structure and the observations. This way not every
particle explicitly carries the whole global grid map.

Even though this is a non linear solution, still small odometry errors, or bad resampling could
deform the resulting map over longer distances. Also the particles may be locally accurate,
but for large maps the particle able to close a large loop (see section B-3) may have been
lost in sampling. This is why this work will focus on using a RBPF SLAM for creating local
maps, and keeping these local maps in a topological network.

2-4 Topological SLAM

A very different approach to mapping is topological mapping. Topological mapping is based
on the topology of the environment instead of the metric properties.

2-4-1 Topological maps

Topological maps are defined by nodes connected by edges. The nodes represent places in the
environment and the edges define relations between the nodes. The usual relation captured
in an edge is navigability, which means that you can navigate between two nodes if they are
connected by an edge. A good example of a topological map is a subway map. A subway map
is not made to represent the exact metric locations of stations and tracks, but rather which
stations can be reached with which tracks in a way that is clear for the user (Figure 2-4 (a)).

With such a philosophy in mind topological maps can also be used by robots, the nodes
and edges should then contain information the robot can use to navigate. In a hospital for
example this could mean one node is the main entrance and another node is the intensive care
department, a colored line system is occasionally used to indicate a route to a department,
which a robot could perceive as an edge. Using these nodes and edges the navigation system
could say: "take the red line until you arrive at the intensive care department", without the
need of any metric information.

2-4-2 Semantic maps

A human would usually not know his exact metric location with respect to some reference
point, but can reason through the objects in his environment where he is. A human would
not know he is 4 meters in x, 6 meters in y and 3 meters in z direction as opposed to the
main reference frame of a building. He just knows he entered the main door, walked up the
stairs, took the second door on the right in the hallway and that he is now standing in a
room that looks like an office, because there are many chairs and desks. This can only be
understood if the objects in the human surrounding, like entrance, stairs, hallways, desks,

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

2-5 Hybrid metric-topological SLAM 11

(a) metro map of Ams-
terdam [9]

(b) guiding lines in a
hostpital [10]

Figure 2-4: Topological examples.

chairs have a semantic meaning to him. Semantics give meaning to raw data, and a robot
that uses semantics can use this for localization and mapping.

A robot could use the abstracted information from its sensors to reason about high level
semantics of its environment. It could use a laser range finder to infer the size and shape of
the room, its camera to identify objects in the room and it could even use other sensors like
temperature sensors to infer semantics of a space.

Semantic maps try to use as little metric information as possible and are a good example of
topological maps. However often it is found useful to incorporate some metric elements in
the map. Such a map is then not strictly a topological map anymore, but a hybrid metric-
topological map.

2-5 Hybrid metric-topological SLAM

Hybrid Metric-Topological (HMT) mapping combines both metric and topological paradigms
by including metric information in the nodes and edges of the topological graph. Any global
mapping system, with a single map, will represent the reality a bit deformed over larger areas.
For traditional SLAM these deformations will appear sooner than for modern SLAM, but they
all have a size where the map gets so inaccurate that loops cannot be closed anymore. The
HMT mapping that is discussed in this work is designed to divide the global space in a set
of local subspaces which are represented with one or more nodes connected with edges. The
underlying SLAM algorithm, may it be traditional, or any modern type, should be accurate in
the local subspace. The inaccuracy in the global space should be captured by the topological
network as an uncertainty of where the local subspaces are opposed to each other. In this
work the uncertainty is always closely related to the covariance. The covariance represents a
three dimensional Gaussian, and the uncertainty is represented by an ellipse which indicates
the boundary in which a point in this Gaussian will be with a defined probability. I.e. there
is a probability of 0.95 that the pose of the robot is in the area of the ellipse. Only the x
and y values of the covariance can be expressed in this 2 dimensional representation. The
radii of this ellipse are calculated by taking the eigenvalues of the covariance matrix, and the
orientation is calculated with the arctangent of the eigenvectors. The two HMT frameworks
identified as most relevant to this work will be discussed in this section.

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

12 Background Information

2-5-1 HMT with traditional SLAM

The first HMT framework is designed on top of EKF SLAM and called "Atlas" [3]. It maps
its environment with an EKF into line segments in local maps. The lines in the maps carry
a mean and covariance and the local maps also carry uncertainty about their location which
is captured by edges connecting the map frames. The local maps are added to a graph which
is updated after loop closure to ’stitch’ them together using nonlinear optimization.

Genesis Genesis is a term used in the Atlas framework to describe the generation of a new
map. When the complexity of a local map becomes too large, and a new unexplored area is
entered, a new map frame is created at the origin of the current robot pose. This new map
frame is connected with an edge to the previous map frame. The edge contains a mean and
variance. The robot will continue exploring with his pose relative to the current map frame.

Competing hypotheses This is Atlas’ version of a particle filter. The location of the robot
can be explained in different map frames. Only one hypothesis can exist per map frame, there
are several map frames competing and the best explanation is chosen by a performance metric
based on measured features. This way the robot can be in multiple maps with respective
probabilities, with the best probability being the robots most likely pose/map. The robot
continuously looks for the best explanation.

Uncertainty projection The uncertainty of a node is always relative to another node and
is captured in the edges with a normal distribution. If you would want to calculate the
uncertainty of node D as opposed to node A, it would be a different shaped uncertainty than
that of A as opposed to D (Figure 2-5).

(a) Uncertainty of D
seen from A

(b) Uncertainty of A
seen from D

Figure 2-5: Uncertainty projection of different routes between two nodes in [3]

Because nodes are only defined relative to each other Atlas calculates the so called uncertainty
projection to know the uncertainty to each other node by using Dijkstra’s solution from
the current node (Appendix E). For the weight of the edges in the Dijkstra algorithm the
determinant of the covariance is used as measure of how certain the location of the node is.
It will look up the route from node to node, and it will project the uncertainties over the
corresponding edges. The uncertainty projection is being calculated with the edge transforms

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

2-5 Hybrid metric-topological SLAM 13

and covariances as in Eq. (2-3). Here T ca is the total transform, and Σnm the covariances for
each edge. Jn are the Jacobians of transformation composition, where J1 is the Jacobian of
the translational part of the transformation and J2 the Jacobian of the rotational part.

T ca = T ba + T cb

Σac = J1T
c
aΣabJ1(T ca)T + J2T

c
aΣbcJ2(T ca)T

ρ = det(Σac)
(2-3)

In Figure 2-5 the route A-D can be reached through node C or B both giving another mean
and covariance for node D, hence it is important to use the path with the least uncertainty as
defined by ρ. Besides it can be seen that the inconsistency is always kept furthest away from
the current node. This uncertainty projection will be used to detect possible loop closures.

Map Matching When the uncertainty of the current robot pose with respect to the local
map frame overlaps the projected uncertainty of another map, it qualifies as a potential loop
closure.

Figure 2-6: An improvised illustration of different line elements grouped by color forming local
maps. The projected uncertainty for each map is visualized in red. The robots uncertainty overlaps
with the uncertainty of two other maps.

To determine if the loop closure is valid, amap matching algorithm is deployed. Map matching
is described as finding a coordinate transformation which aligns the current observations with
a candidate map. To start, a signature is made of the current map, which captures important
features. This signature is matched first with its own map to determine if there are any non
unique features present which can be explained by multiple transformations. The non unique
features are removed from the signature and now the signature can more accurately be used
to match with the candidate maps.
Elements in the signature are individually matched with elements in the candidate map. So
one line element could have i.e. three possible matches with respective transformations. Each
of these transformations are also applied to the other elements in the signature. This is
continued for each element until for each element the best matching transformation is found.
These transformations are then solved in a weighted least squares optimization, using the
covariances of line elements stemming from the Kalman filter estimation. A loop can then be
closed and the uncertainties can be reduced.

Traversal When the robot moves from one map frame to another it uses the ’competing
hypotheses’ to determine which map will be the new associated or dominant map. There are

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

14 Background Information

4 stages a map-robot association can be in: Dominant, Mature, Juvenile and Retired. A map
can only move from one to another stage in the direction given in figure Figure 2-7.

Figure 2-7: Every existing map in Atlas [3] is in one of these states and can move from state to
state in the direction of the arrows.

Most of the maps are retired and not candidates to be the robots current map. Every map
that has a hypothesis value is considered at juvenile stage, every non-retired map can therefore
keep track of their performance. From this pool of juvenile maps the hypothesis’ could mature
if it has a high enough performance metric. From the pool of mature maps the map which
represents the environment of the robot the best is chosen to be dominant. When the robot
moves around to the next map, the previous dominant map will become mature again and
retire when it is not near anymore.

Edge refinement When there are two competing map hypotheses and both can explaining
the current robot pose in their own frame very accurately, the relation between the two pose
estimates can be used to reduce the uncertainty between the two map frames. When the
uncertainties are reduced, better estimates of loop closure and traversal candidates can be
made.

2-5-2 HMT with RBPF SLAM

Blanco et al. [4] have build a RBPF SLAM based HMT framework called HMT-SLAM. They
have taken inspiration from the particle filter, and have extended some of its functionality to
the network of local maps. It uses not only hypotheses about the robot pose, but also about
the topology.

Local maps HMT-SLAM uses local grid maps connected with edges which are rigid body
transformations. As opposed to Bosse et al. [3], the map size is based on the amount of
features with overlapping visibility between observations. This means that when you would
go through a door for example, you would see many features not visible on the other side of
the door. The features on either side off the door would likely be grouped in different maps.

By separating the maps this way it will be unlikely to observe features of two different local
areas at the same time, herewith constructing the topological graph in a way that it’s per-
missible to assume conditional independence between the nodes and do graph optimization
later.

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

2-5 Hybrid metric-topological SLAM 15

Figure 2-8: Maps created by HMT-SLAM [4], blue lines go from features to map nodes to
indicate which features are grouped to one map. Nodes are shown in blue and edges in green.

Particles There are particles maintaining a hypothesis about both the topological configu-
ration and the current local map. Each hypothesis of the topological path implies a different
topological structure of the environment and thus, a different hypothesis for the current local
map. The robots hybrid metric-topological path is now described by st = 〈γt, xt〉 with γt the
topological path and xt the metric path traveled up to time t. The hybrid path is estimated
by a particle filter. This is nothing more than a particle filter for the metric path, but the
particles may have different paths and therefore their topological areas look different and are
organized differently, the particles keep track of these nodes and edges.

Loop closure The particles keep moving on while segmenting the features into maps. When-
ever a new map is segmented e.g. an explored area is left behind as being one map, the particle
checks if the features in this map do not already belong to another map and if so performs a
loop closure. The algorithm is thus performing SLAM, and in the background it does segmen-
tation and loop closure. To extend the particle filter hypotheses strategy to the topological
structure a multiple hypothesis system is used for traversing between local areas. There is
a hypothesis of revisiting a local area, and of entering an unexplored area, both sum up to
one. The likelihood of both hypotheses is tracked until a single hypothesis becomes evident
enough.
Every time the robot moves to an already mapped local map, there will be an estimate of how
the nodes are constraint. The algorithm will reduce the uncertainty in the edges and make
a new estimate of the relative locations. When a global map is desired the optimal global
node locations are computed iteratively by linearizing the optimization problem defined by
the edge constraints between the nodes (Figure 2-9). Note that HMT-SLAM also uses the
Dijkstra solution and uncertainty projection (Subsection 2-5-1) to visualize the maps, which
positions the inconsistency the furthest away from the robot pose.

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

16 Background Information

(a) before optimization (b) ater optimization

Figure 2-9: Node locations with corresponding maps projected from current node (15) in HMT-
SLAM [4]. Optimization is performed for global consistency.

Scalability It would appear that this method will be as suffer from similar scalability issues
as RBPF SLAM since it keeps a memory of the whole path st (which also contains the
topological path γt), which keeps on increasing when the robot keeps on moving. However,
the particles only maintain the part on which they don’t agree in their memory. Local maps
can be fixed from the path on which they agree, these are stored in memory and only used
when reentered. The algorithm thus only holds an immediate memory of the part in which
the particles do not agree, making it a scalable algorithm with less complexity than RBPF
SLAM for large environments.

Results HMT-SLAM is tested over a 2km path in an approximately 150m x 150m building
at the University of Malaga campus. It is compared to RBPF SLAM based on the same
article as GMapping (perhaps it was GMapping). It measures how long both algorithms take
to process the data into a map, and how much memory it uses. HMT-SLAM performs better
on both datasets as can be seen in table 2-1.

Table 2-1: Results from the HMT-SLAM [4] algorithm on two datasets.
Method Málaga dataset Edmonton dataset

Global RBPF 197Mb, 103min 84Mb, 39min
HMT-SLAM 36Mb, 26min 28Mb, 8min

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

Chapter 3

The FoRMeT Framework

It has been made clear that theoretically HMT-SLAM can have a better scalability than
global SLAM systems. This work will take inspiration from the discussed works and devise
a new framework which can map large scale environments while remaining a lightweight
application. These frameworks have proved themselves, but improvements can be made in
computational complexity when looking at RBPF SLAM and HMT SLAM. From the
discussed HMT-SLAM systems [3], [4], a number of key HMT elements can be extracted:

1. Local mapping algorithm

2. Map size and separation

3. Map relations

4. Matching

5. Traversal

6. Optimization

The designed framework is called Forced Resampling hybrid Metric Topological (FoRMeT)
Mapping and this chapter will discuss in general how the different elements of this
framework are designed. An implementation to validate this framework’s functionality is
discussed in Chapter 4.

3-1 Local mapping algorithm
The choice is made to use RBPF SLAM as a basis for the FoRMeT framework. RBPF
SLAM is a nonlinear solution to the SLAM problem which can yield very accurate results
locally. Some properties of RBPF SLAM are excellent for building a global map, but these
properties might get in the way when building a network of local maps. Also some solutions
for practical implementation of RBPF SLAM should be evaluated since they might be
unnecessary. These topics will be discussed in this section. When deciding how to optimally
use RBPF SLAM one should keep the philosophy behind FoRMeT in mind: "Local accuracy
in global uncertainty". The steps of a regular particle filter SLAM are the following.

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

18 The FoRMeT Framework

1. Sample new pose from distribution.

2. Weight update.

3. Resampling.

4. Map update.

PF-SLAM has already been treated in 2-2, however to be extended to FoRMeT some of the
functionality can be adjusted. The adjustments will be discussed in the following
paragraphs.

