38 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 9, NO. 1, MARCH 2008

Online Learning Solutions for Freeway
Travel Time Prediction

J. W. C. van Lint

Abstract—Providing travel time information to travelers on
available route alternatives in traffic networks is widely be-
lieved to yield positive effects on individual drive behavior and
(route/departure time) choice behavior, as well as on collective
traffic operations in terms of, for example, overall time savings
and—if nothing else—on the reliability of travel times. As such,
there is an increasing need for fast and reliable online travel time
prediction models. Previous research showed that data-driven
approaches such as the state-space neural network (SSNN) are
reliable and accurate travel time predictors for freeway routes,
which can be used to provide predictive travel time information
on, for example, variable message sign panels. In an operational
context, the adaptivity of such models is a crucial property. Since
travel times are available (and, hence, can be measured) for real-
ized trips only, adapting the parameters (weights) of a data-driven
travel time prediction model such as the SSNN is particularly
challenging. This paper proposes a new extended Kalman filter
(EKF) based online-learning approach, i.e., the online-censored
EKF method, which can be applied online and offers improve-
ments over a delayed approach in which learning takes place only
as realized travel times are available.

Index Terms—Advanced traffic information systems (ATIS),
extended Kalman filter, online learning, recurrent neural net-
works, state space neural networks, traffic information, travel time
prediction.

I. INTRODUCTION

HERE is an increasing need for advanced traffic infor-

mation systems (ATIS) that can provide road users and
traffic managers with accurate and reliable real-time traffic
information. This paper focuses on one particular brand of
traffic information, that is, short-term predictions of travel time
on freeways, which can be applied, for example, for real-
time freeway ATIS, such as variable message signs (VMSs)
at bifurcations. As outlined in [1], travel time is the product
of highly dynamic and nonlinear traffic processes over space
and time, which are (inherently) a priori unknown. The travel
time yy ; for a vehicle ¢ departing during period k on some
route in a traffic network is the result of the traffic condi-
tions (speeds, flows, densities) along the route at time periods
pe€{k,...,k+yr,}. These traffic conditions may be influ-
enced by many internal or external factors affecting both traffic
demand and route capacity along the route during these periods,

Manuscript received January 8, 2007; revised April 13, 2007, August 15,
2007, October 14, 2007, and November 7, 2007. This work was supported by
the Advanced Traffic Monitoring project under the Dutch Transumo program
(www.atmo.tudelft.nl). The Associate Editor for this paper was Y. Wang.

The author is with the Department of Transport and Planning, Faculty of
Civil Engineering and Geosciences, Delft University of Technology, 2600
Delft, The Netherlands (e-mail: j.w.c.vanlint@tudelft.nl).

Digital Object Identifier 10.1109/TITS.2007.915649

some of which are clearly beyond the ability of the analyst
to predict (e.g., incidents, accidents). Similarly, the expected
travel time y; = (y,;); for vehicles departing at k is a result
of traffic conditions during periods p € {k, ...,k + yi }. Travel
time prediction, hence, implicitly requires predicting—to the
degree that this is possible—those future traffic conditions
along the route of interest. This poses a “chicken-and-egg”
type of problem since the length of the prediction horizon
is equal to the travel time that we wanted to predict in the
first place. In [1]-[3], comprehensive overviews are given on
how different strands of travel time prediction approaches
tackle this problem. These strands involve (traffic simulation)
model-based approaches (e.g., DynaMIT [4], DynaSMART,
[5], BOSS [6]) and instantaneous approaches [7]-[9]. The lat-
ter ignore the time dynamics altogether by assuming stationary
traffic conditions for an indefinite time period, whereas model-
based approaches predict speeds or flows for as long as is
required to derive a travel time estimate on the route of interest.
A third strand of travel time prediction approaches according
to [1] and [2] uses intelligent inductive (data-driven) models
that are able to directly learn the complex traffic dynamics from
the data on the route of interest. Many successful efforts have
been reported in the latter category, including support vector
regression approaches [10], generalized linear regression [7],
[11], nonlinear time series [12], state-space models and Kalman
filters [13], [14], feedforward neural networks [15], [16], and
recurrent neural networks [17], to name a few.

A typical class of data-driven travel time prediction models
is the so-called state-space neural network (SSNN) proposed in
[1]-[3]. Previous research illustrates that combined with simple
data preprocessing algorithms, the SSNN model predictions
gracefully deteriorate under increasing amounts of missing or
unreliable input data [1] and produce an online estimate for the
reliability of each prediction by means of confidence intervals
[3]. This is useful in cases when, for example, too many
input data are missing or when unusual traffic circumstances
(incidents, accidents) occur. Under these conditions, naturally,
the model makes larger errors, while at the same time, the
confidence intervals grow larger, providing the model user with
an online indication of the quality of its predictions.

Although [1], [3], and [18] showed that this SSNN method
outperforms instantaneous travel time models by a large margin
and provides similar (and similarly good) results as other state-
of-the-art travel time prediction models, a disadvantage, from
a practical point of view, is that for training, large amounts
of training data are required (in one application, at least
30-60 workdays of input—output data [18]). Besides the data
storage and computational requirements associated with offline

1524-9050/$25.00 © 2008 IEEE

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:07:52 UTC from IEEE Xplore. Restrictions apply.

VAN LINT: ONLINE LEARNING SOLUTIONS FOR FREEWAY TRAVEL TIME PREDICTION 39

Output layer consists of one

neuron, which calculates the
predicted travel time for vehicles
departing in period k, based on the

internal states.

-

section 1 section m

Fig. 1. State-space neural network for freeway travel time prediction.

training schemes, a second more fundamental problem arises
in cases in which physical changes occur either in the traffic
system itself or in the monitoring system providing the input
data for the SSNN. This paper, therefore, addresses the question
whether it is possible to train the SSNN model in an online
fashion such that it maintains its capabilities as an accurate and
robust predictor but is adaptive to changes in either the under-
lying traffic processes or the surveillance system providing its
input data.

