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1. Introduction

Micro-fluidic devices offer a vast variety of applications  
[1–6], where in many cases control over the position of 
immersed particles is offered via the channel geometry [4, 
7–11] or via external fields [2, 12]. Alternatively, however, the 
position of the immersed particles can be controlled via the 
particle shape [13–16]. With techniques such as continuous-
flow lithography [17], particles of quasi-two-dimensional 
shape can be produced in Hele-Shaw-type channels, opening 
possibilities to make these particle ‘self-steering’, following a 
desired trajectory.

In previous work [18], we have developed the numerical 
machinery to resolve the trajectories of particles that are con-
fined in a Hele-Shaw cell, which may be of arbitrary quasi-
2D shape, either by solving the hydrodynamic equations  in 
full detail or via an effective quasi-2D description offered by 
the Brinkman equation. Using this framework, we can obtain 
insight in the shape-dependence of the particle motion, in 

order to ‘engineer’ the trajectories, i.e. to create particles that 
are able to self-steer in the channel.

In this work, we gain further insight by analytically solving 
the equations of motion that govern the quasi-2D motion of 
the confined particles in Hele-Shaw channels [19, 20]. These 
solutions are novel and serve as a means of classification of 
the possible trajectories based on a few geometry-dependent 
parameters. Moreover, based on symmetry arguments, we 
rederive the angular equation  of motion of a dimer-shaped 
particle that was earlier derived by Uspal et al [15], but now in 
a general fashion by showing that it holds true for any mirror-
symmetric particle.

From the analytical solutions that we construct in the wide-
channel limit, we find that every particle shape admits a stable 
orientation in the external background flow. Independent of 
the initial orientation, the particle will therefore eventually 
align asymptotically with the stable orientation; as a result, 
periodic rotation cannot occur in this system unless it is due to 
interactions with the side walls. For mirror symmetric cases, 
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the equations  of motion simplify, allowing us to solve the 
transversal trajectory of the particle analytically as well.

Subsequently, we compare our analytic results with the tra-
jectories that are obtained numerically [18]. We do this for a 
large variety of mirror-symmetric particles such as dimers con-
sisting of various shapes, and symmetric trimers, and show that 
the motion, and its dependence on e.g. the initial orientation, is 
accurately captured by the analytical solution. Subsequently, 
we consider deviations from the  mirror-symmetric shapes in a 
controlled fashion by considering asymmetric trimers. There, 
we find that the stable orientation can be tuned by varying the 
size ratio of the two legs of the tripod. Moreover, by varying 
this size ratio, the tripod particle can be focused to a non-
central position along the y-axis. We find that the analytical 
solutions are accurate when the particle is far enough from the 
side walls, but that they fail to describe the motion accurately 
when the particle approaches the side wall, as is the case for 
the asymmetric trimers.

2. General equations of motion and solutions

We start by considering a solid particle of any given shape, 
at a position denoted by the reference point rp = (xp, yp, zp), 
e.g. the center of mass, in a Hele-Shaw cell, as illustrated in 
figure  1. This particle may for instance be produced using 
‘continuous flow lithography’ [17]. Here, we will use the typ-
ical dimensions that appeared in the experiments described 
in our previous work [18]. The symmetry and strong confine-
ment in the z-direction restrict the motion of the particle to the  
xy-plane (i.e. zp  =  0). Moreover, the small height H of the 
microfluidic device, H ≈ 30 µm, combined with the typ-
ical fluid flow velocity (U0 ≈ 50 µm s−1) and viscosity 
(η = 55 × 10−3 Pa s), imply that the Reynolds number is of 
the order 10−4 [15]. As a result, the fluid flow may be described 
by either the Stokes equation [21–25] or the Brinkman equa-
tion  [26, 27], both of which are supplemented with no-slip 
boundary conditions on the (moving) particle surface and 
(stationary) sidewalls, while the flow at the in- and outlet 
(far away from the particle) must comply with the externally 
imposed Hele-Shaw flow U0 = 3

2 (1 − 4z2/H2)U0x̂ in the 
three-dimensional (Stokes) description, or U0 = U0x̂ in the 
z-averaged two-dimensional Brinkman description.

Due to the linearity of the Stokes and Brinkman equations, 
and the overdamped nature of the particle motion and the 
absence of external forces, one can show [18] that the par-
ticle velocity Up and angular velocity ωp obey the equations of 
motion

(
F
T

)
= −ηR

(
Up

ωp

)
+

(
F0

T0

)
=

(
0
0

)
, (1)

where F = (Fx, Fy) and T  =  Tz denote the total hydrodynamic 
force and (the z-component of the) torque on the particle, F0 
and T0 denote the force and torque on the particle when it is 
held fixed subject to the externally imposed flow, and R is a 
symmetric 3 × 3 resistance tensor. As we have shown in [18], 
these quantities, and from them the force- and torque-free 
velocity and angular velocity, may be determined numerically 

from solutions to either the Stokes or the Brinkman equation, 
albeit with an extra term that accounts for the friction from the 
top and bottom plate in the latter case. However, the structure 
of the equation of motion (1) is identical for both formalisms, 
and so are the results.

The second term of the right-hand side of equation  (1) 
describes the force and torque on the particle when it is held 
stationary in the channel, subject to the external flow U0. 
Invoking the argument of linearity, we derive that this term 
must be linear in the external flow U0:


F0,x

F0,y

T0


 = ηR0

(
U0,x

U0,y

)
, (2)

where R0 is a 3 × 2 tensor. Note that in the channel frame, 
we only consider a uniform external flow U0 = (U0, 0), but in 
the analysis below we also wish to use the particle coordinate 
frame, which is related to the channel frame by a rotation, 
such that the external flow may have both components non-
zero. With this definition of R0, the diagonal elements of R0 
are positive, while the sign of the off-diagonal may depend on 
the particle geometry and choice of particle coordinate frame.