Sample from motion model First let’s look at the motion model sampling. Normally the
particles are sampled in the prior distribution, but in RBPF SLAM it is common to include
the measurement model into the sampling to increase the amount of particles sampled in
the posterior distribution (2-3). This also helps with odometry errors caused by e.g. wheel
slipping. In practice GMapping does this by moving all the particles a bit around their
sampled pose, and check if their weight improves. This is a costly operation, but works in
practice. In HMT mapping however there are often observed features that are outside the
range of the map, even a map without features is possible. The method of GMapping does
thus not always work in the HMT case. It is therefore decided to compare the current
observation with a key frame observation from the past. The odometry will give a prior
estimate, and the key frame observation matching will correct this estimate. The two
estimates are combined with a Kalman filter and the corrected distribution is used as
proposal distribution for the motion model sampling.

Weight update The weight update gives a weight to each particle which is a measure of
how well the particle’s pose fits with the current observation in its own map. This weight
update takes the current observation, the sampled pose and the particle’s map. No
adjustments need to be made to be fit for HMT maps. Only the features visible in the
current map will determine the weight of the particle which means the features which are
observed outside the local map will not influence the local accuracy.

Map update The map updater puts the observations in the map. Only the observations
within the map boundaries are added to the map. As in the regular occupancy grid
mapping algorithm, the observations of the grid are maintained as a running average and
the grid will be regarded occupied when the average is above threshold.

Resampling Most of the improvements are made in the resampling step. Also the biggest
innovation of this work is made here, the forced resampling. The parts of the resampling
that are adjusted will be treated in subsection 3-1-1.

3-1-1 Adjustments to RBPF SLAM
Loop closure One of the purposes of a healthy particle spread is that there is at least one
particle that can explain the measurement data at a loop closure point 2-5-2. This particle
can explain the new observations with it’s own map and is therefore able to close the loop.
However, the longer distance traveled before closing a loop the more likely it is that the

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

3-1 Local mapping algorithm 19

particle that can close the loop is deleted in resampling. This may happen because an other
particle might locally have a high weight before the loop is completed, or because of the
randomness in the resampling. Therefore in RBPF SLAM the number of particles should be
proportional to the size of the loops that need to be closed. An exaggerated example of this
situation can be viewed in Figure 3-1, where the particle in (b) sampled the angle a bit
differently and did not get deleted yet. Because of this it is now locally correct just around
the arrow head because it supplements its own map with measurements, therefore it will not
be penalized. Since this is an exaggerated example this situation is not likely to occur, but
the less particles there are, the more possible it is that a particle that can later explain loop
closure is resampled into a locally high scoring particle which cannot explain a large loop.

(a) correct path (b) incorrect path

Figure 3-1: Two maps, one where the particle has the correct path and can close the loop. The
other particle had a biased resampling, halfway it can already be seen that the particle will not
be able to close the loop.

In FoRMeT Mapping the loops are not closed by the particle’s exact location in a global
map, but by looking if there is a local map in the particles history that fits the observed
environment. When the particle enters this map, it’s pose in the new map is determined by
the scan matching algorithm (section 3-3), and afterwards the motion sampling determines
the particle’s path further. The success of a loop closure is therefore determined not by the
chance that one particle in the cloud has the right path, but rather by the match between
current observations and the memorized maps of a particle.
Then what determines the amount of particles in HMT SLAM? The answer lays in the
philosophy behind HMT mapping: "Local Accuracy in global uncertainty". The amount of
particles in HMT SLAM should successfully represent the posterior distribution of pose
uncertainty within the local map. FoRMeT is only concerned about the quality of the local
map, so the amount of particles should be determined by the accuracy desired in the local
map, and the size of the local map for local loop closures. It is hypothesized that since this
is the only purpose of the HMT particle cloud, there are less particles needed in FoRMeT
than in pure RBPF SLAM.

Forced resampling When we look again at the above mentioned loop closing problem
another interesting observation can be made in which one of the major innovations of this
framework can be explained. When one particle is locally right, it might not only cause
resampling of another particle that can close the loop in the future, but it can also resample
a particle that is right about the past. The fact that deletion of a particle that locally scores
lower might cause a good map in its history to be thrown away is not in line with the HMT
philosophy. The map size (section 3-2-1) is determined in such a way that the assumption of

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

20 The FoRMeT Framework

conditional independence can be made between maps to be able to optimize map location
later. It is hard to observe a feature of another map in the current map, then why should
the weight of a particle in the current map determine what an area 3 maps back looks like?
This HMT framework defines this problem as the multiple stem problem.
A healthy particle cloud should be resampled at strategic moments. The deleted particles
then take over the history of healthy particles. When visualizing the paths in a particle
cloud you can observe a tree like structure with a stem, and a canopy. See figure 3-2.

Figure 3-2: Simplified example of particle paths. Most left, all particles share the same path.
Most right, all particles have their own pose.

To make sure that the particle spread represents the pose uncertainty in the current
environment, and that resampling does not affect previous maps the resampling must be
modified to force resampling of multiple stems. Here the stem is defined as the paths which
are contained in maps other than the current map, and the shared stem is a single stem
containing all the particles paths, see Figure 3-3. FoRMeT Mapping desires a long stem and
a short canopy. Multiple stems are only allowed in the current map at the time of traversal
i.e. the particles must agree on how they entered the current map when one of the particles
wants to exit this map.

canopystem

initializing
particle

Figure 3-3: Simplified example of particle paths and their maps. Here the particle that initializes
the forced resampling is circled in red

When the particle cloud is about to traverse to another map, the configuration of the
particles path should be so that no multiple stems are present in the previous map. If there
are, forced resampling should be applied. The forced resampling samples stems in stead of
particles. The groups of particles sharing a stem in the previous map are identified, and
only one group may survive. Forced resampling makes sure that normal resampling only
affects the current and previous maps of the particles, since the other maps are shared by all

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

3-1 Local mapping algorithm 21

the particles. Hence the forced resampling makes sure every particle has a maximum of two
non-shared maps i.e. the current map and the previous map. When the particle exits a
map, forced resampling takes place, they agree about how they entered the current map, the
previous map is now fixed and can be regarded shared, the initiating particle traverses to the
next map, now there are the new/current map and the new previous map which the particles
can disagree on (Figure 3-4). The canopy can now be redefined as the maps that contain
paths that differ per particle, and the stem can be defined as the paths in the shared maps.

canopystem

Figure 3-4: Simplified example of particle paths. One step after resampling took place at figure
3-3

Note that the individual maps in the figure may seem just like one, but there are as many
maps as particles and per particle they look different because of the different path. The
location of the map is determined by where the particle exits the previous map, if all
particles have spawned from a single parent particle, all their maps are at the same location,
but look different. The shared maps are also with as many as there are particles, all in the
same place and they also all contain the same info. This seems like saving a lot of
duplicates, this is true, which introduces the next topic: shared maps.

Shared maps Shared maps are maps which contain just one path hypothesis. These are
thus the same maps for each particle. Since it would seem a waste of space to keep duplicate
maps for each particle a shared map is defined as a single map, the network of shared maps
is called the shared topology. The particles now only carry their current and previous map
and the edge to the shared topology so it knows where all the other maps are to close loops
with.
Whenever a particle can close a loop with a shared map this map will be added to the
canopy. When multiple particles close this loop, multiple hypotheses about this maps layout
exist. It can however only be updated or left the same, but not be deleted, since it is a part
of the history of all particles. In fact, whenever a particle enters a shared map a copy of this
shared map is added to the particles canopy and will be updated, and when this particle is
in the group of particles defining the stem that is kept in forced resampling, the shared map
is replaced with the updated map from the canopy.

Particle Ancestry Trees Like duplicate maps in FoRMeT Mapping , Fast SLAM also does
not find it useful to save duplicates of records. The particle’s path is defined as an ancestry

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

22 The FoRMeT Framework

tree, where the tree points to recorded poses. Whenever a resampling takes place and the
particle takes over the history of another particle, the particles tree is pointed to those poses
in stead of copying them all. For a practical implementation like GMapping, it means not
every particle carries a map, but they carry pointers to poses and laser scans. The map can
be constructed from the ancestry tree and the map constructed using the poses in the path
and laser scans.
GMapping saves memory because not every particle carries the global occupancy grid map,
but carries pointers to the building blocks for map construction. In this framework there is
no global map, only a network of shared maps, and two maps per particle in the canopy. It
will thus be sufficient just to store these last two maps, these two maps can cheaply be
copied to deleted particles and thus it will not be necessary to use an ancestry tree. Because
the maps do not need to be reconstructed keeping memory of the total path is also not
necessary. Only the current pose is necessary to update the weights and the map, and the
paths of the current and previous map are needed to check for multiple stems. Because there
is no need for ancestry trees and reconstruction algorithms this method is hypothesized to
use less memory and computation than algorithms that do use these methods.

3-2 Map size and separation
Every particle has a node associated with it’s current location, this is called the current
node. This node carries the current local map of the particle. A node is nothing more than
a place, however nodes have no global location, they are only constrained with respect to
each other with edges. Edges also have no location, they are always defined between two
nodes. Edges carry the normally distributed mean transformation µx, µy, µtheta and
covariance Σ between two nodes. This way, if you would set one of the nodes as being the
fixed start node, all the other nodes can be expressed with respect to this node.
By defining the maps this way, in stead of a global map, every particle carries its own
network of local maps. Whenever a particle travels outside of its local map, it creates a new
node, with an empty local map, the particle’s pose will be expressed in the new map, and
will evolve further.

3-2-1 Map size

The map size will is a designer parameter. A smaller map will need less resources to be
updated, but there will be a higher map density and thus more maps to match with and
traversal will happen more often. The suggested rule of thumb based on the robots sensors
is that the map size is half the maximum range of the observations. This way it is unlikely
to be in the current map and observe features from two maps further. Another rule of
thumb based on the environment is that the map size should be so large that there are no
multiple separate ways of entering a map from one other map. This way the edges represent
the overlap of two maps at one point.

3-2-2 Node traversal and map generation

When a particle’s pose comes outside of a defined map traversal threshold and the particle’s
pose is directed outwards, a node traversal is considered. Traversal is defined as explaining
the robot pose in another map which map be a new map, or a map that has already been

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

3-3 Traversal candidates 23

created. In Figure 3-5 the green poses are eligible for traversal. The set of particle eligible
for traversal is stored and will be used later by the matching algorithm (Section 3-3).

Figure 3-5: The current map with the map traversal threshold as a dashed line. Possible particle
poses depicted as arrows in which the green poses will be considered for traversal and the red
poses not.

3-3 Traversal candidates
When a particle is eligible for node traversal, a few things are done. First Dijkstra’s tree
(Appendix E) is created to know the shortest paths to each other map. The Dijkstra
solution in combination with the edge covariances will form an uncertainty projection. This
uncertainty projection represents the uncertainty of each node location as seen from the
current node. If the particle is in the projected uncertainty region of one or more of the
other nodes, these nodes are considered for traversal.

Topological loop closure Loop closure in global PF SLAM is not as an explicit action as
it is often referred to. It is a mere confirmation for the particle if its pose hypothesis is right
or not when considering the current observation and map. Actually every time the particle
processes new measurements and calculates weights could be considered a loop closure of
some sort because it calculates the weights based on correspondence between measurements
and the map. In long loops the exact same thing happens, however now the mismatch of the
particles is more obvious, and because of the resulting spread in weights the filter will be
triggered to resample and most likely the wrong particles die out herewith "closing" the
loop. In the HMT framework, the local maps are not big enough to facilitate large loops.
The large loop closure that happens in the HMT framework is between maps and thus a
topological loop closure closure. It happens by recognizing the particles pose and
observations can be expressed in one of the particles other maps. By knowing where the
other maps are approximately it can scan match to see if it can close a loop with another
map. When this is the first time the robot traveled between these nodes an edge is created,
the topological loop is closed. When the robot has traveled more often between these nodes
the existing edges are updated (section 3-5).

Dijkstra’s tree For knowing if there are possible loop closures, the robot must know where
the other maps are with respect to its current location. Since the local maps do not have a

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

24 The FoRMeT Framework

global reference frame their location can only be calculated by combining all the edges from
the current map to the target map. However, multiple combinations of edges can lead to the
target, therefore the route taken to target map determines the location and uncertainty of
the target map with respect to the current map. The best route to the target map will be
the route which has the least uncertainty, then the resulting mean distance and covariate
uncertainty will be the particle’s best guess of the target node location, keeping the amount
of overlapping uncertainties minimal. Since every edge carries a new uncertainty, typically
the route with the least edges will be the best, but not necessarily. The route is determined
with Dijkstra’s algorithm (Appendix E).

Uncertainty projection To find the best route to every target map Dijkstra’s algorithm is
used. Here the best route to each other node from the source node is calculated by
evaluating the costs of the edges. Since we want the route with the least uncertainty the
cost of the edge will contain the combined covariance of the traversed edges (2-5-1). The
algorithm will return three arrays, one with the nodes sorted by cost from lowest to highest,
the next will be the parent node of that node, and at last the cost of traversing to that
target vertex. This way the robot knows the cost for every node, and by going up in the
parent node tree it knows the best route to this vertex. When the best path is known the
uncertainty projection can be calculated as in Eq. (2-3). By combining the edges in the path
an estimate of mean and covariance of the target node with respect to the source node can
be determined for each target node. This is called the uncertainty projection. The robot can
use the uncertainty projection to see with which nodes it can possibly close loops.

Traversal action With the particles current pose it is checked if it’s within the uncertainty
region of any of the other maps, if so a scan matcher will estimate the particle’s pose in the
other map and the score of this match. The scan matcher uses the current observation with
the map of the eligible traversal node to find estimate the robot pose in the new map, and
the likelihood score. For each of the possible traversal nodes a score is calculated, and the
traversal action of the particle is sampled from this group of possible traversal nodes
supplemented with a probability of entering an unexplored area. This way a new node will
be generated if there are no possible traversal nodes, or if the unexplored area hypothesis is
sampled. Also each particle can have it’s own hypothesis about the area the robot has
entered, if it is an already mapped area or a new one. It’s expected that the wrong particles
will be resampled. An example of the traversal action sampling is visualized in Figure 3-6.
Note that the uncertainty is only defined to the edge transform, and to know if the particle
is in another map, the map size should be added to the node uncertainty.

3-4 Traversal
When a traversal action is sampled the actual traversal can take place. Because the particle
is traversing, a check for multiple stems is performed (3-1-1) and if there are multiple stems
present forced resampling will be performed. Afterwards all particles should agree about the
layout and location of the previous map and it can be transfered to the shared topology.
The current map will become the previous map as the traversal map becomes the new
current map, and the particle pose will be defined relative to this map frame as estimated
by the matcher.

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

3-5 Optimization 25

Figure 3-6: Particle in red, with different traversal hypothesis after matching with the candidates
2 and 3 from the uncertainty projection.

