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CHAPTER 1

Introduction

1.1 General introduction

According to Clarke andWashington (1924), 95% of the earth’s crust consists of igneous and

metamorphic rocks. The other 5% are sedimentary rocks, including 4% shale, 0.75% sand-

stone and 0.25% limestone. Despite their low crustal abundance, sedimentary rocks are of

key economical and societal importance because they contain important natural resources

such as hydrocarbons, rare earth elements and drinking water. In addition, sedimentary

records are important archives of the Earth’s history and deciphering them provides in-

sight into ancient climatic, tectonic and eustatic conditions (Allen, 2009). Understanding

the mechanisms which control the properties, morphology and spatial distribution of sed-

imentary deposits is therefore of utmost importance.

A conceptual approach to the formation of sedimentary deposits is the "source-to-sink"

model whose genetic units are (1) an erosional area in which chemical and mechanical

weathering cause rocks to break down into sediments (i.e., the source); (2) a sedimentary

routing system in which sediments are transported by some medium (e.g., water, air) under

the in�uence of a gradient; (3) a topographic low where the sediments are deposited (i.e.,

the sink) (Allen and Allen, 2005). The sedimentary record re�ects the complex interplay of

compositional and physical alterations imposed on the sediment while residing in each of

these genetic units (Blatt et al., 1980). Unravelling information from sedimentary records

therefore requires solving an inverse problem which, given that it generally does not have

a unique solution, can be a challenging task (Johnsson, 1993; Weltje et al., 1998; Weltje and

von Eynatten, 2004). Hence, it is of key importance to use all information and data at hand

and analyse them in an integrated manner.

Characterisation of sedimentary deposits in the subsurface generally involves acquis-

ition of di�erent sets of data, including seismic, well-log and, ideally, core data. Only by

employing these di�erent analysis methods, it is possible to adequately capture the hetero-

geneity of the sedimentary deposits across many di�erent scales. For instance, the resolu-

tion of seismic data is not su�cient to capture the small-scale variations in sediment prop-

1



2 Introduction 1

erties which, nevertheless, may be of vital importance for the ability of the sediment body

to transmit �uids. On the other hand, given that it covers the entire deposit, seismic data

enable determination of the dimensions and geometry of large-scale structures. It is evident

that to a certain extent these data sets contain redundant information. This redundancy en-

ables the transfer of information across the scales. For instance, a �rst-order approximation

of the physical properties throughout the deposit may be obtained by assigning physical

properties derived from cores to stratigraphic units recognisable on seismic data.

Cores play a key role in integrating the di�erent available data sets. Mobil attempted

to quantify the value of core information in their operations and estimated that 10 to 15%

of their oil production would not be possible without core analysis (Forbes, 1998). One

reason for their importance is that cores are the only physical and intact sample of the

sedimentary deposit, hence they enable calibration and validation of remotely-sensed data,

such as porosity logs, seismic impedance (Serra, 1987) and more specialised logs such as

geochemical logs (Hertzog et al., 1987). Secondly, cores enable analysis of the sediment

on the smallest possible scale: surprisingly enough, variations on this smallest scale can

uniquely provide information about the large scale basin evolution with regard to e.g., dia-

genetic phases, sediment source and the source-to-sink pathway. Unravelling such basin-

scale variations from analysis of grains is known as provenance analysis (Basu, 2003;Weltje,

2012).

1.2 Core analysis and core-scanning technology

Although limited compared to the basin scale, sedimentological variability on the core scale

also spans several orders of magnitude. In the order of meters, cores re�ect the major vari-

ations in lithologies and sedimentary facies. In the order of centimeters, cores re�ect sedi-

mentary structures such as ripples and burrows, i.e. structures which may serve as telltales

of the conditions under which the sediments were deposited. In the order of micrometers

to millimeters, cores contain information about the pore network and the characteristics of

individual grains (e.g., roundness).

A similar genetic ordering is re�ected by the data typically acquired from cores, which

includes: (1) high-resolution (≤ 0.01m) qualitative descriptions in terms of lithology, tex-

ture and sedimentary structures, (2) medium-resolution (0.1m-1m) point measurements of

bulk properties (chemistry, mineralogy, porosity), and (3) low-resolution (1m-10m) point

measurements acquired using the most sophisticated and costly analytical techniques like

single-grain geochemistry and scanning-electronmicroscopy. Hence, whereas the most ba-

sic properties of the sediment are at hand at a virtually in�nite resolution, there is generally

only a handful of detailed analysis of sediment properties on the grain scale. These resolu-

tion gaps are the consequence of practical limitations: acquiring all these data on the same

high resolution is not feasible due to time and �nancial constraints. It would also require

taking numerous discrete samples from the core which is unwanted and in some cases not

even allowed because it reduces the core’s quality and can even destroy its integrity.

The fact that not all data are available at the same resolution complicates core analysis.

In an attempt to overcome this problem, automated core scanning techniques have been

developed. Core-scanning techniques are based on in-situ spectroscopic analysis, which

are therefore time- and cost-e�cient as well as non-destructive. This technology enables

acquisition of bulk properties on a high-resolution (sub-centimeter), whereas it requires
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minimal sample preparation (Jansen et al., 1998; Haschke et al., 2002; Haschke, 2006). One

spectroscopic technique which is often employed in core scanners is X-ray Fluorescence

(XRF) spectrometry (Jansen et al., 1998; Wien et al., 2005; Gé et al., 2005; Rothwell et al.,

2006). The principle underlying XRF is that incident γ- or x-radiation causes electrons in

the inner shels to be ejected (De Vries and Vrebos, 2002). Because this is an unstable situ-

ation, the vacant positions created are �lled by electrons in higher shells, which emit their

excess energy by means of secondary radiation. The energy of this radiation is speci�c to a

particular combination of inner and outer shell energies which, in turn, is element-speci�c.

Under standardised conditions, the intensity of the secondary radiation is proportional to

the concentration of the associated element in the specimen.

1.3 XRF and its application in geoscience

XRF is a widely-used method for chemical analysis of rocks and sediments (Ramsey et al.,

1995; Jenkins, 1999). Geochemical data have been used to study: (i) the composition of

the source rock (Amorosi et al., 2002; McLennan et al., 1993; Argast and Donnely, 1987),

(ii) the intensity of entrainment sorting (Garcia et al., 2004), (iii) variations in grain size

(Whitmore et al., 2004; Kiminami and Fuji, 2007), (iv) the extent of chemical weathering

(Nesbitt and Young, 1982; Ohta and Arai, 2007), (v) and sedimentary facies (Svendsen et al.,

2007). Despite the potential of XRF core scanning for geological studies, however, XRF

core scanning is mainly used as a qualitative tool which enables fast acquisition of high-

resolution "wiggles". It is commonplace to analyse these "wiggles" in combination with

other independently-acquired data and display them side-by-side, either to highlight con-

sistency between the data sets or to illustrate patterns unique to a particular data set (e.g.,

Bakke et al., 2013). This approach is often referred to as "multi-proxy" analysis (see e.g.,

Cronin et al., 2005).

The underlying reason for XRF core scanners to be mainly used as a qualitative tool

is that quantitative calibration is considered problematic (Jansen et al., 1998; Jaccard et al.,

2005; Croudace et al., 2006; Kido et al., 2006; Böning et al., 2007; Tjallingii et al., 2007). The

problem is that the XRF data are acquired in-situ, which means that both the properties

of the matrix as well as the measurement geometry (e.g., distance between sample and de-

tector) vary throughout the core. This, in turn, invalidates the proportionality between

intensities and analyte concentrations, i.e., the fundamental assumption of quantitative

spectroscopy (Jenkins, 1999; De Vries and Vrebos, 2002). An additional problem is that

in the models commonly used to calibrate core-scanning data there is neither implicit nor

explicit control on physical plausibility (e.g., concentrations could theoretically become

negative and larger than 100%). This lack of control, in turn, frequently results in negative

concentration estimates or concentration estimates exceeding 100%.

A major breakthrough in the calibration of XRF core-scanning data has been the study

of Weltje and Tjallingii (2008). Firstly, they solved the lack of control on physical plaus-

ibility, common to many conventional calibration equations. Secondly, they proposed a

de�nition of the calibration problem in such a way that problems associated with the vari-

able measurement geometry and matrix were greatly reduced, if not eliminated.

Solving these problems was achieved by combining well-established spectroscopic the-

ory with the statistical theory of compositional data analysis, as developed by John Aitchi-

son in the 1980s (Aitchison, 1986) and extended ever since (see e.g., Egozcue et al., 2003;
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Pawlowsky-Glahn and Egozcue, 2001). This theoretical framework is concerned with de-

scribing the statistical properties of compositional quantities, such as their sample space

and the problems surrounding modelling and statistical inference. Furthermore, Aitchison

(1986) proposed a mathematical framework with which these problems can be circumven-

ted. This framework consists of invertible transformations (i.e. log-ratio transformations or

simply "log-ratios") which ensure that the (from a statistical standpoint) problematic data

are represented in a suitable metric space.

Key behind the calibrationmethod ofWeltje and Tjallingii (2008) was to de�ne the calib-

ration problem in terms of log-ratios, thereby treating the element intensities as well as the

analyte concentrations as compositional quantities. This reduces the e�ects from the vari-

able measurement geometry, it greatly simpli�es modelling the highly non-linear matrix

e�ects and it ensures that concentration estimates are always physically tractable. Weltje

and Tjallingii (2008) conclude that for the soft-sediment core they analysed, the quantit-

ative performance of the XRF core scanner was comparable to conventional geochemical

analysis.

1.4 The multivariate approach

The fact that the quantitative performance of XRF core scanning has become comparable

to conventional geochemical analysis means that it has great potential for studies govern-

ing mass balances. However, because the geochemical composition is typically strongly

correlated with numerous other sediment properties, the potential value of geochemical

core logs is certainly not limited to constraining mass-balance exercises. Hence, XRF core

scanning technology potentially provides much more than "just" a way to quickly acquire

geochemical data.

Using chemical data to predict other properties requires a multivariate approach. This

approach is followed throughout this thesis. The rationale behind the multivariate ap-

proach is illustrated in Figure 1.1. The ellipsoids in Figure 1.1 represent data sets which

re�ect a certain variability. Correlation between the two data sets X and Y is represented

as overlap, which is highlighted in grey. Calibration can be considered going from a not

very meaningful data set (X) to a meaningful data set (Y) by using some parametric model

to capture this overlap. In the light of calibration, X\Y may be interpreted as noise and Y\X

re�ects the unpredictable variability in Y which may be interpreted as a shortcoming of X.

Since the goal is to predict Y from X and Y\X has a di�erent signi�cance than X\Y, calib-

ration is an asymmetric exercise. Also when both X and Y are meaningful measures, we

may attempt to parameterise the overlap between X and Y to gain more insight into their

relation. In this case, the unique information (i.e. X\Y and Y\X) is of potential value because

both data sets are meaningful. For instance, the chemical and mineralogical composition

will overlap to a large extent. Variability unique to the mineralogical composition will be

controlled byminerals with the same chemical composition. In contrast to calibration, mul-

tivariate analysis of sets of meaningful data sets may be considered a symmetric exercise.

An important task is to turn the conceptual model behind the multivariate approach into

algorithms with practical value.
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X\Y Y\XX Y

Figure 1.1: Graphical representation of the rationale behind the "multivariate approach". Details are provided in

the text. Modi�ed from Bloemsma et al. (2012).

1.5 Objectives

Ever since the introduction of the �rst XRF core scanner, the performance and versatility

of these instruments has been improved. Important milestones were the implementation

of e�cient (Si-drift) x-ray detectors, and the introduction of an adjustable slit opening. Al-

though there is still room for improvement, core scanning technology is relatively mature.

Data processing and handlingmethods, on the other hand, are lagging behind. The research

presented in this thesis is therefore centred around developments in software, rather than

hardware.

The �rst goal of this study is to build a mathematical-statistical framework for the con-

struction of so-called integrated core descriptions using XRF core scanning. We de�ne an

integrated core description as a collection of lithofacies, chemical and petrophysical records

which have the same, high (1 cm) resolution and quanti�ed uncertainties. The interpret-

ation of these descriptions, possibly in combination with other data sets, is referred to as

integrated core analysis. The second goal of this study is development of methods that fa-

cilitate integrated core analysis.

To reach these goals, we de�ne the following six objectives:

1. Characterise statistically the relevant data types.

2. Formalise interpretation of, and geological inference from geochemical data using

mathematical-statistical methods.

3. Improve the logratio-based calibration method so that the mis�t between composi-

tion predicted by the scanner and composition estimated using conventional analyt-

ical techniques may be reduced.

4. Extend the logratio-based calibration method by enabling prediction of properties

which were not directly observed.

5. Evaluate the performance of newly-proposed calibrationmethods for di�erent types

of cores (soft-sediment cores, and consolidated-sediment cores).

6. Explore the added value of core-scanning technology within the routine core ana-

lysis work�ow using real-life cases.
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1.6 Structure of this thesis

Chapter 2 provides a mathematical description of the calibration problem and shows the

rationale behind the logratio-based approach. In addition, a multivariate extension is

presented which enables using the scanner as a fully quantitative geochemical tool (i.e.,

also prediction of the total concentration of unobserved analytes). The predictive perform-

ance of this method is compared to other methods using two core data sets.

In Chapter 3, we describe the problems surrounding interpretation of geochemical data,

which have the tendency to the re�ect the combined response of di�erentmechanisms. One

important bulk-chemistry-controlled mechanism is variation in grain size. We formalise

interpretation of bulk chemical composition and grain size data using a latent-variable tech-

nique.

Given that our ultimate goal is to compare the quantitative performance of the core

scanner with that of conventional methods, it is important that we statistically char-

acterise core-scanning and geochemical data. This is attempted in Chapters 4 and 5. In

Chapter 4, we perform error propagation to study the properties of spectroscopic and com-

positional data in logratio space. Whereas the starting point in Chapter 4 is the theory,

the starting point in Chapter 5 is the existing empirical evidence with regard to analytical

uncertainty. It is investigated how this evidence compares to what is known about spec-

troscopic and compositional data which led to the identi�cation of some inconsistencies.

Finally, a new uncertainty modelling work�ow is proposed.

In Chapters 6 and 7, we build an integrated core description of two cores: one heterogen-

eous soft-sediment core from the shallow subsurface (B38D) and one heterogeneous core

of silicicastic reservoir rock (E10-3). In Chapter 6, a framework is presented which enables

prediction of categorical core data from scanning data. In Chapter 7, a new calibration

method is proposed which enables prediction of chemical as well as petrophysical proper-

ties. The quality of the predictions is compared with the quality of conventional analytical

methods.

Chapter 8 is centered around integrated core analysis. By means of three applications

it will be illustrated how core-scanning data can facilitate in making a detailed reservoir

quality characterisation which is not possible based on the data acquired in routine core

analysis.

An evaluation, discussion and recommendations are given in Chapter 9.
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Multivariate logratio calibration of XRF-CS data 1

2.1 Introduction

It is common practice to convert XRF core scanner output to element or oxide concentra-

tions using linear regression on an element-by-element basis (referred to as direct linear

calibration; DLC) (Jansen et al., 1998; Jaccard et al., 2005; Croudace et al., 2006; Kido et al.,

2006; Böning et al., 2007; Tjallingii et al., 2007). Direct linear calibration (DLC) models take

the following form:

Wij = ajIij + bj (2.1)

whereWij represents the concentration (weight proportion) of element j in specimen i. Iij
represents the net intensity of element j in specimen i, obtained by preprocessing of the raw
spectrum by background subtraction, sum-peak and escape-peak correction, deconvolution

and peak integration. Coe�cients aj and bj are empirical constants speci�c to the data set

and element under consideration.

The simplest DLC model is one in which direct proportionality is assumed, i.e. bj = 0.
In this model, referred to as DLC-1, concentrations and intensities are both constrained

to be non-negative. A more �exible model, referred to as DLC-2, is obtained by allowing

non-zero values of bj in Equation 2.1. The DLC-2 model implies that the relation between

W and I cannot be linear over their full range, because negative concentrations or intens-

ities would occur. Therefore, the conventional interpretation of the DLC-2 model is that

it represents the approximately linear relation betweenW and I over the limited range of

intensities and concentrations covered by the data.

Practical problems associated with DLC models are apparent from considerable scatter

and bias in cross-plots of intensity and concentration, which are attributable to inhomo-

geneity of the specimens (e.g. variable water content and grain-size distribution), irregu-

1Based on: Weltje, G.J., Bloemsma, M.R., Tjallingii, R., Heslop, D., Röhl, U., Croudace, I.W., 2015. Prediction of

geochemical composition from XRF-core-scanner data: A new multivariate approach including automatic selec-

tion of calibration samples and quanti�cation of uncertainties. In: Croudace, I.W., Rothwell, G. (Eds.), Micro-XRF

Studies of Sediment Cores. DPER special publication.

7
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larities of the split core surface, and in some setups, spatial variations in thickness of an

adhesive pore-water �lm which forms directly below a protective foil covering the core

surface. The conceptual problems of DLC are apparent from the fact that the seemingly

straightforward (linear) calibration of intensities to concentrations is inconsistent with the

parametric model used in XRF spectrometry (Weltje and Tjallingii, 2008). The absence of a

viable underlying physical model manifests itself in a number of ways: (1) None of the pub-

lished regression equations passes through the origin, or alternatively, through the point

representing the detection limits corresponding to the two measurements being compared;

(2) Calibration on an element-by-element basis provides no guarantee that predicted con-

centrations are positive and sum to unity, which is a violation of fundamental physical

constraints on compositional data. In view of the problems associated with quanti�cation

of XRF core-scanner output by DLC, the general view has been that such data should be

regarded as semi-quantitative only (Croudace et al., 2006; Richter et al., 2006; Rothwell and

Rack, 2006).

2.2 Calibration in conventional XRF spectrometry

In conventional (destructive) quantitative XRF analysis under well-constrained laboratory

conditions, conversion of the net intensity of an element to a weight proportion is provided

by the following general equation (Jenkins, 1999; De Vries and Vrebos, 2002):

Wij = KjIijMijSi (2.2)

Where Wij and Iij are de�ned as above, Kj represents a device-speci�c calibration con-

stant for element j (the sensitivity or detection e�ciency of the measurement device), and

Mij is the matrix e�ect which corrects for scattering, absorption and enhancement e�ects

on Iij caused by the presence of other elements in the specimen. Note that for a series of

specimens covering a range of compositions, the matrix e�ect is a non-linear function of

the concentrations (or intensities) of the full range of elements present. Si is the specimen

e�ect which captures the measurement geometry and specimen homogeneity relative to

the standard con�guration.

Under laboratory conditions, Kj and Si are �xed, and Wij is estimated from Iij with
a correction factor given by Mij . The matrix e�ect is commonly expressed as a function

of the concentrations or intensities of the other elements present in the specimen under

consideration. Various methods for estimatingMij have been proposed, most of which are

based on a combination of theory and empirical evidence (calibration specimens). Under

ideal conditions, entirely theoretical methods for estimating Mij (so-called fundamental

parameter methods) may be utilized to predict net intensities based on known specimen

compositions. Fundamental parameter methods are commonly implemented in the form of

non-linear optimisation techniques, in which intensities calculated from an initial guess of

a specimen’s composition are compared to measured intensities, and the estimated com-

position of the sample is iteratively adjusted so as tominimise somemeasure of discrepancy

between predicted and measured intensities (Jenkins, 1999; De Vries and Vrebos, 2002).
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2.3 Log-ratio calibration

The fundamental problem in on-line XRF core scanning is that Si is unconstrained, owing

to inhomogeneity of the specimens (e.g. variable water content and grain-size distribution

of sediments, and the presence of burrows) and the irregular surface of a split core. In some

setups, spatial variations in thickness of an adhesive pore-water �lm which forms directly

below a protective foil covering the split core surface also have to be considered (Kido et al.,

2006; Tjallingii et al., 2007). Down-core variability of these factors implies that themeasure-

ment geometry Si is not constant, contrary to XRF analysis under laboratory conditions,

and Equation 2.2 cannot be solved within reasonable limits of uncertainty, because every

single measurement requires the solution of a set of calibration equations associated with a

location-speci�c value of Si. In other words, there is no unique relation between I andW ,

which implies that every core-scanner measurement must be calibrated by means of de-

structive analysis, which would render the whole measurement strategy meaningless. This

seemingly insurmountable problem may be solved by considering the problem in terms of

log-ratios of element intensities and concentrations (Weltje and Tjallingii, 2008).

Although log-ratio transformations (Aitchison, 1982, 1986) have not been widely ap-

plied to geochemical compositions and XRF-core-scanner output, several authors have

pointed to the advantage of using ratios of element intensities (or concentrations) instead of

intensities (or concentrations) of single elements (Croudace et al., 2006; Richter et al., 2006;

Rothwell et al., 2006; Calvert and Pederson, 2007). Down-core patterns of element-intensity

ratios have proved extremely useful for correlation (e.g. Pälike et al., 2001; Vlag et al., 2004;

Bahr et al., 2005) because they are una�ected by variations in the concentrations of other

elements in a specimen (so-called dilution e�ects), which is especially relevant considering

the fact that XRF core scanners do not measure the full range of elements.

Despite their usefulness, ratios do not permit rigorous statistical modelling of compos-

itional data. Ratios have the undesirable property of asymmetry, i.e., conclusions based on

evaluation of the ratio of two elements, say A/B, cannot be directly translated into equival-

ent statements about B/A. This implies that the results of statistical analysis of ratios depend

on arbitrary decisions, since there is no Law of Nature to suggest which element should act

as numerator or denominator. Fortunately, this problem was solved by Aitchison (1982),

who discovered that rigorous statistical modelling of compositional data merely requires

that compositions are expressed in terms of logarithms of ratios of component abundances

(so-called log-ratios), in order to achieve the desired symmetry, and allow compositional

data to be described with a unique set of statistics. Concepts and applications of composi-

tional data analysis by means of log-ratios are covered by Aitchison (1986), Aitchison and

Egozcue (2005), and in the monograph edited by Buccianti et al. (2006).

Weltje and Tjallingii (2008) derived a bivariate log-ratio calibration (BLC) equation by

combining two conventional calibration equations (Eqn. 2.2) in the form of a ratio. They

assumed that all values ofW and I are positive (i.e., greater than or equal to the detection

limits of the measurement devices used). Elements are indicated by subscripts j and D,

whereas subscript i denotes the measurement location and the corresponding specimen:

Wij

WiD
=

KjIijMijSi

KDIiDMiDSi
=

KjIijMij

KDIiDMiD
(2.3)

Calibration in terms of ratios removes the measurement geometry from the problem to be

solved, given that Si drops out of the equation. For each pair of elements, the ratio of
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detection e�ciencies is a constant, the so-called relative detection e�ciency:

Kj

KD
= BjD (2.4)

Further simpli�cation is achieved by assuming that the ratio of matrix e�ects is a non-linear

function of the ratio of measured element intensities:

Mij

MiD
= CjD

(

Iij
IiD

)AjD

(2.5)

In the above expression, AjD and CjD are empirical coe�cients speci�c to the pair of

elements in the data set under consideration. Substitution of Equations 2.4 and 2.5 into

Equation 2.2 gives:

Wij

WiD
= BjDCjD

(

Iij
IiD

)AjD+1

(2.6)

Equation 2.6 may be rewritten by de�ning the empirical coe�cients:

αjD = AjD + 1
βjD = log(BjDCjD)

(2.7)

If we substitute these into Equation 2.6 and take logarithms, we obtain the BLC equation:

log

(

Wij

WiD

)

= αjD log

(

Iij
IiD

)

+ βjD (2.8)

Equation 2.8 is a non-dimensional unconstrained linear equation expressed in terms of

log-ratios of element intensities and concentrations. The coe�cients α and β are the

log-ratio equivalents of the matrix e�ect and detection e�ciency in single-element XRF-

spectrometry (Eqn. 2.2), respectively. Although the variability of the specimen e�ect has

been eliminated, the average values of variables such as grain size, water content, and any

matrix e�ects attributable to the presence of elements which have not been measured, will

be re�ected in the empirical model parameters α and β. The BLC equation is largely in-

sensitive to down-core variability of these quantities, which implies that the scatter of I-W

log-ratio plots will be much smaller than the scatter observed in conventional ("raw") I-W

plots under conditions of variable measurement geometry. An additional advantage of the

above approach is that the relation between log-ratios of I and W is expected to be linear,

unlike the relation between raw I and W data (cf. Eqn. 2.1).

Solution of the log-ratio calibration equation for α and β yields positive concentration

estimates W̃ij which sum to unity. This is easily shown by letting the log-ratios of concen-

trations predicted from log-ratios of measured intensities be:

xij = log

(

W̃ij

W̃iD

)

(2.9)

The above expression accounts for all elements but one: the element acting as common

denominator, whose log-ratio value is by de�nition equal to zero: xiD = 0. The predicted
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concentrations W̃ij of all elements, including the one used as common denominator (j =
1, D) are obtained by applying the inverse log-ratio transformation:

W̃ij =
exp(xij)

∑D
j=1 exp(xij)

(2.10)

The above method was used by (Weltje and Tjallingii, 2008) to obtain unbiased predictions

of "relative" concentrations of elements which were measured by the XRF core scanner

("relative" means that the sum of all elements measured is automatically constrained to

unity).

2.4 "Absolute" concentrations

Although BLC presents a major step forward compared to DLC, it does not allow "absolute"

concentrations to be determined. This �aw is the result of the fact that XRF core scanners

measure a limited range of elements only. Hence, the sum of all detectable elements is

equal to a proportion of the total mass. In order to express log-ratio-calibrated quantities

in terms of actual concentrations (and not just as mass fractions of the total number of

elements actually measured), we must account for the total mass of the material analysed.

We therefore introduce one additional unknown to be calibrated, which is simply the mass

fraction of the material which cannot be assigned to speci�c elements:

Undef = Wi,D+1 = 1−
D
∑

j=1

Wij (2.11)

In practice, "Undef" represents the union of all elements which have not been detected by

the core scanner and by the chemical technique used to provide the reference concentra-

tions for calibration. Prediction of "Undef", however, requires a more �exible de�nition

of the calibration problem permitting prediction of variables which were not directly ob-

served. In contrast to the bivariate nature of Equation 2.8, this requires a multivariate

approach.

2.5 MLC work�ow

To enable prediction of "Undef" and potentially increase the predictive capabilities of cal-

ibrated XRF core scanning data, a multivariate extension of the BLC model is presented,

i.e. the Multivariate Calibration (MLC) model. Following suggestions of Weltje and Tjal-

lingii (2008), this multivariate calibration method approach is embedded in an integrated

work�ow which is shown in Figure 2.1. Its components are: (1) a multivariate calibration

approach which permits unbiased prediction of "absolute" concentrations, (2) an algorithm

which estimates the level of noise based on the measured spread among replicate intensit-

ies and concentrations, and (3) an algorithm for automatic selection of calibration samples,

based on the multivariate geometry of the scaled intensities.
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2.5.1 Multivariate calibration approach

The transformation in Equation 2.9 may be extended to materials comprising more than

two components. This operation is known as the additive log-ratio (alr) transformation:

y = alrD(x) =

[

log

(

x1

xD

)

, log

(

x2

xD

)

, · · · , log
(

xD−1

xD

)]

(2.12)

Using this operator, Equation 2.8 may be written in vector notation:

alrD(w) = alrD(e)AD + bD (2.13)

whereAD is a diagonal matrix with all α’s associated with denominatorD on its diagonal,

bD is a vector containing all β’s, and e and w are vectors with the measured intensities

and concentrations, respectively.