2.1. Explicit equations of motion and solutions

Let us explicitly write out the general equations  of motion 
for a particle moving in the channel, equation (1). First, we 
assume that we have (numerically) determined the (comp-
onents of the) resistance tensors R(= Rf +Rw) and R0 
described above, in some fixed coordinate system x′, y′ rela-
tive to the particle, either from the 3D or the quasi-2D descrip-
tion. Furthermore, let us assume that the particle is oriented 
with an angle θ with respect to the external background flow 
U0x̂, i.e. the coordinates x′, y′ differ from the lab coordinates 
x, y by a rotation over angle θ, as illustrated in figure 1. Lastly, 
we assume that the particle is in the center of the channel 
(y  =  0), such that we can ignore any hydrodynamic interac-
tions with the side walls for the moment.

Then, we can explicitly write out the equations of motion 
(1) (see equation (A.2) in the appendix), which can be solved 
to obtain the velocities Up,x, Up,y and ωp. The equation for θ, 
with ωp ≡ θ̇ , has the form

Figure 1. Geometry of a particle in a Hele-Shaw channel (top 
view). The lab or channel frame coordinates are denoted x, y, such 
that the external flow is given by U0 = U0x̂. The particle frame is 
oriented at an angle θ with respect to the channel frame and has 
coordinates x′, y′.

J. Phys.: Condens. Matter 30 (2018) 224002
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θ̇ =
1
τ1

sin θ +
1
τ2

cos θ, (3)

where the timescales τ1 and τ2 are determined completely in 
terms of the components of R and R0 in the appendix. Note 
that these τi may be negative. We can write the linear combi-
nation of sine and cosine in equation (3) as a single sine with 
a phase shift, Δ,

θ̇ =

√
τ−2

1 + τ−2
2 sin(θ +∆), (4)

where the phase shift Δ is given by

∆ = arg(1/τ1 + i/τ2). (5)

Equation (4) is solved by

θ(t) = −∆+ 2 arctan
[
tan

(
θ0 +∆

2

)
exp(t

√
τ−2

1 + τ−2
2 )

]
,

 (6)
where θ0 = θ(0) is the initial orientation, see appendix. 
Recalling that limx→±∞ arctan = ±π/2, we find the long-
time asymptotic solutions

lim
t→∞

θ(t) = −∆± π, (7)

where the two solutions (±) represent the same physical 
stationary orientation. In fact, θ = −∆ is another stationary 
solution of equation  (4), which corresponds, however, to an 
unstable state.

To proceed, we solve equation  (A.2) for the transversal 
velocity Up,y ≡ ẏ, which is written as

ẏ
H

=
1
τy,1

sin2 θ +
1
τy,2

sin θ cos θ +
1
τy,3

cos2 θ, (8)

where explicit expressions for the timescales τy,i(i = 1, 2, 3) 
in terms of the components of R and R0 are again given in 
the appendix. Given the solution (6), we can integrate equa-
tion (8) to find y(t). Although this procedure does lead to a 
closed expression for the solution y(t), this solution is too 
lengthy in general to provide us further insight at this point. 
However, we do observe from the asymptotic long-time limit 
of the solution (6) that we may find an asymptotic velocity 
limt→∞ Up,y(t) = U∞

p,y �= 0 in general, such that the particle 

persists in moving at an angle with respect to the external 
flow. It will therefore always enter a regime where side-wall 
effects (y ∼ ±W/2) begin to play a role.

The main conclusion we can draw from this analysis is that 
any particle for which τ−1

1  and τ−1
2  are not both zero, will 

orient asymptotically towards a stable orientation determined 
by the two timescales. Below, we will consider situations 
where we take the limit of one or both τi → ∞.

3. Mirror symmetric particles

The dumbbell particles described by Uspal et al [15] and our 
work [18] possess an additional symmetry apart from the  
xy-symmetry, namely, the plane spanned by the axis con-
necting the centers of the two disks and the z-axis. In an 
unbounded fluid, the existence of this symmetry plane forces 
certain elements of the resistance tensor to be zero [22]:

R12 = R21 = R13 = R31 = 0. (9)

This is understood as follows. Let us assume that a nonzero 
particle velocity Ux in the x-direction would generate a non-
zero frictional force Fy in the y-direction. This system is 
invariant under a reflection in the x-axis, however, Fy → −Fy  
under this reflection, as illustrated in figure  2. Hence, this 
force Fy  =  0 and we must conclude that Rf ,12 = R12 = 0.

Note that this symmetry argument assumes that the fluid 
around the particle is unbounded, which is only accurate if the 
particle is far enough from the side walls, as is for instance the 
case for the reorienting motion that is described in [15] and 
[18] and below in section 5. Finally, we can repeat this sym-
metry argument to find that

R0,12 = R0,21 = R0,31 = 0. (10)
To proceed, we assume as before that the particle has an 

orientation θ with respect to the external background flow, as 
illustrated for the symmetric trimer particle in figure 3. Then, 
we choose an orthogonal coordinate system x′, y′ such that the 
x′ axis coincides with the symmetry line of the particle.

After imposing the symmetry constraints equations (9) and 
(10) on the resistance tensors, we can again solve equation (1) 
to obtain the particle velocities. For the angular equation, 
again with ωp ≡ θ̇ , we find

Figure 2. The system of a mirror-symmetric particle (dumbbell) translating in the x-direction. This system is invariant under reflection in 
the x-axis, while a non-zero force Fy in the y-direction is mapped to  −Fy under this reflection. Hence Fy  =  0.

J. Phys.: Condens. Matter 30 (2018) 224002
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θ̇ =
1
τ
sin θ, with (11)

τ−1 = U0
R0,22R23 − R0,23R22

R22R33 − R2
23

. (12)

Alternatively, one may obtain this equation directly from (3) 
by setting the appropriate components of R(= Rf +Rw) and 
R0 to zero, which in turn sets 1/τ2 = 0. In that case, equa-
tion (5) implies ∆ = 0 ∨∆ = π, depending on the sign of τ. 
Interestingly, equation  (11) is exactly the same equation  of 
motion for the orientation of a dumbbell as derived in [15] 
based on the simplification that considers only the two disks. 
Here, it is derived in full generality and is shown to hold for 
any mirror symmetric particle in the channel!

