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SUMMARY

Light propagates through space in waves that suffer aberrations when penetrating Earth’s atmosphere. These
atmospheric aberrations limit the resolution of ground-based telescopes dramatically. Adaptive Optics (AO)
is a technology designed for overcoming atmospheric aberrations. It enables ground-based telescopes to
reach diffraction limited images. The concept of AO is to drive a Deformable Mirror (DM) to the counter-
wavefront shape of the incoming aberration. This cancels the effects of the distortion and corrects the phase
error. AO has its origin in astronomy but is used in other fields such as Free Space Optics (FSO), lithogra-
phy or ophthalmology. TNO has developed a Deformable Mirror aimed for several AO applications. The
continuous mirror surface is deformed by 57 electromagnetic actuators. These are placed perpendicular to
the mirror surface and arranged in a square layout. The electromagnetic actuators are highly precise. The
DM shows almost total linear behavior (< 1% deviation in displacement) and very low hysteresis (< 1%), low
power consumption and high actuation stroke (>15µm). These features allow the DM to operate in open-
loop thus increasing the working speed of the AO system. The TNO DM’s large surface ( diameter is 160 mm)
makes it suitable for high power laser applications. Some design variables of the DM which could potentially
lead to an increase in its optical resolution remain unstudied. This report aims to quantify the effects on
optical resolution of varying design parameters of the TNO DM. Variables to be studied are: actuator layout
(actuator position, number of actuators and optical aperture) and the mechanical properties of the mirror
facesheet and actuators. Another aim of this report is to explain the reasons for closed-loop convergence
when actively flattening the mirror resting surface. The level of flatness (measured using surface error) in-
creases if a feedback loop is used. In practice, 6 iterations in the control loop are needed to converge to a
minimum value of surface error. To meet these objectives a modeling approach was used. Two FEM models
model were thoroughly validated with experimental data. They were then used to simulate mirror surface
deformation. They were also used to quantify changes in resolution when varying design parameters. The
figure of merit used to quantify optical resolution was a set of aberration profiles. The profiles constitute a
modal basis related to atmospheric turbulence: Fourier polynomials. It was found that these modes show
a lower residual error than Zernike modes when reconstructing atmospheric turbulence images. The anal-
ysis of the modeled mirror resting shape showed decreasing error in flatness when a control feedback loop
was used. This behavior, observed also in the prototype, had however an order of magnitude difference with
the experimental results. 3 iterations were needed to reach minimum flatness convergence with the model.
As opposed to the real system which needed 6 control loop iterations to achieve the best flat. Comparing
different actuator distributions showed that the current layout performs better than other layouts found in
literature (radial and hexagonal). It was also found that the optical aperture influences the resolution of the
generated shapes. For all layouts, the error decreases with increasing fill factor. Reaching a minimum at op-
tical aperture 90% of the total radius. The effects of varying the number of actuators were also quantified.
The mechanical properties that were studied were: The stiffness of the actuator supports and the thickness
of the mirror facesheet. A parameter study showed which combination of these two values gives place to the
lowest surface error when generating 37 Fourier polynomials. The parameter study also allowed to extract
analytical equations relating mirror thickness and actuator stiffness for the following variables: Variation of
maximum deflection of the facesheet, cross coupling and width of the influence function. The results helped
answer the research questions derived from the thesis objectives. For the resting shape model, an increase in
the level of flatness was seen when applying a control feedback loop. This suggested that it is the geometrical
configuration of the facesheet what limits the open-loop convergence to the best flat. The order of magni-
tude difference seen between the model and the experimental results has its origin in the noise present in
the measurement data. The modeling results also showed that the layout of actuators has limited influence
in optical resolution. There is, however a high influence of optical aperture on the error. Higher optical aper-
tures give place to lower error values. The reason is that the modes of the figure of merit, Fourier polynomials,
satisfy the plate-bending governing equation (as opposed to other modal basis such as Zernike modes). So,
for optical aperture values with more actuators in the field of view, higher spatial frequencies and resolution
are achieved. The surface error increases for decreasing number of actuators as expected. Although, error
increase is higher for higher frequency modes. For lower order modes, the increase in error is not significant.
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PREFACE iii

Lower order Fourier modes have also a higher weight on atmospheric turbulence correction. The parameter
study of the stiffness and thickness showed that there is a combination of mechanical parameters for which
the resolution of the aberration profiles is optimal. Finally, the set of analytical expressions derived from para-
metric modeling, allows to design DMs in terms of desired amounts of cross-coupling, power dissipation and
Influence function width. This feature is interesting for scaling of the DM design and knowledge of design
sensitivities.
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1
INTRODUCTION

Modern astronomy faces challenges such us understanding the evolution of the early universe and the pres-
ence of exo-planets. For instance, detection of light coming from extra-solar planets would help gain more
knowledge about their composition and temperature. Increasing the knowledge of the universe motivates
the development of more powerful astronomical tools that can capture photons which are currently lost by
interference with brighter stars [1].

Astronomical telescopes are evolving towards bigger primary apertures. Larger apertures allow to capture
more photons, make dimmer objects visible and obtain more resolute images. However, for ground based
telescopes resolution is also limited by atmospheric turbulence. Atmospheric turbulence induces variations
in the refraction index of air due to fluctuations in temperature [2]. This effect modifies the optical path
lengths (OPL) of light causing images to be dimmed by phase errors (or wavefront aberrations) [3].

Adaptive Optics (AO) is a technique developed for compensating wavefront aberrations. It theoretically al-
lows ground-based telescopes to achieve diffraction-limited resolution. Adaptive Optics systems correct
wavefront aberrations by deforming the surface of one or more Deformable Mirrors (DM). The shape adopted
by the DM is the counter-wavefront of the incoming light. The result is a reflected image with diffraction lim-
ited resolution. Wavefront aberrations are previously measured by splitting the beam to a wavefront sensor.
A control computer processes the wavefront information and sends deformation commands to the mirror’s
actuators [3].

Figure 1.1: Schematic of an Adaptive Optics system. The leftmost figure is a telescope, the right figure
the AO scheme. Source: D. Mawet. Astronomical Measurements and Instrumentation

Modern ground based AO systems combine deformable mirrors in several layouts. This increases the cor-
rection of atmospheric turbulence accounting for errors introduced by the inclination of the measured beam
and other. They also use powerful laser beams (Laser Guided Stars (LGS)) to measure the aberrations caused
by the atmosphere. Multi-Objective Adaptive Optics (MOAO) uses multiple laser guided stars to attempt
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a high Strehl ratio for small Fields of View (FoV). The Multi-Conjugate Adaptive Optics (MCAO) layout at-
tempts a high Strehl ratio over large FoV within larger uncorrected fields [4]. This technique combines several
LGS and DMs at different angles. Extreme AO systems (xAO) are meant to make a high order correction of
the aberrations so as to limit light diffracted by residual wavefront errors. They combine AO with methods
such as coronography to reduce scattered light and detect planets close to bright stars [5]. These AO lay-
outs used in Extremely Large Telescopes (ELTs), require open-loop operation to improve light performance
[6]. For high speed applications iterative control loops limit the temporal performance of the Adaptive Op-
tics System. Open-loop operation on the other hand increases the speed but requires sensing the wavefront
before it reaches the DM (as opposed to closed loop where the WFS is placed after the DM). These technolo-
gies present design challenges for DMs by requiring from them: higher speeds, higher resolution and bigger
apertures.

Astronomy is not the only field of application for AO. It also finds applications in ophthalmology [7], Free
Space Optical communication (FSO) [8] and some industry applications such as lithography [9]. For lithogra-
phy, the aberrations to be corrected are introduced by the laser, which heats and deforms the mirror surface.
In opthalmology the aberrations to be corrected are those found in the human eye. Low order Zernike modes
describe the aberrations concerning these applications.

FSO is a communication technology which is increasing its importance mainly driven by the saturation of the
RF spectrum. In FSO, as well as in astronomical applications atmospheric turbulence-induced distortions
are a major limitation to the performance of the system [8]. Another challenge to beat in FSO is time transfer
which has direct relation to tip-tilt correction [10].

Adaptive Optics is a growing technology in which several challenges and limitations are still present. Many of
the present challenges are related to the speed and the resolution of the measurement systems. AO also has
a broad range of applications. This thesis aims to increase the performance of an existing DM manufactured
by TNO. The DM is aimed to serve more than one AO application. This thesis is divided into six chapters
including the current one. Chapter 5.2 discusses the state-of-the-art technologies for Deformable Mirrors.
Chapter 3 briefly describes a DM developed at TNO and introduces the research questions that motivated
this study. In chapter 4, a Finite Element Method (FEM) model for a Deformable Mirror surface is presented.
Chapters 5 and 6 discuss the findings on the influence of modifying some design variables of the DM. Chapter
7 concludes the report giving recommendations and stating future work.



2
STATE OF THE ART DEFORMABLE MIRRORS

Chapter two presents a quick overview of state-of-the-art DMs for astronomical purposes. An overview of
currently used actuation technologies is presented together with their advantages. The current requirements
of DMs for common astronomical applications are discussed. Finally, the main optimization techniques
found in literature to increase the performance of DMs are discussed.

2.1. QUICK OVERVIEW OF CURRENT ACTUATION TECHNOLOGIES
The technological choice of a DM is driven by the application for which it is intended. And by the environ-
mental and mechanical conditions under which it will operate [4].

Deformabel mirrors can be classified into segmented DMs, membrane DMs, liquid crystal DMs or contin-
uous DMs in terms of their facesheet [3]. In this section only continuous mirror actuation technologies are
discussed. In continuous-type mirrors, a continuous reflective surface is actively deformed by a set of actua-
tors connected to it. There are currently four actuation technologies available in the market.

Stacked array DMs are deformed by ferroelectric actuators made of stacks of individual segments (either
piezoelectric or electrostrictive). An electric field applied through the stacks changes their dimensions result-
ing in actuation in the plane normal to the mirror surface. Bimorph DMs are similar to stacked array DMs.
They work based on the transverse piezoelectric effect. Application of a voltage through an electrode parellel
to the mirror gives place to local elongation which induces curvature in the mirror surface. MEMS (Micro
Electro Mechanical System) DMs use MEMS device as actuators based on different MEMS technologies. Fi-
nally, electromagnetic DMs have actuators glued to the rear face of a thin mirror [4].

The choice of actuation technology requires a thorough evaluation of the advantages and limitations of the
available solutions: stacked array DMs have higher power consumption and limited stroke. Their intrinsic
hysteresis cycles require large amounts of electronics to correct it. But they come at a low cost, due to ease
of production. They have a high density of actuators thanks to the small plate thickness, and are extremely
stiff. This allows for short response times (first eigenfrequency > 10kHz). Bimorph DMs are even easier to
manufacture than stacked array DMs. But the size of bimorph DMs is limited by the resonant frequencies of
the system (in the hundreds of Hz range), limiting the number of actuators that can be used. Electromagnetic
mirrors have high stroke due to the efficiency of voice coil actuators. But they are bulky, giving place to large
actuator pitch values. They have fast response times (up to < 1 ms). And come at a higher price. Electromag-
netic actuators typically require high actuation voltages. MEMS DMs have a high density of Actuation points
but a very limited stroke. Choosing the appropriate solution depends strongly on the requirements to be met
by the AO application [4].
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2.2. REQUIREMENTS OF DEFORMABLE MIRRORS
The requirements of an Adaptive Optics System are defined in the error budget, which must meet the desired
degree of correction (at a specific operation wavelength). Current AO systems face limitations in fitting atmo-
spheric images (fitting error), time lag, noise and spatial aliasing [11]. The first three terms are related to the
DM directly.

The error of a DM is measured using the total variance of the common error sources. It can be distributed
into the following components: atmospheric fitting error, measurement or noise error, time lag error and
anisoplanatic error[12], [13].

Only the fitting error and the noise or noise error will be treated in this document. The fitting error has its
origin in the limited Degrees of Freedom (DoF) of the DM for the correction of atmospheric turbulence. The
measurement error is caused by the inherent noise present in the measurement devices.