Additive logratio transformations employed in BLC belong to a larger family of logratio

transformations (Aitchison, 1986; Aitchison and Greenacre, 2002; Egozcue et al., 2003). The

transformation most suitable for multivariate analysis is the centred log-ratio (clr) trans-

formation which is de�ned as:

clr(x) = [log(x1)− log(g(x)), log(x2)− log(g(x)), ..., log(xD)− log(g(x))] (2.14)

In this transformation, g(x) is the geometric mean over all elements. The major advant-

age of the centred log-ratio (clr) transformation is that transformed data may be analysed

with least-squares methods. Furthermore, the clr-transformation enables calibration of all

elements simultaneously (i.e., including "Undef"). The MLC is therefore based upon the

following equation:

matclr(W) = matclr(E)A+ b (2.15)

In this equation, matclr(...) and matclr−1(...) re�ect the row-wise application of the for-

ward and inverse clr-transformation, respectively.

Equation 2.15 has essentially the same form as the BLC. The matrix A and vector b

serve the same purpose asAD and bD in Equation 2.8. One fundamental di�erence, how-

ever, is that the MLC model is unique since it does not rely on selection of the denominator

element. It also enables prediction of elements which have not been measured by the XRF

core scanner using multivariate estimation, thereby exploiting the covariance among in-

tensities and concentrations, so as to generate "absolute" concentrations. In practice, this

means thatA will not to be diagonal. Covariance among intensities may be due to absorp-

tion and enhancement. Covariance among analytes may be caused by the fact that certain

elements may reside in the same mineral. By exploiting these covariances, the MLC model

allows further minimisation of the prediction error relative to the BLC.

2.5.2 Parameter estimation

Parameter estimation in the MLCwork�ow is carried out by means of Partial Least Squares

(PLS) regression, a generalized multivariate linear regression model which maps one data

set onto another by making use of the cross-covariance matrix (de Jong, 1993). PLS is the

most suitable regressionmethod in case data matrices are not of full rank (Wold et al., 1983),

which is the case for clr-transformed data sets. Another property of PLS, which it shares
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with all other regression models, is that the regression error is inversely proportional to

the number of model coe�cients (model complexity). When the number of model para-

meters equals the size of the data set, each data point can be reproduced exactly. Because

our data are not noise-free and we should allow for the possibility that the model may not

be fully correct, we use a more objective and robust measure of model performance than

the regression error: leaving-out-one cross validation (Geisser, 1993). The idea behind cross

validation is to estimate the parameters of the calibration equation by leaving one measure-

ment out of the data set, and predict the value of this missing data point from the equation

�tted to the other data points. By repeating this procedure for all data points, the discrepan-

cies between predicted and measured values may be used to estimate the actual prediction

uncertainty. This approach works well if the calibration data set is su�ciently large (we

recommend a minimum of 30 specimens).

A straightforward goodness-of-�t measure of logratio-transformed compositional data

is the mean squared Euclidian distance between predicted and measured composition:

MSE =
1

nD

n
∑

i=1

D
∑

j=1

[clr(ŵij)− clr(wij)]
2

(2.16)

In the BLC work�ow, the set of D models with di�erent common denominators is evalu-

ated to �nd the one which corresponds to the minimum MSE (cf. Weltje and Tjallingii,

2008). Model selection in the MLC work�ow is more advanced, because use is made of

cross validation to estimate prediction uncertainties. In cases where cross validation has

been used, the value of MSE, as de�ned by Equation 2.16, will be referred to as the mean

squared prediction error (MSPE). A similar approach is used to construct error bars around

predicted log-ratios of concentrations of speci�c element pairs.

2.5.3 Replicates and scaling

In the absence of prior knowledge about the uncertainty of intensities and analyte con-

centrations, we may collect replicate measurements according to a systematic sampling

scheme, e.g. collect at least three measurements at every tenth location down-core. Using

replicate sets of intensities, we may estimate the level of noise from the average spread

within each set of replicates in log-ratio space. Assuming that the noise follows a normal

distribution in this space, these estimates of spread facilitate calculation of con�dence limits

around logratios of intensities for a user-de�ned signi�cance level (e.g., 5% or 10%).

The spread among replicate intensities and concentrations may also be used to robus-

tify the calibration model. Scaling of clr-transformed variables ensures that the resulting

uncertainties have on average the same magnitude, which is the fundamental assumption

underlying least-squares estimation methods. In case two variables re�ect the same under-

lying signal, scaling ensures that the variable with the high precision will have a greater

importance than the variable with the low precision in the calibration model. The calibra-

tion model in terms of scaled variables reads:

matclr(W)Lw = matclr(E)LeA∗ + b∗ (2.17)

where Le and Lw are diagonal matrices with the inverse of the average standard devi-

ation among clr-transformed replicate intensities and concentrations on their diagonals.
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The MSPE is also calculated in this scaled clr space, which makes it a pseudo maximum

likelihood criterion.

WhereasA∗ and b∗ are model parameters in terms of the scaled clr-transformed data,

a regression model in terms of the unscaled data may be obtained by applying:

A = LeA∗L
−1
w (2.18)

and subsequently:

b = w̄ − ēA (2.19)

where ē and w̄ are the column means of the unscaled clr-transformed intensities and con-

centrations, respectively. Given A and b, the N ×D matrix with concentration estimates

Ŵ associated with the N × D matrix with measured intensities E may be obtained as

follows:

Ŵ = matclr−1 (matclr(E)A+ 1nb) (2.20)

2.5.4 Summary statistics

The mis�t between the reference and predicted concentrations varies among the di�er-

ent elements and the di�erent calibration models. This mis�t is quanti�ed by calculating

the residual variance (MSPE), which is a statistically meaningful measure that can be used

to construct con�dence intervals. To illustrate the nature of the mis�t, we introduce two

pseudo-statistical quantities which serve as a measure of the bias and the scatter of estim-

ated concentrations, respectively. Although thesemeasures provide insight intomodel-data

discrepancies, it should be kept in mind that concentrations cannot be rigorously evaluated

owing to compositional constraints (Aitchison, 1986; Weltje and Tjallingii, 2008). Hence,

these quantities are not being used to justify model selection, but are purely intended to

summarise data-model discrepancies.

The bias-indicator B is de�ned as the angle between the major axis of the point-cloud

and the line y = x . When the two are exactly equal, the bias-indicator B equals zero.

If, however, the major axis is perpendicular to the line y = x, B will have a value of 100

(it does not matter how the major axis is oriented with respect to the line y = x). B is

calculated by subtracting the mean from the point cloud and then estimating the major

axis by means of a Singular Value Decomposition (Press et al., 1994). Given that u = [1, 1]
(i.e. the line y = x in vector form) and v1 is the �rst major axis or eigenvector of the data

as determined by means of Singular Value Decomposition, B is given by:

Bj = 100%× |0.5π − cos−1(u · v1)|
0.5π

(2.21)

The scatter-indicator S , which also ranges from zero to 100, is based on the percentage

of variance along the minor axis, i.e., the axis perpendicular to the earlier calculated major

axis. Given that λ1 is the eigenvalue of the major axis and λ2 the eigenvalue of the minor

axis:

Sj = 100%× λ2

λ1 + λ2
(2.22)

Hence, S andB are in principle independent and can therefore also be interpreted as such.

Figure 2.2 gives an impression of S and B in a number of di�erent situations. For the

purpose of comparing calibrationmodels, we derive theirmedian values across all elements,

which we refer to as S̄ and B̄ .
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Figure 2.2: De�nition of scatter (S) and bias (B) in compositional space (i.e. concentrations).

2.5.5 Automatic selection of calibration samples

E�ective calibration requires that the compositional trends in the data are adequately sam-

pled. The average uncertainty of the clr-transformed and scaled intensities is identical,

which implies that Euclidian distances between intensity vectors may be directly inter-

preted in terms of compositional variability. This provides a solid basis for automatic se-

lection of calibration samples using least-squares estimation techniques which forms an

integral part of the MLC work�ow (Fig. 2.1).

In order to automatically select the locations at which calibration samples should be

collected, the desired number of unique calibration sites (Nc) must be speci�ed by the ana-

lyst. Themost suitable locations are selected bymeans of hierarchical cluster analysis of the

scaled clr-transformed intensities. We use Ward’s method (Ward et al., 1999) in conjunc-

tion with a Euclidian distance measure to subdivide the clr-transformed scaled intensities

into Nc clusters, and select one data point from each cluster (the one closest to the cluster

centroid). The set of Nc intensities thus selected is subjected to another round of cluster

analysis with the objective to further subdivide the set of calibration locations into the de-

sired number of replicate sets, NW,s . From each of these NW,s clusters, one data point

is selected to be sampled and analysed in replicate (three times or more). This two-step

sampling strategy ensures that calibration and uncertainty estimation make use of the full

range of variation in the intensity data. Because this procedure does not rely on stratigra-

phic information, additional sampling may be deemed desirable if one wishes to achieve a

more uniform stratigraphic/spatial coverage of the core.

The chemical composition of the set of calibration samples should be determined by
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conventional destructive methods, such as XRF and ICP-AES. The compositional data are

subjected to the same treatment as the intensities, i.e. clr-transformation and scaling with

the inverse of the estimated uncertainties. The resulting data sets provide the optimal start-

ing point for multivariate calibration with the MLC algorithm (Fig. 2.1).

2.6 Comparative calibration exercise

Wewill compare the performance of four di�erent calibration models (DLC-1, DLC-2, BLC,

and MLC), using two data sets: Core GeoB7920 acquired with an Avaatech scanner, and

Core AU10v acquired with an Itrax scanner. Each of these instruments is equipped with

a software package which extracts intensities of a range of chemical elements from the

spectra recorded by the detector. For the purpose of the comparative calibration exercise,

we will simply assume that these intensities are correct. Moreover, no attempts will be

made to evaluate the results of our calibrations in the light of geological knowledge.

2.6.1 Data set 1: GeoB7920

This legacy data set of core GeoB7920, taken o�shore West Africa, consists of 168 intensity

measurements at 2-cm resolution measured at the University of Bremen with a second-

generation Avaatech core scanner (ca. 2004) using 10 kV (250 µA) and 50 kV (1 mA) tube

settings, at 30 s per measurement. Automatic processing of the XRF spectra provided in-

tensities of 13 elements. Five replicate sets of intensity measurements (measured �ve or six

times) are available for estimation of uncertainties. A set of 168 table-top ED-XRF meas-

urements (Wien et al., 2005) of samples taken at each down-core location measured with

the core scanner is used for calibration. No replicate ED-XRF measurements are available.

Detailed information about the sample preparation and the geological setting of the core

may be found in Weltje and Tjallingii (2008), Tjallingii et al. (2008) and Bloemsma et al.

(2012).

2.6.2 Data set 2: AU10v

Core AU10v was collected in July 2008 from Augusta Harbour, Sicily (see also Croudace

et al., 2015). The core was split and the top 9.6 cm was scanned at 500 µm resolution using

a high-resolution Itrax instrument (Croudace et al., 2006) at the University of Southampton.

Tube settings used were 30 kV (30 mA) at 30 s per measurement. The XRF spectra were

automatically processed and provided intensities of 20 elements. After Itrax scanning, the

core was incrementally sub-sampled, pelleted and analysed to obtain quantitative element

data using conventional WD-XRF analysis. A total of 51 calibration samples was collected

(no replicates). Intensity replicates (126 repeat measurements each) were acquired on two

homogenised and powdered pellets taken from the core for the purpose of calibration.

2.7 Results

Calibration of the intensities to concentrations of chemical elements involved a selection

step, in which elements which could not be predicted (because their residual variance was

almost equal to their total variance) were removed from the data sets. This category also

included elements whose concentrations were below detection limits in more than half of
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Data set Model B [%] S [%] MSPE [×10−4]
GeoB7920 DLC1 11.69 14.31 319

GeoB7920 DLC2 15.66 13.02 131

GeoB7920 BLC 3.46 8.59 124

GeoB7920 MLC 3.80 6.90 80

AU10v DLC1 14.88 9.48 530

AU10v DLC2 13.86 12.09 239

AU10v BLC 7.40 8.80 218

AU10v MLC 5.43 7.90 163

Table 2.1: Comparative performance of calibration techniques based on cross validation.

the calibration samples. Elements which could not be calibrated were added to "Undef"

(except in the case of the BLC model, which predicts "relative" concentrations only). The

�nal models contain 12 elements for GeoB7920 (Al, Ba, Br, Ca, Cl, Fe, K, Mn, Rb, Si, Sr,

Ti) and 16 elements for AU10v (Ba, Br, Ca, Cl, Cr, Cu, Fe, K, Mn, Pb, S, Si, Sr, Ti, V, Zn),

respectively. Table 2.1 gives the goodness-of-�t statistics of the four calibration models,

whereas Figures 2.3 to 2.8 permit a visual appraisal of their predictive power. The MSPE

values of both data sets show that the MLC model performs better than the BLC model,

the BLC model performs better than the DLC-2 model, and the DLC-1 model is the least

satisfactory (Table 2.1). The median values of scatter and bias for each model con�rm this

ranking, and draw attention to the fact that the least advanced log-ratio-based model (BLC)

performs much better than the most advanced direct linear calibration model (DLC-2).

Figure 2.9 provides a visual impression of core GeoB7920. In the upper half of this �gure,

the high-resolution RGB image (Fig. 2.9A) is shown alongside the records of ln(Ca/Ti)

intensities (Fig. 2.9B) and predicted concentrations (Fig. 2.9C, D). The gray bands in these

four graphs represent the 95% con�dence interval of measured intensities and predicted

concentrations. Comparison of the raw (Fig. 2.9B) and calibrated (Fig. 2.9C, D) intensities

highlights their close similarity. Furthermore, the MLC estimate (Fig. 2.9D) has a much

smaller con�dence interval than the BLC estimate (Fig. 2.9C). The lower half of the image

(Fig. 2.9E to G) illustrate the chemical composition predicted by the MLC model. Note

the strong correlations between element concentrations arising from the compositional

constraints. In this particular case, "Undef" is nearly constant down-core and does not

contribute much to the variability of "absolute" concentrations.

Figure 2.10 shows the relation between the number of randomly selected calibration

samples and the median values of the MSPE for MLC models of core GeoB7920 using dif-

ferent methods of sample selection. The performance of random sampling is represented by

the median value of MSPE over a series of 1000 simulations. The performance of systematic

sampling (using a �xed sampling interval) is represented by the median MSPE over a series

of 83 simulations, and is therefore more "spiky". Our automatic sampling strategy pro-

duced only one MSPE for every number of calibration samples, and is therefore even more

"spiky". For small numbers of calibration samples (less than 20), the automatic selection

method yields the lowest MSPE and thus provides better results than the other methods.
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Figure 2.3: Measured versus predicted concentrations for DLC-1 model of GeoB7920.
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Figure 2.4: Measured versus predicted concentrations for DLC-2 model of GeoB7920.
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Figure 2.5: Measured versus predicted concentrations for BLC model of GeoB7920.
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Figure 2.6: Measured versus predicted concentrations for MLC model of GeoB7920.
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Figure 2.7: Measured versus predicted concentrations for DLC-2 model of AU10v.
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Figure 2.8: Measured versus predicted concentrations for MLC model of AU10v.
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Figure 2.9: Overview of core GeoB7920. A: high-resolution RGB image; B: raw ln(Ca/Ti) intensities with 95% con-

�dence interval; C: BLC prediction of ln(Ca/Ti) concentrations with 95% con�dence interval; D: MLC prediction of

ln(Ca/Ti) concentrations with 95% con�dence interval; E: Concentrations from 0% to 100%; F: Concentrations from

0% to 10%; G: Concentrations from 0% to 0.1%. Elements are sorted in descending order of average concentration.
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Figure 2.10: Comparative performance of sampling strategies in the MLC model for core GeoB7920.

2.8 Discussion

2.8.1 Comparative performance of calibration models

Because all statistics in Table 2.1 are based on cross validation, they tell us something about

the actual predictive power of the four calibration models. The comparative evaluation

clearly brings out the lack of �t of the DLC models, which stems from a combination of

de�ciencies: (1) the parametric form of the DLC model (Eqn. 2.1) bears no relation to the

calibration equation used in XRF spectrometry (Eqn. 2.2); (2) there is no unique relation

between intensities and concentrations if the measurement geometry is unconstrained; (3)

the "single element" calibration does not take into account that concentrations are com-

positional data. It should be noted that the third de�ciency is also present in the "single

element" calibration equation used in XRF spectroscopy (Eqn. 2.2), but its implications are

far less severe, because prediction uncertainties are very small owing to standardization

of measurement geometry, which implies that ignoring this fundamental problem will not

usually lead to unrealistic results (although these are by no means precluded). It follows

directly from the parametric form of the DLC-2 model that its predictive power outside the

range of concentrations with which it has been calibrated is extremely small. Hence, extra-

polation of DLC-2 models may lead to erroneous results even under laboratory conditions.

Comparison of the BLC and MLC models indicates that the latter provides a more com-

prehensive description of the calibration problem at hand. The BLC approach is based on

the simplifying assumption that the problem to be solved can be reduced to estimation

of relative concentrations of two elements simultaneously. This is clearly an oversimpli-

�cation, because the quality of BLC predictions depends on which element is selected as

common log-ratio denominator. The MLC approach takes the covariances of all log-ratios

into account and allows for direct �tting of matrix e�ects (absorption and enhancement),

which cannot be adequately represented in the BLC model.

The BLC model (Eqn. 2.8) implies that log-ratios of concentrations are linear functions
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of log-ratios of intensities. Hence, if the interest of a researcher lies with down-core changes

in a speci�c proxy, such as the ratio of calcium to iron - commonly taken as a robust marine-

to-terrestrial �ux ratio indicator - there is no need to perform calibration. In cases where

researchers are merely interested in the relative �uxes of marine and terrestrial material,

converting intensities to concentrations does not provide any additional information, and

XRF-core scanning may be carried out in fully non-destructive mode (compare for instance

Fig. 2.9B to 2.9C). Moreover, the linear transformation embodied in Equation 2.8 implies

that the correlationmatrix of log-ratio intensities is an excellent predictor of the correlation

matrix of log-ratio concentrations. This fact may be exploited by researchers who are inter-

ested in studying the correlation between log-ratios of element intensities on the one hand,

and other properties measured on the same core (or time series obtained from other loca-

tions) on the other hand. Hence, multi-proxy analysis may be formalised using exploratory

statistical analyses for the purpose of identifying speci�c geochemical log-ratios as proxies

of palaeo-environmental conditions in a speci�c basin. The usefulness of this empirical ap-

proach was demonstrated by Bloemsma et al. (2012), who showed that log-ratios of element

intensities or concentrations obtained from bulk measurements do not provide universal

shortcuts to palaeo-environmental interpretation, but are site-speci�c and should thus be

validated before they may be applied with some con�dence. Calibration of XRF output to

obtain estimates of element concentrations is only required if the objective of the research

is to carry out quantitative analyses of �uxes or mass-balance calculations.

2.8.2 Recommended measurement and sampling strategies

Automatic selection of calibration samples appears to be a promising method for minimiz-

ing the damage to sediment cores in cases where calibration to concentrations is required.

Stochastic simulation experiments carried out with core GeoB7920 (Fig. 2.10) suggest that

the prediction error of the MLCmodel stabilizes at≈60 calibration samples. Although such

knowledge is useful if we intend to measure many more cores from the same basin, it is not

possible to make broad generalizations about the number of calibration samples in relation

to the quality of the calibrationmodel, because this depends onmany di�erent factors, such

as the type of material analysed, the performance of the core scanner and the device used

to measure the compositions of calibration samples, and the practical limitations of time

and money.

A generic (i.e., hardware-independent) approach to calibration of XRF-core-scanner

data requires that data-model discrepancies are interpreted in the light of the measure-

ment errors associated with the input data (intensities and concentrations). Hence, rep-

licate measurements of intensities and concentrations are required. Empirical estimates

of measurement errors may be derived from the variability of repeated intensity meas-

urements at the same spot and from replicate geochemical analyses. The latter should be

obtained by splitting samples into subsamples and analysing them separately. Although the

two data sets used for the comparative analysis of calibration models ful�l some of these

requirements, they are by no means ideal for e�ective use of the MLC model. Below we list

some guidelines for compiling high-quality core-scanner data which are to be converted to

quantitative estimates of bulk composition.

As a rule of thumb, adequate coverage of replicate intensities along a core requires the
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following measurement strategy:

NI,s ≥ ceil(n1/2) (2.23a)

∆NI,s ≥ floor(n/NI,s) (2.23b)

NI,r ≥ 3 (2.23c)

NI,tot = n+NI,s(NI,r − 1) (2.23d)

The number of replicate intensity measurements is coupled to the length of the record,

which is de�ned by the number of locations at which unique intensity measurements are

collected, n. For example, scanning of a 1-m long segment of core at 1-cm resolution gives

n = 100. NI,s represents the number of replicate sets, i.e. the number of locations at which

replicate intensity measurements are to be collected. The spacing between these locations

is de�ned as∆NI,s , and the number of replicate measurements collected at every location

as NI,r . The total number of intensity measurements on the core segment is given by

NI,tot . The terms ceil and �oor refer to the method of rounding to adjacent integer values

(up and down, respectively). In the above case where n = 100, we obtain NI,s = 10,
∆NI,s = 10,NI,r = 3. The measurement strategy is complete if we specify where the �rst

set of replicates is to be collected, for instance at location 5. The other sets of replicates

are then collected at locations 15, 25, ..., 95. The total number of measurements needed,

NI,tot = 120, indicates that the overhead associated with this strategy equals 20%. The use

of inequalities in equations 2.23a-c implies that the above guidelines should be regarded as

reasonable minimum values. Collecting more replicates may contribute to improving the

uncertainty estimation of measured intensities, but it will also increase the overhead.

Based on our current experience, we recommend the following strategy for acquisition

of calibration samples:

Nc ≥ 3D (2.24a)

NW,s ≥ ceil(D1/2) (2.24b)

NW,r ≥ 3 (2.24c)

NW,tot = Nc +NW,s(NW,r − 1) (2.24d)

The number of unique sites at which calibration samples should be taken,Nc, is coupled to

the number of elements to be calibrated, D. Replicates of some of the calibration samples

are needed for the purpose of uncertainty quanti�cation. NW,s represents the number of

replicate sets, andNW,r the number of replicates in each set. The total number of calibration

samples to be analysed thus equals NW,tot . For example, if the number of elements to be

calibrated equals 10, Nc = 30, NW,s = 4, NW,r = 3, and NW,tot = 38. The overhead

associated with this strategy equals 27%. Again, more samples may be analysed if deemed

necessary.

2.9 Conclusions

The second-generation multivariate log-ratio calibration (MLC) algorithm illustrated in

this contribution allows unbiased prediction of geochemical compositions from XRF-core-

scanner output with a degree of precision that is comparable to conventional XRF analysis

of heterogenous materials under laboratory conditions. It represents a vast improvement
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over previous attempts at direct calibration of intensities using concentrations, and is sig-

ni�cantly better than the bivariate BLC model proposed by Weltje and Tjallingii (2008).

The main advantages of multivariate log-ratio calibration (MLC) over bivariate log-ratio

calibration (BLC) are (1) elimination of the need to select the best model from the set of

D alternative models; (2) e�ective use of the covariances of intensity and concentration

measurements, which re�ect absorption and enhancement of intensities, as well as the fact

that certain elements reside in the same minerals, and (3) the possibility to estimate the

mass fractions of samples which could not be attributed to speci�c elements ("Undef"), al-

lowing prediction of "absolute" concentrations. Solution of the long-standing problem of

XRF-core-scanner calibration implies that high-resolution records of quantitative sediment

composition with associated uncertainties can now be routinely established, which should

increase the usefulness of XRF-core-scanning devices and pave the way for quantitative

evaluation of geochemical proxies (Weltje and Tjallingii, 2008; Bloemsma et al., 2012).
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CHAPTER 3

Modelling the joint variability of grain size and chemical

composition in sediments 1

3.1 Introduction

Geochemical analysis is a powerful method for quantifying bulk sediment properties. It

may be used to characterise the composition of the parent rock or the climatic-physiographic

conditions under which the sediment was formed (Pettijohn et al., 1987; Johnsson, 1993;

Basu, 2003; Weltje and von Eynatten, 2004). Alternatively, it may be used to assess com-

positional modi�cations caused by weathering, sorting, mixing and diagenesis (McLennan

et al., 1993; Nesbitt and Young, 1996; Amorosi et al., 2002; Dinelli et al., 2007; Pe-Piper et al.,

2008). Because geochemical variation typically re�ects the superposition of these factors,

independent information is required to resolve them individually. This applies speci�c-

ally to analysis of clastic sediments, where multiple equally plausible hypotheses may be

postulated, given the observed compositional data.

It is well known that grain size and bulk geochemical composition of clastic sediments

are strongly correlated. The tight connection between grain size and composition is a con-

sequence of the processes which govern the generation of sediments from crystalline rocks.

Chemical weathering leads to release of unstable elements as solutes, while stable elements

such as Al remain in the solid phase (e.g., Nesbitt and Young (1984)). Consider for instance

chemical weathering of K-feldspar:

2KAlSi3O8 + 3H2O → Al2(Si2O5)(OH)4 + 4SiO2 + 2K(OH)
K-feldspar + water → kaolinite + silica + solutes

Since kaolinite particles are relatively �ne grained, whereas the K-feldspar grains are of

sand size, chemical alteration is accompanied by textural modi�cation of the sediment. If

the K-feldspar and kaolinite are transported away from their source area and deposited in

1Based on: M.R. Bloemsma, M. Zabel, J.B.W. Stuut, R. Tjallingii, J.A. Collins, G.J. Weltje (2012). Modelling the

joint variability of grain size and chemical composition in sediments. Sedimentary Geology 280. pp. 135-148.

31



32 Modelling the joint variability of grain size and chemical composition in sediments 3

a sedimentary basin, the resulting product is a sediment with a spatially variable grain-size

distribution. If we sample this material at di�erent localities, we expect Si/Al of the bulk

sediment to correlate positively with mean grain size. Quite often, the objective of geo-

chemical analysis is not to approximate grain size, but to provide a unique compositional

�ngerprint of the sediment for the purpose of palaeoclimate or provenance reconstruction.

In such cases, we would like to eliminate the size-dependency from our data.

Amethod to eliminate variation of bulk grain-size distribution from sediment geochem-

ical analysis is to analyse a narrow size fraction (Weltje and Brommer, 2011). In the above

example, the composition of a narrow size fraction would be constant across the basin.

However, reality is more complicated. If we assume that the extent of weathering in the

source area of the sediment has varied over time, we expect that the composition of a nar-

row size fraction extracted from samples taken at di�erent stratigraphic levels records this

variation. For example, the Si/Al ratio within the sand fraction will correlate positively

with the extent of weathering, whereas the Si/Al ratio of the clay fraction will correlate

negatively with the extent of weathering. Because separation of samples into narrow size

fractions is time consuming and expensive, we should try to �nd more practical ways of

eliminating the grain-size bias from geochemical data.

In marine geosciences, it is commonplace to use a so-called multi-proxy approach to in-

fer palaeo-climatological signals. In this approach, high-resolution records of physical and

chemical properties, for example grain-size distribution and bulk chemical composition,

are measured on the same sediment core. Subsequently, these data are displayed side by

side to highlight consistency between two data sets, or to illustrate patterns of variability

unique to each data set. A widely accepted method to select the relevant signals (i.e. the

relevant element ratios and/or grain-size parameters) from multivariate data sets is not yet

in place, and the same applies to generic procedures to examine the internal consistency of

selected proxies. In this contribution, we propose a fully quantitative and formal method

for simultaneous analysis of multiple data sets. Our analysis of the relation between the

geochemical composition and grain-size distribution of sediment will serve to illustrate the

implications of the proposed statistical framework for multi-proxy analysis.