We should point out that the sign of τ depends on the 
choice of coordinates and origin. For instance, for the dimer 
particles described below, the origin was chosen in the center 
of the larger disk, and the equation of motion showed a nega-
tive τ. Should we have chosen to set the origin in the center of 
the smaller disk for instance, then the off-diagonal terms in R 
and R0 will change sign, such that τ becomes positive, leading 
to an asymptotic orientation θ = π, which now corresponds to 
the larger disk behind, as one would expect.

Equation (11) can be solved to give

θ(t) = 2 arctan
[
tan(θ0/2)et/τ

]
, (13)

which can be obtained from equation  (6) by setting ∆ = 0 
or ∆ = π, depending on the sign of τ. As before, θ0 = θ(0) 
denotes the initial orientation at time t  =  0. Furthermore, we 
can solve for the velocity in the y-direction:

Up,y = U0 cos θ sin θ

× R0,23R11R23 − R0,22R11R33 + R0,11(R22R33 − R2
23)

R11(R22R33 − R2
23)

,

 (14)
which we may write, with Up,y = ẏ, as

ẏ
H

=
Up,y

H
=

1
τy

sin 2θ. (15)

Given the solution (13), we can integrate equation (15) to find

y(t)
H

=
2τ sin θ0

τy

(
1

cosh(t/τ) + sinh(t/τ) cos θ0
− 1

)
,

 (16)
where we assumed the initial position to be y(0) = 0. Details 
are given in the appendix.

3.1. Asymptotic behaviour, zeros and critical points

From (13) we can investigate the asymptotic orientation 
of mirror-symmetric particles by taking the limit t → ∞. 
Depending on the sign of τ (which depends on the particle 
geometry), we find

lim
t→∞

θ(t) = 0 ∨ π, (17)

which is in agreement with setting θ̇ = 0 in (11). The asymp-
totic y-position is easily seen to be y/H = −2τ sin θ0/τy . 
Also, by finding the roots of the solution (16), we can deter-
mine where the particle crosses the x-axis, which occurs at time 
t/τ = 0 (since we set y(0) = 0 as mentioned below solution 
(16)), or at tc/τ = log 1−cos θ0

1+cos θ0
, if |θ0| > π/2. Furthermore, 

for |θ0| > π/2, we can derive that the particle reaches the 

maximum transversal amplitude y(tm/τ) = 2τ
τy

(1 − sin θ0) 

at time tm = tc/2. Note that this precisely corresponds to 
θ(tm) = π/2, which is easily seen from equation (15) as the 
right-hand-side changes sign for θ = π/2. Details of these 
derivations are given in the appendix.

These results show that the motion of mirror-symmetric 
particles is completely characterised by the initial orientation 
θ0  and the time scales τ and τy, which in turn are determined 
by the particle geometry. The analytical solutions provide us a 
recipe to directly tune the particle trajectories by varying these 
geometric parameters or initial conditions.

4. Particles with two symmetry axes

Finally, we consider the case that the particle has yet another 
axis of mirror symmetry which is perpendicular to the sym-
metry axis described above. For convenience, we take this 
axis to be the y′ axis in the particle frame, and choose the 
origin in the intersection of these two axes. Using the same 
arguments based on mirror symmetry as before [22], we find 
that R is diagonal in this case. Similar arguments then give 
us that R0,32 = 0. Writing down equation (1) explicitly again 
and solving for the angular velocity, we find that the rotational 
motion completely decouples from the translation, as we find 
θ̇ = ωp = 0, since the off-diagonal resistance components 
vanish. Alternatively, one can obtain this from (11) by set-
ting the appropriate components of R to zero, to find 1/τ = 0. 
Hence, the particle will not rotate at all and every orientation 
is stable. Interestingly, the particle will still move in the trans-
versal direction, as this velocity is solved by

ẏ = Up,y = U0
R0,11R22 − R0,22R11

R11R22
cos θ sin θ. (18)

Figure 3. Geometry of a mirror symmetric particle, here a trimer 
or trumbbell, in a Hele-Shaw channel. As before, the lab or channel 
frame coordinates are denoted x, y, such that the external flow is 
given by U0 = U0x̂. The particle frame is oriented at an angle θ 
with respect to the channel frame and has coordinates x′, y′.

J. Phys.: Condens. Matter 30 (2018) 224002
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Hence, for θ �= kπ/2 with integer k, we find that the particle 
moves transversely. Examples of shapes with two axes of 
symmetries are rods or the symmetric dumbbells considered 
by Uspal et al [15]. They observed indeed that the symmetric 
dumbbells move transversely in the channel without rotating. 
This motion is continued until the dumbbells are reflected by 
the side walls (that are not incorporated in this analysis).

Note that if the particle has fourfold symmetry, i.e. the 
shape is invariant under a rotation by π/2, then this will force 
R11 = R22 and R0,11 = R0,22, setting Up,y  =  0. In other words, 
the transversal motion in (18) is directly related to the mis-
match in resistance coefficients: R11 �= R22, a remark often 
made in the literature, in the context of slender-body theory 
and in the description of (for instance) sedimentation of rod-
like particles [23].

5. Comparison with numerical results

After having established the analytical results of sections  2 
and 3, we now compare these to numerical and experimental 
data. The agreement or disagreement of our analytical results 
with the numerically obtained trajectories will provide us 
information about the assumptions we made in the derivations 
above, such as ignoring the influence from the side walls.

Below, we will stick to the experimental dimensions of 
[15] as much as possible. Specifically, the channel height 
H = 30 µm is taken as a unit of length; the experimental 
channel width W = 500 µm is therefore set at W/H  =  16.67, 
unless specifically mentioned otherwise. The particle height 
corresponds to a gap h/H  =  0.06 between the particle and top 
and bottom wall. Moreover, we consider composite particles 
consisting of disks or other shapes, of typical size Ri (usually 
disk radius), connected by cuboid parts of length s/H  =  2.09 
and width w/H  =  0.456. The size ratios Ri/Rj will be varied 
below, while the smallest size is fixed at Ri/H  =  0.625 (the 
choice of i depends on the specific particle geometry, as will 
become clear below).