Generally speaking, online learning algorithms are a special
class of incremental learning algorithms. These incremental
learning algorithms adapt the model weights (parameters) 1) af-
ter observing a single input-output (target) pattern {ug, d }. In
contrast, batch learning algorithms (which are used to train the
SSNN models in [1]-[3]) adapt model weights after observing
an entire batch of input-output data {uy, di}, k =1,2,.... As
a consequence, batch algorithms can only be applied offline.
In the case where, at each time instant k, both u; and di_;
are available, incremental algorithms can be applied online in
a so-called one-step-ahead prediction procedure. Roughly, such
an online learning algorithm reads as follows, where y,41 =
G(%,uy,) depicts a data-driven model.

1) Make a prediction y, = G(t,,, ug).

2) Set k:=k+1, and update model weights %), ;
with error €;_1 = di_1 — yr—1 yielding the updated
weights 1.

3) Gotostep 1.

In a travel time prediction context, this one-step-ahead pro-
cedure is clearly not applicable since a realized (actually mea-
sured) travel time dj, is not available at time instant k + 1 but,
in fact, after k + dj, time periods. The consequence is that no

section M

Context layer consists of M neurons,
where M denotes the number hidden
layer neurons. It stores the previous
internal states of the SSNN. It is fully
connected to the hidden layer.

_________ of M neurons, where M denotes the

number of sections defined on route R.

Inputs each hidden neuron receives inputs (traffic
flow and average speeds) from detectors located
on its respective section. These include detectors
on the main carriage way and (if available) on on
and off ramps

. trainable connections
—_—

fixed connections

standard online learning procedures can be applied to online
travel time prediction.

This paper proposes two online learning algorithms based on
the extended Kalman filter (EKF) that are tailored to solve this
problem. Although the algorithms described can be applied to
any data-driven travel time prediction model, here, we demon-
strate them with the SSNN model. In Section II, the mathe-
matical structure of this proposed model is outlined. Next, the
standard EKF algorithm for parameter estimation is introduced
along with two online variations, which will be evaluated on
the basis of real data in the second part of this paper. This
paper closes with conclusions and recommendations for further
research.

II. MATHEMATICAL STRUCTURE OF THE SSNN MODEL

The structure of the SSNN model [17] is schematically
outlined in Fig. 1. Each hidden neuron in the SSNN model is
thought to “represent” a particular section along the route. Each
of these neurons receives current input signals from detectors
on the associated section only and past signals (stored in the
context layer) from all other hidden neurons.

Mathematically, the SSNN can be formulated as follows.
First, every hidden neuron j calculates its state (its output) for
the next time step k using the latest available input signals uy_1
and outputs xj_ of all hidden neurons, i.e.,

I

H j
xT u
zip=[f | wjo+ E WipTh k-1 + E W3 Wij k-1 (D
h=1 =1

where wj, depicts the weight from neuron 7 to neuron or
input . Second, the (only) output neuron calculates the

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:07:52 UTC from IEEE Xplore. Restrictions apply.

40 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 9, NO. 1, MARCH 2008

expected travel time with the current states of all of the H
hidden neurons, i.e.,

H
Yk =h | vo+ Zvjafj,k- 2

j=1

where v; depicts the weight from neuron j to the output neuron;
f and h are the hidden and output layer transfer functions,
for which we choose logistic sigmoid and identity function,
respectively, i.e.,

f(z) =1/ (1 + exp(—2))
h(z) = z.

As a side effect of its structure, the SSNN model only
requires current measurements as inputs (rather than time series
of inputs), which makes it easier to implement than neural
models with more complex input configurations. Second, the
SSNN topology is based on the geometry and detector layout of
the route of interest, which makes the model generic in terms of
mathematical structure and applicable on all freeway stretches,
given that these are equipped with detectors.

III. ALGORITHMS FOR SSNN TRAINING
A. Batch Training Algorithm

1) Bayesian-Regulated Levenberg Marquardt (LMBR)
Algorithm: In previous studies [1], [3], [18], the SSNN model
is trained with a second-order (batch) Bayesian-regularized
[19] training algorithm. This method aims at minimizing the
following cost function:

C=pY (@ +aY (W) ©)
Ny, Ny

where

ex = di — Yk 4
denotes the model error (desired-model prediction), and .,
n=1,2,..., Ny are the elements of weight vector 1) of size

Ny, containing all SSNN weights. In (3), 8 and « are hyper-
parameters controlling the contribution of each of the two com-
ponents in the cost function. This cost function, hence, balances
between minimizing the sum of squared errors (first compo-
nent) with the sum of squared weights (second component)
based on the notion that larger weights make the model more
sensitive and increase the risk of overfitting the training data.
The weights in the model are updated after a batch of Ny inputs
and outputs is presented according to the Levenberg—Marquardt
(LM) [20] weight update rule, i.e.,

P =y = [BH + (u+ o)1) [JTe + o™ (5)
where
_ Y9y
1=
2
-9 L g73
op

are the first and (approximated) second derivatives (Jacobian
and Hessian) of the SSNN output (batch) with respect to
its weights, respectively, and € denotes a vector of N}, pre-
diction errors. J can be straightforwardly calculated through
back-propagating the network outputs vy, each producing one
column of the Jacobian matrix. In (5), pu represents another
hyperparameter that is adjusted during training and that bal-
ances the algorithm between gradient decent (large) and
approximate Newton (small x). Note that the inverse Hessian
H can be interpreted as a variance—covariance matrix of the
SSNN weights (X = H~1). Furthermore, since the SSNN
is a dynamic neural network, calculating J requires either
(truncated) back-propagation through time (BPTT) or real-time
recurrent learning or other methods that incorporate the internal
recurrence in the SSNN model. For the implementation details
of these and other recurrent neural network training algorithms,
see [21]-[23]. In our case, we use BPTT, where we truncate
the time recursion to 15 discrete time steps, which appeared to
work best in our experiments.