Most science instruments will use the Strehl ratio to determine the allowed residual surface error RMS in the
mirror surface (see equation 4.1.1). The Strehl ratio is defined as the ratio of the maximum intensity in a Point
Spread Function (PSF)from a science instrument to a theoretically perfect point [2]. A good approximation
is:

Sr ≈ e−σ
2
λ (2.1)

Where σλ = σ/λ and λ is the wavelength. Residual error requirements vary per scientific application. For
SCAO systems the requirement is ≈ 1830 nm (for 0.7 arcsec seeing at 0.5µm). For MCAO systems the require-
ment is 1330 nm. In XAO systems, error should meet a residual RMS of 520 nm (for 0.6 arcsec seeing at 0.5µm)
[4]. This error includes the contributions of all the described terms. The fitting error corresponding to the DM
should be (according to [4]): 330 nm for SCAO and MCAO, and 32 nm for XAO.

Requirements for the stroke of the actuators depend on turbulence and operation wavelength, as well as
telescope diameter. For 8 m telescopes, values are in the order of 10µm. 40 m class telescopes require strokes
of up to 70µm [4]. These high stroke requirements are usually met using a woofer-tweeter arrangement [14].
In this arrangement two DMs correct atmospheric aberrations. A high stroke mirror accounts for low order
aberrations. A high actuator count mirror compensates higher order (and lower amplitude) errors.

The diameter of a DM does not pose a challenge for smaller (8 m class telescopes). But bigger instruments,
30 m class telescopes, require 30 cm diameter DMs [15].

Besides the mentioned requirements, DMs need to be reliable (less than 5% failed actuators over 5 year peri-
ods). It is also important for DMs to have low power dissipation rates and work with low voltages as indicated
by [4] and [15].

2.3. OPTIMIZATION OF DEFORMABLE MIRRORS
In order to increase the quality of the design of different types of DMs, several authors have proposed tech-
niques for their optimization. Two approaches were identified: a first group of authors evaluates the geomet-
rical layout of discrete or continuous actuators seeking for an optimal arrangement of actuators. A second
group of authors modifies the mechanical properties of the DM with the objective of increasing optical per-
formance.

Authors who modify the layout of actuators, make use of numerical methods and models. The numerical
approach allows to test different layouts and determine which layout reproduces figures of merit with more
fidelity 1. [16] uses FEM models to describe unimorph and bimorph mirrors. Then, by testing different ac-
tuator electrode patterns (radial and hexagonal in different combinations), determines which patterns give
higher fidelities and stroke. Up to 14 Zernike modes serve as an objective function. It is concluded that
for unimorph and bimorph mirrors, wide radial actuator patterns are most precise solution. An outer ring
of actuators is shown to increase amplitude. [17] uses numerical models to compare turbulence correction
performance of different mirror types. The considered mirrors are piston, thin plate and membrane mir-
rors. Actuator structures are: hexagonal, segmented ring and orthogonal. This paper concludes that actuator
geometry does not play a significant role when correcting Karhunen-Loève modes, as long as actuators are
distributed homogeneously. [18] optimizes surface parallel actuators using shape-optimized patterns with
several planes of symmetry. It is also shown that reducing the pupil size diameter improves the correction of
the first 25 Zernike modes. [19] proves that in ortder to generate Zernike modes in a circular facesheet, ac-
tuators need to be placed outside of the pupil aperture. The shape of Zernike modes cannot satisfy the plate

1Fidelity is the inverse of the rms deviation of the achieved mirror shape from a target
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equation using point loads only within the design domain.

Another approach found in literature is to optimize the mechanical properties of the DM. To minimize ac-
tuator induced high-frequency errors, [20] uses a parametric FEM model that modifies the length of surface
parallel actuators. This consequently changes the shape of the influence function. It is demonstrated that
changes in mirror substrate and actuator geometry (which could be considered as modification of stiffness
properties) can reduce residual errors. This is shown by correcting for defocus. [21] in a similar approach also
mentions the effect of the substrate in the shape of the influence function. [22] optimizes the facesheet and
support wall thickness with shape variables. [23] makes use of a Genetic Algorithm, a heuristic optimization
scheme, to solve the location problem for a finite number of candidate locations.

One common factor to all the scientific literature found is the use of Zernike modes as a figure of merit for
actuator placement and mechanical parameters optimization. Zernike modes have been proven useful for
modal decomposition in the past. They also conform an orthonormal basis with respect to polar cooordi-
nates. But in most astronomical applications other basis functions are used. Some authors like [13] do use
Fourier (and other) modal basis for phase map reconstruction.



3
DEFORMABLE MIRROR AT TNO

Based on the philosophy of the deformable mirror from [12], a new DM concept has been developed by TNO
[24]. It is a lightweight continuous mirror based on electrostrictive actuators. The purpose of the system is
to remain modular. This allows to fit the DM to different applications making only small variations to the
design. The DM is expected to have open-loop capabilities due to the high linearity seen in [24] where high
stroke is demonstrated. The DM has 57 electrostrictive actuators glued to the facesheet and arranged in a
square layout with a pitch of 18 mm occupying the circular area of diameter 160 mm of the 1 mm thick silicon
facesheet.

Figure 3.1: Prototype of the Electromagnetic Deformable Mirror developed by TNO. Source: TNO

Tests with an interferometer were carried out to measure different parameters: linearity of the response of
the actuators and hysteresis of the actuation components. This measurements were done using a Fizeau
interferometer and a real time computer that drove actuation commands to the DM. With the collected data
it was possible to identify the performance of the DM and the actions required to increase it. giving place to
the research questions of this thesis.

3.1. MIRROR PERFORMANCE
A set of step-increasing actuation currents were supplied to individual actuators of the DM. At each current
step the deformation of the interface was measured with the interferometer and processed to extract the Peak
to Valley value. The DM exhibited high linear behavior < 1% and hysteresis < 1.5% [25].

6



3.2. ACTIVE DEFORMATION ALGORITHM 7

Figure 3.2: Linearity of actuator displacement. Peak to Valley test for single actuator and increasing
currents. Currents range from -120mA to 120mA . Blue curve is deviation from a fitted line and shows

highly linear behavior. Source [25]

This high linearity characteristics permit the use of the system in open-loop operation, where linearity as-
sumptions are crucial.

3.2. ACTIVE DEFORMATION ALGORITHM
The displacement field resulting from the response of a single actuator is commonly called an influence Func-
tion (IF) [16]. To measure the influence functions of the mirror, interferometer images of the mirror were
captured for each actuator. For this, a constant current intensity load In was applied to each actuator at a
time. Images were recorded using a Fizeau interferometer.

The combination of all IFs forms the basis for the shape reconstruction algorithm and is shown in figure 3.4.
With the obtained data, shape reconstruction can be achieved using weighted deformations of the IF’s. The
deformation input is obtained with a least square fit to the desired shape. This is a common technique for
shape correction in AO [16].

Figure 3.3: Test setup for measuring deformation of the deformable mirrror facesheet (left) using an
interferometer (right). Source: M.J. Baeten, TNO

Each of the Influence function images is a matrix γi (x, y). The IF matrix can be vectorized into γi where
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γi = vec(γi (x, y)) ∀ vec :Rm×n →Rmn . The combination of all IF’s is formatted into an influence function
matrix IF in the following way:

IF = [
γ1 . . .γ57

]
(3.1)

The mirror can deform and fit shapes using weighted values of the IFs: an objective shape θ(x, y) in vector
form θ may be fitted using the following expression:

θ = Iθ

I n
IF (3.2)

In order to drive the mirror to a desired shape eq. 3.2 needs to be rearranged. Iθ is the unknown and is taken
to the LHS of the equation. This requires the use of a Least Square (LS) fit algorithm to transform matrix IF
which follows:

Iθ =
(
IFT IF

)−1
IFT θ (3.3)

Figure 3.4: 57 individual Influence Functions measured with the interferometer. Each image
constitutes one of the columns of the IF matrix and is used in shape reconstruction algorithms.

Source: R. Saathof, TNO

Driving the currents of Iθ to the DM will cause it to deform to the best fit of the desired shape.

Reconstructed wavefronts can also be achieved numerically using the following:

θr eco = IFIθ (3.4)

This least square fit approach will be used to generate the objective shapes that the mirror facesheet must
adopt.
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3.3. ADVANTAGES AND CHALLENGES OF THE DEFORMABLE MIRROR
TNO has delivered a prototype of a deformable mirror which can achieve high stroke actuation with maxi-
mum accuracy. The light weight of the system makes it suitable for space applications. It also has low power
consumption and is highly reliable. These features are promising towards a deformable mirror suited for most
adaptive optics applications. The linear behavior of the actuators enables the desired open-loop capabilities
required in state-of-the art astronomical instruments (see section 5.2).

The DM design is also subject of improvements. Influence of non-identified errors was detected during the
characterization of the flattening capabilities of the mirror. The best flat tests consist of lowering the surface
error of the measured resting shape θ0(x, y). This is achieved by supplying a set of currents I f that would
result in a shape complementary to the resting shape θ′0(x, y). The result should be a perfectly flat surface.
However, it was seen that when iterating over the flattening algorithm (eq. 3.2), convergence to the best flat
was reached after several iterations (Figure 3.6). Also, high amplitude bumps were detected in the mirror
facesheet. This gave place to a high value of the Peak to Valley.

Figure 3.5: Interferometer image of the experimental best flat after six iterations in a control loop
using algorithm described in section 3.2. Note the bump in the upper-right area. Source: M. Baeten,

TNO

These unidentified behavior motivated the study of the system from a modeling point of view. By identifying
the sources of the closed loop increase behavior it is expected to increase the shape reproduction capabilities
of the mirror resulting in an even preciser DM.

Also, in order to further improve the performance of the DM, some mechanical parameters of the DM were
tuned. This allowed to determine whether there exist design-parameter combinations for which the DM is
more accurate. The mechanical parameters evaluated were: actuator layout, number of actuators, fill factor,
stiffness of the actuators and thickness of the facesheet.
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Figure 3.6: Evolution of the surface error RMS with flattening iterations for the mirror surface. Error
decreases with every iteration of the control loop up to 6 iterations. Source: M. Baeten, TNO

Fill factor P-V (nm) RMS (nm)
95% 324 34
75% 167 25

Table 3.1: RMS and Peak-Valley values of the experimental Best Flat after six iterations using the
control loop

3.4. RESEARCH QUESTIONS
Based on the background information given in this and the previous chapter, the following research questions
were formulated:

• Is it possible to optimize the deformable mirror design in terms of the mechanical properties of its
actuators and facesheet?

• Will the layout of actuators influence the performance of the deformable mirror?

• Is there a unique set of values of the mechanical properties of the actuators and mirror facesheet which
globally maximizes the resolution of imaging while minimizing the power dissipation?

• Is the effect of actuator print-through dominant over the effect of the initial flat for the optical quality?



4
FINITE ELEMENT MODEL OF A

DEFORMABLE MIRROR

This chapter describes two FEM models used for the analysis of the DM and its optimization. First, a 2D shell
element model is presented. This model was validated using the interferometer images from figure 3.4. The
model was used for the optimization shown in chapters 5 and 6. This chapter also presents a model incorpo-
rating the 3D surface of the resting shape of the mirror facesheet. It was used to investigate the influence of
the mirror facesheet’s resting shape in the optical quality of the DM’s active flatness.

4.1. SHELL ELEMENT PARAMETRIC MODEL
The shell element model incorporates the mirror facesheet and the actuators. The facesheet is represented
with 2D shell elements. The actuators are modeled as linear stiffness elements in the out-of-plane and in the
in-plane directions. Each actuator has three stiffness elements: two in the in-plane directions and another in
the out-of plane direction. The stiffness elements constraint the model. They are elastically fixed in all three
directions of space and have no rotational degrees of freedom. The element size is set to 1 mm.