3.2 Material and methods

3.2.1 Materials

We use three marine soft-sediment cores, recovered from the margin o� West Africa and

Chile, to investigate geochemical variation with grain size of lithogenic sediments. These

cores are well suited for testing this variation since both West Africa and Chile receive a

considerable amount of sediment from the continent transported by wind and rivers (e.g.,

Sarnthein et al., 1981; Stuut et al., 2007). In addition to terrestrial input, both areas are

characterised by strong year-round upwelling, resulting in a considerable biogenic sedi-

ment input (Haslett and Smart, 2006; De Pol-Holz et al., 2007).

Cores GeoB9508-5 and GeoB7920-2 were retrieved from the continental margin o�

West Africa, and core GeoB7139-2 was retrieved from the margin o� Chile (Fig. 3.1).

Core GeoB9508-5 (15 ◦30N/17 ◦57W, 2384 m water depth)) is approximately 9.5 m long

and was obtained during RV Meteor cruise M65/1 (Mulitza and cruise participants, 2006).

Core GeoB7920-2 (20 ◦45N/ 18 ◦35W 2278 m water depth) is approximately 16 m long and

was retrieved during RV Meteor cruise M53/1 (Meggers and cruise participants, 2002). The
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GeoB7139-2

GeoB7920

GeoB9508-5

A) B)

Figure 3.1: Location of the cores used in this study. Core GeoB7139-2 was retrieved o� the Chilean coast (inset

A), whereas cores GeoB9508-5 and GeoB7920-2 were retrieved o� the West-African coast (inset B). The insets are

derived from the ETOPO1 topographical map (Amante and Eakins, 2008).
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Chilean core GeoB7139-2 (30 ◦12S/71 ◦59W) was retrieved during the PUCK expedition on

RV Sonne in 2001 (Hebbeln and cruise participants, 2001) and is approximately 8 m long.

In all three cores, the sediments were dated using stable oxygen isotopes and radiocarbon

dates, which show that they date back to 57 kyr BP (GeoB9508-5; Mulitza et al. (2008)), 118

kyr BP (GeoB7920; Tjallingii et al. (2008)) and 65 kyr BP (GeoB7139-2; De Pol-Holz et al.

(2007)). Marine sediment cores have provided information necessary to infer Late Quatern-

ary palaeoclimatic variations in South America (e.g., Lamy et al., 1998) andWest Africa (e.g.,

Tjallingii et al., 2008). Climatic conditions have been inferred from grain-size records (e.g.,

Holz et al., 2004; Stuut and Lamy, 2004; Tjallingii et al., 2008), from geochemical records

(e.g., Mulitza et al., 2008; Haslett and Davies, 2006) and various combinations of di�erent

sediment properties (e.g., Romero et al., 2008; Kaiser et al., 2008).

Marine sedimentation inWest Africa is characterised by aeolian and �uvial input, where

the former sediments are considerably coarser grained than the latter (Gac and Kane, 1986;

Stuut et al., 2005). Proximal to the source, grain-size variations in the lithogenic fraction of

marine cores are therefore considered to re�ect the transporting mechanism (Koopmann,

1981; Sarnthein, 1978; Holz et al., 2004; Stuut et al., 2007). In West Africa, sediment with a

grain size below 6µm is typically assumed to be of �uvial origin, whereas sediment coarser

than 6µm is assumed to be transported by wind (Koopmann, 1981; Lamy et al., 1998; Holz

et al., 2004). If transport distances are relatively large, the initial grain-size of aeolian dust

may be reduced by proximal to distal �ning (e.g., Weltje and Prins, 2003; Stuut et al., 2005).

The same information (i.e. transporting medium, energy and transport distance) may be

contained in geochemical signals; Boyle (1983) proposed Al/Ti as a generic grain-size proxy

because it is controlled by the concentration of heavyminerals which are transported along

with the coarse fraction. Downcore variations in Al/Ti, in turn, were therefore considered

a proxy for aridity and/or wind strength (Yarincik et al., 2000).

Apart from information about grain size, geochemical records are considered to contain

information about the source area. Sediment that is derived from chemically-weathered ter-

rain typically has high Al and Fe concentrations (Moreno et al., 2006; Mulitza et al., 2008).

Elemental ratios with either Al or Fe in the numerator may therefore serve as a proxy for

humidity (Sarnthein, 1978; deMenocal et al., 1993). Schneider et al. (1997) related an in-

crease in Al/K towards the tropics to the relative enrichment in kaolinite, at the expense

of K-feldspar. Yarincik et al. (2000) used the same ratio as a proxy for the amount of il-

lite relative to kaolinite which is considered to be controlled by the intensity of chemical

weathering. Compared to West Africa, the e�ect of chemical weathering on the geochem-

ical composition of sediments from continental South America is low, due to short transport

distances and arid climate conditions (Lamy et al., 2000). Because this implies that the sedi-

ments retain their initial composition, geochemical records may serve as a tracer for parent

rock lithology (Lamy et al., 1998, 2000; Klump et al., 2000).

3.2.2 Analytical methods

Samples for grain-size analysiswere acquired every 5 cm for cores GeoB9508-5 andGeoB7920,

and every 2 cm in core GeoB7139-2. The siliciclastic sediment fraction was isolated by dis-

solving carbonate, organic matter and biogenic opal in HCl, H2O2 and NaOH, respectively.

The samples were heated with about 300 mg of Na4P2O7 ·10H2O directly before measuring

to avoid the formation of aggregates in the �ne-grained fraction. The grain-size distribu-

tion was determined with a Coulter LS200 laser particle sizer, which detects grains in the
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Figure 3.2: Grain-size distributions of cores GeoB7139-2 (A), GeoB7920-2 (B) and GeoB9508-5 (C). Distributions

are displayed in phi-scale, and in Udden Wentworth scale (i.e., clay, silt, very �ne sand, �ne sand, medium sand).

range from 0.4 to 2000µm (Fig. 3.2).

All three cores have been scanned with an Avaatech core scanner (e.g., Richter et al.,

2006) at a 2 cm resolution, a source current of 10kV and a measurement time of 30s. The

measured XRF spectra were converted to a record of net element intensities using the

WinAxil software (Swerts and Van Espen, 1993). In order to convert the XRF scanner ele-

mental intensities to concentrations, quantitative geochemical analysis of powdered sed-

iment samples was carried out with a portable Spectro Xepos XRF Analyzer (Wien et al.,

2005). For core GeoB9508-05, 229 samples were analyzed in total, whereas the geochemical

reference data set of GeoB7920-2 and GeoB7139-2 comprises 165 and 20 samples, respect-

ively.

3.2.3 Data preprocessing

Quantitative calibration of the XRF core scanning records was performed using the logra-

tio calibration equation (LRCE) (Weltje and Tjallingii, 2008). In this study, the predictive

power of the calibration model is empirically quanti�ed by taking the median squared dis-

crepancy between the predicted and the reference geochemical composition at a particu-

lar downcore position. We calculate this discrepancy using leave-one-out cross-validation

(LOOCV) (Geisser, 1993). As a result, the empirically derived residual variance accounts

for all factors in�uencing the deviation between XRF core scanning records and destruct-
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GeoB7139-2 Al Fe K Si Ti

Al - 0.002 0.0003 0.0014 0.0019

Fe 0.0784 - 0.0032 0.0009 0.0035

K 0.0322 0.0995 - 0.0016 1.74

Si 0.0660 0.0504 0.0695 - 0.0012

Ti 0.0759 0.1039 2.3280 0.0621 -

GeoB7920-2 Al Fe K Si Ti

Al - 0.0024 0.0039 0.0072 0.0039

Fe 0.0792 - 0.0068 0.0157 0.0056

K 0.1030 0.1319 - 0.0049 0.0041

Si 0.1383 0.2034 0.11139 - 0.0154

Ti 0.1025 0.1211 0.1049 0.1990 -

GeoB9508-5 Al Fe K Si Ti

Al - 0.0046 0.0032 0.0015 0.0021

Fe 0.1119 - 0.0033 0.0056 0.0033

K 0.0930 0.0954 - 0.0019 0.0032

Si 0.0642 0.1239 0.0716 - 0.0055

Ti 0.0750 0.0949 0.0931 0.1223 -

Table 3.1: The upper diagonal shows the median variances between the observed geochemistry and the geo-

chemistry predicted on the basis of the XRF core scan. The lower diagonal shows the 95% con�dence limits

corresponding to these residual variances.

ive analysis (e.g. di�erence in analysed sample volume). A detailed description of these

factors is provided by Tjallingii et al. (2007).

Based on the average discrepancy between predicted and reference composition, the

LRCE calibration model is derived by selecting the optimal denominator element for each

core, which turned out to be Si (GeoB7139-2) and K (GeoB7920-2 and GeoB9508-5). The

LOOCV-variances of the di�erent log-ratios are shown in the upper diagonal of Table 3.1.

The lower diagonal shows the half-width of 95% con�dence limits (cf. Weltje and Tjal-

lingii, 2008). To analyse the relation between grain size and chemical composition, we use

samples of which both grain size and geochemical composition were measured. Because

the resolution of the grain-size data is di�erent from that of the core scan, a subset of the

grain-size and bulk geochemical data meets these requirements, namely 184 (GeoB7139-2),

162 (GeoB7920) and 92 (GeoB9508-5) samples.

To facilitate the application of logratio analysis to the grain size data, zero-valued chan-

nels have to be accounted for. In this study, all channels of the grain-size distribution which

contain a zero in any of the observations are amalgamated with an adjacent channel that

contains only positive values. Generally this leaves more than 80% of the channels un-

changed. Given the high level of redundancy in grain-size data (Weltje and Prins, 2003),

we assume that this step has a negligible e�ect on the information content of the grain-size

data.
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3.3 Modelling approach

3.3.1 Conceptual model

From a theoretical perspective, the information provided by textural and geochemical data

may be subdivided into (1) information shared by the two records, (2) information unique to

the geochemical record, and (3) information unique to the grain-size record. The partition-

ing of the geochemical and grain-size variability into these three independent components

is illustrated in Figure 3.3A. The signi�cance of these three parts is discussed below.

If a series of sediment samples has been derived from a single source area in which the

extent of chemical weathering did not vary signi�cantly over time, most variation in bulk

chemical composition may be attributed to fractionation during entrainment, transport,

and deposition. Hence, if it were possible to apply a "grain-size correction" to the bulk

chemical composition of this hypothetical data set, the residual geochemical composition

would not show any signi�cant downcore variation. Such a one-to-one correspondence

between grain-size and geochemistry implies that the geochemical record carries no unique

information and the bulk chemical composition can be accurately predicted from the grain-

size distribution and vice versa.

In practice, this one-to-one correspondence between composition and grain size will be

an exception, and a single grain-size distribution may correspond to di�erent geochemical

signatures. Various mechanisms for generating size-independent geochemical variability

may be envisaged (see Figure 3.3):

1. Chemical weathering: If the degree of chemical weathering varies over time at a

single locality, the residual Si/Al ratio will correlate positively with the extent of

weathering. Similar trends will be present in other element ratios (Xiong et al., 2010).

2. Hydraulic/aerodynamic sorting: Sediment-forming minerals in the silt to sand frac-

tion span a wide range of densities (from 2.6 to about 5.0 g/cm3) and shapes (spherical

to platy). Mineral grains which are susceptible to size-independent fractionation (i.e.,

depletion and enrichment not mirrored in the bulk grain-size distribution) must have

a combination of density and shape which deviates strongly from the bulk, and be

present in small proportions. Chemical elements which exclusively reside in such

minerals (e.g. Ti and Zr) are therefore excellent tracers of fractionation.

3. Mixing: If di�erent source areas shed sediments with distinct geochemical signatures

within a given grain-size range, the residual geochemical signal represents the vari-

ation of mixing coe�cients of these compositionally-distinct sediment types.

4. Diagenesis: If the degree of diagenetic modi�cation varies across a series of samples

with similar grain-size distributions, a size-independent signal will be generated. Ex-

amples include dissolution and precipitation at di�erent stratigraphic levels within a

core.

For the sake of completeness, one should also consider occurrence of grain-size vari-

ations which do not correspond to geochemical variability (Fig. 3.3), which might be the
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Figure 3.3: In A, we illustrate geochemical and grain-size variabilities in the form of a Venn-diagram. The vari-

ability shared by both data sets is indicated by X ∩ Y , which is highlighted in red. In contrast to this shared

component, the variability unique to the geochemical data is the portion that potentially holds relevant signals

(e.g., provenance). The unique geochemical variability is indicated by Y \X , representing the residual geochem-

ical variability. As shown in the inserts in B, the shared signals are derived by an orthogonal projection of each

data set on a set of basis vectors. The direction of these basis vectors is such that they jointly maximise the com-

mon covariance in the two data sets. The residual signal may then be obtained by subtracting the shared signals

from their corresponding raw data set.
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case if rocks have been mechanically ground by glaciers, or mechanically weathered by

wind-action. However, even under extremely arid conditions, geochemical variability was

found to be accompanied by grain-size variations (Nesbitt and Young, 1996; Solano-Acosta

and Dutta, 2005). We therefore consider this a theoretical possibility rather than something

which merits further investigation.

3.3.2 Statistical model

If we were able to remove the shared geochemical variability (the red part in Figure 3.3A),

the residual record may reveal patterns which cannot be distinguished in the original re-

cord. We propose a generic approach to determine the shared variability, based on the

assumption that a monotonic relation exists between grain size and bulk chemical compos-

ition.

Grain-size distributions and geochemical compositions are compositional in nature (val-

ues are non-negative by de�nition, and their sum over all grain size classes, or all chemical

constituents should equal unity), which requires that we model them as log-ratios (Ait-

chison, 1986). More speci�cally, we use a centered log-ratio (clr) transformation in order

to facilitate application of multivariate methods (Aitchison and Greenacre, 2002). Linear

models of log-ratio-transformed variables are compatible with trends of compositional vari-

ability of sediments (e.g., von Eynatten et al., 2003; Tolosana-Delgado and von Eynatten,

2008). Exceptions stressed by Tolosana-Delgado and von Eynatten (2010) refer to the ’in-

trinsic’ relation between chemistry and composition, derived from chemical analyses of

narrow size fractions, rather than the relation between bulk grain size and bulk chemical

composition. Since the latter typically will be more smooth, we consider the logratio-linear

approach a suitable parametric model for the relation between bulk grain size and chemical

composition.

The model we propose is based on orthogonal projections. A graphical illustration of

the model is shown in Figure 3.3B. The model establishes two orthogonal bases (coordinate

systems) which maximise the common variability of grain size and geochemical composi-

tion. We derive these bases using a method based on Partial Least Squares (PLS) (Martens

and Naes, 1989). By projecting both data sets onto their basis vectors, we obtain the scores

on each vector. Using the scores and the bases, we can calculate the shared signals. The

variability unique to both data sets may be derived by subtracting the shared signals from

their corresponding data set.

This process may be repeated untill either the variance of the chemical or the grain

size data set equals zero. The number of orthogonal components that are removed is a

hyper-parameter and may take on any value between zero (the raw geochemical data) and

N−1, withN being theminimumnumber of variables (either grain-size classes or chemical

elements). We employ a χ2-test to determine whether the residual variance of a log-ratio

of two elements deviates signi�cantly from the error variance of the geochemical data set

for every order k. A more detailed description of the model is given in Appendix A.

3.4 Synthetic examples

To illustrate the working principle of the model, we will apply the model to two synthetic

data sets. The numerical experiments are intended to demonstrate the working principle
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of the proposed model. We construct two di�erent data sets: data set 1 only has variab-

ility induced by grain-size variations, whereas data set 2 re�ects grain-size independent

compositional variability.

3.4.1 Synthetic example 1

The �rst step in generating data set 1 is stochastic simulation of grain-size distributions.

These distributions are constructed to be log-normal, with a random mean and a standard

deviation that is a function of the simulated mean. This function yields a larger standard

deviation for �ne-grained sediments than for coarse-grained sediments. The fact that these

two parameters are correlated implies that the grain size data occupy only one dimension

in clr space.

To generate bulk chemical compositions, a logratio-linear relation between composi-

tion and grain size is constructed (Fig. 3.4A). Subsequently, this "�ngerprint" is transformed

back into proportions using the inverse clr-transformation in order to obtain the function

giving element concentrations as a function of grain size (Fig. 3.4B). The bulk chemical com-

position is obtained by multiplying this �ngerprint with the grain-size distribution. This

provides a unique bulk geochemical composition for any given grain size distribution. Fi-

nally, these bulk chemical composition are clr-transformed and some normally-distributed

noise is added.

Figure 3.5A shows the simulated grain-size record and Figure 3.5B shows the bulk geo-

chemical record expressed in proportions. The model output is illustrated in Figures 3.5C,

D and E. Since the rank of the grain size data is one, and the geochemistry is directly

inferred from the grain size, the common signal carried by the �rst vectors in both solu-

tion spaces explains all systematic variation. As a consequence, Figure 3.5D re�ects only

the superimposed noise centered around the mean bulk chemical composition. We derive

the strongest signal in the residual and the shared geochemical variability using Principal

Component Analysis (PCA). The principal components (PCs) are obtained by means of a

Singular Value Decomposition (SVD) (Press et al., 1994). Figures 3.5E and 3.5F show the

scores on PC1 of the shared and the residual signal, respectively. A gray bar represents 95%

con�dence limits derived from the superimposed noise. Note that for the PC1 scores of the

residual geochemical record, the proportion of observations plotting outside of these limits

not much larger than 5%. The scores of the shared geochemical signal show signi�cantly

more exceedences, indicating a strong correlation between bulk chemical composition and

grain size. Using the proposed model, this common trend could be eliminated from the data

without any prior knowledge, leaving nothing but noise.

3.4.2 Synthetic example 2

In example 2 we increase the complexity of the data by simulating random mixing of two

distinct sediment sources. The size-composition function of the second source is shown in

Figures 3.4C and 3.4D. The grain size distributions were simulated according to the pro-

cedure outlined in example 1, and contain therefore no information about provenance (Fig.

3.6B). A real-world analogue of this example is a river with two tributaries, draining dif-

ferent parent-rock types. We assume that the proportional contributions of the tributaries

has varied over time and we repeatedly sampled the river-mouth sediments. The grain-

size distributions of these sediments re�ect the hydrodynamic conditions under which the
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Figure 3.4: Fingerprints of sediment sources 1 and sources 2 (B and D, respectively), which are parameterised by

a log-ratio linear function between grain size and composition (A and C).
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Figure 3.5: Results of synthetic data set 1 (n=250), re�ecting one provenance. Plots A and B show the grain size

distributions and geochemical record, respectively. The residual grain size and geochemical signals are shown

in C and D, respectively. The �rst principal component scores of the shared geochemical signal is shown in E,

whereas plot F shows the �rst principal component scores of the residual geochemical signal. In E and F, a gray

bar represents a 95% con�dence interva,l derived from the imposed noise. Note that approximately 5% of the

residual PC1 scores (F) are located outside the 95% con�dence interval (grey).
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Figure 3.6: Results of synthetic data set 2 (n=250), which is constructed by mixing of two di�erent proven-

ances. Plot A shows the grain-size distributions and plot B shows geochemical record. The residual grain size

and geochemical record are shown in C and D, respectively. The �rst principal component of the common size-

composition trend is shown in E, whereas plot F shows the �rst principal component scores of the residuals. In E

and F, a gray bar represents a 95% con�dence interval derived from the imposed noise. Note that residuals scores

on PC1 exceed the 95% con�dence interval at almost every stratigraphic level.

sediments were deposited, and thus contain no information regarding provenance.

Data set 2 exhibits a geochemical recordwhich does not appear to be very di�erent from

that of data set 1 (Fig. 3.6B). This is not surprising since the �ngerprints of the two sources

are very similar (see Figure 3.4). As a result, di�erences induced by variations in the source

are overshadowed by variability induced by grain-size variations. In contrast to example 1,

however, the residual geochemical record shows signi�cant variability independent from

the grain size (Fig. 3.6D). The associated PC1 scores exceed the 95% con�dence interval of

the superimposed noise (Fig. 3.6F). Hence, we would conclude that there is evidence for

grain-size independent variability in the bulk-chemical composition.

If our aim was to infer either grain size or provenance from the raw geochemical data,

a straightforward approach would be to analyse the scores on PC1 (i.e. the main direction

of variance). Figure 3.7A shows the relation between these scores and the mean grain size,

whereas Figure 3.7B shows the relation between these scores and the provenance (i.e. the

contribution from source 1). In both cases there is a weak correlation.
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Figure 3.7: Cross plots in plots A and B show the PC1 scores of the raw geochemical data against the mean grain

size, and the contribution from source 1, respectively. Note that the raw PC1 scores correlate poorly with both

provenance and grain size. Plot C, on the other hand, shows that the correlation between the shared geochemical

signal scores and the mean grain size is strong. Similarly, plot F shows that residual scores correlate strongly with

the contribution from source 1.
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Instead of using the raw data, we may also use the model outcome to derive proxies

for both grain size and provenance; PC1 scores of the shared geochemical record represent

the grain-size proxy, whereas the residual geochemical record may serve as a provenance

proxy. The relation between the grain-size proxy, and the grain size and (known) source

contributions, respectively, are shown in Fig. 3.7 (C and D). Fig. 3.7C demonstrates that

the grain-size proxy correlates strongly with the mean grain size and does not contain any

provenance information. The provenance proxy (Fig. 3.7, E and F), on the other hand, varies

independently from the mean grain size, but records the known changes in provenance

perfectly.

3.5 Results

We applied the model to the data sets of the three Quaternary marine sediment cores. Be-

fore studying the model outcome, however, we analyse the correlation structure between

composition and the mean grain size in each of the three cores (see Fig. 3.8). The steep-

ness of the �tted log-ratio linear models of cores GeoB7920-2 and GeoB9508-5 in particular,

demonstrate that the geochemical composition strongly depends on the mean grain size.

Based on these plots, we also conclude that our data shows no systematic departures from

the compositional linear trend, which justi�es the use of a log-ratio linear approach.

Figure 3.8D shows Pearson’s correlation coe�cients between clr transformed elements

concentrations and mean grain size. In addition, the correlation coe�cients between the

mean grain size and the PC1 scores of the clr transformed element concentrations are

shown. The high correlation (0.9) between PC1 scores andmean grain size in coreGeoB9508-

5 demonstrates the correspondence between geochemical and grain-size data, respectively.

In core GeoB7139-2, on the other hand, the grain-size control on the geochemical variab-

ility is relatively low. In this core, only Ti shows a fairly strong correlation with the mean

grain size.

After applying the proposed model to the three cores, signi�cance tests on the residual

records (α = 5%) allow us to identify additive log-ratio pairs which show signi�cant resid-

ual variability in bulk composition (see Table 3.2). The strongest residual signal in the three

cores are shown in Figures 3.9 and 3.10. In contrast to the synthetic example, the residuals

are plotted without their mean added and re�ect the di�erence between modelled and ob-

served signals. An exception is made for k = 0: since these patterns are by de�nition only

a centered version of the input data, the raw data are shown instead.

The results demonstrate that the variance of the residuals is largely controlled by the

number of removed components (i.e., the order of the residuals). In addition, the cores

show a marked di�erence, in the sense that the variance of the third-order residuals ranges

from low in core GeoB7920, to high in core GeoB9508-5. Note that the limited number of

chemical elements (D=5) used in our study limits the maximum number of removed shared

signals to four.

3.6 Discussion

3.6.1 Correlation between bulk properties

The correlation coe�cients in Figure 3.8D show that in cores GeoB7920-2 and GeoB9508-5,

Al and Fe correlate positively with the mean grain size whereas Si and K correlate negat-
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Figure 3.9: The strongest downcore residual signals in terms of signal-to-noise ratio in cores GeoB7139-2 and GeoB7920-2, with the model order ranging between zero

(i.e., the raw data) and four. The residual geochemical signals are presented as variations around the mean, with a gray bar indicating a 95% con�dence limit. The residual

grain-size distributions are presented as the di�erence between the raw and modeled clr-transformed grain size distributions.
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Figure 3.10: The three strongest downcore residual signals in terms of signal-to-noise ratio in core GeoB9508-5, with the model order ranging between zero (i.e., the raw

data) and four. The residual geochemical signals are presented as variations around the mean, with a gray bar indicating a 95% con�dence limit. The residual grain size

distributions are presented as the di�erence between the raw and modeled clr-transformed grain size distributions.
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Core Order Signi�cant residuals

GeoB7139-2 1 Al/K

GeoB7139-2 2 Al/K

GeoB7139-2 3 none

GeoB7139-2 4 none

GeoB7139-2 5 none

GeoB7920-2 1 Al/Fe

GeoB7920-2 2 Al/Fe

GeoB7920-2 3 none

GeoB7920-2 4 none

GeoB7920-2 5 none

GeoB9508-5 1 Ti/*,Al/*, K/Si

GeoB9508-5 2 Ti/*, K/Si

GeoB9508-5 3 Al/Ti, Fe/Ti, Si/Ti, K/Si

GeoB9508-5 4 none

GeoB9508-5 5 none

Table 3.2: The signi�cant residuals of the di�erent cores (α=5%). A "*" indicates that all elements (except the

numerator) exhibit signi�cant residual variability.

ively with the mean grain size. These trends are in line with typical weathering trends,

leading to relative enrichment of clay-minerals (re�ected by Al and Fe) in the �ne frac-

tion and enrichment of quartz (re�ected by Si) and feldspar (re�ected by K) in the coarse

fraction.

In core GeoB7139-2 the correlation structure is di�erent, given that Si shows a weak

positive correlation with the mean grain size in phi units. Moreover, Ti appears to be the

only element closely linked to grain size, re�ected by a negative correlation with the mean

grain size in phi units. The weak grain-size control on the geochemical composition in this

core may be due to continental climate conditions. Core GeoB7139-2 is situated close to the

Atacama desert, which is characterised by extreme aridity (Stuut and Lamy, 2004; Kaiser

et al., 2008). The absence of chemical weathering under arid conditions implies that the

size-composition trend primarily re�ects mechanical weathering. The weak but positive

correlation between Si and the mean grain size may be attributable to additional input of

biogenic silica, which obviously disturbs the size-composition trend.

Based on these results we may select a proxy for grain size by choosing a ratio of an

element showing a high and positive correlation coe�cient, and an element showing a

negative correlation coe�cient with the mean grain size. This yields Al/Ti (GeoB7139-2),

Ti/Si (GeoB7920-2) and Fe/Si (GeoB9508-5). Di�erences among these proxies illustrate the

empirical nature of grain-size proxies.

3.6.2 Residuals analysis

Signi�cance tests yielded that, depending on the order, the cores re�ect residual patterns

of Ti (GeoB9508-5), Al/Fe (GeoB7920) and Al/K (GeoB7139-2). In contrast to the synthetic

examples, however, we do not know the number of dimensions of the grain size data. It is

obvious that the more shared signals we remove from the data, the smaller the variance of



50 Modelling the joint variability of grain size and chemical composition in sediments 3

the residual records. The limitations of our data are reached atD− 1, which equals four in

these data set (we measured only �ve elements).

Following the principle of parsimony, we should stop subtracting signals when the

shared grain size variability is within acceptable limits of the measured grain variability,

or when the removed grain-size signals do not correlate with the removed bulk chemical

signals. This means that quantitative control on the model outcome does not only require

uncertainties of the geochemical data, but also of the grain size data. Unfortunately, we can

only infer the uncertainties associated with the geochemical data, meaning that we are not

able to identify the ’true’ order of the residuals. However, we may interpret the results for

the analysed cores relative to each other.