Edge covariance With an EKF based local mapping algorithm the uncertainty is captured
in the posterior distribution, and when creating a new node from the particles pose the
uncertainty of the transform between the two nodes can be expressed with this distribution.
With particle filter based mapping this is a bit more complicated. Since only one particle
will have the right path at node traversal and the edge transform will be defined by that
particle in FoRMeT there is no covariance.
Even though there is no covariance, there are small discrepancies in the local map which
may lead to some extra curvature between the maps. Because of this there is an uncertainty
about how the maps are configured, otherwise the robot might not be able to close a loop.
The uncertainty of the edge must thus represent the degree of discrepancy per map so that
loop closure can be performed. When the uncertainty is taken big, the chance a loop can be
closed becomes bigger, but because of big uncertainties in the projection the search space
for loop closure becomes bigger, and more false nodes will become candidates. This will lead
to larger computations and higher chance of false loop closures. When the uncertainty is
taken too small, the particles might not recognize the right candidate because it is projected
too far away. The edge transform covariance is thus a designer parameter depending on the
accuracy of the local mapping system. It should be depending on the traveled path in a
map, the odometry noise and the observation noise. It can be tested by seeing if loops can
be closed.

3-5 Optimization

The uncertainty about how the graph looks is reduced in two ways in FoRMeT . First the
edges are locally updated by a Kalman filter upon re-visitation. Secondly a global
optimization algorithm is deployed to minimize the uncertainties in the global network.

3-5-1 Edge updating

Whenever a robot traverses between maps that already exist the matching provides a new
estimate of the transform between the edges. The robot is at pose p1 (homogeneous
notation, see Appendix F) in map 1, and that point is matched as pose p2 in map 2, this
provides a constraint between the two maps, see Figure 3-7.
It is clear these two maps do not overlap correctly, as is the intention in this exaggerated

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

26 The FoRMeT Framework

Figure 3-7: Traversal with the robot pose in map 1 in blue and the matched robot pose in map
2 in green

example. The Edge Updater will use the new constraint between the two maps to form a
new estimate. p1 and p2 represent the same pose, but in different coordinate frames, the
poses can be regarded as transforms from the map frame to the pose. The transforms will
read as T p

1

1 and T p
2

2 . The desired edge transform is T 2
1 and can be easily obtained with the

inverted transform of T p
2

2 as in (3-1).

T 2
1 = T p1

1 ∗ T
2
p2 (3-1)

With the new transform the maps are aligned as in Figure 3-8.

Figure 3-8: map 1 and map 2 constrained with transform from matching.

If there existed no edge between these maps, a new one will be created with the new
transform and a loop is closed. If the edge existed already it must be updated with the new
estimate. In the example it’s clear that the old transform is a bad estimate of the map
alignment, therefore the old edge will have a big uncertainty. The new alignment seems to fit
perfect, but in reality some small matching errors and noise in the map will also make that
the match transform T 2

1,match has some uncertainty. The new estimate of the edge transform
mean and covariance will be determined with the Kalman matrix as the weighted mean of
the T 2

1,old and T 2
1,match. More about the Kalman matrix can be found in appendix A.

3-5-2 Graph optimization

The edge updater only looks at a local fit at the point where the maps connect and
calculates a linear solution. If the edges would be added up, the interconnected maps may
still not all align, this will especially be true for larger networks with more loops. However
this will not be a direct problem for the robot. The uncertainty projection will keep the
inconsistencies as far away as possible from the robots current map, the robot does not need

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

3-5 Optimization 27

to know the exact distance to a target map, but just how to get from map to map, and
that’s where the updated edges work perfectly. However, it might cause complications when
the graph becomes very large and interconnected. Identifying which maps are possibly
nearby when the robot wants to traverse might become a large operation when the maps are
projected with a lot of uncertainty. Look at the example situation in Figure 3-9. The map is
not optimally explored and thus is the graph not optimally interconnected. The robot is
approaching the edge of the current map, and uses the uncertainty projection to check
which possible loop closures are available. For two target maps the uncertainty is drawn
out, these are quite large uncertainties because they contain all the covariances between the
nodes on their shortest paths (green). It can be seen that the robots pose is in the
uncertainty of these two maps, and perhaps even more maps, and to find the best loop
closure it should match with all nodes with overlapping uncertainty.

Figure 3-9: An unoptimized interconnected network of maps. The green lines are the shortest
paths to the target maps and the dashed ones have no use in the Dijkstra algorithm because these
nodes can be better reached with other edge combinations. For simplification no rotated maps
are shown. A Dijkstra unused edge is an edge not present in Dijkstra’s solution tree.

The graph is overdefined because of multiple loops. When there are multiple ways to go
through the network there are loops present. If all the maps would be visualized by their
hard transformations (without taking covariance into account) not everything would fit.
Specifically in the case where the locations are projected over de Dijkstra solution, the misfit
would be at the dashed lines in Figure 3-9. Thats why there is an uncertainty embedded in
each edge. For such an overdefined network an optimization algorithm could determine an
optimal fit satisfying as many constraints as possible by reducing a norm related to the
covariances. The optimized network is dependent on the uncertainties between each edge,
which are not visualized in the example, but the solution might look like Figure 3-10.
It can be seen that both of the target maps are no longer loop closure candidates because of
the reduced uncertainties. The robot could now spend its resources matching with other
more certain maps, or create a new map. Another example of pre and after optimization
map layouts is visible in Figure 2-9. For more maps it becomes more important that the
edges are optimized, since there will be more uncertainties that could overlap. For a large
scale mapping and localization framework graph optimization is thus essential to make sure
the computation time does not increase at larger networks. In this framework optimization

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

28 The FoRMeT Framework

Figure 3-10: An optimized interconnected network of maps. The green lines are the shortest
paths to the target maps and the dashed ones have no use in the Dijkstra algorithm because these
nodes can be better reached with other edge combinations.

is performed each time an edge is created by loop closure, because only at that time there is
a new over definition available. However, a specific type of optimization algorithm is not
suggested by the framework, and can be chosen by the user.

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

Chapter 4

The Implemented FoRMeT Framework

The FoRMeT framework is a general framework for scalable mapping. The implementation
used to test the framework is explained in this chapter. The implementations of the
different parts are elaborated on in the following subsections. Any bold printed word is a
tunable parameter, the parameters are grouped in section 4-9.

4-1 Sample from motion model
The poses of all the particles are initiated at x0 = [0, 0, 0]T . With a designer specified
sampling frequency new odometry measurements are taken. The difference between every
odometry measurement is used to update the particle poses. The particle poses should be
sampled according to the prior probability distribution to accurately describe the pose
uncertainty. To do this an approximate displacement model is used which can be viewed in
Figure 4-1.

Figure 4-1: Model used to describe odometric evolution.

The transform between poses is expressed in a rotation φ1, a translation dtrans, and a
second rotation φ2. When the distance between transform measurements is kept small
enough, this model approaches reality.
To sample in the prior distribution, normally distributed noise terms are added to the
rotations and translations. It is up to the designer to choose these odometry noise terms
so that the sampled distribution appropriately describes the real odometric uncertainty.
The translations and rotations with added noise terms can now be added to the particle
pose. With a higher sampling frequency the displacement model will come closer to the real
odometry.

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

30 The Implemented FoRMeT Framework

4-2 Filter update

The motion model is sampled with the specified sampling frequency until either a linear or
angular threshold is reached. When this threshold is reached a filter update is executed,
for each particle an observation correction is executed, the weights are determined, possibly
resampling takes place, the map is updated and a node-traversal function will check if any
topological action must be handled. First lets look at the weight update.

4-3 Weight update

The weight update determines each particle’s weight according to the measurement model.
In FoRMeT Mapping this means a score is calculated for each particle using the particle
pose, laser measurements and local grid map. This score is calculated with the likelihood
field model. The likelihood field model gives a measure of how well the laser scan fits in the
map if projected from the particle pose, which acts as the measurement model in the Bayes
filter P (zt|xt, zt−1). This way the particle weight can be determined and the updated
particle cloud will represent the posterior distribution.

Figure 4-2: Likelihood field describing the measurement model.

The distribution of the likelihood field model looks like Figure 4-2. It consists of four parts,
the probability of a random measurement as a uniform distribution, the probability of
measuring something before the wall, the probability of a wall measurement as a normal
distribution and the probability of a failed measurement which results in a max range
reading. The endpoint of the depicted beam falls just before the wall due to a noisy
measurement. The probability of this beam falls on the left side of the approximated normal
distribution.
FoRMeT filters out all max range measurements and approximates the resulting distribution
by a uniform distribution plus a normal distribution around the true hit point. From the
laser range measurements a number of beams is selected to calculate the weight. More
beams means a more accurate result, but more computation is required. In a search space
called the kernel around every beam endpoint the algorithm searches for the closest match
in the grid map. In Figure 4-3 (b) the closest match is depicted as a green dot.
The likelihood of the beam is determined by the distance between the beam end point and

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

4-4 Map update 31

(a) (b)

Figure 4-3: Grid map laser beam example for likelihood determination. (a) Beams used for
weight calculation. (b) End points of beam 5 and 6 and their closest match in the grid map

matched point in the normal distribution. The normal distribution is approximated by the
function in Eq. (4-1), where d represents the distance from the hitpoint to the center of the
closest matched grid cell and σ represents the standard deviation. The weight of the particle
at this filter update is the mean likelihood of all treated beams. In the example beam 6 will
have a higher likelihood than beam 5, the maximum likelihood is 1 when the hit point
matches exactly. And when all laser points would align with the map perfectly the weight of
the particle will be 1.

s = e−
d2
σ (4-1)

4-3-1 Pose optimization

The framework prescribes that a correction from the motion model is applied to the
particles using the current observation and a key frame observation (3-1). To do this the
Iterative Closest Point (ICP) algorithm is the standard. More about the ICP algorithm in
Appendix G. However without proper pre filtering of the beams, the usage of ICP to
compare two laser scans will not have an outcome that improves the odometry. For this
implementation the choice is made to compare the current laser scan with the local map per
particle. In the particle weighing function the hit points and corresponding matched points
are stored in an array and afterwards fed to the ICP algorithm. The algorithm returns an
optimized pose where the laser points overlap better with the map. This implementation of
FoRMeT Mapping will thus not have an improved pose estimate when there are no features
present in the map. The used ICP algorithm comes from the Mobile Robot Programming
Toolkit (MRPT) and is open source available1.

4-4 Map update
The map is updated with the grid mapping algorithm. Each grid cell keeps two values, the
ratio of occupied observations α, and the number of observations n. A grid cell
corresponding to the endpoint of a beam will be supplemented with one occupied
observation and each cell that the beam goes through will be supplemented with a free

1MRPT’s ICP is available at http://www.mrpt.org/

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

32 The Implemented FoRMeT Framework

observation. The equations to determine α are given in Eq. (4-2) and Eq. (4-3), with the
latter one being the used recursive formula.

α = nocc/n (4-2)

αk = (n− 1) ∗ αk−1 + obsk
n

(4-3)

The grid map will contain α values between 0 and 1. At visualization a threshold value is
set at which a cell is regarded occupied. An example is given for a grid map updated with
two observations in Figure 4-4.

Figure 4-4: An example of grid cells updated with two observations and visualized with an
occupancy threshold of 0.4.

When a laser beam is at maximum distance, it means this beam did not return to the laser
from a hit object. The beams with maximum distance are filtered out. Also the grid cells
further a max usable range of the laser beam will not be updated. This because the
endpoints further away will have more variance and are thus less accurate. Also filling the
grid map only up to a certain range will reduce computing power.

4-5 Resampling
Every filter update the number of effective particles (Neff) is determined. If the Neff is
under a resample threshold, resampling will take place. The Neff is a measure of the
amount of particles that have an effect on the map. It becomes lower when the variance of
the particle weights becomes bigger. Herewith it is an interpretation of how good the
particles represent the target distribution. This is a common way to determine the
resampling moment in PF-SLAM algorithms.

Neff = 1∑n
k=1(w2

k)
(4-4)

When resampling takes place a cumulative table of weights is created using the weight of
each particle, starting at zero and ending at the sum of all weights. This table is then
normalized and for each particle a random number between zero and one is generated to
draw from the table. The new set of particles is then filled with the drawn particles. The
probability of a particle to be resampled is thus proportional to its weight, thus it is likely

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

4-6 Forced resampling 33

that low scoring particles will not be resampled. This way a healthy particle cloud is
maintained.
For a large set of particles and a large map size the resampling step will be very expensive.
Fortunately FoRMeT only keeps the current and the previous map in the particle’s memory
and therefore the amount of particles can be kept small and during resampling only the
latest two maps have to be copied.

4-6 Forced resampling
This framework claims to be lightweight because only the current and previous nodes, and
thus local maps, are stored in the particles memory. All the other nodes and edges are
shared in the shared topology. To make sure the particle’s agree on the maps in the shared
topology forced resampling is implemented. When one of the particles leaves its local map,
all the particles should agree on how they entered this map. This way there can only be
different hypotheses over two maps.
Whenever a particle is traversing first the stems in the previous map are analyzed. This will
result in a group of particles in each stem. Only the most healthy stem will survive, so all
the particles in the other stems are sampled into particles of the most healthy stem. The
forced resampling has now taken place and if there are still particles that want to traverse,
the node traversal steps can take place.

4-7 Node traversal
The node traversal function connects the local PF-SLAM to the topological part. Every
filter update it is checked for each particle if the pose is outside the map generation
threshold, and if so the particle will either generate a new map or traverse to a known
map. Because it is desirable to find the right match when it is available this implementation
gives each particle more opportunity to match by introducing a map traversal threshold.
The matching threshold is slightly smaller than the traversal threshold, and when the
particle crosses this threshold it will already check for a match, but if it is not found, it will
stay in the current map. Now there are three traversal states a particle can be in before the
node traversal function:

1. no traversal

2. only matching

3. matching or new node generation
When a particle is in the second or third state the node traversal will perform the following
steps:
• Selection of traversal candidates

• Sampling of match points

• Matching of each match point

• Sampling of traversal action

• Execution of traversal action

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

34 The Implemented FoRMeT Framework

4-7-1 Selection of traversal candidates
For each map it is checked if the particle is in the uncertainty area of that map Figure 4-5
(a). This implementation only regards the x and y components of the covariance for
selection of candidates and sample points. Then checking if the particle is in the uncertainty
area becomes equivalent to checking if this uncertainty area around the particle overlaps
with the map Figure 4-5 (b). To check this samples are drawn on the edge of the
uncertainty ellipse Figure 4-5 (c), if the samples are within the map area, this map is a
candidate, otherwise not.