MacKay [19] argues that both output errors and weights can
be interpreted as Gaussian noise processes with prior variances
of 1/ and 1/, respectively, and shows that minimizing cost
function (3) is equivalent to maximizing the posterior probabil-
ity density of the weights given the training data, hyperparame-
ters, and all other assumptions {2 (e.g., model structure), which
reads

P(Dl¢, o, 3,) P(la, 5,Q)
P(Dla, 5,9)

P(¢|D7 a? /37 Q) =
which, in turn, is equivalent to minimizing the log posterior
C" = —log (P(¥|D, , 3,2)) (©6)

where D depicts the available training data {ug,yx}, k=
1,..., Ng. The benefit of translating cost function C' (3) into
C* (6) is that Bayes’ rule (used to calculate the posterior) au-
tomatically embodies Occam’s razor [19], and that minimizing
C*, thus, leads to the simplest setting of 1) that is still warranted
by the data D. In [19] and [24], it is shown that the maximum
likelihood estimates for a and (3 can be expressed as follows:

Ve Y
> (Yn)?
NI/,
_ Np—v
DS ENE @
N

where
v = Ny — - trace(X)

denotes the number of effective weights. Note that v lies in
between zero and Ny, (the total number of weights).

2) Implementation Issues—Model Ensembles: There are a
number of reasons why the training algorithm above is cumber-
some to implement in practice. The most important is that for
any reasonably sized route, for example, one that is equipped
with 20-30 detectors, the amount of training data rapidly

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:07:52 UTC from IEEE Xplore. Restrictions apply.

VAN LINT: ONLINE LEARNING SOLUTIONS FOR FREEWAY TRAVEL TIME PREDICTION 41

becomes very large, and training becomes either unfeasible or
at least very time consuming. This is particularly due to the
calculation and the inversion of the Hessian in (5). A cheap
yet robust solution is to partition the training data set into L
random subsets which contain, on average, B (< 1) times the
total number of available training records [3]. Subsequently,
L SSNN models, each with exactly the same mathematical
structure, are trained on these random subsets, resulting in an
ensemble of L SSNN models. This procedure is called random
subsampling and is described in [25]. The mean prediction of
this ensemble on a particular input pattern is then equal to

L
Z ®)

where ;' denotes the output of model n calculated with (1) and
(2). As a bonus, confidence intervals

h \

yr(p) £ e x o} 9)

around this mean ensemble prediction can be constructed,
where

~

_yk

denotes the standard error of the mean. The term B under-
neath the square root scales the standard error with the size
(100 x B%) of the random subsets. Note that what is sub-
sampled here are not single input—output data patterns but
entire afternoon sequences of input—output data patterns (see
Section V for more details in the test case). The rationale is that
the temporal evolution of the input—output relationship needs to
be preserved to have the SSNN model correctly infer the travel
times.

Although subsampling clearly reduces the computational
burden of the training problem, the ensemble algorithm is
still (computationally) costly, particularly in terms of calcu-
lating and inverting H in (5). Moreover, the offline training
algorithm inevitably requires a large database of input and
output patterns to be available beforehand. In case of changes
in either the physical traffic processes (e.g., different speed
limits, extra lanes) or in the traffic monitoring system (new or
obsolete detectors), one would effectively have to wait until
such a database is compiled before the SSNN model(s) can
be retrained. Section III-B discusses an incremental learning
algorithm, which allows for much faster adaptation of the model
to such new situations.

B. Incremental EKF Training Algorithm

In an incremental learning context, the weights 1, are up-
dated after a single input—output {uy, yx } pattern is observed.
The underlying idea is that the weights 1), are assumed to
correspond to a stationary process (a random walk), i.e.,

Yp =Py +Tho1 (10)

and that the SSNN model makes a nonlinear observation, i.e.,

yr = G(ug,y) (11)

on its weights 1),,, where G represents the entire SSNN map-
ping, and 7, represents a zero-mean Gaussian white noise term.
Given the state space formulation of (10) and (11), the well-
known EKF equations can be applied to update the weights in
an incremental fashion and, at the same time, maintain an es-
timation error covariance matrix 3y of the weights. Assuming
that the noise in process (10) and the model errors ¢ in (4)
are additive Gaussian white noises, and that ¢;, is uncorrelated
to the variance in the targets o2, the EKF algorithm can be
employed to minimize the following cost function:

C=> &
Ny,

The EKF algorithm reads as follows.

1) Initialization. First, the weights 1) and the error covari-
ance matrix 3 are initialized. For initializing v, for example,
the Nguyen—Widrow method [26] can be used, whereas 3 is
usually initialized by a large diagonal matrix, which reflects the
fact that we have no prior knowledge on the weight setting.
Restricting to setting diagonal elements only implies that we
initially assume independence among weights, i.e.,

{bo = El1)]
o =B [(w = o) (8 — o).

(12)

13)
(14)
Now, for k = 1,2, ..., recursively apply the following time

and measurement updates.
2) Time update (or prediction step)

ipoo1 = Vi1 (15)
k-1 =21+ Rj 4, R, ,=F [rkrf] . (16)
3) Measurement update (correction step)
Yk :F(xkﬂz’k\k—l) — e =di — Uk a7
Spk-1J%)
Ky = , ri=F|e (18)
Ekm,lJZEf‘k_l + ’I"i k [k}
Y =y + K (19)
3 =31 — Kedp B
= (I - KpJp)Zppp-1- (20)

Since rf, reflects a variance estimate of the measurement
errors (that is, the inherent noise in the targets plus the noise
resulting from the SSNN model), we propose the following
smoothed estimate:
= (1= N7+ Mep +€%)2

Tha1 21

where £¥ is a constant depicting the inherent target noise, and

A is a smoothing constant < 1. The effect of (21) is similar

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:07:52 UTC from IEEE Xplore. Restrictions apply.

42 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 9, NO. 1, MARCH 2008

to that of a variable learning rate (~1/r%) in standard back-
propagation algorithms [21]. The smaller the r¢, the larger the
weight updates. Last, note that the Kalman gain K, (18) can be
interpreted as follows:

variance weights

Ky = X sensitivity model to weights.

variance outputs

Thus, what the EKF algorithm effectively does is that it
recursively updates 1), with a factor K, which balances the
uncertainty in the models’ weights with the total uncertainty
(noise) in the measurement equation, which is also a function
of Xy ,_1. For example, large model uncertainty and small
output uncertainty imply large weight updates. Conversely,
large output uncertainty and small model uncertainty result in
small weight updates.

