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Damping Design for Robot Manipulators

Tomás Coleman, Giovanni Franzese, and Pablo Borja(B)

Department of Cognitive Robotics, Delft University of Technology,
Delft, The Netherlands

{t.coleman,g.franzese}@tudelft.nl, pablo.borjarosales@plymouth.ac.uk

Abstract. This paper studies the tuning process of controllers for fully
actuated manipulators. To this end, we propose a methodology to design
the desired damping matrix—alternatively, the derivative gain of a PD
controller—of the closed-loop system such that n second-order systems
can approximate its behavior with a prescribed damping coefficient,
where n denotes the degrees of freedom of the system. The proposed
approach is based on the linearization of the closed-loop system around
the desired configuration and is suitable for different control approaches,
such as PD control plus gravity compensation, impedance control, and
passivity-based control. Furthermore, we extensively analyze simulations
and experimental results in a cobot.

Keywords: Damping coefficient · Performance · PD control ·
Impedance control

1 Introduction

Suppressing oscillations while prescribing desired stiffness values is of utmost
importance in many modern robotic applications. For instance, in industrial
applications, oscillations diminish the performance of robots that execute tasks
involving high-speed motions [2]. Another example occurs in applications involv-
ing human-robot interaction, where robots often must be compliant enough to
guarantee the safety of humans and correctly execute the task at hand [8]. Hence,
choosing control gains that ensure an appropriate performance is a crucial step
in designing controllers for robotic manipulators. Nevertheless, such gains are
customarily selected through methods that are simple but not intuitive nor sup-
ported by an adequate analysis of the system’s behavior. This ambiguity in
the selection of the gains may lead to unexpected and undesirable behavior of
the manipulator, which is especially important in situations where oscillations
and overshoot jeopardize the success of the task. For instance, in applications
involving human-robot interaction, overshoot might mean the difference between
contact or no contact with the human or imply physical harm.
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In this paper, we propose a constructive methodology to design the damping
matrix of the closed-loop system. To this end, we consider a control architec-
ture that stabilizes the robot at the desired configuration. Then, we consider the
port-Hamiltonian representation [10] of the closed-loop system and linearize it at
the desired configuration. In particular, the proposed methodology is based on
the simultaneous diagonalization of the inertia matrix and Hessian of the desired
potential energy, yielding n second-order systems that are decoupled, where n
equals the degrees of freedom of the system. Then, we design the damping coef-
ficient for each decoupled system to prescribe the desired performance.

The proposed approach is similar to the one presented in [1]. However, two
main differences with respect to the mentioned reference are:

(i) The desired potential energy is not required to be quadratic on the configu-
ration error.

(ii) The forces Coriolis and centrifugal terms are not canceled.

The proposed approach is suitable for PD controllers, impedance control, and
passivity-based controllers.

1.1 Notation

The symbol In denotes the n × n identity matrix; 0 is a vector or matrix
whose entries are zeros; 1 is a vector whose elements equal one; ∂f(x)/∂x =
[
∂f(x)/∂x1, . . . , ∂f(x)/∂xn

]�; and diag(·) denotes a diagonal matrix. When
clear from the context, we omit the arguments of functions.

2 Proposed Methodology

2.1 Stabilization of Robotic Manipulators

A fully actuated and unconstrained robotic manipulator can be represented as
follows

[
q̇
ṗ

]
=

[
0 In

−In 0

]
⎡

⎢
⎣

∂H(q, p)
∂q

∂H(q, p)
∂p

⎤

⎥
⎦ +

[
0
In

]
τ ; H(q, p) :=

1
2
p�M−1(q)p + V (q), (1)

where q ∈ R
n represents the joints configuration and p ∈ R

n the corresponding
momenta; τ ∈ R

m denotes the input vector (torques), H : Rn × R
n → R is the

Hamiltonian (total energy) of the system; M : Rn → R
n×n is the inertia matrix,

which is positive definite; and V : Rn → R is the potential energy.