(a) a potential candidate (b) uncertainty from par-
ticle

(c) ellipse edge samples

Figure 4-5: Determination of candidate map. This map becomes a candidate because of the
green sample points falling inside the map square

4-7-2 Sampling of match points
If the considered map is a traversal candidate, the particle can match the current laser scan
in the uncertainty area in the candidate map. For the map matching ICP is used (Appendix
G), however since ICP is a linear solution it could converge to a local minimum. Also if the
uncertainty region is really big the ICP may not find the solution if it is too far away.
Therefore multiple sample points are drawn in the overlapping uncertainty area Figure 4-6.
The samples are drawn with a specified sample distance, this is a designer parameter
depending on the available computing power and the reach of the used ICP algorithm. The
match point sampling will result for each particle in a list of traversal candidates with
associated sampled match points.

Figure 4-6: Samples drawn in the matchable area

4-7-3 Matching of match points
From each match point the likelihood field model is used in a very similar way to section
4-3. Only now more beams and a larger kernel are used to find the grid cell match of the

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

4-8 optimization 35

laser hit point. On the found point pairs ICP is executed to find the best pose around this
match point. Then the likelihood field model is applied again, and again ICP is executed on
the new matched points. This process is iterated until a maximum amount of iterations, or
convergence. Every map is only allowed to have one best matched pose. The score of this
pose determines the probability that this candidate map will be sampled in the traversal
action sampling.

4-7-4 Sampling of traversal action

Every particle has a list of candidate maps with scores between 0 and 1. To the list of
candidate maps a probability of no traversal is added. The traversal action is sampled the
same way as the sampling of particles during the resampling in section 4-5. E.g. if there is
only one candidate map with a score of 0.8, there is a probability of 0.8 the particle will
traverse to this map at the matched pose, and there is a probability of 0.2 that the particle
will stay in its map when it has state 2 or that it will generate a new map when it is in state
3.

4-7-5 Execution of traversal action

When the traversal action is known, the particle can traverse. This means its previous node
will be transfered to the shared topology, the current node becomes the previous node and
the new node will be either taken from the shared topology or a new map will be generated.
When the particle traverses to a known map the matching has defined a new edge as
explained in section 3-5-1. If there was already an edge present this edge will be updated as
a covariance weighted mean using the Kalman matrix. When the edge did not exist yet a
loop is closed. The new edge will get a standard covariance, this covariance can be scaled
with the covariance scalar. This way the uncertainty of the nodes can be set to be bigger
or smaller. Bigger uncertainty has more chance to close the loop, but more samples will be
drawn in the uncertainty making it computationally more expensive. The covariance scalar
should be related to the accuracy of the robots mapping and describe the real node
transform uncertainty for the best working algorithm (3-4). After the traversal action, the
uncertainty projection must be recalculated for this particle to identify where all the nodes
are, and what their uncertainty is with respect to the new current node. This uncertainty
projection will be used the next time this particle goes out of the match or traversal
threshold.

4-8 optimization
This implementation does not use non linear graph optimization.

4-9 parameters
Many parameters are present in this implementation. They can be varied to increase
mapping capabilities with different map size, sensor specifications, processing power and
environmental characteristics. Before using this implementation the parameters must be
tuned. Below is a list of the important parameters in Table 4-1.

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

36 The Implemented FoRMeT Framework

Table 4-1: Parameters in the implementation of FoRMeT Mapping

number of particles max usable range
map size linear/angular update threshold
map resolution resample threshold
map generation threshold kernel size
map traversal threshol covariance scalar
odometry noise sample distance
sample frequency number of beams

Some of the parameters have not yet been discussed in the text.

The number of particles influences the accuracy of the localization. With a larger
posterior distribution more particles are desired to accurately fill the uncertainty. However
most operations are executed per particle, and therefore the amount of particles has a linear
effect on the computational complexity.

The map size determines the size of the local area that needs to be accurately mapped by
the particles. A larger map size will increase computation time because more grid cells need
to be updated and also a larger set of particles is necessary to accurately map the local
environment. However, when the local map becomes too small there will be a higher map
density. The expensive steps in FoRMeT Mapping are the traversal actions, and they will
more frequently occur and need to take more candidate maps into account when there is a
higher map density. The advised map size lies between 10 and 20 meters. It is also
dependent on the size of the rooms in the environment, it is desirable that there are not two
separate ways to traverse from one map to another so that the edge will describe only one
path between maps.

The map resolution determines the amount of grid cells per meter. The more grid cells,
the more information can be stored in the grid map. Since the framework performs 2D
mapping there is a squared relationship between the map resolution parameter and the
computational complexity. Also, the grid size work as a filter on the laser range data. When
the grid size is smaller than the noise on the laser beams the noise will be visible in the grid
map. For an example of the noise on laser data see Figure 4-7.

Figure 4-7: Laser endpoints falling on a straight wall. A scan taken from the IDE dataset (5-2-1).

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

Chapter 5

Experiments

In this chapter the implemented framework is tested against the following hypotheses:

1. Forced resampling in FoRMeT Mapping reduces computational load while maintaining
a good representation of the environment.

2. By maintaining the uncertainty in the edges instead of in the particle spread FoRMeT
Mapping is able to close large loops.

3. FoRMeT Mapping is capable of mapping large scale environments

Since the framework is so specific and different from other open source available mapping
algorithms, the direct comparison with other particle filter based SLAM algorithms like
GMapping will not say much. Both because GMapping is a global mapping system, and
because this framework is not an extension of GMapping, but based on a particle filter
SLAM that is slightly adjusted and solely created for the purpose of proving this thesis.
Also GMapping has been designed to be efficient and is a maintained open source piece of
code, and this implementation of FoRMeT Mapping is a mere proof of concept. Therefore
the tests will be performed as comparison between the proposed framework and both
GMapping and FoRMeT with one local map spanning the space of the environment i.e. no
new map will be generated. This way a comparison between GMapping and the adjusted
PF-SLAM can be made, and from there the comparison between adjusted PF-SLAM to the
HMT system.

5-1 Experimental setup
For real world dataset gathering the SAM1 robot is used (Figure 5-1). SAM1 can be driven
manually with a remote control. The robot is equipped with wheel encoders and a Hokuyo
laser range finder (LRF). The LRF has a maximum range of 30 meters, it takes 1080
measurements from a 270 degree view every 25 ms with an accuracy of ± 30mm. The wheel
rotations are converted into transforms between subsequent measurements and together
with the range scans they are recorded into a ROS bag file. SAM1’s odometry not regarded
as very accurate, but the laser range finder is. The bag file thus contains LRF
measurements and transforms to represent the environment and odometry measurements.

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

38 Experiments

They will be played in ROS on the "HP ZBook 15" notebook with a Intel 2.4 GHz Core
i7-4700MQ CPU and 4GB RAM. The processing into a map with GMapping and FoRMeT
Mapping will also be done in ROS on the notebook. ROS is used as communication between
sensors, the framework and visualization tools. ROS bag files are used to record sensor data
and to play it back.

Figure 5-1: The SAM1 robot.

5-2 Experimental design
5-2-1 Datasets
The environments used for the experiments should contain the elements necessary to test
the mentioned hypotheses. They should be large and contain a big loop closure. RSS’s
SAM1 robot has recorded a dataset at the Delft University of Technology where it drives at
the Industrial Design (IDE) faculty’s first floor to close a large loop (Figure 5-2).

Figure 5-2: The first floor of the IDE faculty at the TU Delft looking down at the central square
at the ground floor. [5]

In the floor plan view in Figure 5-3 it can be seen that there are two loops, a small and a
big loop. The approximate distances are stated next to the floor plan, the simplified
traveled path for loop 1 is visualized in green, the continued path for loop 2 is shown in blue

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

5-2 Experimental design 39

Figure 5-3: A simplified floor plan of the dataset area at the first floor of IDE. The gray areas
represent the hallways. A trial indicates where Figure 5-2 is taken. A green arrow indicates the
path to close the first loop and the blue arrow indicates the continued path to close the second
loop.

and the loop closure points are circled in red. The green path is about 110 meters long, and
the combined green and blue path 300 meters. The robot only drives forward and does not
use mapping strategies like looking back from time to time. The IDE dataset is used to
prove that the algorithm works on real world data, and to show the loop closure capacities.
Besides the real world data the algorithms are also tested in simulation. A dataset is
recorded in a Gazebo simulation where the environment represents a combination of three
"Willow Garage" worlds visible in Figure 5-4. The simulated dataset is used to determine
the scalability of the algorithms. The environment is large, but the dataset does not contain
large loops.

Figure 5-4: The simulated environment with three Willow Garage worlds

5-2-2 Experiments
During the experiments the performance of the algorithms will be quantified with the
characteristics of the notebook’s processor. Two performance measures are recorded: CPU
usage and CPU time. Throughout the experiments, samples are being taken from the CPU
which are stored for later processing. The CPU usage is the percentage of processing power

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

40 Experiments

that the mapping algorithm uses on one core of the CPU at the moment of the sample.
Because the CPU has multiple cores, the notebook can remain functional even when the
process takes up 100% of one core. The CPU time is defined as the time that the algorithm
has used on the core in CPU operations up to the sample point. Besides these performance
metrics, success and failure during loop closure and general map building will be monitored.
Three experiments are performed:

1. GMapping vs global and hybrid FoRMeT at the small loop at IDE

2. GMapping vs FoRMeT at the combined small and big loop at IDE

3. GMapping vs FoRMeT in the large scale simulated environment

Experiment 1 will be used to see the relations between the two pure metric mapping
methods and the metric and hybrid variant of FoRMeT Mapping . Experiment 2 will be
used to see the performance of GMapping when closing the large loop and if FoRMeT is
able to close the large loop. In experiment 3 The computational complexity will be regarded
with respect to the scalability.

5-2-3 Comparison
The performance of GMapping and FoRMeT Mapping is heavily dependent on the
parameters, and the experimental setup. To compare the two algorithms some of the
parameters have to be set to similar values. These parameters will be map resolution,
odometry noise, max usable range, linear and angular update, kernel size. For further
explanation of these parameters the reader is referred to section 4-9. GMapping’s
parameters will be tuned in each experiment to get the best loop closure performance with
the lowest computation power. FoRMeT ’s parameters will be tuned to the most difficult
loop closure experiment, experiment 2, and kept constant for comparability to the other
experiments.
Both algorithms do a filter update after the set linear and angular threshold, however, when
the previous update is not finished yet, the update will be performed when the previous
update is finished. The filter update point is thus at or after the distance threshold.
Therefore, when the set parameters require heavy calculations, or when the robot speed is
too fast the map quality will decrease. Tuning the parameters becomes a delicate job when
mapping real time because usually using more resources would increase map quality but
now it can reduce the amount of filter updates per distance and thus reduce map quality.
Also creation and visualization of the map is a costly operation. FoRMeT creates and
visualizes the maps every update, GMapping has a standard visualization rate of 5 seconds.
To compare the two algorithms, GMapping’s visualization rate is set to 1 second which
approximates the update rate of FoRMeT with the speed of the robot.

5-3 Experiment 1: IDE small loop
The small loop at IDE will be mapped by GMapping, global FoRMeT and hybrid FoRMeT
Mapping . First GMapping will be regarded with standard parameters. Then it’s
parameters will be tuned and afterwards it will be compared to global and hybrid FoRMeT .
A projection of points from the pure odometry path is included in Figure 5-5 to get an idea
of the correction that needs to be performed by the algorithms.

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

5-3 Experiment 1: IDE small loop 41

Figure 5-5: A raw point map of the small loop at IDE. Constructed from laser point projection
from pure odometry. The trajectory is shown in red with a square at the start point.

5-3-1 GMapping with standard parameters

The map of a run using GMapping with standard parameters which has a map update every
5 seconds is shown in Figure 5-6.

Figure 5-6: A map of the small loop at IDE created by GMapping with standard parameters.
Red rectangles indicate the areas of the close-ups which are visualized on the right.

It can be seen that at the loop closure point (in the red rectangle on the left) there is a
discrepancy in the map. The best particle thinks it approaches the loop closure with one
meter offset compared to the robot in the real world. This is why the observation of the wall
is about one meter wrong and a double wall is seen in the image. Afterwards the particles
match with the map and their poses are corrected so their observations will fit the map, and

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

42 Experiments

they converge to the right location. GMapping can use scan matching to recover from, but
not correct a small discrepancy in a loop closure. However, because of the discrepancy at
the loop closure, this closure will not be regarded as successful. Also in the second red
rectangle a some unobserved grids are present in the middle of the hallway. The length of
the unobserved area indicates the space between filter updates in the algorithm. These
updates are larger than the 0.5 meter update threshold, indicating that the filter update
point is determined by the time it takes to do the previous update. GMapping is thus doing
heavy computations which is also visible in the performance results in Figure 5-7.
GMapping appears to use about 100% of the processor core until a filter update is finished,
then there is a dip in processor use. The total processor time used to map the small loop is
238 seconds.

0 100 200 300 400 500 600 700 800
0

50

100

C
P

U
 (

%
)

0 100 200 300 400 500 600 700 800

Samples

0

100

200

C
P

U
 ti

m
e

(s
)

Figure 5-7: performance results of GMapping with standard parameters

5-3-2 GMapping with tuned parameters

With the current setup GMapping was not able to close the small loop without
discrepancies regardless of parameter tuning. Changing the parameters to more accurate
mapping using more computation would lead to less filter updates and eventually a worse
map. The sweet spot could not be found with this setup. To close the loop it was necessary
to play back the dataset at half the rate that it was recorded in, thus allowing GMapping to
use twice as much time to process the odometry and laser scans. Now the parameters could
be tuned again. It was even necessary to lower the rate of map updates to come to robust
loop closure with minor discrepancies. A run where the result approaches a perfect loop
closure is depicted in Figure 5-8.

5-3-3 FoRMeT Mapping

FoRMeT Mapping has been tuned for experiment 2 (5-4-2). Using the settings for robust
HMT loop closure, the small loop was mapped by global FoRMeT with a map size as big as
the small loop size so no new map generation takes place. The resulting map can be viewed
in Figure 5-8. The resulting map of hybrid FoRMeT can be viewed in Figure 5-15 in the
next section as the 6 maps on the left representing the small loop.

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

5-3 Experiment 1: IDE small loop 43

(a) (b)

Figure 5-8: Maps created at the IDE small loop. (a) GMapping with tuned parameters. (b)
global FoRMeT Mapping tuned for hybrid performance.

