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PROBABILITY BASED SHIP DESIGN PROCEDURES:
A DEMONSTRATION

This report provides a demonstration on the use of probability
based ship structural design and compares its benefits versus
those of traditional methods. Relative to other traditional
approaches, reliability methods hold the promise of a better
understanding of engineering design. It is anticipated that in
the future the use of these methods will result in a balance
between reduced structure weight and 1life cycle cost and
increased reliability. Other fields of engineering such civil
engineering and offshore structures have 1lead the way in
demonstrating the benefit of these methods. «

This report gives two basic demonstrations which illustrate the
development and calibration of design criteria for uniform safety
over a wide range of basic parameters involved in design and
applies the state of the art reliability techniques to hull
girder safety analysis of existing vessels. In doing so a
standardized structural reliability terminology, limit states and
load extrapolation techniques are defined for future projects.
The report concludes with and evaluation of benefits and
drawbacks of using the method and gives recommendations for

future research.
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Nomenclature

ship breadth
bloack coefficient
ship length
constants determined from S-N curve
stillwater bending moment
total bending moment
uitimate moment capacity
wave bending moment
sumber of wave bending moment peaks
probability of failure
section modulus
clastic section modulus
effective section modulus
plastic section modulus
model uncertainty associsted with the variable *i*
safety index
partial safety factor associated with a load variable *i*
damage index
stress range
mean of the variable "i"
standard deviation of variable "i"
critical stress
yield strength
service life of the ship
partial safety factor associated with a resistance variable *i*
stress parameter

Note : other symbols are defined where used
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1. Introduction, Scope and Objectives

This report, titled "Probability Based Ship Design Procedures - a Demonstration”, is
the second in the series of projects undertaken by the Ship Structure Committee in the
thrust area of reliability based ship design. The first was the development of a
comprehensive primer to structural reliability theory as applied to ships and marine
structures, Ref. 6. The work in this project assumes that the reader is familiar with the
various concepts and applications discussed in Ref. 6, "An Introduction to Structural
Reliability Theory", SSC Report 351.

The immediate objective of this project is to provide a demonstration of the use of
probability-based ship design methods and to compare the results with traditional design
methods. Based on the resuits of the demonstration, the following conclusions and
information are provided:

1. The benefits and drawbacks of the use of probability-based design methods compared
to the traditional methods

2. The additional information necessary to conduct probability-based ship designs

3. A summary of the proposed probability-based method showing how it can be applied
to generate new designs of uniform safety and how it can be used to assess the safety
of an existing design

4. A discussion of the current and future SSC projects in reliability and loads.

Two basic demonstrations are provided in this report (Part 1 and Part 2) together with
reliability process definitions (Part 3). These are summarized as follows:

1. Probability-based design procedure -- code calibration:

The objective of this part is to provide an illustration of how probability-based
methods can be used to develop and calibrate a code (or design criteria) in order to
produce designs with uniform safety over a wide range of the basic parameters involved
in the design. For this purpose, ABS primary hull girder longitudinal strength criterion is
considered. A formulation for the minimum required section modulus that satisfies this




requirement (uniform safety) is developed. A demonstration is made of how partial
safety factors are determined, calibrated, and used in new designs that have uniform
safety.

2. Probability-based ship safety analysis:

The objective of this part is to provide an illustration of how to apply state-of-the-art
reliability techniques in order to determine the safety level of an existing ship or an
existing design, i.e., to develop the ship safety indices taking into consideration the
uncertainties associated with the environment, loads, materials and analytical models.
For this purpose a tanker was selected in consultation with the Project Technical
Committee (PTC) for use in an example to illustrate the safety assessment procedure.
Several limit states were formulated, namely ultimate, serviceability, and fatigue limit
states, and applied to the tanker. The loads corresponding to these limit states were
developed and a safety index was calculated for each limit state using both first and
second order reliability methods.

3. Structural reliability process definitions:
An extension of the work of this project (SR-1330) was approved by the PTC.
The additional work is described in the following tasks:

(a) Definition of terminology associated with structural reliability of ships and offshore
structures. This includes terminology related to loads, strength and structural
reliability.

(b) Identification and description of appropriate ultimate limit states associated with
lifetime extreme design loads. These include global (hull girder) initial yield, fully
plastic and collapse limit states, and local ones related to column, beam/column and
torsional/flexural buckling of longitudinals, and grillage buckling of longitudinals
together with transverse beams.

(c) Identification and description of serviceability limit states associated with plate
buckling and fatigue.

(d) A review of probabilistic extrapolation techniques for lifetime extreme loads. .



A NOTE ON NOTATION

A distinction needs to be made between random variables and their characteristic or
nominal values, although this may often be evident from the context. In this report,
where necessary, random variables are denoted with a 'tilde’ on the top, e.g. 8;. is a
random variable, while Gy is a nominal or characteristic value.







2. Preliminary Assessment of Reliability Levels Implied in ABS Rules

As a demonstration of a probability-based calibration procedure of a code, the safety
level implied in ABS Rules for hull girder longitudinal strength is determined by
calculating the reliability indices (B's) for 300 ships designed according to the Rules.
The range of safety (Brange) Was then calculated as the difference between the largest
and smallest safety indices of all the designs considered. An average safety index (Bay)
was also calculated. The objective of the calibration process is to determine partial safety
factors to be used in a modified formulation for longitudinal strength such that the
resulting safety level of all designs is approximately constant with a value equal to B,y
and such that the resulting safety range (Brangc) among the new designs is minimum.
The details of the calibration process is illustrated in the following sections.

2.1 Limit State Formulation

The section modulus requirements for a ship according to ABS Rules is based on a
permissible stress which is based on the yield strength of the material. For this reason,
only the initial yield limit state will be formulated which is similar to ABS minimum
section modulus requirement. Only vertical bending moment, composed of stillwater
and wave bending moments, is considered. The initial yield limit state is expressed as:

~ N~ ~s
8X) = SM-6y-Mg -My, L)
r~ N N ~/
where X is a vector of the random variables, ( SM, o,. My, and M, ), and

SM s the section modulus amidship,

Oy is the yield stress,

Mg, is the stillwater bending moment.and
M,, is the wave bending moment.

These variables are taken to be random or uncertain and are assumed to be statistically
independent.




2.2 General Characteristics of " ABS Ships"

The general characteristics of several ships designed to the minimum requirements of
ABS Rules (including minimum section modulus requirements) will be determined.
These ships will be called "ABS Ships". " Since the initial yield limit state is the only
failure mode to be considered, and the variables in Eq. 2.1 depend only on L, L/B, and
Cy» these three parameters serve as the factors on which the reliability level depends.
They are specified as follows:

L : from 91.5m (300 ft) to 366 m ( 1200 ft )
L/B : from 5.0 to 9.0
Cp : from 0.60 to 0.85

These ranges cover most ships to which ABS Rules are meant to apply. The value
without 'tilde’ indicate deterministic characteristic values.

2.3 Strength Considerations of " ABS Ships"

Because of variability of properties of steel and other materials used in marine
structures and because of variability in production and fabrication of their components,
the strength of identical ships will not, in general, be identical. In addition, uncertainties
associated with residual stresses arising from welding, the presence of small holes, etc.
may affect the strength of the ship. These limitations and uncertainties indicate that a
certain variability in strength or hull capacity about some mean value will resuit.

Additional uncertainties in the strength will arise due to uncertainties associated with
the assumptions and methods of analysis used to calculate the strength. Further
uncertainties are associated with possible numerical errors in the analysis. These errors
may accumulate in one direction or possibly tend to cancel each other. Whatever the
case, the above uncertainties have to be reflected in any reliability or failure analysis.




2.3.1 Section Modulus

Section 6 (Longitudinal Strength) of ABS Report on "Proposed Change to Rules for
Building and Classing Steel Vessels" September, 1991[1] gives the minimum required
section modulus as a function of length (L), beam (B), and block coefficient (Cy) of a
ship as follows:

SM = C;-CyL2B+( Cp + 0.7) m-cm?

where Cj is a function of L, and Cj is a constant.

As shown in Fig. 2.1, the section modulus is assumed to be lognormally distributed ‘
with a coefficient of variation of 4 %, see Ref. 6. The section modulus calculated from
the ABS rules is taken as the mean value. \

Lognormal probability density function (p.d.f.)
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Figure 2.1 Distribution of the Section Modulus.

2.3.2 Yield Strength

The yield strength distribution, shown in Fig. 2.2, is assumed to be lognormal with a
coefficient of variation of 7 %(Ref. 6), and with a mean value of 235 MPa (34 ksi). This




distribution gives a probability of exceeding ABS permissible stress (175MPa) equal to
99.999%. The material used is normal strength steel.

Lognormal probability density function (p.d.f.)
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Figure 2.2 Distribution of the Yield Strength

2.4 Loads Applied to "ABS Ships"

The stillwater bending moment was obtained from the 1990 Rules[2], the latest
available at the time the work was conducted:

Stillwater Bending Moment:
Mgy = 10°3-CoL.23-B-(Cpy + 0.5) kN-m ('90)

Wave Bending Moment Amidship ( Sagging Moment ):
My, = -k-C3-L2B+(Cp + 0.7 ) 10" kN-m ( proposed for '91)

where Cg, k1, are constant, and C; is a function of L. Hogging moment is smaller, and
so not considered.

Both stillwater and wave moments depend on length (L), beam (B), and block
coefficient (Cp). Fig. 2.3 shows the stillwater, wave, and total bending moment variation
with ship length for a specified block coefficient and length-beam ratio as an exampie.




Bending Moment ( kN-m )
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Fig. 2.3 Total Bending Moment (Cb=0.6 L/B=5)




Appendix 1 shows the values of the stillwater moment, the wave moment, the ratio of the
wave to stillwater moments and the minimum section modulus, all calculated according
to ABS Rules as described earlier for the selected ranges of length, leagth to beam ratio,
and block coefficient.

2.4.1 Stiliwater Bending Moment Distribution

According to Soares and Moan[3], the stillwater bending moment fits to a normal
distribution. In this investigation it is assumed that the value given by ABS is the
maximum value with a probability of exceedance of 5 %. The large variability in the
stillwater bending moment calls for a coefficient of variation of 40%[3] which gives the
mean value of the distribution to be:

K sw = 0.6 Mgy, ABS (2:2)

where Mg, ABS is the stillwater bending moment given in ABS Rules . The
distribution is shown in Fig. 2.4.

Normal Probability Density Function (p.d.f.)
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Figure 2.4. Distribution of the Still Water Bending Moment
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2.4.2 Wave Bending Moment Distribution

If the wave loads acting on a marine structure can be represented as a stationary
Gaussian process (short-term analysis), then at least four methods are available to predict
the distribution of the maximum load. These methods are developed for application to
marine structures and are given in more detail in [4]). In this report, extreme value
distribution based on upcrossing analysis [6] is used.

The wave induced bending moment given by ABS is modeled as an extreme value
following the distribution function[4]:

2
Fuy () =exp (N exp € 5,-))

- 5772
K=V 2Agln N +—F—=— 23
W ° \ 24 in N @3

== | Ao
w 6 \ 2N

c
where [, is the mean of the distribution and G, is the standard deviation. N is the
number of wave bending moment peaks and A is the mean square of the wave bending
moment process. The value given by ABS is assumed to be the mean value of the
distribution [6], and Table 2.1 shows how the coefficient of variation varies with N.
Choosing N to be 1000, which is equivalent to a 3 hour storm gives a coefficient of
variation of 9 %. Fig. 2.5 shows the distribution.

N C.O.V.
500 10%
| 1000 9%
| 2000 8%
Table 2.1

1




Extreme value probability density function (p.d.f.)
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Figure 2.5 Distribution of the Extreme Wave Bending Moment

Appendix 2 gives the calculated means and standard deviations of the stillwater
moment, wave moment, and the section modulus according to the distributions described
above for the selected ranges of L, L/B and Cj,.

2.4.3 Comments on the Ratio of Wave to Stillwater Bending Moments
Given by ABS Rules

Inspection of the calculated values of Mgws My, and M, /Mg, according to ABS
Rules (Appendix 1), leads to the following conclusions:

1. M /Mg, ratio does not depend on L/B. Hence, M /My, can be written as a
function of L and Cy, only.

2. Fig. 2.6 shows the ratio M, /My, as a function of L for two extreme values of C, (0.6
and 0.85). The resulting curves are more or less parallel, and each has a maximum at
L=152.5 m and 2 minimum at L.=366.0 m.

3. When L is held constant, M /M, ratio decreases monotonically as Gy, increases.

4. As a result of the above observations, all Mg,,,/M,, values fall in the area bounded by

12




the two lines shown in Fig. 2.6. The minimum and maximum values of this ratio are
1.507 and 1.681, respectively.
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Fig. 2.6 Mw/Msw ( Cb=0.6 Cb=0.85 )

as a function of length

13




2.5 Safety Indices and Target Reliability
2.5.1 Reliability Analysis -- First and Second Order

The reliability analyses are carried out using the computer program CALREL [5) and
first and second order methods. For a general reference of these methods see [6). In the
reliability analyses, failure is defined when the limit state function, g(X), is negative or
zero. X is a vector of the basic random variables, i.e. load, material and geometrical
properties. After transforming the basic variables into standard normal variates,lJ, the

program determines the most probable failure condition, the design point, through an
iterative procedure. The design point has the coordinates U* where

*=-fa (2.4)

B is the safety index and g is the unit row vector normal to the tangent plane and directed
towards the failure set, see Fig. 2.7. FORM , the First Order Reliability Method, replaces
the limit state surface, g(X) = 0, with a tangent hyperplane at the design point in the
standard normal space , while SORM, the Second Order Reliability Method, replaces the
limit state surface with a hyperparaboloid fitted at the design point in the standard normal

space.

u
¢<0
=0 G _ .
XY region of most
. DR / contribution to
=M AS probability integral
UL ==

Y ¢ first - order
approximation

second - ordcrs
approximation

Figure 2.7 The First and Second Order Reliability Methods
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The first order probability of failure, Py, is determined from
Pg=® (-B) 2.5)

where @ is the standard normal distribution function. Fig. 2.8 shows the relation
between B and Py. ‘B’ is so called safety or reliability index. The higher the B value, the
lower the probability of failure, and the higher the safety margin between strength and
load. The relationship between 3 and Ps given in Eq. 2.5 can be determined numerically
from the properties of the standard normal distribution function [15].

CALREL was used to calculate reliability indices for the "ABS ships" covering the
entire range of L, L/B and Cy, described earlier. For this purpose, the limit state equation
(2.1) and the probability distributions given in sections 2.3.1, 2.3.2, 2.4.1, and 2.4.2 were
used in the analysis. Based on these results the following conclusions are made:

1. Holding L, L/B fixed, and varying Cy, from 0.6 to 0.85
As shown in Fig 2.9, the safety index () decreases monotonically as the block
coefficient increases.

2. Holding L, Cy, fixed, and varying L/B from 5.0 to 9.0
Fig 2.10 shows that B is almost constant. It suggests that the impact of L/B on B can
be neglected.

3. Range of B for different L
From observations 1 and 2 above, we can conclude that within our dimensions,
varies between the two parallel lines shown in Fig. 2.11,which shows the relation
between P and L for the two extreme cases (Cp = 0.6 and 0.85). Itis also seen
that these lines have the same pattern as M, /M, lines in Fig.2.6. Fig. 2.12 and Fig.
2.13 are plotted to illustrate the relation between f and M,/M,,.. The two lines
representing the boundaries of the safety indices in Figs. 2.12 and 2.13 are plotted
again in Fig. 2.14, which shows that they fall on each other. This suggests that  can
be treated as a function of Mw/Msw only.

4. Table 2.2 shows the upper and lower bounds of B for ship length varying from
152.5m to 366m. P ranges from 3.0236 to 3.3276 (see also Fig. 2.14), and its average
is 3.1918.
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L(m) Ch_ B(/B=5.0) BIL/B=9.0)
91.5 0.60 32434 3.2434
0.85 3.1635 3.1635
1220 0.60 3.2953 3.3070
* 0.85 3.2165 3.2165 |
1525 - 0.60 3.3276 33272
0.85 3.2490 3.2489
183.0 0.60 3.3200 3.3200
0.85 32416 3.2416
213.5 0.60 3.2933 3.2933
0.85 3.2143 3.2143
244.0 0.60 32148 32147
0.85 3.1343 3.1343
274.5 0.60 3.1992 3.1992
0.85 3.1185 3.1185
| 305.5 0.60 3.1774 31774 |
' 0.85 3.0962 3.0962
355.5 0.60 3.1389 3.1389 .
0.85 3.0571 3.0571
366.0 0.60 3.1060 3.1060
0.85 3.0236 3.0236

Table 2.2 Safety Indices of ABS Ships

The safety check equation used in the calculations of B is given by Eq. 2.1.