The downcore records in Figures 3.9 and 3.10 suggest that from these three cores, core

GeoB9508-5 contains the strongest geochemical residual signals. The same is re�ected by

the large number of logratios that are identi�ed as signi�cant (Table 3.2). The raw Al/Ti,

Fe/Ti, Si/Ti, as well as their �rst and second order residuals (Fig. 3.10) are positively correl-

ated, suggesting that the signi�cance is attributable to relative changes in Ti. Apparently,

sediments with a similar grain-size distribution have di�erent Ti concentrations. Variable

Ti concentrations independent from the grain size have also been observed in present-day

dust samples collected o� northwest Africa; dust samples with the same mean grain size

showed di�erent Al/Ti values (Log(Al/Ti) ∼ [2.65, 2.9]; Stuut et al. (2005)). Moreover, the

variability of these Al/Ti values is in the same range as the residuals observed in this study.

Residual grain size signals in cores GeoB7139-2 andGeoB7920-2 (Fig. 3.9) suggest that at

least three common patterns should be removed to obtain a grain-size invariant geochem-

ical record. At this point, there are no signi�cant residual geochemical signals present in

the data (Table 3.1). Hence, we conclude that these cores contain no signi�cant residual

geochemical variability.

3.6.3 Palaeo-climatological interpretation

In order to relate the residuals unambiguously to the proposed size-independent mechan-

isms, mineralogical information is indispensable. In core GeoB9508-5, K most likely, but

not exclusively, resides in K-feldspar, whereas Si resides in detrital quartz and possibly in

opal. Because (i) we cannot unambiguously associate these elements to minerals, and (ii)

the magnitude of their associated residual signal (i.e. K/Si) is approximately 50% smaller

than that of the Ti-residuals, we do not attempt to interpret this signal.

Compared to the other elements, Ti can be more con�dently associated with min-

eral phases: it is considered to be of exclusively terrigenous origin (Murray and Leinen,

1996) and mostly resides in heavy minerals such as sphene, rutile and anatase (Spears and

Kanaris-Sotiriou, 1976). Theseminerals have a high density relative to quartz, feldspars, and

clays, which make up the bulk of siliciclastic sediments. Although Ti-rich heavy minerals

are considered essentially inert components (Young and Nesbitt, 1998), diagenetic altera-

tions have been described under highly speci�c conditions (Goldberg and Arrhenius, 1958;

Pe-Piper et al., 2011). However, given the fact that the observed Al/Ti are approximately

equal to Al/Ti values found in other marine sediment cores located in the Atlantic (Zabel

et al., 1999), we consider diagenetic modi�cation a highly unlikely cause. This implies that

the residuals may be explained by any of the postulated grain-size independent processes

that take place before deposition, such as weathering, density/shape sorting and mixing.

In the area of core GeoB9508-5, contrasting patterns of deposition have been linked to
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Figure 3.11: As indicated in A, we partitioned the data into �uvial, aeolian and mixed provenance, based on the

median grain size. For both the �uvial and aeolian sediment, a boxplot associated with the residual Ti/Al is shown

in B.

climate changes (Mulitza et al., 2008). Dry and cold periods were characterised by strong

winds and low �uvial sediment input, whereas the opposite holds for relatively warm and

humid intervals (e.g. Sarnthein, 1978; deMenocal et al., 1993). Hence, we are dealing with

a situation in which the grain size of the sediments, and therefore their transport mechan-

isms, are likely to correlate with provenance. We make use of this knowledge by separating

the residual geochemical data into aeolian-dominated, �uvial-dominated, and mixed sedi-

ments, based on the median grain size (P50 of the cumulative grain size distributions) with

cuto�s set at 5.5φ and 6.5φ (Fig. 3.11A). The relation between transport mechanism and

residual Ti/Al is shown in Figure 3.11B. The probability that the residual Ti/Al values of

the two have identical distributions was estimated using a non-parametric Wilcoxon test

(Hollander and Wolfe, 1973). Based on the p-value of 1% and a signi�cance level of 5%,

we conclude that the third-order Ti/Al residuals correlate with transport mechanism (and

therefore also the Al/Ti residuals, because logratios are symmetrical).

If the sediment deposited in the sink has been exclusively derived from one source, and

the conditions under which the sediment was transported were constant in time, the re-

sidual Al/Ti signal re�ects varying climatic conditions in the source area(s). An alternative

scenario is that the Al/Ti residuals re�ect the di�erent areas that have served as a source,

rather than varying conditions within the source area(s). In both cases, the underlying as-

sumption is that the sediment is transport-invariant, i.e., that it has been transported under

the same hydro- and aerodynamic conditions (Weltje, 2004). Another scenario is that the

residual Al/Ti variability is induced by mixing of �uvial and aeolian sediment and/or sort-

ing processes during either river- or wind-transport. This scenario is characterised by the

assumption of "provenance-invariance".

It is evident that, without additional constraints, there is no unique solution to this

problem. Even when adopting the (strong) assumption that the source area and the cli-

matic conditions were constant over time, we cannot ascribe the residuals to either select-

ive transport or mixing. Preferential entrainment of Ti-bearing minerals in the windblown

sediment due to increased wind strength (Sarnthein, 1978; Rea, 1994) will have the same

e�ect on Ti residuals as mixing of Ti-rich windblown sediment, and Ti-poor riverine sedi-
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ment of constant geochemical composition. Moreover, Stuut et al. (2005) showed that even

on a short time-scale (days), both source area and pathway length (which controls selective

transport) substantially vary, which means that neither the provenance-invariance nor the

transport-invariance assumption is defendable. More data is necessary to unambiguously

interpret the residuals in terms of the proposed grain-size independent mechanisms.

3.6.4 General discussion

In the analysed cores, the elements showing the strongest correlation with the mean grain

size were Ti (GeoB7139-2) and Si (GeoB7920-2 and GeoB9508-5). In addition, Ti was des-

ignated as the main residual component in GeoB9508-5. This leads to the conclusion that

geochemistry-based proxies for mean grain size depend on the speci�c setting, which auto-

matically implies that the same is true for geochemistry-based proxies considered to be

associated with other processes. We showed that, using the model and a set of overlapping

grain-size and geochemical observations, these proxies can be identi�ed in a robust way.

However, whether or not signals associated with the size-independent processes can be

inferred from the data depends on the magnitude of this signal, relative to the uncertainty

of both data sets. Hence, more signi�cant signals may appear if the uncertainty of the bulk

chemical data will be reduced. Furthermore, applying the model to a more comprehensive

set of chemical element concentrations is more likely to reveal informative residual pat-

terns. As for the interpretation of bulk geochemical records in general, interpretation of

the residuals is di�cult because they may re�ect numerous di�erent processes. In addi-

tion, chemical elements cannot always be uniquely associated with a single mineral. We

can thus not provide a ’recipe’ for the interpretation of the residuals. However, by cor-

recting the data for grain size, at least one hypothesis can be tested, i.e., that the chemical

composition only re�ects grain-size variations.



CHAPTER 4

Reduced-rank approximations to compositional and

spectroscopic data in log-ratio space 1

4.1 Introduction

The ability to properly account for uncertainty is essential to optimal multivariate model-

ling (Leger et al., 2005; Reis and Saraiva, 2006a,b; Wentzell and Lohnes, 1999). For spectro-

scopic data, one of the most fundamental sources of uncertainty is the spread caused by

the stochastic nature of a counting process. However, counting processes are by no means

limited to spectroscopy: also data acquisition in the �elds of geology, social sciences and

ecology frequently involves counting di�erent kinds of discrete objects falling into an ex-

haustive set of mutually exclusive classes. Examples of such data sets are point counts,

opinion polls and species-richness data.

In addition to these obvious examples of count data, there are also data types whose

enumerative nature is not evident because:

1. The data are not intrinsically categorical but represent discretised continuous vari-

ables;

2. The counting process is not directly re�ected in the output of a measurement device

or protocol.

We use a benchtop XRF analyser to illustrate these two cases. A benchtop XRF analyser

will give element concentrations as output. However, the underlying data are �uorescence

spectra re�ecting the number of counted photons per wavelength or energy bin and are

therefore an example of case 1. The element concentrations are derived from the area

under the corresponding peak in the discretised spectrum and therefore associated with

a �nite number of counts. Hence, the compositional data provided by the instrument are

1Published as: Bloemsma, M.R. andG.J.Weltje (2015). Reduced-rank approximations to spectroscopic and com-

positional data: A universal framework based on log-ratios and counting statistics. Chemometrics and Intelligent

Laboratory Systems, Vol. 142 , pp. 206-218.
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an example of case 2. Finally, there are also types of data which are technically not count

data, although the way they have been acquired is very similar and therefore the errors

are likely to exhibit similar properties. For example, a particle-size distribution acquired by

sieving is derived from masses in di�erent size classes, and is thus not acquired by means

of counting. However, the data may be converted to numbers of particles by adopting a

particle density and the data are therefore likely to possess statistical properties similar to

those of "true" count data.

We distinguish two categories of count data applications: the relative and absolute in-

formation content are either considered meaningful, or the count data are considered to

carry relative information only. For instance, if we are counting the numbers and types of

birds spotted during one hour at a single locality, the sample size does matter which makes

it an example of the �rst category. However, the size of the sample is of no importance

when analysing the silica content of two di�erently-sized rocks: it is much more mean-

ingful to compare their silica content in weight percent. All compositional data therefore

fall in the second category. Spectroscopic applications may fall into both categories. The

sample size (i.e. the total number of counts) of spectroscopic data is largely determined

by instrument settings and measurement geometry (e.g. counting time, distance between

sample and sensor). In case the data are acquired under standardised conditions, the scale

will be a meaningful quantity and the data fall into the �rst category. However, in case in-

strument settings or measurement geometry vary within one data set, one should consider

focusing only on the relative information content (Weltje and Tjallingii, 2008).

This contribution is dedicated to the second category of count data applications. Sep-

aration of relative from absolute variability can be achieved by making the following de-

composition:

X = diag(t)P (4.1)

whereP is a matrix with count proportions on its rows and t is a vector containing the

number of counted objects in each row. An important property of P is that its elements

are discrete because X and t are discrete. However, as the sample size goes to in�nity, P

becomes a continuous variable. Another important property of P is that the variables are

not independent, which stems from the set of constraints that apply to each rowp spanning

D variables (Chayes, 1960):

p :

D
∑

i=1

pi = 1, 0 ≤ pi ≤ 1 (4.2)

Data characterised by these constraints are referred to as compositional data and the

sample space in which these data reside is referred to as the simplex (Aitchison, 1986). It

is well-known that the simplex is problematic for multivariate analysis and modelling: the

variables have upper and lower limits and the sum-constraint imposes dependency (they

have e�ective rank D − 1).
Instead of modelling the data in this problematic simplex, the commonly accepted pro-

cedure is to model the data in an alternative space (Aitchison, 1986). Several of these spaces

have been proposed, but they all rely on representing variables as logarithms of ratios, i.e.,

log-ratios. The advantages of analysing and modelling log-ratio transformed count data

are that (1) log-ratios are unconstrained, (2) they are insensitive tomultiplicative operations
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and therefore to scale variations, (3) the log-ratio space is a metric space (Pawlowsky-Glahn

and Egozcue, 2002). Because log-ratio transformations are invertible, the modelling result

may be transformed back to the original units after multivariate analysis. Furthermore,

modelling of log-ratios is numerically convenient becausemany non-linear trends observed

in nature tend to become linearised upon log-ratio transformation (Aitchison, 1999; Weltje,

2012; von Eynatten et al., 2003).

Multivariate analysis of compositional data is frequently performed in the so-called

centred log-ratio (clr) space (Aitchison and Greenacre, 2002). The transformation which

maps data from the simplex to the clr space is given by:

z = clr(x) → zj = log(xj)−
1

D

D
∑

i=1

log(xi) (4.3)

for j = 1, 2, ...D. The inverse transformation reads:

x = clr−1(z) = C [exp(x1), exp(x2), · · · , exp(xD)] (4.4)

where C[...] is the so-called closure operator, i.e., the operator which divides all vec-

tor elements by their sum to impose the sum constraint. Equation 4.3 shows that the clr-

transformation is a row-wise centring operation in the log-space. The geometric mean is

used because it is the BLU-estimator of the center of a composition with respect to the

geometry of the simplex (Pawlowsky-Glahn and Egozcue, 2002).

Given that models governing compositional data in log-ratio space are generally based

upon minimising a least-squares criterion, it is implicitly assumed that the errors in this

space are independent and identically distributed (iid). However, we will demonstrate that,

under the assumption that counting errors make up the dominant source of uncertainty, er-

rors are not iid. The general aim of this paper is to show that accommodating for counting

errors is essential to improving multivariate modelling of count data in general, and spec-

troscopic and compositional data in particular. More speci�cally, we investigate methods

for making Reduced Rank Approximations (RRAs) to count data in clr space. The methods

we investigate range from straightforward RRA based on least-squares principles to RRA

by means of a maximum likelihood method. Since many di�erent types of data originate

from counting or an analogous process, this contribution is of potential importance to a

wide audience. Furthermore, the results are directly applicable to other methods which

rely on subspace estimation such as Principal Component Analysis (PCA).

4.2 Statistical basis

4.2.1 Notation

We use the notation conventions common to chemometrics and compositional data ana-

lysis. Hence, matrices and vectors are written in bold-face upper- and lower-case letters,

respectively. In addition, the convention is used that a set of count data is represented by

the matrix X (N rows and D columns). The log-transformed data matrix is given by Y

and the clr-transformed data matrix is given by Z. Furthermore, we use the forward and



56 Reduced-rank approximations to compositional and spectroscopic data in log-ratio space 4

inverse clr-transformation operators which act upon matrices so that the following holds:

Z = matclr(X)

X = diag(t) matclr−1(Z)
(4.5)

where t contains the number of counted objects.

The index j = 1, 2, ...D is used for columns and the index k = 1, 2, ...N is used for

rows. If two indices for the D variables are required, i is also used as a row index. Upper-

case lettersX and T refer to the counts and sample size as random variables, respectively.

Hence, T is the random variable de�ned as:

T =

D
∑

j=1

Xj (4.6)

Short-hand notations for the theoretical standard deviation and variance of X are δX
and δ2X , respectively.

We also use the notation that a symmetric matrix is summarized by showing the explicit

expressions for the diagonal and o�-diagonal entries. For example, the D-part identity

matrix ID reads:

ID(j, j) = 1, j ∈ {1 : D}
ID(i, j) = 0, i, j ∈ {1 : D} | i 6= j

(4.7)

However, for the sake of simplicity we will not specify the index ranges and simply

write ID(j, j) = 1 and ID(i, j) = 0 for the diagonal and o�-diagonal entries, respectively.
Greek letters represent distribution parameters, hence they are not observed (e.g. pkj

is the estimate of the true probability πkj of �nding an object of class j in specimen k). We

use var(x) as a short-hand notation for the sample variance over the values in the vector

x. Likewise, the total variance of a data matrix is written as var(X) which essentially

means var(vec(X)). Finally, ’◦’ denotes the Hadamard product (i.e. element-wise matrix

multiplication) and diag() re�ects the operator which puts the elements of the argument

on the diagonal of a matrix, i.e.:

diag(1D) = ID (4.8)

where 1D is the D-part unit vector.

4.2.2 Fixed-size count data

First, we consider count data which have a �xed sample size. For these data, acquisition

stops as soon as the number of counted objects reaches some user-speci�ed value τ , as in
point counting. Given that the objects are randomly drawn from the population, the count

data are multinomial distributed and therefore referred to as Multinomial Distributed Data

(MDD).

The distribution of a multinomial-distributed variable Xj is conditional on τ and not

independent from the other variables. Therefore, we cannot express the distribution of one

variable without considering all others and we de�ne MDD as follows:

[X1, X2, · · · , XD] ∼ Mult (τ,π) (4.9)
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where π is the vector with probabilities πj , i.e. the probability of drawing an object of

class j from the population. For MDD, the sample size T does not vary so that T = τ .
For the standard deviations associated with a multinomal distributed random vector the

following holds:

dmdd = [τπ1(1− π1), τπ2(1− π2), · · · , τπD(1− πD)]
1/2

(4.10)

For the diagonal and o�-diagonal elements of the correlation matrix R the following

holds:

Rmdd(i, i) = 1

Rmdd(i, j) = −
√

πiπj(1− πi)−1(1− πj)−1 (4.11)

The Error Covariance Matrix (ECM) Γmdd of multinomial data in the count space is

given by:

Γmdd = Rmdd ◦ (d′
mdddmdd) = τ











π1(1− π1) −π1π2 · · · −π1πD

−π2π1 π2(1− π2) · · · −π2πD

...
...

. . .
...

−πDπ1 −πDπ2 · · · πD(1− πD)











(4.12)

4.2.3 Fixed-time count data

Next, we will treat count data whose acquisition protocol is characterised by setting a �xed

time interval of length ∆t in which objects are counted. For these "�xed-time" data, the

probability that an object is counted is random in time and independent from all other ob-

jects. Hence, we rather refer to "events" than objects and the samples are not characterised

in terms of count probabilities π (as for MDD) but in terms of count rates ξ (in counts per

unit of time). Peak areas in spectroscopic data are an example of this type of data.

If the events are random in time, the expected number of observed counts within time

interval ∆t is Poisson distributed and we refer to these data as Poisson Distributed Data

(PDD). The distribution of such a variable is given by:

Xj ∼ Poiss(∆t ξj) (4.13)

In contrast to MDD, the sample size of PDD is not constant:

T ∼ Poiss





D
∑

j=1

∆t ξj



 = Poiss(τ) (4.14)

and only controlled indirectly by∆t.
Because the data are uncorrelated, the following holds for the error correlation matrix:

Rpdd = ID (4.15)

The Poisson distribution also has the following property:

E(Xj) = δ2Xj = ∆t ξj (4.16)
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and therefore the following holds for the vector with standard deviations:

dpdd = [∆t ξ1, · · · ,∆t ξD]
1/2

(4.17)

Hence, the ECM of PDD in the count space is given by:

Γpdd = Rpdd ◦ (d′
pdddpdd) = ∆t diag ([ξ1, · · · , ξD]) (4.18)

4.2.4 CLR space error model

Our next goal is to propagate the errors of MDD and PDD to the clr space. First, an error

model in the log-space is derived. Given that Y = log(X), applying the rules of error

propagation yields that δY = dY
dX δX . For the derivative term dy

dx holds that dy
dx = d ln(X)

dx =

X−1 so that δY = δX
X . The relative error in X translating to an absolute error in Y is a

fundamental property of the logarithmic transformation.

For MDD it holds that δX =
√

τπ(1− π) (Eq. 4.10). For the associated standard

deviation in the log-space δY we can write:

δY =
δX

X
≃
√

τπ(1− π)

τπ
=

√

1− π

τπ
(4.19)

where we used the substitution X = E(X) = τπ. For one sample originating from

a D-component multinomial distribution, these D standard deviations may be stored in a

vector qmdd:

qmdd =

[

1− π1

τπ1
,
1− π2

τπ2
, · · · , 1− πD

τπD

]1/2

(4.20)

For PDD we can write:

δY =
δX

X
=

√
∆t ξ

∆t ξ
= (∆t ξ)−1/2 (4.21)

where we used the substitution X = E(X) = ∆t ξ.
The vector containing the standard deviations is given by:

qpdd = [∆t ξ1,∆t ξ2, · · · ,∆t ξD]
−1/2

(4.22)

To derive the ECM in the clr space, we specify the clr transformation in terms of a linear

transformation matrixAD acting upon the log-transformed data matrixY so that:

Z = YAD =







y11 · · · y1D
...

. . .
...

yN1 · · · yND

















(1−D−1) −D−1 · · · −D−1

−D−1 (1−D−1) · · · −D−1

...
...

. . .
...

−D−1 −D−1 · · · (1−D−1)











(4.23)

The ECM then follows from error propagation:

Ψ = AD(R ◦ (q′q))A′
D (4.24)
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where q and R are the standard deviation vector and error correlation matrix associated

with MDD or PDD, respectively. For clarity we post-multiply by the transpose of AD ,

however, note thatA′
D = AD .

4.2.5 ECM in the clr space

To study the di�erences among the error properties of PDD and MDD, we construct a ran-

dom composition and analyse the corresponding ECMs. Within the multinomial frame-

work this composition represents the count probabilities πj and within the Poissonian

framework this composition represents the count rates ξj . The composition vector con-

sists of 5 components (i.e.,D = 5) and reads [0.1, 0.15, 0.3, 0.4, 0.05]. The total number of

counted objects τ and the time interval∆t are set at 500 for theMDD and PDD, respectively.

The ECMs are shown in Figure 4.1.

Figures 4.1, A and D, show that in the count space the ECM of PDD is diagonal whereas

the ECM of MDD has nonzero o�-diagonals. This structure is, however, not maintained

upon log-transformation: the o�-diagonals of MDD become equal (Fig. 4.1E). Moreover,

upon clr-transformation, the ECMs of the two data types become identical (Fig. 4.1, C and

F).

This is proven by deriving the ECM in the log-space Φ for MDD:

Φmdd(j, j) =
1−πj

τπj

Φmdd(i, j) = −τ−1
(4.25)

and PDD:

Φpdd(j, j) = (∆t ξj)
−1

Φpdd(i, j) = 0
(4.26)

The proof of equivalence of the clr-space ECMs is given in Appendix B. The structure

of this universal ECM is:

Ψ(j, j) = a2dE(Xj)
−1 + a2od

∑D
m 6=j E(Xm)−1

Ψ(i, j) = aodad(E(Xi)
−1 + E(Xj)

−1) + a2od
∑D

m 6={i,j} E(Xm)−1 (4.27)

where E(Xj) is the expectancy of a multinomial or Poisson random variable and ad
and aod are the diagonal and o�-diagonal entries of the clr-transformation matrixAD (i.e.

1−D−1 and −D−1), respectively.

4.2.6 Limiting properties of the clr-space ECM

If the count probabilities (MDD) or count rates (PDD) are identical among the variables, the

count probability vector or count rate vector reads
[

D−1, · · · , D−1
]

. For the corresponding

ECM the following holds:

limvar(ξ)→0 Ψpdd(j, j) = (1−D−1)(∆t ξ)−1

limvar(ξ)→0 Ψpdd(i, j) = −(∆t ξ)−1
[

2adaod + a2od(D − 2)
]

= −(D∆t ξ)−1 (4.28)
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Figure 4.1: MDD and PDD ECMs in the clr space associated with the composition [0.1, 0.15, 0.3, 0.4, 0.05]. A,
B and C represent the ECMs of this composition for MDD in the count space, log space and clr space, respectively.

D, E, and F show ECMs for PDD in the count, log and clr space, respectively.
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Another limiting property of the universal ECM is:

limD→∞ Ψpdd(j, j) = (∆t ξ)−1

limD→∞ Ψpdd(i, j) = 0
(4.29)

For convenience we assume that the data are PDD, which means that E(Xj)
−1 =

(∆t ξj)
−1 = D

∆t . By replacing ξ byπ and∆t by τ the equivalent result forMDD is obtained.

4.2.7 ECM of a count data set

Until now we have analysed the error properties of count data in terms of their distribution

(i.e. multinomial or Poisson). In reality, however, we do not observe the population para-

meters but we observe a random sample from this underlying distribution. Furthermore,

the aim in multivariate analysis is to characterise a set of count data rather than individual

realisations.

An important aspect when analysing noisy sets of count data is whether or not it is

reasonable to assume that there is one ECM which applies to the set as a whole. This can

be predicted on the basis of the above limiting cases. Therefore we consider a set ofN MDD

contained inX, which are drawn fromN unique populations. Their count probabilities are

contained in matrixΠ and their sample sizes in the vector τ . The matrixX is decomposed

by �rst calculating the vector with observed samples sizes t:

t = X · 1D (4.30)

Because we consider MDD, tk = τk for any k = 1, 2, ..N . For the count probability

estimates P the following holds:

P = diag(t−1)X (4.31)

Next we consider the error properties of P after clr-transformation. Given the propor-

tionality between mean and counting error variance of PDD and MDD, counting errors

become identically-distributed only if the data set re�ects repeated and identically-sized

samples from the same population. Hence, the rows of diag(τ )Π must be identical. If, in

addition, the dimensionality approaches in�nity, the errors become independent. In this

limiting case, the sample size may be factored out so that the following holds for the the-

oretical ECMΨ of sample k:

lim
D→∞,var(πj)→0

Ψk = τ−1
k diag([π̄1, ..., π̄D]−1), j ∈ 1 : D (4.32)

where π̄j is the mean probability in the j-th column ofΠ and var(πj) → 0means that

the variance in the j-th column of Π approaches zero.

In case π̄1 = π̄2, ... = π̄, this reduces to:

lim
D→∞,var(Π)→0

Ψk = (τkπ̄)
−1ID (4.33)

which implies iid errors.

From these limiting cases we draw two conclusions. Firstly, considering the fact that a

data set generally re�ects samples drawn from di�erent populations with �niteD, counting

errors in a clr-transformed data set are not identically distributed and not independent.
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Secondly, whereas sample size causes an in�ation/de�ation of the ECM, the structure of the

ECM is fully controlled by the dimensionality in combination with the count probability

(MDD) or count rate (PDD) matrix.

4.3 Simulation experiment

A simulation experiment was conducted to investigate whether accommodating for count-

ing errors can help to producemore robust RRAs. In the experiment count data aremodelled

as compositions that are either subject to multinomial or Poisson random errors. In case of

Poisson random errors, a variable scale is imposed.

4.3.1 Reduced-rank methods

Making a RRA is based on estimating a linear basis in RD . Subsequently this coordinate

system is partitioned into two disjoint subspaces: an included and an excluded subspace.

One purpose of making a RRA is to allocate as much of the underlying signal to the included

subspace while simultaneously allocating noise to the excluded subspace (i.e., denoising).

The benchmark in RRA is to estimate the included subspace based on a least-squares

criterion. In that case, RRA is numerically equivalent to Principal Component Analysis

(PCA) (Jollife, 2002). The underlying assumption is that errors are iid. To investigate the

impact of this assumption and successively less restrictive assumptions on the resulting

RRAs a simulation experiment is conducted. Various RRA methods are compared which

accommodate for counting errors to a di�erent extent. These alternativemethods use either

scaling orMaximum Likelihood estimation and they are discussed inmore detail in the next

sections.

u-RRA (method 0)

Unweighted RRA (u-RRA) is based on estimating the data covariancematrix (DCM)Σ using

the zero-mean clr transformed count data matrix Z0:

Σ =

(

1

N − 1

)

Z′
0Z0 (4.34)

From this DCM Σ, a Singular Value Decomposition is constructed:

Σ = USV′ (4.35)

The loadings are contained in V and the corresponding scores matrix T is given by:

T = Z0V (4.36)

A RRA of rank R is obtained by using only the scores and loadings of the largest R
eigenvalues:

Ẑ0 = T1:RV
′
1:R (4.37)

In this unweighted approach, it is assumed that Ψk ≃ cID for any c > 0 and k =
1, 2, ...N .
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w-RRA (method 1)

A straightforward way to compensate for variable errors is to apply SVD to a scaled data

matrix (Martens et al., 2003). We refer to this approach as weighted RRA (w-RRA). In case

the columns as well as the rows exhibit variable errors, the data matrix should be pre-

and post-multiplied by scaling matrices which have the inverse row and column standard

deviations on their diagonals, respectively. This methodology was used for PCA of spectral

images (Keenan and Kotula, 2004) in which the squared row and columnmean of the count-

data matrix were placed on the diagonal of the left and right scaling matrix, respectively.