(a) (b)

Figure 4.1: (a) Plant view of the 2D Shell element model used for parametric study and optimization.
(b) Detail of the same FEM model including view of actuators

The model’s inputs are forces applied on the actuator nodes. The output of the simulations is a displacement
field for the nodes of the facesheet. The strain formulation is logarithmic. The boundary conditions of the

11
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model are free edge and the (elastically) fixed actuator supports. Therefore rigid body motion takes place.
The actual DM prototype does have three leaf springs that further constraint the facesheet in the in-plane
(and out-of-plane) direction. These are neglected in the model because only out-of-plane motion is mea-
sured. The FEM model is parametric. Its mechanical properties can be varied in iterative simulation loops.
The location of the actuators can also be modified, as can be the number of actuators. Code with which to
compute the simulations is shown in appendix D.

4.1.1. VALIDATION OF THE MODEL WITH EXPERIMENTAL DATA

The main objective of the model is to generate influence functions in physical accordance to those generated
by the DM prototype. The approach is to modify mechanical parameters that influence the shape of the IFs
from the model. Since the value of the stiffness of the actuator supports is unknown, it is chosen as the design
variable over which to iterate.

Material Property Symbol Value Units
Density ρ 2328 kg m−3

Modulus Of Elasticity E 70 GPa
Poisson ratio υ 0.3 -
Strut/Support Stiffness k - N m−1

Thickness of Mirror Facesheet t 1 mm
Diameter of Mirror Facesheet Φ 160 mm

Table 4.1: Table of material properties
used in the model. Stiffness is

undetermined

The validation is done by minimizing the
residual error of the modeled IFs and the
experimental IFs. The shape of the mod-
eled IFs is modified in an iteration loop
by changing the value of the actuator stiff-
ness. Each iteration, the stiffness value of
the supports is increased by 2×103 N. An
IF function with the same input parame-
ters as those from the experiments is com-
puted. Then this IF is subtracted from an
experimental interferometer image. The
result is a residual shape for which the

RMS error is computed. This measure of error is referred to as the surface error RMS:

RMS =
√√√√ N∑

i=1

(ri − fi )2

N
(4.1)

Where ri are the measured points from an interferometer IF (as those from figure 3.4), fi are the modeled IF
points and N is the number of analysis points in the mirror domain. The stiffness value for which the error is
minimized will give the better fitting IFs.

The results of this analysis are shown in figure 4.4, which shows the surface error RMS for every simulated
stiffness value. The process is repeated for two actuators: central actuator, and a non-centered actuator. The
analysis is also performed for different actuation forces. The stiffness value for which the residual error is
minimized is the same in all tests, there are variations however in the minimum surface error achieved. This
may be explained by variations in signal to noise ratio, which changes with the supplied actuator force.

- --

RMS =

√√√√
N∑

i=1

x2i
N

(1)

for N pixels

1

Update
support Stiffness

1

Figure 4.2: Schematic of the validation for stiffness of the supports using an iteration loop: subtract the experimental IF to a surface
interpolated from FEM nodes. Compute RMS of residual and update stiffness. Then repeat the process
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Figure 4.3: Slice through origin of the superposition of an experimental IF and a modeled IF

For the simulated stiffness values, there is a global minimum error for support stiffness 68×103 N m−1. The
residual error at that point is approximately 99 nm. The error cannot be minimized further. Noise present in
the measurement data and a small amount of piston limit the quality of the influence function fit. A cross cut
of the superposition of a modeled IF and the experimental IF shows the noise present in the experimental
data (figure 4.3).

Figure 4.4: Graph comparing residual surface error of model and experimental images for different
support stiffness values of the model. The most physical support stiffness value is found at the lowest

point in the graph

4.2. 3D MODEL OF FACESHEET SURFACE
The 3D model reconstructs the resting shape of the mirror surface. The model is built to compare active
flattening behavior of the actual prototype and a model where all variables are controlled. To obtain the
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original resting shape of the DM, an interferometer image is used. The interferometer has an aperture of
107 mm diameter leaving the remaining mirror surface in the blind. In order to model the behavior facesheet,
a full-size image of the resting shape is required. Otherwise, actuation in the blind area cannot be modeled.
To overcome this limitation, the blind area of the mirror is extrapolated using a modal decomposition of the
original interferometer image.

The extrapolation begins with the decomposition of the interferometer image into a set of regression vari-
ables. The regression variables are terms from a 2D Fourier series. The frequencies used for the extrapolation

range from 0 c ycles
meter to 3 c ycles

meter . Two regressors are needed for the process of the extrapolation: first, a regressor
of the size of the interferometer image for obtaining the regression variables RIF. And another regressor of
the size of the full mirror domain R160 for the extrapolation. Both regressors have the same structure, only
the amount of spatial points changes. The regressors and the regression procedure are:

RIF =

1 sin(2π f1x1) cos(2π f1x1) sin(2π f1x1)cos(2π f1x1) sin2(2π f1x1) cos2(2π f1x1) ...
...

...
...

...
...

...
1 sin(2π f1xn) cos(2π f1xn) sin(2π f1xn)cos(2π f1xn) sin2(2π f1xn) cos2(2π f1xn) ...

 (4.2)

where n = a ∗ b, a and b are the total x and y analysis points, f1 is the first frequency. The regression is
formulated as:

m = (RIF
t RIF)−1 y (4.3)

Where y is a vector containing the points from the interferometer resting shape (figure 4.5 (a)). Vector m
contains the regression variables. Note that the size of this vector is independent of the size of the domain.
It can be used to reconstruct a bigger domain with the same frequency content. A virtual full surface is re-
constructed using the regressor R160 (which contains the domain points needed to reconstruct aϕ= 160 mm
domain):

θxtr = R160m (4.4)

The resulting vector θxtr is the extrapolation vector which can be reshaped into a matrix θxtr = vec−1(θxtr )
∀ vec−1 :Rmn →Rm×n which is shown in figure 4.5 (b).

One of the limitations of the extrapolation procedure is that some amplitude values of the sinusoidal waves
in the blind area are very high. For this reason, amplitude values are limited to |7|µm. So all higher values are
set to a constant value θxtr (xi , yi ) > |7|µm → θxtr (xi , yi ) = |7|µm

Figure 4.5: (a) Interferometer image of the resting shape of the DM. Aperture of the interferometer
image is 107 mm (b) Extrapolation of the interferometer image over the full mirror domain
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The extrapolated image is used to build a FE model. The image can be considered a cloud of points were
pixel numbers and amplitude values are the coordinates. A surface is generated from the cloud of points and
discretized to form a mesh of 3D brick elements using a FEM package. In the model, elastic foundation nodes
are declared at the position of the actuators. The FEM model is linear and makes no further assumptions on
constraints than those of the supports. For the simulation, forces are applied in the out-of-plane direction at
each of the 57 groups of nodes contained within a circular area of diameter 1 mm set at the locations of the
actuators. Further description of the interpolation and FEM model can be found in appendix C.

SVD I0 FEM δI1

1

SVD I0 FEM δI1

1

SVD I0 FEM δI1

1

SVD I0 FEM δI1

1

SVD I0 FEM δI1

1

SVD I0 FEM δI1

1

...

Figure 4.6: Flowchart of the modeled flattening
procedure. The LS algorithm from section 3.2 is

applied to the modeled facesheet to determine the
best flat. The process is then repeated updating

the currents to be supplied to the model

Once the model has been assembled, the
closed-loop flattening procedure of the proto-
type is emulated. Since the surface outside of
the interferometer area is virtual, it is masked
during the procedure. The least square fits will
only use information from the area of the in-
terferometer aperture. To find the model’s best
flat, the same procedure as in section 3.2 is fol-
lowed. The first step to take is to extract the
57 individual influence functions from the DM
model: simulate a unit load at each actuator
nodes location, interpolate a matrix, vectorize
the matrix and store it as a column of a IF ma-
trix. Then, using linear least squares and the
shape of the model’s surface, obtain a set of ac-
tuation commands I0. These are the force in-
puts fed to the FEM routine when running a
simulation (individual IFs from the model are
measured with a force 1 N and therefore regres-
sion variables are forces). The resulting surface
is again evaluated with the linear least squares
algorithm. A new set of incremental force in-

puts is extracted. By adding these new δI1 regression variables to the original set I0, a new set of force inputs
is obtained I1 = I0 +δI1. This vector is used as a input for the FEM model. The process is repeated six times.
At every iteration the peak-to-valley and the surface error are evaluated. It is observed that for the surface
error, convergence is reached after three iterations. The Peak-to-Valley reaches its minimum value after four
iterations (figure 4.7).

The results show a clear magnitude order difference between the model and the experimental results seen
in section 3.3. Nevertheless, the optical quality does increase with the iterative procedure. This behavior is
similar to that of the prototype.

Figure 4.7: (a) Peak-Valley convergence in the 3D model of the resting surface of the DM.
Convergence happens after 4 iterations (b) RMS convregence is reached in the third iteration
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Figure 4.8: Evolution of modeled facesheet flatness with the best flat algorithm

Figure 4.9: Caption of the 3D surface FEM model. Units mm

In this chapter two FE models have been presented. A 2D shell element model which can reproduce IFs which
are previously validated. Validation is done through tuning of actuator stiffness. The residual error between
modeled and experimental results is 90 nm RMS and is caused by noise and misalignment. Nevertheless,
the global minimum coincides for several test cases. This model can be used to predict design sensitivities
of the DM. A 3D model has also been shown to behave in a similar way to the DM prototype when applying
active flattening algorithm. The same iterative convergence as in the DM prototype is observed for the model.
However, there is an order of difference in the values of RMS and PV. Spatial information for the model is much
more abundant and noise free, this explains the easiness of the algorithm to generate results.



5
DEFORMABLE MIRROR LAYOUT

This chapter presents the performance of different actuator layouts for atmospheric turbulence correction.
The following are tested: geometrical dispositions of actuators, optical aperture values and the use of differ-
ent number of actuators. In total three actuator layouts from literature are evaluated: circular, hexagonal and
square (which is the current disposition of actuators). An objective function is defined for measuring the per-
formance of the different layouts: a set of Fourier polynomials. These polynomials are compared to Zernike
modes in the compensation of random atmospheric turbulence phase maps to prove that they are a better
descriptor of atmospheric turbulence.

5.1. OPTICAL OBJECTIVE FUNCTION

Figure 5.1: Random turbulence phase screen using
Kolmogorov energy spectrum

Figure 5.2: Surface error of a Fourier modal decomposition
and a Zernike modal decomposition of 20 random phase

screens

In order to determine which layout performs
better for correcting atmospheric turbulence,
a figure of merit needs to be defined. Fourier
polynomials are chosen as the objective func-
tion for the optimization of the DM. Perfor-
mance of the DM is measured as the resolu-
tion with which these modes can be corrected.
Fourier modes are chosen as a modal basis be-
cause they compensate numerical turbulence
images with a higher resolution than Zernike
modes. In this thesis, turbulent images are
generated using the Kolmogorov energy spec-
trum. The Kolmogorov Power Spectrum is in
good agreement with experimental turbulence
as mentioned by some authors [17] and it reads:

Φ( f ) = 0.023r−5/3
0 f −11/3 (5.1)

By convoluting the Kolmogorov PSD with a do-
main conformed of random coefficients rang-
ing 0 to 1, a finite random turbulence image
is obtained. This can be done by applying a
Fast Fourier Transform (and shifting to the cen-
ter) to a matrix. The matrix being the point-
wise multiplication of the PSD and the random-
entry matrix R. By taking the real part of this
matrix, an image similar to figure 5.1 is ob-
tained. The mathematical expression reads:

K = Re (Φ~R) (5.2)

17
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Where K is the random Kolmogorov phase map
andΦ the 2D PSD.

The Fourier modal basis is conformed of the terms of the Fourier series in two dimensions. A finite set of
frequencies ranging from zero to the spatial Nyquist frequency of the actuators is chosen. The actuators are
positioned with an 18 mm pitch. The Nyquist frequency is then 18

2∗1000 c ycles/meter which is rounded to 3
c ycles/meter . The Fourier polynomial basis can be expressed as:

xab,1 =
a∑

i=1

b∑
j=1

sin(2π fxi x)cos(2π fy j y) (5.3)

xab,2 =
a∑

i=1

b∑
j=1

cos(2π fxi x)cos(2π fy j y) (5.4)

xab,2 =
a∑

i=1

b∑
j=1

sin(2π fxi x)sin(2π fy j y) (5.5)

∀a,b = 0. . .3 The modes sum up to 37. In the evaluated mirror designs only 25 of the modes are evaluated,
since the rest are symmetric modes. The modal basis is referred to as F25.

