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Abstract

Increasing distributed generation of and demand for electrical energy results ever more in problems
like congestion. Forecasting the demand, photovoltaic power generation and the number of electric
vehicles connected to charging station for a residential neighbourhood can be an important part of a
smarter distribution network for such a neighbourhood and can thereby increase the usage of renewable
energy. In this thesis an overview of the design steps for making such a forecasting system is given and
the steps are applied to a fictional dutch residential neighbourhood of the future. Some key findings
are that for accurately forecasting the load, the temperature and time are the most important features.
For accurately forecasting the PV power generation, especially the irradiation is most important, but
time, horizontal view and humidity are also important features. Furthermore, it is shown that random
forest regression models can accurately forecast both the demand and PV power generation with an
accuracy above 90%. Artificial neural networks are also adequate models for the forecasting problems,
but because they are harder to understand and not necessarily better, it is recommended to start with
random forest regressors before making neural networks. Support vector machines seem less suitable
for these particular forecasting problems.
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Introduction

Tackling global warming is seen by many as one of the biggest challenges mankind faces in the 21st
century. Humans cause too much greenhouse gas emission, causing sunlight to warm up the sur-
face of the earth more through the greenhouse effect. This effect results in (possibly irreversible)
changes in the climate worldwide, which could lead to catastrophic disasters. In the Netherlands, the
residential sector produced 15.4 Tg CO2 equivalent (CO2 and other greenhouse gasses) in 2019 with
heating, water heating and cooking, which accounts for 8.5% of the total CO2 equivalent emissions of
the Netherlands in 2019. Fossil-fueled road transportation produced 29.6 Tg CO2 equivalent, which
accounts for 16.4% of the total CO2 equivalent emission of the Netherlands in 2019 [1]. There are
options like using electric cars, installing photovoltaic (PV) systems and electric heating and cooking
to reduce the greenhouse gas emission in these sectors. However, these newly developed sustain-
able solutions have a drawback. The current low-voltage (LV) grid is not designed for their combined
operation and the increasing penetration of PV systems, EV charging stations and electric heating and
cooking could result in more problems like congestion and excessive fluctuations in voltage and fre-
quency. In Amsterdam, congestion already is a big problem [2].

Allowing more energy-sustainable options to be implemented and connected to the grid while pre-
venting problems like congestion will be a challenge for engineers in the upcoming years. Upgrades
to the grid and other solutions to cope with this challenge are researched and proposed in this thesis.
Following this general introduction, first follows a section that elaborates on the neighbourhood of the
future in general. Then a neighbourhood that is being developed right now in the Netherlands is intro-
duced, this neighbourhood will be used as example neighbourhood of the future throughout the thesis.
Finally congestion is explained, as coping with congestion is one of the biggest challenges that the
neighbourhood of the future will create.

1.1. Neighbourhood of the future

In the neighbourhood of the future, the previously stated residential and road transportation sectors will
probably have shifted for a large part to all-electric solutions. The advantage of all-electric solutions is
that the source of energy is interchangeable, meaning that fossil fuels can be replaced by sustainable
energy sources with a dramatically lower emission of greenhouse gasses like wind or solar energy.
In the Netherlands electrical cooking and heating is quickly rising in popularity; the amount of heat
extracted from the air with heat pumps for the heating of residential buildings has more than doubled
between 2018 and 2020 [3]. Also, the number of electric vehicles (EVs) in the Netherlands has approx-
imately doubled every year from 2017 until 2021 [4]. Finally, the number of photovoltaic (PV) systems
installed on residential buildings has also been steadily increasing. It is easily visible when walking
outside anywhere in the Netherlands that a lot of households have PV systems on their roofs. While
these solutions are effective in reducing our dependence on fossil fuels, they create new challenges for
grid operators. First of all, because the grid is not designed for the high currents that will run through
it, congestion will occur. Secondly, as part of the power generation is happening outside the control of
the grid operators, it is harder to prevent problematic voltage and frequency fluctuations.
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1.2. Vechtrijk neighbourhood

In order to design, forecast and optimize a sustainable distribution network, first a neighbourhood needs
to be considered. A new developing neighbourhood was found in Weesp in the Netherlands. It consists
of 37 total houses, a combination of detached houses, semi-detached houses, terraced houses and
apartments, which can be seen in Figure 1.1. It also consists of a central parking area where electric
vehicles might be parked and charged. We think this is a good representation of an all-encompassing
neighbourhood in the Netherlands and thus a good neighbourhood to design a sustainable grid for [5].

Figure 1.1: The Vechtrijk neighbourhood ground plan

1.3. Congestion: Definition and issues

Grid congestion occurs when an overloaded grid prevents electricity from reaching the consumers. It
can be illustrated as a kind of traffic jam, where the electrons in the wire are symbolized by the vehicles
on a highway. During rush hour, too many vehicles are present and the flow of traffic may come to a
halt. A similar situation occurs on power lines as demand or supply of power is in excess. The high
current the power line has to carry can exceed the maximum capacity of the lines. This could eventually
lead to power outages and costly repairs on power lines. In the Netherlands congestion is becoming
a large issue. Figure 1.2 illustrates the significance of the problem. It is visible, that congestion due
to high demand happens the most in urban areas such as the province of North Holland and around
Leeuwarden. Furthermore, it is visible that congestion due to high generation happens more in rural
areas such as the provinces Drenthe, Overijssel and Gelderland in the east of the Netherlands. In order
to avoid power outages Distribution System Operators (DSOs) disconnect parts of the system during
power excess. This necessary measure has great impact; generation systems are put on standby or
consumers will have to seize their activities. Additionally, the connection to the grid for a newly installed
system might take more than a year [6].
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Figure 1.2: Consumption (left) and generation (right) congestion in The Netherlands [7]

1.4. Forecasting load and PV power generation

Knowledge of the demand for electrical energy and the amount of renewable power generated by
households is crucial for knowing when problems like congestion in the low-voltage grid of a neighbour-
hood will occur, as overloads in either the demand or generation of power result in these problems.
Thus, to be able to forecast when problems in the grid in a neighbourhood of the future will occur, both
the demand and renewable energy generation should be accurately predicted. Forecasting the de-
mand for electrical energy has been very important for the electric power industry for over a century [8].
Forecasting the demand for electrical energy is more frequently referred to as electric load forecasting
and will in this thesis be addressed as load forecasting. Forecasting renewable power generation of
course has become important only recently. While forecasting wind power generation and photovoltaic
(PV) power generation both are studied extensively, PV power generation is assumed to be more im-
portant for preventing problems in the LV grid of a neighbourhood in the Netherlands, as wind turbines
often are not directly connected to this grid.

1.4.1. Load forecasting

In the past, load forecasting was dominantly done on highly aggregated levels. The rise in distributed
generation (DG) has partially shifted the focus to less aggregated levels (such as neighbourhoods).
The increase in installed smart meters offers the required data that is sufficiently granular, both spatial
and temporal, for accurate forecasts [8][9]. The two most occurring types of forecasts are point fore-
casts and probabilistic forecasts. While point forecasts are more mature, probabilistic forecasting has
increasingly become a promising research area, especially for load forecasting on separate households
or companies because of their highly irregular nature [8][9].

The field of load forecasting is often separated into four different stages based on the forecasting period.
The stages are very short term (VSTLF), short term (STLF), medium term (MTLF) and long term load
forecasting (LTLF). While the exact duration of the periods differs among studies, the cut-off between
these stages in this thesis is taken at 1 day, 2 weeks and 3 years respectively, as in [8]. This can be
seen in Figure 1.3. To prevent problems in the grid of a neighbourhood from an unexpected overload,
especially VSTLF and STLF are interesting.

Machine Learning (ML) and Deep Learning (DL) are excellent tools for making predictions based on a
lot of data, making them useful for load forecasting as well. The number of publications on using ML
and DL for load forecasting has increased strongly in the last two decades [10][11]. When looking at
the results of ML and DL models, case sensitivity should be kept in mind; which data is used to train
the models, from which area, which climate and how accurate is that data? All these factors account
for differences in trained models. Therefore comparing different models which are trained on different
data is something that should be avoided. A study that compares differences between traditional ML
models and ANNs on the same input data is [11]. It clearly shows that a multilayer perceptron (MLP)
model, which is a feed-forward ANN with multiple layers, is the most accurate model of the 11 models
which are compared. The root-mean-square-error (RMSE) of the MLP is 82% lower than the closest
rival, the Gaussian process.
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Some recent studies create a hybrid model that adds extra complexity to a DL model in order to improve
the accuracy even more. Examples are adding an extreme learning machine (ELM) [12], controlled
Gaussian mutation [13], a random forest [14] and there are of course many more hybrid models pro-
posed. It is not easy to compare these hybrid models because of the case sensitivity which has been
described earlier. A publication that compares different hybrid DL models has not been found.

Data pre-processing and feature selection are important steps in ML that often give insight into which
features of the input data are more important for the prediction and how the data could be altered in
order to get a more accurate model. Some useful pre-processing steps like outlier detection and how
to distinguish between workdays and holidays are shown in [15]. Most studies use weather forecasts
as well as past load and weather data as input to their models. The load will probably become even
more dependent on weather data in the future, as most buildings will switch to electric heating and will
get PV systems on their roof.

Peaks in the load could also come from EVs, as they charge at high power; usually 11 or 22 kW [?]. If
every household were to have at least one car and all of those cars were electric, a significant increase
in load would occur when all these vehicles were charged at the same time. Even when only 30% of
all cars were electric, a 50% increase in demand peaks would occur [16]. Therefore forecasting the
charging of EVs is also increasingly important for accurate load forecasting.

Second Hour Day Week Month Year Decade
1 1 1
& »'e > »! >
S > P > >
VSTLF I STLF 1 MTLF 1 LTLF
1 1 I
1 Day 2 Weeks 3 Years

Figure 1.3: Distinction between VSTLF, STLF, MTLF and LTLF, obtained from [8].

1.4.2. PV power generation forecasting

Excess power generation by PV systems can also result in congestion. Besides congestion, the voltage
can get too high, which can introduce other problems [17]. Forecasting the amount of renewable power
that will be generated is thus very important for the design and optimization of a smart grid. In the
paper by Huang [18] two different forecasting models are compared; a physical and a statistical model.
The physical method consists of making a model of a PV system that takes the position of the sun
throughout the year into account and uses the specifications of a PV system to predict the output
power. The statistical method consists of making a Machine Learning model based on previous output
power and weather data. Both methods use weather forecasts as input data. The article shows that
both methods are quite similar in forecasting the PV power and that the size of the errors is mainly
dependent on the accuracy of the weather forecasts. Besides this, the article by Pierro [19] concludes
that the forecasting horizon is a lot less impactful on the accuracy than pre- and post-processing of the
data. Inthis article an ANN is used. Intuitively, it seems that the statistical method is easier to implement
than the physical method. This assumption is underlined by the fact that most recent studies implement
the statistical method. Similar to load forecasting, in most recent studies Deep Learning is used more
than traditional Machine Learning methods. [17] shows the accuracy of three different DL models; a
convolutional neural network (CNN), a long short-term memory NN and a hybrid model that combines
both. The RMSE is 1.563%, 1.393% and 1.434%, respectively for each model with one year of data.
Furthermore, the paper shows that with their data training the models on more historic data results in a
more accurate model up to 3 years. If more than 3 historic years of data are used, the models become
less accurate. In [20] a model that takes the best-predicted pattern among the prediction results is used.
These prediction results come from an adaptive neuro-fuzzy inference system, a multilayer perceptron
ANN, and a radial basis function ANN to accurately forecast the load and weather data. This improves
the accuracy significantly. The RMSE of the different models differ from 0.044% to 0.59%. [21] also
uses an ANN but in combination with short long term memory as a base model to increase the accuracy
of the ANN. The RMSE ranged between 1 and 2% depending on the case study. The article of Ehsan
[22] shows that the multi-layer perceptron is a very accurate implementation of an ANN in forecasting
PV power production. It has a RMSE of only 3.38%. Furthermore, the paper by Tiechui Yao [23] shows



1.5. Thesis subdivision 10

that adding satellite images as input data for a hybrid ANN will result in a increase in the accuracy
(RMSE) of up to 6.69% of the model.