In case the matrix with errors has unit rank, applying SVD to a scaled matrix is optimal in

a maximum likelihood sense (Cochran and Horne, 1977).

Our implementation of w-RRA is based on parameterisation of the errors in the same

manner as the count data, i.e., the matrix with clr space error variances F is decomposed

as the product of a row vector t̃ containing the scale and a matrix P̃ having compositions

as rows:

F = diag(t̃)P̃ (4.38)

From t̃, a vector w is derived containing row weights:

w = NC[t̃]−1/2 (4.39)

Next, the mean error vector is calculated in a weighted manner:

p̃ = clr−1

(

1

N

N
∑

matclr(P̃)

)

(4.40)

i.e., the errors are treated as if they were compositions. The corresponding scaling

matrix is given by:

W = diag (p̃)
−1/2

(4.41)

The w-RRA method includes multiplication of the clr-transformed data by the scaling

matrixW, after which the weightedmean is calculated whereby the elements ofw are used

as weights. This mean is subtracted from Z to form Z0. Next, the DCM Σ is calculated in

a weighted manner:

Σ =

(

1

N − 1

)

Z′
0 diag(w) Z0 (4.42)

Then, the same steps are followed as in u-RRA: (1) SVD of the DCM, (2) extraction of

scores, and (3) constructing the RRA to the scaled data for a certain rank. To �nd the RRA

in terms of the original units, they should be multiplied by W−1 and the mean should be

added.

The w-RRA method implicitly makes the following approximation to the ECM:

Ψk ≃ diag(t̃kp̃)
−1 (4.43)

for any k = 1, 2, ...N .
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d-MLRRA (method 2)

The second and third alternative RRA methods are fully based upon Maximum Likelihood

PCA (MLPCA) (Wentzell and Lohnes, 1999), and they are therefore referred to as Maximum

Likelihood RRA (MLRRA) methods. MLPCA was �rst introduced by Wentzell et al. (1997).

In that same contribution, an algorithm was proposed based on Alternating Least Squares

(ALS). This algorithm is believed to always converge and it is also employed here.

The rationale behindMLRRA is that, given a rankR, ML approximations to the data can

be made in both the column- and row-space using SVD (i.e. the "original" and "alternate"

space, respectively). By consecutively using the basis that was determined in the alternate

space as input for the original space and vice versa, the objective function values in the

two spaces will converge which marks the ML-solution. Although it is technically not truly

ML, we estimate and subtract the weighted mean before applying the method (cf. Wentzell,

2009).

In contrast to the previously introduced methods, in MLRRA the approximation is not

obtained by means of orthogonal projection. Instead, the MLRRA is given by:

ẑk = V̂(V̂′Ψ−1
k V̂)−1V̂′Ψ−1

k x (4.44)

In diagonal MLRRA (d-MLRRA), it is implicitly assumed thatΨk is diagonal.

f-MLRRA (method 3)

In full MLRRA (f-MLRRA), use is made of the full ECM associated with every observation.

The ML solution can no longer be found by consecutively estimating the ML-solution in

the row and column space because there is no straightforward relation between the two

spaces. To solve this we employ the approach proposed by Wentzell et al. (1997): instead of

solving the ML problem forN points inD-dimensional space, the problem may be de�ned

as �nding the ML solution given 1 point inN×D dimensional space. Otherwise, f-MLRRA

is based on the same numerical scheme as d-MLRRA.

The f-MLRRA algorithm requiresΩ−1 as input, which is a block-diagonal matrix with

the inverse of all Ψk on its diagonal. The ECM estimate associated with every row in the

clr-transformed data matrix may be obtained using Equation 4.24. However, in a numerical

scheme this would require the use of a for-loop. It is more e�cient to calculate the ECMs

all at once by matrix multiplication. We therefore propose calculating aNN ×ND block-

diagonal matrix with all ECMs on its diagonal referred to as Ω:

Ω = (IN ⊗AD) diag(vec(X′)−1) (IN ⊗AD) (4.45)

The operation IN ⊗AD is the construction of a matrix with N repetitions of AD on

its diagonal.

Because Ω is block-diagonal, inversion may be carried out on a block-by-block basis

for speed. The inverse of the ECM in the alternate space is denoted as Ξ−1 and is derived

from Ω−1 using the commutation matrixK:

Ξ−1 = KΩ−1K′ (4.46)



Development of a modelling framework for core-data integration using XRF scanning 65

Following Wentzell et al. (1997), the approximations in the two spaces are derived as:

vec(X̂)orig = V̂(V̂′Ω−1V̂)−1V̂′Ω−1vec(X)orig
vec(X̂)alt = V̂(V̂′Ξ−1V̂)−1V̂′Ξ−1vec(X)alt

(4.47)

Since f-MLRRA is based on the same numerical scheme as d-MLRRA, it is assumed

that convergence marks the ML solution. This method does not make any assumptions

regarding the error covariance structure.

4.3.2 Generating synthetic data

To study the performance of the di�erent algorithms, synthetic data sets were generated.

This allows us to compare the RRAs to noisy data with the "truth", i.e. the noise-free data.

The process of synthetic data generation is shown in Figure 4.2.

An expected number of counts per variable fk was simulated so that for τk holds that

τk = fk × D. The value for fk was drawn from a uniform distribution ranging between

fmin and fmax. A vector m of column means of the clr-transformed count probability

matrix was generated. The D values contained in m were drawn from a uniform distri-

bution ranging between −µmax and µmax. The larger the µmax, the more spread among

the column means of the proportions matrix P. We also generated a D-part vector with

variable-speci�c variances v whose entries were randomly selected from a uniform dis-

tribution ranging between 0 and σ2
max, which were subsequently turned into a vector of

standard deviations s.

Data correlation matricesR were generated using the MATLAB function "randcorr" in

the "matrix gallery" (MATLAB, 2011). The produced correlation matrices were, however,

not a suitable matrix for clr-transformed data because clr-transformed data are rank de�-

cient. Hence, the correlation matrices were de�ated so as to constrain them to the clr space.

This, in combination with the introduction of additional rank de�ciencies was achieved by

�rst calculating the SVD of R:

R = UΘV′ (4.48)

where U = V because R is symmetric. The basis vector h orthogonal to the clr space

reads:

h = [D−1/2, D−1/2, · · · , D−1/2] = D−1/2 · 1D (4.49)

where 1D is D-part unit column vector. The clr space covariance matrix was then

obtained by de�atingV in the following manner:

V̌ = V − h′(hV) (4.50)

Next, additional rank de�ciencieswere introduced. First, an integer between 1 andD−2
was selected randomly, re�ecting the desired e�ective rank of the covariance matrix. The

additional rank de�ciency was achieved by settingD− 1−R randomly selected diagonal

elements ofΘ to zero. The result is referred to asΘrd and the clr-de�ated and rank de�cient

correlation matrix could now be derived as follows:

R = (V̌Θ
1/2
rd V̌′)′(V̌Θ

1/2
rd V̌′) (4.51)
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Figure 4.2: Setup of the simulation experiment, which consists of two parts: a data generation part (1) and a

modelling part (2).
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so as to ensure positive-de�niteness. Finally, the DCMΣwas obtained in the following

manner:

Σ = R ◦ (s′s) (4.52)

Then, N unique clr-transformed compositions were generated from multivariate nor-

mal distributions, characterised by the mean vectorm and covariance-matrixΣ. These clr-

transformed compositions were transformed back to proportions to formΠ. Next, samples

were drawn from the distributions characterised by the distribution parameters contained

in Π and τ . These k = 1, ...N realizations were either drawn from a Poisson distribution

or from a multinomial distribution. For PDD this implies:

xkj ∼ Poiss(λkj) = Poiss(τkπkj) (4.53)

whereas for MDD:

xk ∼ Mult(τk, [π1, · · · , πD]) (4.54)

The occurrence of zeros jeopardises the use of log-ratio analysis. The probability mat-

rix Π contains no zeros because it originates from a logarithmic (clr) space, however, the

sample size may still cause zeros to occur in X. In reality, a signi�cant number of zeros in

X indicates that the sample is too small to properly characterise the population. On the

other hand, a sample size which is too large is uneconomical. Designing a measurement

strategy is aimed at �nding this trade-o� between data quality and costs. The same was

done in this simulation experiment: the sample sizes were set su�ciently large in relation

to the simulated count probabilities. Nevertheless, X sporadically contained zeros which

were replaced by a small positive number. Therefore we employed the multiplicative re-

placement method proposed by Martín-Fernández et al. (2003), which is considered to have

a minimal in�uence on the data covariance structure. Given that x is a composition where

the j-th entry equals zero, this replacement method is given by:

xj =

{

δj , if xj = 0,

1−
∑

k|xk=0
δk

κ xj if xj > 0,
(4.55)

Following suggestions by Sandford et al. (1993) we adopt δ = 0.55.

4.3.3 Example data set

All proposed RRAmethods were applied in clr space. Their ability to reconstruct the noise-

free data was also evaluated in clr space because the aim of this study is to reconstruct

relative (i.e. proportional) variations in counts. However, the clr-transformation is invert-

ible and the RRAs may be transformed back to the count space by applying the following

inverse transformation to Ẑ:

X̂ = diag(t) matclr−1(Ẑ) (4.56)

In case a RRA produced by the benchmark method (i.e., u-RRA) is inferior to an RRA

produced by any of the alternative methods, the same is likely to be the case in the count

space.
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Parameter Values

N 100

D 3, 5, 10, 15, 20, 25

fmin/fmax 300/300 (MDD), 100/500 (PDD)

µmax 0, 0.5, 1

σ2
max 0.1, 0.2, 0.5, 1

Table 4.1: Parameter values adopted in the simulation experiment.

In Figure 4.3, the RRA methodology is illustrated using an example data set of PDD

(D = 10, N = 100 and fmin = 100, fmax = 1000). Figures 4.3A and 4.3B show the

clr-transformed count data and raw count data, respectively. Because fmin > fmax, much

variability in the raw counts is associated with variable sample size. However, as a result

of the scale-invariance of clr-transformed data, this variability is not re�ected by the clr

transformed count data (4.3A). Figures 4.3C and 4.3E show the RRA obtained with u-RRA,

whereas Figures 4.3D and 4.3F show the f-MLRRA result as clr-transformed counts and raw

counts, respectively. It is immediately apparent that the cross plot associated with u-RRA

shows more scatter than the one associated with f-MLRRA.

4.3.4 Experimental design

The ability of the RRA methods to reconstruct noise-free count data was investigated for

data sets with di�erent properties. In the simulation experiment, seven parameters were

varied (Table 4.1): the number of observations N , the dimensionality D, the sample size

parameters fmin and fmax, the maximum variance of the clr -transformed variables σ2
max,

the maximummean µmax of the clr-transformed variables, and the distribution fromwhich

the data are drawn (i.e. MDD or PDD). MDD have a constant sample size and therefore

fmin = fmax. For PDD, fmin < fmax. Note that fmin + fmax is constant. Also N is held

constant (N = 100) in all experiments. All combinations of parameter values were tested.

In the experiment, one con�guration serves a special goal: a data set with a maximum

variance of 0.1 represents a workable example of a data set containing multiple realizations

from the same specimen. Because reduced-rankmethods rely on covariance, it is impossible

to analyse the performance of RRA methods for data sets with zero variance (i.e. with

σ2
max = 0).

4.3.5 Diagnostics

The ability of the various RRAmethods to reconstruct the noise-free data is tested according

to the �ow chart in Figure 4.2. Each experiment consists of l = 1, 2, ...B data sets. Because

each method was applied to every data set, their outcomes can be evaluated in a paired

manner. First, the residual sum of squares is calculated for every data set b and method q:

RSSbq =

N
∑

k=1

D
∑

j=1

(ẑkj − zkj)
2 (4.57)

where ẑ is the RRA in clr space and z is the noise-free data in clr space. Then, the
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Ẑ
[-
]

1000 2000 3000

500

1000

1500

2000

2500

3000

X [cnts]

X̂
[c
n
ts
]

−1 0 1

−1

−0.5

0

0.5

1

1.5

Z [−]

Ẑ
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Figure 4.3: Modelling result for the example data set. In A and B, the RRA is shown, both as clr-transformed

counts and as counts, respectively. The cross plots in C-F show the rank-de�cient noise-free data against the

u-RRA result (C and D) and the f-MLRRA result (E and F). C and E show the results in clr-transformed counts

whereas D and F show the results in counts. In all plots, di�erent colors re�ect di�erent variables.
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performance gain parameter PG is calculated with respect to the benchmark (i.e. u-RRA):

PGq = exp

(

1

B

B
∑

l=1

log

(

RSSb0

RSSbq

)

)

(4.58)

where B is the number of data sets generated within each experiment. The value of

PGq re�ects the average proportional decrease in residual variance obtained when using

the method q as alternative for the null method.

When comparing the results associated with di�erent methods and di�erent data sets,

it is important that the degrees of freedom are taken into account. All RRA methods com-

prise the same number of parameters and likewise consume the same number of degrees

of freedom. However, the degrees of freedom of the residuals vary among data sets with

di�erent N and D. Furthermore, the residuals analysed in this study represent residuals

between the RRA and the noise-free data whose degrees of freedom are di�cult to predict.

We circumvent the necessity of de�ning the degrees of freedomby evaluating the result-

ing PG-values also in a relative sense so as to be able to compare experiments comprising

di�erent D. This measure is referred to as the relative performance gain RPG, re�ect-

ing the decrease in residual variance as a result of choosing a particular method in favour

of another. For instance, RPG32 is the relative performance gain when using method 3

(f-MLRRA) instead of method 2 (d-MLRRA) which is given by:

RPG32 =
PG3 − PG2

PG2
(4.59)

RPG re�ects a proportional performance gain, i.e. RPG32 = 0.10 implies that method

3 performs 10% better than method 2.

4.3.6 Computational load

In addition to the potential performance increase obtained by the three alternativemethods,

also the computational load was monitored. Wemonitored the time it took for each method

to produce an answer. Furthermore, for the ML-based methods which rely on an iterative

scheme, we adopted amaximumnumber of iterations (500). If convergencewas not reached

within this number of iterations, the routine was terminated. We also exited the algorithm

when the SVD algorithm ofMATLAB did not converge when inverting a covariancematrix.

All code was written in MATLAB and executed on a PC with an Intel Core i5 (3.1 GHz)

processor.

4.4 Results

In Figure 4.4, the PG-values are shown for both MDD and PDD.We see that the alternative

methods always perform better than our null method (u-RRA). Only when µmax = 0, w-
RRA displays the same performance as u-RRA. MLPCA-based methods are not better than

u-RRA in case both σmax and µmax are close to zero. The results also show that generally,

PDD bene�t more from the alternative methods than MDD.

Figure 4.5 shows the e�ect of σ2
max on RPG21. It turns out that as σ

2
max decreases, so

does RPG21. In Figure 4.6, the e�ect of dimensionality is shown on RPG32. We observe

that asD increases, RPG32 approaches zero. This applies to both MDD and PDD: in both
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cases, the performance gain has decreased to less than 10% for D = 15. Finally, Figure 4.7
shows the median convergence time of the di�erent methods as function of the size of the

data matrix.

4.5 Discussion

4.5.1 Method performance

The results in Figure 4.4 show that all alternative methods generally perform better than

u-RRA. The fact that MLRRA methods give better results than u-RRA is consistent with

earlier work by Wentzell and Lohnes (1999). Furthermore, we observe that this e�ect is

the strongest for PDD. This can be explained from the fact that in MDD there are only

variations among the errors in the columns whereas PDD is characterised by variable row

and column error variances.

For µmax = 0 and for all σ2
max, PG1 is practically zero (Fig. 4.4) which indicates that

for MDD, w-RRA gives virtually the same result as u-RRA. This stems from the fact that

both row and column variances are equal for MDD. The row variances are equal because

the number of counted objects is held constant and the column variances are equal because

µmax = 0. In this hypothetical case, w-RRA and u-RRA perform equally well.

In the left-most column of Figure 4.4 we observe that as both µmax and σ2
max approach

zero, none of the alternative methods perform better than u-RRA. This can be explained

from the fact that when bothµmax and σ
2
max are zero, error variances associatedwith every

entry in the data set become equal. Likewise, compensating for errors will not contribute

to a better RRA.

From the results in Figure 4.5 it follows thatRPG21 is largely controlled by σ
2
max. This

is caused by the fact that, as σ2
max approaches zero, the rank of the data matrix approaches

unity. Because the error estimates are equal to the observed counts, a data matrix with unit

rank implies that the matrix with error variances also has unit rank: in that case the w-RRA

solution is equal to the f-MLRRA solution.

The results in Figure 4.6 show thatRPG32 is a function of the dimensionality. This can

be explained from the fact that o�-diagonals of the ECM approach zero as the dimensional-

ity goes to in�nity. Likewise, asD becomes large, d-MLRRA gives approximately the same

result as f-MLRRA.

Equal column means yield on average equal o�-diagonals, whereas large di�erences

between the column means result in dispersion among the o�-diagonals: intuitively, we

expected that ignoring equally-valued o�-diagonals would have a smaller impact on the

result than ignoring dispersed o�-diagonals with the same mean magnitude. However, the

results of the experiment are inconclusive with regard to this hypothesis (see Fig. 4.6, A

and B): between D = 5 and D = 15, the µmax = 0 curve is lower than that of µmax = 1
suggesting that the d-MLRRA solution is more close to the f-MLRRA solution when column

means are equal. For D = 3 and D ≥ 20, however, it seems to be the other way around.

The three conclusions we can draw are that (1) the impact of the dispersion among

column means on the quality of the d-MLRRA is much smaller than that of the dimen-

sionality, (2) the relative performance gain when using f-MLRRA instead of d-MLRRA can

be predicted on the basis of D and (3) the relative performance gain as a result of using

d-MLRRA instead of w-RRA can be predicted on the basis of σ2
max.
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Figure 4.4: Results of the simulation experiment. The plots represent the performance gain PG of the three

alternative methods relative to u-PCA (rows) as function of the number of variables D and for di�erent σ2
max

(columns). The solid and dashed lines show the MDD and PDD results, respectively .
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Figure 4.7: Median convergence times observed in the simulation experiment.

4.5.2 Method selection

Our �ndings regarding the di�erent methods can be summarised in terms of limiting cases.

Firstly, we can state that:

lim
var(X)→x̄

(

Ẑu-RRA

)

= Ẑd-MLRRA (4.60a)

lim
var(pj)→p̄j

(

Ẑw-RRA

)

= Ẑd-MLRRA (4.60b)

which implies that as the total variance of a count data set can be completely explained

by random counting errors, u-RRA gives the same result as d-MLRRA. This was illustrated

by the case where σ2
max → 0 and µmax = 0. The fact that u-RRA �nds the same solution

as d-MLRRA only in case there is no variability in the data set is an interesting result, given

that it is generally assumed that the errors in compositional data sets are iid. Secondly,

Equations 4.60a and 4.60b may be extended because:

lim
D→∞

(

Ẑd-MLRRA

)

= Ẑf-MLRRA (4.61)

so that Ẑd-MLRRA is interchangeable with Ẑf-MLRRA for large D.

Because real data sets generally re�ect samples with di�erent properties and/or di�er-

ent sample-sizes we conclude that the simplest method suitable for practical applications

is w-RRA. Practical applications in which w-RRA will prove useful are spectroscopic ap-

plications where the variability in peak height is small and the number of channels is large.

For spectroscopic applications with larger column variability, the d-MLRRA approach is

the method of choice. Data sets with small D always require f-MLRRA for accurate RRAs.
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4.5.3 Computational performance

The fact that d-MLRRA can serve as an alternative for data sets with largeD is convenient

because, as shown in Figure 4.7, f-MLRRA is computationally more expensive. In general, f-

MLRRA is between one and two orders of magnitude slower than d-MLRRA. Furthermore,

the computational load of f-MLRRA increases much faster with the size of the data matrix

than that of the other methods. Although the MLPCA code we employed was not spe-

ci�cally designed for speed, these results show that f-MLRRA becomes impractical when

combined with resampling techniques such as leave-one-out cross-validation, or when it is

applied to very large data sets. Apart from its high computational load, f-MLRRA may be

jeopardised by the fact that the matrices become too large for the available storage capacity.

In this study, both d- and f-MLRRA were initialized with the u-RRA result. To increase

e�ciency we investigated whether computational load may be reduced by means of a dif-

ferent initialization strategy. In some simulation experiments (not shown here) it was tested

whether computational load decreased by initializing (1) d-MLRRA with the w-RRA solu-

tion and (2) f-MLRRA with the d-MLRRA solution.

It turned out that initialization of d-MLRRA with the w-RRA basis does not necessarily

save computation time. In case σ2
max = 0.1 we found that computation time is reduced,

whereas for σ2
max = 1 the computation time was found to have increased. Apparently,

d-MLRRA only bene�ts from w-RRA initialization in case the two solutions are almost

equivalent. In that case, however, the d-MLRRA solution has no added value.

We also found that d-MLRRA and f-MLRRA require approximately the same number

of iterations to reach convergence, irrespective of the properties of the data set. Initializ-

ing f-MLRRA with the d-MLRRA solution reduces the number of f-MLRRA iterations by

approximately 50%. This translates to a decrease in convergence time: a time reduction of

40% was observed for N = 100 and D = 25.

4.5.4 Optimal Scale-Invariant Reduced-rank Approximation (OSIRA)

The results of the simulation experiment may be used to de�ne an algorithm for optimal

RRA of noisy count data. This algorithm is based on selecting the optimal RRA method in

terms of e�ciency and performance based on the properties of a data set.

Although f-MLRRA displayed the best performance, it is unnecessary and not e�cient

to use f-MLRRA if any of the computationally less demanding methods perform equally

satisfactory. Therefore, we propose to calculate a priori the expected RPG-values and use

these to select the most suitable method. Selection, in turn, is performed based on a user-

speci�ed threshold value r. This value controls when a less e�cient method is used in

order to get a more reliable RRA, e.g. r = 0.05 implies that the user wishes to use a more

expensive method if that method performs at least 5% better in terms of residual variance.

First we postulate functions that predict RPG32 and RPG21. We found that RPG21

may be predicted from σ2
max, whereas RPG32 can be predicted from D. Approximate �ts

to the simulation results are:

R̂PG21 = 0.75σ2
max

R̂PG32 = 1.25D−1
(4.62)

The two functions are shown in Figures 4.5 and 4.6. Both �ts are acceptable for all

D ≥ 5: in that range they (1) �t reasonably well, and (2) they are conservative: the expected
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performance gain is underestimated rather than overestimated.

Next, we use these predictedRPG-values to select the optimal method. In case R̂PG32

is large, f-MLRRA is used. In case R̂PG32 is small, the choice between w-RRA and d-

MLRRA is made based on R̂PG21. Combining these two selection rules de�nes an al-

gorithm for RRA of count data, which we refer to as OSIRA:

OSIRA =











R̂PG32 > r d-MLRRA
init−−→ f-MLRRA

R̂PG32 ≤ r

{

R̂PG21 > r −→ d-MLRRA

R̂PG21 ≤ r −→ w-RRA

(4.63)

where r < 0.25. By imposing this restriction on r, we foresee that forD < 5, f-MLRRA

will be the selected method: in this range the predictedRPG-values tend to underestimate

the true RPG-values found in the simulation experiment (see Figs. 4.5 and 4.6). Code for

OSIRA may be downloaded at http://www.ascar.nl.

4.5.5 General remarks

An aspect which we did not consider to solve in a ML sense is mean centering. When errors

are uncorrelated among the rows and columns, the ML-estimate of the mean coincides with

the weighted arithmetic mean, either along the rows or the columns. However, in case of

clr-transformed count data this is only the case in the limit and the weighted arithmetic

mean is only an approximation to the truly ML mean. In the future, it may be attempted

to include ML-estimation of the mean in the algorithm, however, we expect that for data

sets with a considerable number of observations ML-like mean centering will not give a

signi�cant improvement.

A way to potentially increase the signal-to-noise ratio of RRAs to spectroscopic data

would be to amalgamate variables (i.e. channels). Since the sum of Poisson-distributed vari-

ables is again Poisson-distributed for which holds that λ = λ1 + λ2, the counting error in

clr space associated with the newly-formed variable is smaller than those of the amalgam-

ated variables individually. However, to prevent losing signal, only variables re�ecting the

same signal should be amalgamated. Combining RRA with smart amalgamation strategies

is a subject of future research. Another logical extension of the work presented here is to

generalize the methodology so that it is applicable to all log-ratio spaces (e.g., the isometric

log-ratio space (Egozcue et al., 2003)).

4.6 Conclusions

1. All spectroscopic and compositional data either directly or indirectly originate from

count data, or they can be considered to have similar error characteristics.

2. Count data may be decomposed into a scale vector and a proportions matrix P. Be-

cause the rows of P are compositions, data analysis and modelling should be per-

formed in a suitable metric space such as the clr space. Although this space is scale

invariant, the scale and the composition together determine the counting error as-

sociated with the clr-transformed variables: the error covariance structure is com-

pletely determined by P where the scale t only causes an in�ation/de�ation of the

error covariance matrix.
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3. The error-covariance structure in clr space is identical for data originating from a

multinomial or Poisson distribution. This implies that for count data in this space,

there is a universal error model.

4. The counting errors in clr space become independent as the number of variables D
goes to in�nity. The errors become iid only in the hypothetical case where a data set

comprises repeated realisations with the same sample size from the same population

and expressed in terms of an in�nite number of object classes. In non-trivial cases,

the error covariances of a set of count data will never be iid.

5. In a simulation experiment, various RRA methods were tested including unweighted

RRA (u-RRA), weighted RRA (w-RRA), diagonal MLRRA (d-MLRRA) and full MLRRA

(f-MLRRA). Synthetic rank-de�cient data sets were generated and, given that the true

rank was known, the ability of the methods to approximate the noise-free data was

evaluated. As expected, the f-MLRRA solution was closest to the noise-free data.

6. Under certain conditions, the results obtained with the less advanced methods are

nearly identical to those obtained with f-MLRRA. Based on the simulation experi-

ment, an algorithm was proposed which consists of a set of method selection rules

employing a user-speci�ed threshold value r whereby r ≤ 0.25. This algorithm is

referred to as Optimal Scale-Invariant Reduced-rank Approximation (OSIRA). Com-

bining OSIRA with an intelligent amalgamation strategy is the subject of future re-

search.
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CHAPTER 5

Modelling the uncertainty of routine chemical analyses 1

5.1 Introduction

Estimating the concentration of chemical components in natural and arti�cial materials

is the fundamental task of analytical chemistry. An equally important task is to estimate

or predict the uncertainty of chemical analyses for statistical inference and data process-

ing. An example of inference is process monitoring: if the objective is to approve or reject

a batch of an industrial product on the basis of chemical analyses, one must incorporate

the natural variability introduced in the analytical process to prevent inadvertent rejection

of batches with acceptable quality. Examples of data-processing techniques which bene-

�t from an appropriate model of uncertainty are principal components analysis (Wentzell

et al., 1997), multivariate regression (Wentzell and Andrews, 1997; Schreyer et al., 2002) and

reduced-rank approximation (Bloemsma and Weltje, 2015).

The analytical uncertainty of spectro-chemical analysis is controlled by many factors,

including instrument resolution and method/operator bias. A so-called bottom-up ap-

proach to predict the analytical uncertainty is described in the "Guide to the Expression of

Uncertainty in Measurement", i.e. the "GUM" (JCGM, 2008). This approach relies on a thor-

ough understanding of the data-generating process, and it is therefore mainly of practical

value for laboratories and instrument manufacturers (Luo et al., 2006; EUROLAB, 2007).