Figure 5.3: Some low order Fourier modes from the modal basis

The justification for the choice of the Fourier modal basis is that it compensates Kolmogorov phase maps (K)
with higher resolution. This is shown in figure 5.2, which is the result of a simulation comparing the resolution
of Zernike modes and Fourier modes for several random K matrices. Both modal bases are formed of by the
37 lowest terms of each series. A more extensive description of this validation can be found in appendix A.

5.2. LAYOUT STUDY AND FILL FACTOR
In order to test the influence of the actuator layout on the optical resolution for the objective function, three
actuator layouts are compared. The chosen layouts ares: square, circular and hexagonal. These layouts have
been tested in literature previously for determining optimum layouts in Zernike mode correction [16] and
other (see section ).

The layouts are modeled using the FEM code from section 4.1. To generate the actuator patterns, the location
of the stiffness supports is modified. The actuators layouts have a minimum pitch of 18 mm and they all have
a central actuator. The geometrical distribution of the layout is built around the central actuator.
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Figure 5.4: Tested actuator layouts: rectangular, circular and hexagonal. These layouts have been
evaluated previously in literature for different figures of merit and applications

Optical resolution is measured following the procedure shown in section 3.2. To assemble the three IF matri-
ces: IFr, IFc and IFh. 57 individual simulations are carried out to extract individual IFs. The θ to be corrected
are each of the Fourier polynomials conforming F25.

Figure 5.5: Fill factor changes the radius of the active optical surface
and is defined as f f = ra /rt

The fill factor is tested simultaneously. Fill
factor is defined the radius of the active sur-
face for imaging. It is defined as: f f = ra/rt

where ra is the active radius and rt the total ra-
dius of the DM. Some authors have found that
to achieve quality in the correction of low or-
der Zernike modes, some actuators need to be
placed outside of the field of view of the mirror
[19]. The possibility of finding a reduced aper-
ture at which resolution is optimized motivates
the study of the fill factor. To this end, the cor-

rection of the individual Fourier modes is repeated in an iteration loop for varying fill factors. Every iteration
quality of correction of the Fourier polynomials is evaluated at a different f f . This is done for fill factor values
ranging from 0.1 to 1. Every iteration, the added surface error of the all corrected modes is computed in the
following way:

σ f f ,l ayout =
√
σ2

mode1
+ ...+σ2

mode25
(5.6)

Where σ f f ,l ayout is the added standard deviation (std) at a given layout and f f , and the terms correspond to
the squared residual RMS of every mode correction. The values of σ f f ,l ayout are plotted in figure 5.6.

The masks required to change the fill factor in the IFr, IFc and IFh matrices are boolean matrices for which
the entries with r > ra are zero. The Fourier modes are generated every time over the surface prescribed for
each f f as is shown in appendix A. Masks are defined as:

δ(r )

{
if r < ra = 1

if r > ra = 0
(5.7)

Where ra is varied every iteration. They are then vectorized into mk = vec(δ(r )). Also a matrix whose 57
columns are transposed vectors mk is defined as:

M = [mk...mk] (5.8)

So that every iteration the trace of IF and M masks the domain to a desired radius:

Iθ =
(
(IF : M)T (IF : M)

)−1
(IF : M)T θ (5.9)

θr eco = (IF : M)Iθ (5.10)
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Figure 5.6: Added surface error of the three layouts for increasing Optical aperture. The lowest error
is found for the rectangular layout at ff = 0.9

Figure 5.6 shows that for increasing fill factor the added surface error decreases for all layouts. The error
decreases because exposing a higher number of actuators allows to reproduce higher order modes with more
resolution. There is however an increase in the error when the full mirror is exposed ( f f = 1) for the hexagonal
and square layout mirrors. It arises from the fact that the hexagonal mirror and the circular mirror have no
actuators close to the boundary.

It is also seen that the rectangular layout has a lower error than the circular and hexagonal layouts for f f > 0.6.
This advantage is explained for the fill factor 0.9 with the fact that the actuators are arranged in a cartesian
mesh. And so are the Fourier modes. However, in appendix B.2 it is shown that the layout of actuators does
not have a significant impact on the quality of the correction, whereas f f does.

5.3. VARIATION OF NUMBER OF ACTUATORS
After choosing the square layout and f f = 0.9, the actuator pitch is varied. This results in different numbers
of actuators in the DM surface. Actuators are added or lost in groups of 4. In this section, the effects on the
optical quality are measured for different numbers of actuators. The approach is the same as in section 5.2.
The numbers of actuators to be tested are: 69,57 and 45. Their layout can be seen in figure 5.7.

Figure 5.7: Mirrors with 69, 57 and 45 actuators (square arrangement). The change in optical quality
is tested for these three cases

Figure 5.8 shows the surface error of the different actuator layouts for every simulated mode. Modes are
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ordered in the following way: si n(2π f )cos(2π f ), si n(2π f )si n(2π f ) , cos(2π f )cos(2π f ) for ascending fre-
quencies f .

From figure 5.8 it is seen that although the error has a lower value of global error for the 69 actuator layout,
the advantage is only given at the higher order modes. Lower order modes have similar error values for all
layouts. The increase in resolution arising from increasing the number of actuators is small. The loss in
resolution starts at a different mode for every amount of actuators.

Higher order modes, on the other hand, can only be described accurately by high actuation point count
layouts. In the 69 and 57 actuator layout a wave-like variation is seen in the error. This variations have their
origin in the spatial frequency match existing between the mode and the frequency of the actuators, which is
similar in all cases.

Figure 5.8: Surface error for actuator counts: 69, 57 and 45. The horizontal axes represents the modes
ordered in ascending frequencies

In table 5.1 the lower order error is computed as σ1−5 =
√∑5

i=1σi and is higher for the 69 actuators mirror.

This is thought to be because of the implicit higher order stiffness that a higher number of actuators gives.

# Actuators Actuator pitch mm σtot al nm σmodes1−5 nm σmodes5−25 nm
69 16 494 142 473
57 18 672 142 657
45 19 948 154 936

Table 5.1: Standard deviation (RMS) of the different amounts of actuators for the correction of Fourier modes ranging 1 to 25

This chapter compares the optical performance of different actuator layouts and amounts of actuators. Be-
fore doing so it is shown that a set of Fourier polynomials is better suited for atmospheric turbulence com-
pensations. These modes form a modal basis used as a figure of merit. It is shown that a square layout of
actuators for a fill factor of 0.9/1 corrects the modal basis with a lower error than other evaluated layouts. It
is also seen that increasing the number of actuators doesn’t necessarily decrease the surface error. The 57
actuator layout shows better correction of lower order modes than the 69 actuator layout. It is also observed
that lower actuator pitch values allow for correction of higher order Fourier modes.



6
DESIGN VARIABLES

In this chapter another approach for the optimization of the optical performance of DMs is presented. The
approach is to tune the mechanical design variables of the DM. To that end, mirror thickness and actuator
stiffness are tuned. Changes in optical performance are quantified for the aberration profiles described in
section 5.1. A set of analytical expressions is extracted for some of the mechanical parameters. This chapter
also presents a parameter study which compares the added surface error RMS of different combinations of
mirror thickness and actuator stiffness values.

6.1. ANALYTICAL CURVES
To characterize the behavior of the DM under different design parameters, the following variables are studied:
cross-coupling, amplitude of the surface deformation under a unit load and width of the influence function.
All three variables are expressed as a function of the thickness of the mirror facesheet. In a separate analysis,
the same is done for the stiffness of the actuator supports.

6.1.1. AMPLITUDE

Varying the stiffness of the actuator supports (k) and the mirror thickness (t ) will modify the maximum de-
flection of the facesheet when a unit load is supplied to one of the actuators. The force required to displace
the facesheet a prescribed distance is proportional to the power dissipated by the actuators; P = I R2 and
F ∝ I . Therefore it is desired to maximize the amplitude of deformation when supplying a prescribed load.

To find the values of k and t that minimize power consumption, a parametric approach is used. Using the
parametric shell element model from section 4.1, a unit load is provided as an input for one actuator. The de-
flection at the actuation point is measured. Then, t is varied and the maximum deflection results for varying
t are expressed as a parametric curve. The same is done for k.

Initialize model
Update
stiffness

F = 1N

Run sim-
ulation

Measure
deflec-
tion at

actuation
pointReached

maxiter?
Finish yes

no

Figure 6.1: Flowchart for the simulations from this chapter.
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Figure 6.2: Experimental results and analytical curve for amplitude of facesheet deformation when
varying thickness for a force input 1 N. Ideal power dissipation designs should have low facesheet
thickness in order to maximize amplitude of deformation. Note the limiting maximum amplitude

when thickness tends to 0

The results of modeling the deformation of the mirror facesheet under a unit load for different values of the
mirror facesheet thickness are shown in figure 6.2. The figure also shows an equation fitted to the data. Fitting
of the equation is done with MATLAB’s fitting toolbox. The resulting fitted equation reads:

z = 2

6.8e4+ (2e11)t 3 (6.1)

where z is the amplitude of the facesheet deformation at the actuator locations. The curve has an exponen-
tial decay caused by the increase in mirror thickness. Mirror thickness is a component of flexural rigidity.
Increases in flexural rigidity naturally reduce maximum amplitude for a constant force. When values of t
tend to zero, the maximum deflection reaches a limit value. This value corresponds to the elastic displace-
ment of a spring with the same stiffness as the actuator support under the supplied load: x = F /k where
F = 1N and k = 68000N m−1. The structure of the above equation is similar to that governing the bending of
a plate resting on an elastic support. But this curve has an independent term that prevents the apparition of
an asymptote when the thickness of the plate becomes very thin. A generic expression can be drawn:

z = F

k +D
(6.2)

Where F is the force supplied to an actuator and D = Et 3

12(1−v2)
with E the Young’s Modulus and v the Poisson

ratio.
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Figure 6.3: Relation between Amplitude of facesheet deformation for varying stiffness and a force
input 1 N

The same approach is used for k. A curve is fitted to the modeled parameters to fit an equation that describes
the behavior of the facesheet deformation under varying values of k. The results are shown in figure 6.3
showing the modeling points and a fitted equation which reads:

z = 1326p
k

(6.3)

The curve from figure 6.3 shows how for small values of stiffness of the individual supports deflection tends
to be infinite. When the stiffness values are high, deflection tends to zero. The higher the stiffness of the
actuators, the higher the force needed to displace them. Thus, resulting in a lower facesheet deformation.
The curve fit relates deflection and stiffness with a factor 2. This is thought to be caused by the combination
of the actuator stiffness of several actuators in parallel, but no solid proof is found.

6.1.2. CROSS COUPLING

Cross coupling is defined as the displacement that an actuator experiences when a neighboring actuator is
displaced. This phenomenon is said to smooth the shape of IFs as referred by [12]. Cross coupling can be
expressed in the following manner:

xc = zad j acent

zactuated
·100 (6.4)

The influence of varying t and k on cross coupling when a constant load is applied is evaluated here. The
variations are quantified using simulations. In a similar fashion to the previous section, parametric curves
are obtained (measurements of displacement at and adjacent actuator are now needed as well):
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(a) (b)

Figure 6.4: (a) Cross coupling variation for increasing stiffness of actuator supports (b) Cross
coupling variation for increasing thickness

The curves can be fitted to analytic expressions as follows:

k = 27350p
xc3

−39.65 (6.5)

In this case, the direct effect of the adjacent actuator has more weight, this changes the order of the equation
for actuators influence the displacement

for k-Cross coupling relation. For t :

t = −103.1

1.168+ t−1.954 ≡ −103

1+ t−2 (6.6)

The independent term from equation 6.5 represents the offset in the asymptote, k becomes zero before reach-
ing 100 % cross coupling. On the other side of the graph, wen cross coupling tends to zero, k becomes larger
asymptotically. When cross coupling tends to 100 the stiffness value goes to zero. The second curve presents
a similar behavior to eq. 6.1.