5.1. Mirror symmetric particles

We have considered a large variety of mirror symmetric shapes 
that can be fabricated with continuous flow lithography. 
Specially, next to the earlier-considered dimers of disks with 
different radii, we have investigated the behavior of dimers 
consisting of triangles and squares, of different aspect ratios 
R1/R2, where these radii refer to the radii of circumscribed 
disks. Also, we have investigated trimer (or trumbbell) parti-
cles, consisting of three connected disks of similar dimensions 
as the earlier considered dumbbells, where the middle disk 
has a larger radius R2 > R1 = R3, as illustrated in figure  3. 
The angle between the two legs is denoted by φ, as shown in 
figure 8.

The mirror symmetric shapes described here all have in 
common that one of the parts of the dimer, or the middle disk 
of the trimer, is larger than the other part. Choosing the origin 
of the particle frame in the center of the larger part (as we have 
done before in the case of the disk dimers), it is easy to see 

that the nonzero off-diagonal elements of R must be negative: 
translation in the positive y-direction will generate a positive 
torque (corresponding to a counterclockwise rotation) and 
vice versa. Similarly, an external flow in the y-direction (in the 
particle frame) will generate a negative torque (hence clock-
wise rotation). Taking this together, we conclude that all these 
shapes obey equation (11) with a negative sign, such that they 
orient in the external flow with the larger part behind. Hence, 
all these shapes will show a qualitatively identical trajectory, 
fully characterized by the geometry-dependent timescale τ 
that is to be determined numerically. In figure 4, we illustrate 
this point by showing snapshots of the reorienting motion of 
different shapes with different size ratios at different times 
t/τ . We show:

 (a)  a dimer of squares with aligned edges (which we define 
as type I) and R1/R2 = 1.25, at t/τ = 0; 

 (b)  a dimer of squares with aligned diagonals (def. type II) 
and R1/R2 = 1.5), at t/τ = 1; 

 (c)  a dimer of triangles with aligned edges (def. type I) and 
R1/R2 = 1.75, at t/τ = 2; 

 (d)  a dimer of triangles with the triangles pointing towards 
each other (def. type II) and R1/R2 = 2.0, at t/τ = 3; 

 (e)  a trimer of disks with R1/R2 = R3/R2 = 1.5 and φ = 50◦ 
at t/τ = 4; and

 (f)  a dimer of disks with R1/R2 = 3.0, at t/τ = 5.

Around the particles, we show in figure  4 isobars of the 
disturbance pressure field p  −  p0(x) created by the particle, 
with p0 the pressure field corresponding to an undisturbed 
external flow U0 in the channel, i.e. p0(x) = (x − L/2)∇p, 
−L/2  <  x  <  L/2, with L the length of the channel, such that 
U0 = −H2∇p/(12η).

In figure  5, we plot the orientation θ as a function of 
rescaled time t/τ , for the different shapes illustrated in 
figure 4. Indeed, we clearly observe that the angular motion 
is perfectly described by the solution (13), as all the data col-
lapse on the analytical curve once time is rescaled by τ (which 
differs for each shape). Moreover, we compare our analytical 
results for the motion in the y-direction with the numerically 
obtained trajectories in figure 6, where we rescaled the posi-
tion by a factor τy/τ , and find that the data collapse on the 
analytical solution. In particular, this confirms that our ana-
lytical results for the time and height of the maximum and 
the time for which y  =  0 are correct. We observe that initially, 
the particles move in the direction opposite to their final posi-
tion: ẏ(t < tm) > 0, while ẏ(t > tm) < 0, as was already 
noted in section  3.1. We can compare this qualitatively to 
the sedimenting rod example, mentioned in section 4, which 
moves upwards when π/2 < θ < π , and downwards when 
0 < θ < π/2. As an example, an animation of the motion of 
a triangle trimer can be found in the supplementary material 
(stacks.iop.org/JPhysCM/30/224002/mmedia).

At a later stage of the trajectory (t > 5τ ), we see a devia-
tion from the analytical curve that is caused by hydrodynamic 
interactions with the sidewall of the channel. This effect is 
more pronounced for R1/R2 = 1.25, since this shape moves 
further from the channel center and closer to the sidewall, as 
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can be see in the inset of figure 6, where we show the position 
y relative to the channel width W, as a function of time.

Next, we investigate the dependence of the solutions (13) 
and (16) on the initial angle θ0 . The results are shown in 
figure 7, where we show the orientation θ (figure 7(a)) and 
the y-position (figure 7(b)) as a function of time, for a disk 
dimer with R1/R2 = 2.0. The data points are obtained by 
numerical integration of equation (1), while the analytic solu-
tions are shown by the solid lines. We observe perfect agree-
ment between the two results. Only for later times, we observe 
again that the interaction with the side walls will push the par-
ticle slowly towards the center of the channel (y  =  0).

Interestingly, we can influence the direction and magnitude 
of the y-motion by varying the particle shape. Specifically, for 

the symmetric trimers, we find that the timescale τy can change 
sign when the angle φ between the legs is varied. In figure 8, 
we show the timescales τ (red) en τy (blue) as a function of 
φ, for a trimer particle consisting of three disks with ratios 
R2/R3 = R2/R1 = 1.5, R2 being the ratio of the larger middle 
disk. Figure 8 shows that τy is discontinuous and changes sign 
around φ = 60◦. This can also be seen in figure 9, where the 
y-position as a function of time t is shown, for trimers with 
different opening angles φ. We observe that for φ < 60◦, the 
particles first move in the positive y-direction to a maximum 

y(tm)/H = 2τ
τy

(1 − sin θ0) > 0 at tm/τ = 1
2 log

1−cos θ0
1+cos θ0

, as 
determined above, and subsequently cross y  =  0 to reach 
an asymptotic position y = −τ/τy < 0. For φ > 60◦, this 
motion is precisely reversed: y(tm)  <  0 and an asymptotic 