1.5. Thesis subdivision

The design of a sustainable and smart distribution network is divided into three subgroups/subprojects.
The Topology subgroup (A) will develop a new design of a residential distribution network for the neigh-
bourhood which includes the selection of components in terms of size and capacity. The main goal
is to withstand congestion and integrate PV systems and electrical charging points for at least each
resident. The Forecasting subgroup (B, this group) will be making three forecasting models based on
Machine Learning. The models will forecast the load, PV power generation and number of charging
EVs of the neighbourhood and can be used to determine whether congestion or voltage issues will
occur. It will use old load data of several households (updated with EV charging and electric heating
data), old PV generation data, old weather data and weather forecasts as inputs to forecast the load
and generation demand. The Optimization Control subgroup (C) will create a controller for the grid by
creating an optimisation function for the power flow. Examples of the decision variables are the rate of
charge for the EV batteries and the battery storage system.

1.6. Thesis outline

The literature review shows that Machine Learning is one of the most common methods to make accu-
rate time-series forecasts for regression problems such as forecasting aggregated load and PV power
generation. A lot of studies focus on getting the best accuracy possible by making complex hybrid
Deep Learning models. This thesis chooses a different path; the aim is to make an overview of the
design steps one has to make when creating ML models for forecasting data in sustainable and smart
distribution networks of dutch neighbourhoods. The steps are applied to the Netherlands by using the
build plans of the Vechtrijk neighbourhood as a basis and by using as much data from the Netherlands
as possible. The importance of different features of the data for making accurate forecasts is analyzed
and addressed. Simpler ML models such as a Random Forest Regressor as well as a more com-
plex model, an Artificial Neural Network are built and their performances are compared. This thesis
contributes to making electrical energy distribution systems more sustainable and smart in the Nether-
lands by showing how to make accurate forecasts of the demand and generation, something that is
considered a crucial part of such systems.



Program of Requirements

2.1. Problem definition

As pointed out in the introduction, the low-voltage grid in the Netherlands is not designed for the in-
creasing penetration of PV systems and all-electric systems in residential neighbourhoods which are
required to reduce our dependency on fossil fuels. This can lead to congestion and problematic fluctu-
ations in voltage and frequency. In the future, these problems will only get worse as most households
should get all-electric heating systems, EVs and PV systems. In this thesis, only the problems in the
low-voltage grid are addressed and not the problems in the medium- and high-voltage transmission
lines. The assumption is made that in the Netherlands, wind turbines are rarely connected directly to
the low-voltage grids in neighbourhoods and thus they fall outside the scope of this thesis. Knowing
when the largest peaks in supply and demand will occur is a necessary step towards a smart and sus-
tainable grid that is able to operate without problems in a neighbourhood of the future. Therefore three
types of ML models will be made, which forecast the load, the number of charging EVs and the PV
power generation for an imaginary neighbourhood of the future. Forecasts of the number of charging
EVs do not contribute directly to less congestion, but it could be used by an optimisation program to
use EVs as batteries if necessary. Random forests, support vector machines (SVMs) and ANNs will
be used as state-of-the-art Machine Learning techniques for the forecasts and their accuracy will be
compared with cross-validation. The forecasts could be used to find out when the load or generated
power will exceed the boundaries of the grid and therefore result in problems, but this is deemed as
outside the scope of this thesis. Grid operators can use the forecasts to effectively prevent problems,
for example by efficient charging or discharging of batteries or a different optimization strategy. One
of the limitations in the design process is that smart meter data is private information and protected by
European law. This law was put in place to ensure the privacy of the customers where a smart meter
was installed. Unfortunately for this thesis therefore there only is a small and dated (2013) data set
available for training the models. Below the requirements of the system following the MoSCoW method
are listed [24].

2.2. Must Have

1. The system must forecast PV power generation based on historical weather data, weather fore-
casts and historical PV power generation data.

2. The system must forecast the load based on historical weather data, weather forecasts and his-
torical load data.

3. The system must forecast the number of charging EVs based on historical EV charging data.

4. Different models like Random Forest, SVM and ANN models must be created in order to find the
most accurate model.

5. The best model for each forecasting problem must have an accuracy of at least 70% at all times.

6. The data set must be updated to represent a neighbourhood of the future.

11
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7.

8.
9.

The system must forecast the load, PV power generation and number of charging vehicles for
the whole neighbourhood aggregated.

All load data used for forecasting must be kept anonymous.

The system must be applied to a residential neighbourhood.

2.3. Should have

1.
2.

The best model for each forecasting problem should have an accuracy of at least 80% at all times.

The system should distinguish weekdays and workdays when forecasting the load and number
of charging EVs.

2.4. Could have

1.

The forecasting models could be more complex neural networks such as convolutional neural
networks or recurrent neural networks.

. The system could estimate the state of charge of EVs or batteries used for charging-discharging

solutions.
The best model for each forecasting problem could have an accuracy of at least 90% at all times.
The system could forecast per type of house (detached, semi-detached, terraced or apartments).

The forecasts could be used to find out when the load or generated power will exceed boundaries
of the grid and therefore result in problems.

The models could use recent data (the past few hours) as input for making decisions.

2.5. Will not have

1.
2.

3
4.

Wind power generation will not be forecasted.

The power generation of any other power source than PV systems will not be forecasted.

. The optimal strategy of lowering overall load will not be calculated.

Besides residential users, the system will not take other kinds of low-voltage users, such as
companies, into account.



Machine Learning Models

Three Machine Learning forecasting models will be created; one for the aggregated load of the neigh-
bourhood, one for the aggregated PV power generation and one for the number of EVs that are being
charged. First, a general introduction to ML is given. Then, an overview of the models and their input
data is shown, accompanied by design choices and explanations. Finally, a detailed description of all
types of ML models that are used for forecasting problems is given.

3.1. Machine Learning

Machine Learning is a broad research area that is about understanding data and recognizing patterns.
In Machine Learning there is a distinction between supervised learning and unsupervised learning. Su-
pervised learning involves building a statistical model for predicting one specific, known output based
on one or more inputs. With unsupervised learning, there is no specific output, but relationships in the
input data can still be learned and used to generate outputs. Supervised learning is further divided into
regression and classification. Regression is about predicting a continuous or quantitative output value,
while with classification a classified or qualitative output is predicted [25].

All three forecasting problems can be interpreted as supervised regression problems because for each
problem the output is one specific continuous value. ML models are an excellent tool for making fore-
casts. First of all, because they are flexible, i.e. it is easy to use different input data and quickly train
new models. Furthermore, most ML models are capable of handling large amounts of data and as
short-term forecasting has relatively small intervals, there is a lot of data. Also, the fact that most re-
cent studies use ML for load and PV power forecasting, as stated in the literature review, shows that
it is a good tool for making these forecasts. Therefore all forecasts are made with ML models. In the
literature review, it was found that ANN models could be adequate models for the specified forecasting
models. However, simpler models will be built as well and their performance is compared with the
performance of the ANN model.

Var(y)
RP=1-—0—""— 3.1
Var(ypredict) ( )
n
MSE = Z(yi - y;oredictt,i)2 (3.2)

i=1

Before models are built, the data is separated into the output of the model, often called y, and the
features, often called x. The model has to make its predictions for y based on the features, x. The
predicted value creates a curve which is called a model fit. After this separation, the data from both
x and y is separated into a train set and a test set. Typical distributions are 70/30 or 80/20. Because
there is sufficient data, here a 70/30 division is chosen for all models. When training models, one

13
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should always be cautious about overfitting the model. Overfitting means that a model is trained 'too
well’, i.e. the training error is made so small, that the model fit does not follow the trend of y anymore,
but instead it makes strange looking bends in order to get closer to the values of y. A good strategy to
prevent overfitting is cross-validation. In this thesis, k-fold cross-fitting is applied. K-fold cross-validation
means splitting the training data in k folds and finding the best parameters of the model for each fold.
The parameters are then compared and the best overall parameters are chosen [25]. Measures for
performance are the mean-squared-error (MSE) and the R? score. The MSE simply is the mean of all
errors between predicted y and actual y, squared. R? shows how much the model prediction explains
the variance of the real y and therefore can be used as a measure of how good a model fit is (There
are exceptions, f.e. a low R? does not always mean that a model fit is bad, but such exceptions are
deemed to detailed for this thesis). The R? score is easier to understand because it is relative to the
data, so it is used to compare the performance of different models. See Equation 3.1 and Equation 3.2
to find out how the R? and MSE are computed.

3.2. Overview models

When looking at Figure 3.1, it is visible that weather forecasts are inputs of the PV and load models.
Especially the PV forecasts are expected to be mainly determined by the weather forecast features,
such as irradiation, cloud cover and temperature. But also for the load data weather forecasts are im-
portant, since it is assumed that in a neighbourhood of the future all houses will have electric heating,
so cold days will result in higher loads. Since the EV data set does not consist of real measurements,
but generated data based on user profiles, it is not possible to use weather data as an input to the EV
forecasting model. The time of the measurement is an input of all models, but it is expected to be more
important for forecasting the load and number of charging EVs, as both are lower at night and higher
during the day. Time also could be an important input to the PV forecasts, as the power generation of
PV panels is zero at night and nonzero during the day, but it is expected that weather features such
as irradiation are more important. Finally, the type of the day; whether it is a workday or a holiday -
all Saturdays and Sundays are also added to the holiday list - is an input of load and EV models and
is expected to increase the accuracy somewhat as the load and number of charging EV curves are
different for work- and holidays. All expectations are tested and discussed in chapter 5.

See Table 3.1 for an overview of all features used by the models. In total 22 features were given in
the KNMI data set, however, some were left out because they were expected to have little importance
for the forecasts and working with all the features dramatically extended the run times. For example,
the air pressure, wind direction and whether weather data was automatically or manually registered,
all should be irrelevant features for the models.

Inputs ML model Forecast

NS

Weather forecasts )
and time ‘ PV model PV Power generation
Weather f )
eather forecasts, .
time and type of day ‘ Load model / Load
(work- or holiday)
Time ‘ EV model \ Number of charging
/ EVs

Figure 3.1: Inputs and outputs of the three ML models
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Load model features PV model features EV model features
Time [integers: 0015; 0030 etc] | Time [int: 0015; 0030, etc.] Time [0015; 0030, etc.]
Workday [0 = holiday, . .

1 = workday] Season [0 = winter, 1 = spring, etc.] | -

Wind speed [0.1 m/s] Wind speed [0.1 m/s] -

Temperature [0.1 Temperature [0.1 °Celsius] -

Celsius]

Sunshine duration [0.1 hours] Irradiation [J / cm?] -

Irradiation [J / cm?] 0 o a0 !
Duration of rainfall [0.1 hours] Clouds [0-9; 9 = sky invisible] -
Clouds [0-9; 9 = sky invisible] Humidity [%] -
- Fog [0 = no fog, 1 = fog] -
- Rain [0 = no rain, 1 = rain] -
- Snow [0 = no snow, 1 = snow] -
Thunder [0 = no thunder,

1 = thunder]

Table 3.1: Features used by each model

3.3. Different model types

Three different types of Machine Learning models are used for each forecasting problem. The model
types are; Support Vector Machine (SVM), Random Forest Regressor (RFR), and Atrtificial Neural Net-
work (ANN). All these functions can be easily implemented in Python using Scikit-learn[26]. Below
short descriptions of these model types can be found.

3.3.1. Support Vector Machine

A Support Vector Machine uses an Ordinary Least Squares (OLS) function to predict the outcome. In
an OLS the goal is to minimize the squared error using the function seen in Equation 3.3. However,
unlike most linear regression models, the SVM also tries to minimize the coefficients. This is done by
defining an absolute error and tuning the model accordingly. [26] When implementing this method there
will however be values outside of these absolute errors. This means that to make a good regressor
slack variables should be implemented. Slack variables are the margin that certain variables fall outside
the absolute error. The resulting function can be found in Equation 3.4. The function has constraints
that can be found in Equation 3.5. The model contains two hyperparameters. Hyperparameters are
parameters in the model that the user can tune to maximise accuracy. ¢ is the hyperparameter that
denotes the absolute error. C is a hyperparameter that controls the tolerance for points outside €.a

n
MIN ) (i = wi * %) (3.3)
i=1
n
1 2
MINZ wl* +¢ )l (3.4)
i=1
lyi —wi * x| < e+ & (3.5)

3.3.2. Random Forest Regressor

A Random Forest Regressor is a Machine Learning model that uses randomly selected criteria to predict
a value based on the different variables. [26] The model uses different decision trees with randomly
selected splits in the variables. A decision tree is a model which has a structure similar to a flowchart.
An example of a decision tree can be found in Figure 3.2. These different decision trees are then
averaged which will hopefully result in good predictions for the output. The Random forest regressor
also has a few important hyperparameters that can be tuned in order to make the model as accurate
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as possible. The most important hyperparameters are the number of trees in the forest, the maximum
number of features that can be used to split a node, and the maximum number of layers per tree.