Theorem 1. Consider the desired configuration q� ∈ R
n, the desired potential

energy Vd : Rn → R, and a positive definite matrix Dd ∈ R
n×n. The control law

τ =
∂V (q)

∂q
− ∂Vd(q)

∂q
− Ddq̇ (2)
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stabilizes the system (1) at the point (q�,0), for any differentiable Vd(q) such
that

Vd(q�) = 0 and Vd(q) > 0, ∀ q ∈ R
n − {q�}. (3)

Proof. From (3), we conclude that

Hd(q�,0) = 0 and Hd(q, p) > 0, ∀ (q, p) ∈ R
n × R

n − {(q�,0)}. (4)

Moreover, the closed-loop system takes the form

[
q̇
ṗ

]
=

[
0 In

−In −Dd

]
⎡

⎢
⎣

∂Hd(q, p)
∂q

∂Hd(q, p)
∂p

⎤

⎥
⎦ ; Hd(q, p) :=

1
2
p�M−1(q)p + Vd(q). (5)

Hence, the time derivative of Hd(q, p) is given by

Ḣd =

⎡

⎢
⎣

∂Hd

∂q
∂Hd

∂p

⎤

⎥
⎦

�
[

0 In

−In −Dd

]
⎡

⎢
⎣

∂Hd

∂q
∂Hd

∂p

⎤

⎥
⎦ = −

(
∂Hd

∂p

)�
Dd

∂Hd

∂p
≤ 0. (6)

Accordingly, (4), together with (6), implies that Hd(q, p) qualifies as a Lyapunov
function to prove the stability of the equilibrium point (q�,0). For further details
on Lyapunov stability, we refer the reader to [6]. Furthermore, to prove that the
mentioned equilibrium is asymptotically stable—i.e., the robot converges to the
desired configuration—note that

Ḣd = 0 =⇒ ∂Hd

∂p
= M−1p = 0 =⇒ p = 0 =⇒ ṗ = −∂Vd

∂q
= 0 =⇒ q = q�.

Because M−1p = q̇, we conclude that Ḣd equal to zero implies (q, p) equal
to (q�,0). Therefore, it follows from LaSalle’s invariance principle [6] that the
trajectories converge to the desired equilibrium (q�,0).

���

Remark 1. A common choice for Vd(q) is

Vd(q) =
1
2
q̃�Kq̃, (7)

where K ∈ R
n×n is positive definite and q̃ := q − q�. Moreover, the proposed

selection yields

τ =
∂V

∂q
− Kq̃ − Ddq̇, (8)

which is a PD controller plus gravity compensation—where K is the gain of the
proportional term and Dd corresponds to the gain of the derivative component.

Henceforth, we assume that Vd(q) is a twice differentiable function such that the
following assumptions hold.
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Assumption 1
(

∂Vd(q)
∂q

)∣
∣
∣
∣
q=q�

= 0 and
∂Vd(q)

∂q
�= 0, ∀ q �= q�.

Assumption 2 (
∂2Vd(q)

∂q2

)∣
∣
∣
∣
q=q�

� 0.

We remark that Assumptions 1 and 2 are not necessary to prove stability. How-
ever, they are convenient to propose a constructive methodology to design Dd,
as shown in Sect. 2.2. Moreover, the mentioned assumptions are not restrictive
from a physical point of view. Indeed, they are satisfied by (7).

2.2 Damping Design

Lemma 1. Consider two positive definite matrices, namely, N,P ∈ R
n×n.

There exists an invertible matrix W ∈ R
n×n such that

W�NW = In and W�PW = Σ,

where Σ ∈ R
n×n is a diagonal matrix such that the elements of its main diagonal

are positive.

Proof. Because N is positive definite, its inverse exists and is positive definite.
Hence, there exists a full rank matrix φn ∈ R

n×n such that N−1 = φ�
n φn.1

Moreover, the matrix φnPφ�
n is positive definite. Thus, its singular value decom-

position (SVD) yields
φnPφ�

n = UΣU�,

where U ∈ R
n×n is an orthogonal matrix, i.e., U� = U−1. Select W = φ�

n U .
Then, the proof is completed noting that

W�NW = U�φnφ
−1
n φ−�

n φ�
n U = U�U = In;

W�PW = U�φnPφ�
n U = U�UΣU�U = Σ.

���

To simplify the notation, we introduce the following matrix

K :=
(

∂2Vd

∂q2

)∣
∣
∣
∣
q=q�

.