2.6 Comments on ABS Rules Regarding Ship Section Modulus Calculation

The following conclusions can be drawn based on the results obtained in section
2.5.1:

1. Safety implied in ABS Rules for longitudinal strength is very consistent because
varies within a very small range. However, the corresponding ratio of the upper and
lower values of probability of failure is 2.85. This means that some room for
improvement still exists.

2. The safety index depends only on the ratio of wave bending moment to stillwater
bending moment. This makes the calibration procedure easier.

3. The target reliability level is set to be B = 3.20, which is approximately the average
value of B determined earlier for the "ABS Ships".
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3.0 Calibration Procedure

Safety factors such as those applied to yield strength and to loads are an essential part
of the design process. In the probabilistic methods, this need resulted in the introduction
of partial safety factors. The cumulative effect of those factors is such that the resulting
design will have a certain reliability level. Thus, code developers and classification
societies may determine these partial safety factors that ensure that the resulting design
will have a specified reliability level. The method of determining these partial safety
factors for a given safety index is discussed in Reference{6].

The objective of this section is to determine partial safety factors such that when
applied to the characteristic values of stillwater moment, the wave moment and yield
strength, the resulting hull girder section moduli for all ship sizes produce constant
reliability index equal to the target reliability determined earlier, i.e., erget=3°2° This
value is an average value of the computered safety indices for the ABS ships and is
selected as target reliability for illustrative purposes only.

3.1 Procedure of Calculating Partial Safety Factors for " ABS Ships"

As described above, partial safety factors are used in the calibration procedure to
assure a specified reliability level. For the current case,

SM = Mb—'—‘;ﬁ;ﬁﬂﬂ 3.1)

where Ysw » Yw, and ¢y are the partial safety factors for the characteristic values Mgy,
My,, oy respectively.

The following procedure is used to determine the partial safety factors for the "ABS
Ships"” :

1. By trial and error determine ¥'s and ¢ in Eq. 3.1 that gives the Brarget.
2. Find out for different ratios of M, /M, the value of B determined from FORM (or
SORM) using the y's and ¢ obtained in the first step, and check if:
a. the obtained 's are close to the target §, and
b. the obtained Prange is smaller than that of ABS rules.
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3. If the determined s and ¢ give B's close to Prarget and Prange is smaller, then they
can be used in the new calibrated code, otherwise make changes in them to satisfy
the two criteria a. and b. above.

3.2 Redesign of " ABS Ships" and Resulting Safety Indices

The procedure described above can be implemented as follows. Eq. 3.1 can be
rewritten as:

SM_ YowtmYw

Msw ¢y°'y 3.2

where m is the ratio of wave bending moment to stillwater bending moment.

It is obvious that in Eq. 3.2 ¢y is arbitrary, so we set it to be 0.86, i.e. a material or
strength safety factor of 1.15. Therefore, if we can find two ships with safety indices
equal to 3.20, a pair of tentative values for Yy, and ¥,, can be determined. One ship can
be directly chosen from Table 2.2; it is the ship with L=274.5m, Cy,=0.6, and f=3.1992.
By trial and error, another ship can be found by changing section modulus of the ship
with L=213.5m, Cb=0.85 from 166690m-cm? to 166374m-cm? to make B equal to
3.2001. The values of ¥y, and Y, can be obtained by solving the resulting two equations
when the values are substituted in Eq. 3.2. The resulting ¥'s are:

Ysw =1.103
Tw = L.15.

Using these partial safety factors, we can calculate new set of section moduli for
which we perform reliability analysis (CALREL) to determine the safety index for every
ship. The result is listed in Table 3.1 and is also plotted in Fig. 3.1. The f's in Fig. 3.1
are very close to each other (3.1980 < B < 3.2022), as compared to the range of f derived
from ABS Rules. Therefore, the calibrated model for the section modulus that gives
uniform safety for all ship sizes is given by Eq. 3.1 with

Ysw =1.103
Tw =115
¢ =0.86.
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L(m) Ch B(L/B=5.0)
91.5 060 | 3199
0.85 32012
122.0 0.60 3.1988
0.85 3.2004
| 1525 0.60 3.1980
0.85 3.1998
183.0 0.60 3.1982
0.85 3.2000
213.5 0.60 3.1989
0.85 3.2001
244.0 0.60 3.2005
0.85 3.2015
i 274.5 0.60 3.1992
‘ 0.85 3.2017
305.5 0.60 3.2010
0.85 32018
355.5 0.60 3.2015
0.85 3.2020
366.0 0.60 3.2018
0.85 32022

Table 3.1 Safety Indices of Redesigned ABS Ships
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3.3 Benefits of the Calibration

The main benefit that accrues from the redesign exercise according to the new safety
check format is uniform reliability and structural safety among different ship sizes,
whichin some cases could lead to weight savings. Code calibration exercises such as this
can highlight sometimes large differences in implicit safety levels for different failure
modes in a structure, a situation that can be rectified in a new generation reliability based
code.

29




30



4. Development of Limit States for an Example Ship

As stated earlier, the objective of this part of the study is to demonstrate how to use
reliability technology to assess the Ievel of risk associated with an existing ship or with a
"drawing board" design. For this purpose an existing tanker was selected as an example
in consultation with the Project Technical Committee.

Several limit states are formulated and applied to the example ship. These are: the
ultimate limit states (deck yielding, fully plastic collapse, and instability collapse), the
serviceability limit state (local buckling), and the fatigue limit state for one point in the
deck. Because the maximum stillwater bending moment of the example ship occurs in
sagging condition, only this condition is considered for the ultimate and serviceability
limit states. Details of all calculations are given in Appendices 3 through 7.

4.1 Selection of the Example Ship

A tanker designed according to ABS Rules is selected as the example ship. The main
characteristics are:

Displacement 149,000 tonnes

L.O.A 273.0m. (895.1ft)
L.B.P 2600m (852.5ft)
Beam 420m ( 137.7ft)
Depth 235m (77.0ft)
Draft 16.0m ( 52.5ft)
Cg 0.710

The elastic section modulus at deck is 4.657675-105 m-cm2 (236,851 in2-ft). The
nominal yield strength of the material used is 259 MPa (37.4 ksi).

4.2 Formulation of Limit States
As mentioned earlier the limit states considered in this demonstration are:
1. Ultimate strength limit state
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2. Serviceability limit state
3. Fatigue limit state

For ships, ultimate limit states can be decomposed into two modes of failure:
a. Failure due to spread of plastic deformation, as can be predicted by plastic limit
analysis and fully plastic moment ( initial yield and shake down moments can be also
classified under this category ) [6].

b. Failure due to instability or buckling of longitudinal stiffeners ( flexural or tnppmg )
or overall buckling of transverse and longitudinal stiffeners of grillage. ‘

Serviceability limit states are associated with constraints on the ship in terms tI)f
functional requirements such as maximum deflection of a member or critical buckling
loads that cause elastic buckling of a plate.

Fatigue limit states are associated with the damaging effect of repeated loading whic|h
may lead to loss of a specific function or to ultimate collapse. This particular limit state
requires an independent type of analysis.

4.2.1 Ultimate Strength Limit States

|
Three failure modes due to the combined action of wave and stillwater bcndirlxg
moment are considered. The ultimate limit state can be described as:

1
<0 (4.|1)

~ r~ ~
My - Mgy, - My,
where
M, is the ultimate hull girder moment capacity as determined by the critical stress of the

respective failure mode and the effective section modulus.

N »
M., is the still-water bending moment.

N .
M,, is the wave bending moment.

M, is determined for each failure mode as follows:
Deck Initial Yield

Because buckling of the plates in the deck occurs before the deck initial yield, qxe
effective section modulus after buckling is applied. The ratio of the effective spcgiclan
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modulus to the elastic section modulus is calculated to be 0.98 (see 3.3 of Appendix 3).
The critical stress is then the material yield strength:

SM,g¢ = 4.5710° m-cm?
O = 259MPa

Oy

EFully Plastic Collapse

The plastic section modulus for the example ship is calculated according to {7], and
the critical stress is the material yield strength. The details of the calculations are given
in 3.1 of Appendix 3.

SM, = 5.8376:10° m-cm”
Gy = 259 MPa

=) Gy
T

The elastic section modulus is used and the critical stress is the buckling stress found
by applying the approximate equations described in [8]. These equations are based on
beam and plate theories for elastic and plastic buckling. The elastic section modulus of
the tanker at deck is:

SM, = 4.65767-10° m-cm?

and the critical stress due to buckling depends on the buckling mode as follows:
a. Plates between stiffeners
The plates between the longitudinal stiffeners are considered as simply supported

isotropic plates under uniaxial compressive load. The plate collapse stress is (see 3.2 of
Appendix 3):

6 = 238MPa (2= =092 )
Oy
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b. Stiffeners and effective plating

For column buckling of longitudinal stiffeners only the ultimate limit state| is
considered because when a column buckles it reaches its ultimate strength immediately.
The effective plating is determined from buckling considerations since the plate is unclicr
edge compression. The calculations shown in 3.2 of Appendix 3 give a critical stress for
pure flexural buckling as:

G = 248 MPa (2= =0958)
Oy

However, coupled torsional/flexural buckling stress must be also checked. For the
example tanker, deck longitudinal stiffeners have a single plane of symmetry which
means that the ultimate limit state is probably governed by a combination of torsional
and flexural buckling. For this condition, the critical stress is (see 3.2 of Appendix 3):

O,
O, = 170MPa ( === =0.656) ]
o]
y |
|

c. Cross-stiffened panels

Buckling of an entre stiffened panel, including both longitudinal and transverse
stiffeners is considered assuming uniaxial compressive load. A panel between transverse
and longitudinal bulkheads is shown in section 3.2 of Appendix 3 together with the

|
buckling stress calculations according to reference{8]). The resulting critical buckling
stress for the entire panel is ’

O = 259 MPa

d. Summary, Buckling Limit State Strength

Plate between stiffeners 238 MPa '
Flexural buckling of stiffeners 248 MPa |
Tripping of stiffeners 170 MPa

Cross stiffened panels 259 MPa !
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These are local modes of failure. The ultimate hull girder collapse moment is
calculated in item e. below.

e. Hull Girder Instability Collapse

In the 1991 ISSC proceedings, report of the Committee on Applied Design[9], the
following expression was used for the approximate determination of a hull girder
instability collapse moment in sagging condition:

M, =(-0.172+1 .548<|>cp-‘0.3684>cp2).SMco'y
dcp is the compressive strength factor given by:

dcp = (0.960+0.76542+0.176B2+0.131A2B2+1.0461.4)-0-3

where
A is the column slenderness of a critical panel,and
B is the plate slenderness ratio.

Appendix 4 shows the calculations of the factor ¢cp for the example tanker and the
resulting ultimate moment "My,". These values are

bcp=0.79 and
My = 0.82 SM¢-0y

4.2.2 Serviceability Limit States

The serviceability limit state can be expressed in the same form as for the ultimate
limit state:

~ e d
Mgery, - Mgw - My, <0 4.2)

where

~J
Mqey . is the hull moment capacity as determined by the critical buckling stress in

a serviceability limit state.
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~t

M, is the stillwater bending moment. ’

~ . .

M,, isthe wave bending moment. |
|
|

The critical buckling stress of local plates between stiffeners is calculated for #w
example ship in 3.2 of Appendix 3. The elastic section modulus is applied. These values
are: |

SM,, = 4.65767-10° m-cm®

|

\

e = 2TMPa (=T =03870) |
Oy

4.2.3 Fatigue Limit State

|
The fatigue limit state is associated with the damaging effect of repeated loading.

There are two approaches to the fatigue problem, the Palmgren-Miner approach based on
S-N curves, that will be used here, and the fracture mechanics approach.

The S-N curves are obtained by experiments and give the number of stress cycles to
failure. Such curves are of the form:

N-AS™= C “.3)
where

N is the number of cycles to failure

AS is the stress range

m is the inverse slope of the S-N curve

C is determined from the S-N curve by

logC =log a -20;,,y (4.4)

where ‘

a is a constant referring to the mean S-N curve ‘
OlogN is the standard deviation of logN

The fatigue- life calculation is determined based on the assumption of linear
cumulative damage (Palmgren-Miner rule). Application of this assumption implies that
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the long-term distribution of stress range is replaced by a stress histogram consisting of
an equivalent set of constant amplitude stress range blocks.

The time to failure of a detail can be expressed as [10] :

~N

’%’=§,E5 (4.5)

where

-~
AE is the value of the Palmgren-Miner damage index at failure.

~
C and m are obtained from the S-N curves.
B is the ratio between actual and estimated stress range.

2 is a stress parameter.

T, Af, C and B are random variables. If the long-term distribution of the wave process is
assumed to be a series of short-term sea states that are stationary, zero-mean, Gaussian
and narrow banded, and if, in addition, the structure is linear, the stress range will follow
a Rayleigh distribution and Q is determined from[10,11]:

(m-1)2 122
2 2 m -
B ra D Tony @)
J

where
Pj is the probability of occurrence of the j-th sea state.

Agj » Apj are the zero and second stress spectrum moments in the j-th sea state,
. 1 A | .
respectively. Note that 5:;‘\/:;\:%‘ is the frequency of the stress process in the
)

j-th seastate.

The fatigue limit state function is expressed as :

~ A~

AeC
e =M - T @.7)

where 1 is the service life of the ship.
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5. Development of Load Models for the Example Ship

From the information given on the Tankcr example, the maximum stillwater bending
moment is 1.9728- 106 kKNm and it occurs in sagging condition. The maximum
allowable by ABS for this ship is 3.022-105 kNm.

5.1 Wave Bending Moment for Ultimate Limit State

|
|

The r.m.s. value of the wave induced bending moment on a ship can be estimated
from the seakeeping tables in [12]. Using the interpolation procedure described in that
paper, the rms of the bending moment can be determined when the Froude number,
significant wave height ,"Hg", the beam/draft ratio, the length/beam ratio, and the block
coefficient are given. Knowing B/T, L/B, and Cg for the example ship and assuming thlc
ship’s speed to be

12 knots for H
8 knots for 3m < H
5 knots for 6m < Hs-

The rms of the wave bending moment can be approximately determined for any sea stat%.
\
The Wave Bending Moment for the Ultimate Limit State |
For the ultimate limit state, an extreme sea condition is of interest. The most probab*c
extreme sea condition the ship is likely to encounter during its life time is determined
from the wave data along its route. The ship is assumed to remain in this peak sea
condition for three hours (which corresponds to N=1000 wave peaks). A detailt?d
procedure for this short-term analysis is described in reference[6]. The wave loads in
this extreme sea condition are then determined and the corresponding safety indices for
the ultimate failure modes are evaluated.
Following this procedure for the example tanker, the rms of the wave bcndir‘xg
moment is determined for a significant wave height of 12.2 m (40 ft.). Section 5.1 (’)f
Appendix 5 shows the calculation procedure. The resulting rms value of the wa\Lc

\
bending moment is I

\Xg = rms = 1.25398-10° kNm (5.1)
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Assuming that the wave bending moment follows the same distribution as described in
Section 2.4.2 with N=1000 peaks, the mean value is determined by Eq. 2.3 to be
4.855-10° kNm. For comparison, the wave bending moment given by 1991 ABS for the
example ship is 4.62-10% kNm.

Note that the above calculations are for a seastate of 12.2 m (40 ft) wave height. This
particular seastate is used for illustrative purposes. For design, a storm condition with
specified return period should be selected including several pairs of representative
significant wave heights and characteristic periods. The most critical ship response can
be thus determined.

5.2 Stress Ranges and Number of Cycles for Fatigue Limit State
The sea scatter diagram given in the ISSC proceedings[9] and shown in section 6.2 of
Appendix 6 is applied. The rms value for every sea state is determined and the

calculations and the results are included in section 5.2 of Appendix 5. The scatter
diagram used is for the Osebery area of the North Sea.
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6. Reliability and Safety Indices of the Example Ship

I
|

In this section, the reliability of the example tanker considering both the ultimate and
fatigue limit states is determined. Model uncertainty will be included in all limit Staltc
I

formulations in order to reflect errors resulting from assumptions and deficiencies in

analytical or empirical design models and equations.
6.1 Ultimate Limit States

The sagging condition is considered and the limit state is expressed as:

A N o~ ~ ~/ ~ & N
g(X) = x;SM-o, - Xew Mgw xW-xs-MW

where

o~
§_M is section modulus.
Ocr is the critical failure stress.

ﬁsw is the stiliwater bending moment.

lt’/lW is the wave induced bending moment.

X, is model uncertainty on strength.