Figure 4. Snapshots of isobars of the disturbance pressure field around different mirror symmetric particles in the micro-fluidic channel, 
all performing a qualitatively similar reorienting motion. Shown are (a) a dimer consisting of: two squares with one edge parallel and 
R1/R2 = 1.25 at t/τ = 0, (b) two squares with diagonals parallel and R1/R2 = 1.5 at t/τ = 1, (c) two triangles with one edge parallel and 
R1/R2 = 1.75 at t/τ = 2, (d) two triangles pointing towards each other with R1/R2 = 2.0 at t/τ = 3. Here, the radii correspond to the 
radius of a circumscribed disk. Moreover, we show (e) a trimer with R1/R2 = R3/R2 = 1.5 and opening angle φ = 50◦ at t/τ = 4, and (f) 
a dumbbell with R1/R2 = 3.0 at t/τ = 5.
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position y/H = τ/τy > 0. For φ = 60◦, we observe almost 
no transversal motion, consistent with τ−1

y ≈ 0. In the inset 
of figure 9, we show the position y rescaled by τ/τy, for the 
trimers with different opening angles (φ = 60◦ excluded), and 
observe that the data collapse on the analytical solution (16). 
Finally, we point out again that we observe that interactions 
with the side walls will eventually push the particles towards 
the center of the channel.

5.2. Broken mirror symmetry

All particle shapes we have considered so far possess a mirror 
symmetry, which forces them to a stable orientation of θ = 0 
or θ = π and a terminal velocity that is parallel to the external 
flow, albeit with a slow motion in the direction of the center 
of the channel due to the interaction with the side walls. This 
means that if we are interested in steering the particles away 
from the center, we should break the mirror-symmetry. In this 
section, we break the mirror symmetry in a controlled fashion 
by considering asymmetric trimer particles, in which the disk 
at one of the legs is larger than the other. To be specific, we fix 
R2/R3 = 2.0 and φ = 50◦ and vary R1/R3. With R2 > R1, R3, 
we still expect the particle to orient with the larger disk behind, 
but since R1 > R3 we will have 1/τ2 �= 0, which implies (as 
is seen from equation  (6)) that θ(→ ∞) �= 0. We point out 
that for shapes with R1/R3 > 1.8, a small area (of fluid) is 
enclosed between the three disks of the dimer, which leads to 
instabilities in our numerical calculations. Therefore, we will 
only consider shapes with 1 < R1/R3 � 1.8 for now.

In order to compare with our analytical solutions, we first 
consider the case without side wall interactions, i.e. we make 
the channel very large compared to the particle by setting 
W/H  =  200. In figure 10, we show the orientation θ as a func-
tion of time, for the different trimer shapes. The data points 
indicate the numerically solved trajectories from equation (1), 
and the solid lines show the analytical solution, with the time-
scales τ1 and τ2 obtained numerically from equation (3). We 
observe perfect agreement between the two results. Moreover, 
we clearly observe that for increasing R1/R3, the asymptotic 
orientation θ(t → ∞) increases and deviates from 0, as is also 
shown in the inset of figure 10.

In turn, the non-zero angle in the long-time limit has an 
effect on the transversal motion, which is shown in figure 11 for 
the trimer particles. Initially, the particles show motion quali-
tatively similar to the mirror-symmetric case, with a positive 
peak ym  >  0 and crossing y  =  0 at some later time. However, 
rather than a constant asymptotic position, the particles attain 
a negative asymptotic velocity such that y(t → ∞) = −∞ in 
the case where W → ∞. Even without knowing all three τy,i  in 
equation (8), we can already gain some insight by comparing 
with the mirror-symmetric case. The fact that we have a max-
imum y(tm)  >  0 implies that τy,2 < 0 and either τy,1, τy,3 < 0 
or |τy,1|, |τy,3| < |τy,2|. Then, as θ(t → ∞) > 0, we find that 
Up,y(t → ∞) < 0.

These results change when the side wall interactions are 
taken into account. In figure 12, we show the orientation of 
trimer particles with different R1/R3, with the original channel 

dimensions (W/H  =  16.7). Let us first discuss the shapes with 
1 � R1/R3 � 1.6. For these shapes we find that, initially, the 
reorientation is correctly described by the analytical solu-
tions, although a deviation occurs due to sidewall effects. 
Specifically, we observe that the long-time limit of θ is nega-
tive for each particle (except for the symmetric particle with 
R1/R3 = 1.0), whereas we expect a positive asymptotic orien-
tation from the analytic solutions. Recall that the fluid moves 
slower close to the no-slip side-walls, leading to a clockwise 
rotation when the particle is close to the lower side wall at 
y  =  −W/2. Thus, we observe that a competition between the 
shape-determined asymptotic orientation (which is positive) 
and the side-wall effects (rotating the particle clockwise), 
leads to a stable orientation, which is negative.

Figure 5. Orientation θ as a function of rescaled time t/τ , 
for the different shapes illustrated in figure 4, all starting with 
θ(0) = 5π/6.

Figure 6. The transversal trajectories y(t), rescaled by the 
two geometry-dependent timescales τ/τy, that appear in the 
equations (11) and (15), for disk dimers of varying shape parameter 
R̃ = R1/R2. In the inset we show another scaling of the y-position 
in units of the channel width W, as a function of time.
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For R1/R3 � 1.65, the interactions with the side walls lead 
to very different (and complicated) trajectories. Initially, we see 
that the particles reorient according to the analytical solution, 
as is also observed in the inset of figure 12, where we show an 
enlarged plot of the θ(t) data for 0  <  tU0/H  <  400. However, 
at a later time (tU0/H ≈ 300), the particle moves very close 
to the upper side wall at y  =  W/2 (see also figure 13), causing 
the particle to reverse its rotation. The no-slip boundary con-
dition on the side wall, u(y = W/2) = 0, forces the fluid 
velocity to be low near this side wall, while the fluid velocity 
away from the side wall is much larger, naturally leading to a 
rapid counterclockwise rotation of the particle near this side 

Figure 7. The orientation θ (a) and y-coordinate (b) as a function of 
time t/τ , for a disk dimer particle with R1/R2 = 2.0, for different 
initial angles θ0 . The points show the numerically integrated 
trajectories, while the solid lines show the analytical solutions. In 
all cases, y(0) = 0.

Figure 8. The timescales τy (blue) and τ (red) as a function of the 
angle φ between the legs of the trimer, with R2/R1 = R2/R3 = 1.5.