Var_1>= a

No Yes

Var 2>b Var_3<c

No Yes Yes, No

o ° o~

Yes

No

Figure 3.2: Example of a decision tree, obtained from [27]

3.3.3. Artificial Neural Network

The Artificial Neural network is the most complex model tested. An ANN aims to mimic the workings
of a biological neural network. Per neuron, also called nodes or units, a non-linear function is used to
process incoming signals. The output is then sent to the next layer of neurons. Per node, a certain
weight is assigned. This weight is then adjusted as the model its training proceeds. As mentioned
before ANNs consist of several layers, of which the input layer and the output layer are the only layers
visible to the user. Even though the weights and functions of the hidden layers are unknown to the
end-user, the number of layers and the number of nodes a certain layer consists of are defined by the
user. These are thus hyperparameters. Several other hyperparameters can be defined before training.
An ANN trains itself in a certain amount of iterations with a certain learning speed. The number of
iterations is also called Epochs. These Epochs and learning speed can also be adjusted by the user.
A visual representation of an ANN can be found in Figure 3.3.
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Data

Data is essential for the models to properly work. As described before, each model has several inputs
and one output. The weather data is obtained from the Dutch weather institute (KNMI). Of course,
historical output data is also necessary to train the model on what decision it should make based on its
input. In this chapter, the gathering, analyzing, updating, and pre-processing of the weather and output
data is described.

4.1. Load model data gathering and analysis

The load model is going to use two data sets; the load data of several households and the weather
data from the same period. The load data was gathered from [29]. This is an open data set provided
by Liander, a DSO from the Netherlands. The data set consists of 82 households and their electricity
and gas usage over one year. Upon inspecting this data it was found that some households have a lot
of gaps in their data or there are missing specifications regarding the house type. So 37 households
should be selected to make a data set suitable for the forecast of the Vechtrijk Neighbourhood. Besides
this, the gas usage is in intervals of one hour, but the electricity usage is in intervals of 15 minutes. As
it is the goal to deliver the forecasts in intervals of 15 minutes, the gas usage should be interpolated to
obtain 15-minute intervals.

4.2. Load model data updating and pre-processing

4.2.1. Load data set

First, the gas usage is converted into electricity usage. Typical divisions of the gas usage are 75%
for heating the house, 20 % for heating water and the remaining 5 % for cooking [30]. Heating the
house and water can both be done using a heat pump with a coefficient of performance (COP) of ap-
proximately 3 [31]. Heat pumps can achieve COPs up to 5, however, in a neighbourhood of the future
houses will be isolated better, so the gas usage from 2013 would be reduced in a neighbourhood of
the future. To account for this better isolation, a COP of 3 has been chosen. This can be used in
Equation 4.1 to calculate 95% of the gas power converted to equivalent electrical power. Here ny4;1er
is 33.3%. After this conversion, this usage is interpolated into 15-minute intervals and added to the
electricity usage data set. As mentioned earlier, the load data set has several households without a
type of house specification. The Vechtrijk Neighbourhood consists of 18 terraced houses, 1 corner
house, 3 detached houses, 4 semi-detached houses, and 11 apartments. The closest approximation
that could be achieved out of the Liander household data set consists of 32 households of which 4 are
detached houses, 16 are semi-detached houses, 11 are terraced houses and there is one apartment.
To get the 37 households needed, 4 terraced houses and one apartment were copied and used twice
in the updated data set.

After selecting 37 households with a minimal amount of gaps, the few gaps that remain have to be

filled in. When a gap was detected in a certain household the average of the other households in that
time slot is calculated and filled in into the gap. Finally, the load of the 37 households is aggregated.

18
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The code used can be found in subsection A.1.1 and consists out of two scripts. The first script con-
verts the gas usage into electricity load and the second script selects the 37 correct households and
removes outliers.

Byas [kW] - 0.95 - npoiler
COPheat pump

The remaining 5% can be converted using formula. Here ngmace = 85% and ninguction = 35% [31].
Equation 4.2.

P [kW] =

(4.1)

Byas [kW] - 0.05 - Nfurnace

P [kW] = (4.2)

Ninduction

4.3. Weather

The weather data from the KNMI is easily accessible and obtained from its website [32]. Weather data
from 2013 is used for the load forecasting and weather data from 2021 is used for the PV forecasting,
both matching the exact dates and times from the load and PV data sets. The weather data consists
of 22 variables in one-hour intervals. The data therefore is interpolated into 15-minute intervals. Some
variables will not impact the load significantly, so they are removed from the weather data set. See
Table 3.1 for the chosen features from the weather set for each model. These features are extracted
and then interpolated into 15-minute intervals to use them in combination with the load data. The
interpolating is done in Matlab, the code can be found in section A.4.

4.4. PV data gathering

The PV data is obtained from [33], a website that distributes data from a PV panel installation on the roof
of the EEMCS Faculty. PV data for one full year was obtained, the year ranging from 23/01/2021 00:00
until 22/01/2022 23:59. The PV generation is measured in terms of energy after the AC conversion,
so there should not be accounted for losses from conversion to AC. The measurement unit is watt-
hours [Wh] per 15 minutes. In total, the PV system consists of 7 PV panels installed, 7 optimizers for
each panel, and a DC-AC converter. The administrator mentioned that 1 or 2 panels have shut down
because of malfunctioning optimizers. As the maximum generated power in the data is about 1500W,
it is assumed that the system consists of 5 PV panels, as a maximum power generation of 1500/5 =
300W is reasonable for a PV panel. The panels are orientated towards the south, under an angle of 38
degrees. In the Vechtrijk neighbourhood, most PV panels will have a different orientation and angle.
However, this is a detail outside the scope of this thesis and thus not much attention has been given to
it. Since, if the proposed forecasting models would be put into practice for a real neighbourhood, real
data should be used from that neighbourhood and the conversions from the original data sets which
are required in this thesis no longer are necessary. For the same reasons, the degradation of the PV
system is not considered. To get some sense of the PV generation in the Vechtrijk neighbourhood, the
data is converted to the size of the total PV capacity after the forecasts have been made.

4.5. PV Data analysis and updating

Before the PV Data was used, it was manually analyzed in Excel. In this process, a lot of gaps, outliers
and other irregularities were detected. The detected and removed irregularities are separated into ir-
regularities within the PV data set itself, and iregularities seen when the weather data was added. All
irregularities and their removal are described below.

The irregularities within the original data set:

1. The inconsistent number of measurements per interval: Mostly there are several measure-
ments per 15-min interval, sometimes there are no measurements for hours or even days. The
latter results in 794 gaps, and 15-min intervals with no generation data. First, one data point
is created per 15-min interval. This is done by counting all the data points in 15-min intervals
and adding them. The gaps are filled by taking the value from the day before. Since these are
only 794 gaps, which is 2.4% of the final data set, the effect of using values from a day before is
assumed to be acceptable.
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2. Offset: From 13/08/2021 until the end of the data set an offset is present, day and night, which
starts at roughly 4.2 and slowly increases up to 6.5 at the end of the data set. The offset is
not constant and has a variance of about 0.2 per night. The offset is removed by calculating the
average offset between 00:00 and 04:00 and subtracting this offset from the day and night before.

3. Extreme values: Based on the number of panels in the set and the date and time of the mea-
surement, the maximum generated power is found to be 378.75 Wh per 15 minutes. 45 outliers
with too large values, ranging from roughly 800 Wh up to 70,000 Wh are detected. The extreme
values are removed by taking the average of the values of the first two data points before and
after, which do not contain extreme values themselves. Furthermore, there are some data points
with a negative generation value during the night, when the generation should be 0 Wh. These
outliers are simply removed by setting all negative values equal to 0.

Error detected after adding the weather data:

1. PV power generation while the irradiance is equal to zero: Besides the offset, more data
points were found which are nonzero at night. This problem is solved by simply setting all gener-
ation data points equal to zero when the irradiation is equal to zero. This also improves the data
by setting all remaining deviations from the offset equal to zero on the nights.

2. No PV power generation while the irradiance is nonzero: While it could be correct that there
is no PV power generation when there is a nonzero irradiance, for example when the irradiance
is very weak in the morning, there are also data points where irradiance is quite large and the
generated power still is zero. The benchmark is taken at 1 J/cm? and all rows where the generated
power is 0 wh, while the irradiance is bigger than 1 J/cm? are removed from the data set. In total
there are 2047 rows, resulting in a final data set with 32,992 data points per feature.

The updating of the PV data set is distributed over three python scripts. The first script combines all
data points into one data point per 15-min interval and sets all negative values equal to zero. The script
takes the last data point as the final data point and gives this data point the sum of all values from the
past 15-min interval. This takes several hours, so it is separated from the second script. In the second
script, the gaps are filled and the offset and extreme values are removed. Both scripts can be found
in subsection A.1.2. The two remaining errors, a PV generation while irradiance is equal to zero and
no generation while irradiance is nonzero, have to be removed when the weather data is added to the
data set. This happens in the final PV script where also the PV forecasting models are created. The
third PV script can be found in subsection A.2.2.

4.6. EV model data gathering and analysis

The EV model is based on one data set. The EV data set was retrieved from [34]. In this model, 348
electric vehicles are randomly selected from a data set created by the model proposed by Muratori.
This data set is in ten-minute intervals and does not contain any gaps. In this data set, 6.6 kW charging
is assumed.

4.7. EV model data updating and pre-processing

Since this model is separate from the other models it is not a problem that the data set has intervals of
10 minutes, this will thus not be adjusted into 15-minute intervals. The data set does however consist
of 348 vehicles even though the central parking place in the Vechtrijk neighbourhood only has space
for 42 vehicles. This is why 42 vehicles are selected from the data set and the rest is dropped. Since
the wanted forecast is the number of vehicles charging in a certain time interval, the charging power is
unnecessary information and is thus changed into a binary value, '0’ if the car is not charging and *1’ if
the car is charging. After this, the total cars charging in a certain time is calculated and the individual
cars are dropped from the data set. The code used can be found in subsection A.1.3.



Results

In this chapter, the results of the thesis are discussed. First, the hyperparameter tuning is addressed,
then the importance of features is given for the load and PV models. Because there are not many
features, it was decided to use each feature for every model. Still, it gives more understanding to find
out the importance of each feature. The best parameters are used to create models which predict y on
the features from the test set. Then R? scores of these predicted y values and the actual y values from
the test set are computed. The R? scores are used as measure of performance and are presented and
compared. All code can be found in section A.2.

5.1. Hyperparameter tuning

In order to find the best model, for each model the hyperparameters are tuned. Hyperparameters are
the parameters of a ML model, which can be manually tuned to get better accuracy. The parameters
of a model are the parameters which define the model, so changing them means changing the model.
The best parameters are found by Scikit learn using the function (model_name).fit(X_train, y_train)
A random search is used to optimize the hyperparameters, and the function RandomizedSearchCV()
from the Scikit learn tool has been used. It takes random values within a certain range and tests how
accurate the model is using cross-validation. Here it is chosen to use n=50 iterations for the random
search to find a close approximation of the best hyperparameters available while avoiding dramatically
long run times. In order to find the best hyperparameters, all available values within the range should
be tested in combination with all other hyperparameters and their values. This would take very long and
is less efficient than using this randomized method. In Table 5.1 the hyperparameters are shown for
the SVM. The second column consists of the range of values the random search will choose between.
Table 5.2 and Table 5.3 show the same for the RFR and the ANN respectively.

Hyperparameter | Range

Tolerance from 0.0001 t0 0.9
€ from 0.01 to 1

C from0.1t05

Table 5.1: Hyperparameters and range of the SVM

Hyperparameter Range

Number of trees from 200 to 2000
Number of features per split auto or sqrt
Maximum of levels per tree from 10 to 110
Minimum of samples required for split 2,50r10
Minimum of samples required per leaf node | 1,2 or 4
Bootstrap true or false

Table 5.2: Hyperparameters and range of the RFR

21
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Hyperparameter Range

Amount of hidden layers | from 1 to 100

Activation of the layers identity, logistic, tanh or relu

a from 1075 to 1073

Learning rate type constant, invscaling or adaptive
Learning rate start from 107> to 1072

Tolerance from 1075 to 1073

Maximum Epochs from 2 to 1000

Table 5.3: Hyperparameters and range of the ANN

5.2. Feature importance

The feature importance for the load and PV model are stated here. The feature importance is found
using the Scikit learn attribute (model_name).feature_importances_. The ANN and SVM functions
from scikit learn have no feature importance attribute, but as the RFR model is quite accurate for
all forecasting problems, from the feature importance of this model type conclusions on the overall
importance of features can be drawn. As the EV model has only one feature, computing the feature
importance is not possible.