C. Online Applicable EKF Algorithms

As explained in Section I, the incremental learning EKF
algorithm described above cannot be applied online for the
travel time prediction task due to the fact that travel time
prediction is not a one-step-ahead prediction problem. In this
section, we propose two algorithms that solve this problem. The
first is a delayed EKF approach, and the second one involves the
use of the so-called censored observations.

1) Online-Delayed EKF Algorithm: The rationale behind
this algorithm is straightforward. A weight update is applied
only at time instants k for which realized travel times are
available. This inherently delayed learning algorithm reads as
follows.

1) Attime period p, determine the departure time period k =
floor(p — dj,) for which the last (arrival) travel time dj,
was available.

2) Update weights based on inputs (speeds, flows) and tar-
gets (travel time dj;) available at period k.

3) Now, predict travel time at time period p with updated
weights.

Inherently, this delayed learning method will cause the travel
time prediction model to lag behind, at least in the early stages
of learning.

2) Censored EKF Algorithm: Consider that at some time
period p, the last realized travel time d,, is available from
vehicles departing at period m, where m = p — d,,,. Although,
for periods k, m < k < p, no realized travel times are available
yet, a censored observation (in fact, a lower-bound value) is
given by

dp > dj.(p) =p — k- (22)

Although the true prediction error € = di — yi [where
yr = G(¢y,ug) in (11)] is not available, again, a censored
observation of this error is given by

ex(p) = di.(p) — Y- (23)

Due to (22), (23) represents a monotonically increasing lower
bound of the true error ¢, i.e.,

enlp) <er, m<k<p. (24)

At each time period p > k for which no realized travel time
dy, of vehicles departing at k is available, the censored error (24)
provides an incremental estimate of the model prediction error.
Letting

&(p) =¢ei(p) —epp—1)>0 (25)
where
m4d,+1
> &) =ck
p=k+1

implies that for a particular departure time k for which no
realized travel time is available, the weights 1);, can be updated
stepwise at each p > k by substituting (25) into (19). Such an
update is retained if this update indeed improves the model
performance, that is, if

d(p) — G(uk,) > di(p) — G(ag, Yppq) (26)
which is the case if and only if
G(ug, pi1) > G(ug, ¥y). (27

In all other cases, the update is discarded. Constraint (27)
implies that if the parameter update results in a larger predicted
travel time than before, it is retained; otherwise, it is discarded,
in which case, ¢}, (p) must be reset to zero. Intuitively, this
procedure makes sense. For example, in cases where travel
times (of, for example, 10 min) are an order-of-magnitude
larger than the unit of discrete time k (of, for example, 1 min),
the lower bound of (22) will initially (as p is only a few time
steps away from k) be much smaller than free-flow travel times.
Adapting the weights to these clearly underestimated travel
times would not improve performance at all. In situations of
congestion buildup, during which travel times tend to increase,
it is clear that, according to (27), updates are retained only if
these contribute to the increasing trend. In case of declining
congestion, during which travel times tend to decrease, (27)
has no effect since, in those cases, realized travel times will
become available increasingly faster.

Last, note that at any particular time period p, there will be a
number of past time periods k for which no realized travel times
are available yet. This means that per time period p, possibly
more than one weight can be applied with censored errors. In
this paper, this is done sequentially, whereas at each update,
(27) is evaluated with respect to the last weight update, which
could also have been applied during p.

D. Regularization/Weight Constraining

We adopt a heuristic approach proposed in [27] to avoid the
SSNN weights become too large and, hence, force the SSNN
mapping to remain smooth. Essentially, this procedure has a
similar effect as the Bayesian regularization scheme presented

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:07:52 UTC from IEEE Xplore. Restrictions apply.

VAN LINT: ONLINE LEARNING SOLUTIONS FOR FREEWAY TRAVEL TIME PREDICTION 43

before, that is, it prevents the model from overfitting and helps
it maintain a more smooth and general mapping. A likely
consequence of such a constraint learning algorithm is that it
leads to a model that performs slightly worse than one trained
in an unconstrained fashion.

The weight constraining algorithm works as follows.
Consider the mappings ¥* = ¢(1, o) and 1 = ¢~ (1%,),
which transform the original weights 1) € [—o0, +00] to
constrained weight space ¥® € [—«a,+a] and vice versa.
Given that

1) ¢ is a continuous differential function over [—o0, +00];

2) ¢! exists and is continuous over [—a, +al;

3) Y — Y asa— oo
we can assess model performance (17) in the constrained
weight space and update the weights according to (18) and
(19) in the unconstrained weight space with just a few minor
changes in the algorithm.

We first unconstrain the weights after prediction step (17)
with 1 = ¢ 1(1“,) and adjust the Jacobian (J = dyy, /dap)
with a factor dyp (1),) /dip® to account for the sensitivity of the
model to the constraint weights, which are actually used to pre-
dict the output. After updating the now unconstrained weights
(19), these are transformed back into the constrained weight
space with ¥ = (%, o) and used in the next prediction step.
In the following, (28) is used to translate and constrain the
weights from the interval [— o, § + o] to [—oc0, +00] (based
on [27]):

_ 4
@(¢)—ﬁ+1+|¢|/a
0 P il 28
@ (¥%) =%~ Al/a (28)

where we set 5 = 0 so that weights are constrained around zero.

IV. EXPERIMENTAL SETUP
A. Data

In this study, an SSNN travel time prediction model is
built for the 7-km three-lane A13 southbound freeway stretch
between The Hague and Delft, The Netherlands. We selected
the data that are representative for regular congestion and,
therefore, chose all (available) congested weekday afternoon
periods (between 14:00 and 20:00) in 2004. Note that in
all selected peak periods, congestion occurred in which the
travel time during congestion was at least twice as high (i.e.,
> 10 min) than the free-flow travel time (around 4 min). Note
also that no additional information was available on the oc-
currence of, for example, incidents or accidents. The source
data consist of speeds and flows from dual inductive loops
that are installed, on average, every 500 m along this freeway
stretch and come from the Regiolab—Delft traffic data server
[28]. As inputs, spot mean speeds and vehicular flow per minute
from each detector along the main carriageway are used. For
targets, travel times are estimated (offline) with the so-called
piecewise linear speed-based (PLSB) trajectory method [29].
Although, in the following, these PLSB travel times are used as

“ground truth” targets, there is no guarantee that these provide
an unbiased estimate of real travel times (see, e.g., [30]), which,
unfortunately, were not available for this paper.