Figure 9. The transversal position y (in units of the channel width 
W), as a function of time t/τ , for trimers of varying opening angle 
φ, starting at y(0) = 0 and θ(0) = 5π/6. In the inset we show y(t) 
(φ = 60◦ excluded) but rescaled by Hτ/τy.

Figure 10. The orientation θ as a function of time t, for trimer 
particles with R2/R3 = 2.0, φ = 50◦ and varying R1/R3. The initial 
orientation is θ0 = 5π/6. The points show the numerically obtained 
trajectories and the solid lines show the analytical solutions. Here, 
the channel side walls are placed at y = ±W/2 = ±100H . The 
inset shows the long-time limit orientation θ∞ = θ(t → ∞).

Figure 11. The transversal position y as a function of time t, for 
trimer particles with R2/R3 = 2.0, φ = 50 degrees and varying 
R1/R3. The initial orientation is θ0 = 5π/6 and the initial 
position is y(0) = 0. Here, the channel side walls are placed at 
y = ±W/2 = ±100H .
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wall. Subsequently, for the shapes with 1.65 � R1/R3 � 1.75 
we observe a slower reorientation determined by a compli-
cated interplay of their shape-determined reorientation and 
the side-wall interactions. In the long-time limit, these shapes 
reach a negative stationary stable orientation, similar to the 
shapes R1/R3 � 1.6. The trajectory of R1/R3 = 1.8 is even 
more complicated, as another rapid reorientation (clock-
wise) is observed at tU0/H ≈ 800. Subsequently, the particle 
qualitatively performs the reorienting motion as dictated by 
its shape, after which another encounter with the side wall 

at y  =  −W/2 at tU0/H ≈ 2000 rotates the particle clockwise 
(see also figure 13).

In figure 13, we show the transversal position y as a function 
of t for the different trimer particles, again for W/H  =  16.7. 
For 1.2 � R1/R3 � 1.6, we clearly observe that the particles 
move to the lower half of the channel (y  <  0) at later times 
(t  >  tc, in the notation of section 3.1). This is consistent with 
our findings without the effects from the side walls, as shown 
in figure  11. However, in the long-time limit, the particles 
move parallel to the side wall. Clearly, a competition between 
the effects of a negative transversal velocity once the stable 
orientation is attained, and the repulsive hydrodynamic inter-
action with the sidewalls, forces the particles to move at a fixed 
distance from the side walls. This is also true for the particles 
with 1.65 � R1/R3 � 1.75, for which we observe a stable 
position in the long-time limit, after a period of oscillating 
motion due to the interplay between the shape-determined 
motion and side-wall effects. For R1/R3 = 1.8, we observe 
even more oscillations, as the particle moves very close to 
the side walls at times tU0/H ≈ 300, 800 and 2000, where a 
rapid counterclockwise reorienting motion takes place as we 
observed in figure 12. Due to this reorientation, the particle 
acquires a large transversal velocity, such that it moves to the 
other side wall where another reorientation takes place. This 
motion is in fact very similar to the oscillating motion of the 
symmetric dumbbell particles discussed in [15], which do 
not rotate due to shape, but do acquire a transversal velocity 
(see section  4). However, after a long time tU0/H ≈ 6000 
(not shown) also this shape attains a stable orientation and  
y-position. This is shown more clearly in figure  14, where 
we show the particle trajectory in the (θ, y) phase space, 
where time is running along the curves as indicated by the 
arrows. There, we clearly see that all shapes with R1/R3 > 1 
will move to a stable position y ≈ −0.3W  at a slightly nega-
tive angle in the long-time limit, while the symmetric trimer 

Figure 12. The orientation θ as a function of time t, for trimer 
particles of varying size ratio R1/R3, with R2/R3 = 2.0 and 
φ = 50◦, for a channel width W/H  =  16.7 (that matches the 
experiments of [15]). Here, θ(0) = 5π/6 and y(0) = 0. The points 
show the numerically obtained particle trajectories, the solid lines 
show the analytical solutions. In the inset, the numerical and 
analytical curves of θ(t) are enlarged for 0  <  tU0/H  <  400, for the 
trimers with R1/R3 � 1.6.

Figure 13. The transversal position y as a function of time t, for 
trimer particles of varying size ratio R1/R3, with R2/R3 = 2.0 and 
φ = 50◦ and channel width of W/H  =  16.7. The data is obtained 
from numerically solving the particle trajectories. As before, 
θ(0) = 5π/6 and y(0) = 0.

Figure 14. Particle trajectories in the (θ, y) phase space, where 
the direction of time is indicated by the arrows, for trimer particles 
with R2 = 2R3 = 2H  and varying 1 � R1/R3 � 1.8. Initially, 
θ(0) = 5π/6 and y(0) = 0 for every trimer particle.

J. Phys.: Condens. Matter 30 (2018) 224002



B Bet et al

10

(R1 = R3) attains a limit orientation θ ≈ 0 and a y-position 
close to the center at y  =  0. Animations of the motion of a few 
of these trimer particles can be found in the supplementary 
material.

Thus, we have observed that the presence of side walls 
strongly affects the motion for these asymmetric particles. 
However, our analytical solutions can still provide a qualitative 
prediction of the motion: the particles with 1 < R1/R3 � 1.8 
will all move to the lower half of the channel (y  <  0), con-
sistent with the analysis without side walls. In fact, when we 
consider particles with R3 > R1, our previous analysis imme-
diately gives us that the trajectories will be the mirror image 
of figure 13: these particles will move towards y  >  0, in which 
case the side wall interaction will lead them to move parallel 
and close to the upper side wall (at y  =  W/2). We summarize 
these conclusions in a ‘state diagram’ in figure 15, which, with 
the goal of engineering trajectories in mind, can be read a set 
of preliminary ‘design rules’. There, the black lines indicate 
symmetric particles with R1 = R2 (symmetric dimers), R1  =  0 
or R3  =  0 (symmetric dimers) that move to the center of the 
channel, while the red and blue areas indicate shapes with 
a long-time y-position that is close to the lower (y  =  −W/2) 
and upper (y  =  W/2) boundary, respectively. More research is 
needed to complete this diagram in the future.