Moreover, this approach is risky because an inadequate or incomplete description of the

mathematical/physical process may lead to underestimation of the "true" analytical uncer-

tainty (Thompson and Ellison, 2011). The alternative is to use a top-down approach, i.e.

use empirical estimates of variability associated with one or a combination of sources of

uncertainty (e.g., counting) to predict the "true" uncertainty (Williams et al., 2000). A sens-

ible estimate of the uncertainty is the so-called reproduciblity standard deviation, typically

denoted by "SDR". The SDR can be estimated empirically by letting similar specimens be

analysed by di�erent laboratories using di�erent analytical techniques. Conducting such

1Submitted as: Bloemsma, M.R. and G.J Weltje. Predicting the uncertainty of routine chemical analyses: a new

modelling approach based on evaluation of pro�ciency tests. Analyst.
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an experiment for every sample, however, is very costly and impractical.

For an end user, the most practical approach would be to employ an Uncertainty Func-

tion (UF) which predicts the analytical uncertainty based on the measurements itself. The

primary ingredient required to construct an UF is a suitable data set to constrain the func-

tion. End users are likely to (i) have no particular reason to choose one competent labor-

atory over the other, and (ii) do not prefer one particular analytical method over another.

Suitable data for constructing UFs are therefore provided by Pro�ciency Tests (PTs) (see

Horwitz and Albert, 2006; Hund et al., 2000, and references therein).

Construction of empirical UFs from the outcome of PTs with the objective to predict the

SDR is not new. Most analytical chemists will be familiar with the Horwitz function which

relates the concentration to an expected SDR by means of a power law (see e.g. Horwitz,

1982). The Horwitz function and the associated HorRat represent the current standard in

uncertainty speci�cation and performance evaluation, respectively (Horwitz and Albert,

2006). Despite their world-wide use, the extent to which these and other empirical UFs

behave within limits of physical and statistical plausibility have been given little attention.

The aim of this contribution is to examine current UFs in the light of physical and statistical

theory. We show that existing UFs are broadly consistent with spectrochemical calibration

equations. Fundamental problems arise, however, when we try to reconcile these �ndings

with the de�nition of concentrations as mass fractions. We show that this apparent con-

tradiction may be resolved by employing an appropriate UF. Finally, a new performance

measure is proposed to replace the HorRat.

5.2 UFs and spectrochemical theory

5.2.1 UFs from PT data

The rationale behind this study is illustrated in Figure 5.1. In A, the theoretical Probability

Density Function (PDF) is shownwhich characterises all existing chemical laboratories and

analytical techniques, i.e. the population. The adopted assumption is that all these tech-

niques and laboratories on average are unbiased, i.e., in the hypothetical case in which we

could sample an in�nite number of laboratories we would obtain the "true" concentration.

The blue line represents this unknown "true" concentration (=0.4). In B, the results of a PT

are demonstrated: the "population" was sampled, yielding a consensus value (∼0.4) and an

SDR shown in green (i.e. the mean/median analyte concentration and the spread). In C,

the two are linked by an UF shown in red. In D, this UF is used to predict the analytical

uncertainty associated with a "new" concentration estimate (dashed line). As suggested by

the arrows, this work�ow is dynamic because UFs may need to be updated whenever new

PTs have been conducted.

Given that analytical uncertainty consists of random and systematic e�ects, it may seem

as if using SDR as a proxy for the analytical uncertainty ignores the contribution of syst-

ematic e�ects. Key behind this approach is that although a single laboratory or group of

laboratories may be biased, we assume that all laboratories together are unbiased. This is

a reasonable assumption, given the general absence of a "knowable truth". Furthermore,

bias behaves randomly among the laboratories and methods, which means that random

and systematic e�ects are in e�ect indistinguishable.

Another assumption which underlies this approach is that the change in predicted SDR

as function of concentration is small in relation to the SDR itself. In that case, the UF val-
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Figure 5.1: Illustration of the PT-based uncertainty modelling approach employed in this study. (A) The true con-

centration is represented by a blue line, together with a distribution characterising the population of laboratory-

instrument combinations. (B) The PT experiment which yields a consensus value and an associated SDR (green

lines). (C) An UF is �tted which links consensus value to SDR, and (D) this UF is used to estimate the analytical

uncertainty (red) for the "new" concentration estimate, indicated by the dashed vertical line.
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ues associated with the "true" and estimated concentration are very similar. Given that the

concentration estimate lies within the 95% con�dence interval of the distribution of labor-

atories, the true value thus lies within a 95% con�dence interval around the concentration

estimate. Despite being an approximation, this justi�es statistically the approach presented

in this contribution.

5.2.2 Parametric forms

Several types of UFs have been discussed in literature (e.g., Jiménez-Chacón and Alvarez-

Prieto, 2006). The most basic UF has a linear form (Zitter and God, 1971):

f(c) : σ = aL + bLc (5.1)

which implies a constant rate of change of the standard deviation with concentration,

and a positive standard deviation at zero concentration. Zitter and God (1971) proposed a

slightly di�erent parametric form given by:

f(c) : σ =
√

a2L + (bLc)2 (5.2)

The quadratic form of Eqn. 5.2 is more in line with statistical theory than that of Eqn.

5.1, because it is based on additivity of variances rather than standard deviations.

A more �exible parametric form with a variable exponential term was proposed by

Thompson (2011):

f(c) : σ =
√

a2C + (bCcdC )2 (5.3)

It was referred to as the "Characteristic Function" (CF) because it is considered to be a

function suitable for capturing the behaviour of a speci�c combination of analytical setup

and analyte. Two examples of the CF are shown in Figure 5.2 which both have bC = 0.02
and dC = 0.8495 whereas their intercept terms aC di�er. This parametric form turns

out to be adequate for predicting the standard deviation on di�erent levels of precision:

it was used to model the instrumental precision (Thompson and Cole, 2011), repeatability

(Thompson and Cole, 2009) and reproducibility (Thompson et al., 2008).

5.2.3 UF examples

The best-known example of an UF is the Horwitz function (see e.g. Horwitz et al., 1980;

Horwitz, 1982):

f(c) : σ = 0.02c0.8495 (5.4)

It has the same form as the CF with aC = 0, bC = 0.02, dC = 0.8495 (see Fig. 5.2). The
Horwitz function is based on an inter-laboratory experiment involving 50 laboratories and

a wide range of commodities and analytes. Although based on collaborative trial data, the

function is also considered to predict the SDR associated with PTs with acceptable accuracy

(Thompson and Lowthian, 1997; Thompson, 2000).

Later studies revealed that the Horwitz function is biased: it overestimates the ana-

lytical uncertainty for concentrations exceeding 10% and it underestimates the analytical

uncertainty for concentrations below 10−8 (Horwitz and Albert, 2006). To correct this bias,
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Figure 5.2: Relation between concentration and standard deviation of di�erent UFs on logarithmic (A) and linear

axes (B).

Thompson (2000) proposed an UF which subdivides the domain into three parts in which

there is a di�erent relation between concentration and uncertainty:

f(c) : σ =











0.22c, if c < 1.2× 10−7

0.02c0.8495, if 1.2× 10−7 ≤ c < 0.138

0.01c0.5, if c ≥ 0.138

(5.5)

The function is shown in Figure 5.2. In the middle part, the function is identical to the

Horwitz function. At the high-concentration end, the function suggests that the uncer-

tainty increases more slowly with concentration than speci�ed by the Horwitz function

whereas the converse applies to the low-concentration end.

5.2.4 Physical plausibility

All UFs discussed thus far were based upon empirical evidence and only loosely based on

statistical considerations. A few studies have attempted to provide a theoretical basis for

the parametric form of these UFs post-hoc. They tried to explain the exponential relation

between the concentration and the error from conceptual models. Hall and Selinger (1989),

for instance explained this proportionality from the principle of least e�ort (i.e. Pareto’s

law). Albert and Horwitz (1997) explained proportionality between concentration and error

from fractal theory, i.e., they stated that smaller concentrations are measured with a higher

(concentration) resolution. Although intuitively these conceptual models make sense, they

are not a proof in the strictly mathematical or statistical sense.

5.2.5 Calibration

In an attempt to break away from the empirical nature of UFs, we evaluate the physical

tractability of these functions in relation to the nature of the data. A starting point for this
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evaluation is to consider the basis of spectroscopic quanti�cation methods (e.g., Jenkins,

1999; De Vries and Vrebos, 2002):

C ∝ I (5.6)

i.e. proportionality between absorption or emission peak intensities I (in, e.g., counts per

second) and analyte concentrations C (in, e.g., proportions). It is assumed that I relates to

a particular analyte peak and may be written as:

I =

N
∑

n=1

Sn −Bn (5.7)

wherebyBk re�ects the background in the k-th channel and Sk is the spectral count in this

same channel. If we write the proportionality in terms of an equality we obtain the basic

univariate calibration equation (BUCE):

C = KI (5.8)

where K is a constant whose units must be the inverse of the units of I because con-

centrations are dimensionless by de�nition.

5.2.6 Propagation of counting errors

A reasonable assumption with regard to spectroscopic quanti�cation is that it behaves as

a Poisson counting process. Based on Poisson counting statistics it can be shown that

the background subtraction step in the calculation of I could explain the necessity of an

intercept term. The counting error in I as a result of �nite count times reads:

δ2I =
N
∑

n=1

(δ2Sn + δ2Bn) (5.9)

and because the counting errors in Sn and Bn are given by Poisson counting statistics:

δ2S = E(S) = E(B + I), δ2B = E(B) (5.10)

the following expression is obtained for the counting error in I :

δ2I =

N
∑

n=1

(E(Un) + E(2Bn)) (5.11)

If we also assume that the background is �at (i.e. Bn ≈ B for all n), the following holds:

δ2I ≈ 2NB + I (5.12)

Given BUCE the following may be written for the Poisson variance of C :

δ2C ≈ a+ bI (5.13)

where a and b have the same units asK . Taking the square root yields a function with

the same form as the CF (Eqn. 5.3) with aC = a, bC = b and dC = 1/2.



Development of a modelling framework for core-data integration using XRF scanning 85

5.2.7 SDR at low concentrations

Equation 5.13 shows that background subtraction, which is necessary to determine intens-

ities, is a mechanism that can explain the necessity of an UF with intercept term.

Studies at various levels of precision showed that the intercept is generally greater than

zero (see Thompson et al., 2008; Thompson and Cole, 2009, 2011). The Horwitz function, on

the other hand, does not have an intercept term. A possible explanation for this di�erence

is the fact that the intercept is hardware-, software- and analyte-speci�c. The study by

Thompson et al. (2008) supports this hypothesis: analysis of PT data involving food stu�s

yielded that intercepts varied between 0.015 (Nitrogen) and 4 (Acrylamide). If no distinc-

tion is made between analytical setups and analytes, which was the case for the Horwitz

function, this non-linearity does not manifest itself as a trend that can be captured by one

function. Moreover, this non-linearity may not always stand out from the noise.

An intercept in an UF causes a departure from a linear trend in log-log space which

sets in at low concentrations, and manifests itself as a relative �attening (see Figure 5.2).

The opposite behaviour is implied by the UF proposed by Thompson (2000) (Eqn. 5.5). This

steepening trend has been ascribed to progress in data acquisition and data processing

technology (Thompson and Lowthian, 1997). However, instead of progress in technology a

simpler explanation is that censoring has a�ected the distribution of the data. Since negat-

ive values are by de�nition not physically meaningful, laboratories and/or software man-

ufacturers may be tempted to replace these negative values by zeros or very small positive

values (e.g. detection limits). Replacing negative realizations by zero or a small constants

will result in the data having an asymmetric distribution whose spread may be smaller than

expected on the basis of the Horwitz function.

To illustrate this phenomenon, we performed a simulation experiment. For a given con-

centration, 10.000 random realizations were generated from a normal distribution whose

standard deviation conforms to the Horwitz function. All realisations which were smaller

than zero were set at zero. Then, the experimental mean and standard deviations were cal-

culated. This was performed for di�erent concentrations: the concentrations are given by

10x where x ranges between -15 and -5 with increments of 0.25. The results are shown in

Figure 5.3 where the relation between the experimentally derived standard deviation and

the theoretical standard deviation is shown in (A), and the ratio between theoretical and

experimental standard deviation is shown in (B). Note that the in�uence of censoring be-

comes negligible for concentrations above 10−9 whereas the ratio between the theoretical

and experimental standard deviation is greater than two for concentration below 10−14.

5.2.8 SDR at high concentrations

Conversion of Equation 5.13 to a CF-like function yields an exponential term equal to 1/2.

Hence only an UF with an exponential term of 1/2 can be explained by counting statistics.

Studies describing a concentration-uncertainty relation characterized by an exponential

term approximately equal to 1/2 are rare (see e.g. Hughes and Hurley, 1987). Also the

Horwitz function is incompatible with counting statistics given that its exponential term

equals 0.85. The UF proposed by Thompson (2000) consists of three functions and the

function in the high-concentration regime has an exponential term equal to 1/2, consistent

with Poisson counting statistics. However, the fact that this trend is found only in the high-

concentration regime contradicts expectations from spectrochemical analyses (Luo et al.,



86 Modelling the uncertainty of routine chemical analyses 5

10
−15

10
−13

10
−11

10
−9

10
−7

10
−5

10
−10

Concentration [−]

S
ta

n
d

a
rd

 d
e

v
ia

ti
o

n
 [

−
]

 

 
A

Horwitz function

Experimental data

10
−13

10
−11

10
−9

10
−7

10
−5

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Concentration [−]
H

o
rw

it
z 

st
d

d
e

v
 /

 E
xp

e
ri

m
. s

td
d

e
v

 [
−

]

B

Figure 5.3: Results of the simulation experiment showing the e�ect of censoring. In A, the dashed blue line

represents the theoretical concentration-uncertainty relation (i.e. the Horwitz function) whereas the black dots

represent the estimated concentrations and standard deviations. In B, the ratio between the theoretical and es-

timated standard deviation is shown as function of the concentration.

2006): high concentrations correspond to high intensities for which counting errors are

generally negligible. We would expect this exponent in the low-concentration regime.

Thompson and Lowthian (1997) attributed the �attening of the SDR at high concen-

trations to a relative decrease in analytical performance. This would imply that chem-

ical and spectroscopical research should focus more on improving quanti�cation of high-

concentration analytes rather analytes present in trace amounts. Unfortunately, however,

no evidence has been presented for the root cause of this relative �attening towards the

high-concentration end.

5.3 UFs and statistical theory

In the previous section we have reviewed the general parametric form of most UFs and we

tried to relate them to basic spectrochemical theory. The starting point of this section is to

consider the properties of the data we intend to acquire, i.e. concentrations.

5.3.1 Properties of compositional data

Concentrations are compositional quantities. The compositional nature of concentration

data leads to a number of properties regarding their uncertainty. To study the implications

of this compositional nature for uncertainty modelling, we consider a hypothetical sample

which is a mixture of only two components: component A and component B. Given that

aA and aB are the amounts of mass in arbitrary units (e.g. mg), the total mass of the sample
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is given by aA + aB . The concentrations of A and B in proportions are given by:

cA = aA

aA+aB

cB = aB

aA+aB

→ cA + cB = 1 (5.14)

This operation is commonly referred to as closure (Aitchison, 1982; Chayes, 1960).

Because amounts of mass are non-negative, the following holds for the D-part vector

containing the amounts divided by their sum:

c :

D
∑

i=1

ci = 1, 0 ≤ ci ≤ 1 (5.15)

Hence, concentrations have an upper limit, a lower limit and a sum-constraint. Fur-

thermore, they are intrinsically correlated and not statistically independent (Chayes, 1960;

Aitchison, 1982).

5.3.2 Symmetry of uncertainty

The proposition that spectroscopic techniques are capable of measuring concentrations

automatically leads to the desired properties of the analytical uncertainty, and the corres-

ponding UFs. To illustrate this, we consider a substance which consists of two analytes (i.e.,

analyte A and B):

ĉA = cA ± δcA
ĉB = cB ± δcB

(5.16)

We know that cA and cB are compositional quantities and if we assume that the con-

centration estimates ĉA and ĉB are also compositional quantities we obtain:

(cA ± δcA) + (cB ± δcB) = 1; (5.17)

If we also consider that cA + cB = 1, the above expression reduces to:

δcA = δcB (5.18)

Hence, the uncertainty associated with one component must be equal to the uncer-

tainty associated with the other component. We derived this requirement for a mixture of

two components. However, using the notion of analyte and matrix, any mixture can be

expressed in terms of D two-component mixtures de�ned as cA and cM = 1 − cA with

cA the analyte concentration and cM the matrix concentration. For an UF to be consistent

with theory the following must hold:

f(cA) = f(cM ) → f(c) = f(1− c) c ∈ [0, 1] (5.19)

i.e., the UF must be symmetric around c = 0.5.
Because amounts and therefore concentrations are by de�nition non-negative their as-

sociated UF predicts zero standard deviation at zero concentration:

f(0) = 0 (5.20)
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Hence, an empirically-derived UF is consistent with statistical theory if it does not have

an intercept term. Combining this requirement with the symmetry requirement (Eqn. 5.19)

implies that the predicted uncertainty at the other physical limit must also be zero:

f(1) = 0 (5.21)

5.3.3 Plausibility of concentration-uncertainty relations

Not only the UF’s behaviour at the physical boundaries determines whether concentrations

potentially violate physical limits. The concentration-dependent part of the UF controls the

domain in which physical plausibility is ensured. This domain is de�ned as the range in

which the probability of violating the physical limits (Eqn. 5.15) is acceptably small. In

order to specify this domain, we adopt the convention that uncertainties follow a normal

distribution (cf. Thompson and Howarth, 1976).

The probability of violating the physical limits can be calculated for any combination of

concentration and uncertainty. By de�ning a maximum probability of encountering phys-

ically implausible results, we are able to derive the Limits Of Physical Plausibility (LOPPs).

The lower LOPP is given by:

σlL =
c

Φ−1(1− α)
(5.22)

whereΦ−1(1−α) is the inverse cumulative distribution function of the standard normal

distribution and c ∈ [0, 1]. Consistent with the principle of symmetry (Eqn. 5.19), the upper

LOPP is de�ned analogously:

σuL = 1− c

Φ−1(1− α)
(5.23)

Note that the lower and upper LOPP are characterised by proportionality between

concentration and standard deviation. Together they de�ne a region in concentration-

uncertainty space. Any UF which aims at describing the relation between concentration

and uncertainty is only valid within this region, which is therefore called the "permissible

region" bounded by clL and cuL. This region and the di�erent UFs are indicated in Figure

5.4. Given that concentration estimates behave according to a particular UF, these estimates

cannot be trusted outside the permissible region. Inside this region, the plausibility of an UF

can be evaluated based on the symmetry criterion (Eqn. 5.19). The limiting concentrations

are obtained by solving the following equations:

Lower LOPP : σlL = f(clL)
Upper LOPP : σuL = f(cuL)

(5.24)

which, depending on the UF, may be obtained analytically or numerically. For the

Horwitz function and the piece-wise alternative of Thompson (2000) the domains read

[10−8.88, 0.9552] and [0, 0.9770], respectively.
These results show a fundamental di�erence between the Horwitz function and the

function proposed by Thompson (2000): in contrast to the former, the latter implies that

analytical methods are not a�ected by violations of the physical limits. It is impossible to

calculate clL and cuL for the CF because its function parameters are unspeci�ed. However,

a positive intercept term implies that the CF will always cross the lower LOPP.
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Figure 5.4: Relation between concentration and standard deviation of di�erent UFs on logarithmic (A) and linear

axes (B). Both plot also show the permissible region for α = 1%.

5.3.4 Evaluation of existing UFs

From the parametric forms of the proposed UFs it is immediately apparent that they all vi-

olate the symmetry criterion and are therefore at odds with the de�nition of concentrations

as mass fractions (see Eqn. 5.14). This inconsistency can have important consequences for

statistical inference.

A speci�c example of statistical inference is performance quanti�cation. A well-known

performance measure is the Horwitz Ratio or ’HorRat’ (see Horwitz and Albert, 2006, and

references therein):

HorRat =
σemp

0.02c0.8495
(5.25)

Consider that wewish to quantify the performance of an analytical instrument by analysing

a substance which consists of two components, i.e. a low-concentration analyte and a high-

concentration matrix. According to theory, the error in δcA = δcM = δc. Depending on

whether we �ll in cA or cM in Equation 5.25, two di�erent HorRat values are obtained. Only

in case cA = cM the two values are equal. Hence, the HorRat performance measure is non-

unique and relies on a subjective decision about what is considered analyte and what is

considered matrix which, in turn, in�uences the result. This points towards a crucial error

in this approach.

Problems related to the asymmetrical nature of UFs have been recognised by Thompson

et al. (2008), who observed an inverse relation between moisture concentration and uncer-

tainty which they ascribed to the fact that moisture was indirectly quanti�ed by determin-

ation of the amount of dry residue. Horwitz and Albert (2006) also stressed the problems

surrounding asymmetry and stated that overestimation of uncertainties by the Horwitz

function at high concentrations is due to a "mathematical idiosyncrasy applied to paired

values". They also proposed an ad-hoc solution being that "high variability for moisture in

foods in the 5-20% region can be transformed to low variability if reported as solids in the

80-95% region". It is evident, however, that this is not a rigorous solution to a fundamental

problem.
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5.4 Synthesis

We have shown that asymmetrical UFs are inconsistent with the de�nition of concentra-

tions as mass fractions. Remarkably, a symmetrical nature of UFs was not implied by BUCE,

and likewise it did not follow from propagation of Poisson counting errors. This apparent

contradiction merits a closer look at the nature of spectroscopic calibration.

5.4.1 Physical and statistical theory compared

The fundamental assumption of BUCE is a unique relation between intensity and concen-

tration (Eqn. 5.8). Given that concentrations are dimensionless by de�nition, this would

require that the units of the proportionality constant K are in units of concentration per

units of intensity: something which can be adopted without further consequences because

it is a constant with no other purpose than relating I toW . But, a problem arises when con-

sidering the sample spaces of I and W : whereas W ∈ [0, 1], for I it holds that I ∈ [0,∞〉.
This is the root cause for the inconsistency noted above.

It is possible to achieve consistency of the spectroscopic calibration model in terms of

units and sample spaces. The simplest way to ensure that the sample spaces coincide is to

build the model on the following proportionality:

A ∝ I (5.26)

whereAj is the amount of mass of component j. The sample space of these two quantit-

ies is identical, namely [0,∞〉. In addition, proportionality between the amount and intens-

ity seems more physically tractable given that radiation is emitted or absorbed by matter.

This proportionality may be written as an equality by introducing the constant G:

A = GI (5.27)

G is very similar to K , however, it is expressed in units of mass per units of I (e.g.

[cps/g]).

Concentrations are mass fractions so that C = A/T , where T is the total amount of

mass given by:

T =

D
∑

j=1

Aj (5.28)

Using this de�nition, Equation 5.26 may be expressed in terms of concentrations:

A

T
=

GI

T
=

G

T
I (5.29)

The associated Consistent Univariate Calibration Equation (CUCE) reads:

C =
G

T
I (5.30)

Note that T is explicitly resolved and therefore a function of all amount estimates Aj ,

rather than a constant as in BUCE.
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5.4.2 BUCE and CUCE compared

BUCE and CUCE are very similar: they only di�er with respect to the multiplicative term.

The assumption implicitly made in BUCE is that T is constant. Hence the shortcut that:

K ≈ G

T
(5.31)

Given that T is indirectly controlled by, e.g., the strength of the radiation source (active or

passive) or the size of the irradiated area, this is a reasonable assumption given that K is

applied to one analytical setup with constant settings. The above short-cut, however, has

important consequences with regard to the uncertainty.

The statistical consequences will be illustrated by means of two examples. In these

examples we consider a jar �lled with black and white marbles whose composition needs

to be determined. The jar contains 90 black marbles and 10 white marbles (i.e. cb = 0.9 and
cw = 0.1). It is analyzed with a certain spectroscopic technique. In example 1 we adopt the

assumption that T is known (T = 100) and constant, i.e. the analogue of BUCE. In example

2, we use the CUCE with G = 1. In both cases it is assumed that the dominant source

of uncertainty is the counting process. Hence, the intensities are independent Poisson-

distributed variables with Poisson parameters λb = 90 and λw = 10, i.e. they behave

according to the CF with bC = 1 and dC = 1/2 (see Eqn. 5.3). This corresponds to

a situation in which peak areas can be derived by summation over a pre-de�ned set of

channels (i.e. no background and a negligible contribution from �tting to the error budget).

Example 1: T is constant (BUCE)

First, we will discuss the case in which proportionality is assumed between C and I . Since
G = 1, the estimated amounts are also Poisson-distributed. Their variances are given by:

δ2Âb = Ab = 90[marbles]

δ2Âw = Aw = 10[marbles]
(5.32)

It is evident that dividing the expected amounts by T (which equals 100) yields the

expected concentrations:

E(Ĉb) = E
(

GÂb

T

)

= 0.9

E(Ĉw) = E
(

GÂw

T

)

= 0.1
(5.33)

BecauseT is a constant, error propagation yields that for the variance of Ĉ the following

holds:

δ2Ĉb =
Gλb

T 2 = T−1Cb = 9× 10−3

δ2Ĉw = Gλb

T 2 = T−1Cw = 1× 10−3 (5.34)

Example 2: T is random (CUCE)

Our best estimate for T is de�ned as:

T̂ = Âb + Âw (5.35)
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Because the amounts estimated are random variables, so is T̂ . The concentrations of

the black and white marbles are given by:

E(Ĉb) = E
(

GÂb

T̂

)

= 0.9

E(Ĉw) = E
(

GÂw

T̂

)

= 0.1
(5.36)

Because the sum of Poisson-distributed variables is also Poisson distributed, T̂ is dis-

tributed according to λT = λb+λw . Error propagation then yields the following variances

associated with the concentration estimates:

δ2Ĉb = C2
b

[

λ−1
b − λ−1

T

]

= 9× 10−4

δ2Ĉw = C2
w

[

λ−1
w − λ−1

T

]

= 9× 10−4 (5.37)

These expressions are equivalent to the expression for the multinomial variance:

δ2Ĉb = λ−1
T Cb(1− Cb) = 9× 10−4

δ2Ĉw = λ−1
T Cw(1− Cw) = 9× 10−4 (5.38)

Hence, in contrast to example 1, the variances of the concentration estimators are equal

for both the black and white marbles.

Discussion of examples

In both examples we obtained a quantity whose expected value corresponds to the true

concentration. However, the two cases di�er fundamentally with respect to the obtained

uncertainties:

Example 1 : δ2Ĉ = T−1C

Example 2 : δ2Ĉ = T̂−1C(1− C)
(5.39)

In example 1, the uncertainty is asymmetric with respect to the concentration. The

uncertainty in example 2, however, behaves in a symmetric manner because the expression

contains the structural element C(1− C).
Provided that T has been properly estimated, these examples demonstrate that conven-

tional approaches to spectroscopic calibration can potentially yield unbiased estimates of

concentrations. Although unbiased, example 1 showed that BUCE yields counting errors

which are incompatible with the nature of compositional quantities.

5.4.3 Re-establish consistency by means of closure?

In the calibration mode, BUCE (example 1) would require estimation of the analyte-speci�c

constants K associated with the instrument and settings. This can be achieved using

data from "pure" substances (i.e. one bowl with only black and one bowl with only white

marbles) and set KW and KB such that KBIB = KW IW = 1. In the prediction mode,

BUCE now allows for independent prediction of marble concentrations whereby T is impli-

citly contained in the constants KW and KB : using a larger bowl would require di�erent

K-values.