5.2.1. Load model feature importance

It can be seen in Table 5.4 that the time and temperature are by far the most important features for
making accurate forecasts for the load, as was expected. It is noticeable that the feature ‘'workday’ has
the lowest importance for making forecasts. This means that either in the used data set the load curve
is not very different for workdays and holidays, or that the classified input (0 = holiday, 1 = workday) is
not understood correctly by the regression model.

Time | Workday | Wind | Suntime | Temp | Irradiation | Rain | Clouds
0.335 | 0.014 0.082 | 0.066 0.409 | 0.035 0.021 | 0.039

Table 5.4: Feature importance for the best load model, rounded to 3 decimals

5.2.2. PV model feature importance
As is visible in Table 5.5, irradiation is the most important feature for making accurate PV power gen-
eration forecasts. Also the time, horizontal view and humidity features are quite important.

Time | Season | Wind | T Irr View | Clouds | Humidity | Fog Rain | Snow | Thunder

0.127 | 0.026 0.028 | 0.102 | 0.383 | 0.106 | 0.024 | 0.193 0.000 | 0.006 | 0.000 | 0.002

Table 5.5: Feature importance for the best PV model, rounded to 3 decimals

5.3. Load model results

First, load forecasting models are trained on data sets that contain both workdays and holidays. After-
ward, separate models are trained only on the data of holidays and the data of workdays. The results
are compared.

5.3.1. Holiday & workday data combined

In Figure 5.1 load forecasts of a five-day interval can be seen. It is visible that the RFR model matches
the trend the best. Also, from Table 5.6 it can be seen that the RFR model has the best R? score, so it
is concluded that in this particular forecasting problem the RFR model performs the best.

RFR | SVM | ANN
R*2 | 0.93 | 0.74 | 0.86

Table 5.6: R? score of best model prediction vs actual y,.s; data
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5.3.2. Support vector machine

The SVM achieved an optimal form with the hyperparameters found in Table 5.7. The R? of the SVM
with these hyperparameters is 0.74 with a standard deviation of 8 x 1073,

Hyperparameter | Value
Tolerance 0.327
€ 0.95

C 4.951

Table 5.7: Hyperparameters and values of the SVM

5.3.3. Random forest regressor

The RFR achieved an R? of 0.93 with a standard deviation of 1073 using the hyperparameters found in
Table 5.8. Based on this R? and the very low standard deviation, it is concluded that for this particular
forecasting problem the RFR model performs the best.

Hyperparameter Value
Number of trees 400
Number of features per split sqrt
Maximum of levels per tree none
Minimum of samples required for split 2
Minimum of samples required per leaf node | 1
Bootstrap false

Table 5.8: Hyperparameters and values of the RFR

5.3.4. Artificial neural network

In Table 5.9 the hyperparameters of the best ANN model found by the randomized search can be found.
Using these hyperparameters the model got a R? score of 0.856 with a standard deviation of 3 * 1073.
The ANN model also proves to be an adequate model for this particular forecasting problem.

Hyperparameter Value
Amount of hidden layers | 85
Activation of the layers tanh

a 3.94x107%
Learning rate type constant
Learning rate start 7.37 1073
Tolerance 427 x107%
Maximum Epochs 755

Table 5.9: Hyperparameters and values of the ANN

5.3.5. Split holidays & workdays data sets

After splitting the load data set into separate holidays and workdays load data sets, again the best
hyperparameters are found and the results are obtained by letting the models predict y on the features
from the test set and compute the R? scores of these predicted y values and the actual y values from
the test set. In Table 5.10 it is visible that the R? score slightly increased when only using the holidays
data; 0.02 for the RFR, 0.03 for the SVM and 0.01 for the ANN compared to the original load data set.
However, results on only the workdays load were different; the R? score increased with 0.01 for the
RFR and decreased with 0.03 for both the SVM and the ANN compared to the original results. Based
on the holidays load data, it could be argued that for making forecasts on the load data from holidays,
it is better to split the data into holidays and workdays data sets and only train on the data from the
holidays than to make a classified input (holiday = 0, workday = 1). However, the performance of the
forecasts of the load on workdays actually decreased after splitting the data for both the SVM and the
ANN and only increased with 0.01 for the RFR. Thus there can not be concluded on these results that
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splitting the load data into an holidays and workdays data significantly increases the forecasts on the
load.

Holidays load data set Workdays load data set
RFR | SVM | ANN RFR | SVM | ANN
R*2 | 0.95 | 0.77 | 0.87 | R"2 | 0.94 | 0.71 | 0.83

Table 5.10: R? scores of load forecasts for separate holidays and workdays data sets

5.4. PV model results

The PV model was first trained on a data set that contains every season. Then the model was trained
with the seasons separated. This did not increase the accuracy of the model as can be seen in Ta-
ble 5.11 so it is chosen to train the model with the complete data set. It is again the case that the RFR
is the most accurate model of all for this particular forecasting problem. With an accuracy of over 90%
and again very low standard deviation, it is the best option for forecasting PV generation. In Figure 5.2
the forecasts are shown on a five-day interval.

Model type | Whole data set | Only winter | Only spring | Only summer | Only fall
SVM 0.51 0.2 0.18 0.07 0.04
RFR 0.91 0.88 0.89 0.88 0.93
ANN 0.82 0.82 0.82 0.82 0.88

Table 5.11: R? score of best model prediction vs actual y;.s; data
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5.4.1. Support vector machine

The SVM achieved a R? score of 0.508 with a standard deviation of 2 * 1072. It achieved this score
using the hyperparameters found in Table 5.12. As can be seen, the hyperparameters indicate that this
data is difficult to forecast using a SVM since the model uses a high tolerance, high C and a high .

Hyperparameter | Value
Tolerance 0.818
€ 0.99
C 5

Table 5.12: Hyperparameters and values of the SVM

5.4.2. Random forest regressor

A R? score of 0.913 was achieved by the RFR using the hyperparameters found in Table 5.13. The
standard deviation is 2 * 1073,

Hyperparameter Value
Number of trees 400
Number of features per split sqrt
Maximum of levels per tree none
Minimum of samples required for split 2
Minimum of samples required per leaf node | 1
Bootstrap false

Table 5.13: Hyperparameters and values of the RFR

5.4.3. Artificial neural network
In Table 5.9 the hyperparameters used by the ANN can be found. With these hyperparameters, the
ANN got a R? of 0.82 with a standard deviation of 4 x 1073,

Hyperparameter Value
Amount of hidden layers | 85
Activation of the layers relu

a 1.92«107*
Learning rate type invscaling
Learning rate start 6.85+ 1073
Tolerance 427 x107%
Maximum Epochs 755

Table 5.14: Hyperparameters and values of the ANN

5.5. EV model results

In Figure 5.3, plots are shown with the actual EV data on a five-day interval, the other lines are the
forecasts by the different model types. It can be seen that all models follow the trend, however, they all
struggle to match the peaks. This could mean that the data set with 42 cars is too small to accurately
make forecasts. As can be seen in Table 5.15 the ANN model is the most accurate model type for
this use case. However, after the cross-validation it was found that the ANN did have a high standard
deviation, which makes it hard to choose one particular model as the best performer.

RFR | SVM | ANN
R*2 | 0.427 | 0.419 | 0.428

Table 5.15: R? score of best model prediction vs actual y,,,, data
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5.5.1. Support vector machine

In Table 5.16 the optimal hyperparameters found by the randomized search are shown. When using
these hyperparameters, the SVM model achieved an R? value of 0.419 with a standard deviation of
7 %1073,

Hyperparameter | Value
Tolerance 0.5091
€ 0.28

C 4.604

Table 5.16: Hyperparameters and values of the SVM

5.5.2. Random forest regressor
The optimal values for the specified hyperparameters can be found in Table 5.17. using these hyper-
parameters, the RFR achieved an R? of 0.427 with a standard deviation of 4 * 1073.

Hyperparameter Value
Number of trees 200
Number of features per split auto
Maximum of levels per tree 10
Minimum of samples required for split 5
Minimum of samples required per leaf node | 4
Bootstrap true

Table 5.17: Hyperparameters and values of the RFR

5.5.3. Artificial neural network

The ANN had the highest accuracy of all three model types with an R? score of 0.428 and a standard
deviation of 2.7« 1072. The reason the best model only has an accuracy of 42.8% is the lack of features
in the data set. With the only feature being a certain time and estimating how many cars are charging
at that time is very difficult and not very precise. An extra feature was added to try and increase the
accuracy but this was unfortunately not the case. The extra feature added was information on whether
it was a week or weekend day. The hyperparameters that achieved this accuracy can be found in
Table 5.18.

Hyperparameter Value
Amount of hidden layers | 85
Activation of the layers relu

a 1.9 x107*
Learning rate type invscaling
Learning rate start 6.8+1073
Tolerance 6.2%107°
Maximum Epochs 694

Table 5.18: Hyperparameters and values of the ANN



Conclusion and further work

The following conclusions can be drawn from the results and may be interesting for future projects us-
ing similar data sets. First of all, for accurately forecasting the load, the temperature and time are the
most important features. For accurately forecasting the PV power generation, especially the irradiation
is most important, but time, horizontal view and humidity are also important features. Furthermore, it
is shown that random forest regression models can accurately forecast both the load and PV power
generation in a residential neighbourhood with 37 households with an accuracy above 90%. Artificial
neural networks are also adequate models for these forecasting problems, but because they are harder
to understand and not necessarily better, it is recommended to start with random forest regressors be-
fore making neural networks. Furthermore, support vector machines have proven to be less suitable
for forecasting the aggregated load and PV power generation in a neighbourhood.

When splitting the load data set into separate holidays and workdays load data sets, the performance of
the models increased slightly when only using data from the holidays data set compared to the models
trained with the complete load data set. However, the increase was quite marginal and with the sepa-
rate workdays load data set, the perfomance actually decreased for ANN and SVM models. Therefore,
based on these results it can not be concluded that splitting the load data into workdays and holidays
load data sets is significantly better than keeping the load data in one data set.

The quality of the EV forecasts is a lot lower than the PV power and load forecasts. Possible reasons
are that the data set contains too few EVs and that it contains too few features. For further research,
it is recommended to try and find a real EV data set, because then weather data can be added to this
data set and more features are available. Also, creating a data set with more EVs will increase the
performance of forecasting models.
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Appendix

A.1. Python Code: Data pre-processing
A.1.1. Load data updating

# —-*- coding: utf-8 -*-

o

@author: Pieter Gommers

Description: This is part 1 of two scripts that update a load data set
to prepare it for training ML models. In this part, the gas usage data
is converted to electrical load by assuming all households will heat
their homes with heat pumps.