6. Summary and outlook

We have derived analytical solutions to the equation of motion 
of general particles that undergo strongly confined quasi-2D 
motion in Hele-Shaw cells. Making use of symmetry argu-
ments, these equations were simplified and the angular differ-
ential equation from [15] is recovered, not only for dimers of 
disks but in fact even for any particle with a mirror symmetry. 
Our analytical solutions were compared extensively with 
the numerically obtained trajectories, and excellent agree-
ment between these results was found. With these analytical 
results, we are able to fully predict the particle trajectories 
of any mirror-symmetric shaped particle, by only determining 

the two geometry-dependent time-scales τ and τy that follow 
from the resistance tensor. For non-symmetric shapes, we also 
found excellent agreement, where we found that asymmetric 
trimers will assume a terminal velocity at an angle with respect 
to the external flow. For these particles, the interactions with 
the side walls become important eventually, as this forces the 
particles (for certain disk size ratios R1/R3) to move parallel 
to the sidewalls at an orientation that differs from the analyti-
cally predicted value.

These results provide a further step towards engineering the 
particle motion in confined geometries. Our analytical results 
allow us to determine the particle trajectories by only calcu-
lating a few geometry-dependent quantities from numerical 
solutions of the Stokes (or Brinkman) equation. This in turn 
opens the door towards further tailoring the particle trajecto-
ries to any given demand or design by making use of optim-
isation schemes, e.g. genetic optimization algorithms [28].

In future research, it will be very interesting to further 
investigate the interaction with the sidewalls. Specifically, we 
could further investigate the dependence of the strength of the 
side wall interaction on the particle geometry, and for which 
particle geometries this is possible completing the state dia-
gram in figure 15. In this way, we hope to discover a mech-
anism to engineer the asymptotic y-position of the particles 
in the channel, by further tuning the particle geometry, and 
thus making a step forward in designing self-steering parti-
cles. Moreover, comparison of our analysis and results with 
experiments is being pursued at the moment.
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Appendix. Detailed derivations

In this appendix, we present some of the explicit solutions and 
calculations.

A.1. Explicit derivation of the equation of motion  
and expressions for the timescales

We can explicitly write out the equations of motion (1) as



0
0
0


 = −




R11 R12 R13

R12 R22 R23

R13 R23 R33







U′
p,x

U′
p,y

ωp




+




R0,11 R0,12

R0,21 R0,22

R0,31 R0,32




(
U′

0,x

U′
0,y

)

 (A.1)

Figure 15. State diagram of the long-time y-position of trimer 
particles, consisting of three disks with radii Ri (R2 corresponding 
to the middle disk) . The black lines indicate symmetric particles 
with R1 = R2 (symmetric trimers) and R1  =  0 or R3  =  0 (dimers), 
which move to the center of the channel. The red triangle indicates 
shapes that have a long-time y-position close to the lower boundary 
at y  =  −W/2, the blue triangle indicates shapes with a long-time y-
position close to the upper boundary at y  =  W/2.
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= −




R11 R12 R13

R12 R22 R23

R13 R23 R33







Up,x cos θ + Up,y sin θ

−Up,x sin θ + Up,y cos θ

ωp




+




R0,11 R0,12

R0,21 R0,22

R0,31 R0,32




(
U0 cos θ

−U0 sin θ

)
,

 

(A.2)

where the primed and unprimed velocities are with respect to 
the particle and channel frame coordinates, respectively. We 
solve this linear equation to obtain the velocities Up,x, Up,y and 
ωp. Solving this equation for ωp ≡ θ̇ , gives

θ̇ =
1
τ1

sin θ +
1
τ2

cos θ, (A.3)

where the timescales τ1 and τ2 are given by

τ−1
1 = U0

(
− R0,32R2

12 + R0,22R12R13 + R0,32R11R22

− R0,12R13R22 − R0,22R11R23 + R0,12R12R23

)

×
(

R2
13R22 − 2R12R13R23 + R2

12R33 + R11(R2
23 − R22R33)

)−1

,

 (A.4)

τ−1
2 = U0

(
− R0,21R12R13 + R0,11R13R22 + R0,31R2

12

− R0,31R11R22 + R0,21R11R23 − R0,11R12R23

)

×
(

R2
13R22 − 2R12R13R23 + R2

12R33 + R11(R2
23 − R22R33)

)−1

.

 (A.5)
Next, we solve equation (A.2) for the transversal velocity 

Up,y ≡ ẏ, which results in

ẏ
H

=
1
τy,1

sin2 θ +
1
τy,2

sin θ cos θ +
1
τy,3

cos2 θ, (A.6)

with timescales τy,i(i = 1, 2, 3) given by

τy,1 = U0C−1
{
− R0,32R13R22 + R0,32R12R23 + R0,22R13R23

− R0,12R2
23 − R0,22R12R33 + R0,12R22R33

}
,

 

(A.7)

τy,2 = U0C−1
{

R0,32R12R13 − R0,22R2
13 + R0,31R13R22

− R0,32R11R23 − R0,31R12R23 + R0,12R13R23

− R0,21R13R23 + R0,11R2
23 + R0,22R11R33

− R0,12R12R33 + R0,21R12R33 − R0,11R22R33

}
,

 

(A.8)

τy,3 = U0C−1
{
− R0,31R12R13 + R0,21R2

13 + R0,31R11R23

− R0,11R13R23 − R0,21R11R33 + R0,11R12R33

}
,

 (A.9)

C =

(
R2

13R22 − 2R12R13R23 + R2
12R33 + R11(R2

23 − R22R33)

)
.