Moreover, we consider the full rank matrix φm ∈ R
n×n such that

M−1(q�) = φ�
m φm. (9)

1 The matrix φn can be obtained via Cholesky decomposition or singular value decom-
position. For further details, we refer the reader to [5].
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Accordingly, the SVD of φmK φ�
m is given by

φmK φ�
m = UmkΣmkU

�
mk, (10)

where Umk ∈ R
n×n is an orthogonal matrix and

Σmk := diag(σmk1 , . . . , σmkn
) � 0. (11)

Proposition 1. Consider the system (5) and the desired configuration q�, such
that Vd(q) satisfies Assumptions 1 and 2. There exist Wmk ∈ R

n×n, full rank,
and ΣD ∈ R

n×n, diagonal positive definite, such that the selection

Dd = W−�
mk ΣDW

−1
mk (12)

ensures that the trajectories of (5) behave as the response of n second-order
systems as they approach the equilibrium. Moreover, the damping coefficients of
such second-order systems are determined by

ξi =
σDi

2√
σmki

, i ∈ {1, . . . , n}, (13)

where σDi
and σmki correspond to the main diagonal elements of Σmk, defined in

(11), and ΣD, respectively.

Proof. Define M� := M(q�). Then, the linearization of (5) around the point
(q�,0) is given by ż = Az, where

z :=
[
q − q�

p

]
, A :=

[
0 M−1

�

−K −DdM
−1
�

]
. (14)

Consider the matrices

Sd :=
[
In 0
0 M−1

�

]
, Ad :=

[
0 In

−M−1
� K −M−1

� Dd

]
.

Note that Ad = SdAS−1
d . Thus, Ad is similar to A, consequently their eigenvalues

are the same. Furthermore, Ad is a companion matrix of

L(λ) = Inλ2 + M−1
� Ddλ + M−1

� K .

Hence, the eigenvalues of Ad are determined by the values λ ∈ C such that L(λ)
loses rank, i.e., its determinant equals zero [7]. Since M� is full rank, we have
the following chain of implications

det (L) = 0 ⇐⇒ det(M−1
� )det (M�L) = 0 ⇐⇒ det

(
M�λ

2 + Ddλ + K
)

= 0.
(15)

Moreover, invoking the result of Lemma 1, there exists a full rank matrix Wmk ∈
R

n×n such that

W�
mk

(
M�λ

2 + Ddλ + K
)
Wmk = Inλ2 + W�

mkDdWmkλ + Σ̄,
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where Σ̄ is a diagonal positive definite matrix. Hence, by choosing Dd as in (12),
we obtain

det (L) = 0 ⇐⇒ det
(
Inλ2 + ΣDλ + Σ̄

)
= 0. (16)

Note that Inλ2 + ΣDλ + Σ̄ is a diagonal matrix. Hence, its determinant is zero
if and only if one of its main diagonal elements equals zero. Consequently, (16)
can be analyzed as n decoupled second-order systems. Furthermore, following
the rationale in the proof of Lemma 1, we get that

Wmk = φ�
mkUmk and Σ̄ = Σmk (17)

with φ�
m , Umk, and Σmk defined as in (9), (10), and (11), respectively. Therefore,

the n second-order equations take the form

λ2 + σDi
λ + σmki

= 0. (18)

Hence, equating (18) with the standard structure of a second-order system, i.e.,

λ2 + 2ξiωni
λ + ω2

ni
= 0,

we obtain (13). ���
Remark 2. The model (1) is valid—considering appropriate coordinates—for the
joint and task spaces. Consequently, the result of Proposition 1 is suitable to
design the damping matrix in both spaces.

The proposed approach assumes that the stiffness matrix K is fixed for the spe-
cific purposes of the application at hand, i.e., the method is devised to compute
Dd for a given K. However, the performance of the closed-loop system can be
enhanced if K and Dd can be designed simultaneously. We illustrate this in Sect.
3.1.