B. Model Design

Given the used inputs—spot mean speeds and flows (over
the entire carriageway)—from a total of 14 consecutive dual
loops on the A13 southbound freeway mentioned above, the
SSNN model structure used below is straightforwardly derived.
It consists of 13 hidden units, each receiving input signals
associated with the 13 consecutive freeway sections, which
are each enclosed by upstream and downstream detectors. The
context layer also consists of 13 units and is fully connected to
the hidden layer. A schematic overview is given in Fig. 1.

A few a priori remarks must be made with respect to the rela-
tion between the SSNN design and the route length and discrete
time interval that are used. Longer discrete time intervals yield a
smoother travel time (target) curve, which is probably easier to
track (and leads to better performance) with an online learning
method than a target curve on the basis of short discrete time
instants. However, for an individual traveler confronted with
these courser travel time predictions, the errors would probably
grow larger since his or her experienced travel time would, on
average, be available later to the model.

A similar argument can be made with regard to route length.
Since the SSNN model is only fed with data from the route
itself (see Fig. 1), it can only respond to travel time changes
if these are “visible” in these data. This implies that, on one
hand, longer routes would yield an easier prediction task since
it is more likely on longer routes that the cause of a travel time
increase (congestion) is visible earlier in the data. On the other
hand, longer routes make the travel time prediction inherently
more difficult since on longer routes, longer travel times occur
(and, hence, a larger delay before these are realized).

A full investigation into the effects of model design and data
configuration is beyond the scope of this paper.

C. Training and Testing

For comparison, we tested five similar SSNN models with
the two online EKF algorithms with varying degrees of weight
constraining, that is, with a set to 1, 5, 10, 15, and oo
(infinite—implying no weight constraining). Each of these ten
models (5° of weight constraining x 2 online learning algo-
rithms) was adapted online on a test data set (B) that is compiled
from a total of 65 6-h (14:00-20:00) peak periods. The rest of
the data (150 6-h peak periods-data set A) were used to train
an ensemble of ten SSNN models with the offline LMBR batch
training algorithm described above. The size of each of the ten
subsampled training data sets was 20% of the total data set (i.e.,
30 afternoon peaks on average). The ensemble was then tested
on the same data set (B) as the online EKF models. Last, all
models are compared against two baseline models. The first is
a naive prediction model, i.e., the so-called instantaneous travel
time, which is defined as

TTlicnst _ Z

M

Ly,

Vk,m

(29)

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:07:52 UTC from IEEE Xplore. Restrictions apply.

44 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 9, NO. 1, MARCH 2008

TABLE 1
PERFORMANCE ONLINE-DELAYED EKF SSNN MODELS ON DATA SET B

Weight constraining R2perc [%] RMSE[s] Bias[s] RRE [s]
o=1 80,7 118 -14,0 117
o=5 80,7 118 -13,3 117
a=10 80,8 118 -13,4 117
a=15 80,8 118 -13,3 117
=00 80,9 117 -13,6 116
TABLE 11

PERFORMANCE ONLINE-CENSORED EKF SSNN MODELS ON DATA SET B

Weight constraining R2perc [%] RMSE[s] Bias[s] RRE[s]
a=1 82,6 112 -12,6 111
o=5 82,6 112 -12,3 111
o=10 82,4 112 -12,4 112
a=15 82,3 113 -12,7 112
0=00 82,3 113 -12,2 112

where vy, ,,, depicts the mean of the speeds measured at the
upstream and downstream detectors of section m during period
k. The second baseline model is the day-to-day average travel
time, which is given by

N
rrie = LSS (30)
k Np Z k*
j=1

As performance criteria, the percentage explained variance
(the squared correlation coefficient R? x 100%) and the root
mean square error (RMSE, in seconds) are used. The RMSE
can be decomposed in a bias and a residual (random) error [root
residual error (RRE)] as follows: RMSE? = Bias? + RRE?,
in which the former indicates structural errors and the latter
indicates residual (random) errors. In the following, the perfor-
mance indicators are listed with their formulas:

1
RMSE = A > (g — di)?
k=1

Bias = 7 — d = Elys] — Eld]

1 Al —\2
RRE = FZ ((yk —9) — (di — d))

k=1

100 x Cov(Y, D)2

R%)erc = ()) Y:{yk}kNilv D:{dk}g:kl

Var(Y)Var(D)

In this case, a negative bias implies that the model struc-
turally underestimates the targets.

V. RESULTS
A. Predictive Performance

Tables I and II show the performance of the SSNN mod-
els trained with the online-delayed and online-censored EKF
algorithms under varying weight constraints on data set B.

TABLE III
MEAN ENSEMBLE PERFORMANCE OF OFFLINE LMBR SSNN MODELS
AND BASELINE MODELS ON DATA SET B

R%ec[%] RMSE([s] Bias[s] RRE [s]
SSNN ensemble mean 86.5 100 -5.03 100
Instantancous travel time 75.9 167 21.2 166
Hist. average travel time* 37.3 274 -81 261
Hist. average travel time** 39.0 249 ~0 249

* taken over (test) dataset B; ** taken over (training) dataset A

Table III shows the mean ensemble performance of ten SSNN
models trained with the offline LMBR algorithm along with the
performance of an instantaneous travel time estimate and two
historical averages over data sets A and B, respectively. The
latter, of course, is, by definition, unbiased and provides us with
the amount of variance (equal to RMSE?) in the test set itself.
The first conclusion from these results is that all SSNN models,
as well as the instantaneous travel time estimate, explain a
significant amount of the day-to-day variance in travel times
and significantly improve over a historical day-to-day average
travel time.