It can be seen that global FoRMeT is not able to close the loop without some discrepancies,
and this is a visualization of one of the better runs. However the local parts in the map are
locally accurate and the algorithm is thus fit for HMT mapping. More interesting than the
visual results are the performance results visible in Figure 5-9.
GMapping uses about 100% of the core until it is finished with a filter update, then there is
a brief dip. Global FoRMeT has uses about 75% of the core and briefly goes to 100% every
time a resampling takes place. At the end more resampling takes place because the particles
cannot explain the map at after the loop has not been closed correctly. Recall that
resampling in FoRMeT copies the entire map to the sampled particles and is thus not meant
for global mapping. Also note that GMapping uses a dataset played at half rate and half as
many samples of the CPU are taken. This combined with a CPU usage about 1.5 times
larger than global FoRMeT explains a cumulative CPU time which is more than two times
as long. GMapping uses 442 seconds of CPU time, global FoRMeT 181 seconds and hybrid
FoRMeT 104 seconds.

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

44 Experiments

100 200 300 400 500 600 700 800
0

50

100

C
P

U
 (

%
)

100 200 300 400 500 600 700 800
0

50

100

C
P

U
 (

%
)

100 200 300 400 500 600 700 800
0

50

100

C
P

U
 (

%
)

0 100 200 300 400 500 600 700 800

Samples

0

200

400

C
P

U
 ti

m
e

(s
)

Figure 5-9: Performance plot of experiment 1. GMapping in red, global FoRMeT in green and
hybrid FoRMeT Mapping in blue

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

5-4 Experiment 2: IDE large loop 45

5-4 Experiment 2: IDE large loop
In this experiment the whole path is traveled, first the small loop and then the big loop. A
projection of laser points from the pure odometry path is included in Figure 5-10 to get an
idea of the correction that needs to be performed by the algorithms. It can be seen that
especially at turns the odometry has a deviation to the right.

Figure 5-10: A raw point map of the small and large loop at IDE. Constructed from laser point
projection from pure odometry. The trajectory is shown in red with a square at the start point.

5-4-1 GMapping
First GMapping is tested. The resulting maps are very straight, but the accumulated small
errors make it very hard for GMapping to close the loops at IDE. GMapping is tuned with
parameters yielding results closest to good loop closure. However, when doing five trials
with these settings, GMapping could only close the large loop once, and not without
discrepancies. A typical run is visualized in Figure 5-11, and close ups of the two loop
closure points are shown in Figure 5-12. There are some minor discrepancies at the first
loop closure in (a), and at the second loop closure (b) GMapping is about 1.5 meters off.
The rest of the map looks straight without significant discrepancies.
The map of the run that successfully closed the loop is visualized in Figure 5-13. The first
loop closure, visible in Figure 5-14 (a), is near perfect. Hardly any discrepancies are present.
At the second loop closure Figure 5-14 (b), at first there is a small offset, but it is small
enough for GMapping to recover to the right pose in the map. Only the two double wall
artifacts are left in the map.
The CPU performance of the test with successful loop closure is shown in Figure 5-18
together with the results of FoRMeT Mapping . It is very similar to the performance in
experiment 1 with a processor usage of about 100% until each filter update is over. The
total time spend by the core is 1162 seconds. Since there are many samples the performance
cannot easily be observed in the plot. Therefore a close up of samples 200-400 at the

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

46 Experiments

beginning, and a close up of the 200 samples around the large loop closure are shown in
respectively Figure 5-19 and Figure 5-20. It can be seen that GMapping can do a filter
update approximately every 17 samples in the beginning and every 21 samples at the end.
This indicates that GMapping needs more time to process a filter update when the mapped
environment becomes larger.

Figure 5-11: GMapping in experiment 2, unsuccessful loop closure.

(a) closure point 1 (b) closure point 2

Figure 5-12: Close ups of Figure 5-11 loop closure points. Red arrows indicate misalignments.

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

5-4 Experiment 2: IDE large loop 47

Figure 5-13: GMapping in experiment 2, successful loop closure

(a) closure point 1 (b) closure point 2

Figure 5-14: Close ups of Figure 5-13 loop closure points. Discrepancies circled in red.

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

48 Experiments

5-4-2 FoRMeT Mapping
Also for FoRMeT Mapping it was a hard loop to close. It was not uncommon that the large
loop was closed correctly, but it took a lot of parameter tuning to come to a robust loop
closure with five out of five trials with correct closure. It turned out the algorithm needed to
lower the odometry sample rate and use more beams for pose optimization. This can be
related to the fact that SAM’s odometry is significantly less accurate than its laser range
finder and to correct the odometry more information from the laser range finder is
necessary. These parameters have been used in experiment 1 and 3 as well.
The resulting map of one of the best runs with optimized parameters is displayed in
Figure 5-15. Because it is the first time a visualization of FoRMeT is shown in this work,
the different parts are explained. Multiple maps are visible in the figure, 16 to be exact.
These maps can overlap each other, and a unexplored gray part could be over an explored
white part in another map. This is why the maps have some opacity. The red ellipses show
the uncertainty projected from the node that the best particle is currently in. A close up of
the current map is given in Figure 5-16. Here the traversal and map generation thresholds
can be seen as gray lines, the particle cloud as blue arrows under the best particle’s
coordinate frame shown with a red x and green y axis. The particle cloud is almost not
visible because the robot is very certain about it’s location since this is a previously mapped
area. The small white square is a visualization bug. The edges are shown as lines between
the uncertainty ellipses. The green edges are created by loop closure and the blue edges are
created by new map generation. Dashed lines indicate the edges which are not used in the
uncertainty projection i.e. the shortest paths to the two nodes use other edges. De corrected
loop closure inconsistency is most visible at the dashed edge. To illustrate this a run with a
larger loop inconsistency is visualized in Figure 5-17. Here it can be seen at the dashed edge
in the bottom right corner the maps do not align. Also sometimes maps connected with a
regular edge seem to have some rotational misalignment. This is because there is nothing to
match when a particle enters a new map and it could easily go of course without being
penalized. This is a downside of the current implementation, but the edge will correct this
when a particle re-enters the map.
Though it might be hard for the human eye, this is a very usable result for the robot. The
local maps are all locally accurate, and there are no misalignments in the loop closure area.
The processor results are plotted next to GMapping’s results in Figure 5-18. There are some
peaks at the moments new maps are generated and one longer peak at the moment of the
large loop closure around sample 1900. Also around sample 550 and 1500 the robot has
stood still for a while, no peaks are visible there because no filter updates where performed.
The cumulative time used by the core ends at 299 seconds, which is quite contrasting to
GMappings 1162 seconds. A close up is made at the beginning and around the large loop
closure point, these plots are visible in respectively Figure 5-19 and Figure 5-20. The filter
update frequency seems to be similar in both close up plots, however at the end the peaks
are a bit higher which can be explained by the multitude of maps that need to be visualized.
Also the prolonged 100% peak around sample 2080 is clearly visible, this peak shows the
processor usage at the large loop closure. This takes a long time both because there was a
big uncertainty so many sample points needed to be matched, and because after loop
closure the algorithm has to process all odometry readings missed in the time the matching
took place. However, note that it’s not much longer than GMapping’s filter update peaks.

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

5-4 Experiment 2: IDE large loop 49

Figure 5-15: FoRMeT Mapping in experiment 2

Figure 5-16: The current map from Figure 5-15.

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

50 Experiments

Figure 5-17: FoRMeT Mapping in experiment 2, a run where a larger mismatch was corrected.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

C
P

U
 (

%
)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

C
P

U
 (

%
)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Samples

0

500

1000

C
P

U
 ti

m
e

(s
)

Figure 5-18: Performance plot of experiment 2. GMapping in red and FoRMeT in blue.

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

5-4 Experiment 2: IDE large loop 51

200 220 240 260 280 300 320 340 360 380 400
0

50

100

C
P

U
 (

%
)

200 220 240 260 280 300 320 340 360 380 400
0

50

100

C
P

U
 (

%
)

Figure 5-19: A close up of CPU samples 200-300 in experiment 2. GMapping in red and FoRMeT
in blue.

1920 1940 1960 1980 2000 2020 2040 2060 2080 2100
0

50

100

C
P

U
 (

%
)

1920 1940 1960 1980 2000 2020 2040 2060 2080 2100
0

50

100

C
P

U
 (

%
)

Figure 5-20: A close up of the last 200 CPU samples in experiment 2. GMapping in red and
FoRMeT in blue.

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

52 Experiments

5-5 Simulated large scale experiments
The IDE dataset has one large loop, but is not sufficiently large to test the scalability. The
third dataset is recorded in a simulated environment. This dataset does not have as much
noise as the odometry and laser scans of the SAM1 robot, but the path is about 250 meter
longer (± 550 meter) and seven loops with path lengths between 30 and 80 meter need to be
closed. A view of the simulated environment, the robot path and the loop closure points is
visible in Figure 5-21.

Figure 5-21: The Gazebo environment with the three Willow Garage worlds. The robot is in the
middle and the traveled path is shown as a line with color changing from yellow at the start to
purple at the end. There are seven loop closure points present, they are shown as red circles.

For FoRMeT Mapping the settings of the previous experiments resulted in a good map.
Therefore no adjustments needed to be made to the parameters, which is good for the
comparability to experiment 2. GMapping was not able to map for more than 20 meters
without totally misaligning parts of the map due to wrong scan matching. Because there is
less noise in this dataset GMapping’s parameters could be tuned to lighter settings at which
it performed reasonable. GMapping was able to map real time with this dataset, there was
no need to decrease the playback rate.

5-5-1 GMapping

The resulting map of GMapping can be seen in Figure 5-22. It performs well. Usually the
hallways and rooms are mapped straight and next to each other. Loop closures also do not
seem to be a problem usually the observations at loop closure points fit good. However,
during the last part, on the right of the figure, GMapping becomes slower and starts to
make mistakes. The rooms have a slight angular tilt opposed to the rest of the map, and the
last two loop closures are more than a meter off. A closer look to the failed last part can be
viewed in Figure 5-23.
The processor performance is plotted in Figure 5-26. Again GMapping uses about 100% of

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

5-5 Simulated large scale experiments 53

Figure 5-22: A GMapping created map of the simulated environment in experiment 3. The close
up of Figure 5-23 is located in the red rectangle

Figure 5-23: A partial map created by GMapping, the local environment in Figure 5-22. The
loop closure offsets are visualized with red arrows.

the core to do filter updates and has a small dip between updates. GMapping uses a total of
1645 processor seconds to map the simulated environment. Figure 5-27 and Figure 5-28
zoom in on respectively samples 800-1000 and 5000-5200 to view processor performance
near the beginning and the end. It can be seen that GMapping can do a filter update every
18 samples in the beginning, but at the end, when the map becomes larger each filter
update uses more computation power and can only update every 35 samples.

5-5-2 FoRMeT Mapping

FoRMeT Mapping has no trouble mapping the simulated environment real time and
accurate using the settings of experiment 2. There are some angular differences between the
maps, but all local maps are locally accurate, and all loops are closed correctly.
It can be seen that all the uncertainties are correct, small near the robot, and larger far
away from the robot. Also sometimes the mapping went a bit wrong and a straight hallway

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

54 Experiments

turned a bit slanting, however this was corrected in the edge during loop closure. The effect
of this is visible in the local maps which are slightly rotated to make the mapped path
connect well. This is excellent HMT behavior. The processor results are also good. In
Figure 5-26 it can be seen that it is uncommon to reach the 100%. Some higher percentages
are reached when the local space has a lot of grids to map e.g. the open wide space in the
upper middle section of Figure 5-24 (around sample 4000), and some lower percentages
when the robot travels through already mapped areas (samples 4400-5000). The total time
the processor spends is 590 seconds. In the close ups of Figure 5-27 and Figure 5-28 it is
visible that the filter keeps on updating in real time with the same frequency. The peaks in
CPU usage however have become larger. This is because the larger the mapped
environment becomes, and the maps the robot visualizes each update. Also during traversal
more uncertainty projections need to be calculated.

Figure 5-24: A FoRMeT created map of the simulated environment in experiment 3. The
uncertainties projected from the current local map are indicated as red ellipses. The Figure 5-25
close up is indicated with a red rectangle.

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

5-5 Simulated large scale experiments 55

Figure 5-25: A part of the map created by FoRMeT Mapping , the local environment in Figure 5-
24.

0 1000 2000 3000 4000 5000
0

50

100

C
P

U
 (

%
)

0 1000 2000 3000 4000 5000
0

50

100

C
P

U
 (

%
)

0 1000 2000 3000 4000 5000

Samples

0

500

1000

1500

C
P

U
 ti

m
e

(s
)

Figure 5-26: Performance plot of experiment 3. GMapping in red and FoRMeT in blue.

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

56 Experiments

800 820 840 860 880 900 920 940 960 980 1000
0

50

100

C
P

U
 (

%
)

800 820 840 860 880 900 920 940 960 980 1000
0

50

100

C
P

U
 (

%
)

Figure 5-27: A close up of CPU samples 800-1000 in experiment 3. GMapping in red and
FoRMeT in blue

5000 5020 5040 5060 5080 5100 5120 5140 5160 5180 5200
0

50

100

C
P

U
 (

%
)

5000 5020 5040 5060 5080 5100 5120 5140 5160 5180 5200
0

50

100

C
P

U
 (

%
)

Figure 5-28: A close up of CPU samples 5000-5200 in experiment 3. GMapping in red and
FoRMeT in blue

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

Chapter 6

Conclusion

The FoRMeT framework has been introduced and a version has been implemented to test
it’s capabilities. Conclusions are drawn about the performance of the algorithm with respect
to the hypotheses and requirements.

The forced resampling strategy ensures the particles only need to remember two maps. This
makes resampling of a particle a cheaper action. From the results of FoRMeT Mapping in
the experiments it does not seem that the forced resampling has a negative effect on the
quality of the local map. Herewith it can be concluded that the strategy has worked as
hypothesized in the beginning of Chapter 5.

In the real world dataset FoRMeT Mapping had no trouble closing the small loop with
slightly biased and inaccurate odometry and a good laser range finder. The large loop could
also be closed but it was a challenge where more computational resources was needed. It
can be said that a large loop of at least 210 meter can be closed using this setup, while the
robot uses no mapping strategies like looking back from time to time.

In the larger simulated dataset FoRMeT Mapping had no trouble mapping all the observed
locations. It had correctly and quickly closed all seven loop closures with sizes ranging from
30 to 80 meters in path size. Though it was simulated and thus contained very little noise
still the scalability could be tested. 35 local maps with a size of 12 meter, spanning more
than 3500 m2 where kept in FoRMeT ’s memory and still it ran each filter update well
within time for the next one, and each loop closure within the time of two filter updates. It
appeared like the 550 meter path in the simulated environment was no challenge for the
algorithm.