o

import pandas as pd

# Variables
#predefinedIndices = [4, 30, 72, 77, 78]

# Importing from csv to dataframes
dataFrameReturn = pd.read csv (’Ruwe data/Zonnedael - slimme meter dataset - 2013 -
Teruglevering.csv’,

header=None, delimiter=’;’, on bad lines=’skip’, low _memory=
False)
dataFrameElectrical = pd.read csv(’Ruwe data/Zonnedael - slimme meter dataset - 2013 -
Levering.csv’, delimiter=’;’, on_bad lines=’skip’, low_memory=False)
dataFrameGas = pd.read_csv (’'Ruwe data/Zonnedael - slimme meter dataset - 2013 - Slimme meter.
csv’, delimiter=’';’, on_bad lines=’skip’, low_memory=False)
dataFrameGas = dataFrameGas.loc[:, dataFrameGas.columns != ’"Klant 77’]

def timePrep():
# Getting the timestamp in a single column
dataFrameDateTime = dataFrameElectrical[:35040] [’'datetime’]

dataFrameDateTime = dataFrameDateTime.apply (lambda x: x.replace(’ 0:’, 7 00:"))
dataFrameDateTime = dataFrameDateTime.apply (lambda x: x.replace(’ 1:’, 7 01:"))
dataFrameDateTime = dataFrameDateTime.apply (lambda x: x.replace(’ 2:’, 7 02:"))
dataFrameDateTime = dataFrameDateTime.apply(lambda x: x.replace(’ 3:’, 7 03:7))
dataFrameDateTime = dataFrameDateTime.apply (lambda x: x.replace(’ 4:’, 7 04:"))
dataFrameDateTime = dataFrameDateTime.apply (lambda x: x.replace(’ 5:’, 7 05:"))
dataFrameDateTime = dataFrameDateTime.apply(lambda x: x.replace(’ 6:’, 7 06:"))
dataFrameDateTime = dataFrameDateTime.apply (lambda x: x.replace(’ 7:’, 7 07:"))
dataFrameDateTime = dataFrameDateTime.apply(lambda x: x.replace(’ 8:’, 7 08:"))
dataFrameDateTime = dataFrameDateTime.apply (lambda x: x.replace(’ 9:’, 7 09:'))

print (' Datetime ready...’)
return dataFrameDateTime

def getUserIndices (dataFrameReturn, predefinedIndices):

firstrow = dataFrameReturn.iloc[0]
indices = []
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def

dataFrameE prep
dataFrameE prep
dataFrameE prep

for i in range(len(firstrow)):
if type(firstrowl[i])
indices.append (i)

for index in predefinedIndices:
if index in indices:
indices.remove (index)

print (' Indices ready...’)
return indices

print ('E-prep ready...’)
return dataFrameE prep

str and int (firstrow([i])

dataFrameElectrical.iloc[:35040,
dataFrameE prep.fillna (0)
dataFrameE prep.apply(lambda x: x * 4 / 1000) # Conversion to kW

def gPrep():
dataFrameG prep = dataFrameGas.stack().str.replace(’,’, ’.’).unstack().iloc[:35040, 1:]
dataFrameG _prep = dataFrameG_prep.astype (float)
dataFrameG prep = dataFrameG_prep.apply(lambda x: x * 35.17 / 3.6) # Conversion from m"3
to kW
dataFrameG prep = dataFrameG prep.apply(lambda x: x * 0.05 * 0.412 + x * 0.20 * 0.333 + x
¥ 0,75 ¥ 0.333)

dataFrameG ext = pd.DataFrame (columns=dataFrameG prep.columns)
for 1 in range(len(dataFrameG_prep)) :

if i == 2190: print (’25% Gas conversion’)
if i == 4380: print(’50% Gas conversion’)
if i == 6570: print(’75% Gas conversion’)
if i == 8755: print(’100% Gas conversion’)

for j in range(4):
dataFrameG ext = dataFrameG ext.append(dataFrameG prep.iloc[i], ignore index=True

76
77
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79

print (' G-prep ready...’)
return dataFrameG_ext

dfGas = gPrep()

dfTime = timePrep ()

#userIndices = getUserIndices (dataFrameReturn, predefinedIndices)
dfElectricity = ePrep/()

#print (userIndices)

#print (dfTime.head)
df full = dfElectricity.add(dfGas, fill value=0)

#df full = df full.apply(lambda x: x / 1000) # Conversion from kW to MW
dfFullData = pd.concat ([dfTime, df full], axis=1)
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#print (dfFullData.head)

dfFullData.to csv(’ElectricityGasDataFullkW2.csv’, index=False)

#
#

pd.concat ([dfTime,
print (dfFullData.shape)

dfFullData.to csv(’Split.csv’,

dfElectricity,

index=False)

dfTime = timePrep ()

userIndices = getUserIndices (dataFrameReturn, predefinedIndices)
dfElectricity = ePrep (userIndices)

df full = dfElectricity.add(dfGas, fill value=0)

dfFullData = pd.concat ([dfTime, df full], axis=1)

H = 3

#print (dfFullData.loc[:, ’Klant 26’].max())



1M

112
113
114
115
116
17
118
119
120

121
122
123
124
125

126
127
128
129
130
131
132
133
134
135
136
137
138

139
140
141
142
143
144

145
146

147

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

[S I N R NN

A.1. Python Code: Data pre-processing 35
dataFrameE prep = dataFrameElectrical.drop([’datetime’, ’"SOM’, ’leverende klanten’, ’niet
leverenden’,
'Klant 1’, ’Klant 2’, ’'Klant 3’, ’'Klant 4’, ’'Klant 5/,
'Klant 8’, ’"Klant 9’, ’'Klant 10’, ’'Klant 11’, ’'Klant 14’ ,
"Klant 16’, ’'Klant 21’, ’"Klant 24’, ’'Klant 27’, ’'Klant 28’,
"Klant 29’, ’Klant 30’, ’Klant 31’, ’Klant 36’, ’Klant 37,
"Klant 40’, ’'Klant 41’, ’"Klant 44’, ’'Klant 45’, ’'Klant 47',
"Klant 48’, ’"Klant 49’, ’Klant 50’, ’Klant 51’, ’Klant 557,
"Klant 57’, ’'Klant 59’, ’"Klant 63’, ’'Klant 64’, ’'Klant 65’,
"Klant 66’, ’'Klant 67’, ’"Klant 69’, ’'Klant 72’, ’'Klant 73’,
"Klant 74’, ’'Klant 77’, ’"Klant 78’, ’'Klant 80’, ’'Klant 82’], axis =
1)
dataFrameE prep = dataFrameE prep.iloc[:35040, :]
for 1 in range (35040):
if dataFrameE prep.iloc[i].isna().any():
dataFrameE prep.iloc[i] = dataFrameE prep.iloc[i].fillna(dataFrameE prep.iloc[i].mean
0))
dataFrameE prep = dataFrameE prep.apply(lambda x: x * 4 / 1000) # Conversion to kW
dataFrameE prep
dataFrameG_prep = dataFrameGas.drop([’datetime’, ’Som’,
"Klant 1’, ’'Klant 2’, ’'Klant 3’, ’Klant 4’, ’'Klant 5’,
"Klant 8’, ’Klant 9’, ’'Klant 10’, ’Klant 11’, ’'Klant 14’ ,
"Klant 16’, ’'Klant 21’, ’"Klant 24’, ’'Klant 27’, ’'Klant 28’,
"Klant 29’, ’Klant 30’, ’Klant 31’, ’Klant 36’, ’Klant 37/,
"Klant 40’, ’'Klant 41’, ’"Klant 44’, ’'Klant 45’, ’'Klant 47',
"Klant 48’, ’'Klant 49’, ’"Klant 50’, ’Klant 51’, ’'Klant 55',
"Klant 57’, ’"Klant 59’, ’Klant 63’, ’'Klant 64’, ’'Klant 65’,
"Klant 66’, ’'Klant 67’, ’"Klant 69’, ’'Klant 72’, ’'Klant 73’,
"Klant 74’, ’"Klant 75’, ’"Klant 78’, ’Klant 80’, ’Klant 82’], axis =
i)
dataFrameG _prep = dataFrameG prep.stack().str.replace(’,’, ’.’).unstack().iloc[:35040, :]
dataFrameG prep = dataFrameG prep.astype (float)
for i in range (8758):
if dataFrameG prep.iloc[i].isna().any():
dataFrameG_prep.iloc[i] = dataFrameG prep.iloc[i].fillna(dataFrameG prep.iloc[i].mean

0)

dataFrameG prep = dataFrameG_prep.apply(lambda x: x * 35.17 / 3.6) # Conversion from m"3 to
kw

dataFrameG_prep = dataFrameG prep.apply(lambda x: x * 0.05 * 0.412 + x * 0.20 * 0.333 + x *
0.75 * 0.333)

dataFrameG_ext = pd.DataFrame (columns=dataFrameG prep.columns)

for i in range(len(dataFrameG prep)) :

if 1 == 2190: print(’25% Gas conversion’)
if i == 4380: print(’50% Gas conversion’)
if 1 == 6570: print(’75% Gas conversion’)
if i == 8755: print(’100% Gas conversion’)

for j in range(4):
dataFrameG ext = dataFrameG ext.append(dataFrameG prep.iloc[i], ignore index=True)
dataFrameG_ext

df full = dataFrameE prep.add(dataFrameG ext, fill value=0)

dfTime = timePrep ()

#df full = df full.apply(lambda x: x / 1000) # Conversion from kW to MW
dfFullData = pd.concat ([dfTime, df full], axis=1)

#print (dfFullData.head)

dfFullData.to_csv(’EGdataGroupB.csv’, index=False)
dfFullData

o

@author: Ruben Eland, Daan van Dingstee

Description: This is part 2 of two scripts that update a load data set
to prepare it for training ML models.
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g

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
import datetime as dt

#%% Creating dataframes
filenamel = ’'C:/Users/raela/OneDrive/Elektro/year 4/BAP/Thesis/Data sets/EGdataGroupB.csv’
load_df = pd.read csv(filenamel)

#%% Removing part of sets and updating with electric heating data
#Drop all names
# load df load df.drop ([0,

11)

#Save dates & times

dates df = load df[’datetime’]

load df = load df.drop([’datetime’], axis=1)

# #Drop unrelevant columns & all households with more than 1000 gaps in the load

# load df = load df.drop([’datetime’, ’SOM’, ’leverende klanten’, ’niet leverenden’,

# "Klant 1’, ’Klant 2’, ’'Klant 3’, ’'Klant 4’, ’'Klant 5’,

# "Klant 8’, ’Klant 9’, ’Klant 10’, ’Klant 11’, ’Klant 14’ ,
’Klant 16’, ’‘Klant 21’, ’Klant 24’, ’Klant 27’, ’Klant 28',

# "Klant 29’, ’'Klant 30’, ’"Klant 31’, ’Klant 36’, ’'Klant 37’,

# "Klant 40’, ’Klant 41’, ’Klant 44’, ’'Klant 45’, ’'Klant 47’,

# "Klant 48’, ’'Klant 49’, ’'Klant 50’, ’Klant 51’, ’'Klant 55’,

# "Klant 57’, ’"Klant 59’, ’Klant 63’, ’'Klant 64’, ’'Klant 65’,

# "Klant 66’, ’'Klant 67’, ’'Klant 69’, ’'Klant 72’, ’'Klant 737,

# "Klant 74’, ’"Klant 77’, ’"Klant 78’, ’"Klant 80’, ’'Klant 82’], axis =

1)

# #Drop unrelevant columns & all households with more than 1000 gaps in the load

# load df = load df.drop([’datetime’, ’‘Klant 2’, ’Klant 4’, ’'Klant 5’, ’Klant 24',

# "Klant 36’, ’'Klant 37’, ’"Klant 40’, ’'Klant 41’, ’'Klant 44’,

# 'Klant 45’, ’Klant 49’, ’Klant 50’, ‘Klant 51/, ’Klant 597,

# "Klant 64’, ’'Klant 65’, ’'Klant 66’, ’'Klant 67',

# "Klant 72’, '"Klant 73’, ’'Klant 74’, ’'Klant 78’,], axis = 1)

#Add households that should be used 2 times to data set

load df[’Klant 13 copy’] = load df[’Klant 13’]

load df[’Klant 15 copy’] = load df[’Klant 15"]

load df[’Klant 20 copy’] = load df[’Klant 20’]

load_df[’Klant 22 copy’] = load df[’Klant 22’]

load df[’Klant 26 copy’] = load df[’Klant 26’]

# #Remove nan values from gaps in data for 0 values (in original data set load never = 0)

# load df = load df.fillna(0)

# #Drop unrelevant columns & all households with gaps

# #load df = load df.drop([’datetime’, ’SOM’, ’leverende klanten’, ’'niet leverenden’,
# # "Klant 1’, ’Klant 2’, ’Klant 3’, ’Klant 4’, ’Klant 6’,

# # 'Klant 9’, ’Klant 17’, ’'Klant 21’, ’Klant 29’, ’'Klant 30',
# # "Klant 31’, ’'Klant 35’, ’'Klant 40’, ’'Klant 42’, ’'Klant 47',
# # "Klant 48’, ’'Klant 53’, ’'Klant 55’, ’'Klant 59’, ’'Klant 63',
# # "Klant 69’, ’'Klant 71’, ’'Klant 72’, ’'Klant 74’, ’'Klant 79',
# # "Klant 80/, ’'Klant 81’, ’Klant 82’], axis = 1)

# #create list with datetimes and numpy array with load data

dates df = pd.to_datetime (dates_df, format=’%d-%m-%Y %H:%M’)
dates times = dates df.to list()
load data = load df.to numpy ()

#%%Remove gaps by average load of 36 other households
n, households load data.shape

for j in range (households) :
for i in range(n):
if (load datafi,j] == 0):
load data[i,j] = np.mean(load data[il])
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76

77 #%% Aggregating and plotting 37 selected households

78 agg_data = np.zeros([n,1])

79 agg_data = np.sum(load data, axis = 1)

80

81 # plt.plot(dates times[960:1056], agg data[960:1056])

82 # plt.plot(dates times[672:768], agg data[672:768])

83 plt.plot (dates times[1920:2016], agg data[1920:2016])