;sw is uncertainty in the model of predicting the stillwater bending moment.

X,y is the error in the wave bending moment due to linear seakeeping analysis.

;s takes into account nonlinearities in sagging.
The tilde denotes random variables.

The distribution of model uncertainty parameters are shown in Table 6.1

random variable distribution mean C.0.V
7 Xy ' N (Normal) 1.0 0.15
Xsw N 1.0 0.05

Xy N 0.9 0.15

X N 1.15 0.03

Table 6.1 Distributions of Model Uncertainty Parameters
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6.1.1 Deck Initial Yield

Two cases of the stillwater bending moment are considered:

In CASE 1, the stillwater bending moment is treated as a deterministic quantity equal
to 3.022-106kN-m, which is the ABS maximum allowable stillwater bending moment
for this ship. The effective section modulus is taken as the mean value. Table 6.2 shows
the means and coefficients of variation from Ref. [6] of the random variables not shown
in Table 6.1.

random variable distribution mean C.0.v
M Lognormal  4.57-10° m cm? 0.04
5. Lognormal 259 kN/cm® 0.07
M., Extreme 4.855:10° kNm 0.09

Table 6.2 Distributions of Random Variables ,CASE 1

Appendix 7 shows the input/output files from CALREL printout. The safety index (8)
equals 1.81, which implies that if the ship,while loaded at its maximum allowable value
of the stillwater bending moment, experiences a three hour storm with significant wave
height of 12.2m (40 ft) the probability of failure due to deck yielding is Ps = 3.5:10°2 for
this severe storm.

In CASE 2, the stillwater bending moment is treated as a random variable with mean
equal to 0.6-3.022-106 to be consistent with Eq. 2.2. Tables 6.1 and 6.3 give the random
variables and their distributions. From CALREL for this case, the safety index (B) equals
2.25, which implies a probability of deck yielding of P = 1.2:10°2

The effect of correlation between the stillwater bending moment and the wave
bending moment is investigated next. This correlation arises because of a weak
dependence of the wave bending moment on the loading condition. CASE 2 is repeated
with a correlation coefficient of 0.2, 0.5, and 0.8. The resuits are B=2.23, f=2.18, and =
2.13, respectively for this severe storm. This indicates that the reliability index is not
very sensitive to this correlation and it is therefore neglected in the following analyses.
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random variable distribution mean C.0.v |
$M Lognormal  4.57-10° m cm? 0.04 |
.. Lognormal  25.9 kN/cm? 0.07
| My " Normal 1.813-10% kNm 0.40
M, Extreme 4.855-10° kNm 0.09
| Table 6.3. Distributions of Random Variables ,CASE 2 +
|
6.1.2 Fully Plastic Collapse |

\
The random variables and their distributions for this failure mode are shown in Tables

6.1 and 6.4. The limit state developed in Section 4.2.1 and the loads determined‘in
Section 5 are applied. The stillwater bending moment is assumed to be random. This
gives a reliability $=3.15 and a probability of failure of 8.3-10 for the severe storm
condition considered.

random variable distribution mean C.0.V
§M | Lognormal  5.838-10° m-cm? 0.04
8o ' Lognormal 25.9 kN/cm? 0.07
My Normal 1.813-10% kNm 0.40
M, Extreme 4.855-10° kNm 0.09 |

Table 6.4. Distributions of Random Variables, Fully Plastic Collapse.

6.1.3 Instability Collapse |

Several modes of failure are considered under instability as discussed earlier. Theise
are:

The limit state developed for torsional/flexural buckling of the longitudinal stiffeners
is applied since it is the worst mode of local stability failure. The load is as determined jin
Section 5, and the stillwater bending moment 1s assumed random. Tables 6.1 and 6.5
| give the random variables and their distributions. From CALREL, B=0.57 and Pfi=
2.8-10-! for the severe storm condition considered. The conditional nature of tlllis
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probability is emphasized. It is conditioned on encountering this severe storm condition,
which is small. The mode of failure is also local.

The hull girder instability collapse according to section 4.2.1.d is considered next.
This gives a mean value of 6., = 212 MPa. All other variables remain as given in Table
6.5. The resulting safety index is p = 1.49 and P; = 6.8:10-2, again conditional on the
severe storm condition considered.

random variable distribution mean C.0.v
$M Lognormal  4.658:10° m-cm® 0.04
. Lognormal 17.0 kN/cm? 0.07
M.y Normal 1.813-10° kNm 0.40
M, Extreme 4.855:10% kNm 0.09

Table 6.5. Distributions of Random Variables, Instability Collapse

6.2 Fatigue Limit State

Figure 6.1 shows the analyzed detail, which is a welded deck longitudinal to the deck.
It is classified as class D according to classification given in reference{13]. The analysis
is concerned with one fatigue location. No system aspects are considered. The limit
state function is given as:

o~

gX = "mé{—%— T 6.2)

?‘Iw is included in the limit state as a modeling uncertainty to take into account the error
in wave bending moment prediction using linear analysis. The other variables are as
described in Section 4.2.3. The stress parameter, calculated in section 6.1 of Appendix 6,
is Q=852 MN/m2]3[sec]'l and from the S-N curve, the mean value of C = 1.52-1012
MN/m?.

The analysis is performed with the random variables distributed as shown in Table
6.6. The reliability index P equals 2.44, and the probability of failure is 7.3-10-3 over a
lifetime of 20 years.
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Figure 6.1 Detail Considered in the Fatigue Analysis.

random variable distribution mean C.0.v
Af Lognormal 1.44 0.15
¢ Lognormal 1.52:10'2 0.40
B Lognormal 1.02 0.10
X Normal 0.90 0.15

Table 6.6. Distributions of Random Variables, Fatigue




6.3 Summary of Safety Indices

The following is a summary of the calculated probabilities of failure:

a) Deck initial yield 0.012 (Global)
b) Fully plastic condition 0.00083 (Global)
c) Instability (tripping) 0.28 (Local)

d) Hull girder ultimate moment 0.068 (Global)
e) Fatigue, 20 years 0.007 (Local)

It is to be emphasized that these values are conditional on the severe seastate assumed,
in the case of items a) through d). The unconditional probabilities of failure are expected
to be lower since the shown values in items "c" and "d" must be multiplied by the
probability of encountering the severe storm condition used in their calculations. The
fatigue (item e) is unconditional value calculated for one detail over the 20 year life of
the ship.
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7. Terminology Associated with Structural Reliability

The aim of this chapter is to define the terminology associated with the structural
reliability of ships and offshore structures. The following are considered:

- Load terminology
- Strength terminology
. Structural reliability terminology

The terminology defined addresses those terms associated with probability, statistics and
reliability as used in engineering.

7.1 Load Terminology

The following terms are primarily used with loads, although some of the terminology
is more general, and related to statistics and random processes.

L sgistic P

If an experiment is performed many times under identical conditions and the records
obtained are always alike, the process is said to be deterministic. For example, sinusoidal
or predominantly sinusoidal time history of a measured quantity are records of a
deterministic process.

Random Process

If the. experiment is performed many times when all conditions under the conwol of
the experimenter are kept the same, but the records (usually a time history) continually
differ from one another, the process is said to be random. The degree of randomness
depends on (1) understanding of the factors involved in the experiment results, (2) the
ability to contro} them. The outcome of a random process at any given instant of time is
a random variable. Time history of wave elevation and strain gage records taken aboard
a ship may be considered as random processes.

Random Variable
Different values of a random variable have different chances (frequencies) of
occurrence. A random variable thus has a probability density function. Examples of
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random variables are the wave bending moment, the still water bending moment, and
material yield strength.

Probability Density Functi

The probability density function defines the relative frequencies of occurrence of a
random variable (e.g., wave height or wave bending moment). The function, usually
denoted f(x), where X is the random variable, has the following properties:

L)

A |
X !

1) The probability of occurrence of fraction of the random variable X which lies
between x and x+dx is f(x)dx, i.e.,

Px<X<x+dx] = f(x)dx

2) The probability that a sample of the variable lies between a and b is:

PlasX<b]= j_"f(x)dx

3) The probability that X lies between -co and +<o is unity.

\
4) P[x = a] =0 where a is a constant. ‘

Probability Distribution Functs |
Also called the cumulative distribution function, and denoted F(x), this defines the
probability that the random variable X is less than or equal to a given value x, i.e.,

48



F(x)=-]_f(x)dx

lo —— — — —
F(x)
Ly
X
E—.

This is the probability that a random variable X (e.g., wave bending moment)
exceeds a specified value x, and is given in terms of the probability distribution function

as 1 - F(x), since

1-F(x)= L’f(x)dx

o

pd /7
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Percentile

Percentile values of 2 random varizble X are those valves corresponding to specified
values of the cumulative distribution function F(x). A 50-percentile value uhusI
corresponds to x such that F(x) = 0.5. This particular percentile is also the median value,
of the random variable. A 95-percentile value is a value such that F(x) = 0.95, i.c., only’
5% of the outcomes of the random variable are expected to lie above it. l

fx)

For a given probability density function f(x) relating to a random variable X, the
mean or average value it is given by

u=E(x)=[_xf(x)dx
where E(x) denotes the "expected value” of X.

The median value of X, denoted X, is defined from the cumulative distribution
function F(x) as

x=F(0.5)
i.e., it is a value of X corresponding to a cumulative distribution function of 0.5. This

implies that, on the average, 1/2 the outcomes of the random variable will lie below %
and 1/2 above it.
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The mode of a random variable X is the value of X corresponding to the peak of the
probability density for the random variable. The mode is also called the most probable
value of the random variable (e.g., most probable wave bending moment).

§F&)
max
l
e
Ne———— X
mode
Mean Square Value

The mean square value of a random variable X is defined by

E(x*)= j'_'_x’ f(x)dx

and its root-mean-square or r.m.s. value is simply \E(x?).

Vari § it Desioss

The variance of the randorn variable X is defined by

0’ =E(x—4t,) = [_(x—p,)* f(x)dx =E(x*)—p?

The standard deviation of the random variable is 6. The standard deviation is a measure
of spread of the random variable about the mean value. Note that for a zero mean
variable, the variance and the mean square value are numerically the same. This is
approximately true for both waves and wave bending moment assuming linear first order
theory holds.
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Coefficient of Variati

The coefficient of variation 8 of a random variable X is defined by

where ¢ and p are the standard deviation and the mean value. The coefficient of
variation is a non-dimensional measure of the spread of the random variable outcomes
about the mean value. The coefficient of variation of wave heights and wave bending
moments over a long period of time is expected to be high (80-100%). The coefficient of
variation of the extreme values of these quantities over a short period of time in a severe
sea state is much smaller (7-20%).

Joint Probshility Deasity Fanch
The joint probability density function of two random variables x, and x, defines the

frequency of mutual occurrence of two random variables and has the following
properties:

1) P[x, <X, <x, +dx, Nx, <X, $x,+dx, =f(x,,x,)dx, dx,
. by rhy
2) Pla, <X, <b Na, <X, <b)=[" [f(x,,x,) dx, dx,
8y 98

3) Pl-eo<X; <too-c0<X, <eo]= [ [ f(x,,x,)dx, dx, =1
where N indicates the mutual occurrence (intersection) of two events.

A related joint distribution function defining cumulative probabilities may also be
defined. The definitions may be extended to more than two random variables.

The joint density and distribution functions for random variables contain the
occurrence probability and also correlation information.
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Covariance

The covariance of two random variables, X, and X, is defined as

Hx, x, E{[xl - E(x, )Ixz —E(x, )]}

L e s 00

]

E[x, x,]-1, W,

where |, and p, are the means of the individual random variables, and f(x,, x,) is their

joint density function.

Independent Random Variables
Two random variables X, and X, are independent if their joint density function is
equal to the product of their individual densities

f(x,, x)) = f(x,) f(xy)

where f(x,, x,) is the joint density function and f(x,) and f(x,) are the individual (also
called marginal) density functions. The outcomes of independent random variables occur
without any reference to one another. Normally in reliability analysis, strength and load
are considered independent random variables.

Dependent Random Variables

Two random variables X, and X, are dependent if their joint density function is not
the product of the marginal densities. The outcome of any one of the random variables is
dependent on the outcome of the other, i.e., there is a correlation between the realization
of one random variable and realizations of the other. For X, dependent on X,, the
following is true:

fxx, (%, /%;)

foo /)=y

where f(x,/x,) is the conditional density, f(x,) is a marginal density, and fy (x,/x,) is

the joint density evaluated with x, given x,.
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Bounded Random Variables

The definitions of probability density and distribution functions given in this section
assume that random variable outcomes lie in the interval -0 < X <'+eo. Here, the bounds
on the random variable are - and +eo. For some random variables, the upper and/or

lower bounds may be different. For example, material yield strength is always a positivc':
quantity, and its lower bound is zero. An upper bound on a load is sometimes used
resulting in a truncated probability density function.

Comelation Coeffici
The correlation coefficient p, , for two random variables X, and X, is defined by ‘ ‘
_ Py
Pis, G, O,

|
where p, . is the covariance of x, and x,, and the © are the standard deviations. The

correlation coefficient always lies between -1 and +1. If the correlation coefficient is
zero, the variable outcomes are uncorrelated. The correlation coefficient is a first order
measure of dependence between outcomes of two random variables. A zero correlation
is a weaker condition than independence. Non-correlated random variables are not
necessarily independent, but independent random variables are necessarily uncorrelated.
Positive correlation means that, in general, if the outcomes of one random variable
increase, the outcomes of the other will also increase. Negative correlation means that
the outcomes will generally be in opposite directions.

The wave bending moment is weakly correlated to the stillwater bending moment
since both depend on the weight distribution along ship length.

Conditional Probability and Baves T}

A conditional probability is denoted P[A/B] when A is one event and B is anotheri
event on whose outcome A depends on. An example of a conditional probability is a
probability of structural failure calculated for a given sea state. The actual lifetime
probability of failure will be different if all the sea states are considered. Bayes'
Theorem applies to conditional events. By Bayes' Theorem, the probability that event A
occurs conditioned on the probability that event B has already occurred is given by

P(AnB)

P(A/B)= P(B)
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where A and B are the event domains and ANB is their intersection, i.c., the outcome
space that contains both A and B at the same time (mutual occurrence).

Stationary Random Process

A random process is stationary if the probability density function of its outcomes
does not depend on time, i.c., the same probability density function is obtained for an
ensemble of realizations of the random process at any given time as at any other time.
This also means that statistics that are dependent on the probability density function, ¢.g.,
mean and mean-square value, are also independent of time. The second order (joint)
probability density function of the outcomes at two instants of time depends on the time
lag between them and not on each individually. Time history of waves or wave bending
moment are usually considered stationary over a short period of time (up to 3 hours).

Ereodic Functics

This states that a single sample function is quite typical of all other sample functions
representing realization of a random process. Therefore we can estimate the various
statistics of interest by averaging over time using the one realization rather than
averaging over an ensemble of realizations. An ergodic random process is necessarily
stationary. A stationary random process is not necessarily ergodic.

Exteme Value

The extreme value of a random process is the largest value over a period of time.
Each realization of the random process will have an extreme value. Thus there is also a
distribution of extreme values, i.c., the extreme value is a random variable that has its
own special distribution, mean value, variance, etc. One may speak, therefore, of
extreme value distribution of wave heights or wave bending moments.

Most Probable Extreme Value

This is the value of the random variable corresponding to the peak of the extreme
value density function, i.e., the mode. Thus, the most probable extreme wave bending
moment is the mode value of the extreme bending moment density function, i.e., the value
of the moment at the peak of the density function. |

+ Diribocoos o e B val

The extreme value distribution for a random process with defined probability
characteristics for the outcome (e.g., a Gaussian random process) is a function of time, or
equivalently, the number of peaks within the time. As time or number of peaks increase,
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the distribution of the extreme value shifts to the right. The asymptotic distributioxl
corresponds to an infinite length of time or number of peaks. The asymptotic form of the
extreme value distribution depends largely on the tail behavior of the "initial" distribution
of outcomes of the random process. Gumbel showed that the asymptotic distribution
takes one of three forms: a double exponential form, an exponential form and an
exponential form with an upper bound.

Onder Statisti

The distribution of the largest peak (e.g., largest wave bending moment) in a|
sequence of N peaks of a random process can be determined using order statistics,‘
assuming that the peaks are independent and identically distributed. The cumulative
distribution function of the largest peak is given by

FzN(Z) = P[max (z,,z,,...,2,) <z]

= [FzeN

where F,(z,€) is the initial cumulative distribution function of the peaks and € is the
spectral bandwidth parameter. The corresponding probability density function is given
by differentiating the cumulative distribution function:

f,,(@) = NIF, )M - f(z6)

where f,(z,€) is the initial p.d.f. of the peaks.