GMapping performed worse than FoRMeT Mapping in all experiments. GMapping was not
able to finish a filter update before a new update threshold was reached, even not when
given twice the time in the real world dataset. With optimized parameters it was sometimes
able to close the small loop without discrepancies and otherwise recovered its position while
leaving a small discrepancy. The large loop was only closed once, however not without some
small discrepancies, and with the same settings it failed the four other trials. In the
simulated dataset it also uses a lot of computational recourses, but the map looks very

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

58 Conclusion

straight and all loops could be closed up to a path length of 450 meter. Afterwards the scale
of the map requires too much computational recourses for GMapping to accurately continue.
It can be concluded that FoRMeT can close larger loops and is better scalable than
GMapping while using significantly less resources.

The items from the design specifications (1-3) which are not discussed yet will be treated
now. Item 2 mentions that the map should be globally consistent by approximation. Clearly
the resulting FoRMeT map is less intuitive to understand than a global map from i.e.
GMapping. However, all the local environments are approximately where they should be
and to the practiced eye the network of maps can be interpreted. Item 5 specifies the
framework should not limit itself to a specific environment. Though it has only been tested
on one real world and one simulated dataset, in theory the framework has not limited itself
to a specific environment and it remains flexible by having tunable parameters like map size.

If the user has no problems with the visual aspects of the network of maps e.g. projected
loop inconsistencies and overlapping maps where areas are mapped twice, the FoRMeT
framework will be an excellent solution for mapping large scale environments.

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

Chapter 7

Discussion and Recommendation

This chapter will be used to discuss the performance of GMapping and the limitations of the
framework. Also recommendations for improvements and related future research are done.

7-1 GMappping performance
If GMapping is an acknowledged algorithm in the field of SLAM, why did it work
suboptimal? Let’s start by saying GMapping worked well in simulation. It could not stay
within its filter update threshold, but it created a straight map in real time. Only when the
map became larger GMapping started to fail, which is common for global mapping
algorithms. In the real world GMapping also produced a map that looked reasonably
straight to the human eye but at loop closure points the metric alignment proved to be to
far off to be captured by the particle spread. When giving GMapping more time it could
make its local areas straighter, but it was often still not satisfactory to close the loop. The
odometry of SAM1 is not very accurate, therefore GMapping has to put a lot of effort to
correct this in the filter and it uses a lot of computational resources to try to do so. Also
GMapping might work good as an offline mapping method. Now the data was played back
at a specific rate and GMapping has to keep up with this rate. If GMapping would have
read the dataset from the point it left off at the previous filter update, it would take the
time it needed for each update never lag behind and it might provide a very consistent map.
However, in this work a real time mapping algorithm is required.

7-2 Similarity to HMT-SLAM
This framework takes a lot of inspiration from HMT-SLAM and Atlas. However it is most
similar to HMT-SLAM because of the particle filter strategy. It is however a different
framework. In HMT-SLAM the maps size is based on overlap of observations which is
determined with a segmentation algorithm. In FoRMeT Mapping the map size is fixed and
a new one is started when the robot arrives at a threshold. Also HMT-SLAM first creates
the map and then matches with other maps to see if the area was not already known in
hindsight. FoRMeT matches before it exits its current map. Besides these arguments this
work also introduces forced resampling which makes FoRMeT unique.

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

60 Discussion and Recommendation

7-3 Limitations

7-3-1 Network of maps

The robot is able to work with the network of maps very well, but in the end it may be up
to humans to give the robot a task and possibly indicate where this task must be carried
out. Humans should thus be able to work with the hybrid map view, which is not always
straightforward, or at least not as intuitive as one global map. This can be seen as a
downside of this HMT framework opposed to global mapping.

7-3-2 In between maps

In a specific case the robot move drive straight upwards between the map match threshold
and the map border of both maps as indicated in Figure 7-1.

Figure 7-1: Robot traveling between the map match threshold and the map border of both maps.

Since the particles are sampled with noise some of them will have an outward and some of
them will have an inward direction. The ones with an outward direction will start matching
and traversing (see 3-2). This is desired behavior. However in the other map the particle
will again be directed straight between the maps by matching. Due to the noise in the
sampling some particles might again look outwards and start matching again with the
previous map. An oscillating effect where forced resampling and matching will take place
each filter update. This sounds bad, but it’s not as bad as it seems. Apparently the other
map existed already and possibly the edge as well, or otherwise the edge will be created at
first traversal. Then the uncertainty will be small, matching will go easily and the forced
resampling will not decrease the map quality because the map is already filled with previous
observations. The downside is thus that some more computational resources are used during
oscillating traversal.
In another case the current map might end just before a loop can be closed with another
map as indicated in Figure 7-2 (a).
A new map will now be generated which largely overlaps with the already mapped area as
shown in Figure 7-2 (b). For the robot this will be no problem. As soon as the robot goes
out of the generated map it will match with the mapped area and connect the maps. The
double mapped area will not cause any problems in the framework, depending from where
the robot comes it will either use the older or the newer map until it is at the traversal
threshold. After more frequent traversal the newer map will be connected to any neighboring
maps. Only when the robot arrives from such a direction that it could match with both

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

7-4 Improvements 61

(a) before map generation (b) after map generation

Figure 7-2: Robot driving between the map match threshold and the map border of both maps

maps it will take a longer to traverse because more potential map matches are present.
The performance of the framework is determined by the size of the projected uncertainty.
When the uncertainty is larger the matching will use more computational resources and the
peak computations are performed during matching. This is amplified when multiple
candidates are available to match with. Long loop closure will not mean missed data is lost,
because the algorithm will catch up on the missed data during matching. So if the processor
is not fully utilized during normal operation the algorithm will catch up to the real time
situation.

7-3-3 Map exploration condition
Besides reaching a map end before a particle could match with another map, it could also
happen that a map cannot be matched because the correct location is unexplored in the
candidate map. To create a network of maps with a minimum of overlapping double
mapped areas it is desirable to first explore a local area as good as possible before
continuing to the next map.

7-3-4 Empty maps
The current framework cannot match with empty maps. When there are no landmarks
present in a local map a particle cannot determine its location in this map. The current
implementation does not even allow traversal to empty maps. This is a downside of the
current framework and implementation.

7-4 Improvements
7-4-1 Tilted environment in new maps
The biggest reason for large offsets in loop closures is because of tilted environments new
maps. Whenever a particle enters a new map there is nothing to match and thus there is
little penalization for particles who’s odometry is sampled far from reality. Due to this it
could happens that i.e. a hallway is suddenly mapped slanted with respect to the previous
map. This will be corrected when the robot will traverse the edge again, but it is better to
be avoided in the first place. An improvement could be made where the last few
observations that already fall in the new map while the particle was in the previous map are
used for matching in the new map.

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

62 Discussion and Recommendation

7-4-2 Uncertainty ellipses

The larger an uncertainty is the more matching needs to take place when one or more
particles want to match with the associated map. The performance is therefore largely
dependent on the size of uncertainties and it is thus important to accurately represent the
uncertainty. Often the real uncertainty is not an ellipse, but some nonlinear shape which
cannot be expressed in a Gaussian. Therefore it would be better to express the uncertainty
as particles, multiple hypotheses about the relative location of nodes. The particles could be
projected over all edges into a resulting particle cloud representing a more accurate
distribution. The traversal function now does not have to create match points in an
uncertainty, but the projected particles themselves act as the match points. The
distribution is now more accurate, and the step of creating an ellipse and sampling from an
ellipse can then be omitted.

7-4-3 Code improvements

The implementation is far from optimized. Code improvements using different programming
strategies could be implemented to speed up the computations. Also double actions could
be identified which can be omitted from the process. An example of this is the matching
after forced resampling at traversal point. Many particles will be identical to others and
have exactly the same pose after forced resampling. The result of map matching will thus
also be identical. For each group of identical particles only one matching action would
suffice, possibly saving significant amounts of computation time.

7-4-4 Improved localization and optimization

The odometry correction using the transform between two observations (Section 3-1) has
not been implemented yet as described in Subsection 4-3-1 where an ICP algorithm on two
laser scans is suggested. Some more research is necessary to accurately improve the robots
odometry this way. Also the mentioned non linear optimization (Subsection 3-5-2) could
still be developed for an even more scalable implementation.

7-5 Future research

7-5-1 Continuous mapping

The current framework describes how to create a network of maps in real time. For a fully
functional mobile robot it is necessary to be able to perform tasks using this network of
maps. The current implementation could likely be used for continuous mapping because it
does not use a lot of computational resources. Commonly mapping happens once and
afterwards a localization algorithm is used in the fixed map. This is mainly because
mapping is an expensive action and localization in a known map is cheap. FoRMeT
Mapping has, like any SLAM framework, already a localization built in because of the pose
estimate. Whenever a map is explored sufficiently a future version of FoRMeT could only
update newly observed items in a map, and when entering an unexplored area it could
continue as a full mapping system. This way it can be used to map continuously and keep
up to date with the latest environment configuration.

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

7-5 Future research 63

When continuous mapping is not desired a localization framework should be designed that
can function in the network of local maps. It would be like any other localization
framework, but it is now necessary to take traversal into account. Also for well functioning
navigation it is recommended to have the topological graph as connected as possible. Thats
why it is advised to update and create edges in the localization framework when traversing
between maps.

7-5-2 Navigation
For a fully functional mobile robot navigation is essential. The current framework does not
include any navigational aspects. However, robots using a network of maps to travel to a
designated location have to use it with a hybrid type of navigation. Because the local area’s
are arranged in a graph it could make path planning easier. A global route over the
topology, from node to node, could be quickly calculated. Afterwards a local path planner
over the grid cells could be used for each node in the local map.

7-5-3 Dynamic maps
Local maps are perfect to keep place related information. As discussed in the continuous
mapping subsection, a future framework could keep on mapping while the robot is being
used for other tasks. During the continued mapping it could keep track of the dynamic
elements in the local surroundings and relate them to the associated node. This way the
map is kept up to date to prevent future mismatches in loop closures and general
localization. Currently when the robot travels through an explored area it uses less
computational resources, so there is room for extra processing in these areas.

7-5-4 Autonomous exploration
To relieve humans from the task of coordinating the robot during map creation an
autonomous exploration framework could be devised. This would especially be useful in
larger environments. Such a framework should keep certain HMT exploration strategies in
mind like first exploring the current local map before going to the next, creating as many
node interconnections as possible and keeping the loop size to a maximum to prevent large
calculations.

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

64 Discussion and Recommendation

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

Appendix A

Bayes Filter

A-1 Bayes Theorem
The Bayes theorem Eq. (A-1) expresses the probability of one variable given another
variable. In this case the probability of A when B is given.

p(A|B) = p(B|A)p(A)
p(B) ∝ p(B|A)p(A) (A-1)

p(A) is called the prior which contains information about A before B is known, we would
like to infer the quantity of A given B. p(A|B) is called the posterior which is the final
estimate with the prior and information about B incorporated. The division by p(B) is used
to normalize, hence the proportionality with the most right side. The Bayes theorem thus
splits the estimation of a conditional variable into a normalized prior and posterior
estimation.
In the sense of pose estimation this would mean the probability of the robot’s pose given a
measurement equals the probability of the measurement given the pose, times the prior
estimate of the pose, divided by the probability of having the measurement. The Bayes
theorem is used in the Bayes filter, which recursively estimates p(A) using the posterior of
the previous time step as the prior of the current one. The Bayes filter is treated later this
chapter in section (A-2).

A-2 Bayes filter
The probabilistic definitions of the previous sections all come together in the Bayes Filter,
which is used as basis for localization and mapping. Before the Bayes filter can be
introduced the motion and observation model, concept of belief and the Markov assumption
must be discussed.

A-2-1 Motion and observation model

The estimation of the robot state can be estimated with the Bayes filter using two models,
the motion and observation model. The motion model describes the relative motion of the

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

66 Bayes Filter

robot and is given as a distribution of the pose given all previous poses and the control
inputs Eq. (A-2).

p(xt|xt−1, ut) (A-2)

p(zt|xt) (A-3)

The measurement model describes how a measurement is related to the state estimate
Eq. (A-3). The next section describes how a Bayes filter uses these models to estimate the
states.

A-2-2 Beliefs
The robot has no access to the true state, but can only form a belief by estimation based on
measurements. The internal belief the robot has about the state is appositely called the
belief, abbreviated as bel. The belief is a distribution function assigning a probability to the
state hypothesis’, and is more or less a way abbreviate probability distributions.

bel(xt) = p(xt|zt, ut) (A-4)

The belief in Eq. (A-4) is the posterior of x, it estimates x based on all measurements up to
time t. A belief that does not include the latest measurement called the prior, is denoted as
bel.

bel(xt) = p(xt|zt−1, ut) (A-5)

A-2-3 Markov assumption
The Markov assumption is an important assumption which allows us to use the Bayes filter.
It hypothesizes that all previous measurement information can be disregarded in the
estimation of the current state, if one has the previous state estimation given. Herewith it
states that there is a conditional independence between the current state and the previous
measurements. The assumption can be made because the previous measurements are
incorporated in the previous state estimates. In practice the Markov assumption looks like
Eq. (A-6).

p(xt|xt−1zt−1, ut−1) = p(xt|xt−1) (A-6)

The assumption can be made because xt−1 has been estimated using all measurements up to
t− 1. The Markov assumption allows recursive state estimation.

A-2-4 Bayes filter
The Bayes filter uses the previous probability theorems to devise a prediction of the current
state given the previous state and the control input, and afterwards a correction of that
prediction using the current measurement. The equations are formed by writing Markov
assumptions into the beliefs of the motion and sensor models. The Bayes prediction is given
by equation Eq. (A-7).

bel(xt) =
∫
p(xt|ut, xt−1)bel(xt−1) (A-7)

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

A-3 Kalman filter 67

It can be seen that the belief prediction of xt is dependent on the motion model in which
the previous measurements have been substituted by xt−1 due to the Markov assumption.
This prediction functions as a prior in the corrected belief equation Eq. (A-8).

bel(xt) = ηp(zt|xt)bel(xt) (A-8)

The correction step uses the measurement model to correct the prediction with a
normalizing term η. Here the underlaying Bayes Rule Eq. (A-1) can be seen. Together these
equations give the believe of the state at time t.

A-3 Kalman filter

The Kalman filter is a Bayes filter. In particular, the Kalman filter is the Bayes filter used
for linear systems with Gaussian distributions. It will converge to the optimal solution if the
motion and observation model are of the following structure Eq. (A-9).

xt = Axt−1 +But + ε

zt = Cxt + δ
(A-9)

A describes how the state evolves based on the previous state, B describes how the control
input affects the state and ε is an error term introduced by motion noise. C describes how
the measurement is related to the state and δ is an error term introduced by measurement
noise. The Kalman filter steps are described in algorithm 1.