Table 1. Different simulation cases

Case C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

q�
1
4

1
4

1
4

1
4

1
4

1
2

1
10

1
4

1
4

1
4

1
4

ξ 1
√
2
2

1.5 ξd 1 1 1 1 1 1 1

K Kd Kd Kn Kd Kn Kd Kd Km
Kd

4
Kd

4
–

3 Results

We design the damping matrix of a Franka Emika Panda robot in joint space
to validate the methodology. This robot has seven degrees of freedom given
by the angles of seven revolute joints, denoted as qi, with i ∈ {1, . . . , 7}. We
simulate the behavior of the closed-loop system considering different scenarios.
Then, we perform two experiments: (i) we implement the proposed methodology
to design Dd, and (ii) we implement the controller provided in https://github.
com/franzesegiovanni/franka human friendly controllers.

https://github.com/franzesegiovanni/franka_human_friendly_controllers
https://github.com/franzesegiovanni/franka_human_friendly_controllers
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3.1 Simulations

We consider the open-loop dynamics provided in [4].2 Then, we simulate eleven
different cases given in Table 1, where

ξd =
[
0.5 0.7 0.7 1 1.3 1.3 1.5

]
; Kd = diag(80, 40, 80, 40, 80, 80, 20);

Km = 1000φ−1
m diag(2.5, 2.5, 2.5, 2.5, 3.6, 2.5, 10)φ−�

m ;

Kn =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

80 0 0 0 0 0 0
0 184 0 −72 0 0 0
0 0 80 0 0 0 0
0 −72 0 76 0 0 0
0 0 0 0 80 0 0
0 0 0 0 0 80 0
0 0 0 0 0 0 20

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

For simulation purposes, we consider initial conditions q0 = 0 in all the
cases. Moreover, in all the cases—except for C4—we consider the same damping
coefficient for the seven second-order equations (13).

For all the considered scenarios—except for C10—we compute Dd via the
approach proposed in Sect. 2.2. In contrast to the rest of cases, in C10 we
consider M(q�) = I7 to design Dd. Hence, (13) can be rewritten as σdi = 2ξi

√
ki

for i ∈ {1, . . . , 7}. Thus, recalling that al the damping coefficients ξi are the same
and K is a diagonal matrix3 in C10, we have

Dd = 2ξK
1
2 . (19)

The expression (19) is common in practice to design Dd. However, this approach
is suitable only for diagonal stiffness matrices and completely neglects the inertia
matrix of the system, which is one of the main sources of the nonlinear behavior
of a robot. Henceforth, we refer to the expression (19) as the naive approach to
design Dd.

In all the cases—except for C11—we consider a control law of the form (8).
Depending on the source, this control approach can be understood as a PD
controller plus gravity compensation, an impedance control, or a particular class
of passivity-based control strategy. For C11, we consider the control law (2) and
the desired potential energy

Vd =
7∑

i=1

αi ln (cosh(10q̃i)) +
1
4
q̃42 ,

2 See https://github.com/marcocognetti/FrankaEmikaPandaDynModel.
3 Namely, K = 1

4
Kd.

https://github.com/marcocognetti/FrankaEmikaPandaDynModel
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with α1 = α3 = α5 = α6 = 0.8, α2 = α4 = 0.4, and α7 = 0.2. Thus,

∂Vd(q)
∂q

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

8 tanh (10q̃1)
4 tanh (10q̃2) + q̃32

8 tanh (10q̃3)
4 tanh (10q̃4)
8 tanh (10q̃5)
8 tanh (10q̃6)
2 tanh (10q̃7)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We stress that the concept of stiffness matrix in impedance control is not valid
for this case. Consequently, approaches as the one proposed in [1] are not suitable
for this control law. Nevertheless, the method to design Dd proposed in Sect. 2.2
is still valid. Furthermore, the linearized systems obtained from C1 and C11
are the same.

Fig. 1. Trajectories of the joints for a critically damped design and different references.

Limitations Due to Linearization The robotic manipulator used for simu-
lations and experiments is a nonlinear system, while the proposed methodology
to design Dd relies on linearizing the closed-loop system. Therefore, the perfor-
mance analysis, i.e., the assignation of ξ, is valid only in a region close to the
desired configuration. However, we underscore that the asymptotic stability of
the desired equilibrium is guaranteed for the nonlinear model, i.e., the robot con-
verges to the desired configuration independently of the validity of the linearized
system using to design Dd. Unfortunately, the closed-loop system may exhibit
different performance than the desired one for initial conditions far from the
desired configuration. Nonetheless, in practice, the proposed method is expected
to yield reasonable good behavior.