Expected Maximum Value:

The expected value (average) of the maximum peak (e.g., wave bending moment) in
a sequence of N peaks of a zero mean Gaussian random process was determined by‘
Cartwright and Longuet-Higgins, and is approximated by

E[maX(‘z/l’lnzjz’“.’z")]5[2[)1(\/1_7N)]“2+C[2£n(‘/1—_?N)]-M2 |

where C = 0.5772 = Euler's constant. Here, m, is the area under the power spectral !

density, i.e., the mean square value of the process.
It should be noted that the most probable extreme value (i.e., the mode) is given by
the above equation, but with the second term on the right hand side deleted.
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Narrow Band Process
This is a random process whose time realizations are such that there is one peak

between every upcrossing and every downcrossing of the mean level. Process "cycles”
are thus discernible. The power spectral density function of the process realization has a
central tendency, i.e., it is clustered about a central frequency. The peaks of a zero mean
narrow band Gaussian random process have the Rayleigh distribution function given by

_a
fl@="=e™; 420
m

[4

where m, is the mean square value of the process, also equal to the area under the energy

spectrum for the process.
Records of waves and wave bending moments over a short period of time (3 hours)

are usually considered to be narrow-band processes.

Average of Highest 1/m-th Value
This is the average value of the highest 1/m-th peaks in a random process. For a
random process whose peaks are Rayleigh distributed,

Average of 1/3 highest values = 2 \fmo
Average of 1/10 highest values = 2.55 \fnTo

Average of 1/1000 highest values = 3.85 \/r;o

where m, is the mean square value of the process. The multipliers shown are for
amplitudes rather than heights (double amplitudes). The average of 1/3 highest values is
also called the significant value. These multipliers may be used for waves and wave
bending moments and may err slightly on the conservative side.

7.2 Strength

The following terms related to strength are now defined: failure modes, limit state
function, and ultimate, serviceability and fatigue limit states. Limit state exceedence
probability is then defined, and contrasted to the probability of failure. Also in this
section, terminology related to the classification of uncertainties is given. Some of this
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terminology is general, but their use is relevant to strength variability, a
with strength parameters. System failure modeling is also considered in this

Eailure Mode:

A failure mode refers to a particular physical mechanism by which a structure or a
part of it fails. Failure modes for ships address plastification, buckling, fatigue and
fracture. As an example, buckling failure modes include plate buckling, stiffener flexural

buckling, stiffener tripping, and overall buckling of the gross panel.

Ul Limit S . [ |

The ultimate limit state considers structural performance or safety margin under
extreme (typically lifetime maximum) loads. The ultimate limit state can be further
decomposed into two modes of failure:

a. Failure due to spread of plastic deformation, e.g., as predicfed for beams by plastic |

limit analysis. The initial yield moment for a beam can also be classified under
this category. |
¥
b. Failure due to instability or buckling, e.g., of panel longitudinal stiffeners in the
flexural and tripping modes, or the overall "grillage” buckling of a gross panel
consisting of longitudinal and transverse stiffeners.
Serviceability Limit State:
The serviceability limit states are associated with constraints on the marine structure
in terms of functional requirements such as the maximum deflection of a2 member or
critical buckling loads that cause elastic buckling of plating.

Fatiens | it S

The fatigue limit state is associated with the damaging effect of repeated loading |
which may lead to a loss of specific function or to ultimate collapse. Fatigue limit state
capacity for structural details is typically defined using S-N curves, while the demand is
defined in terms of the lifetime stress range versus number of cycles histogram.

I . . S E . . i ‘
This is a function, often denoted G(X) where X is a vector of basic variables, that
characterizes the safety margin in a given mode of failure. A simple limit state function |
»
may be
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G(cy, o) = C,-GC

where o, is the yield strength of the material, and © is the load effect (stress). Note that

limit state exceedence ("failure™) implies

Gs0

Limit state functions are traditionally formulated in this capacity minus demand form.
The basic variables in the limit state equation are random because of inherent variability
or model uncertainties.

Limit State E ] Probabil
The probability of reaching or exceeding a specified limit state is determined from

P, = [f,(x)dx
’ F

where f,(X) is the joint probability density function of the basic variable vector X. The
domain of integration F is over the unsafe region of the limit state function where
demand exceeds capability. The integral is multi-fold. In terms of the limit state
equation, the domain of integration is defined by G(x) < 0. To the extent a limit state
equation may address local phenomena, e.g., yield at a point, serviceability, e.g.,
deflections, etc. in addition to catastrophic events, interpreting the limit state exceedence
probability as the probability of "failure” of the structure should be done with care.

It should also be noted that limit state exceedence probabilities calé:ulated are often

conditional on certain environmental events, e.g., occurrence of a certain severe storm.

Probability of Fail

Although actuarially speaking, this should refer to the probability that the structure
catastrophically fails, the term is generally and widely used as a substitute for limit state
exceedence probability, i.e., the probability that the demand exceeds the capability in any
given limit state (including exceedence of deflection and elastic buckling stress).

U inty Classificat

Uncertainties which contribute to the variability of physical strength parameters may
be classified as '
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|
¢ inherent uncertainties *
e model uncertainties i

They may also be classified as subjective and objective uncertainties. The classifications
while illustrated here with strength parameters, are also relevant to loads and load
models. ‘

Obiective U .

These are uncertainties associated with random variables for which statistical data can
be collected and examined. They can be quantified by a mean, a coefficient of variation,
and a form of the probability distribution function derived from available statistical

information. The variability in the yield strength of steel is an example. ‘

Sibieciies 1) . |

These are uncertainties associated with the lack of information and knowledge. The;l
are typically quantified on the basis of the engineer's prior experience and judgement.
Examples of these mcludc assumptions in the analysis, error in the design model, and
empirical formulae. The following subjective uncertainties contribute to strength
variability:

a) Effectiveness of plating, e.g., due to shear lag
b) Use of Navier hypothesis in calculating hull girder response
¢) Initial deformation and residual stress effects

Il U -
This kind of uncertainty is inherent to the variable, and cannot be reduced because of
additional information. This is a term that in many cases may involve the same sources
as "objective” uncertainties. Examples are the inherent variability of wave heights,
extreme wave bending moment or the variability in yield strength. ‘

Model Uncertainties |
These uncertainties arise because of errors in the prediction models as they representl
reality. They can be reduced with additional information. Model uncertainties are
typically estimated based on comparing the analysis procedure with experimental data, or
in some cases using professional judgement or other indirect information such as the non-
occurrence of cracks in relation to expectation. Some sources of model uncertainties are
described under "subjective uncertainties”. The largest model uncertainty in marinell




structures usually relates to loads such as slamming loads. Strength prediction
techniques (e.g., for buckling strength) also have their own model uncertainties. This
type of uncertainty is usually quantified in terms of a bias (i.e., actual value to predicted
value ratio) and a coefficient of variation.

Structural System Modeling

The behavior of a structure that can fail in more than one mode of failure is modeled
for structural reliability evaluation purposes using structured representations of system
behavior. Series, parallel or general system representations are usual. A general system
representation may take the form of a cut set (parallel subsystems connected in series)
representation or a link set (series subsystems connected in parallel) representation.
Failure tree representations are also possible. Reference is made to [6].

Series System:

A series system is one that is composed of links connected in series such that failure
of any one or more of these links constitute a failure of the system, i.e., "weakest link"
system. In the case of the primary behavior of a ship hull, for example, occurrence of
any one of a number of modes of failure will constitute failure of the hull. The multiple
failure modes can then be modeled as a series system.

Paralle] System

In a parallel system, all links along the failure path must fail for the structure to fail.
An example is a multicomponent redundant structure such as a fixed offshore platform,
in which a failure path is the failure of a group of members which leads to system
collapse. The failure event resulting from one failure path can be modeled by a paraliel
system.

Since there typically are many different failure paths, each represented by a parallel
system, and since failure can occur in any one of the failure paths, the entire system can
be modeled as a giant series system with parallel subsystems, each representing a failure
path.

7.3 Structural Reliability

In this section, we consider terminology related structural reliability, reliability
methods, and probabilistically based structural design codes.
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Reliabili
This is the complement of the probability of failure p,, ie., rehabthtyxsthe
probability of survival, given by 1 - p;.

Safety Margin
This is the difference between capacity and demand, or strength and load. Elther

mean or characteristic values may be used to determine the safety margin.
I

i |
Level L IT and [T Reliability Methods

The basic concept of Level III reliability methods is.that a probability of failure of a ,
structure always exists, and may be calculated by integrating the joint probability density‘
function of the variables invofved in the foad and strength aspects of the structure. The
domain of imtegration is the unsafe region defined by the variables.

Because of the difficulties involved in determining the joint density function and in
calculating the multiple integration, Level II methods for obtaining the safety index and
the related probability of failure were introduced. In Level II methods, the probability
content of the failure domain is obtained using approximations to the failure surface.
FORM and SORM, described elsewhere, are Level II methods. Primarily because of the,
approximations made to the failure surface, and also because of approximations involved
in the inclusion of distribution information, the probabilities of failure calculated from|
Level I methods are not exact. However, ﬂwmethodsmmycfﬁcmmdnsad}y&
good approximation is obtained. ’

Level I refers to safety factor based design formats that are very similar to traditional
design formats and safety check equations, except that the safety factor(s) are obtained’
on the basis of Level Il methods to assure a certain target reliability level. ‘

|
|
Safety Index:

The safety index is a number that is inversely related to the probability of failure. | \

The safety index B and the probability of failure are related by

= o(B)

where & is the standard normal distribution function. A safety index of 2.3 translates.
roughly to a probability of failure of 1/100, 3.1 to 1/1000, and 3.7 to 1/10000. A safety ‘
index of zero corresponds to a probability of failure of 0.5.
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Hasofer-Lind Safety Index

In the history of structural reliability theory, there have been several definitions of the
safety index, some fell from favor because of a problem known as lack of invariance. By
this, it is meant that mechanically different limit state functions representing the same
physicat failure mode resuited in different vafues of the safety index. The Hasofer-Lind
index does not suffer from the lack of invariance problem.

First Order Reliability Method (FORM

The essential steps in this method of reliability analysis for the determination of the
probability of failure are:

a)

b)

The basic correlated random variables X defining the limit state function G(X) =
0, with prescribed probability distributions, are transformed to a set of
independent standard normal variables U.

The limit state surface g(l)) in the standard normal space is approximated by its
tangent hyperplane at the point of the limit surface closest to the origin. This
point has the highest probability density, and is called the design point or the
most probable failure point.

The probability content within the linearized failure domain is found as an
estimate of the actual failure probability. The FORM probability of failure is

p; = P(-B)

where B is the reliability index, which is also the distance of the design point from
the origin in the u space. The FORM reliability index is invariant for
mechanically different limit state functions representing the same failure event.

Backwiiz Fieuer Tranes .

In calculating the safety index, it is necessary to include information related to the
form of the distribution of the basic variables. The tail of the distribution of the random
variables is usually the location where most of the contribution to the probability of

failure comes from. In the Rackwitz-Fiessler transformation, an equivalent normal
distribution is fitted to the tail of the nonnormal distribution at the most likely failure
point (design point). The method requires the cumulative distributions and the
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probability density function of both the actual distribution and the normal distribution be
equal at the design point.

S | Order Reliability Methods (SORM.

In SORM, the essential steps are similar to FORM, except that the limit state surface
in the standard normal "u" space is approximated by a second order approximation such
as a hyperparaboloid fitted with its apex at the design point. The failure domain
probability content within the second order approximation is then estimated. For
hyperparaboloids, the probability content can be "exactly” estimated. |

Safety Check Equation

In structural design, the performance of the structure is checked using safety check
equations. In the working stress approach for fixed offshore platforms as embodied in
API RP-2A Recommended Practice, for example, the maximum or yield strength is
divided by a safety factor to obtain an allowable stress. Designs are then limited so that|
the maximum calculated stress under extreme operating loads does not exceed the:
allowable value. This example safety check is of the form

:%2D+L+W+othcrloadeffects ‘

where R = nominal component strength
SF = safety factor
D = nominal gravity loads on components
L = nominal live load effects on components
W = nominal environmental load effects on components

Nominal loads are all combined with factors of one, and constant safety factors 1.67 and
1.25 are used for operating and extreme loadings. There are typically many safety check
equations to be satisfied in a design, each of which addresses a different failure mode or
design concern. |

Partial Safety Factor Format

A safety check equation in a partial safety factor format employs multiple safety
factors, which may address uncertainties in component loads, resistance, and also failure
consequences, non-coincidence of peak loads from different sources, etc. Because there
is more than one safety factor employed, the format is more efficient in that factors of

1
[
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safety are placed in a manner more commensurate with individual demands and

uncertainties. Also, the partial safety factors are usually obtained using Level II
reliability methods, consistent with a required target reliability level.

A sample partial safety factor format is that recommended in the Load and Resistance
Factor (LRFD) version of API RP-2A. This is given by

O R; > YD+ L+ W+

where R, = nominal strength or resistance of component i
@, = partial resistance factor for component i
D = nominal gravity or dead load effect
Yp = load factor for dead load
L = nominal live load effect
v, = load factor for live load
W = nominal environmental effect with prescribed return period
Yw = load factor for environmental load

Each resistance factor @y, is calculated as a product of two factors, one representing
strength uncertainty, and the other taking into account the consequennce of failure of the
component and the structural system. The load factors  are also calculated as a product
of two factors, one representing uncertainty in load intensity, and the other, uncertainty
in the related analysis procedures.

A partial safety factor format is a Level I reliability based format if the safety factors
employed are obtained from reliability analysis with a prescribed target reliability.

Noginsl o O3 istic Val

Traditionally in structural design, nominal or characteristic values are used for the
basic design variables appearing in safety check equations. For loads, characteristic
values on the high side of the mean are typically used, while for resistance, characteristic
values on the low side of the mean are used. Thus for example, in ship design, safety
check equations involving yield strength use the rule minimum yield, which typically is
about 15% lower than the mean value. The terms "characteristic” and "nominal” are
interchangeable, but an occasional distinction appears in the literature where a
characteristic value refers to a nominal value that is selected on the basis of a probability.
For example, the characteristic yield strength may be a 5-percentile value, i.e. there is a
95% chance that the actual yield strength is greater than the characteristic value.
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Code Calibrati

This is the process of selecting a target reliability level and a corresponding set of
partial safety factors for use in a probability based design code. Reliability analyses of
comparable past experience (existing structures, and systematic structural designs to
traditional codes) are useful in the code calibration process.

Code Optimizat
This is the process of selecting partial safety factors for use in probabilistically based

safety check equations in such a manner that the scatter in the reliability of structures
built to the code is minimized, and centered around the target value. |




8. Extrapolation Techniques for Design Loads

In this chapter, extrapolation techniques for determining lifetime extreme wave loads
for design are identified. For purposes of discussion, a stochastic wave load process is
considered. The effective wave loads give rise to stress at a point, which include stresses
arising from hull girder bending in two planes, torsion, external pressure, internal tank
loads, etc. with proper accounting of phasing.

Extrapolation techniques for the wave load effect are first considered. The definition
of design loads is subsequently investigated.

8.1 Identification of Techniques

There are two broad classes of techniques for the determination of the maximum
wave induced load over the vessel design life. These are:

a) Short term techniques, in which the short term statistical characteristics of the
wave load process in a storm condition are used to obtain the distribution of the
extreme load, and a characteristic design load.

b) Long term techniques, in which the long term distribution of the wave induced
load is obtained. That distribution includes within it all load peaks possible
considering every seastate. A characteristic design load is then defined based on
‘the long term distribution.

The essential difference between the two classes of methods is that in the short term
approach, the extreme load distribution in a few high seastates is separately obtained for
each, and the characteristic design load is typically taken as the largest among values for
the various seastates, while in the long term approach, the design load corresponds to a
given exceedence probability (e.g., 10-%) on the long term distribution. These two classes
of techniques are now described.