 (A.10)

A.2. Analytic solution of the angular equation

In this section, we derive the analytical solution (6) of equa-
tion (4). We can separate the variables to find
√(

1
τ1

)2

+

(
1
τ2

)2 ∫ t

0
dt′ =

√(
1
τ1

)2

+

(
1
τ2

)2

t (A.11)

=

∫ θ

θ0

dθ′

sin(θ′ +∆)
=

∫ θ+∆

θ0+∆

dθ′′

sin θ′′
. (A.12)

Next, we use the famous tangent half-angle substitution, 
x = tan(θ/2), which allows us to write the Jacobian and the 
trigonometric functions as

dθ =
2dx

1 + x2 , sin θ =
2x

1 + x2 , cos θ =
1 − x2

1 + x2 . (A.13)

Plugging this in, we find
√(

1
τ1

)2

+

(
1
τ2

)2

t =
∫ x

x0

dx′

x
= log x − log x0 (A.14)

= log tan
θ +∆

2
− log tan

θ0 +∆

2
. (A.15)

We invert this relation to find

θ(t) = −∆+ 2 arctan
[
tan

(
θ0 +∆

2

)
exp

(
t
√
τ−2

1 + τ−2
2

)]
.

 
(A.16)

A.3. Integration and further analysis of the transversal motion 
in the mirror symmetric case

Knowing the solution (A.16) for θ, we can proceed to solve 
equation (15) for the transversal motion:

ẏ/H =
−1
τy

sin

(
4 arctan

[
tan

θ0

2
e−t/τ

])
, y(0)/H = 0.

 (A.17)
To integrate, we use double angle formulas for the sine and 
cosine and that

sin(arctan(x)) =
x√

1 + x2
, cos(arctan x) =

1√
1 + x2

.
 

(A.18)
Applying the double angle formulas twice, we obtain

sin(4 arctan z) = 4 sin(arctan z) cos(arctan z)

×
(
cos2(arctan z)− sin2(arctan z)

) 

(A.19)

= 4
z√

1 + z2

1√
1 + z2

( 1
1 + z2 − z2

1 + z2

)
=

4z(1 − z2)

(1 + z2)2 .

 (A.20)
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Next, abbreviating tan(θ0/2) = α and leaving the integration 
boundaries for a moment, we can integrate:
∫

dtUy(t) =
−τ

τy

∫
dt′ sin

(
4 arctan

[
α e−t′

])
 (A.21)

=
−4τ
τy

∫
dt′

αe−t′(1 − α2e−2t′)

(1 + α2e−2t′)2 (A.22)

=
4τ
τy

∫
dq

1 − q2

(1 + q2)2 (q = αe−t, dq = −αe−tdt) (A.23)

=
4τ
τy

q
1 + q2 =

4τ
τy

αe−t/τ

1 + α2e−2t/τ =
4τ
τy

αet/τ

α2 + e2t/τ . (A.24)

Now, we reenter α = tan(θ0/2) = sin θ0/(1 + cos θ0):
∫

dtUy(t) =
4τ
τy

tan θ0/2et/τ

tan2 θ0/2 + e2t/τ
=

4τ
τy

sin θ0et/τ

sin2 θ0
1+cos θ0

+ (1 + cos θ0)e2t/τ

 (A.25)

=
4τ
τy

sin θ0et/τ

(1 − cos θ0) + (1 + cos θ0)e2t/τ (A.26)

=
4τ
τy

sin θ0et/τ

(1 + e2t/τ ) + (e2t/τ − 1) cos θ0
 (A.27)

=
2τ
τy

sin θ0

cosh(t/τ) + sinh(t/τ) cos θ0
. (A.28)

Requiring that y(t = 0) = 0, we find:

y(t)/H =
2τ sin θ0

τy

(
1

cosh(t/τ) + sinh(t/τ) cos θ0
− 1

)
.

 (A.29)
Note that although we have derived this solution for the case 
of a minus sign in equation (11), the solution corresponding 
to the opposite sign can, as before, be obtained by simply sub-
stituting τ → −τ .

To determine whether the time at crossing y  =  0 agrees 
between the analytical solution and the numerically calculated 
trajectories, we calculate the time tc at which y  =  0: setting 
y(tc)  =  0 leads to

cosh(t/τ) + sinh(t/τ) cos θ0 = 1 (A.30)

→ t/τ = log
1 ± cos θ0

1 + cos θ0
 (A.31)

→ t/τ = 0 ∨ t/τ = log
1 − cos θ0

1 + cos θ0
. (A.32)

We can also find the position of the maximum, by setting the 
velocity to zero:

0 = sin

(
4 arctan

[
tan

θ0

2
e−t/τ

])

→ tan
θ0

2
e−t/τ = tan

kπ
4

, k ∈ Z.
 

(A.33)

Since the lefthand side is positive for 0 < θ0 < π, we see 
that the k = 4l, l ∈ Z solutions correspond to the asymptote 
t → ∞, while the other solution gives us the maximum

tm/τ = log

(
tan

θ0

2

)
= log

(
sin θ0

1 + cos θ0

)

=
1
2
log

(
sin2 θ0

(1 + cos θ0)2

)

 

(A.34)

=
1
2
log

(
1 − cos θ0

1 + cos θ0

)
=

tc/τ
2

. (A.35)

Note that this actually requires π/2 < θ0 < π. For 
0 < θ0 < π/2, there is no maximum. For π/2 < θ0 < π, the 
height of the peak is given by

y(tm)/H (A.36)

=
2τ sin θ0

τy

(
1

cosh(tm/τ) + sinh(tm/τ) cos θ0
− 1

)
 (A.37)

=
2τ sin θ0

τy


 2(√

1−cos θ0
1+cos θ0

+
√

1+cos θ0
1−cos θ0

)
+ cos θ0

(√
1−cos θ0
1+cos θ0

−
√

1+cos θ0
1−cos θ0

) − 1




 
(A.38)

=
2τ sin θ0

τy(
2
√

1 + cos θ0
√

1 − cos θ0

(1 − cos θ0) + (1 + cos θ0) + cos θ0(1 − cos θ0)− (1 + cos θ0)

)

 
(A.39)

=
2τ sin θ0

τy

(
2 sin θ

2 − 2 cos2 θ0
− 1

)
=

2τ
τy

(1 − sin θ0) . (A.40)

Finally, we observe that θ(tm) = π/2, which follows directly 
from the fact that the right-hand-side of (15) changes sign 
for θ = π/2. Alternatively, setting θ = π/2 in equation (13) 
and solving for t, will result in an equation  identical to 
equation (A.33).
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