Figure 1 shows the plots of C1, C6, and C7. In these three cases Dd is
desgined such that the seven second-order systems are critically damped. Thus,
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Fig. 2. Trajectories of the joints for different damping coefficients.

the trajectories of the joints should not exhibit overshoot. We observe in the
simulations that the result is more accurate for a reference that is closer to the
initial conditions—see the plots corresponding to C6. However, in C1 and C7,
we note overshoot in some of the joints—particularly q4—as the reference is set
farther from the initial conditions.

Fig. 3. Comparison between C1 and C4. The damping coefficients ξi are designed
independently in the latter case.

Choosing ξ. The proposed approach permits assigning different damping coef-
ficients to the seven second-order systems, which can be exploited to mitigate
overshoot in their responses or increase convergence speed. In particular, we
expect a faster convergence for ξ < 1 at expenses of some overshoot. Moreover,
we expect that the response for ξ > 1 convegence slower than the one for ξ = 1.
Figure 2 depicts the plots of C1, C2, and C3, where only ξ is modified. We
observe that the convergence rates behave as predicted. However, in C1, which
corresponds to seven critically damped systems, q2 and q5 behave as overdamped
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systems, while we appreciate overshoot in q4—i.e., it behaves as an underdamped
system.

While it is possible to design the damping coefficients independently, the
intuition to propose them properly is not straightforward because the method
changes the basis of the system—through the linear transformation Wmk—to
obtain the seven second-order systems. To illustrate this, in C4, we propose
damping coefficients such that we could suppose three overdamped responses,
three underdamped responses, and one critically damped response. Figure 3
shows the plots of C1 and C4. For the latter, there is no critically damped
response. Moreover, it is unclear how the proposed damping coefficients affect
the response of each joint.

Fig. 4. Comparison between C1 and C5, where the latter considers a non-diagonal
stiffness matrix.

Non-diagonal K. In practice, the stiffness matrix is often proposed diagonal
for simplicity—for instance [3]. Nevertheless, this approach is not convenient
in some applications involving human-robot interaction, e.g., [9]. Moreover, the
behavior of the joints is physically coupled. This coupling is the result of the
non-diagonal structure of the mass inertia matrix. Hence, choosing K diagonal
might not be physically intuitive.

Note that the simulations of C1 show unexpected behaviors for q2 and q4.
Whence, we can conjecture that the nonlinearities (physical couplings) have a
greater impact on these coordinates than in the rest. To address this issue, in
C5, we propose a stiffness matrix—namely, Kn—that couples q2 and q4. Then,
in both cases, the damping matrix is obtained via the approach proposed in
Sect. 2.2. Figure 4 shows the comparison between C1 and C5, where the latter
performs better than the former—especially for q2 and q4. While the design of
the stiffness matrix is based on the system’s physics, it does not stem from a
formal argument, and further research on this topic is necessary.
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If K is free, then the design of Dd can be simplified by choosing K based on
M(q�). In particular, the selection

K = φ−1
m ΣKφ

−�
m ; ΣK := diag(σK1 , . . . , σKn) � 0

yields Wmk = φ�
m in (12). Hence, (13) reduces to

ξi =
σDi

2√
σKi

, i ∈ {1, . . . , n},

which is similar to the naive approach. Figure 5 depicts the comparison between
C1 and C8, where the stiffness matrix is proposed based on M(q�). In the
mentioned figure, we observe that the trajectories of all the joints, except for q7,
exhibit a better performance when the K is based on the inertia matrix.

Fig. 5. Comparison between C1 and C8, where the latter considers a stiffness matrix
based on the inertia matrix of the system.

Proposed Method vs Naive Approach. The controllers designed by adopt-
ing the naive approach are suitable to stabilize the robot at its desired config-
uration because they satisfy the conditions provided in Sect. 2.1, i.e., the point
(q�,0) is a globally asymtotically equilibrium for the closed-loop system. An
advantage of this method is its simplicity. On the other hand, an important dis-
advantage is the lack of intuition into how to prescribe a desired performance for
the closed-loop system. Figure 6 illustrates the comparison between the damp-
ing design method proposed in Sect. 2.2 (C9) and the naive approach (C10)
under the same conditions, where we observe that the proposed methodology
outperforms the naive approach except for joints 2 and 4.