Algorithm 1: Kalman Filter
Input: Mean µt−1, covariance Σt−1, control ut, observation zt
Output: µt,Σt

/* Prediction */
1 µ̄ = Atµt−1 +Btut
2 Σ̄ = AtΣt−1A

T
t +Rt

/* Correction */
3 Kt = Σ̄tC

T
t (CtΣ̄tC

T
t +Qt)−1

4 µt = µ̄t +Kt(zt − Ctµ̄t)
5 Σt = (I −KtCt)Σ̄t

6 return µt,Σt

By calculating the Kalman matrix Kt, the state and covariance can be estimated at each
new measurement. First a prior estimate of the state and covariance (barred) is calculated
with the state space matrices A and B, the input u and the previous estimation µt−1 while
incorporating the motion noise Rt covariance. Then the Kalman matrix Kt is calculated
with the measurement noise covariance Qt and used to form the posterior mean and
covariance which incorporate the measurement zt.
The result of the Kalman filter is a new weighted mean and covariance. The steps in a one
dimensional situation would look like the example in Figure A-1. Since the covariance in an
estimate is a measure of accuracy the most accurate state estimate will have the most
influence on the final estimate.

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

68 Bayes Filter

Figure A-1: The Kalman filters prediction, measurement and correction step

It can be seen that the measurement (green) has a smaller variance then the prediction
(red). Therefore the corrected (blue) estimate has a mean that lies closer to the
measurement than the prediction. Also note that the correction has an even smaller variance
than the measurement, it is more certain because it is based on two separate estimates.

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

Appendix B

Introduction to Kalman Filter SLAM

The traditional SLAM methods are based on the Kalman Filter (KF) which estimates the
state of the map and the robot simultaneously. The Kalman Filter estimates the poses of
the robot and the landmarks as normally distributed means and covariances. A state vector
µt at time t contains the estimated mean pose of the robot xrobot and the estimated poses of
the landmarks Li in the map and a covariance matrix Σ contains the covariances between
all elements in the state vector Eq. (B-1).

Figure B-1: The robot pose at different time steps and corresponding landmark observations

When the pose of the robot is two dimensional it contains xrobot = [x, y, θ]T . The total state
adds the poses of each landmark li = [lx, ly]T . The composition of µ and Σ in the Kalman
filter are given in equation Eq. (B-1)

µ =

x
y
θ
l1
...
ln

Σ =

σx2 σxy σxθ σxl1 . . . σxln
σyx σy2 σyθ σyl1 . . . σyln
σθx σθy σθ2 σθl1 . . . σθln
σl1x σl1y σl1θ σl12 . . . σl1ln
...

...
...

...
σlnx σlny σlnθ σlnl1 . . . σln2

(B-1)

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

70 Introduction to Kalman Filter SLAM

B-1 EKF SLAM
EKF stands for Extended Kalman Filter [11]. It is used because the assumptions a standard
Kalman filter makes are violated in most cases for mobile robots. The typical motion and
observation models are non linear Eq. (B-2) and i.e. the prediction with a motion model can
look like the distributions in Figure B-2 . These shapes are not Gaussian and with every
subsequent pose another nonlinear shape is added to this one, so the real distribution after
several time steps can have an arbitrary shape.

xt = g(xt−1, ut) + εt , zt = h(xt) + δt (B-2)

Figure B-2: Typical distributions from motion models. Adopted from [2]

When a Gaussian distribution is propagated through a nonlinear function, the result is
typically non-Gaussian. The EKF works by making an approximation by linearizing the
model with a first order tailor expansion Eq. (B-3).

g(ut, xt−1) ≈ g(ut, µt−1) + g′(ut, µt−1)(xt−1 − µt−1)
h(xt) ≈ h̄(µ̄t) + h′(xt − µ̄t−1)

(B-3)

B-2 Data association
The algorithm estimates the poses of the robots and landmarks with their respective
covariances. In Figure B-3 the map with landmarks and robot trajectory of a run with an
EKF based SLAM algorithm [1] is visualized next to the related covariance matrix.

Figure B-3: Left: estimated robot and landmark poses with covariance, right: covariance matrix

Newly observed landmarks are inserted as the next entry in the state and covariance matrix,
and therefore there is an empty area with the size of the amount of unobserved landmarks
in the covariance matrix. The EKF algorithm can only function when the landmarks are
uniquely identifiable, or with known data association. If landmark 5 is observed again, you

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

B-3 Loop closure 71

need to know that is landmark 5 to be able to update the matrices. If you regard it as a
new landmark the map will not likely converge to the true map which in turn makes
localization difficult. Besides, the covariance matrix would grow unlimited if every seen
landmark is inserted as new. The Kalman filter assumes the robot uses an algorithm to
identify the landmarks uniquely.

B-3 Loop closure
Whenever an area that is already mapped is recognized we can speak of a loop closure. A
loop closure is a moment of feedback for the SLAM process since the uncertainty of being
somewhere is reduced when seeing an already visited place. It can be regarded as an extra
correction step by the observation model. However, all the means and covariances are
recalculated, and the uncertainties are reduced with the highest reductions the closest to the
loop closure point. A visualization of a loop closure is given in Figure B-4.

(a) just before loopclosure (b) after loop is closed

Figure B-4: The uncertainties of the landmarks and the estimate of the robot poses before and
after loop closures.

When the robot is back at an already mapped place its internal representation might say
that it is somewhere else because of small error accumulation. The robot in Figure B-4
re-observes two landmarks and can now correct its location by performing a loop closure.
Note that the landmarks furthest away from the closure point have the greatest uncertainty.
Also note that the uncertainty of the trajectory is omitted for convenience, but normally
present. Just like in regular data association, the association with the right features at the
right closure point is desirable. If a loop is closed with a wrong data association, the map
will likely not converge to the true map. Detection of a loop closing point can be highly
ambiguous. When two areas have very similar features one should be very careful not to
close the wrong loop.

B-4 Computational complexity
The EKF algorithm has it’s limitations, because the computational complexity can become
quite high. The extended KF variant has to linearize the model at each time step. Also
every time a new landmark is observed, an entry is added to the state vector and covariance
matrix. Furthermore, with every observed landmark, all the covariances of that landmark
with the other state variables must be recalculated. And with every loop closure every entry
must be updated. This makes it a more time consuming algorithm when more landmarks

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

72 Introduction to Kalman Filter SLAM

are observed. The computational complexity becomes quadratic (O(n2)) with n, the
number of landmarks. To improve these issues more variants of the KF are available. The
Unscented Kalman Filter (UKF) does not use linearization by Tailor expansion, but by
propagating the covariance from points which represent an abstraction of the uncertainty.
The Sparse Extended Information Filter (SEIF) is a linearization of the information filter
which uses the inverse of the covariance matrix, by ignoring almost 0 entries in the
information matrix the calculations can be sparsified.

consideration Depending on the purpose, a different method may be used. EKF for
nonlinear models, UKF for a bit better quality estimate, SEIF for a decreased
computational cost. However for most robotic purposes any KF version only gives a linear
estimation of the distributions, yielding suboptimal results. Also the computation time is
often too big for large scale environments due to the increasing number of landmarks.

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

Appendix C

Introduction to Particle Filters

The Particle Filter (PF) is a non parametric implementation of the Bayes algorithm [2].
Particle filters represent the posterior by a set of weighted samples or particles, where each
particle corresponds to a hypothesis about the robot pose. Besides a pose, particles have a
weight, which can be derived from it’s value in a distribution. The resulting set of weighed
particles represents a sample-based approximation of the continuous posterior distribution.
An advantage of using particles is that a particle cloud can take on different distributional
shapes. Since in particle filters multiple hypothesis’ can exist alongside each other, a
multimodal Gaussian distribution for example can be easily approximated with a set of
particles.
A set of particles denoted as X := x[1], x[2], . . . , x[M] that approximates the belief bel(x) is
calculated each step (Algorithm 2). It recursively constructs the new particle population Xt
from the previous Xt−1 while including control inputs and observations. Similar to the
Kalman filter, first a temporal particle set X̄t is constructed by propagating all particles
from Xt−1 through the motion model. It will represent the prior belief bel(xt), which is
called the proposal distribution. Afterwards this set is resampled according to the target
distribution which is based on the observations to represent the posterior belief bel(xt).
Algorithm 2: Particle Filter
Input: previous state particle set Xt−1, control ut, observation zt
Output: Xt

1 X̄ = X =Ø
2 for m=1 to M do
3 sample x[m]

t ~p(xt|ut, x[m]
t−1)

4 w
[m]
t = p(zt|x[m]

t)
5 X̄t = X̄t +

〈
x

[m]
t , w

[m]
t

〉
6 end
7 for m=1 to M do
8 draw i with probability ∝ w[i]

t

9 add x[i]
t to Xt

10 end
11 return Xt

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

74 Introduction to Particle Filters

Line 3 samples each particle from their state transition distribution p(xt|ut, xt−1). Line 4
determines the weight of each sample based on the posterior believe p(zt|xt). And line 5
adds each sample to the sample population, which is noted with a bar X̄ indicating its
dependency on the prior belief distribution. In the last for loop resampling takes place.
Since the distribution of X̄t is based on the prior, the posterior will be included by
resampling the particles based on their weights. The particles with low weights, or ’weak’
particles, will be redrawn from the set of particles with high weights, or ’fit’ particles. This
introduces a ’survival of the fittest’ concept which incorporates the posterior into the new
set Xt.

C-1 Resampling
The resampling step is a crucial part in the functioning of the algorithm. The particles in
the proposal distribution should be corrected by the target distribution. In a Kalman filter
this is a simple mathematical procedure with the mean and covariance. In the particle filter
however there are samples from which some fit well in the proposal distribution, and others
fit less. The particles should be weighed to how good they fit into the target distribution.
Therefore the importance weights are chosen to represent the mismatch between the the
proposal distribution g(x) and the target distribution f(x): w(x) = f(x)

g(x) . Intuitively one
might see how an x ∈ g(x) can be represented in f(x) by multiplying it with w(x) = f(x)

g(x) .

x ∈ g(x)→ f(x)
g(x) → x ∈ f(x) (C-1)

(a) target distribu-
tion f(x)

(b) proposal distribu-
tion g(x)

(c) particles from
g(x) amplified with
their weights

Figure C-1: particles sets (in blue) with their distribution shapes

In Figure C-1 the green distribution is the proposal distribution. The samples are drawn as
can be seen below Figure C-1b. The weights can be derived by dividing the nonlinear target
by the proposal distribution at the sample location. Note that the proposal distribution is
clearly not Gaussian. The weighted particles can be seen at the bottom of Figure C-1c.

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

Appendix D

Monte Carlo Localization

D-1 Monte Carlo localization

Often the map of an environment is created once and assumed static. Afterwards the robot
uses a localization algorithm to determine its pose in the map. One of the more popular
algorithms based on the particle filter (Appendix C) is the Monte Carlo Localization (MCL)
algorithm [12]. The algorithm places particles in a known map and determines the
probability of its location being the location of the particle. Each particle evolves over time
with the motion and measurements of the robot and gets a higher or lower probability of
having the correct location. Going through this algorithm the belief about the robot pose
likely converges to the true pose.

Example A robot is moving through one of two almost identical hallways that have been
mapped before in Figure D-1. The MCL particles are distributed equally over both
hallways, based on the observation the probability of being in either hallways is the same.

Figure D-1: Particle distribution over two similar hallways, and robot observation.

When the robot moves further in Figure D-2 it observes a feature that is present in only one
of the hallways. The probability of being in hallway 1 has now becomes very low, and the
hallway 2 hypothesis is now very likely. The particles in hallway 2 have a higher weight and
are favored in the resampling step.

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

76 Monte Carlo Localization

Figure D-2: Particle distribution over two similar hallways, and robot observation including box.

An advantage of MCL is that multimodal beliefs are possible, in the example it can be in
both hallways at the same time. Also the resampling is based on the weight of the particle.
Because the resampling is random and the chance of sampling a particle is proportional to
its weight, it is also possible, but unlikely, that a particle with low weight is sampled. This
is a strength of the particle filters since a particle might temporarily score low, but may still
be the right particle. If someone would move the box, and the rest of the environment has
remained the same, these two particles in the example that have a low weight will have a
higher weight later on and the filter can escape this false local maximum. A particle filter
works better with more particles, since the distribution it describes will go towards the real
continuous distribution when the amount of particles goes to infinity. However the more
particles used the more computation time. It is can be considered a design parameter. Too
little particles: likely to get stuck in false local maxima, too many particles: high
computation time.

D-2 Adaptive MCL
Kidnapped Robot When a the particles have converged around the robots true pose, and
the robot would be "kidnapped" and placed in another known environment but without
initial pose estimate we speak of a kidnapped robot situation. The robot does not know
where it is and has to figure this out by moving around and observing the local features.
The MCL still has it’s previous pose estimate, and is not capable to recover, because it
samples its new pose around the old pose in the old area. Adjustments have been made [2]
where extra random particles are injected when the localization performance is low. i.e.
when all particle weights are low, the pose is likely not around, more random particles will
be spawned. This way the robot can recover from being kidnapped, or just from a
resampling step where the correct particles where discarded during resampling.

Adaptive MCL Adaptive Monte Carlo Localization (AMCL) uses a statistical bound on
how far off the particle based posterior is from the real distribution. Based on this the
number of particles needed to represent this posterior is estimated, and the sample size is
adapted to this number. Thus, in AMCL the number of particles is adjusted to the
estimated accuracy of the particle based posterior.

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

Appendix E

Shortest Path Algorithms

An important purpose of knowing the map and the robot location is to do navigation.
When the robot is asked to travel from a start to an end point it will use a path planning
algorithm to determine an optimal route. This optimal route can be the fastest, shortest or
safest, whichever arbitrary property that makes a path optimal can be used.

E-1 Dijkstra’s algorithm
The Dijkstra’s shortest path algorithm [13] is often used to do path planning. It uses a graph
representation with nodes connected with edges, often also called vertices and arcs. The
nodes are places in the environment and the edges represent the cost of traversing form one
node ot another. The algorithm will determine the costs of different routes by accumulating
the costs of all traversed edges. The route with the smallest cost will be the solution to
Dijkstra’s algorithm. In Figure E-1 the optimal path will be S-C-D-E with a cost of 6.