8.1.1 Short Term Wave Load Extrapolation

If the wave loads acting on a vessel can be represented as a stationary Gaussian
random process, which is usually an adequate assumption over the duration of a seastate
lasting a few hours, then at least two types of methods are available to predict the
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distribution of the maximum load. These two methods, among others, are described fn
detail by Mansour in [6]. In the first method, the peaks are assumed to be statisticallly
independent and identically distributed, and the distribution of the largest peak in N-
peaks is determined using classical order statistics. In the second, conventional
upcrossing analysis is used for determining the extreme value distribution. |

A. Distribution of largest peak by order statistics

The distribution of the largest peak in a sequence of N-peaks can be determined using
standard order statistics. Consider a sequence of random variables, z;, z,, ... 7'1,
representing the peaks of a load on a marine structure. Assuming that these peaks are
identically distributed and statistically independent, the cumulative distribution function

of the largest one is given by

FZN (z2) = P[max (z,,z,,..2) < Z]
= [F, &N |
where F, (z,€) is the initial comulative distribution function of the load peak (maxima)
and € is the spectral bandwidth parameter defined from
2

U

m, = [ o* Swydw; 1=024

Here, @ is the radian frequency. The probability density function (pdf) of the largest
peak is determined by differentiating the c.d.f. with respect to z, thus

£, @ = NIF, @)™ - £, (zg)

where f, (z,€) is the initial p.d.f. of the load peaks. For an arbitrary bandwidth process‘,
the initial distribution of peaks within a short term seastate, considering positive maxima
alone, has been derived by Ochi (J. Ship Research, 1973). For a definition of positive
and negative maxima and positive and negative minima, see Figure 8.1. In the narrow
banded case, the conventional Rayleigh density and distribution functions apply. |
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Based on the Ochi distribution and order statistics, it can be shown that the modal
value, i.e., the most probable maximum load in N-peaks is approximated by

s 23] [ 202
Yo [un{“«fl-—ez NH

The approximation was derived by Ochi considering large N and € < 0.9. It can be
shown that there is a 63% chance that the largest response will exceed the modal value.
Other percentile values of the extreme value distribution were also obtained by Ochi, in
terms of a "risk parameter” a.. He chooses a very small number, o (e.g., 0.01) and

obtains a non-dimensional extreme value &y such that

Extreme value of maxima _ §
P [in N peaks = §~]

For £ £0.9, N large, and o small, it can be shown that

Ex= JM{EEJ

1+41-¢2 @

The dimensional extreme value is equal to the non-dimensional extreme value multiplied

by my.

B. Extreme value distribution based on upcrossings

The distribution of the largest peak can be determined from upcrossing analysis of a
time history of a stationary random process instead of the peak analysis described above.
Principles behind the upcrossing analysis are described by Mansour (Ship Structure
Committee Report 351) and will not be repeated here. The essential problem is one of
determining the first passage of a random process x(t) of a level "a" within a given time
interval T. Based on a level crossing analysis, assuming that the individual level arrivals
are independent and Poisson distributed, it can be shown that the cumulative distribution
function of the largest x value, denoted Z, is

F; (@) = exp (-v, (@) T)

69




where v, (a) is the expected number of level crossings per unit time. This is given by |

a2

V; (@) = vyexp (' E)

In the above, v, is the zero crossing rate, which for a narrow band process, is

vo=L [E2
2x {m,
The above cumulative distribution function for the largest value ignores the tendency f&r
upcrossings to occur in clumps, because of the assumption of independence. The
solution overpredicts extreme values. To consider clumping, an upper bound envelope to
the given process can be constructed, and the first passage probability for the envelope
process obtained. The upcrossing rate vy(a) for the envelope of a Gaussian process is
given in standard structural reliability textbooks as

m’ a
ve(@)=+2n [1- vx(a)
m,m, /m,

In general, this upcrossing rate will not lead to a decreased bound, since the envelop];

may have excursions above the level without there being actual process upcrossings.
Such crossings arc termed “"empty”, while otherwise they are called "qualified”
upcrossings, a terminology devised by Vanmarcke (ASME, J. Applied Mechanics, March
1975). Vanmarcke obtained an estimate of qualified excursions, which was later refined
using a Slepian regression model by Ditlevsen and Lindgren (J. Sound and Vibration‘,
1988).

To date, the Ditlevsen and Lindgren solution is the best available. Based on it, the
cumulative distribution function of the maximum value for an ergodic Gaussian narrow
band wave load process. becomes. (Cramer and Friis. Hansen, "Stochastic Modeling of the
Long Term Wave Induced Responses of Ship Structures,” submitted to Journal of Marine

Structures): |
|
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2 \1
F,(a)= [1_ exp(- 2a . chp Tr,(a) vy ::,)
l-cxP[_Z mo)

where vg (a) was previously defined, "a" is the level value, and r, (a) is given, for
moderate spectral skewness, from

2 _ .2
| ‘D[Yz“u i :I’%
1-1,(a) =2 ¢(m)| 1 - V2R ————— [ dn

where

The extreme value analysis based on the upcrossing rate, as obtained above, provides
a cumulative distribution function of the extreme value, accounting for clumping of
peaks. It is derived for a narrow band ergodic Gaussian wave load process, although
based on simulation comparisons, it seems applicable to relatively wide band processes
also. It is worth stating that the probability density function of the maximum value has
not been obtained.

C. Calculation of the short term extreme values

Short term extreme values based on the peak or level crossing analyses are calculated
seastate by scastate for several extreme wave conditions. Within a seastate, the extreme
values depend on (are conditional on) vessel heading and speed. Typically in treating
low frequency wave induced loads, the speed within a seastate is assumed constant'and
extreme values conditional on different wave headings are obtained. The extreme value
for the seastate is obtained by unconditioning with respect to vessel headings, i.e., the
wave load extreme values for each heading are multiplied by the heading probabilities
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and added. The largest characteristic extreme load among all seastates considered may
be used as a design load.

8.1.2 Long Term Wave Load Distributions 1

In the long term approach to the entire density or distribution function of the wave
induced load is obtained, considering the following:

(i) Frequency of occurrence of various sea states.
(ii) Frequency of occurrence of various spectral shapes within each sea condition.
(iii) Ship route and frequency of encountcriﬁg each seastate and spectral shape.
(iv) Frequency of occurrence of various vessel headings. ‘
(v) Frequency of occurrence of various vessel speeds.

(vi) Frequency of occurrence of various ship loading conditions.

(vil) The expected number of load cycles for a given sea, wave spectral shape,
speed and heading.

The consideration of various spectral shapes within a seastate is characteristic of some
procedures based on seastate groups, where the seastates possible in the long term are
grouped into a small number of "weather groups”. An example will be given later.
Taking the various factors noted into consideration, the probability density function
of the load peaks applicable to the long term response can be written for each ship
loading condition as: ‘

ZZZZ n, P; P; Px p. f.(x)
f(x) = =

r 4
Y n.pip;pip,
i ] k ¢

where f_(x) is the probability density function for the load peaks in the short term, and
n, is the associated number of peaks per unit time. For a narrow band process, n, is
obtained based on the Rayleigh density for peaks in the short term, as
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_1 [m,
Sy rT;,
The weighting factor p; represents the ‘expected occurrence probability for the sea
condition, p; for the wave spectrum shape, p, for headings m waves in a given sea and
spectrum shape, and p, for speed in a given sea, spectrum shape and heading. The total
number of responses expected during the vessel life then becomes

NT=2222(noPinPth)XTX602
i] k2

where T is the total sea exposure time in hours. The formula for the probability density
function and the total number of cycles applies to wide band short term processes also,
with n, and f_(x) appropriately calculated. The cumulative distribution function of the
wave load in the long term is also similarly obtained.

It is worth reiterating that in the long term approach, distribution and density
functions in the long term are obtained by weighting and adding the short term density
and distribution functions. The short term density and distribution functions
corresponding to the peaks (e.g., Rayleigh distribution) are generally used. For the long
term distribution thus obtained, the probability scale includes each peak or load cycle.
The load corresponding to a 1/Ny exceedence level is often used as the design load. If
N; = 108, as is the case in merchant ships, the exceedence level is 108, and the
corresponding "10-8 load" is used as a design load.

The Weather Group Approach

In the typical long term approach, a wave scatter diagram for the long term is used.
Each bin in the scatter diagram characterizes a seastate defined by a significant wave
height, a spectral period, and an associated occurrence probability. In calculating the
wave loads, one analytical seaspectrum such as that due to Bretschneider or ISSC, is used
for each bin of the scatter diagram.

In an alternate approach, the long term wave environment is discretized into weather
groups, with associated probabilities. For the average North Atlantic, Lewis in 1967
suggested the following weather groups and associated frequencies of occurrence:
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H,,, feet % occurrence ‘

10 84.54 ﬂ
20 13.30
30 2.01 |
40 0.14
482 0.01 |

In each weather group, more than one preselected wave spectrum (typically about 1(‘))‘
must be used for the short term wave load calculations. The spectral forms used are
typically based on measurements, and represent a range of wave peak frequencies. The
long term distribution is constructed from the short term distributions. In the process,
some weather group methods may assume each spectral form within a weather group to
have predefined probabilities of occurrence. Others may use additional (predefined)
information on the spread of short term mean square values within a weather group.

The weather group approach may also be termed a "spectral family" approach.
Spectral families for the North Atlantic, which is the design wave environment for
merchantships, have also been provided by Ochi, SNAME Transactions, 1978. A
weathergroup approach based on wave spectral measurements in the North Atlantic is
used by the American Bureau of Shipping for vessel structural assessment for
unrestricted service. ‘
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Fig. 8.1 Explanatory Sketch of a Random Process
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8.2 Determination of Design Loads |

" Methods for the extrapolation of wave induced load were considered in the previous
section. In this section we consider how design loads are defined. There essentially are
two possible criteria for the definition of design loads. These are to |

aJi‘s
I

a) Select the loads such that a certain level of exceedence is acceptable on the b
of either short or long term procedures.

b) Select the loads such that the structural reliability level considering one or more
limit states is acceptable.

We illustrate the two procedures considering a stillwater load, a wave induced load anq a
strength variable. The problem of treating combined loads for the same purpose of
identifying design loads is an advanced one, and is in fact part of a ship structure
committee research project on Load Combinations, SR-1337. Our more basic treatment
considers the stillwater load, wave load and strength to be independent of one another.

8.2.1 Selection of Maximum Load Effect for Design |
|

With a single wave load present, there is a one to one correspondence between the
load and the load effect. In this context, the stillwater load is not specifically considered.
Because it is essentially constant over voyages that last days or a month, its inclusion or
consideration does not pose a difficult problem. The only question to be answered, then,
is how to determine the maximum expected wave load in the lifetime of the vessel. Such
load is pertinent to structural design for extreme loads. |

We previously described two methods for obtaining the distribution of the largest
wave load peak, either by using order statistics or by level crossing analysis. These two
classes of methods apply to a short term, i.e., seastate by seastate analysis. We a]sp
described methods for the construction of the long term wave load distn'butior{x,
considering every load peak in each seastate. The following are the typical ways of

defining the extreme wave load for design, based on the above approaches:

Short Term Analysis:

In design, the largest wave load is defined considering the most probable value of the
wave load distributions in each possible seastate. The number of short term wave load
peaks N is computed from the zero crossing period for each seastate. The design wave
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load is the largest among the set of short term most probable extreme wave loads for the
selected seastates.

The seastates should be selected on the basis of an acceptable return period and/or
acceptable probability of the ship encountering such seastates. The latter depends on the
operational life and the route of the ship. Reference [6] describes techmiques for
computing probability of encountering a seastate of a specified return period, as well as
techniques for determining a seastate with a specified return period based on wave data.

Long Term Analysis

In this method, the design value is taken to be the largest wave load with an
exceedence probability of 1/N, N being the total number of wave load peaks. In
calculating N, and in obtaining the long term distribution, each wave load peak possible
is considered. If the total number of load peaks is 108 in 20 years, for example, the
design value is the 10 exceedence level value from the long term distribution. This
value is said to occur once in the lifetime of the vessel.

While not usual, risk parameter can also be included in the long term approach. The

design value of the wave load, ZN , is then determined such that

where o is the risk parameter, e.g., 0.01, N is the total number of cycles (i.e., wave load
peaks) in the long term, and F(Zy) is the cumulative distribution function of the long
term wave load.

8.2.2 Design for a Target Reliability Level

Probabilistic methods provide a mechanism for obtaining extreme design loads for a
structure with the required target reliability or failure probability. The design safety
check equation for the limit state may take the conceptual form

where ¢ is the strength partial safety factor, and vy, and 7, are the still water and wave
load partial safety factors. The C, D, and D,, are characteristic values of the strength,
still water and wave loads. The seastate that defines D, was previously identified. The
problem is then one of determining ¢, ¥, and y,, considering the uncertainties in strength
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and loads, such that a target reliability level is achieved. Level 1 reliability methods can
be used in this process. The derivation of the partial safety factors associated with each
design variable, including the loads, for a target reliability level is described in Part 1 of
this report. For additional discussion of such procedures, the reader is referred to
Mansour [6]. |




9. Serviceability Limitstates

This chapter pertains to identification and description of important serviceability limit
states. By definition, a serviceability limit state is associated with constraints on the
structure in terms of requirements such as maximum deflection of a member, critical
buckling loads that cause elastic buckling of a plate element, or local cracking due to
fatigue. The limit state manifestations are typically of aesthetic, functional or
maintenance concern, but do not normally lead to overall collapse. The following
serviceability limit states are now considered.

(a) serviceability limit state associated with critical buckling stresses

(b} serviceability limit state associated with fatigue

9.1 Serviceability Limit State for Plate Buckling

Plate elements in a ship hull, such as between longitudinals, can buckle under applied
loads in either the linear elastic or inelastic range of material behavior. A plate that
buckles in the linear elastic regime will essentially regain its original configuration when
unloaded. On the other hand, a plate that buckles in the inelastic regime may suffer some
permanent set upon unloading. The applied stress that defines the lower limit of the
inelastic regime is that corresponding to the material proportional limit. Thus the so-
called inelastic regime includes nonlinear elastic and plastic behavior.

Buckling of plate elements in the linear elastic regime is generally acceptable in
longitudinally framed vessel hulls, although it is rare that the designer intentionally
designs the structure to behave so. The major exceptions to this occur in passenger
vessels and car carriers where the plating on decks above the weather deck from stress
considerations alone can be relatively thin, their main function being to provide the
required weather and water-tightness. In such cases, it is efficient for the designer to
allow linear elastic plate buckling to occur, the result being a lighter structure than would
otherwise be the case, and also less topside weight.

Depending on the philosophy of the profession and the organizations, bucklmg of
plate elements in the inelastic regime may or may not be allowed, the primary
consideration being aesthetic. From a material utilization point of view, plate thicknesses
can be reduced if an amount of permanent set is allowed.

In discussing serviceability limit states involving plate buckling in longitudinally
framed vessels, the following nomenclature is adopted: The plate long dimension
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(length) is assumed to be parallel to the x axis, or the vessel longitudinal direction, and is.
labeled "a". The plate width or small dimension is taken parallel to the y axis or vessel
transverse direction, and is labeled "b". The plate aspect ratio a/b is always larger than or
equal to unity. The plate thickness is denoted "t". The plate element is considered under
uniform inplane compression, either in the longitudinal direction (the so-called long plate
case) or in the transverse direction (the so-called wide plate case). Another load case
considered is the plate under uniform edge shear. The serviceability limit state is reached
when the applied stress equals G, or G, where the limit G, applies in the linear elastig
range, and G, applies in the inelastic range.

Uniform C :

For long plate compression,

o —k——-—’tzE (1)2 l
® T 120-v¥)\b b

where k = 4 for simply supported edges. For other edge conditions, the buckling
coefficient K can be obtained from the attached Figure 9.1. If 6 S Op, the

proportional limit,

Otherwise,

— 0', GCRZ
cn.(cv —Op )"‘ O’

Op

In the above, Gy is the material yield strength.

For wide plate compression,
Ox = k__an (—t-)z
®T120-vH\b

2
where k= (1+ bZZ) for simply supported edges. If 6 < Op, the following applies.




Edge Shear
The critical buckling stress is given by

T —k—"zE (1)2
® " 12a-v¥) \b

b2
where k=5.34+ 4(;)

for simply supported edges. If the edges can be considered clamped, the buckling

coefficient k takes the form
2
k=898+¢ 56(2)
a

In the linear elastic range, that is, if Ty < cﬂf\ﬁ,
C. = T
Otherwise, the limit stress is

3T, T’

Op

where T, is the shear yield stress, equal to cyf\ﬁ.