6.2. WIDTH OF THE INFLUENCE FUNCTION
Knowing the width of the IF is an interesting feature for modeling without having to use a FEM package. The
width is considered as the radius from the actuation point to the point at which the facesheet crosses the
mirror reference plane. Knowledge of this point and of the cross-coupling allows for the interpolation of a
curve. The curve will range from the cross-coupled displacement, to the width and to the actuation point.
Revolving the curve will give an IF. Another application for the width of the IF is to generate IF that match the
actuator pitch. This application is interesting for piston generating mirrors, where the piston mode is wished
to be optimized.

The analysis follows the same philosophy described in 6.1.1. Only that instead of measuring the maximum
amplitude, the cross-points of the facesheet over the reference plane are measured. This is done using the
code listed in annex E. When the IF generates a si nc shape, the zero-crossing happens at least twice. In that
case, the crossing closest to the actuation point is measured. Equations with a physical relevance are not
fitted to these parametric curves because of their high degree of non-linearity.
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(a) (b)

Figure 6.5: (a) Modeled thickness of the IF as a function of t . (b) Modeled thickness of the IF as a
function of k.

In figure 6.5a three areas can be identified with three different slopes. The first section corresponds to IFs
for which the width is smaller than the actuator pitch. The second area is that where the width of the IF is
contained within the first and the second actuator. Finally, in the third section, the width is higher than the
distance between three consecutive actuators.

The curve from 6.5b has a more stable relation since cross coupling is limited by increasing stiffness.

6.3. PARAMETER STUDY
The parameter study consists of combinations of values of t , k and the error of compensating for the Fourier
modal basis shown in section 5.1. This is achieved by iterating over values of t and k and repeating the fitting
procedure shown in section 3.2. It requires the coupling of the FEM model and MATLAB. The process consists
of updating t and k every iteration and extracting the Influence functions. Using the SVD algorithm the full
set of modes is fitted and the error quantified. Thickness values ranging from 0.1 mm to 2 mm are simulated.
For stiffness the range is 1×104 N m−1 to 1×107 N m−1.

Figure 6.6: Constant shape of Influence function for varying stiffness(k), thickness(t) and Actuator
spacing or pitch(p)

Figure 6.6 shows the error when correcting two different modes for a full set of combinations of t and k.
Every mode has a different optimal configuration of parameters that minimizes the error. The global error is

the added standard deviation of all error modes: σtot al =
√∑

σ2
i for i = 25 modes. The addition of the errors

gives place to a combined design space which is represented in figure 6.7.
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In figure 6.7 a global minimum is found for the Standard Deviation of all modes used in this study. The
minimum value of the added RMS error for all modes takes place for t = 0.4mm and k = 100×103 N m−1.
These values of k and t are located towards the where the facesheet deformation tends to be higher (6.1.1).

Figure 6.7: Combined design space: t ,k,σ

6.3.1. PARAMETER STUDY FOR 49 ACTUATORS LAYOUT

Repeating the same process for the 49 Actuator layout will give an more resolute version of this layout making
it able to generate modes with a resolution close to that of the higher count mirror. Looking at the mini-
mum part of the design space and choosing those parameters. Their performance is compared to that of the
original assembly.

(a)

(b)

Figure 6.8: (a) Error per mode for initial 57 actuator layout and optimized 49 actuator layout. (b)
Design space for optimized 49
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# Actuators σ σmodes1−5 σmodes5−25 Units
57 672 142 657 nm
49 811 147 797 nm

Table 6.1: Standard deviation (RMS) of the original and modified layouts

The described analytic curves in this chapter are an interesting tool for design optimization purposes. They
can be inputted in optimization procedures to determine desired designs. The parameter study, on the other
hand shows which values of mirror thickness and support stiffness give the global minimum error for the
current load case.



7
CONCLUSIONS

The main objectives of this thesis were: to define whether optimal combinations of design parameters exist
to increase the performance of the deformable mirror. And to determine whether the effect of the resting
geometry of the facesheet surface is dominant in limiting the optical quality of the best flat. The conclusions
chapter summarizes the interpretation of the findings of previous chapters. Recommendations are given
based on the conclusions.

7.1. CONCLUSIONS FROM THE 2D MODEL
The 2D model is validated. The resemblance of the IF of the 2D model and the measured interferometer
images has a minimum surface RMS value which is conditioned by the noise present in the interferometer
images. A stiffness value of 68000 N m−1 is found to be the physical value of the stiffness of the supports.
This value is in accordance with the combined stiffness of the actuator support and actuator strut. The 2D
model can be used for modeling purposes, to explore the sensitivities of design parameters and to predict the
behavior of alternative DM designs.

7.2. CONCLUSIONS FROM THE 3D MODEL
For the 3D model of the initial resting surface, three iterations are needed to converge to the best flat. This is
modeled using the LS algorithm as was done with the DM prototype. The closed-loop convergence is caused
by the geometrical non-linearity of the mirror surface. It is what prevents the mirror from reaching the best
flat in open loop. There is a difference in the number of iterations needed to converge to best flat between
model and real system (three against six of the prototype). There is also an order of magnitude difference in
the surface error RMS (3.9 nm of the model and the surface error rms of the prototype 34 nm . The peak to
valley values also differ: 54 nm for the model and 324 nm for the prototype. An influential factor explaining
order of difference between model and prototype is the noise present in the measurement images. This noise
affects the maximum resolution that can be achieved by the algorithm. Some similarities can be seen in the
model best flat and the experimental case. Particularly the higher amplitude bump in the upper left corner of
the 5th iteration from the model (Figure 4.8) and the experiments (Figure 3.5). This similarity further supports
the hypothesis of the geometry being the main limitation for the best flat.

7.3. CONCLUSIONS FROM THE MIRROR LAYOUT
The figure of merit used in the optimization of the design variables was a set of Fourier polynomials (see sec-
tion 5.1). Test results show that the set of Fourier modes are a more accurate basis for describing atmospheric
turbulence (considered as random Kolmogorov phasemaps) than Zernike modes (see section 5.2).

The geometrical layout study involved a circular, rectangular and a hexagonal layout. In correcting Fourier
modes the rectangular layout has a lower surface error. This holds for varying fill factor values. It was also
shown that the fill factor corresponding to the lowest surface error is 0.9 for the square layout (see section 5.6).
This is a result of having more actuators exposed to the active area. More actuators allow for the correction of
higher order modes. The loss in precision for the full exposure is thought to be caused by the lack of actuators
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in most of the outer ring. However, it is seen that no actuators need to be placed out of the aperture to
increase optical quality. The reason being that Fourier modes satisfy the plate equation. The circular layout
does experience further decrease in error in the case of full active area of the mirror surface. This is thought
to be because of the more homogeneous distribution of actuators in the outer-most ring.

Varying the number of actuators has different effects on different sets of modes. For lower order modes it
was expected to see a decrease in error for increasing actuator count. However, for low order modes, this
decrease is negligible. For higher order modes, the results are as expected and quantified. Higher actuator
count results in higher resolution in the reproduction of higher order modes.

7.4. MECHANICAL PROPERTIES OF THE MIRROR FACESHEET AND ACTUATORS
A set of analytical relations is set relating stiffness of the actuator supports and the mirror thickness with
some variables of interest: deflection under unit load, Cross coupling and width of the influence function
(eqs: 6.1, 6.1.1, 6.5). The stiffness of the supports can be tuned in terms of the geometry of the actuator strut
and actuation beam or the material properties of the actuator. The facesheet bending can be tuned in terms
of the material properties or its thickness . An interesting conclusion from figure6.8b is that the output from
the FEM model is physical but differs slightly from the theory of plates. In that solution to the bi-harmonic
equation, the amplitude values tend to infinity.

From the parameter study it is concluded that there is a set of optimal values of the mechanical parameters of
the facesheet and actuator supports that optimizes the optical performance of the DM. However, the increase
in performance is limited (from σadded 735 nm to σadded 725 nm). Also, gravitational sag needs to be taken
into account during that optimization.

7.5. RECOMMENDATIONS AND FUTURE WORK
The quality of the measured IFs has an effect on the degree of flatness that can be achieved in active flatten-
ing (see sections 3.2 and 4.2). Therefore, the use of an even more resolute interferometer could increase the
quality of the best flat. Filtering the high frequency noise present in the images is another recommendation
to this respect. The image noise affects the performance of the least square algorithm. Another factor influ-
encing the quality of the best flat and the linearity of the facesheet displacement is the mirror surface. Using
a facesheet with a higher degree of polishing (lower peak to valley in the resting shape) will help buffer the
non-linear flattening effects seen in section 3.2.

It has been seen that the layout of the actuators does not influence the optical quality compared to other
variables in the compensation of atmospheric turbulence. Therefore it is not recommended to change the
current layout. For increase in optical quality, a higher number of actuators can be used as is mentioned in
literature [11]. This of course results in a tradeoff between price and resolution. Furthermore, the increase in
resolution is not substantial and for some modes there is even a loss in resolution (see table 5.1). The optical
aperture on the other hand does have a stronger influence on resolution. It is recommended to increase
to 90% of the total radius for optimal performance (see section 5.2). If it is desired to reduce the number
of actuators, optimization techniques like the one described in section 6.3 will help buffer the decrease in
optical resolution.

The parametric relations described in chapter 6 for the Influence functions allow to design DMs knowing
before hand what the deformation behavior will be like. This relations can be fed to a FEM code or to a para-
metric model to quickly design and prototype different IF shapes. An interesting application of this feature is
the optimization of specific aberration profiles such as those that need to be compensated in lithography or
ophthalmology.
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A
2D FOURIER FOURIER MODAL BASIS

This chapter describes the full set of Fourier polynomials to be used as both a modal basis for atmospheric
turbulence representation and as an objective function for the different optimization procedures in chapters
5 and 6.

A.1. FOURIER POLYNOMIALS
Fourier series describe functions in terms of infinite sums of sines and cosines. The orthogonality of the sine
and cosine functions allows for the construction of the Fourier series. The terms of a Fourier series can later
be solved individually (decoupling). The linear addition of the terms then gives place to the original function
[26].

The Fourier series can be generalized to the n-dimensional case. In this document the 2-D generalization is
used. A finite Fourier series gives place to an approximation of the function that is desired to be reconstructed.
The infinite full 2D Fourier expansion in 2D reads:
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) (A.1)

Where 0 ≤ x ≤ a,0 ≤ y ≤ b, n,m are frequencies in the OX, OY directions andα,β,δ,γ are coefficients obtained
through the orthogonality argument (weights).

This thesis uses each of the individual sine and cosine polynomials of a finite Fourier series -each term of
equation A.1- as a term for a modal basis. The modal Fourier basis is used for for decomposing atmospheric
turbulence. They are also the figure of merit for the optimization process, since atmospheric turbulence is
random.

The Fourier frequencies are limited by the design of the DM. Spatial frequencies are the variable of interest.
There is a limitation to the highest achievable frequency by the DM imposed by the Nyquist frequency. The
limiting DM parameter is actuator pitch which is set to 18 mm. And the Nyquist frequency [27]: fnyq = 1

2
160
18 =

4.4 ≡ 4c ycle/meter

However, since any Optical aperture smaller than 90% will impede achieving the Nyquist Frequency, insted
the maximum frequency considered is 3 cycle/meter. Also, The second and third terms of equation A.1 are
symmetric with respect to the cartesian axis (and so are the evaluated layouts). Therefore the third term of
equation A.1 is suppressed. Leaving the following modes:
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Which, over a normalized circular aperture of radius 1 unit (a = b = 1) have the following graphical interpre-
tation:

Figure A.1: Fourier polynomial Modes used for the modal basis. Frequencies range from 0 to 3 and
the domain is made circular and normalized. Note that modes with mirrored frequencies are

symmetric. Subtraction of these modes reduces the basis to 25 figures of merit. Piston should be
present thrice but is only showed once
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A.2. PERFORMANCE COMPARISON OF THE FOURIER SET AND THE ZERNIKE

SET
Next step to take is to compare the resolution of a set of Zernike modes in the reconstruction of atmospheric
turbulence; following the modal approach [9].