84

85

86 #%% Clustering data into weekdays and weekend-/holidays

87 #Liander operates mostly in northern regions in the Netherlands, therefore the

88 #holiday dates of the northern regions from 2013 are used

89

90 #Specifying all holidays

91 Christmas_start = dt.date(2013,1,1) #Christmas holiday is everywhere the same in NL

92 Christmas end = dt.date(2013,1,7)

93

94 Summer start = dt.date(2013,7,13) #These are the dates of high school summer vacation in the
northern region of NL

95 Summer end = dt.date(2013,9,2)

96

97 Goodfriday = dt.date(2013,3,29)

98 Easter = dt.date(2013,4,1)

99 Queensday = dt.date(2013,4,30)

100 Ascensionl = dt.date(2013,5,9)

101 Ascension2 = dt.date(2013,5,10)

102 Pentecostl = dt.date(2013,5,19)

103 Pentecost2 = dt.date(2013,5,20)

104

105 Christmas2 start = dt.date(2013,12,21)

106 Christmas2 end = dt.date(2014,1,1)

107

108 #Creating list with holiday dates form start and end dates

109 Christmas = pd.date range (Christmas start, periods=6).tolist()

10 Summer = pd.date_ range (Summer start, periods=51).tolist()

11 Christmas2 = pd.date range (Christmas2 start, periods=11).tolist()

112

113 Holidays = [Goodfriday, Easter, Queensday, Ascensionl, Ascension2, Pentecostl, Pentecost2]

114 Holidays = Holidays + Christmas + Summer + Christmas2

115

116 #Creating set with holidays and making them all type date

17 holiday set = []

18 for day in Holidays:

119 if type(day) == dt.date:

120 holiday set.append (day)

121 else:

122 holiday set.append(day.to pydatetime () .date())

123
124 #Adding weekends to holiday set

125 start = dt.datetime (2013, 1, 1)

126 weekend index = set ([5, 6])

127 days = pd.date range(start, periods=365).tolist()

128

129 for day in days:

130 if day.weekday() in weekend index:

131 holiday set.append (day)

132

133 #Creating array that distinguishes between work- and holidays
13¢ n, houdeholds = load data.shape

135 workday = []

136

137 for i in range(n) :

138 if dates times[i].date() in holiday set:
139 workday.append (0)

140 else:

141 workday.append (1)

142
143 #Splitting load data set into weekdays and weekend days
144 # n, households = load data.shape
145 # load workday = np.zeros([1,37])
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# load holiday = np.zeros([1,37])
# date time workday = []
# date time holiday = []

# for i in range(n):

# if dates times[i].date() in holiday set:

# load holiday = np.concatenate((load holiday, [load data[i]]), axis=0)
# date time holiday.append(dates times[i])

# else:

# load weekday = np.concatenate((load workday, [load data[i]]), axis=0)
# date time workday.append(dates times[i])

# load holiday = np.delete(load holiday, 0, axis=0) #Remove row with 0’s from initialization
# load workday = np.delete(load weekday, 0, axis=0) #Remove row with 0’s from initialization

#%%Creating final data set and converting to excel sheet
final data = pd.DataFrame (data=load_data)

final data.insert (0, ’DateTime’, dates times)

final data.insert(l, ’Workday’, workday)

final data.insert(2, ’Total load’, agg data)

final data.to_excel ('Final load data.xlsx’)

#%%Creating separate work and weekend data set

work dates = []

work indices = [] #The indices are used later to link the correct weather data
work load = np.zeros(1l)

holiday dates = []

holiday indices = []

holiday load = np.zeros (1)

for 1 in range(len(agg_data)):
if workdayl[i] ==
holiday dates.append(dates times[i])
holiday load = np.append(holiday load, agg dataf[i])
holiday indices.append (i)

else:
work dates.append(dates times[i])
work load = np.append(work load, agg data[i])
work indices.append (i)

#Removing first zeros from initialization
work load = np.delete(work load, 0)
holiday load = np.delete(holiday load, 0)

d work = {’DateTime’: work dates, ’'Total load’: work load, ’Indices’: work indices}

work load df = pd.DataFrame (data=d_work)

work load df.to excel ('Workday load.xlsx’)

d holiday = {’DateTime’: holiday dates, ’Total load’: holiday load, ’'Indices’:
holiday indices}

holiday load df = pd.DataFrame (data=d _holiday)

holiday load df.to_excel ('Holiday load.xlsx’)

A.1.2. PV data updating

# -*- coding: utf-8 -*-

g

@author: Daan van Dingstee, Ruben Eland

Description: This is part 1 of two scripts that update a PV data set
to prepare it for training ML models

g

import numpy as np

import pandas as pd

from datetime import datetime
import datetime as dt

from random import randint
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#%%First: creating pandas dataframe from original data set

PVData=pd.read csv(’'db_export ch202-2021-01-23-2022-01-23.csv’)
PVData=PVData.drop (’id’, 1)

PVData=PVData.drop (’idc’, 1)

PVData=PVData.drop ('’ scantime’, 1)
PVData=PVData.drop (' starttime’, 1)

oo

PVData[’Date’] = pd.to datetime (PVData[’Date’], format=’'%Y-%m-%d %H:%M:%S’)
#%$%Adding up all values per 15 minutes, then setting all the used values to ’'used’
#and setting the last value to the total of the last 15 minutes

for i in range (PVData.shapel[0]):

if PVData.wh[i]<O0:
PVData.wh([i]=0 #setting negative values equal to 0

if 1 % 100 ==
print (i)
if PVData.wh[i]!="used’:
if PVData.Date[i].minute<15:
gl=gl+PVData.wh[i]
PVData.wh([1]="used’
if PVData.Date[i+1l].minute>=15:
PVData.wh[i]=qgl
ql=0
elif PVData.Date[i].minute<30:
g2=g2+PVData.wh[1i]
PVData.wh([i]='used’
if PVData.Date[i+1l].minute>=30:
PVData.wh[i]=g2
qgz2=0
elif PVData.Date[i].minute<45:
g3=g3+PVData.wh[i]
PvData.wh[i]="used’
if PVData.Date[i+1l].minute>=45:
PVvData.wh[i]=qg3
g3=0
else:
g4=g4+PVData.wh[i]
PVData.wh([i]='used’
if PVData.Date[i+1l].minute<15:
PVData.wh[i]=g4
q4=0

#deleting all used values
PVData = PVData[PVData.wh != "used’]

#setting seconds to 0
for i in range (PVData.shape[0]):
PVData.Date[i]=PVData.Date[i].replace (second=0)

d = {’Date’: PVDatal[’Date’], ’"wh’: PVData[’wh’]}
PVTemp = pd.DataFrame (data = d)
PVTemp.to_excel (' PVDataAangepast2.xlsx’)

# -*- coding: utf-8 -*-

g

@author: Ruben Eland, Daan van Dingstee

Description: This is part 1 of two scripts that update a PV data set
to prepare it for training ML models

g
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import numpy as np

import pandas as pd

import datetime as dt

from random import randint

#%% Downloading data set and creating dataframe

filename = ’'C:/Users/raela/OneDrive/Elektro/year 4/BAP/Thesis/Data sets/PVDataAangepast2.xlsx

’

PV_df = pd.read excel(filename, sheet name = 0)

PV_df = PV_df.drop([’Unnamed: 0’], axis=1)
dates temp = PV _df[’Date’].tolist ()

dates = []

dates _times = []

for time in dates temp:

dates times.append(time.strftime (”“$Y-%m-%d, $%$H:%M”)) #Converting dates times to strings

#%% Removing outliers: removing gaps

#First all gaps are removed. This is done by checking if every date in PVData
#has 96 indices (24 hrs x 15 mins). If not, they are filled with 0 values

start = dt.datetime (2021, 1, 23, 00, 14,)
numIntervals = 35039

all dates times = [(start + dt.timedelta(minutes=15*x)).strftime(”%Y-%m-%d, %H:%M")

range (numIntervals) ]
indices = []

#Checking where the gaps are, by looping all dates times that should be
#in the date times column from the data set and checking if they are there.
#Since there are some data points where the time is for example 0012 or 0009
#in stead of 0014, all points in the last quarter have to be checked.
for time in all dates times:

time dt = dt.datetime.strptime(time, ”%Y-%m-%d, %H:3%M"”)

time 1 = (time dt - dt.timedelta(minutes=1)).strftime (”%Y-%m-%d, %H:%M")
time 2 = (time_dt - dt.timedelta(minutes=2)).strftime(”%Y-%m-%d, S$H:%M")
time 3 = (time dt - dt.timedelta (minutes=3)).strftime (”%Y-%m-%d, %H:%M")
time 4 = (time dt - dt.timedelta(minutes=4)).strftime (”%Y-%m-%d, %H:%M")
time 5 = (time dt - dt.timedelta (minutes=5)).strftime(”%Y-%m-%d, S%H:%M")
time 6 = (time dt - dt.timedelta(minutes=6)).strftime (”%Y-%m-%d, %H:3%M")
time 7 = (time dt - dt.timedelta (minutes=7)).strftime(”%Y-%m-%d, S$H:%M")
time 8 = (time dt - dt.timedelta(minutes=8)).strftime (”%Y-%m-%d, %H:%M")
time 9 = (time_dt - dt.timedelta(minutes=9)).strftime(”%Y-%m-%d, S$H:%M")
time 10 = (time _dt - dt.timedelta (minutes=10)).strftime(”%Y-%m-%d, %H:3M")
time 11 = (time dt - dt.timedelta (minutes=11)).strftime(”%Y-%m-%d, S%H:%M")
time 12 = (time dt - dt.timedelta (minutes=12)).strftime(”%Y-%m-%d, S%H:3M")
time 13 = (time dt - dt.timedelta (minutes=13)).strftime(”%Y-%m-%d, S%H:%M")

if (time not in dates times and time 1 not in dates times and time 2 not in dates times

and time 3 not in dates times and time 4 not in dates times
and time 5 not in dates times and time 6 not in dates times
and time 7 not in dates_times and time 8 not in dates_ times
and time 9 not in dates times and time 10 not in dates times
and time_ 11 not in dates_times and time_ 12 not in dates_times
and time 13 not in dates_times):
indices.append(all dates times.index(time))

#Adding extra hour of winter time because it is in original PV data set
start2 = dt.datetime (2021, 10, 31, 2, 14)
for x in range(4):

winter time = (start2 + dt.timedelta (minutes=15*x)).strftime (”%Y-%m-%d, S%H:3%M")

all dates_times.insert((21128 + x), winter time)

final dates times = []
wh temp = np.copy (wh)
for 1 in range(len(all_dates_times)):
final dates times.append(all dates times[i])
if i in indices:
wh temp = np.insert(wh_temp, i, ’‘nan’)
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# Removing extra hour of winter time because it is not in the weather data set
pop i = 21132
for i in range(4):

final dates times.pop (pop 1)

wh_temp = np.delete(wh_temp, pop_ i)

def check gap removal (indices):
r = randint (25000, 34000)
if final dates times[r] == dates times[r - diff i]:
print ('gaps in dates succesfully removed!’)
elise:
print ('error in removing gaps from dates!’)
if wh temp[r] == wh[r - diff i]:
print (‘gaps in wh succesfully removed!’)
else:
print ('error in removing gaps from wh!’)

diff i = len(indices) - 4

print (' Number of gaps is: ', diff i)
check gap removal (indices)

# Removing outliers: replacing nan values from gaps, removing offset
nan_i = np.asarray(np.where (np.isnan(wh temp)))
for i in range(len(nan i)):

wh _temp[nan_i] = wh temp[nan i - 96] #value of the day before

#Still nan values remaining -> try with gen from 2 days before

nan_i2 = np.asarray (np.where (np.isnan(wh_temp)))
for i in range(len(nan i2)):
wh temp[nan i2] = wh temp[nan_i2 - 192] #value of 2 days before
if np.asarray(np.where (np.isnan(wh_temp))).size == 0:
print (‘all gaps are filled!’)
else:

print ("still unfilled gaps in wh!’)
#now all gaps are filled!

# d = {’Date’: final dates times, ‘wh’: wh temp}
# PVWOGaps = pd.DataFrame (data = d)
# PVWOGaps.to excel (' PVDataWOGaps.xlsx’)

#Rmoving offset from part of the data set

#It is assumed that offset starts at 2021-08-13, 20:44 (index = 19474 in wh_temp

and final dates times), because before every night wh = 0 and at 2021-08-12

20:44 the generation was 0.06. From this point on the offset is almost always present

and increases from roughly 4.2 up to 6.5.