For CUCE (example 2), calibration would again involve analysis of "pure" substances

but now the total amount of spectroscopically-active mass must be known (i.e. density
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times the irradiated area times the radiation penetration depth). In a similar manner as

BUCE, this then allows estimation of GW and GB . Prediction of future samples yields

amounts which turn into concentrations after dividing the estimated amounts by their sum.

In compositional data analysis theory this last step is referred to as closure (Aitchison, 1986).

Although CUCE is mathematically and physically more tractable than BUCE, CUCE

has limited practical value because it is impossible to estimate T . Closure would impose

the desired (symmetric) UF on concentration estimates. Using BUCE and subsequently

applying closure therefore seems a potentially powerful and simple solution. However, the

problem is that it relies on complete quanti�cation, i.e. that all components in the mixture

could be quanti�ed with the analytical method used. For incomplete quanti�cation, closure

will induce bias, because the mass fractions of components which could not be identi�ed

is eliminated from the composition. Closure of incompletely quanti�ed substances thus

results in a subcomposition (Aitchison, 1986).

5.4.4 Mimicking closure

Concentrations are intrinsically correlated because they have an upper bound and it is this

correlation which results in symmetric uncertainties. The fact that the dependency causes

symmetry means that in principle any kind of data processing operation which introduces

dependency can make the errors symmetric.

One process which may introduce dependency is multivariate calibration whereby an

optimal estimate of the full composition is postulated on the basis of all measured intens-

ities. Another relevant and closely related operation is matrix correction. Because matrix

corrections induce changes to the concentration of an analyte based on the concentration

of the matrix (i.e. the other components), they introduce correlation by de�nition. Hence,

we hypothesize that carefully executed matrix corrections and/or multivariate calibration

methods acknowledging the compositional nature of concentrations are indistinguishable

from closure (Eqn. 5.15). In a strictly statistical context, BUCE does not yield concentrations

but quantities whose �rst moment may be indistinguishable from that of concentrations,

whereas their second moment is not representative for the "true" uncertainty. We will refer

to such quantities as pseudo concentrations.

The extent towhich these processes resemble closure is likely to bemethod- and analyte-

speci�c. This means that uncertainties associated with pseudo concentrations can range

from fully asymmetric to fully symmetric and that for every analytical setup, empirical

evidence is indispensable.

5.4.5 Symmetry in empirical uncertainty data

The asymmetric nature of existing UFs appears to be related to their lack of �t, e.g., the over-

estimation of the analytical uncertainty by the Horwitz function for c > 0.1. The function
proposed by Thompson (2000) aims to correct this bias by using a piece-wise exponen-

tial function. We interpret this as an attempt to capture the symmetrical behaviour of the

analytical uncertainty which became apparent through evaluation of high-concentration

data.

In order to understand the origin of this bias for c > 0.1 we consider the limiting

property of the structural element c(1− c) which marks the di�erence between BUCE and



94 Modelling the uncertainty of routine chemical analyses 5

CUCE:

lim
c→0

c(1− c) = c (5.40)

The bias introduced by approximating c(1 − c) by c is equal to c (i.e. a 10% error for

c = 0.1). Hence, the symmetrical nature of the analytical uncertainty only becomes appar-

ent for concentrations higher than 10% which manifests itself as a relative overestimation.

In the past decades, however, analytical e�orts have mostly focused on quanti�cation of

low-concentration analytes. Only on rare occasions concentrations exceed 10% (e.g. sugar

analysis; see Horwitz and Albert (2006)). Likewise, the symmetrical nature of the analytical

uncertainty was either considered a problem of minor importance Horwitz and Albert (e.g.,

2006) or it was simply not recognised. The common way of plotting concentrations and er-

rors on a log-log scale has certainly not contributed to the recognition of symmetry because

the concentrations higher than 10% are squeezed in the right corner of an concentration-

error plot (see Fig. 5.5).

These practical explanations are symptoms of a more fundamental problem, which

is the "analyte-matrix perspective" on chemical analysis. With this perspective we refer

to the univariate perspective on the problem of determining the concentration of low-

concentration analytes in a high-concentration matrix. In the light of BUCE and counting

statistics, determining low-concentration analytes seems indeed to be the most challen-

ging because the number of counted objects decreases with concentrations. In the light of

CUCE, however, determining the analyte is as challenging as determining the total mat-

rix. We refer to this as the "compositional perspective": the corresponding task is not to

determine individual concentrations, but to determine the composition of the substance

as a whole. In that light, we encourage the analytical chemistry community to test the

performance of analytical setups on both sides of the concentration spectrum.

5.5 Modelling framework

5.5.1 De�nition of UFs

In this section we propose a modelling framework for assessing system performance and

turning pseudo concentrations into proper concentrations by specifying statistically and

physically meaningful UFs for every possible setup.

In this modelling framework we distinguish (1) the function which best captures the

behaviour of the analytical system (i.e. the uncertainty associated with pseudo concen-

trations) and (2) the corresponding symmetrical UF suitable for statistical inference. The

former is referred to as the pseudo UF whereas the latter is called the proper UF.

We propose a three-stage modelling approach. The �rst stage consists of system char-

acterization, i.e. �tting a pseudo UF. The second stage consists of transforming the pseudo

UF into a proper UF. In the third stage, the plausible range of the function is determined.
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5.5.2 Modelling stage 1: System characterization

Pseudo UF candidates

From physics we derived that the following function is suitable for modelling the relation

between concentration and analytical uncertainty:

PUF(aP , bP , dP ; c̃) : δc =
√

a2P + [bP c̃dP ]2 (5.41)

which we refer to as the Poisson-like UF (PUF). Under the in�uence of closure, matrix

corrections or joint calibration, the following functions is applicable:

BUF(aB , bB , dB ; c̃) : δc =

√

a2B + [bB (c̃(1− c̃))
dB ]2 (5.42)

which we refer to as the Binomial-like UF (BUF). If the analytical setup is characterised

by a BUF, the observed pseudo concentrations are indistinguishable from proper concen-

trations.

Model selection

Model selection involves �tting PUF and BUF to experimentally-derived uncertainties. We

demonstrated that for concentrations less than a few percent, BUF and PUF overlap (Eqn.

5.40). For higher concentrations, the two functions deviate signi�cantly. We make use of

this fact by partitioning the data into two subsets (set 1: c < 0.1, set 2: c ≥ 0.1). Set 1 is
used for function �tting whereas set 2 is used for distinguishing between BUF and PUF.

PUF and BUF are �tted to set 1 using non-linear regression based on the following

criterion:

argmina,b,d

N
∑

i=1

[log(σi)− log(f(a, b, d; c̃i))]
2

(5.43)

Because BUF and PUF have the same number of parameters, the UF which gives the

smallest residual sum of squares for set 2 de�nes the optimal pseudo UF. Subsequently, this

function is �tted to the data set as a whole which yields function parameter estimates with

associated con�dence intervals. These con�dence intervals allow us to determine whether

the intercept a is e�ectively zero. In that case, the pseudo UFwithout an intercept is re�tted
in order to yield a more parsimonious function with essentially the same goodness-of-�t.

We perform this test because an intercept will not contribute to a better �t in case the data

shows a relative steepening instead of �attening at the low-concentration end.

5.5.3 Modelling stage 2: Pseudo concentrations to concentrations

For inference we require a symmetric UF. In case BUF was regarded as the pseudo UF, this

function can be readily used for inference. Hence, the �tted BUF is both the pseudo and the

proper UF:
Pseudo UF → Proper UF

BUF(aB , bB , dB ; c̃) → BUF(aB , bB , dB ; c̃)
(5.44)

Otherwise, the proper UF needs to be postulated from the pseudo UF. Given that closure

de�nes concentrations, the proper UF is de�ned as the UF that would be obtained if the

data were closed.
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Explicit expression for the proper UF

In Appendix C we derived an expression for the uncertainty after closure (Eqn. C.1.2). This

expression shows that upon closure, an intercept term in PUF becomes a concentration-

dependent term. However, data processing in spectroscopy (i.e. background subtraction)

gives rise to an additive component in the UF that is independent of the concentration of

the other elements in the material analyzed.

In order to �nd a compromise between the physical reality of the data acquisition pro-

cess and statistical theory, we propose the following expression for the proper analytical

uncertainty δ2cj :

δ2cj = a2P +

[

(1− 2c̃j)(bpc̃
dP

j )2 + c̃2j

D
∑

k=1

(bpc̃
dP

k )2

]

(5.45)

whereD is the number of measured components in the mixture and the terms enclosed

in brackets follow from error propagation. It rightfully shows that the uncertainties of

proper concentrations are correlated among the variables.

A compact approximation to the proper UF

Our objective is to �nd a compact and univariate approximation to Equation 5.45. Hereby

we try to stay as close as possible to current practice which is to predict the analytical

uncertainty in a univariate manner. Our strategy is to construct a univariate modelling

framework which enables the transfer from PUF into BUF.

In case the UF is given by a PUF with aP = 0, dP = 1/2 and arbitrary bP , the UF

corresponding to the data after closure is given by BUF with exactly the same function

parameters, i.e. BUF(0, bP , 1/2; c̃). In all other cases, this approach yields inexact and

biased predictions of uncertainty. A proof is given in Appendix C.

Using the principle of error propagation, we developed a work�ow to approximate the

expression shown in Equation 5.45 by a BUF. It is an approximation because BUF is a uni-

variate function whereas the exact solution shown in Equation 5.45 requires the concen-

tration of all analytes. We found that irrespective of dP , the intercept aP and exponential

term dP can be transferred directly from PUF into BUF without introducing bias. For the

multiplicative term (bP ) a correction factor k is required so that the relation between the

�tted PUF and the proper BUF reads:

Pseudo UF → Proper UF

PUF(aP , bP , dP ; c̃) → BUF(aP , kbP , dP ; c̃)
(5.46)

The details of, and mathematical justi�cation for this approach are given in Appendix C.

Correction factor k

An explicit expression for k is obtained by adopting some "standard composition". An

obvious choice for this composition is:

cj = D−1 ∀ j = 1, 2, ..., D (5.47)
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Figure 5.5: (A) Multiplicative correction factor k corresponding to the proposed "standard composition" as func-

tion of D (i.e. the number of components in the mixture) and dP (i.e. the exponential term in PUF). (B) The

true error in PUF data after closure against the univariate approximation proposed in this contribution. The data

points re�ect the errors of concentrations for which dP ranges between 1/2 and 2 and D ranges between 4 and

40.

i.e. all analytes are present in the same concentration. The corresponding correction

factor reads:

k =

√

D−2dP − 2D−2dP−1 +D−2dP+2

[D−1(1−D−1)]2dP
(5.48)

As demonstrated by the equation, k is a function of the number of measured compon-

entsD and the exponential term dP . This function correctly yields k = 1 for dP = 1/2, i.e.
for an UF with dP = 1/2 bP = bB . The behaviour of k as function of D and dP is shown

in Figure 5.5A. Clearly, k is largest for smallD and large dP . Furthermore, for dP = 1/2, k
is equal to unity for all D: this re�ects the Poissonian case. For large D and relatively low

spread among the concentrations it is therefore reasonable to take k = 1. As a guideline
we propose to take k = 1 in case D ≥ 30.

In Figure 5.5B, the relation between true and predicted standard deviation are plotted

for data behaving according to BUF. The concentration were drawn from a uniform distri-

bution after which the concentrations were closed to unit sum. The displayed data re�ect

realisations for which the exponential term dP ranges between 1/2 and 2 and D ranges

between 3 and 40. Note the unbiasedness of the prediction and the high R2 (0.99). It is

evident that in speci�c applications where the compositional variability is small (e.g. pro-

cessmonitoring applications) a di�erent "standard composition"may be adopted to increase

the quality of predictions.
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5.5.4 Domain of the UF

A complete de�nition of a proper UF requires speci�cation of its limits of application. The

domain of the proper UF follows by solving the equality shown in Equation 5.24. This yields

clL and because the proper UF is symmetric, it holds that cuL = 1 − clL. After this �nal
step, the proper UF has been fully speci�ed for a given signi�cance level α (e.g. 5%).

5.5.5 Measuring performance

The proper UF may be employed to measure the performance of an analytical setup. The

Horwitz function is only valid for low-concentration domains and it can therefore not serve

as a basis for quantifying the performance of analytical systems designed to measure major

components.

We may take the Horwitz function and turn it into a proper UF:

BHF (c) : σ = 0.02 [c(1− c)]
0.8495

10−8.88 ≤ c ≤ 1− 10−8.88 (5.49)

where "BHF" stands for the Binomial Horwitz Function (BHF). It has a much larger

domain than the Horwitz function (i.e., [10−8.88, 0.9552]) which means that concentrations

well above 0.955 can be trusted. Based on this proper UF, we derive the following alternative

to the HorRat, referred to as the Binomial HorRat (BHR):

BHR = medij

{ |ĉij − cij |
BHF (cij)

}

10−8.88 ≤ c ≤ 1− 10−8.88 (5.50)

In this expression, ĉ is the estimated concentration of analyte j in specimen i by a par-

ticular laboratory and c is the assigned value (e.g. the consensus value or the concentration
associated with a particular Certi�ed Reference Material). The operator medij {...} de�nes
the median over all specimens i and all analytes j. A BHR close to unity means that the

laboratory-instrument combination performs as expected. Values much larger than unity

would merit further investigation of the data integrity.

5.6 Application

5.6.1 GeoPT data set

Our �nal objective is to apply the proposed modelling framework to real data. A data set

suitable for this purpose should have a wide range of concentration values. Data from

the GeoPT pro�ciency testing programme ful�ll this requirement. This programme was

initiated and executed by the International Association of Geoanalysts (IAG) between 2001

and 2011 with the purpose to allow geochemical laboratories to evaluate their performance

in routine analysis of silicate rocks (Thompson et al., 1997; Thompson, 2002). In addition to

a range of trace elements, the analyzed silicate rocks contain high concentrations of major

elements (e.g. Si, Ca, Fe) (Potts et al., 2013).

In every GeoPT round, identical samples were sent to numerous laboratories for chem-

ical analysis. Every GeoPT round thus yields standard errors and consensus values of a

series of analytes present in particular specimen. The consensus value and spread were

calculated using di�erent measures of central tendency or spread (Thompson, 2006). In

rounds 8 to 22, the consensus values re�ected the robust mean (Lawn et al., 1993) and from
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Figure 5.6: Modelling results for the GeoPT data displayed on (A) logarithmic and (B) linear scales.

round 23 onwards the consensus values were derived from the robust mean, the median

or the mode (Thompson, 2006). The choice for the respective method was made by the

Steering Committee (Thompson, 2002).

We included the consensus values and empirical standard deviations of 25 rounds in our

analysis (i.e. GeoPT rounds 8 to 32). The raw data of rounds 1 to 7 could not be recovered.

References to unpublished reports are provided in Appendix C2.

5.6.2 GeoPT Results

It was found that BUF shows the best �t to the GeoPT data. It was also found that the inter-

cept term aB was e�ectively zero. The pseudoUF of this data set is given by BUF(0, 0.022, 0.867),
which is displayed in Figure 5.6. Figure 5.6 also displays the �tted PUF for comparison. The

calculated 95% con�dence intervals around the BUF parameters read: 0.021 ≤ bB ≤ 0.024
and 0.860 ≤ bB ≤ 0.875. The same con�dence intervals around PUF read: 0.018 ≤ bB ≤
0.021 and 0.847 ≤ bB ≤ 0.862.

Because BUF is symmetric, it is also the proper UF. The domain of this function is given

by [10−9.68, 1 − 10−9.68]. Given that the GeoPT data are representative for geochemical

analysis, this would lead to the following performance measure for geochemical laborator-

ies worldwide:

GPR = medij

{ |ĉij − c̄ij |
0.022[c̄ij(1− c̄ij)]0.867

}

10−9.68 ≤ c ≤ 1− 10−9.68 (5.51)

where ’GPR’ stands for Geochemical Performance Ratio. Analogous to the HorRat,

GPR = 1 means that a laboratory performs as expected, whereas GPR ≥ 2 means that

the laboratory performance is unacceptably low.

5.6.3 Discussion of GeoPT results

Because the intercept is e�ectively zero and BUF is the pseudo UF, the GeoPT pseudo con-

centrations are indistinguishable from proper concentrations. This may be due to closure
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or successful application of matrix corrections.

Note that the function parameters of BUF and PUF are approximately equal whereas

the functions themselves have a very di�erent appearance. Also note that for PUF, the 95%

con�dence intervals of the function parameter include those of the Horwitz function (i.e.

bP = 0.02 and dP = 0.8495). Hence, the quality of geochemical analyses is comparable to

analyses carried out in other �elds of application. The BUF parameters, on the other hand

do not fall inside the 95% con�dence interval which means that the �tted parameters are

signi�cantly di�erent from those of the Horwitz function. This shows that in cases where

the data may display symmetric behaviour that went unnoticed, re-evaluation of data is

necessary in order to obtain accurate pseudo UFs.

Practically all high-concentration data are associated with Si. As suggested by the devi-

ation of the single data point around 60% concentration from the �tted BUF, matrix correc-

tions for Ca seem to be less successful. The fact that the single data point which deviates

from BUF is the only high-concentration data point which is not associated with Si suggests

that the the extent to which matrix corrections impose symmetry di�ers between analytes.

Hence, analyte- and method-speci�c UFs may be deemed necessary.

5.7 Discussion and conclusions

We have identi�ed and diagnosed inconsistencies between the parametric form of UFs pro-

posed in literature and statistical theory. Derivation of the behaviour of the analytical

uncertainty yielded that for strictly univariate calibration without matrix corrections, the

analytical uncertainty may behave in a fully asymmetrical manner which is unrealistic.

Ideally, matrix corrections or appropriate multivariate calibration will compensate for this

�aw andmake the concentration estimates produced by an analytical instrument fully sym-

metric and therefore indistinguishable from proper concentrations. In practical applica-

tions, however, the analytical uncertainty can behave anywhere between fully asymmetric

and fully symmetric.

The covariance structure of the uncertainties is a potentially important indicator for the

extent to which a certain matrix correction or multivariate calibration process is able to re-

semble the e�ect of closure. Hence, we encourage manufacturers of calibration software

to analyse the nature of the empirically-derived standard deviation under various levels of

precision and over a wide range of concentrations, possibly strati�ed by analyte. Given that

compositional variability in natural samples is generally limited, the only way to achieve

this would be to study synthetic mixtures tailored to this application. Furthermore, we re-

commend users to be careful when employing uncertainties reported by software packages

in their analysis. Only when it is empirically demonstrated that these calculated uncertain-

ties behave in a symmetric manner can they be readily used for inference.

Application of the modelling framework is not limited to the analytical uncertainty.

Given that the common objective of an end user is to characterize a population by analysing

a �nite sample, the total uncertainty is given by the sum of analytical uncertainty and

sampling uncertainty. It is well-known that the latter behaves in a fully symmetric manner

(e.g., Gy, 1979). This means that in case the modelling framework is employed to produce

a proper symmetrical UF predicting the analytical uncertainty, the parametric form of this

function will be similar to the one that predicts the sampling uncertainty. In that sense,

the proposed modelling approach does not only establish the link between physical and
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statistical theory, but also between analytical and sampling uncertainty.

The results presented in this contribution have important consequences for perform-

ance quanti�cation. Particularly the replacement of the HorRat by its symmetric equivalent

is vital because this yields a unique and unambiguous criterion. Hence, we urge regulat-

ory bodies and professional organizations (e.g. ISO, AOAC, EU) to consider adopting the

proposed modelling framework in their guidelines/legislation.
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CHAPTER 6

Integrated core analysis using XRF scanning. Part I:

Prediction of lithofacies

6.1 Introduction

Routine Core Analysis (RCA) includes measurements of porosity, grain density and hori-

zontal permeability at constant intervals (typically 1 ft.), as well as a lithological descrip-

tion. Generally, these data are complemented with analyses obtained with more specialised

techniques. In the hydrocarbon industry, for instance, it is commonplace to perform thin-

section analysis to gain insight into controls on reservoir quality such as diagenetic history

and provenance. Ideally, all core data are available at the same, high resolution. In reality,

however, they have di�erent coverage and resolution which severely complicates quantit-

ative core characterisation.

In this study, we investigate whether X-ray Fluorescence Core Scanning (XRF-CS) may

be used to obtain integrated core descriptions, i.e., a collection of lithofacies, chemical and

petrophysical records which have the same, high (1 cm) resolution. XRF is a chemical

analysis technique. It is well-known that the chemical composition of sediments and sed-

imentary rocks is strongly correlated with their lithology and petrophysical properties.

Integrated core descriptions using XRF-CS rely on exploitation of the correlation between

geochemical composition and other sediment properties by multivariate statistical meth-

ods to link the high resolution XRF-CS data to calibration data (e.g., assigned lithofacies,

porosity, permeability) and estimate the associated prediction uncertainty using cross val-

idation.

This chapter is the �rst of three parts. In this chapter we use the XRF-CS data to pre-

dict lithofacies. In Chapter 7 we study the ability to predict the bulk chemical composition

and the petrophysical properties from XRF-CS data which together represent the integrated

core descriptions. In Chapter 8, we demonstrate the added value of integrated core descrip-

tions for unraveling the controls on reservoir quality. We refer to this new way of core

characterisation as integrated core analysis.

103
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6.2 Materials and Methods

6.2.1 Geological setting and sedimentological interpretation

Well E10-3 (Fig. 6.1, A) is a vertical well which was drilled in the Southern North Sea from

an o�shore platform in 2003. Its development was commissioned by Wintershall Noordzee

BV and it targetted theWestphalian deposits. In Northern and Central Europe, Westphalian

deposits are an important source of natural gas (Lokhorst, 1997). In the south, the West-

phalian basin is bounded by the Variscan front. In the north, the Westphalian basin is

limited by the Mid North Sea High. Sediments were deposited in the basin by meandering

and braided river systems (Lokhorst, 1997).

The core retrieved from well E10-3 covers the interval between 3648.00 and 3720.38 m

depth. The most conspicuous features are three sandstone intervals of around 10 m thick-

ness. These channel deposits represent the most important reservoir units in the cored

interval. The intervals were interpreted as Braided Channel Units (BCUs) and they are em-

bedded in thick mudstone deposits interpreted as inter-distributary �nes. Another feature

of this core is that it contains numerous coal-bearing layers. It is this wide variety of litho-

logies which makes this core suitable for studying the quantitative performance and added

value of XRF core scanning technology for routine core analysis.

Well B38D4316 (Fig. 6.1, B) is located in the Dutch province of South Holland; a core

was retrieved in 2010 using geoprobing. The core comprises sediments from the Quatern-

ary. The well forms part of a larger project aimed at characterisation of the Dutch shallow

subsurface, conducted by the Geological Survey of the Netherlands. Modern-day sediment-

ation in the study area is strongly in�uenced by theWaal, Lek andMeuse river transporting

coarse-grained material. In this area there are also extensive marshlands where the Waal

and Meuse river �ow into the "Hollands Diep" estuary. Hence, the core retrieved from well

B38D re�ects a wide variety of sediment types: it contains clay, coarse-sand and loam in-

tervals as well as peat. The core has a total length of 35 m and its dominant features are two

peat layers which bound an extensive interval of coarse-grained sand. In terms of lithology,

this core can be considered a modern analogue of core E10-3.

6.2.2 Core analysis

Core E10-3 has been analysed by Panterra Geoconsultants in September 2002 (Bakker and

Pruno, 2004). In a later study also conducted by Panterra Geoconsultants (Boels, 2003), the

sedimentology, petrography and reservoir quality of core E10-3 were analysed. Both re-

ports are publicly available online at theNetherlandsOil andGas Portal (http://www.nlog.nl).

Routine core analysis of core B38D has been conducted by TNO, the Geological Survey of

The Netherlands.

Core E10-3 comprises Carboniferous sedimentary rock, and was described in terms of

a lithofacies scheme proposed by Reijers et al. (1993). The facies architecture of the cored

interval in Well E10-3 comprises the following classes: poorly drained �oodplain (IFL),

�oodplain (F ), swamp (SW ), crevasse splay (CS), inter-distributary bay (IB) and braided

channel (BC3) deposits. Bedboundaries in BC3 sporadically occur as erosive or scoured,

with lags of pebbly sandstones. The grain size in this core ranges from clay (i.e., mudstones

and coal beds) to gravel. The dominant grain size (D50) along-core was determined in terms

of a 1/2 phi unit scheme common in siliciclastic reservoir characterisation: "S1l" re�ects
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Figure 6.1: The location of well E10-3 (A) and well B38D (B). The map in (A) is modi�ed from Lokhorst (1997).

very �nd sandstone (φ = 3.75), and "S5l" re�ects very coarse sandstone (φ = −0.25). In
addition to sandstone, core E10-3 contains coal beds ("O") and siltstone intervals ("J"). More

details about core E10-3 may be found in Appendix D.

In core B38D, eight di�erent lithofacies classes were recognised including 3 types of

swamp/peat, 3 types of sand-dominated facies, 2 types of clay/loam. These classes are:

eutrophic swamp (FOVEU ), oligotrophic swamp (FOVOL), swamp (FOVAM), bank and cre-

vasse (FFL), channel (FFG and FFZ ), �oodplain (FFKMA), abandoned channel (FFLKA).

6.2.3 XRF core scanning

Both cores have been scanned using an Avaatech X-ray Fluorescence core scanner at the

Royal Netherlands Institute for Sea Research (NIOZ). The downcore step size was for both

cores set at 1 cm. Core B38D was scanned along the central axis with a cross-core slit size

of 1 cm. Because core E10-3 was plugged prior to slabbing, the scan track of core E10-3 was

positioned 23 mm from the central axis to avoid the plug holes. Furthermore, the cross-

core slit size was set to 8 mm to prevent the scanner frommeasuring air and ensure reliable

measurements. To cover a large suite of elements, both cores were scanned with di�erent

instrument settings. The core-scanner settings are summarised in Table 6.1.

To facilitate estimation of the precision, replicate analyses were carried out. These

replicates were acquired at �xed intervals. In core E10-3, the average interval equals 30 cm

with a total number of 247 replicate sets each consisting of three consecutivemeasurements.

In core B38D, 275 replicate sets were acquired: the average interval in this core equals 10 cm.

After data acquisition, the XRF spectra have been processed using the WinAxil processing

software to obtain element intensities (see e.g., Vekemans et al., 1994). The integrity of the
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Core E10-3 E10-3 B38D B38D B38D

Run 1 2 1 2 3

Measurement time [s] 12 12 10 20 60

Tube voltage [kV] 10 30 10 30 50

Tube current [µA] 750 750 1000 1000 1000

Filter none Pd-thin none Pd-thin Cu

Elements Al,Ca,Cr,Fe Br,Cu,Ga,Ni Al,Ca,Cl,Fe,K Br,Rb, Ag, Ba

K,Mn,S,Si,Ti Rb,Sr,Y,Zn,Zr Mn,Rh,S,Si,Ti Sr,Zr

Table 6.1: Core-scanner settings used in this study.

element intensities was veri�ed by visual inspection of the peak �t from spectra associated

with the lithological extremes.

In addition to XRF measurements, line-scan images were acquired. For E10-3, this was

done with a JAI-107 line scan camera which yielded images with an e�ective pixel size

of 0.07×0.07 mm. The exposure time and aperture were set at 143 ms and f11, respect-

ively. Core B38D have been analysed with a JAI-105 camera with an e�ective pixel size of

0.09×0.09 mm and an exposure time and aperture of 154 ms and f8, respectively.