The above solutions defining the serviceability limit states under uniform edge
compression or shear are based on classical buckling theory. Further reference is made
to [8]. The. limit stresses beyond the proportional limit are based on tangent modulus
corrections due to Bleich. The interested reader is referred to Bleich's book on "Buckling
Strength of Metal Structures”, published by McGraw Hill, 1952. With a tangent modulus
correction 1 included, the limit stress can be written in the following form:

c =k.ﬂ(ﬁ)2
P n2a-vH b
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where 1 = f(E,E), E, being the tangent modulus. The functional relationships defining n}

are different for the long plate, wide plate and shear cases. Hence the corresponding ©p

are also of different forms. :

9.2 Serviceability Limit State for Fatigue

The fatigue limit state is associated with the damaging effect of repeated loading
which may lead to loss of a specific function, maintenance costs, and in certain cases to
ultimate collapse. That fatigue cracks in ships are more a maintenance than a safeiy
concemn is essentially due to the ductility of ship steels. Fatigne cracks do occur in
complex structures, and design against fatigue (i.e., pfocedurcs to limit fatigue cracking
to acceptable levels) is important. |

There are various possible ways of computing the fatigue damage in a vessel subject
to a specified long term wave environment. According to [6], the different methods mzly
be classified as those based on

(a) wave height history
(b) stress range history
(c) the entire scatter diagram

This method of classification, further explained in the attached Figure 9.2, is based on the
level of detail in the treatment of the environment. Other types of classification are also
possible, e.g., S-N curve based methods as opposed to fracture mechanics based methods,
design stage methods in contrast to design checking methods, and so on. The
formulation of the fatigue limit state will depend on the details of the method used. In
this section, the formulation described is the one used in section 4.2.3 of this report.

The limit state formulation is based on S-N curves, which describe the number of
constant amplitude stress cycles to failure, as a function of the fluctuating stress
amplitude. The curve is written in the form |
NAS= = C '

where N is the number of cycles to failure, AS is the constant amplitude stress range, and
m and C are slope and intercept related constants. For design purposes, C is chosen so
that the S-N curve forms a "lower bound" to the experimental data. One typicél
statistical way of defining C is
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logC= logfl—Zcr,,'N

where C corresponds to the median S-N curve, and 0y, y is the standard deviation of log
N. Each generic structural detail type has an S-N curve. For a collection of S-N curves
typical of ship structural detail situations, the reader is referred to Munse's Ship Structure
Committee report SSC-318, "Fatigue Characterization of Fabricated Details for Design".

The wave environment is described completely by the set of seastates and their
probabilities of occurrence as defined in a scatter diagram. For each seastate, the stress
distribution can be considered Rayleigh distributed, assuming that the wave induced
stress process is narrow band and zero mean Gaussian. The Rayleigh density is of the
form

o

s _“a
f(s)=—e 7, 20
L (s) z"’jc s

where A,; is the zero moment of the stress spectrum in seastate "j". This moment is also

equal to the mean square value of the stress process. The zero-crossing frequency of the
stress process in hertz (cycles/second) is given by

gL Ay
T am A
of

where A,; is the second moment of the stress spectrum for the seastate. If the time spent
in the seastate is Tp;, where T is the total time period and p; is the probability of
occurrence of the seastate, the number of stress cycles associated with the seastate is

1 [Ay
Tp, £, =(TP)—— 2\_2’
o

Also, the number of cycles associated with a stress interval ds is [f,(s)ds] - ij fJ

The fatigue damage associated with the seastate "j" can then be calculated using the
Miner linear cumulative damage hypothesis. The damage is given by

T £ (s)ds
D.=|2"—=Tp.f
3 oNf(AS) 17
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where N(AS) is the number of cycles to failure at the specified stress range AS as
determined from the S-N curve. Substituting for N(AS), the above equation may be

rewriten as follows:

Tp.f r:
D, =—2-t 2" [ 5™ £(s)ds
c 0

=T—‘é"-5(2 2y ) r(1+%)

Here, the integral has been evaluated by substituting the Rayleigh density for f(s). From
this, and upon substituting for f; the total damage in time T, for j seastates, may be
obtained as

T 5 m
D=Y D.=—(242) r(1+-—) p. Ay @2 ) 12
zj" ' o2rC 2 2,: i) 2j

|
|
The above equation defines the fatigue damage from the entire scatter diagram, for
the time period T. If the Palmgren-Miner damage sum at failure is denoted A, the time
to failure may then be obtained:

242)°
( zn) F(1+%) Zpi loj(m—n/z 7‘2,'”2

J |

Equation 4.5 of the text is directly obtainable from the above equation for time to failure.
That equation also includes a stress inaccuracy term B which represents the "modeling
error” in the procedures used to compute the wave induced stress.

The above definition of the fatigue limit state equation in terms of the time to failure
assumes that the stress process within any seastate in the scatter diagram is narrow
banded. A correction for the possible wide banded nature of the process is available, see
Wirsching and Light, ASCE Journal of Structural Division, Vol. 106, No. ST7, July
1980. The wide band correction was derived by Wirsching and Light using rainflow
counting on simulated time histories of differing bandwidths to obtain the stress range
histogram and then computing the fatigue damage, which then was compared to that
predicted from the narrow band assumption. The importance of the refinement obtaineﬁ

|
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by including the correction is relatively small when compared to the inaccuracies
introduced by the stress modeling error in particular. Also, the correction assumes the
estimates obtained by a rainflow count based procedure to be the correct ones.
Nevertheless, the rainflow correction provides a means for obtaining a fatigue damage
estimate that is somewhat more realistic than that calculated using the narrow band
assumptions. For typical stress time histories in ships, the effect of the correction is to
reduce the calculated damage.
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Fig. 9.1 Buckling Coefficients for Plates in Uniaxial Compression
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10. Limit States Associated with Lifetime Extreme Loads

The aim of this chapter is to identify and describe the appropriate limit states
associated with lifetime design extreme loads. The following global limit states are
considered:

(a) Hull girder initial yield limit state
(b) Hull girder fully plastic limit state
(c) Hull girder collapse limit state

The strength associated with the following local buckling limit states are also considered:

e Column and beam column buckling of longitudinals
e Torsional/flexural buckling (tripping) of longitudinals
e Grillage buckling of longitudinals together with transverse beams

The global limit states apply to the hull girder as a whole. The local limit states
apply to portions of the hull girder, e.g., longitudinals between transverses, longitudinals
and associated flange plating between transverses, or gross panels consisting of
longitudinals and transverses. Plate buckling per se is not considered, except to the
extent it reduces the effective flange plate acting together with the longitudinals.

Global and local behavior are interlinked, and an argument may be made that
consideration of global behavior alone is sufficient provided the consideration is detailed
enough. Nevertheless, a two level approach is used because

(a) Separate consideration of local behavior affords the designer more control over
material deployment.

(b) Local behavior is often indicative of global behavior.

(c) A two level limit state design procedure is more consistent with present
conventional design practice.

(d) The fact that local behavior has been controlled in design to acceptable levels can
lead to procedural simplifications in the consideration of global behavior. A
simple example is a situation where, if buckling cannot occur in any local portion
of a longitudinally framed tanker to a given load level, global considerations can
usually exclude buckling, again up to that load level.
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10.1 Hull Girder Limit States
10.1.1 Initial Yield Limit State

In this limit state, hull girder behavior as a beam is considered. The geometric
property that characterizes hull girder behavior is its section modulus. It is assumed that
under the applied extreme bending moment, the various elements of the hull cross section
remain stable, i.e., no buckling occurs. The stress at any location 'y’ above the neutral
axis of the hull girder (see Figure 10.1) cross section is given by

_ M)y
o I(x)
where ©, : the primary longitudinal bending stress at Jocation x
y : distance from neutral axis of section to the location where the stress is

computed
M(x): External bending moment at longitudinal location x

I(x) : moment of inertia of the cross section at longitudinal location x

Note that I(x)/y is the elastic section modulus, and the stress is maximum for minimum
I/y, i.e., maximum 'y' distance. One can define the first yicld moment for the cross
section as follows (location parameter ‘X' omitted).

M, =SM.0,

where M, is the first yield moment, SM, is the minimum elastic section modulus at the
location of maximum bending moment, and G, is the material yield strength. This

expression assumes elastic behavior until the stress at the extreme fibers reach yield. The L
first yield moment is in principle different for different longitudinal locations. At any
location, the first yield moment is only realized if buckling does not occur. Nevertheless,
the first yield limit state is commonty used as a convenient strength characterization
parameter in ship hull design.

10.1.2 Fully Plastic Limit Siate

In the first yield limit state, the limit strength was defined as
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M;, = SM. o,

where SM, is the minimum elastic section modulus, usually given at any cross section as
I/y where I is the moment of inertia of the cross section and 'y’ is the distance from the
neutral axis to the extreme fiber (deck or bottom). The stress distribution is linear frorp
the neutral axis to the location under consideration, and only the maximum stress at the
extreme fiber is at yield. ‘

In contrast, in the case of the fully plastic limit state, the entire cross section of the!
hull including sides has reached yield. The changes in stress distribution from the first ‘
yield to the fully plastic limit state are sketched in Figure 10.2 for an idealized box girdes
cross section. The following are assumed:

a) Elastic perfectly plastic material behavior
b) No buckling
c) The applied external moment does not change direction ‘
|

For the box girder cross section, the fully plastic moment, defined as the internal

resisting moment with the entire cross section at yield, may be written as
|

M, = o, 5M, i

where Oy is the material yield strength, and SMp is a plastic section modulus. It can be
shown that |

D g?
SM, = Ap g+ Ay (D-£)+ 24, =-g+E

D
where Ag = cross sectional area of one hull side, the thickness being t,,
Ag = cross sectional area of bottom
Ap, = cross sectional area of deck
D = depth

The areas include stiffening and plating. The variable ‘g’ represents the distance from the
center of deck area to the plastic neutral axis. The plastic neutral axis is defined by a |
condition that the areas above and below it are equal, for purposes of force equilibrium. r

I

The location of plastic neutral axis is defined by i
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For more complicated cross sections and/or if more than one material is used in the
hull cross section, the fully plastic moment needs to be numerically calculated, i.e., close
form solutions such as that for the box girder are not available.

In general, the fully plastic limit state is not useful in a practical sense as the physical
condition it represents is seldom realized because of buckling. It has been historically
used, however, as a baseline value to which a buckling knockdown factor was applied in
order to obtain the collapse moment for the hull cross section, particularly if the cross
section is multicellular. For unicellular cross sections, a more appropriate baseline value
is given by the first yield moment. In current practice, the buckling knockdown factor is
applied to the initial yield moment as indicated in Part 2 of this report.

10.1.3 Hull Girder Collapse Limit State

The first yield limit state and the fully plastic limit state are both idealizations of hull
girder behavior. In reality, as the externally applied curvature (or moment) on the hull
girder is increased, strains internally will increase up to a point where cither the yield
strength of the material is reached, or buckling occurs depending on the slenderness of
the structure. Of particular importance in longitudinally framed vessels is the buckling
and post buckling behavior of longitudinals together with associated plating, and also in
some cases the overall buckling of the gross panel consisting of longitudinals together
with the transverse beams. When parts of the hull buckle, any additional load is "shed"
to or taken by adjacent stable material, up to the point at which they also buckle or reach
yield. As the externally applied curvature increases, typically the internal resisting
moment calculated with accounting of buckling and yielding in parts of the cross section
will increase up to a point, after which it will drop. The maximum internal resisting
moment so calculated is the so-called collapse moment, M. On the tension side of the
hull girder, the unloading/load shedding is slower and on the compression side, it is more
rapid. A typical moment-curvature diagram for a hull cross section is illustrated in
Figure 10.3.

We have not specifically considered plate buckling in the above discussion. Buckling
of plate elements in longitudinally framed situations affects the collapse moment to the
extent such buckling reduces the effective width of plating acting with longitudinals. In
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transversely framed situations, the plate effect on collapse moment is comparatively
greater.
Calculation of Collapse Moment

There are various possible methods for calculating the collapse moment. These var'y
from approaches where any reserve of stiffened plate compressive strength after its
maximum resistance has been reached is neglected, to nonlinear finite elemcxllt
calculations which include plastification and buckling in a rigorous way. The concept of
downrating or knocking down the fully plastic collapse moment to account for buckling
was suggested by Caldwell [16]. It has been further developed by Mansour [7], but with
knock down factors to be applied to the initial yield moment. Procedures incorporating
an incremental moment-curvature approach to hull collapse strength have been develope&
by Smith, Billingsley [17] and Adamchak [18]. Finite element calculations for ship hull
collapse strength are presented in Thayamballi ez al. [19].

It is not the intention to review the different methodologies for ship hull collapse
strength calculation, but we introduce in brief here, the incremental moment curvature
approach. In this method

(i) A curvature is applied to the hull, and increased incrementally.

L,

(ii) For each value of curvature, the internal resisting moment is computed,
accounting for the end shortening of the element resulting from internal
strains, including any buckling and post buckling, as well as load limitation by
plasticity. Such information is included through load-end shortending curves,
an example of which is shown in Figure 10.4.

(iii) A moment curvature relationship for the hull, such as that in Figure 10.3, is
developed, and the collapse moment identified. |

The most important part of the calculations is the establishment of the load-end
shortening relationships for the hull members, considering the various local failure

modes. i
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10.2 Limit States Associated with Local Buckling
10.2.1 General

As previously noted, these define the strength associated with column and beam
column buckling of longitudinals together with associated plating, tripping of
longitudinals, and the grillage buckling of longitudinals together with transverse beams.
The strengths calculated do not account for any post buckling reserve which is typical
small (but existent) in the failure modes noted. Also, the term "local” is used as a
qualifier to the extent that only one component is considered in the limit state. In the real
structure, there may be several such identical components under nominally identical
loading.

10.2.2 Column and Beam Column Buckling

Column buckling refers to the flexural buckling of longitudinals together with
effecting plating. The longitudinals and plating may be part of a stiffened panel between
transverse beams. The panel, and hence the longitudinal and plating are considered to be
under compression. In the beam-column failure mode, in addition to the axial load, there
are also lateral loads present. This latter situation occurs for example in the case of
longitudinals and plating at the vessel bottom. The column idealization is shown in
Figure 10.5.

Column buckling strength, without consideration of lateral pressure, is given by the

‘ following (Mansour, Ref. 8):

cr (Zc/r)z cr P
= Oy -CL o, > Op
s
where
oo n’E/(¢, /1)’
" aplay-a,)
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The first equation, valid in the range of 0 < 63 < Gp, where Op is the proportional
limit stress and O, is the critical buckling stress, will be recognized as the Euler elastic
column strength equation. In the second equation, a correction is made, based on a factor
Cs, if the calculated elastic buckling stress exceeds the proportional limit stress 0p. The
correction is such that the limit state strength calculated from the pair of equations given
will not exceed the material yield strength. |

Also, '¢_' is the effective column length, which in continuous structures where the
stiffener ends are capable of rotation, may be taken equal to the physical length between
transverse supports, and 'r' is the radius of gyration of the cross section consisting of
plating and stiffener. The value of r is given by:

where I and A are the moment of inertia and area of the cross section, respectively.
Typically, in computing these quantities, an effective plate flange assuming that the plate
has buckled is used. The plate flange width may be obtained, for short edge
compression, from Mansour, Ref. 8, as follows: L

o

1.9

!
—= = = if 23.5 |
b B P |
2.25 125 |

= 2o 1.0<p<3.5

BB

|
= 10 psi |

where B is the non-dimensional plate slendemess, defined as:

where b is the width of the short edge, i.e., the spacing of longitudinals.
In the case of beam-column buckling, the lateral pressure results in a reduction in the
critical stress to a value less than that obtained for the column buckling limit state. A

|
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relatively simple approach to characterizing limit state strength for this situation is to use
a linear interaction equation:

o, . Oy _

—t =

Ox Oy

where Oy, is the column buckling strength assuming no lateral pressure, and ©, is the
yield strength. o, is the axial stress and G, is the maximum bending stress over the span
of the longitudinal. This interaction equation assumes that tripping of the cross section,
and local buckling in the cross section (e.g., of the flange or web) are avoided.

The calculation of ©, should account for any reduction in plate effectiveness because
of buckling. The calculation of the bending stress should in principle account for shear
lag effects, although for panels with closely spaced longitudinals, the effect may often be
neglected.

10.2.3 Tripping of Longitudinals

In this failure mode, also called torsional/flexural buckling, failure is initiated by
twisting of the stiffener in such a way that the joint between the stiffener and plate does
not move laterally. A portion of the adjacent plate may participate in the twisting, and
the flange of the stiffener may twist together with the web, or the two may twist
differentially. Tripping is illustrated in Figure 10.5. The tripping phenomenon may
occur under axial loads alone, or under axial loads in combination with lateral pressure
loads.