Linear vs Nonlinear Proportional Term. Some applications require desired
potential energies that are not quadratic on the position error, e.g., [11]. Conse-
quently, the gradient of the Vd(q) is nonlinear and the closed-loop system has no



Damping Design for Robot Manipulators 85

Fig. 6. Comparison between the proposed methodology (C9) and the naive approach
(C10).

Fig. 7. Trajectories of a closed-loop system whose potential energy is quadratic on the
position error (C1) and a closed-loop system whose potential energy is non quadratic
on the position error (C11).

stiffness matrix. Nevertheless, since the proposed methodology is based on the
linearization, it is still suitable to design the damping matrix for the closed-loop
system. Figure 7 shows the trajectories of two systems whose linearizations are
identical. However, one case considers a quadratic potential energy (C1) and the
other corresponds to a non quadratic Vd(q) (C11).

3.2 Experimental Results

The procedure to validate the proposed methodology consists in calculating the
damping matrix for for the closed-loop system (5) for a given desired potential
energy of the form (7).4 Then, we simultaneously change the desired angle of all
4 The code to implement the proposed controller in the Panda robot is available at

https://github.com/franzesegiovanni/franka damping design.

https://github.com/franzesegiovanni/franka_damping_design
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Fig. 8. Trajectory of each joint of the robot, for a reference of 0.1 rad from q0, using
the proposed damping design method. The damping matrix is updated at a frequency
of 1 kHz at the current position.

Fig. 9. Trajectory of each joint of the robot, for a reference of 0.1 rad from q0, using
the naive approach.
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joints of the Franka Emika Panda robot. The initial configuration of the robot
is given by

q0 =
[−1.548 − 0.9832 1.2789 − 2.2607 0.8551 1.7509 0.1978

]�
.

Moreover, the stiffness matrix considered for the experiments is given by

K = diag(100, 100, 100, 100, 100, 100, 8)

and the mass matrix is obtained using the functionality in the Franka Emika
Panda’s controller code base ’franka ros’.5

The results in Fig. 8 show that, by adopting the proposed methodology, the
variations in ξi affect the characteristic response of the system as expected, i.e.,
the system overshoots and oscillates more when the damping ratio decreases
and when the damping ratio increases above ξ1 = 1, the convergence is slower.
We also observe that the steady-state error is affected by the selection of ξ. In
particular, we omit the plot of q7 because the response is too sensitive to provide
a meaningful comparison.

The results of the same experiments, but carried out with naive approach,
are shown in Fig. 9. It can be seen that the effect of selecting a specific damping
ratio does not affect the performance in the expected manner in all the joints.
This is especially apparent in the joints 4, 5, and 6 where even for low damping
ratios, the system is drastically over damped. This highlights a major problem
for the designer, as there is no correlation between the damping ratios and the
characteristic behaviour of the joints. In this experiment, the joints 2 and 3 per-
form as expected, where the trajectories are underdamped, critically damped,
and overdamped for ξ = 0.7071, ξ = 1, and ξ = 1.5, respectively. The mentioned
behavior changes according to the robot’s configuration, leading to the conclu-
sion that the good performance at particular joints is because the assumption
M(q�) = I7 is an adequate approximation in that particular position and not by
design.

The inconsistency of the naive approach is further highlighted in Fig. 10.
Here, it can be more clearly seen that, using both methods, the joint is critically
damped for ξ = 1. However, for ξ =

√
2/2, the response is underdamped (as

expected) for the proposed methodology, while for the naive approach is still
critically damped. Moreover, the naive approach results in a larger steady-state
error for both damping ratios.

4 Conclusions

We have provided a method to design the damping matrix for fully actuated
robotic arms, which is based on the linearization of the system and fits in different
approaches, such as PD control, impedance control, and passivity-based control.

5 See https://github.com/frankaemika/franka ros.

https://github.com/frankaemika/franka_ros
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Fig. 10. Panda robot used for the experiments (left). Comparison of the trajectories of
Joint 4 with ξ =

√
2/2 and ξ = 1 (right). Here, the plot corresponding to the proposed

method is labeled as online.

We have shown that the proposed method is more consistent than the naive
approach, which neglects the physical coupling given by the inertia matrix of
the system. Moreover, we have provided some intuitive alternatives to design the
stiffness matrix to enhance the performance of the closed-loop system. Finally,
we have performed simulations and experiments to validate the methodology,
supporting the theoretical claims.
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