Second, the SSNN models that are trained online with the
two EKF algorithms perform (slightly) worse than the ensemble
of models that were trained offline with LMBR. This is no
surprise since in the offline batch training variant, the model
is allowed “to see” the entire training data set many times,
whereas in both EKF variants, each input—output pattern is
used only once. Nonetheless, the SSNN models that are trained
with the online-delayed and online-censored EKF methods still
outperform the naive predictor (instantaneous travel time) on all
performance measures.

To illustrate the results in Tables I-III, Figs. 2 and 3 show the
performance of both online EKF methods during two typical
weekday afternoon peak periods in 2004 with mild and severe
congestion, respectively. In both figures, the thick gray line
denotes the “true” travel time curve, the black line denotes the
mean ensemble prediction of the SSNN models trained with the
offline LMBR algorithm, and the solid gray line and the dashed
black line depict the predictions of the two online EKF-adapted
SSNN models, both without weight constraining (o = co). For
readability, all data have been smoothed with a 5-min two-sided
exponential filter. Clearly, in Figs. 2 and 3, the LMBR ensemble
mean tracks the onset and the demise of congestion faster and
more accurate than the two online EKF models.

A third observation from Table I (online-delayed EKF) and
Table II (online-censored EKF) is that the latter outperforms the
former—albeit slightly—for all degrees of weight constraining.
These improvements pertain to all performance indicators and
are in the order of a few percent. Figs. 2 and 3 substantiate the
conclusion that, in general, the online-censored EKF algorithm
performs slightly better than the online-delayed one. In both
figures, the censored curve is smoother and tracks true travel
time faster and more accurately than the online-delayed curve,
albeit the differences are small.

A final and perhaps more counterintuitive result is that for
neither of the two online EKF algorithms, weight constraining
(regularization) appears to have a significant effect (positive or

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:07:52 UTC from IEEE Xplore. Restrictions apply.

VAN LINT: ONLINE LEARNING SOLUTIONS FOR FREEWAY TRAVEL TIME PREDICTION 45

14 T T T

[TR
o N

travel time (min) —

"True" travel time
LMBR B
EKF-delayed

---------- EKF-censored

1 1
100 150

1 1
200 250

departure time (1-min periods) —

Fig.2. Example performance of online-delayed and online-censored versus offline LMBR SSNN travel time prediction models under mild congestion. Note that
for readability, all data (including targets) have been filtered with a 3-min two-sided exponential average.

20

15

travel time (min) —»
S

T T T
"True" travel time

LMBR
EKF-delayed
EKF-censored

I 1
0 50 100 150

1 1 |
200 250 300 350

departure time (1-min periods) —

Fig. 3.

Example performance of online-delayed and online-censored versus offline LMBR SSNN travel time prediction models under severe congestion. Note

that for readability, all data (including targets) have been filtered with a 3-min two-sided exponential average.

negative) on the performance. In Section V-B, we will discuss
this issue in more detail.

B. Discussion of Results and Possible Improvements

The results above give rise to a number of issues and ques-
tions. A selection of these is addressed below.

1) Offline-Trained Models Outperform Models That Are
Adapted Online: This result is a direct and expected conse-
quence of the travel time prediction problem, in which the
targets (realized travel times) are delayed. This problem, in
fact, increases with the magnitude of travel times and the
speed with which travel time increases. The faster and higher
the travel times go up, the longer it takes before an online
learning method can track it and accordingly adapt the model
weights [compare Fig. 2 (mild congestion) and Fig. 3 (severe
congestion)], particularly in the early stages of learning. An
offline-trained model will be more responsive to changes in
the inputs under the premise that the underlying traffic patterns
(input—output relationships) were present in the training data
set. Of the two online algorithms, the online-censored EKF

algorithm introduced above enables a slightly more responsive
and smoother SSNN (travel time prediction) model than the
online-delayed EKF learning method, albeit the difference is
not very large.

2) Some Notes on the Usefulness of Weight Constraining in
an Online Learning Context: Tables I and II show that weight
constraining does not affect the SSNN performance more than
marginally, neither when applied to the online-delayed algo-
rithm nor when applied to the online-censored EKF algorithm.
In both cases, none of the performance indicators substantially
differ under different degrees of weight constraining. One con-
clusion is that weight constraining in an online learning context
is not necessary or is at least not very beneficial. A second con-
clusion is that there exist many weight configurations, which
lead to an equally well-performing SSNN model.

To illustrate, Table IV shows the maximum weight of the
five SSNN models after being adapted with the online-censored
EKF algorithm. As expected, the maximum weight increases
in the case where weight constraining is relaxed. Clearly, each
of these nearly equally well-performing models has a very
different weight setting.

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:07:52 UTC from IEEE Xplore. Restrictions apply.

46 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 9, NO. 1, MARCH 2008

TABLE 1V
MAXIMUM WEIGHT IN SSNN MODELS AFTER ONLINE-DELAYED EKF
ADAPTATION FOR DIFFERENT DEGREES OF WEIGHT CONSTRAINING

a=10
3,36

a=15
4,67

o=5

2,22

a=1

0,90

=00

6,95

More tentatively, one might also conclude that the weight
constraining procedure succeeds in preventing the SSNN model
from overfitting the data without compromising its predictive
performance. To appreciate this—as said, tentative—claim,
one must realize that weight constraining effectively makes
a parameterized model less sensitive (less responsive) to the
prediction errors with which its parameters are adapted. In an
online learning context, one might subsequently expect that no
weight constraining (implying maximum sensitivity to output
errors) would lead to better performance. In our experiment,
it appeared, however, that weight constraining does not deteri-
orate performance. On the basis thereof, weight constraining
(regularization) is useful since it keeps the model as simple
(and smooth) as possible without compromising predictive
performance. This is particularly relevant to ensure a degree
of robustness in response to missing data (incidents and ac-
cidents). Under such conditions, a very sensitive model (with
unconstrained weights) might produce erratic predictions. Note
that more extensive research is required to further investigate
this issue.