Figure A.2: Zernike polynomials (sine modes only) up to 37. These will be compared with Fourier
modes to measure the accuracy of Atmospheric image modal decomposition

The same number of modes will be used as in the previous chapter A.1. The spatial frequency content will
be different for the Zernike modes than for the Fourier modes. Zernike modes (Z m

n ) are derived from the
following equations:

Z m
n (ρ,φ) = Rm

n (ρ)cos(mφ) (A.3)

Z m
n (ρ,φ) = Rm

n (ρ)si n(mφ) (A.4)

(for odd and even modes). The order of the polynomial is given by n and m which obey n ≥ m ≥ 0 and Rm
n (ρ):
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Rm
n (ρ) =
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l !
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]
!
[ 1

2 (n −m)− l
]ρn−2l (A.5)

More on Zernike modes can be found in [28]. The lowest 37 Zernike modes are shown in Figure A.2.

The generation of Atmospheric turbulence images was already described in 5.1. The code needed to generate
this images reads:

sz =327; % s i z e
cx=(−sz : sz ) ; % Domain
mx=(ones (2* sz +1 ,1)* cx ) . ^ 2 ;
mr=sqrt (mx+transpose (mx) ) ;
psd=0.023*mr.^( −11/3); % Kolmogorov PSD
psd ( sz +1 , sz +1)=0;
% generate the random numbers with Gaussian s t a t i s t i c s
randomcoeffs=randn (2* sz +1)+ i *randn (2* sz + 1 ) ;
phasescreen= r e a l ( f f t 2 ( f f t s h i f t ( sqrt ( psd ) . * randomcoeffs ) ) ) ; % Convolute
% Make a c i r c l e in domain
phasescreen = disk_suppress ( phasescreen ) ;
phasescreen = 10e−6.* phasescreen ; % Scale to um

The simulation consists in generating a number of random phase screens (100). For each simulation, the
phase screen image is decomposed into the modal set of Zernike modes and into the modal set of Fourier
modes Z37 and F37 respectively. Then the turbulence images are reconstructed using the coefficients from
the decomposition and the modes. The reconstructed phasescreens are subtracted to the original phase
screen and the surface error is computed. The result is a residual error per iteration which is plotted in figure
A.3. The mathematical description of the method follows the same approach as 3.2 and can be written as:

Z r eg = (
ZT

37Z37
)

ZT
37K ; K zer n = Z37Z r eg (A.6)

for the Zernike modal basis. The same principle is applied to for the Fourier basis. Then, the standard devi-
ation of the residual is computed: σzer n(K −K zer n) and σ f our (K −K f our ). It is seen that for every generated
random phase map, the error is always bigger for the Zernike basis. This justifies the choice of the Fourier
basis as a figure of merit for the optimization.

Figure A.3: Surface error of modal turbulence image reconstruction using a Zernike basis and a
Fourier basis. The image shows that surface error is lower for the Fourier basis in all cases. The

amount of modes used for both basis is 37 modes
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A.3. DIFFERENTIATION OF THE FOURIER POLYNOMIAL TERMS FOR THE BI-
HARMONIC EQUATION

This section provides a derivation of some Fourier modes into the plate bending equation in polar and carte-
sian coordinates to serve as proof of the possibility of satisfying the fourth order derivative. Fourier modes
satisfying plate bending means they can be generated within a domain without necessity of satisfying outer
boundary conditions. This in term means that, in theory, Fourier modes can be generated using actuation
points within the aperture of the mirror thus maximizing focal aperture.

∆2ϕ= ∂4ϕ

∂x4 + ∂4ϕ

∂x2∂y2 + ∂4ϕ

∂y4 (A.7)

First mode (skip the angular frequency and assume the first mode to be at f = 1/2π)

ϕ= si n(x)∗ cos(y) (A.8)

where

∂ϕ

∂x
= cos(x)cos(y)+0;

∂2ϕ

∂x2 =−si n(x)cos(y)+0;
∂3ϕ

∂x3 =−cos(x)cos(y)+0; (A.9)

∂4ϕ

∂x4 = si n(x)cos(y)+0 (A.10)

∂

∂y
(
∂2ϕ

∂x2 ) = si n(x)si n(y)+0; (A.11)

∂4ϕ

∂x2∂y2 = si n(x)cos(y)+0 (A.12)

Similarly:

∂ϕ

∂y
=−si n(y)si n(x)+0;

∂2ϕ

∂y2 =−cos(y)si n(x)+0;
∂3ϕ

∂y3 = si n(y)si n(x)+0 (A.13)

∂4ϕ

∂y4 = si n(x)cos(y) (A.14)

And:

∆2ϕ= 3si n(x)cos(y) (A.15)

Using Vdovins approach we can write the following:
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D
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D
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q

D
∂p

(A.16)

where q is a point load and D the flexural rigidity.
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A.4. GENERAL DERIVATION FOR POLAR COORDINATES
The biharmonic equation in Polar coordinates reads:
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If, ϕ= si n(nr cosφ)si n(nr cosφ). Then the above expression reads:
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(A.18)

Where n = 2π f and x = r cos(φ), y = r si n(φ). First, we derivate the r terms:
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∂r
= ncosφcos(nr cosφ)si n(nr si nφ)+nsi nφsi n(nr cosφ)cos(nr si nφ) (A.19)
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This term is needed for the cross derivatives:

∂2ϕ

∂r 2 =−n2cos2φsi n(nr cosφ)si n(nr si nφ)+n2si nφcosφcos(nr cosφ)cos(nr si nφ)+
n2si nφcosφcos(nr cosφ)cos(nr si nφ)−n2si n2φsi n(nr cosφ)si n(nr si nφ) (A.22)



B
LAYOUTS PERFORMANCE

B.1. POWER CONSUMPTION
This section compares the power consumption for a rectangular, hexagonal and circular arrangement of ac-
tuators. The IFs from the parametric simulations are modeled for a Force 1 N; this means that the term I n

in 3.2 is a vector of ones and the least square fit values of Iθ are the Forces needed to drive the mirror. By
comparing the Standard Deviation (std) of all the individual forces required to drive the mirror to each of the
aberration profiles described in 5.1, a plot like the one from Figure B.1 can be obtained.

Figure B.1: σ f =
√

f 2
1 + ...+ f572 of all the Force values needed to generate each mode from the

modal basis. The blue line is the square layout. The red line, the circular layout and the green curve
belongs to the hexagonal arrangement

Figure B.1 shows there is small variation in power dissipation regardless of the used arrangement. However,
the hexagonal arrangements shows an overall poorer performance. At higher order modes, circular layouts
perform better.

B.2. ATMOSPHERIC TURBULENCE COMPENSATION FOR DIFFERENT LAYOUTS

AND VALUES OF THE FILL FACTOR
Using the approach described in section 5 the approach from previous section is sed and 20 simulations are
run
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Figure B.2: Added rms of Monte Carlo style simulation for different f f and three layouts of the
compensation of random Kolmogorov phase maps

B.3. DIFFERENT ACTUATOR COUNTS IN DIRECT RECONSTRUCTION OF KOL-
MOGOROV PHASE MAPS

In this analysis, different numbers of actuators arranged in a square layout are analyzed. The approach is the
same as that of section 5.1. Kolmogorov phase screens are compensated using each actuator layout. Trends
are clear; note how close the error is for the layouts with actuator counts 69, 57 and 45.

Figure B.3: Added rms of Monte Carlo style simulation for different actuator counts (69, 57, 45 and 21
actuators) in compensation of random Kolmogorov phase maps



C
ASSEMBLY OF THE 3D MODEL

Here, the assembly of the 3D model that emulates the flattening procedure is described. A least square fit
approach is used to drive the modeled surface to a flatter shape. Three software were used to achieve this:
MATLAB, for processing the best flat images, interpolate them and to run the LS algorithm. SOLIDWORKS, to
generate a surface from the image data. And ANSYS WorkBench (Mechanical), for running simulations.

C.1. EXTRAPOLATION OF INTERFEROMETER IMAGE AND PREPARATION OF DATA
The interferometer images of the resting mirror surface can be uploaded to MATLAB using the code from
section C.4. The code for the extrapolation of the initial flat to the full domain is described below and follows
the theory from 4.2.

%% Extrapolation of i n i t i a l f l a t to 160 mm diam . Make a regressor , e x t r a c t
%regression variables , make regressor for bigger domain and multiply by
%regression vector
IFdomain = Flatness . data ; % Original Interferometer image
% Create reduced domain
[X , Y ] = meshgrid ( Flatness . pos , Flatness . pos ) ;

% Take out NaN’ s
x f = X(~ isnan ( IFdomain ) ) ;
yf = Y(~ isnan ( IFdomain ) ) ;

% Define frequencies for modal decomposition
fmax = 5 ;
freqs = ( 1 : fmax ) ’ ;

% Make columns for the regression matrix with sinusoidal waves
sinx = sin ( freqs * xf ’ * pi ) ’ ;
cosx = cos ( freqs * xf ’ * pi ) ’ ;
siny = sin ( freqs * yf ’ * pi ) ’ ;
cosy = cos ( freqs * yf ’ * pi ) ’ ;
% Make regression matrix ( for small domain)
regr = [ ones ( length ( sinx ) , 1 ) sinx cosx siny cosy ] ;
for i = 1 : length ( freqs )

for j = 1 : length ( freqs )
regr = [ regr sinx ( : , i ) . * siny ( : , j ) sinx ( : , i ) . * cosy ( : , j ) . . .

cosx ( : , i ) . * siny ( : , j ) cosx ( : , i ) . * cosy ( : , j ) ] ;
end

end
% Find regression variables
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decomposition = regr \IFdomain(~ isnan ( IFdomain ) ) ;
% Make regression matrix columns to create the big domain
sinX = sin ( freqs *xd ( : ) ’ * pi ) ’ ;
cosX = cos ( freqs *xd ( : ) ’ * pi ) ’ ;
sinY = sin ( freqs *yd ( : ) ’ * pi ) ’ ;
cosY = cos ( freqs *yd ( : ) ’ * pi ) ’ ;
% Store columns and make Matrix
Regr = [ ones ( s i z e ( xd , 1 ) ^ 2 , 1 ) sinX cosX sinY cosY ] ;
for i = 1 : length ( freqs )

for j = 1 : length ( freqs )
Regr = [ Regr sinX ( : , i ) . * sinY ( : , j ) sinX ( : , i ) . * cosY ( : , j ) . . .

cosX ( : , i ) . * sinY ( : , j ) cosX ( : , i ) . * cosY ( : , j ) ] ;
end

end
% With regression variables and big regression matrix reconstruct domain
fulldom_nomask = Regr * decomposition ;
fulldom_nomask = reshape ( fulldom_nomask , s i z e ( xd , 1 ) , s i z e ( xd , 1 ) ) ;

% Create . t x t f i l e for SW. CENTERED EXTRAPOLATION
% Make c i r c u l a r mask
mask_rC = ( xd ) . ^ 2 + ( yd ) . ^ 2 ;
mask_rC ( mask_rC >(0.08^2)) = NaN;
mask_rC(~ isnan ( mask_rC ) ) = 1e3 ;
fulldom_nonCenter = fulldom_nomask . * mask_rC ;
% Make higher Extrapolation amplitude # ’ s smaller
fulldom_nonCenter ( fulldom_nonCenter <−5e−3) = −5e−3;
fulldom_nonCenter ( fulldom_nonCenter >5e−3) = 5e−3;

% Prepare data to be read as CloudPoint in solidWorks and save
[xmap , ymap] = meshgrid (0:160/ length ( fulldom_nonCenter):160− . . .