The ultimate strength for torsional/flexural buckling under axial compressive loading
may be obtained as follows (see Reference 8):

a) Calculate the elastic tripping stress ¢, for the stiffener cross section rotating about
an enforced axis at its toe. This is given by

»

) 2 [

o, = i GJ +izc"
I, \ ¢

where G is the shear modutus for the material, } ts the torsion constant, and €, is

the warping constant. The length of the longitudinal between supports is denoted

'¢". Expressions for the torsion and warping constants as a function of cross
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v section shape may be found in the book by Bleich, Ref. 20. I, is the polar
j .moment of inertia of the cross section about an enforced axis at its toe, i.e.,

L=L+L+Ay?
\
where L, and L are the principal moments of inertia of the cross section, of area

A, and y is the web depth.

|
b) Obtain the elastic tripping stress O, considering interaction with column
buckling, by solving the following quadratic:

;—w;, -o,(c +0,)+06,.0,=0

©

|
Here, [, is the polar moment of inertia of the cross section of the stiffener, i.c., f,
+ L, and ocr is the limit state strength for column buckling under axial loads. If
otfe < Gp, where O, is the proportional limit stress, the tripping limit stress o, 1=
Oy Otherwise, otf is obtained from

The above determination of limit state strength for tripping of longitudinals under
axial loads is outlined in Mansour, Ref. 8. When lateral pressure is present, the axial
tripping strength should be modified to reflect its influence. Although more detailed
approaches are possible, one way to include the lateral pressure effects is to use a linear
interaction formula similar to that used for the case of the beam-column limit state. Such
an approach will not apply to a case where the pressure loads are the dominant ones, and
additional refinements will be needed. [ ‘

10.2.4 Grillage Buckling

This failure mode and the limit state strength associated with it refer to the buckling
of the gross panel, i.e., longitudinals and transverses, between the major suppoxlit
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members such as bulkheads. A portion of such a gross panel under compression is
shown in Figure 10.5. This problem has been extensively studied by Mansour [21,22]
using orthotropic plate theory. The following, taken from Ref. 22, may be used if the
number of stiffeners in each direction is sufficiently large, e.g., 3 to 5.

For gross panels under uniaxial compression, the critical buckling stress is given from

_k=* D,D,

== B

where B is the width of the gross panel, h, is the effective thickness resisting the
compressive loads in the x direction, and k is a buckling coefficient that depends on the
boundary conditions. For simply supported gross panels,

2 2
m
=—2+2n+-[%2-

For gross panels with both loaded edges simply supported and both the other edges fixed,

2 2

k=Z+25n4+52
p m
where m is the number of half waves of the buckled orthotropic plate, to be chosen such
that k is minimized; 1 and p are the virtual aspect ratio and the torsion coefficient,
respectively.
The virtual aspect ratio and the torsion coefficient are given by

Ip, Ip,
VL,

P=B 1D

X

Here (see Figure 10.6), D, and D, are the flexural rigidities per unit width, given by

EIl, EI

D = s _ . D.=
* s, (1-v 775 (1-v?)
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where I, and I, are the moments of inertia of the stiffeners extending in the x and y

directions (i.e., about the y, x axes), and Ip, Ipy are the moments of inertia of thie

effective plate flange alone, acting with the stiffeners in the x, y directions. S, and S, are
the x and y stiffener spacings.

The effective plate thickness h, is the average cross sectional area per unit width of

effective plating and stiffeners in the x direction, i.e. ¢

|
ho<AtS.t :

3 S I

y

|
where A, is the stiffener area, t is the plate thickness, and S, is the effective width of the

plate flange, S, <S§,. - {

Reference 21 by Mansour contains an extensive treatment of the behavior of

-orthotropic plate panels in the buckling and elastic post buckling range. Design ch

are given, which address, for exampie, the midplane deflection, critical buckling stress,
and the bending moment at midlength of the edge. The types of loading considered
include combinations of normal pressure, direct inplane stresses in two directions, and
edge shear stress. From the charts, prediction of large deflection behavior up to the onset
of yielding is possible in a practical sense. Alternatively, in a unidirectional load
situation which is a very common case, limit state strength may be obtained from thc
previously given close form expressions from Ref. 22. That solution is not valid bcyond
the linear elastic regime, unless corrections of the type made for column behavior are
also made in this case.
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Figure 10.1 First Yield Limit State Definitions
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Figure 10.2 Development of the Fully Plastic Limit State
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Figure 10.3 Moment-Curvature Diagrams for a Ship Hull
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Figure 10.5 Stiffener Plate Failure Modes
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11. Conclusions and Discussion

11.1 Summary and Major Results

Two demonstrations have been carried out in this project; a demonstration of
probability-based Rule calibration (Part 1), and a demonstration of probability-based hull
girder safety analysis (Part 2). Also, an extension to the project, Part 3 defined ldads,
strength and structural reliability terminology, identified ultimate and serviceability limit
states, and considered procedures for load extrapolation and load definition.

In the first part, the calibration procedure was described and applied to ABS hull
girder longitudinal strength formulation. For this purpose 300 "ABS Ships" are
considered and the minimum required section modulus of each has been determined
according to ABS Rules (see Appendices 1 and 2). The safety index § was then
determined using first and second order reliability methods. It was found that the safety
indices vary slightly and that variation depended only on the ratio of the wave bending
moment to the stillwater bending moment. The range of the safety indices, Brange=Bmax-
Buin, Was found to be 0.31. The average value of the safety indices fi,, was found to be
3.2.

The aim of the calibration procedure, which is described in detail in Part 1 of the
report, is to eliminate this variation in § in order to achieve uniform safety standard for
all ship sizes. The target B value was taken as the average value,=B,,=3.2. The
calibrated formulation, which is based on partial safety factor format, produced the target
value of B and a B, nge=0.004.

It should be noted that the calibrated formulation, in as much as the initial ABS
formulation, ensures only a safety level against deck yielding. For buckling
considerations, the stiffening system for each of the 300 "ABS Ships" must be designed
and evaluated. Buckling rule calibration is best done at the local level since the Rules
control and specify stiffener spacing, section modulus and plate thickness at a local level.
Similar calibration procedure to that described in Part 1 can be used to calibrate ABS
formulations that give minimum required stiffener section modulus and plate thickness so
as to produce uniform safety.

In Part 2 of the report a tanker was taken as an example to demonstrate the use of
probability-based safety analysis, i.e., to estimate the reliability in an existing ship (or on
a drawing board design). For this purpose several limit states have been developed
including ultimate strength (buckling collapse, deck initial yield and fully plastic
collapse), serviceability limit state (local plate buckling) and fatigue limit state. More
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realistic load estimates have been developed for each limit state, based on parametric
seakeeping and ship motion analysis. The wave bending moment has been caiculated for
the ultimate limit state with considerations given to the most probable extreme sezi
condition the ship is likely to encounter. For the fatigue limit state, stress ranges and
number of cycles have been calculated based on a sea scatter diagram.

A reliability index B has been calculated using first and second order reliability
methods for each limit state. Model uncertainty was included in all limit states. The
resulting safety indices indicate that buckling collapse is the governing mode of failure as
its safety index is well below those of deck initial yield and fully plastic collapse. |

11.2 Benetits and Drawbacks of Using Probability-based Design Method

Use of probabilistic methods in design can provide several benefits and some unique
features. Among those are:

1. Explicit consideration and evaluation of uncertainties associated with the design
variables.
2. Inclusion of all available relevant information in the design process.
3. Provides a framework of sensitivity measures. |
4. Provides means for decomposition of global safety of a structure into partial safety
factors associated with the individual design variables.
5. Provides means for achieving uniformity of safety within a given class of structures
( or specified nonuniformity ).
6. Minimum ambiguity when updating design criteria. ’
7. Provides means to weigh variables in terms of their significance. K
8. Provides rationale for data gathering.
9. Provides guidance in novel design.
10. Provide the potential to reduce weight without loss of reliability, or improve
reliability without increasing weight. The methods can identify and correct overly
and unduly conservative designs.
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In addition to the above benefits, reliability technology lends itself for certain use for
which it is much more suitable than traditional design methods. In reference[14],
Wirsching lists some of its use, which include:

1. To compare alternative designs, particularly in the early stages when several
competing design concepts are considered.
2. To perform failure analysis of a component or a system.

3. To develop a strategy for design and maintenance of structures which age (e.g.,
corrosion, fatigue), and to determine inspection intervals.

4. To execute "economic value analysis" or "risk based economics" to produce a design
with a minimum life cycle costs.

5. To develop a strategy for design, warranties, spare parts requirements.

6. In general, as a design tool to manage uncertainty in engineering problems.

Use and implementation of probabilistic methods are not without problems. Some of
the drawbacks are:

1. Use of reliability analysis in safety and design processes requires more information on
the environment, loads and the properties and characteristics of the structure than typical
deterministic analyses. Often some information are not available or may require
considerable time and effort to collect. Time and schedule restrictions on design are
usually limiting factors on the use of such methods.

2. Application of probabilistic and reliability methods usually require some familiarity of
basic concepts in probability, reliability and statistics. Practitioners and designers are
gaining such familiarity through seminars, symposia and special courses. Educational
institutions are also requiring more probability and statistics courses to be taken by
students at the graduate and undergraduate levels. This, however, is a slow process that
will take some time in order to produce the necessary "infrastructure” for a routine use of
reliability and probabilistic methods in design.

3. On a more technical aspect, the reliability analysis did not deliver what it initially
promised, that is, a true measure of the reliability of a structure by a "true and actual®

probability of failure. Instead what it delivered is "notional probabilities" of failure and
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safety indices which are good only as comparative measures. Only notional values are
delivered because of the many assumptions and approximations made in the analysis
producing such probabilities and indices. These approximations, deficiencies and
assumptions, however are made, not only in probability-based design, but also in
traditional design. Approximations are made in the determination of loads using
hydrodynamics theory and in the structural analysis and response to the applied loads.
When all such assumptions and deficiencies are removed from the design analysis, the '
resulting probabilities of failure will approach the "true" probabilities.

11.3 Discussion of SSC Projects in Reliability and Needs to be addressed in
Further Projects

The strategic plan of the Committee on Marine Structures (CMS) as outlined in the
Marine Board report ‘entitled "Marine Structures--Research Recommendations for FY
1992" has been reviewed. In this document, the CMS states the goals and objectives of
the plan and lists a five-year research program and development which is organim#
uader five technology areas. The technology areas are: reliability, loads -and response,
material criteria, fabrication and maintenance, and design methods. The five technology
areas consist of 23 comprehensive and well thought-out subject areas. The projects
outlined in these subject areas will undoubtedly lead towards fulfilling the goals of the
plan which include improving the safety and integrity of marine structures, improving
competitiveness of U.S. merchant shipping, and promoting the development of new
marine systems.

Based on the work carried out in this project and the review of CMS research
~ recommendations, the following areas are suggested for further development. Some of
these areas are very specific and each need to be addressed jn_depth as a limited scope
project. These gaps are:

1. Torsional/flexural buckling (tripping failure) of ship stiffeners with effective breadth |
of plating -- analysis and development of design formulation. i |

l

|

2. Ultimate strength of ship hull girders due to instability -- analysis to determine
strength reduction factors due to instability to be used in design.
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3. Experiments on hull girder ultimate strength to verify analytically calculated strength
reduction factors.

4. Selection of wave spectra (or wave data) pertinent to design wave loading on ships.

5. A study leading to the determination of the ratio sag to hog wave bending moments
and the bias associated with linear ship motion load prediction.

6. Design formulation for combined wave and slamming bending moments.

7. A study of shear forces and moments acting on the forward pa'rfof,. a ship including
slamming effects. '

8. A study leading to target reliabilities for each hull girder limit state based on existing
ships. '

9. Development of reliability procedures and target indices for local structure in ships.

10. A study to develop a reliability-based cost analysis which aims to achieve minimum
life cycle costs for ships.

11. Development of a reliability-based strategy for inspection intervals and maintenance
of ships.

12. Inclusion of system reliability considerations in fatigue and muitiple failure modes.

13. Reliability assessment of transverse structures and lateral pressure effects.
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APPENDIX 2

Means and Standard Deviations of Msw, Mw, and SM of "ABS
Ships”
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APPENDIX 3
3.1 Calculation of Plastic Moment Capacity

3.2 Calculation of Critical Buckling Stresses

3.3 Calculation of Effective Section Modulus after Buckling
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3.1 FULLY PLASTIC MOMENT CAPACITY

M, = fully plastic moment = M) - f,

£, = vyield strength of the material = 259 N/mm? (37.6 ksi)

SM), = plastic section modulus

From SSC219 "Ultimate Strength of a Ship's Hull Girder in Plastic and Buckling
Modes":

2 .
(SM), = Apg +2(Ag+ Agx) [5- £+ |+ AgD - ©)
P 2 D

_g; AB + 2(As + ABLK) - AD
D 4As

= 0.591

D=2m = g=14181m.

(SM), = 5.8376 - 10° mcm®

Ratio between plastic section modulus and the elastic section modulus:

(M), _ 5.8376-105 _
(SM), ~ 4.65767-10° =

Also,
Ap = 1.4645- 106 mm?
Ag = 19934106 mm?
Ag = 7.9654-10° mm?

Agix = 6.5830- 105 mm?




2.

. 0{! -

: \.‘l-.‘ OfF

%;

1Y -2 4

"

ons

|
|
!
|

where used in calculati

TANKER MIDSHIP SECTION
Scantlings called out
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3.2 CRITICAL BUCKLING STRESSES

Calculations follow Ref. [8]

L Plates Between Stiffeners

Considering only vertical bending moment, so uniaxial compressive stress:

[- %
E = 2.1-10° N/mm?
-t. -
Hm= [Om o= 259 N/mm?
6, = 0.6(259) = 1554 N/mm?
¥ 5.4 m — ab>1
Ul Limit S
[
\-"/1
(» ¢ o
G-;J if B 33.5
6w 225 1.25
- = = - o2 1I0<Ph <35
Go B P P
1.0 p <10

b_ & 100 [ 235
p:t\E— 21 \21-108 = 13

6w 225 _1.25
6  1.593 7 (1.593)

2 = 092

N
0.92-259 = 238.3 o

.




Serviceability Limit S

o 2 !
B E t . |
oAb ess |
6‘ =]
“ Cl‘o
C+ 1 6> &
o, 4nE  (tY _4-x%2.1-10°( 21 ) N
C, o= o, = —) = ) =334.8

' o,lo-o, « 1211-v2i(b 12(1-0.3?) \ 1000 Z |

334.82 |
155.4(259-155.4) — 696 |

C[=

., = 334.8L2 > 0, = 155.4l2
mm mm

- ,=6'96(259)=226.46 Nz‘
6.96+1 mm*|
IL Stiff | Effective Plati

The compressive strength of the stiffeners together with effective plating is
considered. Only ultimate limit state is considered, because when a column buckles it
reaches immediately its uftimate strength.

The effective plating under edge compression is determined from:

b =b(9i)=1000-0.92=920mn

[
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) be, ® 920 mm )
—T—EE 3 2
= oo - %
¢ [ c
-
~{
%)
C = 363.6mm
Ix = 6.692 - 10% mm*
A = 3.2816 - 10* mm?
I
r = \/; =-142.8
1 = 5400 mm
n2E .
R if o <0
Oy =
L
0'0' CS Ccr > O'p
Os 2E N
Cs 0,(0, - Op) Os = (2 O = 248 2




OL Gross Stiffened Panels |

A T 4 |
o P .3
1 = ﬂ_ J
= =
_i;-ln g:
5 St00 —» =
2m E
‘ ooy
C
i
O
L
E
0=
J Gl
! (o
—_—e F "_=&§
bes
= r— — g ¥}
| 1| veosiss .
_J J J It’ 1335.33
< 2.6 o ’

by = b(%) = 920 mm (from previous calculations)

b., (from buckling considerations) = 0.221(5400) = 1193 mm

b, (from shear lag analysis) = 0.9(5400) = 4360 mm
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A = 3.2816- 10* mm?

I, = 3.2816- 108 mm*

I, =1363- 109 mm*

e = 450.5 distance from neutral exis to shear center y, = 96.9 mm
I, = L +L+Af =234 10° mm*

I =L+I =2035- 10° mm*

920-213 + (450 + 231) 303

J = torsional const = 3 = 7.08 - 106 mm*

214502 9203 - 303

= oo 2 Sl A A M . 109
C,, = warping-constant = — 15 9203 + 308 = 9.567 - 10

E 2.1-10° N
G=50np~ 26 =80 105z
(. TEC,) N
§ = 1 (GJ —7—“‘) =244
€, = 248-m—rjng

Elastic Range: Consider interaction with flexural buckling.

i

c N
L Ok - Oy (Op+0)+0;-0, = 0 Gy = 181 =3
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if) Plastic Range:

).