3) Possible Improvements and Extensions to the Online-
Censored EKF Learning Algorithm: A possible improvement
to the online-censored EKF algorithm could lie in making the
process noise [see (16)] adaptive (dependent on, for example,
the output error), similar to what is proposed for the mea-
surement noise [see (21)]. This may be beneficial since in the
EKF algorithm described above, the combination of process
and measurement noise parameters governs the speed and the
magnitude with which the algorithm tracks the target curve
(true travel time) and, hence, adapts the model weights. In [27],
a number of suggestions to this end are given. Similarly, the
parameter « of the weight constraining function itself could be
made adaptive and simultaneously updated with the weights,
analogous to what happens in the LMBR algorithm. Practically,
a second EKF then runs parallel to the one governing the weight
updates.

4) Online-Censored Algorithm in a Wider Perspective:
Last, the censored algorithm presented here may offer improve-
ments in online learning in a more general context. Recall that
the EKF algorithm is classically used for state estimation, that
is, for adapting unobserved state variables x; on the basis of
observable errors on output variables y;, where both constitute
the following state-space mapping:

(state dynamics)
(output equation).

€1V
(32)

Xi4+1 = f(Xt, Uy, I‘t)
Y :g(xtw?t)

Online parameter estimation (online learning) can be con-
sidered to be a special case of state estimation, in which the
state dynamics (31) are modeled as a random walk [see (10)
and (11)]. In cases where the output equation relates travel time
(y:) to the unobserved state [whatever this may be: vehicle

densities, road capacities, or, for example, origin—destination
(OD) flows], the censored algorithm presented above is applica-
ble, also when the state dynamics are governed by other more
complex equations than a random walk, as was the case in this
paper. Examples of such more involved state dynamics include
macroscopic traffic flow models (e.g., [31]) or queuing models.
A typical application then would be traffic state estimation
(or, e.g., OD matrix estimation) on the basis of different data
sources (data fusion) such as travel time measurements (with
cameras or Global System for Mobile Communications/Global
Positioning System equipped probe vehicles) and inductive
loop data (spot speeds and flows). The censored algorithm in
that case would allow the modeler to update the state on the
basis of travel times as frequently as on the basis of loop data,
which most probably leads to a smoother and more accurate
state estimate. Further research in this area is, however, required
to substantiate this claim.

VI. CONCLUSION

Since travel times are available and can be measured for
realized trips only, adapting the parameters of a data-driven
travel time prediction model, such as the SSNN, online is par-
ticularly challenging. Travel time prediction is not a one-step-
ahead prediction problem and cannot be solved by standard
incremental learning algorithms. To our knowledge, this paper
is the first to present online learning algorithms that adequately
deal with the inherently delayed travel time prediction problem.

It was found that a new algorithm, i.e., the so-called online-
censored EKF algorithm, performs slightly better than the
online-delayed EKF algorithm on a large data set of actual
data from a heavily congested freeway route in the Netherlands.
Both methods outperform a naive online method (instantaneous
travel time), and both outperform the historical average by far.
Although SSNN models that are trained with both online EKF
algorithms perform slightly worse than an offline-trained SSNN
model, the gain of such online-learning algorithms is large.
It alleviates the modeler from preparing and executing offline
training procedures, and more importantly, it creates a robust
and adaptive travel time prediction model, which is able to
adapt to changes in either the underlying traffic processes or the
monitoring system collecting the models’ input and output data.

To improve the generalization, a weight constraining (reg-
ularization) method was introduced. From the results, it ap-
peared that this procedure does not affect the results more than
marginally. We argue, however, that weight constraining in an
online context may, nonetheless, be beneficial in that it leads to
smoother models that still perform well.

Last, we argued that the online-censored algorithm may yield
improvements not only in online parameter fitting but also,
more generally, in online traffic state estimation and data fusion
in cases in which delayed detector data (such as travel time)
are used.

ACKNOWLEDGMENT

The author would like to thank the anonymous reviewers
for their detailed comments and remarks, which have largely
improved the quality and clarity of this article.

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:07:52 UTC from IEEE Xplore. Restrictions apply.

VAN LINT: ONLINE LEARNING SOLUTIONS FOR FREEWAY TRAVEL TIME PREDICTION 47

REFERENCES

[1] J. W. C. van Lint, S. P. Hoogendoorn, and H. J. Van Zuylen, “Accurate
travel time prediction with state-space neural networks under missing
data,” Transp. Res. Part C, Emerg. Technol., vol. 13, no. 5/6, pp. 347-
369, Oct.—Dec. 2005.

[2] J. W. C. van Lint, “Reliable travel time prediction for freeways,”
Ph.D. dissertation, TRAIL Res. School, Delft Univ. Technol., Delft,
The Netherlands, 2004. p. 302.

[3] J. W. C. van Lint, “A reliable real-time framework for short-term freeway
travel time prediction,” J. Transp. ASCE, vol. 132, no. 12, pp. 921-932,
Dec. 2006.

[4] M. Ben-Akiva, M. Bierlaire, D. Burton, H. N. Koutsopoulos, and
R. Mishalani, “Network state estimation and prediction for real-time
transp. management applications,” presented at the Transp. Res. Board
Annu. Meeting, Washington DC, 2002. CD-ROM.

[5] H. S. Mahmassani, DynaSMART-X Home, vol. 2004. Austin, TX: Univ.
Texas, 2004.

[6] S. A. Smulders, A. Messmer, and W. J. J. Knibbe, “Real-time application
of METANET in traffic management centres,” presented at the 6th World
Congr. Intell. Transp. Syst. (ITS), Toronto, ON, Canada, 1999.

[7] X.Zhang and J. A. Rice, “Short-term travel time prediction,” Transp. Res.
Part C, Emerg. Technol., vol. 11, no. 3/4, pp. 187-210, Jun.—Aug. 2003.

[8] J. Rice and E. Van Zwet, “A simple and effective method for predict-
ing travel times on freeways,” in Proc. IEEE Conf. Intell. Transp. Syst.,
Oakland, CA, 2001, pp. 227-232.