!The offset is not present at some indices, f.e. (33402 until 33433), (26411 until 26425),
these values will be ignored, as the values in the night will be set to 0 later on

and the remaining set of values will be so small that its effect will be marginal.

H o 3

#Plan to remove offset:

#1: take average offset between 00:00 and 04:00 (check if no value above
# max offset value is taken)

#2: subtract the offset from each night from night & day before

first offset =1
count = 0

ave offset = 0
for i in range (19487, 35040, 1):
if count == 96:
count = 0
if count == 16: #count average offset between 00:00 and 04:00

ave array = wh temp[ (i-16) :1]
ignore = ave array > 7
ave array = np.delete(ave array, ignore)
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149 ave offset = np.mean(ave array)

150 if first_offset ==

151 wh temp[i-29:i-16] = wh temp[i-29:i-16] - ave offset
152 first_offset = 0

153

154 wh temp[i-112:i-16] = wh_temp[i-112:i-16] - ave offset
155

156 if 1 == 35039: #Remove last average offset from last day
157 wh temp[i-96:1] = wh temp[i-96:i] - ave offset

158

159 count += 1

160

161 1f np.asarray(np.where(wh_temp < (-3))) .size ==

162 print (' succesfully eliminated offset!’)

163 else:

164 print ("errors when eliminating offset: ',

165 np.asarray (np.where (wh_temp < (-2))).size,

166 "values are below -2 and thus they had no offset!’)

167
168 # d = {’Date’: final dates times, ’'wh’: wh temp}

169 # PVWOoffset = pd.DataFrame (data = d)

170 # PVWOoffset.to excel (' PVDataWOoffset.xlsx’)

171

172 #%$%Removing outliers: too large values

173

174 #From analyzing weather data set we learned: a generated power above 400 Wh can

175 #seen as outlier. All outliers can be removed by taking the average between values
176 #before and after outlier, the first value that is not an outlier itself is taken
177

178 max = 400

179

180 print ()

181

182 for 1 in range (34245):

183 if wh temp[i] > max:

184 if wh temp[i-1] < max and wh_temp[i+1l] < max:
185 wh temp[i] = (wh temp[i-1] + wh_temp[i+1])/2
186 elif wh temp[i-2] < max and wh_temp[i+l] < max:
187 wh temp[i] = (wh_temp[i-2] + wh temp[i+1])/2
188 elif wh temp[i-2] < max and wh temp[i+2] < max:
189 wh temp[i] = (wh temp[i-2] + wh temp[i+1])/2
190 elif wh temp[i-2] < max and wh temp[i+2] < max:
191 wh temp[i] = (wh_temp[i-2] + wh temp[i+1])/2
192 elif wh temp[i-2] < max and wh temp[i+3] < max:
193 wh temp[i] = (wh_temp[i-2] + wh_temp[i+3])/2
194 elif wh temp[i-3] < max and wh temp[i+3] < max:
195 wh temp[i] = (wh temp[i-3] + wh temp[i+3])/2

196
197

198 #Run two times, because for some reason some max values are missed if only run 1 time
199 for i in range (34245):

200 if wh_temp[i] > max:

201 if wh temp[i-1] < max and wh temp[i+l] < max:
202 wh temp[i] = (wh_temp[i-1] + wh temp[i+1])/2
203 elif wh temp[i-2] < max and wh temp[i+l] < max:
204 wh temp[i] = (wh temp[i-2] + wh temp[i+1])/2
205 elif wh temp[i-2] < max and wh temp[i+2] < max:
206 wh temp[i] = (wh temp[i-2] + whitemp[i+1])/2
207 elif wh temp[i-2] < max and wh_ temp[i+2] < max:
208 wh temp[i] = (wh temp[i-2] + wh_temp[i+1])/2
209 elif wh temp[i-2] < max and wh_temp[i+3] < max:
210 wh temp[i] = (wh temp[i-2] + wh temp[i+3])/2
211 elif wh temp[i-3] < max and wh temp[i+3] < max:
212 wh temp[i] = (wh_temp[i-3] + wh temp[i+3])/2
213

214 print (‘max wh value is: ', np.max(wh_temp))

215

216 start = dt.datetime (2021, 1, 23, 00, 15,)

217 numIntervals = 35039

218 correct_dates_times = [(start + dt.timedelta(minutes=15*x)) for x in range (numIntervals) ]

219
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d = {’Date’: correct dates times,
d)

PVFinal = pd.DataFrame (data

PVFinal.to excel (' PVDataFinal.xlsx’)

#%%What still should happen in combined PV & weather data set:

#Set all wh = 0 where irr =

#Remove all values where irr is not 0 and wh = 0

#Scikit outlier detection

A.1.3. EV data updating

# -*- coding: utf-8 -—-*-

2

@author: Daan van Dingstee,

g

import numpy as np
import pandas as pd

0

Ruben Eland

from datetime import datetime

from numpy import mean
from numpy import std

total=EVData.sum(axis=’columns’)

EVData [’ Total’]=total
Time=EVData.Time

EVData=EVData.drop (' Time’, 1)

EVData=EVData/6600
EVData.astype (int)
EVData [’ Time’ ]=Time

EVData=EVData.drop (’Vehicle
EVData=EVData.drop (’Vehicle
EVData=EVData.drop (’Vehicle
EVData=EVData.drop (’Vehicle
EVData=EVData.drop (’Vehicle
EVData=EVData.drop (’Vehicle
EVData=EVData.drop (’Vehicle
EVData=EVData.drop (’Vehicle
EVData=EVData.drop (’Vehicle
EVData=EVData.drop (’Vehicle
EVData=EVData.drop (’Vehicle
EVData=EVData.drop (’Vehicle
EVData=EVData.drop (’Vehicle
EVData=EVData.drop (’Vehicle
EVData=EVData.drop (’Vehicle
EVData=EVData.drop (’Vehicle
EVData=EVData.drop (’Vehicle
EVData=EVData.drop (’Vehicle
EVData=EVData.drop (’Vehicle
EVData=EVData.drop (' Vehicle
EVData=EVData.drop (’Vehicle
EVData=EVData.drop (’Vehicle
EVData=EVData.drop (’Vehicle
EVData=EVData.drop (’Vehicle
EVData=EVData.drop (’Vehicle
EVData=EVData.drop (’Vehicle
EVData=EVData.drop (' Vehicle
EVData=EVData.drop (’Vehicle
EVData=EVData.drop (’Vehicle
EVData=EVData.drop (’Vehicle
EVData=EVData.drop (’Vehicle
EVData=EVData.drop (’Vehicle
EVData=EVData.drop (’Vehicle
EVData=EVData.drop (’Vehicle
EVData=EVData.drop (’Vehicle
EVData=EVData.drop (’Vehicle

5 EVData=EVData.drop (’Vehicle

EVData=EVData.drop (’Vehicle
EVData=EVData.drop (' Vehicle

17,
27,
37,
4,
57,
6",
7"y
87,
9’!
107
11’
127
137
14"
157
16’
17"
18’
197
20"
21’
22"
23’
247
257
26"
27"
28"
297
307
31’
327
33’
34’
357
36’
377
387
397
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1)
1)
1)
1)
1)
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"wh' :
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EVData=EVData.drop (’Vehicle 40’, 1)
EVData=EVData.drop(’Vehicle 417", 1)
EVData=EVData.drop (’Vehicle 42’, 1)
EVData=EVData.drop (' Workday’, 1)
EVData.head (5)

data[’Time’ ]=data[’Time’] .dt.time

EVData.to excel (' EVDataAangepastfinal.xlsx’)

A.2. Python Code: Importing Model types
A.2.1. Load forecasting

i == coellng s WEE=E =%=

o

@author: Daan van Dingstee, Ruben Eland

s

import os
#Importing datasets
# clone the github repository if it not already cloned
if not os.path.exists (os.getcwd()+’/Smart-Sustainable-Grids-BAP’):
!git clone https://github.com/PieterGo/Smart-Sustainable-Grids-BAP.git
else:
print (’”/Smart-Sustainable-Grids-BAP” already exists’)

from sklearn.decomposition import PCA

from sklearn.metrics import explained variance score
import numpy as np

import matplotlib.pyplot as plt

from sklearn.model selection import train test split
import pandas as pd

from datetime import datetime

from sklearn import preprocessing

from sklearn.ensemble import ExtraTreesRegressor
from sklearn.model selection import RandomizedSearchCVv
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import r2 score

import seaborn as sns

from scipy.linalg import svd

from sklearn import metrics

from sklearn import datasets, svm

from sklearn.neural network import MLPRegressor

from sklearn.datasets import make regression

from numpy import mean

from numpy import std

from sklearn.datasets import make classification
from sklearn.model selection import KFold

from sklearn.model selection import cross_val score

#converting dattasets from excel to dataframe and dropping the unnecessary columns
LoadData = pd.read excel (' Smart-Sustainable-Grids-BAP/Final load data.xlsx’)
WeatherData=pd.read excel (' Smart-Sustainable-Grids-BAP/weerdata aangepast final.xlsx’)

print (LoadData.shape)
print (WeatherData.shape)

#converting DateTime into string
LoadData [’ DateTime’ ]=LoadData[’DateTime’ ] .dt.time

for i in range (LoadData.shape[0]) :
LoadData.DateTime[i] = LoadData.DateTime[i].strftime (”$HSMSS”)

o°

#combine the load and weather data
AllData = pd.concat ([LoadData, WeatherDatal], axis=1)

y=AllData.TotalLoad
features=AllData.drop ('’ TotalLoad’, 1)
#split the data in 70% train and 30% test
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X train, X test, y train, y test = train test split(features, y, test size=0.3,shuffle=True,

random_state=42)
y_train=y train.ravel ()
y_test=y test.ravel()

#standard normalize the data

scaler = preprocessing.StandardScaler ().fit (X train)
X train = scaler.transform(X train)
X test = scaler.transform(X_test)

A.2.2. PV forecasting

# -*- coding: utf-8 -*-

s

@author: Daan van Dingstee, Ruben Eland

s

import os

# clone the github repository if it not already cloned
if not os.path.exists(os.getcwd()+’/Smart-Sustainable-Grids-BAP’) :

!git clone https://github.com/PieterGo/Smart-Sustainable-Grids-BAP.git
else:

print (’”/Smart-Sustainable-Grids-BAP” already exists’)

from sklearn.decomposition import PCA

from sklearn.metrics import explained variance score
import numpy as np

import matplotlib.pyplot as plt

from sklearn.model selection import train test split
import pandas as pd

from datetime import datetime

from sklearn import preprocessing

from sklearn.ensemble import ExtraTreesRegressor
from sklearn.model selection import RandomizedSearchCV
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import r2 score

import seaborn as sns

from scipy.linalg import svd

from sklearn import metrics

from sklearn import datasets, svm

from sklearn.neural network import MLPRegressor

from sklearn.datasets import make regression

from numpy import mean

from numpy import std

from sklearn.datasets import make classification
from sklearn.model selection import KFold

from sklearn.model selection import cross val score

PVData = pd.read_excel(’Smart—Sustainable—Grids—BAP/PVDataFinal.xlsx’)
WeatherData=pd.read_excel(’Smart—Sustainable—Grids—BAP/WeerdataiPV.xlsx’)
PVData=PVData.drop (' Unnamed: 0’, axis=1l)

WeatherData=WeatherData[[’Wind’, 'Temp’, ’'Irr’, ’'View’, ’Clouds’, ’'Humidity’, ’Fog’,

"Snow’, ’Thunder’]]

print (PVData.shape)
print (WeatherData.shape)

# Combining PV data & weather data

PVData[’Date’] = pd.to_datetime (PVData[’Date’], format=’%Y-%m-%d, %H:%M’)

PVData[’Date’ ]=PVData[’Date’].dt.time

for i in range (PVData.shape[0]) :

PVData.Date[i] = PVData.Date[i].strftime (”SHSM”)

#increase data to amount of pv generation our neighbourhood would have
PVData.wh[i]=PVData.wh[i]*168.285

PVData[’ season’ ]=season

’Rain’,
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AllData = pd.concat ([PVData, WeatherData], axis=1)
# Removing outliers in combined PV & weather data set
#1: Set all wh = 0 where irr = 0
#2: Remove all values where irr is not 0 and wh = 0
#3: Scikit outlier detection
wh = AllData[’wh’].to_ numpy ()
irr = AllData[’Irr’].to numpy ()
#1: Set all wh = 0 where irr = 0
whlirr == 0] = 0
#2: Remove all values where irr is not 0 and wh = 0
indices = []
for i in range(len(wh)):

if wh[i] == 0 and irr[i] > 1:

indices.append (i)
AllData = AllData.drop (indices)
y=AllData.wh
features=AllData.drop('wh’, 1)
X train, X test, y train, y test = train test split (features,
random state=42) #split the data in 70% train and 30% test

y_train=y train.ravel ()
y_test=y test.ravel()
#standard normalize the data
scaler = preprocessing.StandardScaler().fit (X train)
X train = scaler.transform(X train)
X test = scaler.transform(X_test)