Figure E-1

The algorithm will begin from a start node and look the cost of traversing to each
neighboring node. From there it will go to the first neighbor node and analyze for the cost
of traversing to each of that nodes neighboring nodes, if not analyzed yet. While doing this
it sums up the costs of going from the start node to each node in the graph, when the cost is
already present it will update a new cost only if its lower. The algorithm continues until all
nodes have been regarded. The result of Dijkstra’s algorithm is a list of nodes together with
the cost of traveling to that node and it’s parent node e.g. the node one needs to travel to
before traversing the last edge to the target node. From this the cheapest cost of traversing

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

78 Shortest Path Algorithms

to each node can be seen and the path to arrive to each node can be reconstructing by
following each parent node to the start node. The example shows a directed graph e.g. the
edges can only be traversed in one direction. It is also possible to have an undirected graph
where the edges can be traversed in both directions which do not necessarily need to contain
the same cost. Pseudo code of Dijkstra’s algorithm is shown in Algorithm 3. It requires a
graph G containing vertices V , neighbors N for each vertex and a start vertex vs.

Algorithm 3: Dijkstra’s algorithm
Input: G(V,N), vs

1 dist[vs]← 0
2 parent[vs]← vs
3 foreach v ∈ V − {vs} do
4 dist[v]←∞
5 parent[v]← ∅
6 end
7 S ← ∅
8 Q← V
9 while Q 6= ∅ do

10 u← mindist(Q)
11 S ← S ∪ {u}
12 foreach v ∈ N [u] do
13 if dist[v] > dist[u] + w(u, v) then
14 dist[v]← dist[u] + w(u, v)
15 parent[v] = u

16 end
17 end
18 end
19 return dist, parent

E-2 Dijkstra for grid maps
For grid maps Dijkstra’s algorithm can be used by regarding every free grid as a node. The
adjacent free grids are connected by edges with a constant cost. The grids can now be
evaluated to find the path with the lowest cost. However, this method could become a large
problem to solve for larger grid maps. Therefore Dijkstra’s algorithm typically expands
around the start point, exploring cells until it has found the end point, and finds the
shortest route with the grids in between as shown in Figure E-2.

E-3 Other algorithms
Less computation time is used when less grids need to be evaluated, this is especially
important for planning in grid maps. Some other algorithms like Breadth-first search and A*
based on Dijkstra’s algorithm have been developed which have different policies to evaluate
less grids. They are often more efficient, but this depends on the type of environment.

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

E-3 Other algorithms 79

(a) a graph repre-
senting 4 grid cells

(b) shortest path and search
space [14].

Figure E-2: Dijkstra’s algorithm for grid maps

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

80 Shortest Path Algorithms

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

Appendix F

Homogeneous coordinates

Homogeneous coordinates can be used to describe points in coordinate frames and
transforms between coordinate frames. Homogeneous coordinates make use of projective
geometry e.g. adding an extra dimension, which allows points and transforms to be written
in vectors and matrices on which operations can easily be performed. In this appendix only
2D operations are discussed and the operations necessary for understanding this work.

F-1 Notation

In Figure F-1 two coordinate frames and a point are seen in a 2D world. A point is regarded
as a translation from a coordinate frame. The value of point p is thus coordinate frame
dependent. Point p in frame 1 will be written as p1. Point p1 = [4, 1]T in the example.
Between coordinate frames exist translations and rotations. A coordinate frame can only be
expressed in another coordinate frame to get a value. This expression uses these rotations
which contain x and y offsets and rotation θ. In the example the translation from frame 1 to
2 can be expressed as T 2

1 = [2, 2,−1
4π]T . The transform from frame 2 to 1 is written as T 1

2
or (T 1

2)−1, because it is actually the inverse of T 2
1 .

Figure F-1: A point and two coordinate frames in a 2D world

F-2 Operations

The operations that are disused are rotations, translations and combinations of these. To a
2D point or transform in projective geometry an extra dimension is added to be able to

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

82 Homogeneous coordinates

work with homogeneous operations. The transform can be written as a matrix containing a
rotation R(θ), translation t(x, y) and an extra dimension.

pi =

xiyi
1

 (F-1)

T ji =
[
Rji (θ) tji (x, y)

0̄ 1

]
=

cos(θ) −sin(θ) x
sin(θ) cos(θ) y

0 0 1

 (F-2)

This extra dimension allows transforms to be added to each other by means of
multiplication. Let’s say for example the transform T 2

1 and the point p1 are known. If the
point expressed in frame 2 is desired this can be calculated by doing in inverse of the
transform between frame 1 and 2 to the point expressed in frame 1 (Eq. (F-3)). So by
knowing the transform between frames points can be expressed in these frames using the
transforms.

p2 = T 1
2 ∗ p1 (F-3)

As discussed before T 1
2 is actually the inverse of T 2

1 . In homogeneous coordinates there is a
simple method of calculating the inverse of a transform. Since it is a rotation in the
opposite direction and a backwards translation which is dependent on the rotation of the
coordinate frame it can be written in terms of R and t.

(T ji) =
[
Rji (θ)−1 Rji (θ)−1 ∗ tij(x, y)

0̄ 1

]
, with R(θ)−1 =

[
cos(θ) sin(θ)
−sin(θ) cos(θ)

]
, tij = −tji (F-4)

Using these building blocks from homogeneous geometry points and coordinate frames can
be rotated and translated with respect to a coordinate frame.

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

Appendix G

Iterative Closest Point

The Iterative Closest Point (ICP) algorithm can be used to find a Euclidean alignment of
2D or 3D point sets. The algorithm takes a alignment A and a reference R point set as
input. It returns a transform which should align the alignment point cloud with the
reference point cloud. There are many different versions of this algorithm, one of the better
known, early, fully developed algorithms using ICP is created by Besl et al. in 1992 [15].
The steps of the most basic version will be explained in this appendix.
For each point ai ∈ A the algorithm finds the closest point ri ∈ R and it will pair these two
points. The result is a set of paired points and the algorithm will try to find the optimal
transform T r∗a to minimize an error norm between the paired points.

f(T r∗a) = min
n∑
i=1
||ri − ai|| (G-1)

Different versions of the ICP algorithm have different methods to find this transformation
based on the paired point set. The found transform is applied on all points in A. One
iteration of the algorithm has now been executed. The next iteration the algorithm will
again look for the closest pair point, this is necessary because the first found pair points
might not actually be close to the alignment points after optimization. The closer the
alignment set comes to the reference set the more likely it is the found pair are actually
valid pairs in hindsight. The algorithm continues until an exit flag is reached, this might be
a maximum amount of iterations or a minimum error norm to be reached. An example with
two iterations is visualized in Figure G-1.
The ICP algorithm is a linear solution to the alignment problem, and it could easily get
stuck in a local minimum. To be more sure to find the global minimum it is advised to use a
nonlinear optimization method at a higher level. Often an estimate of the transform is
requested a priori. By running the ICP algorithm various times with slightly varying initial
transforms different solutions could be found and the transform with the smallest error
could be used.
Different ICP algorithms have supplemented the basic steps with i.e. filtering outliers
caused by noise in the point sets, or using other methods like point to plane in stead of
point to point.

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

84 Iterative Closest Point

Figure G-1: Two iterations of the ICP algorithm. Alignment set in red, reference set in blue,
pairs indicated with arrows

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

Bibliography

[1] C. Stachniss, “Course material for SLAM Course University of Freiburg.”
http://ais.informatik.uni-freiburg.de/teaching/ws12/mapping/index_en.php,
2013. [Online; accessed Sep-2016].

[2] D. F. Sebastian Thrun, Wolfram Burgard, Probabilistic Robotics. MIT Press, 2005.

[3] M. Bosse, P. Newman, J. Leonard, M. Soika, W. Feiten, and S. Teller, “An atlas
framework for scalable mapping,” in Robotics and Automation, 2003. Proceedings.
ICRA’03. IEEE International Conference on, vol. 2, pp. 1899–1906, IEEE, 2003.

[4] J.-L. Blanco, J.-A. Fernández-Madrigal, and J. Gonzalez, “Toward a unified bayesian
approach to hybrid metric–topological slam,” Robotics, IEEE Transactions on, vol. 24,
no. 2, pp. 259–270, 2008.

[5] M. Trauttmansdorff, “The interior of the faculty of industrial design engineering in
delft..” http:
//michael.trauttmansdorff.ca/photoblog/archive/2013/03/23/ide-faculty/,
2013. [Online; accessed Sep-2016].

[6] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, et al., “Fastslam: A factored
solution to the simultaneous localization and mapping problem,” in Aaai/iaai,
pp. 593–598, 2002.

[7] M. Montemerlo and S. Thrun, “Fastslam 2.0,” FastSLAM: A scalable method for the
simultaneous localization and mapping problem in robotics, pp. 63–90, 2007.

[8] G. Grisetti, C. Stachniss, and W. Burgard, “Improving grid-based slam with
rao-blackwellized particle filters by adaptive proposals and selective resampling,” in
Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE
International Conference on, pp. 2432–2437, IEEE, 2005.

[9] H. Holendrecht, “A metro map of amsterdam.”
http://hubholendrecht.nl/holendrecht-alle-metrotijden/, 2013. [Online;
accessed Sep-2016].

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

http://ais.informatik.uni-freiburg.de/teaching/ws12/mapping/index_en.php
http://michael.trauttmansdorff.ca/photoblog/archive/2013/03/23/ide-faculty/
http://michael.trauttmansdorff.ca/photoblog/archive/2013/03/23/ide-faculty/
http://hubholendrecht.nl/holendrecht-alle-metrotijden/

86 Bibliography

[10] Niertransplantatie.info, “Ziekenhuis gang - leeg.”
https://www.niertransplantatie.info/ervaringsverhalen-donoren/
ik-ben-blij-dat-ik-mijn-dochter-kon-helpen.html, 2015. [Online; accessed
Sep-2016].

[11] P. Cheeseman, R. Smith, and M. Self, “A stochastic map for uncertain spatial
relationships,” in 4th International Symposium on Robotic Research, pp. 467–474, 1987.

[12] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte carlo localization for mobile
robots,” in Robotics and Automation, 1999. Proceedings. 1999 IEEE International
Conference on, vol. 2, pp. 1322–1328, IEEE, 1999.

[13] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische
mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[14] A. Patel, “Dijkstra-trap.png.”
http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html,
2016. [Online; accessed Oct-2016].

[15] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,” in Robotics-DL
tentative, pp. 586–606, International Society for Optics and Photonics, 1992.

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

https://www.niertransplantatie.info/ervaringsverhalen-donoren/ik-ben-blij-dat-ik-mijn-dochter-kon-helpen.html
https://www.niertransplantatie.info/ervaringsverhalen-donoren/ik-ben-blij-dat-ik-mijn-dochter-kon-helpen.html
http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html

Glossary

List of Acronyms
KF Kalman Filter

EKF Extended Kalman Filter

HMT Hybrid Metric-Topological

MCL Monte Carlo Localization

PF Particle Filter

RBPF Rao Blackwellized Particle Filter

SEIF Sparse Extended Information Filter

SLAM Simultaneous Localization and Mapping

UKF Unscented Kalman Filter

AMCL Adaptive Monte Carlo Localization

FoRMeT Forced Resampling hybrid Metric Topological

ICP Iterative Closest Point

ROS Robot Operating System

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

88 Glossary

Remco Roozendaal CONFIDENTIAL Master of Science Thesis

Index

Atlas, 12

Bayes filter, 66
belief, 66

canopy, 20
conditional independence, 66
covariance matrix, 69

dijkstra, 77

edges, 10

forced resampling, 18

global map, 11

hybrid metric-topological (HMT), 11

Kalman filter, 69
kidnapped robot, 76

landmarks, 5
likelihood field model, 30
loop closure, 71

map matching, 13
Markov assumption, 66
motion model, 65
multple stem, 20

navigability, 10
node traversal, 22
nodes, 10
number of effective particles, 8, 32

observation model, 65

odometry, 5

pose, 7
posterior, 65
prior, 65

scan matcher, 24
semantic, 11
shared topology, 21
stem, 20

topological loop, 23
Topology, 10
traversal, 22
traversal threshold, 33

uncertainty, 11
uncertainty projection, 12

Master of Science Thesis CONFIDENTIAL Remco Roozendaal

	Front Matter
	Cover Page
	Title Page
	Signatures
	Table of Contents
	List of Figures
	List of Tables
	Preface

	Main Matter
	Introduction
	Mapping and localization
	Thesis statement
	Design specifications
	Thesis outline

	Background Information
	SLAM
	Interaction variables
	Map appearance
	Traditional SLAM

	Particle Filter SLAM
	Rao Blackwellized particle filter
	Resampling
	Loop closure
	Rao Blackwellized particle filter

	FastSLAM
	RBPF based occupancy grid mapping

	Topological SLAM
	Topological maps
	Semantic maps

	Hybrid metric-topological SLAM
	HMT with traditional SLAM
	HMT with RBPF SLAM

	The FoRMeT Framework
	Local mapping algorithm
	Adjustments to RBPF SLAM

	Map size and separation
	Map size
	Node traversal and map generation

	Traversal candidates
	Traversal
	Optimization
	Edge updating
	Graph optimization

	The Implemented FoRMeT Framework
	Sample from motion model
	Filter update
	Weight update
	Pose optimization

	Map update
	Resampling
	Forced resampling
	Node traversal
	Selection of traversal candidates
	Sampling of match points
	Matching of match points
	Sampling of traversal action
	Execution of traversal action

	optimization
	parameters

	Experiments
	Experimental setup
	Experimental design
	Datasets
	Experiments
	Comparison

	Experiment 1: IDE small loop
	GMapping with standard parameters
	GMapping with tuned parameters
	FoRMeT Mapping

	Experiment 2: IDE large loop
	GMapping
	FoRMeT Mapping

	Simulated large scale experiments
	GMapping
	FoRMeT Mapping

	Conclusion
	Discussion and Recommendation
	GMappping performance
	Similarity to HMT-SLAM
	Limitations
	Network of maps
	In between maps
	Map exploration condition
	Empty maps

	Improvements
	Tilted environment in new maps
	Uncertainty ellipses
	Code improvements
	Improved localization and optimization

	Future research
	Continuous mapping
	Navigation
	Dynamic maps
	Autonomous exploration

	Appendices
	Bayes Filter
	Bayes Theorem
	Bayes filter
	Motion and observation model
	Beliefs
	Markov assumption
	Bayes filter

	Kalman filter

	Introduction to Kalman Filter SLAM
	EKF SLAM
	Data association
	Loop closure
	Computational complexity

	Introduction to Particle Filters
	Resampling

	Monte Carlo Localization
	Monte Carlo localization
	Adaptive MCL

	Shortest Path Algorithms
	Dijkstra's algorithm
	Dijkstra for grid maps
	Other algorithms

	Homogeneous coordinates
	Notation
	Operations

	Iterative Closest Point

	Back Matter
	Glossary
	List of Acronyms

	Index