[9] J. A. C. Van Toorenburg, “ASTRIVAL Functionele specificatie Al-
goritme,” in Rijtijd en Filelengteschatter voor Meetvak (in Dutch).
Rotterdam, The Netherlands: AVV Transp. Res. Centre, Ministry Transp.,
Public Works Water Manage., Nov. 1998.

[10] C.-H. Wu, C.-C. Wei, D.-C. Su, M.-H. Chan, and J.-M. Ho, “Travel time
prediction with support vector regression,” in Proc. IEEE Conf. Intell.
Transp. Syst., Shanghai, China, 2003, pp. 1438-1442.

[11] H. Sun, H. X. Liu, H. Xiao, R. R. He, and B. Ran, “Short-term traffic
forecasting using the local linear regression model,” presented at the
Transp. Res. Board Annu. Meeting, Washington DC, 2003. CD-ROM.

[12] H. M. Al-Deek, M. P. D’ Angelo, and M. C. Wang, “Travel time prediction
with non-linear time series,” in Proc. 5th Int. Conf. Appl. Adv. Technol.
Transp., Reston, VA, 1998, pp. 317-324.

[13] S. I. J. Chien and C. M. Kuchipudi, “Dynamic travel time prediction
with real-time and historic data,” J. Transp. Eng.-ASCE, vol. 129, no. 6,
pp. 608-616, Nov./Dec. 2003.

[14] A. Stathopoulos and M. G. Karlaftis, “A multivariate state space approach
for urban traffic flow modeling and prediction,” Transp. Res. Part C,
Emerg. Technol., vol. 11, no. 2, pp. 121-135, Apr. 2003.

[15] D. Park, L. Rilett, and G. Han, “Spectral basis neural networks for real-
time travel time forecasting,” J. Transp. Eng., vol. 125, no. 6, pp. 515-523,
Nov./Dec. 1999.

[16] L. R. Rilett and D. Park, “Direct forecasting of freeway corridor travel
times using spectral basis neural networks,” Transp. Res. Rec., vol. 1752,
pp. 140-147, 2001.

[17] J. W. C. van Lint, S. P. Hoogendoorn, and H. J. Van Zuylen, “Free-
way travel time prediction with state-space neural networks—Modeling
state-space dynamics with recurrent neural networks,” Transp. Res. Rec.,
vol. 1811, pp. 30-39, 2002.

[18] J. W. C. van Lint and M. Schreuder, “Travel time prediction for VMS
panels—Results and lessons learnt from a large-scale evaluation study in
the Netherlands,” presented at the Transp. Res. Board Annu. Meeting,
Washington DC, 2006. CD-ROM.

[19] D.J. C. MacKay, “Probable networks and plausible predictions: A review
of practical Bayesian methods for supervised neural networks,” Network:
Comput. Neural Syst., vol. 6, no. 3, pp. 469-505, Aug. 1995.

[20] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the
Marquardt algorithm,” IEEE Trans. Neural Netw., vol. 5, no. 6, pp. 989—
993, Nov. 1994.

[21] C. M. Bishop, Neural Networks for Pattern Recognition.
Oxford Univ. Press, 1995.

[22] D. Rumelhart, G. Hinton, and R. Williams, “Learning internal repre-
sentations by error propagation,” in Parallel Distributed Processing.
Cambridge, MA: MIT Press, 1986, ch. 8.

[23] R. J. Williams and D. Zipser, “Gradient-based learning algorithms
for recurrent networks and their computational complexity,” in Back-
Propagation: Theory, Architectures and Applications, Y. Chauvin and
D. E. Rumelhart, Eds. Hillsdale, NJ: Erlbaum, 1995, ch. 13, pp. 433—486.

[24] H. H. Thodberg, “A review of Bayesian neural networks with an appli-
cation to near infrared spectroscopy,” IEEE Trans. Neural Netw., vol. 7,
no. 1, pp. 56-72, Jan. 1996.

[25] D. N. Politis, J. P. Romano, and M. Wolf, “On the asymptotic theory of
subsampling,” Stat. Sin., vol. 11, no. 4, pp. 1105-1124, 2001.

[26] D. Nguyen and B. Widrow, “Improving the learning speed of 2-layer
neural networks by choosing initial values of the adaptive weights,” in
Proc. Int. Joint Conf. Neural Netw., 1990, pp. 21-26.

[27] S. Haykin, Kalman Filtering and Neural Networks.
2001.

[28] T. H. J. Muller, M. Miska, and H. J. Van Zuylen, “Monitoring traffic
under congestion,” presented at the Transp. Res. Board Annu. Meeting,
Washington DC, 2005. CD-ROM.

[29] J. W. C. van Lint and N. J. Van der Zijpp, “Improving a travel time
estimation algorithm by using dual loop detectors,” Transp. Res. Rec.,
vol. 1855, pp. 41-48, 2003.

[30] R. Li, G. Rose, and M. Sarvi, “Evaluation of speed-based travel time
estimation models,” J. Transp. Eng., vol. 132, no. 7, pp. 540-547,
Jul. 2006.

[31] Y. Wang and M. Papageorgiou, “Real-time freeway traffic state estima-
tion based on extended Kalman filter: A general approach,” Transp. Res.
Part B, vol. 39, no. 2, pp. 141-167, Feb. 2005.

London, U. K.:

New York: Wiley,

J. W. C. (Hans) van Lint received the M.Sc. degree
in civil engineering and informatics and the Ph.D.
degree in “reliable freeway travel time prediction” in
1997 and 2004, respectively, both from Delft Univer-
sity of Technology (DUT), Delft, The Netherlands.
After working as a Software Engineer and Consul-
tant, he joined the Municipality of Rotterdam as the
Project Manager of the regional traffic information
center while pursuing the Ph.D. degree part time at
DUT. He is currently an Associate Professor with
the Department of Transport and Planning, Faculty
of Civil Engineering and Geosciences, DUT. His main research interests
include traffic flow theory, travel time estimation and prediction, data fusion
and Bayesian optimization, traffic state estimation and prediction, and the
development and application of artificial intelligence in transportation.

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:07:52 UTC from IEEE Xplore. Restrictions apply.