160/ length ( fulldom_nonCenter ) , . . .
0:160/ length ( fulldom_nonCenter):160−160/ length ( fulldom_nonCenter ) ) ;
FlatDataFEM = [xmap ( : ) ymap ( : ) fulldom_nonCenter ( : ) ] ;
FlatDataFEM ( isnan ( fulldom_nonCenter ) , : ) = [ ] ;
save ( ’C: \ PointCloud ’ , FlatDataFEM , ’ . txt ’ )

C.2. SOLIDWORKS PROCESSING
The generated file (PointCloud) must be imported as a cloud of points in SolidWorks. Using mesh prep wizard,
generate a mesh for the surface. All the options can be set to default except for the Orientation option which
should be "none". Depending on the amount of points from the .txt file, it might be needed to down sample
by reducing the detail of the mesh. Next, run the surface wizard and save the resulting surface as a Parasolid
file.
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(a) (b)

Figure C.1: (a) Mesh generated by SolidWorks. (b) Surface generated by SolidWorks

C.3. FEM ANALYSIS
For the FEM analysis, ANSYS Workbench was used. The simulation is a Static Structural analysis and the
geometry must be uploaded externally. The Parasolid file from section C.2 is used. The material properties
must be personalized to according to table ??. After that, the Coordinate origin is set to the center of the
mirror. Then, the actuation points must be defined individually. This may be done by generating 57 individual
named selections. To do this, in scope method the worksheet option is chosen and the OY coordinate is
filtered for every OX coordinate of the actuators. All of the Boundary Conditions (rotation and displacement)
will be established in the macro file which will run the simulation.

The first step to take in the simulations is to extract the Influence functions of the actuators. This is done
using the following macro which must be included as a command snippet in the Static Structural section:

! ! APPLY STIFFNESS TO ACTUATOR NODES
ARG1 = 760
ARG2 = 760000

* i f , ARG1, LE , 0 , then

*MSG,ERROR
ARG1 for Normal S t i f f n e s s on XYZ E l a s t i c Foundation must be p o s i t i v e
/EOF

* return ,−1

* endif

* i f , ARG2, LE , 0 , then
ARG2=ARG1
/COM,######## ARG2 was made equal to ARG1 ########

* endif
f i n i
/prep7

* get , nodemax,NODE, ,NUM,MAX ! highest node number in model
cmsel , s , Elastic_Here ! nodes of the component " Elastic_Here "
esln ! s e l e c t contacting elements
! undselect surface e f f e c t , contact , MPC and beam elements
esel , u , ename, ,151 ,154
esel , u , ename, ,169 ,180
esel , u , ename, ,188 ,189

* get , maxtype , ETYP , ,NUM,MAX ! highest element type

* get , maxmat,MAT, ,NUM,MAX ! highest material type

* get , maxreal ,RCON, ,NUM,MAX ! highest r e a l constant
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! Set maxtype , maxmat and maxreal to the highest value of a l l three

* i f , maxtype , gt , maxmat, then
maxmat=maxtype

* else
maxtype=maxmat

* endif

* i f , maxreal , gt , maxtype , then
maxtype=maxreal
maxmat=maxreal

* e lse
maxreal=maxtype

* endif
! Create required element types and r e a l constant
ET , maxtype+1 ,CONTA174, , 1 , , 0 , 3 ! Pure Penalty contact algorithm ( s t i f f n e s s )
KEYOPT, maxtype+1 ,9 ,1 ! Exclude geometrical gap
KEYOPT, maxtype+1 ,12 ,5 ! Bonded Always
ET , maxtype+2 ,TARGE170, , 1 ! Constraints by user
R, maxreal +1 ,0 ,0 ,−ARG1, , , −abs (ARG3) ! FKN Absolute Number
RMODIF, maxreal+1,12,−ARG2 ! FKT as Absolute Number
TYPE , maxtype+1 ! CONTA174 elements
REAL, maxreal+1
MAT, maxmat+1
ESURF ! Mesh CONTA174 over underlying element faces

* get , current_nodemin , node , ,num, min
esln , r , 1 ! Select only these CONTA174 elements
esel , r , ename, ,174 ! Ensure no other elements
esel , r , real , , maxreal+1
! Make a copy of the currently selected nodes

NGEN, 2 , ( nodemax−current_nodemin )+1 ,ALL, , , 0 , 0 , 0 ! Copy nodes at location
EGEN, 2 , ( nodemax−current_nodemin )+1 ,ALL, , , 0 , 1 , 0 ! Copy elements TYPE by 1
esel , r , type , , maxtype+2 ! Select these new TARGE170 elements
ENSYM, 0 , , 0 , ALL ! Reverse TARGE170 elements to face contacts
nsle ! Select nodes on these t a r g e t elements
d , a l l , a l l ! Constrain a l l nodes on t a r g e t elements
a l l s e l
! APPLY DISPLACEMENT LOADS HERE

*dim , qa , , 1 8
qa ( 1 ) = ! Copy contents of . t x t f i l e s generated by matlab and stored as iter1qa

*dim , qb, , 1 8
qb( 1 ) =

*dim , qc , , 1 8
qc ( 1 ) =

*dim , qd, , 3
qd( 1 ) =−15.223 ,2.2675 ,−6.2927

*do , i ,1 ,57 ,1

* IF , i , l t , 1 9 , then
F , Selection_%i %,FZ , qa ( i )

*ELSEIF , i , l t ,37
F , Selection_%i %,FZ , qb( i −18)

*ELSEIF , i , l t ,55
F , Selection_%i %,FZ , qc ( i −36)

*ELSE
F , Selection_%i %,FZ , qd( i −54)

*ENDIF
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*enddo
nsel , a l l
f i n i
/ solu

Those IFs must then be imported to MATLAB using the procedure described in section C.4. Then, in a similar
fashion to the procedure described in 3.2. The initial flat will also be processed using that method. To load
the initial flat, the initial configuration of the mesh needs to be uploaded to MATLAB. The from C.4 is then
used to determine the first set of Forces to be supplied to the mirror. The first simulation is ran by supplying
the values found in the .txt files generated by MATLAB to lines 63, 65, 67 and 69 of the macro file above. The
loop continues by repeating this process for several iterations.

C.4. PROCESSING IN MATLAB
With MATLAB, the control algorithm is ran in the same way as for the DM protoytpe. Firstly, the IFs are stored
into a matrix. Then an initial flat file is loaded from the same set of measurements and turned into and turned
into a matrix. After, the extrapolated part of the domain (ϕ > 107 mm) is masked (it is interpolated data and
therefore is not useful) for both the IFs and the loaded Initial flat. Following the approach from 3.2 the SVD
procedure is used and the resulting regression variables, which are multiplied by a normalized Force of 1 N
are saved into .txt files for ease of copying into the macro. Each iteration a new displacement field is loaded,
processed and added to the initial flat data to repeat the regression procedure.

% Load FEM 3D WB Analysis Flatness .
nr = ’ f i l e 4 1 ’ ; % Choose ANSYS . x l s output f i l e
% Input here simulation processing code . . . Last l i n e shown below :
zdom0 = F0 (ydom,xdom ) ;
load ( ’ K3da ’ ) % Load ( shape functions ) Kmatrix for the model

%% Reduce domain s i z e to IF aperture
desmm = 51; % Radius desired mm
t r g t = round ( sqrt ( s i z e (K3da , 1 ) ) *desmm/160) ;
[ ci , c j ] = meshgrid(−sqrt ( s i z e (K3da , 1 ) ) / 2 : sqrt ( s i z e (K3da , 1 ) ) / 2 −1 , . . .

−sqrt ( s i z e (K3da , 1 ) ) / 2 : sqrt ( s i z e (K3da,1))/2−1 ) ;
cr = ( c i .^2+ c j . ^ 2 ) ;
cr ( cr > t r g t ^2) = NaN;
cr = cr . * 0 + 1 ;
% Reduce aperture
for i =1: s i z e (K3da , 2 )

K = reshape ( K3da ( : , i ) , sqrt ( s i z e (K3da , 1 ) ) , [ ] ) ;
K = K . * cr ;
K_iterat ions ( : , i ) = K ( : ) ;

end
% Suppress nans for SVD
K_iterat ions ( isnan ( K_iterat ions ) ) = 0 ;
%% Flattening 1 s t i t e r

% Apply c i r c u l a r mask f i l t e r
zdom0 = zdom0 . * cr ;
% 0 instead of NaN
zdom0( isnan (zdom0) ) = 0 ;
% SVD and normalization
disp_norder = K_iterat ions \zdom0 ( : ) ;
norm = max( K_iterat ions ( : , 1 9 ) ) ;
disp = disp_norder ;
% Store the actuation commands
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deltas ( 1 , : ) = −disp ’ ;
% Write to t x t with commas to be copied to clipboard
dlmwrite ( ’ 1 i te r q a . txt ’ , deltas ( 1 , 1 : 1 8 ) )
dlmwrite ( ’ 1 iterqb . txt ’ , deltas ( 1 , 1 9 : 3 6 ) )
dlmwrite ( ’ 1 i t e r q c . txt ’ , deltas ( 1 , 3 7 : 5 4 ) )
dlmwrite ( ’ 1 iterqd . txt ’ , deltas ( 1 , 5 5 : end ) )

%% Load the I s t i t e r a t i o n and v i s u a l i z e i t
nr = ’ f i l e 4 2 ’ ;
% Input here simulation processing code . . . Last l i n e shown below :
zdom1 = F1 (ydom,xdom ) ;
% Interpolation displacement f i e l d
F1it = TriScatteredInterp ( dxy , data1 ( : , 4 ) ) ;
dis1 = F1it (ydom,xdom ) ;
% Add the domains to see the f i n a l shape
zdisp1 = zdom1+dis1 ;
reduced1 = zdisp1 . * cr ;
zdom1red = zdom1 . * cr ;
%% Second i t e r a t i o n
reduced1 ( isnan ( reduced1 ) ) = 0 ;
% SVD
disp_norder2 = K_iterat ions \reduced1 ( : ) ;
disp2 = disp_norder2 ; % In ANSYS multiply again times 1e−3
%(to get r id of exponential numbering )
deltas ( 2 , : ) = −disp2 ’ ;
dl2 = sum( deltas , 1 ) ;
dlmwrite ( ’ 2 i te r q a . txt ’ , dl2 ( 1 , 1 : 1 8 ) )
dlmwrite ( ’ 2 iterqb . txt ’ , dl2 ( 1 , 1 9 : 3 6 ) )
dlmwrite ( ’ 2 i t e r q c . txt ’ , dl2 ( 1 , 3 7 : 5 4 ) )
dlmwrite ( ’ 2 iterqd . txt ’ , dl2 ( 1 , 5 5 : end ) )

%% Load 2nd i t e r a t i o n Results . . . Repeat u n t i l reaching convergence



D
PARAMETRIC MODELING

The parametric approach uses ANSYS mechanical. Simulations are assembled as macro files which load
automatize the simulation process. By using for loops, iterations can be made over design variables such as:
Mirror thickness (shell element thickness), actuator stiffness and other. Below, an example of a macro which
loops over stiffness values and extracts one influence function:

f i n i
/ clear , nostart

* del , a l l
/prep7
ET, 1 , SHELL281 ! Element types
ET, 2 ,COMBIN14
R, 1 , 1 E6 ! Act s t i f f n e s s
thickness_mirror = 1E−3 ! DEFINE MIRROR THICKNESS
MPTEMP, , , , , , , ,
MPTEMP, 1 , 0
MPDATA, EX, 1 , , 7 0 E9 ! E l a s t i c modulus
MPDATA, PRXY, 1 , , 0 . 3 3 ! Major Poission ’ s r a t i o
sect , 1 , shel l , ,
secdata , thickness_mirror , 1 , 0 . 0 , 3
secoffset ,MID
seccontrol , , , , , , ,
QRad = 80E−3 ! DEFINE RADIUS OF MIRROR
QradF = Qrad*0.90 ! Placing area
badrad = sqrt ( 2 * ( ( 1 8E−3)*3)**2)
cyl4 , 0 , 0 ,QRAD

NUML = 9 ! Actuator locations are set

*DO, i , 1 ,NUML
k ,4 +(2 * i )−1,−QRad,−QRadF + QRADF/ ( (NUML−1)/2)*( i −1) ,0
k ,4 +(2 * i ) ,QRad,−QRadF + QRADF/ ( (NUML−1)/2)*( i −1) ,0
l , 4+(2 * i )−1 ,4+(2* i )