= (170 2

Site

x 1.4386 - 1010 + 4.44 - 109 + 1.133 - 10! = 1.3213 - 10!! mm*

equivalent thickness of plate and stiffeners extending in x-direction

A/B = 1.08

C, = 2662.6 mm
I. =
Ly = 1.4386-10"° mm!
For the calculation of I, and L,, an effective breadth of 4860 is used:
¢ = 135733 mm
I, =4.072-10%+3.25-1010 = 3.6572- 10'0 mm*
Ly = 4.072.10°mm*
Sy = 1000 mm
S, = 5400 mm
t, =
- D0NBA20D 91 - 35715 mm
EI,
D, = m = 3.049 - 1013
EI
D, = __Y_Sx(l ) - 1.563 - 1012




12 /3.049-1013 . 1.563-1012 N

4- —3s715-200002 - 12076702 > %
=T 190762
155402591559 2 _[N]
190762 A
155.4(259 - 155.4) *
Gross Stiffened Panel (considering only half the panel)
iOm ' PR
31 *
&
[~ 80y
- 2.6 m )
C, = 3636
C, = 13753
I, = 9(6.692)- 10 mm* = 6.0228 - 10° mm*
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I, = 3.6572- 10 mm*

Sy = 1000 mm

S, = 5400 mm

t, = %+21 = 33.15 mm

D L 1.39 - 1012
* Sy\h vz

_EL
=} = 1.563’ 1012
% =5a-v
4 PN 130102 - F563-F012 N
33.15 - 100002 = 1728890 > %
‘c =
N
259 o?

4»."
L be , L*2U b m
¥ —A
L _J 21
> ¢
18Se¢
<
—¢
8

From buckling considerations b, =0.0597 - 20 = 1193 mm

A = 7.635- 10 mm?
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0
"

1896.1 mm

Ix = 694-10°mm*

T = '\/’TK = 9534

nE N
W = 4038.6 _ = >Op

155.4(259 - 155.4) _ N |
59‘ 4038¢6“ - 255.0

3.3 EFFECTIVE SECTION MODULUS AFTER BUCKLING IN DECK

b = 92% of original width

1 h
SM,s =E(I (blz+C bh)dwk+ —‘fz— +C2 b - )M)

C

distance from local neutral axis to global neutral axis

I 4.657675 - 101 mm - 12950 = 6.0137 - 1014 mm*

SMg = Tz—;ﬁ[smw . 1014 - 40 - 2.8244 - 1011] = 4.570443 - 1010 mm3

[SM.. = 4.570443 - 10° mcm?|  reduced 1.9%
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APPENDIX 4

Calculations of Compressive Strength Factor and the Hull Girder Instability
Collapse Moment




The Compressive Strength Factor for the Critical Panel of the Example Ship
(ISSC Formula)

9 = (0960 +0.765 A2 +0.176 P2 + 0.131 A2B? + 1.064 14) 03
b= ﬁ\/’g = 1415;(8)9 \ 2.12 ?5105 = 0.403
TN A e it

o = 0787

For the sagging condition, we then have

M, = (-0.172 +1.548 ¢, - 0.368 ¢2) SM - f,

= 0.819SM - fy
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APPENDIX §

Calculations of the RMS Values of the Wave Bending Moment for the
Example Ship

5.1 Ultimate Limit State

5.2 Fatigue Limit State




5.1 RMS OF EXTREME WAVE BENDING MOMENT

(ULTIMATE LIMIT STATE)
VESSEL AND SEA STATE DATA
Cg =071 Hy = 12.2m (40 ft)
L/B = 6.19 S = HgL = 0.047
BT = 2.62 F, = 0.05willuseF, = 0.1)

Calculations are made according to seakeeping tables of Ref. 6. From the
seakeeping table (see sample interpolation chart on the next page),

ms = 272.7

This value is made dimensional by multiplying it with: pgL*

where p = specific density of seawater = 1025 kg/m3
g = acceleration of gravity = 9.81 m/s?
L = length of ship = 260 m.

Dimensional rms = 1.25398 - 106 kNm

This value may be overestimated a few percent because a Froude number of 0.1 is
applied instead of the value 0.05.

The seakeeping tables are not tabulated for values of F,, lower than 0.1.
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5.2 RMS VALUE FOR WAVE BENDING MOMENT (FATIGUE LIMIT STATE)

| Hs [m] rms [KNm]
| 0.5 3.1705 - 10¢
‘ 1.5 9.6541 - 10# |
25 1.6639 - 105
3.5 2.1385 - 10°
45 3.3420 - 10°
5.5 4.8565 - 105
6.5 6.2111 - 10°
1.5 7.4853 - 10°
8.5 7.9416 - 105
9.5 9.5985 - 105
10.5 10340 - 106
11.5 11082 - 108
12.5 11686 - 106
13.5 1.2404 - 106

The above results are for the sea scatter diagram used in the fatigue analysis and
shown in Appendix F. The interpolation charts using the seakeeping tables of Ref. 6 are
omitted for brevity, but each calculation is similar to that previously shown for the rms of
extreme wave bending moment.

|



APPENDIX 6
Fatigue Reliability Calculations
6.1 Fatigue Reliability Analysis of Deck Detail

6.2  Sea Scatter Diagrams
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6.1 FATIGUE RELIABILITY ANALYSIS OF DECK DETAIL
The detail is shown in Figure 6.1 and classified as belonging to class D [13]. The
long term statistics of sea states is from the Oseberg Area of the North Sea. It is shown
elsewhere in this section.

The class D gives the S-N curves:

logN = loga-2logs-mlog&aS
= 11.7525-2:0.1793 - 3 - log &S
N = number of cycles
AS = stressrange
e = NASm = 1((12.6007-2:04190) = 152 .10!2 N/mm?
The limit state function is
2 = B:—‘;f-ﬁ T

T is the service life of the ship = 20 years.
Q is the stress parameter which is given below:
(2v2)°

m -
o ) S o

where

m = fixed = 3 (from SN-curve)

20y
G

Aoj» Ap; are zero and second stress spectrum moment in j-th sea state.

Aoj

From the seakeeping tables [6], the rms for the wave bending moment is
obtained. The relation between the zero stress spectrum moment and zero wave b.m
spectrum moment is:




astess _ 1 dis@ce from NA to fatigue crack AWBM
° SM distance from NA to deck °

For the example ship:

A ST = (4.2948 - 104 [m6]- 1 ANVEM

and ZP] Kg—D2 0% = 2.009-10"[KNm] [sec] !

when theA ; ; and},; are for the wave bending moment obtained in Appendix E.

Equations (1), (2) and (3) give Q, the stress parameter:

3
Q= (2\’_) () (4.2948 - 104)3/2 - 2,009 - 1015(“{) [sec]!

= Q=852 (’%;J) [sec]!
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APPENDIX 7
Typical Input/Output File of CALREL

7.1 User Defined Subroutine for Limit State Function and Wave

Bending Moment Distribution
7.2 Input Data File

7.3 Output File
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CALRel nrx=8 ntp=1

DATA

TITL nline title

1

example ship reliability analysis -- deck initial yield, casel
FLAG icl,igr

10

OPTI iop,nil,ni2,tol,opl,op2,0p3
1,20,4,0.001

STAT igt(i),nge,ngm nv,ids,ex,sg,p3,pd.x0
18

sm 1,2,4.57e5,1.828e4

tp 2,2,25.59,1.813

swW 3,1,3.0226,1.0
mw 4,-51,4.855e6,4.3695e5,0.0,0.0,4.855e6
xu $,1,1.0,0.15
xsw 6,1,1.0,0.05

xW 7.1,0.9,0.138
Xs 8,1,1.15,0.0345
END

FORM

SENS

SORM

EXIT
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implicit real*s (a-h,o0-2)

dimension x(1),tp(l)

g = X(S)*x (1) *x(2)-x(6) *x(3)-x(7)*x(8)*x(4)
return

end

subroutine udgx(dgx,x,tp,ig)
implicit real*8 (a-h,o0-2)
dimension x(1),dgx(1),tp(1)
return

end

subroutine udd(x,par,sg,ids,cdf,pdf,bnd, ib)

implicit real*8 (a-h,o0-2)

dimension x(1),par(4),bnd(2)

pi=3.1415926
factl=(sqrt(6)/pi)*par(l)*par(2)-(0.5772*6/pi**2) *(par(2) **2)
fact2=dexp(0.5*((pi/sqrt(6))*(par(l)/par(2))-0.5772))
cdf=dexp (-fact2*dexp(-(x(4)**2)/(2*factl)))
pdf=(x(4)/factl)*fact2*dexp(-(x(4)**2)/(2*factl)) *cdf
bnd(1)=0.0d40

ib=1

sg=par (2)

return

end




R0 ENEOSRPRR PR RN NNC PO OO RN R RN OR OO OO ROPROCOOEOROOROIRPTORPTY

¢ University of California .
* Department of Civil Engineering *
L *
. C AL REL .
. CAL-RELiability program .
Q Developed by .
L P.-L. Liu, H.-2. Lin and A. Der Kiureghian .
- *
J Last Revision: January 1990 .
. Copyright @ 1990 *
I R R R X XXX 222322220 22222 2222224222222 22 222222 2 X X )
WARNING 2: command not available

>>>> NEW PROBLEM <<<<

number of limit-state functions..........ngts
number of independent variable groups ...nig=
total number of random variables ........nrxs
number of limit-state parameters ........ntps

- GO = -4

>>>> INPUT DATA <<<«<

example ship reliability analysis -- deck initial yield, casel
type of System .......c.coee- esssssssssssdcls 1

NI cooocoonooooooooo000 50000000000 .« « « « cCOmMPONENt

iel=2 ......... teesesnnesssessesssss.Series system

1C1=3 ... iveiirenncscsescsansssasss ganeral systen
flag for gradient computation ..... eessaligrs 0

igr=0 ....... 0000 eeevessssss.finite difference

igr=1 ...... 5006000 .o+...formulas provided by user

optimization scheme used ............ ....lop= 1
fop=1 ........... Cessssssasssssssssss . HL-RF method
lop=2 ... iiiiiinnennnn eees..modified HL-RF method
fop=3 ..... teseacsssss..gradient projection method
iop=d .................S0Quential quadratic method

maximum number of iteration cycles ......nil= 20

maximum steps in line search ............ni2= 4

convergence tolerance ....... eeeeevs.o.tols 1.000E-03

optimization parameter 1 .......... ...opl= 1.000E+00
optimization parameter 2 ............ .op2=z 0.000E+00
optimization parameter 3 ......... ....0p3= 0.000E+00

statistical data of basgic varibles:

available probability distributions:
determinitic .............4ids=0
NOIMAL ....cccceascocecass.ids=l
lognormal .....cccocc0000.1d8=2
QAMMA .....ccoc0oss0evess.id8=3
shifted exponential ......ids=4
shifted rayleigh .........1ids=5
uniform .....cccce.. eesss.ids=6
POtA ......ccncenacocness.ids=T
type i largest value ..... ids=11
type i smallest value ....ids=12
type ii largest value ....1lds=13
weibull ...........c00....1d8=14
user defined .............1ds>50

group no.: 1 group type: 1
var ids mean st. dev. paraml param2 param3 paramé

sm 2 4.57E+0S 1.83E+04 1.30E+01 4.00E-02
fp 2 2.59E+01 1.81E+00 3.25E+00 6.99E-02
sw 1 3.02E+06 1.00E+00 3.02E+06 1.00E+00
nw 51 4.37E+0S 4.86E+06 4.37E+05 0.00E+00 0.00E+00
xu 1 1.00E+00 1.50E-01 1.00E+00 1.SOE-01
XSW 1 1.00E+00 S5.00E-02 1.00E+00 5.00E-02
Xw 1 9.00E-01 1.35E-01 9.00E-01 1.35E-01
Xs 1 1.15E+00 3.45E-02 1.15E+00 3.45E-02

ol

init. pt
0.00E+00
0.00E+00
0.00E+00
4.86E+06
0.00E+00
0.00E+00
0.00E+00
0.00E+00




Print 11‘\&.!‘\7‘1 .....o....-......-....-...npl'i 0
npr<d ..........no first order results are printed
npr=0 ........print the final step of FORM results '
npr>0 ........print the results of every npr steps i
tnitialization £lag ...c.ccoveeeesresc...inds 0 |7-5
ini=0 ............ ceessssses.8tart from mean point
ini=1 .......... start from point specified by user
ini=-1 ....start from previous linearization point
restart flag ...... 006000000000000000000osEiEE 0
ist=0 .......cc00vvevceces.s.analyze a new problem
igt=l .............continue an unconverged problem

limit-state function b

iteration number ..............iter= 7 Tt
value of limit-state function..g(x)=-2.80SE-05 }
reliability index .............beta= 1.8118

probability ....cccec0eceeeces..Pflzs 3.501E-02

var design point sensitivity vectors
x* u* alpha ganmma delta eta
sm 4.511E+05 -3.076E-01 -.1698 -.1698 1722 | -.0590
| fp 2.488E+01 -5.378E-01 -.2969 -.2969 .3098 -.1800
' sw 3.022E+06 8.876E-07 .0000 .0000 .0000 .0000
» o 4.959E+06 4.358E-01 .2406 .2406
‘ x 7.773E-01 -1.484E+00 -.8193 -.8193 .8193 | -1.2163
XSW 1.007E+00 1.332E-01 .0735 .0735 -.0735 | -.0098
Xw 9.920E-01 6.818E-01 .3763 .3763 -.3763 -.2566
xs 1.155E+00 1.496E-01 .0826 .0826 -.0826 -.0124
. TTEETETET T """""""""""""'""""""'"""'1 """""
w >>>> SENSITIVITY ANALYSIS AT COMPONENT LEVEL <<<< l
type of parameters for sensitivity analysis
......... 50000000000000000000000000000a00 00T 0
isv=l ......iciieeereeass. . distribution parameters
isv=2 ......... boo00000aGC limit-state fcn parameters
isv=0 ..distribution and limit-state fcn parameters
|
sensitivity with respect to distribution parameters ‘
limit-state tunction |
d(beca)/d(paramccer) : |
‘ var mean std dev par 1 par 2 par 3 par 4
‘ sm 9.420E-06 -3.225E-06 4.246E+00 -1.306E+00
fp 1.709E-01 -9.927E-02 4.246E+00 -2.284E+00
sSwW -4.899E-07 -4.349E-13 -4.899E-07 -4.349E-13
mw -5.588E-07 -1.201E-07 0.000E+Q00 0.000E+00
xu S.462E+00 -8.109E+00 5.462E+00 -8.109E+00
xsw -1.471E+00 -1.959E-01 -1.471E+00 -1.959E-01
Xw -2.788E+00 -1.901E+00 -2.788E+00 -1.901E+00
X8 -2.394E+00 -3.582E-01 -2.394E+00 -3.582E-01
d(Pfl)/d(parameter) :
var mean std dev par 1 par 2 par 3 par 4
sm -7.281E-07 2.493E-07 -3.282E-01 1.009E-01
fp -1.321E-02 7.673E-03 -3.282E-01 1.765E-01
| sw 3.787E-08 3.361E-14 3.787E-08 3.361E-14
mw ' 4.319E-08 9.283E-09 0.000E+00 0.000E+00
xu -4.222E-01 6.267E-01 -4.222E-01 6.267E-01
) xsw 1.137E-01 1.515E-02 1.137E-01 1.S515E-02 |
xw 2.155E-01 1.469E-01 2.155E-01 1.469E-01
xs 1.850E-01 2.769E-02 1.850E-01 2.769E-02

sensitivity with respect to limit-state function parameters

limit-state function 1

d(beta)/d (parameter)
0.000E+00

d(Pfl)/d (parameter)

0.000E+00




type Of 1ntegraclon SCNEMe US@Q ...cesceesccacoccn ceavy=

itg=l .....cc0ccnnnn .............improvod Breitung tornnla
itg=2 ......... 000a0aP0000000a0n .improved Breitung formula
20DoACoa 500000000000 00a eee..& TVedt's exact integral 6
max. number of iterations for each fitting point ..inp=s 4 7-

limict-state function 1

coordinates and ave. main curvatures of fitting points in
axis u'i u'n G(u) u'i u'n G(u)

1 1.810 1.814 -4.040E-03 -1.810 1.814 -2.416E-03
2 1.811 1.812 -1.017E-04 -1.811 1.812 -8.243E-05
31.812 1.812 -2.953E-07 -1.812 1.812 -2.201E-07
4 1.812 1.750 1.491E-04 -1.812 1.758 2.SS4E-04
$1.812 1.731 1.514E-04 -1.812 1.737 6.208E-04
6 1.811 1.812 -1.408E-04 -1.811 1.812 -1.296E-04
7 1.792 1.831 -2.968E-01 -1.790 1.833 -1.760E-01
improved Breitung
generalized reliability index betag = 1.7753
probability Pf2 = 3.792E-02

Stop - Program terminated.

*U.S. G.P.0.:1993-343-273:80231

rotated space
a'd
6.4993E-04
1.0947E-04
-3.7914E-12
-1.7551E-02
-2.3695E-02
1.3290E-04
6.2968E-03

Tvedt's EI
1.7760
3.786E-02