A.2.3. EV forecasting

# S

s

@auth

s

coding: utf-8 -*-

or: Daan van Dingstee, Ruben Eland

import os

# clo
if no
|

else:

print (' ”/Smart-Sustainable-Grids-BAP” already exists’)

from
from

ne the github repository if it not already cloned

t os.path.exists (os.getcwd()+’/Smart-Sustainable-Grids-BAP’) :
git clone https://github.com/PieterGo/Smart-Sustainable-Grids-BAP.git

sklearn.decomposition import PCA
sklearn.metrics import explained variance score

import numpy as np
import matplotlib.pyplot as plt

from

sklearn.model selection import train test split

import pandas as pd

from
from
from
from
from
from

datetime import datetime

sklearn import preprocessing

sklearn.ensemble import ExtraTreesRegressor
sklearn.model_selection import RandomizedSearchCV
sklearn.ensemble import RandomForestRegressor
sklearn.metrics import r2 score

import seaborn as sns

from
from
from
from
from
from
from
from

scipy.linalg import svd

sklearn import metrics

sklearn import datasets, svm

sklearn.neural network import MLPRegressor
sklearn.datasets import make regression
numpy import mean

numpy import std

sklearn.datasets import make classification

y, test size=0.3,shuffle=True,
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A.3. Python Code: Training and testing the models

from sklearn.model selection import KFold
from sklearn.model selection import cross val score

data =

y=data.Total
features=data.drop ('’ Total’, 1)

for i in range (features.shape[0]):
tures.Time[1] = features.Time[i].strftime (”"%H%M%S”)

fea

pd.read excel (' Smart-Sustainable-Grids-BAP/Final EV data.xlsx’)

from sklearn.model selection import train test split
in, X test, y train, y test =

X _tra
r

y_train=y train.ravel ()

y_tes

t=y test.ravel()

from sklearn import preprocessing
#standard normalize the data

r = preprocessing.StandardScaler().fit (X train)
in = scaler.transform(X train)
t = scaler.transform(X test)

scale
X tra
X tes

A.3. Python Code: Training and testing the models

# A

o

@auth

s

coding: utf-8 —-*-

or:

Daan van Dingstee,

from sklearn.decomposition import PCA
from sklearn.metrics import explained variance score

impor

t numpy as np

import matplotlib.pyplot as plt
from sklearn.model selection import train test split

impor
from
from
from
from
from
from
impor
from
from
from
from
from
from
from
from
from
from

#PCA
X = f

t pandas as pd

datetime import datetime
sklearn import preprocessing
sklearn.ensemble import ExtraTreesRegressor
sklearn.model selection import RandomizedSearchCV
sklearn.ensemble import RandomForestRegressor

sklearn.metrics import r2 score

t seaborn as sns

scipy.linalg import svd
sklearn import metrics
sklearn import datasets, svm
sklearn.neural network import MLPRegressor
sklearn.datasets import make regression

numpy import mean
numpy import std

train_test_split (features,
andom_ state=42) #split the data in 70% train and 30% test

Ruben Eland

sklearn.datasets import make classification
sklearn.model selection import KFold
sklearn.model_selection import cross_val score

eatures

X = scaler.transform(X)

N, M
X_PCA
UV SI

= X.shape

= X - np.ones ((N,1))*X.mean (axis=0) #subtract the mean

Vh = svd(X_PCA,

full matrices

False)

#Compute variance explained by principal components
(S*S) / (S*S) .sum()

rho =

thres

hold = 0.90

# Plot variance explained

fig =

plt.plot (range(l,len(rho)+1),rho, " x-")
5 plt.plot (range (1, len(rho)+1),np.cumsum(rho),’ o-")

plt.figure ()

y, test size=0.3,shuffle=True,
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A.3. Python Code: Training and testing the models

plt.plot ([1,len(rho)], [threshold, threshold],’k--")
plt.title(’Variance explained by principal components’);
plt.xlabel (' Principal component’) ;

plt.ylabel ('Variance explained’);

plt.legend ([’ Individual’,’Cumulative’,’ Threshold = 0.971])
plt.grid()

plt.show ()

#PCA with ExtraTreesRegressor
model = ExtraTreesRegressor ()
model.fit (X, vy)

print (model.feature importances )

#Finding the best RFR model
# Number of trees in random forest

n_estimators = [int(x) for x in np.linspace(start = 200, stop = 2000, num = 10)]
# Number of features to consider at every split

max_features = ["auto’, ’'sqgrt’]

# Maximum number of levels in tree

max_depth = [int(x) for x in np.linspace (10, 110, num = 11)]

max_depth.append (None)
# Minimum number of samples required to split a node
min samples split = [2, 5, 10]
# Minimum number of samples required at each leaf node
min samples leaf = [1, 2, 4]
# Method of selecting samples for training each tree
bootstrap = [True, False]
# Create the random grid
random grid = {’n_estimators’: n_estimators,
"max features’: max features,
"max_depth’: max depth,
'min_ samples split’: min samples split,
'min_samples_leaf’: min_samples_leaf,
"bootstrap’: bootstrap}

# Use the random grid to search for best hyperparameters

# First create the base model to tune

rf = RandomForestRegressor ()

# Random search of parameters, using 3 fold cross validation,

# search across 50 different combinations, and use all available cores

rf random = RandomizedSearchCV (estimator = rf, param distributions = random grid, n iter

50, cv = 3, verbose=0, random state=42, n_jobs = -1)
# Fit the random search model
rf random.fit (X train,y train)
rf random.best params_

#see improvement over basemodel

base model = RandomForestRegressor ()

base model.fit (X _train, y train)
y_predictbase=base model.predict (X test)

print (“R*2=", r2 score(y_test, y predictbase))
best random = rf random.best estimator

y _predictbest=best random.predict (X test)
print (“R"2=", r2 score(y test, y predictbest))

#Finding the best SVM model
tol= [float(x) for x in np.linspace(0.0001, 0.9, num = 100)]
# tolerance
c=[float(x) for x in np.linspace(0.1, 5, num = 100)]
# Minimum number of samples required to split a node
epsilon=[float(x) for x in np.linspace(0.01, 1, num = 100) ]
# Method of selecting samples for training each tree
# Create the random grid
random grid2 = {’tol’:tol,

"C7s @

"epsilon’: epsilon}
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A.3. Python Code: Training and testing the models 49

svr = svm.SVR ()

# Random search of parameters, using 3 fold cross validation,

# search across 50 different combinations, and use all available cores

svr_random = RandomizedSearchCV (estimator = svr, param distributions = random grid2, n_iter =
50, cv = 3, verbose=0, random state=42, n_ jobs = -1)

# Fit the random search model

svr_random.fit (X train,y train)

svr_random.best params_

#see improvement over basemodel

base model2 = svm.SVR()

base model2.fit (X train, y train)
y_predictbase2=base model2.predict (X test)
print (“R*2=", r2 score(y_test, y predictbase2))
best random2 = svr random.best estimator
y_predictbest2=best random2.predict (X test)
print (“R*2=", r2 score(y test, y predictbest2))

#Finding the best ANN model

hidden layer sizes= [int(x) for x in np.linspace(l, 100, num = 50)]
#Number of hidden layers
activation = [’identity’, ’'logistic’, ’'tanh’, ’relu’]

#different kinds of activation for the layers

alpha=[float(x) for x in np.linspace(0.00001, 0.001, num = 50)]
#alpha

learning rate=[’constant’, ’‘invscaling’, ’adaptive’]

#different kinds of learning rate evolution
learning rate init=[float(x) for x in np.linspace(0.01, 0.00001, num = 20)]
#different learning rates

tol= [float(x) for x in np.linspace(0.00001, 0.001, num = 20)]
#tolerance

max iter=[int(x) for x in np.linspace(2, 1000, num = 50)]

#max epochs

random grid3 = {’tol’:tol,
'max_iter’: max iter,
"alpha’: alpha,
"hidden_ layer sizes’: hidden_layer_ sizes,
"activation’: activation,
"learning rate’: learning rate,
"learning rate init’:learning rate init}

MLP = MLPRegressor ()

# Random search of parameters, using 3 fold cross validation,

# search across 50 different combinations, and use all available cores

MLP_ random = RandomizedSearchCV (estimator = MLP, param distributions = random grid3, n iter =
50, cv = 3, verbose=0, random state=42, n jobs = -1)

# Fit the random search model

MLP random.fit (X train,y train)

MLP_random.best params_

#see improvement over basemodel

base model3 = MLPRegressor ()

base model3.fit (X train, y train)
y_predictbase3=base model3.predict (X test)
print (“R*2=", r2 score(y_test, y predictbase3))
best_random3 = MLP random.best estimator_
y_predictbest3=best random3.predict (X_test)
print (“R*2=", r2 score(y test, y predictbest3))

#calculate cross validation
cv = KFold(n_splits=5, random state=1, shuffle=True)

# evaluate models

scoresl = cross val score(best random, features, y, scoring='r2’, cv=cv, n_jobs=-1)
# report performance

print (’Accuracy: %.3f (%.3f)’ % (mean(scoresl), std(scoresl)))
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A.4. Matlab Code: interpolating Weather Data 50

print (scoresl)

# evaluate models

scores2 = cross_val score(best random2, features, y, scoring=’'r2’, cv=cv, n_jobs=-1)
# report performance
print ("Accuracy: %$.3f (%.3f)’ % (mean(scores2), std(scores2)))

print (scores2)

# evaluate models

scores3 = cross_val score(best random3, features, y, scoring=’'r2’, cv=cv, n_ jobs=-1)
# report performance

print ("Accuracy: %.3f (%.3f)’ % (mean(scores3), std(scores3)))

print (scores3)

A.4. Matlab Code: interpolating Weather Data

[

% get irradiance per hour

weerdata 2013 = readmatrix (’C:\Users\vandi\Desktop\BAP\weerdata 2021.xlsx’);
data.date = weerdata 2013(:,1);

data.hour = weerdata 2013(:,2);

data.wind= weerdata 2013 (:,3);

data.temp= weerdata 2013 (:,6);

data.sun = weerdata 2013 (:,9);

data.irr = weerdata 2013 (:,10);

data.rain= weerdata 2013 (:,13);

data.cloud= weerdata 2013 (:,16);

%interpolate

time = [0:1:8759];

interpolated = [0:0.25:8759];

data.date 15 = interpl (time,data.date,interpolated);
data.hour 15 = interpl (time,data.hour,interpolated);

data.wind 15= interpl (time,data.wind, interpolated);
data.temp 15= interpl (time,data.temp,interpolated);

data.sun 15 = interpl (time,data.sun,interpolated);
data.irr 15 = interpl(time,data.irr,interpolated);
data.rain 15= interpl (time,data.rain,interpolated);

data.cloud 15= interpl (time,data.cloud, interpolated);

data.date 15 = data.date 15(:);

data.hour 15 = data.hour_ 15(:);

data.wind 15= data.wind 15(:);

data.temp 15= data.temp 15(:);

data.sun 15 = data.sun_15(:);

data.irr 15 =data.irr 15 (:);

data.rain 15= data.rain 15(:);

data.cloud 15=data.cloud 15(:);

% write weather data back to excell in sheet 3

writematrix (data.date 15, ’‘weerdata aangepast 2021.xlsx’, 'range’, ’'B2’);
writematrix (data.hour 15, ’'weerdata aangepast 2021.xlsx’, ’‘range’, ’'C2%);
writematrix (data.wind 15, ’‘weerdata aangepast 2021.xlsx’, ’'range’, ’'D2’);
writematrix (data.temp 15, ’'weerdata aangepast 2021.xlsx’, ’‘range’, 'E2’);
writematrix(data.sun 15, ’‘weerdata aangepast 2021.xlsx’, ’'range’, 'F2’);
writematrix(data.irr 15, ’'weerdata aangepast 2021.xlsx’, 'range’, ’'G2’);
writematrix (data.rain 15, ’'weerdata aangepast 2021.xlsx’, ’‘range’, 'H2’);

writematrix (data.cloud 15, ’weerdata aangepast 2021.xlsx’, ’range’, 'I2');
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