*enddo
ASBL, 1 , ALL

* get ,maxK, kp , ,num,maxd

*DO, i , 1 ,NUML
k ,maxK+(2* i )−1,−QRadF + QRADF/ ( (NUML−1)/2)*( i −1),−QRad, 0
k ,maxK+(2* i ) ,−QRadF + QRADF/ ( (NUML−1)/2)*( i −1) ,QRad, 0
l ,maxK+(2* i )−1 ,maxK+(2* i )

47
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*enddo
ASBL , ALL , ALL
! * GET, Par , Entity , ENTNUM, Item1 , IT1NUM, Item2 , IT2NUM

* get ,qnumk, kp , , count

*dim , qkeyploc , array ,qnumk

*dim , qkxi , array ,qnumk

*dim , qkyi , array ,qnumk
ksel , a l l

* vget , qkeyps , kp , , k l i s t
index = 0

*do , i , 1 ,qnumk

* get , qkx , kp , qkeyps ( i ) , loc , x

* get , qky , kp , qkeyps ( i ) , loc , y
locr = sqrt ( qkx **2 + qky * * 2 )

* i f , locr , l t , Qrad ,AND, locr ,NE, badrad , then
index = index + 1
qkeyploc ( index )= qkeyps ( i )
qkxi ( index ) = qkx
qkyi ( index ) = qky

* endif

*enddo
AESIZE , a l l , 1E−3, ! Mesh
amesh , a l l
type , 2 ! Add s t i f f n e s s supports

*do , i , 1 , index
nsel , none ,
nsel , s , loc , x , 0 . 9 9 9 * qkxi ( i ) ,1 .0001* qkxi ( i )
nsel , r , loc , y , 0 . 9 9 9 * qkyi ( i ) ,1 .0001* qkyi ( i )

* get , qn%i %,node , 0 ,num,max
n,100000+ i , qkxi ( i ) , qkyi ( i ) ,−1E−2
n,200000+ i , qkxi ( i ) − 1E−2, qkyi ( i ) , 0
n,300000+ i , qkxi ( i ) , qkyi ( i ) − 1E−2,0
nsel , a l l
e , qn%i %,100000+ i
d,100000+ i , a l l , 0
e , qn%i %,200000+ i
d,200000+ i , a l l , 0
e , qn%i %,300000+ i
d,300000+ i , a l l , 0

*enddo
! Place loop for varying s t i f f n e s s
/ eof

*do , st ,1 ,15
RMODIF, 1 , 1 , ( 6 . 2 + 0 . 2 * s t )*1E4
nact = 21
DK, qkeyploc ( nact ) ,UZ, 1 . 8 E−6 ! Prescribe displacement
/ solu ! Solver
solve
FINISH
/ post1
plnsol , u , z
nsel , s , loc , z , 0

* vget , nodes_top , node , 1 , n l i s t
nsel , s , loc , z , 0
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NSEL, s , node , , 1,100000−1

* get , num_of_nodes_at_top , node , , count

*dim , disp_z , array , num_of_nodes_at_top

*dim , nodes_x , array , num_of_nodes_at_top

*dim , nodes_y , array , num_of_nodes_at_top
j =1

*do , i , 1 , num_of_nodes_at_top

* get , temp_x , node , nodes_top ( i ) , loc , x

* get , temp_y , node , nodes_top ( i ) , loc , y

* get , temp_uz , node , nodes_top ( i ) , u , z
disp_z ( j )=temp_uz
nodes_x ( j ) = temp_x
nodes_y ( j ) = temp_y
j = j +1

*enddo

* cfopen , i t e r s t i f r e f%s t %, t x t

* vwrite , nodes_top ( 1 ) , nodes_x ( 1 ) , nodes_y ( 1 ) , disp_z ( 1 )
( F8 . 0 , 3 E20 . 1 0 )

* cfc l os e
/prep7

* del , disp_z

* del , nodes_x

* del , nodes_y
DKDELE, qkeyploc ( nact ) , ALL ! Delete force on actuator

*enddo
! / solu
! *SMAT, S t i f f _ M a t r i x ,D, IMPORT, FULL, f i l e . f u l l , S t i f f
! * EXPORT, S t i f f _ M a t r i x , MMF, S t i f f _ M a t r i x . dat

The simulation results are stored as .txt files which are processe in MATLAB:

sim_direct = ’C: \FEM_DM\APDL\10022017\ ’;% Simulation directory ?
simulation_name = ’ actID ’ ; % How are f i l e s saved ?
number_of_files = 10; % How many f i l e s in simulation folder ?
for nr =1: number_of_files

fload = s t r c a t ( simulation_name , num2str ( nr ) ) ;
raw_data = dlmread ( s t r c a t ( sim_direct , f load , ’ . txt ’ ) ) ;
raw_data ( : , 1 ) = [ ] ;
data = sortrows ( raw_data , 1 ) ; % Sort x ascending
% Interpolate domain values
dxy = [ data ( : , 1 ) data ( : , 2 ) ] ;
dz = data ( : , 3 ) ;
F = TriScatteredInterp ( dxy , dz ) ;
% Take out repeated instances
xg = unique ( data ( : , 1 ) ) ;
yg = unique ( data ( : , 2 ) ) ;
% Create domain for plo tt i ng
[xdom , ydom] = meshgrid ( xg ( 1 ) : 3 0 / length ( xg ) : xg ( length ( xg ) ) , . . .

yg ( 1 ) : 3 0 / length ( xg ) : yg ( length ( yg ) ) ) ;
M_shf = F(ydom,xdom ) ;
% Store influence function
modeled ( nr ) . data = M_shf ;

end
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D.1. MATLAB-ANSYS COUPLING
ANSYS and MATLAB can be coupled when running the FEM software in the background using a .bat file.
MATLAB will start ANSYS, wait for it to run simulations and then process the information from the simula-
tions. More on this philosophy can be found in [29]. To run ANSYS from batch, a .bat file containing the
following lines is needed:

SET KMP_STACKSIZE=2048k & "C: \ Program F i l e s \ANSYS Inc \v171\ ansys \bin\winx64\ANSYS171 . exe"
−dir "C: \ AlejandroLocal \ Projects \DeformableMirror\DesignOptim\Matlab\work"
−b − i opthic .mac −o out . t x t − j optimize & e x i t

The MATLAB code used is shown below:

% Assert there i s not an e x i s t i n g stand−by f i l e
i f e x i s t ( ’ ansys_wait . txt ’ , ’ f i l e ’ )

delete ( ’ ansys_wait . txt ’ )
end
% Check for lock f i l e s ( They block ANSYS)
i f e x i s t ( ’ a n s y s f i l e s . lock ’ , ’ f i l e ’ )

delete ( ’ a n s y s f i l e s . lock ’ )
error ( ’ I t i s required to delete . lock f i l e in working directory manually ’ )

end
% Declare objective function [ Size i s known from t r i a l with ANSYS]
obj_sz = 120;
ob = Fourier_basis ( 0 , 3 , obj_sz , ’ dele ’ ) ;
for i =1: length (ob)

ob( i ) . data ( isnan (ob( i ) . data ) ) = 0 ;
ob( i ) . data = ob( i ) . data *1e−6;

end
% Assign values to Thickness of the facesheet and Pitch to i t e r a t e
ss1 = [50e−6 0.1 e−3];
ss2 = [100e3 1000e3 ] ;
% Define pitch for simulation
pitch = 18e−3;
f = fopen ( ’ pitch . txt ’ , ’ wt ’ ) ;
f p r i n t f ( f , ’%30.24e ’ , pitch ) ;
f c l o s e ( f ) ;

% Maximum evaluations for the optimization procedure
maxiter = length ( ss1 ) * length ( ss2 ) ;
%Pre−a l l o c a t e some variables
error = s t r u c t ;
ni = 1 ;
nj = 1 ;
% Optimization Procedure
for i =1: maxiter

%Extract parameters
s ( 1 ) = ss1 ( ni ) ;
s ( 2 ) = ss2 ( nj ) ;
i f nj == length ( ss2 )

nj = 0 ;
ni = ni +1;

end
nj = nj +1;
% Send parameters to ANSYS
f = fopen ( ’ parameters . txt ’ , ’ wt ’ ) ;
f p r i n t f ( f , ’%30.24e ’ , s ) ;
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f c l o s e ( f ) ;
% S t a r t ANSYS
system ( ’ Couple_ANSYS . bat & ’ ) ;
% Wait while ANSYS i s doing calculat ing
while e x i s t ( ’ ansys_wait . txt ’ , ’ f i l e ’)==0
end
% Load data from ANSYS and interpolate
act = 57; % #Acts to be loaded
mats = . 5 ; % Declare s i z e of matrix . NOTE: I f changed , modify obj_sz
% Load i n f l u func by i n f l u func . . .
for nr =1: act

% Input code for processing simulation data . . .
end
% I f Matlab has the new parameters ready , i t deletes the . t x t f i l e to
% s t a r t an i t e r a t i o n . In Matlab :
delete ( ’ ansys_wait . txt ’ )

end



E
CONSTANT WIDTH OF THE INFLUENCE

FUNCTION

This annex describes the methodology used for determining the width of the influence function. It was de-
termined using the code listed below. From the input and output of the code (IFs with determined mechan-
ical parameters and width respectively), curves can be constructed as has already been done several times
through out the document.

Figure E.1: Example of the matlab routine that captures the zero-crossings of the IF

% Load varying s t i f f n e s s data
for nr =1:10

fload = s t r c a t ( ’ sw ’ , num2str ( nr ) ) ;
raw_data = dlmread ( s t r c a t ( ’O: \TNO\FEM_DM\APDL\09192017\ ’ , . . .

f load , ’ . txt ’ ) ) ;
raw_data ( : , 1 ) = [ ] ;
data = sortrows ( raw_data , 1 ) ; % Sort x ascending
dxy = [ data ( : , 1 ) data ( : , 2 ) ] ;
dz = data ( : , 3 ) ;
F = TriScatteredInterp ( dxy , dz ) ;
xg = unique ( data ( : , 1 ) ) ;
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yg = unique ( data ( : , 2 ) ) ;
[xdom , ydom] = meshgrid ( xg ( 1 ) : sz / length ( xg ) : xg ( length ( xg ) ) , . . .

yg ( 1 ) : sz / length ( xg ) : yg ( length ( yg ) ) ) ;
M_shf = F(ydom,xdom ) ;
modeled ( nr ) . data = M_shf ;

end

for nr =1:10
a = modeled ( nr ) . data ( round ( length ( M_shf ) / 2 ) , : ) ;
t = 1 : length ( a ) ;
z c i = @( v ) find ( v ( : ) . * c i r c s h i f t ( v ( : ) , . . .

[−1 0 ] ) <= 0);% Returns Zero−Crossing Indices Of Argument Vector
zx = z c i ( a ) ; % Approximate Zero−Crossing Indices
f i g u r e ( nr )
plot ( t , a , ’−r ’ )
hold on
plot ( t ( zx ) , a ( zx ) , ’bp ’ )
hold o f f
grid
legend ( ’ Signal ’ , ’ Approximate Zero−Crossings ’ )

xin = zx .*160/ length ( a ) ;

i f s i z e ( xin ,1) >2
dis = abs ( xin −80);
dis = sort ( dis ) ;
dis ( 3 : end) = [ ] ;

e l s e i f s i z e ( xin ,1)==2
dis = abs ( xin −80);

e lse
dis = 0 ;

end
width ( nr ) = sum( dis ) / 2 ;

end
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An interesting application of this approach is to determine constant ratios for IFs. This was done by using
the points at which the sinc shape first appears. It was seen that the relations between tuning parameters i.e.
the points at which a sinc shape appears when varying one or two parameters, follow a linear trend. Some
examples of this and the varied parameters are shown below. The images show at which parameters of t , k
and actuator pitch the sinc function appears. The ratio of single parameter variations is the same as the ratio
of varying two parameters. It is therefore easy to predict where a certain IF will have the same shape when
varying one, two or the three design parameters that were tested.

Figure E.2: Constant IF with a sinc function shape for different t , pitch and k values

Figure E.3: Constant IF with a sinc function shape for different t , pitch and k values
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Figure E.4: Variation of a single parameter for constant IF, case

Figure E.5: Constant IF for two parameter variation
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