6.2.4 Integrity of XRF-CS data

Fluorescent radiation from light elements interacts with air. Hence, in case the �uorescent

radiation traveled through a thick layer of air, the data are likely to exhibit systematic

deviations. Air was measured in case the core was fractured or in case a data point was

acquired at the edge of a core section. Therefore, these data points were removed prior to

further analysis.

Core B38D constitutes a continuous sedimentary record which was scanned prior to

sampling. Hence, we only had to remove data points acquired at the margins of the core

sections, which was done manually. The core scanning data set before and after quality

checking consists of 3650 and 3462 measurements per run. The total number of unique

core positions in the quality-checked data set is 2875.

Core E10-3, however, contains a considerable number of fractures which formed during

(plug) drilling. Furthermore, core E10-3 was plugged prior to core scanning: although the

scan trackwas narrow and avoided the plug holes, somemeasurements at the plug positions

were unreliable because of suboptimal alignment between scanner and core slab. In core

E10-3, detection of these potential outliers was based on the total count rate associated

with run 2 (i.e. the 30kV run): in case the total count rate at a certain scan position was

below a threshold value, all data acquired at this position were omitted. A threshold value

of 105 counts per second gave the best results: it resulted in the removal of data points at

fractures and slab edges only. Figure 6.2A shows the total count rate of run 2 for the entire

core with the data points whose total count rate is below this threshold value indicated

in red. The core scanning data set before and after quality checking consists of 7200 and

7005 measurements, respectively. The total number of unique core positions in the quality-

controlled data set is 6511.

Figure 6.2B shows the total count rate for six example slabs of core E10-3: these slabs

were selected because they contain all lithofacies (sandstone, siltstone, mudstone, coal)
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Figure 6.2: Total count rate associated with run 2 (i.e. 30kV scan) of the complete core E10-3 (A) and for ES1-ES6

(B). Data points removed in the quality-checking process are indicated in red.

present in this core. The six example slabs (ES1-ES6) include three slabs from core 1 (boxes

3, 14 and 38) and three slabs from core 2 (boxes 3, 33 and 38) and they are used throughout

this study to illustrate detailed analysis of the modelling results. In this case, the example

slabs clearly demonstrate that most excluded scan positions re�ect edges of the slab or an

abrupt lithological transition which was often associated with a small gap.

6.3 Modelling methods

6.3.1 Discriminant-function analysis

Predicting class membership from numerical data is known as Discriminant Function Ana-

lysis (DFA). To perform DFA, the core descriptions, which are given by an assigned class

between two bed boundaries, are transformed into a vector containing the assigned class

at every scanned core position. Next, a prior probability is assigned to each class. In this

study an empirical prior is adopted, i.e., the prior probability is given by the proportion of

each class in the calibration data. After determining the prior, the discriminant function

must be derived. We employ Quadratic Discriminant Function Analysis (QDFA) which is

based on strati�ed mean and covariance estimation, i.e., the mean XRF-CS signature and

associated covariance matrix are calculated for every class individually. Combining these

means and covariances with the prior yields the quadratic discriminant function given by:

δk(xi) =
1

2
log ‖Σk‖ −

1

2
(xi −mk)

′Σ−1
k (xi −mk) + log(πk) (6.1)

where x is a vector with the properly transformed element intensities andmk are the mean

transformed element intensities for class k. The prior associated with class k is denoted by

πk . The predicted class associated with any (new) XRF-CS signature is given by:

Ĉ(x) = argmax
k

δk(x) (6.2)

i.e., the class for which the discriminant function value is largest.
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6.3.2 Predictive performance

Leave-one-out cross-validation (LOOCV) is used tomake quasi-independent predictions for

every position. These LOOCV predictions enable determination of the model’s predictive

power, i.e., its ability to predict the proper class for "new" data (Geisser, 1993). We quantify

this predictive power by calculating the True Positive Ratio TPR for every class k:

TPRk = 100%× count(Ĉ == k)

count(C == k)
(6.3)

where Ĉ is the predicted class by LOOCV, and C is the class given by the core description.

The operator count(Ĉ == k) yields the integer number of occurrences that Ĉ equals

k. A estimate for the global prediction error of the model is given by the Mean Relative

Prediction Error (MRPE):

MRPE(%) = 100%×
K
∑

k=1

(1− TPRk)
count(C == k)

count(C)
(6.4)

where K is the total number of classes. Note that the MRPE is essentially the mean pre-

diction error over all classes weighted by their prior. We also calculate a confusion mat-

rix which summarizes the relation between "true" class (rows) and the predicted class by

LOOCV (columns).

6.3.3 Dendrogram and biplot analysis

To gain insight into the reason behind the (in)ability to predict the "true" class, use is made

of two statistical tools.

The �rst tool is the dendrogram. Making a dendrogram includes calculating the pair-

wise Euclidean distances between the di�erent class means in terms of the clr-transformed

and properly scaled intensities. From these distances a linkage tree may be constructed by

adopting a linkage function. In this study that is single linkage, i.e., the two (composite)

classes with the smallest distance are merged. Finally, we display this linkage tree using a

dendrogram. Classes which are contained in the same branch in the dendrogram are relat-

ively similar whereas classes which are in di�erent branches at the same level are relatively

dissimilar.

The second tool we employ is the (compositional) biplot. A biplot represents a visual

representation of the outcome of principal components analysis (PCA), i.e., scores and load-

ings of the covariance matrix eigenvectors. The horizontal and vertical axes of a biplot

represent the �rst and second principal component and therefore the principal directions

of variability. The variable vectors show their importance relative to the principal com-

ponents, and relative to each other. In this study we employ biplots of both geochemical

compositions as well as element intensities. In biplots derived from compositional data

such as geochemical compositions, the covariance matrix of the clr-transformed data may

be used (Aitchison and Greenacre, 2002). Intensities, on the other hand, are not compos-

itional quantities because they still require calibration. According to Weltje and Tjallingii

(2008), intensities are a linear transformation of concentrations in the additive logratio

space. In this study, a similar assumption is adopted for the centered logratio space. If
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BC3 CS F IB IFL SW TPR [%]

BC3 3364 71 0 25 22 1 96.6

CS 14 514 12 35 104 0 75.7

F 0 6 215 3 5 0 93.9

IB 8 10 0 475 176 3 70.7

IFL 7 66 63 54 936 28 81.1

SW 0 0 0 1 50 167 76.6

Table 6.2: Confusion matrix associated with the true and predicted (LOOCV) lithofacies (core E10-3).

this assumption holds, this means that the correlation matrix of the clr-transformed in-

tensities is identical to that of the clr-transformed concentrations. Hence, we construct

biplots of uncalibrated intensities from their correlation matrix (i.e. the variables are given

unit-variance prior to calculation of the eigenvectors).

6.4 Results

6.4.1 Core E10-3

QDFA was employed to predict the lithofacies and grain size class based on the core scan-

ning data. The MRPE associated with the lithofacies and the grain size class were 11.9%

and 27%, respectively. The average MRPE therefore equals 20%.

Figure 6.3 and 6.4 show the predictions for the entire core and for the example slabs, re-

spectively. These �gures clearly demonstrate that the discrepancies between assigned and

predicted core description are concentrated in speci�c intervals. In ES6, for instance, the

crevasse splay (CS) interval in the assigned core description is considerably thicker than in

the predicted core description (Fig. 6.4). In addition, there are many small-scale discrepan-

cies, i.e., places where the true and predicted core descriptions are broadly consistent apart

from thin beds mainly associated with individual core-scanning measurements. Another

kind of discrepancy is observed in ES4 (Fig. 6.4): the assigned core description suggests

a single boundary from S4 to S3 whereas the predicted core description suggests that this

transition is not discrete but takes place over an interval of 20 cm.

Tables 6.2 and 6.3 show the lithofacies and grain-size group confusionmatrices, respect-

ively. For the former, the highest TPR is found for BC3 (96.6%) whereas the lowest TPR is

IB (70.7%). Furthermore, primary confusion is between IB and IFL. Table 6.3 shows that for

the grain-size group, the highest TPR is found for M whereas the lowest TPR values are

found for S5 and O (0% and 21.4%, respectively). Furthermore, S5 is most often erroneously

classi�ed as S4 and O is mostly confused with M. The dendrograms and biplots are shown

in Figures 6.5 and 6.6. In the biplot the predicted class membership are indicated using

colors. More than 50% of the variation in intensities can be explained by only two principal

components.

6.4.2 Core B38D

Applying QDFA to the facies classi�cation scheme of core B38D yields a MRPE of 10.9%.

The confusionmatrix given in Table 6.4 shows that FOVOL has the lowest TPR and ismainly
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J M O S1 S2 S3 S4 S5

(sst) (clst) (org) (VFSst) (FSst) (MSst) (CSst) (VCSst) TPR [%]

J (sst) 368 32 0 60 9 0 0 0 78.5

M (clst) 143 1798 3 45 3 1 0 0 90.2

O (org) 0 11 3 0 0 0 0 0 21.4

S1 (VFSst) 67 75 0 576 181 4 0 0 63.8

S2 (FSst) 6 6 0 88 1018 433 32 0 64.3

S3 (MSst) 1 1 0 5 243 770 202 0 63

S4 (CSst) 0 0 0 0 10 72 136 0 62.4

S5 (VCSst) 0 0 0 0 0 4 11 0 0

Table 6.3: Confusion matrix associated with the true and predicted (LOOCV) grain-size group (core E10-3). Key

to the grain sizes: siltstone (sst), claystone (clst), organic (org.), very �ne sandstone (VFSst), �ne sandstone (FSst),

medium sandstone (MSst), coarse sandstone (CSst) and very coarse sandstone (VCSst)
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Figure 6.6: Biplots of the clr transformed and scaled intensities of core E10-3, with the predicted lithofacies (A)

and grain-size group (B) indicated using colors .

FFG FFKLA FFKMA FFL FFZ FOVAM FOVEU FOVOL TPR [%]

FFG 472 0 0 19 53 0 0 0 86.8

FFKLA 0 601 1 1 0 0 6 0 98.7

FFKMA 0 1 555 22 0 1 3 0 95.4

FFL 88 0 26 622 29 0 0 1 81.2

FFZ 39 0 0 11 173 0 0 0 77.6

FOVAM 0 0 0 0 0 23 0 0 100

FOVEU 0 2 2 0 0 0 99 0 96.1

FOVOL 0 0 5 1 0 0 0 2 25

Table 6.4: Confusion matrix associated with the true and predicted (LOOCV) lithofacies (Core B38D).

confused with FFKMA. FOVAM, on the other hand is predicted with a 100% TPR. The as-

signed and predicted facies descriptions are shown in Figure 6.7. Di�erences between as-

signed and predicted core description are found almost exclusively between 10 and 20 m.

The most noticeable di�erence is the assignment of FFG to intervals which, according to

the core description, are FFL sediments. In addition, both FFZ and FFL intervals around 20

m depth are classi�ed as FFG based on the core-scanning data. These discrepancies in par-

ticular, have translated to the relatively low TPR of FFZ (TPR=77.6%) and FFL (TPR=81.2%)

6.5 Discussion

6.5.1 Dendrogram and biplot analysis

Cutting the lithofacies dendrogram of E10-3 (Fig. 6.5A) at a Euclidean distance of 2 yields

three branches: branch 1 containing BC3 and CS, branch 2 consisting of F, IB and IFL, and
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Figure 6.7: Results of the proposed calibration method for core B38D: line scan image (A), lithofacies (B). B shows

the assigned and predicted core descriptions side by side.
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branch 3 containing only SW. The branches have a lithological signi�cance: branch 1 re-

�ects the siltstone and sandstone, branch 2 re�ects the mudstone deposits and branch 3

re�ects the coal deposits. This shows that sedimentologically-similar classes also have a

relatively similar XRF-CS signature. In addition, the dendrogram of the grain-size classes

(Fig. 6.5B) directly re�ects the genetic relation between the grain-size classes, i.e., �rst S5

and S4 are grouped, then S5 and S4 are merged with S3, etc. The dendrogram of the facies

in core B38D gives a similar result: we observe that FFG and FFZ have the most similar

XRF-CS signature whereas FOVAM, FOVEU, FOVOL (i.e., the organic-rich sediments) have

a relatively dissimilar XRF-CS signature compared to the other classes.

The dendrogram of core E10-3 suggests that the composition of the sandstone con-

verges as the grain size increases. This, in turn, explains why the MRPE associated with the

grain-size classi�cation in core E10-3 is higher than that associated with the lithofacies as-

sociation: whereas the lithofacies scheme is primarily aimed at discriminating between dif-

ferent types of mudstone units in terms of their depositional environment (i.e., it lumps all

braided-channel sands into one group), the grain size classi�cation scheme consists mainly

of sandstone classes with a relatively similar XRF-CS signature.

The fact that IFL and IB are in the same branch (Fig. 6.5A) implies that their XRF-CS sig-

natures are similar. This similarity explains the confusion between IFL and IB (see Table 6.2).

Why they nevertheless represent di�erent lithofacies groups follows from their de�nitions:

whereas IB is de�ned as parallel-laminatated and undisturbed claystone, IFL is de�ned as

claystone with abundant rootlets (Boels, 2003). Hence, the main di�erence between IFL

and IB is the presence or absence of sedimentary structures which is not re�ected by the

XRF-CS signature.

A similar situation applies to FFG and FFZ in core B38D, which are also in the same

branch of the dendrogram (see Fig. 6.8) and are also frequently confused (see Table 6.4).

Both are channel sands and the di�erence between the classes is the formation in which

they are found, i.e. the Kreftenheye and Sterksel fm. for FFG and FFZ, respectively. This

suggests that there is little to no compositional di�erence between the sands in these two

formations.

The dendrogram of the grain-size group (Fig. 6.5B) shows that the XRF-CS signature

of both SW and O are dissimilar from those of the other classes. The dissimilarity of the

coal-bearing sediments (i.e., SW and O) from the other classes is not re�ected by the litho-

facies biplot, given the overlap between SW with both CS, IFL and IB. For O it is virtually

impossible to derive its structure in the biplot because of the small number of data points.

The compositional dissimilarity of the coal-bearing mudstones represented by SW is most

likely re�ected by the low-concentration elements (e.g. Ga, Zn) whose variations are more

subtle and therefore mainly re�ected by higher-order PCs.

6.5.2 Relation between confusion matrix and dendrogram

In core E10-3, beds classi�ed asO are exclusively found in the SW lithofacies. Although the

dendrograms of the grain size and lithofacies results both suggest the XRF-CS signatures of

these classes to be dissimilar from the other classes, their TPR values aremarkedly di�erent:

whereas the TPR associated with SW is 77%, the TPR associated with O is 21%. A similar

situation applies to the peat classes in core B38D: whereas the TPR of FOVAM is 100%, that

of FOVOL is only 25%.

There are numerous intervals in core E10-3 where the sedimentological description
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mentions "organic claystone interbedded by cm-scale coal beds" and where we predict SW

but no O. This may be observed, for instance, in ES5 (Fig. 6.4, A and B). To explain why

the coal laminae were not classi�ed as O we consider the class de�nitions (see Appendix

D). SW is de�ned as parallel laminated organic-rich claystone with cm-thick coal laminae.

Hence, the description is consistent with the assignment of SW. Unfortunately, the grain-

size class O is not clearly de�ned in the core report. Therefore, we are unable to provide a

conclusive explanation for the coal laminae not being classi�ed asO.O was assigned in case

the concentration of organic material exceeds 50%. Determination of the concentration of

organic carbon macroscopically, however, is questionable.

Another factor which controlled the low TPR of O (E10-3) is that for this class, there

were only 14 data points to constrain the XRF-CS signature whereas for SW there were 218.

Relative to the high number of intensity variables (D = 18), the limited number of O data

points probably jeopardised the ability to constrain the XRF-CS signature. The same applies

to FOVOL in core B38D which has a TPR of 25% whereas the other peat lithofacies have a

TPR higher than 96%: in contrast to FOVEU and FOVAM there were only 8 core-scanning

measurements to constrain the XRF-CS signature of FOVOL.

6.5.3 Interpretation of element intensities

Biplots show the correlation structure of the clr-transformed element intensities. By indic-

ating the predicted lithofacies for every data point, they permit linking of lithofacies classes

to particular elements.

In core E10-3, the grain-size biplot (Fig. 6.6B) shows that mainly Sr, Si and Zr are asso-

ciated with S4 and S5, i.e. the most coarse-grained sandstones. It also shows that K, Ti, Al,

Fe and Rb are associated with mudstone and siltstone. The former may be explained geo-

chemically from the fact that Si typically re�ects the quartz content, whereas Zr is primarily

contained in zircon and other high-density minerals: both are deposited under high-energy

conditions. Rb and Al, on the other hand, are generally concentrated in feldspar and mica

as well as their weathering products. In this core, Rb and Al probably re�ect the concentra-

tion of clay minerals (kaolinite, illite). M and J show a profound elongated trend in Figure

6.6B which seems to be associated with variations in Al, Fe, K and Ti intensities. The struc-

ture suggests that a relatively low Fe intensity is compensated by an increase in K, Al and

Ti and vice versa. In class M, the core description mentions siderite concretions which are

also considered to be present in ES5. Also within class J, red colourations (see ES2) suggest

local iron enrichments.

The biplot of the lithofacies in core B38D, shows that sandy sediments are primarily

associated with elevated Ag, S, Ba and Si. Peat and organic-rich intervals, on the other

hand, are characterised by elevated Ca intensities. The mixed clay and sand units such as

FFL (clay-dominated) and FFKMA (sand-dominated) are mainly re�ected by Fe, K, Ti, Fe,

Zr. Like in core E10-3, we �nd that K, Ti and Al are closely related with clay-rich facies,

probably because they re�ect clay-mineral enrichment. Furthermore, the sandy intervals

are characterised by elevated Si intensities because they are rich in quartz. The enrichment

of peat layers with Ca is consistent with the work of Mol et al. (2012). In the Dutch shallow

subsurface, an important carrier of Ca is CaCO3 (Vermooten et al., 2011).

The strong association between sandy intervals and Ag intensities is di�cult to ex-

plain. Ag is contained in the beam collimator and the Ag intensities should therefore be

constant. It is very unlikely that Ag is contained in the sediment in considerable concen-
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tration, hence these intensities cannot be explained mineralogically. Possibly, incoming

X-rays are scattered in the sample, both elastically and inelastically, which in�uence the

Ag intensities. This scatter, in turn, may be largely controlled by grain size. Similar con-

clusions were drawn by Kuhn et al. (2008).

6.5.4 Nature of discrepancies

A confusion matrix treats all discrepancies equal. However, the downcore records show

that the nature of the discrepancies varies. We introduce the following two types of dis-

crepancies: "stratigraphically-random" and "stratigraphically-systematic". The di�erence

between the two is the thickness of the interval over which the two descriptions di�er.

The discrepancies in the sandstone intervals in core B38D around 20 m (i.e., the confu-

sion between FFG, FFL and FFZ ) are an example of "stratigraphically-random" di�erences:

although the majority of the data are correctly classi�ed as FFZ, there are numerous indi-

vidual XRF-CS measurements which are classi�ed as FFG. Stratigraphically-random di�er-

ences may be caused strictly by the measurement-by-measurement basis with which the

predictions were made and the higher intrinsic resolution of the core-scanning data. In

addition, they may be caused by the fact that when postulating the core description from

the XRF-CS data, no use is made of prior knowledge.

A speci�c example of an interval where the assigned core description relies on prior

knowledge is found in ES4 of core E10-3 (see Fig. 6.4), which contains a �ning-upward

trend. The core description captures this trend by one interface between S3 and S4. The

predictions, on the other hand, go from 100% S4 at the base to 100% S3 at the top, with

S4 and S3 beds in between. Both are in principle correct. However, whereas the predicted

core description potentially resembles reality more closely, the true core description may

be quali�ed as a reasonable sedimentological interpretation.

The discrepancies in core B38D around 11 m and 12 m depth are an example of "strati-

graphically-systematic" di�erences. Stratigraphically-systematic di�erences suggest that

the assigned core description is at odds with the XRF-CS signature of the sediments. These

intervals therefore merit a closer investigation of the core description’s integrity.

6.6 General discussion, conclusions and recommendations

6.6.1 General discussion and conclusions

We applied QDFA to predict lithofacies in an automatic and objective manner. The average

MRPE associated with the prediction of lithofacies is 16.6%. We acknowledge a number

of factors which controlled the discrepancies between true and predicted core description.

Firstly, the core description is based on assigning properties to sedimentary beds or bed sets

using prior knowledge and the stratigraphic context, whereas the predictions are made on

a measurement-by-measurement basis. Given that the classes are compositionally distinct,

the predictions represent the "truth" more accurately because at the scale of the XRF-CS

data they are strictly objective. Secondly, a core description is not only aimed at distinguish-

ing lithologies: classes may also di�er in terms of their appearance (i.e., color, sedimentary

structures). This information is not contained in the XRF-CS signature which introduces

discrepancies. Thirdly, in case of a sharp bed boundary, the core scan may not always be

optimally vertically referenced with respect to the core description. Apart from being a
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To

TP [%] BC3 CS F IB IFL SW #

BC3 98.3 1.1 0 0.4 0.3 0 3420

CS 4.7 79.9 1.4 2.7 11.3 0 701

From F 0 2.7 88.5 0.3 8.1 0.3 296

IB 2.9 3.6 0.2 78.2 14.7 0.5 591

IFL 0.7 5.8 1.8 7.2 81.8 2.8 1297

SW 0.5 0 0 1 18 80.5 205

Table 6.5: Upward transition probability matrix of the predicted lithofacies in core E10-3.

potential source of prediction errors, however, the vertical position of a bed boundary im-

plied by a core description is under some circumstances also highly subjective, for instance

when the transition is smooth. In that case, the predictions based on core-scanning data

are at least made in an objective manner. Taking those factors into account, we consider

the proposed methodology of great potential value for automatic prediction of lithofacies.

Moreover, in the future it may be attempted to use the same methodology to control the

quality of conventional core description and to harmonise cores which were described in

terms of di�erent classi�cation schemes.

6.6.2 Outlook

Further improvements to the proposed methodology include the application of intelligent

post-processing steps and complementing the XRF-CS data with other data sets in order to

accommodate for the above-mentioned factors.

An example of a potentially fruitful post-processing step is "stratigraphic smoothing",

i.e., in case the predicted lithofacies for a particular XRF-CS measurement is di�erent from

those of the neighbouring classes which have the same lithofacies, all three measurements

are assigned the lithofacies of the neighbouring measurements. This is likely to reduce the

discrepancies between assigned and predicted core description.

In certain cases, the cm-scale predictions are not meaningful geologically. In case of a

�ning-upward sequence, for instance, the cm-scale predictions of lithofacies will include

all grain-size classes. In that case, it is important that we can automatically recognise the

genetic ordering of the lithofacies and turn the sequence into one super class. The ge-

netic ordering in a categorical data set is often analysed using a transition probability mat-

rix. In addition to the recognition of sequences and the improved understanding of the

mechanisms which controlled the stratigraphic record, exploitation of transition probabil-

ity matrices in the prediction of lithofacies by modifying the priors is likely to increase the

predictive capabilities.

The upward TPM of the lithofacies in core E10-3 is shown in Table 6.5. We observe that,

in case of a change in lithofacies, a SW bed is mostly overlain by IFL (TP = 18%) and rarely

by BC3 (TP = 0.5%) and IB (TP = 1%). The association between SW and IFL is in line with

the core report. As expected, Table 6.5 also shows that CS is mostly associated with BC3: it

is evident that crevasse splays (CS) are mostly found in braided channel intervals (BC3).

Given that a geologist makes a core description also on the basis of the core’s appear-

ance, exploiting core photographs data is likely to increase performance of lithofacies pre-
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D.

diction. One of the most basic properties which can be retrieved from line-scan images is

the color of the sediment. It is evident that distinguishing between sandstone and mud-

stone on the basis of color is relatively easy. However, it may also help in distinguishing

between lithofacies in a more detailed manner. Therefore we consider the variability in

the color composition of the sediment. Given that the colors data represent 8-bit R(red),

G(green) and B(blue), wemay turn the color data into a composition by de�ning the shadow

variable D (i.e., darkness):

D = 3× (28 − 1)− (R+G+B) (6.5)

The structure of the RGBD space is shown by means of an unfolded tetrahedron in Figure

6.9.

Because R, G, B and D de�ne a 4-part composition, we may analyse them by means

of a compositional biplot. Figure 6.10 shows the RGBD biplot of core E10-3 with the pre-

dicted lithofacies indicated. It clearly demonstrates that the sandstone units (i.e., BC3) are

characterised by redness (R), whereas the coal-bearing swamp (SW ) deposits are mainly

characterised by darkness (D). Both results are in line with what may be expected.

Given that color composition, in contrast to the geologists’s judgment, is a quantitat-

ive measure, complementing XRF records with color data is a potentially powerful way to

formalise the construction of core descriptions. Apart from color, other relevant informa-

tion which can potentially be retrieved from core images is the grain-size distribution, the

bedding direction and the presence and nature of sedimentary structures. All these proper-

ties are vital for interpretation of depositional environment, but require a substantial e�ort

in terms of image analysis before they can be used to make integrated core descriptions on

a routine basis.
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indicate the predicted lithofacies on the basis of the XRF core scanning data.
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CHAPTER 7

Integrated core analysis using XRF scanning. Part II:

Prediction of chemical and petrophysical properties

7.1 Introduction

In Chapter 6 we analysed to what extent it is possible to predict lithofacies from XRF-CS

records. The goal of this second part of the construction of an integrated core description

is to predict chemical and petrophysical core properties at the centimeter scale. Therefore

the same quality-controlled XRF-CS data sets are used as outlined in Chapter 6.

7.2 Materials and Methods

7.2.1 Core analysis

Routine core analysis of core E10-3 yielded between 230 and 244 plug analyses including

grain density, porosity and horizontal permeability (Bakker and Pruno, 2004). The grain

density varies between 2.6 and 3.2 g/cm3 and the porosity ranges from 0 to 20%. The ho-

rizontal permeabilities in this core range roughly up to 400 mD. To enable geochemical

calibration of the core scan, another 35 core positions (both at and between plug locations)

were sampled and analysed using pressed-pellet XRF. These analysis were conducted by

Chemostrat Ltd. The XRF analyses yielded elemental concentration estimates for Al, Si, Ti,

Fe, Mn, Mg, Ca, Na, K, P, S, Cl, Ba, Br, Ce, Co, Cr, Cs, Cu, Ga, La, Mo, Nb, Ni, Pb, Rb, Sb, Sc,

Sn, Sr, Ta, Th, U, V, W, Y, Zn, Zr. We only included the elements which were also measured

by the core scanner, i.e., Al, Si, Ti, Fe, Mn, Ca, K, S, Br, Cr, Cu, Ga, Ni, Rb, Sr, Y, Zn, Zr.

Analysis of core B38D was conducted by TNO. Vertical permeability analyses (n=30)

were acquired using a constant-head conductivity test. For the sand and clay samples, the

bulk geochemical composition was determined using pressed-pellet XRF. The composition

of the samples rich in organic carbon was determined using both glass-bead XRF as well as

ICP-OES. We combined these results such that a bulk composition was obtained in terms

of the following selected elements: Al, Si, Ti, Fe, Mn, Ca, K, Cr, Cu, Ga, Ni, Rb, Sr, Ba Y, Zn,

121
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Figure 7.1: Plug porosities and permeabilities of core E10-3 included (black) and excluded (red) in the calibration

process. Inclusion was based on whether their porosity and permeability exceeded the threshold values of 3% and

0.01 mD (shown in blue).

Zr. In case the analyte concentration was determined by both glass-bead XRF and ICP-OES,

we selected the XRF analyses to maximise method consistency.

7.2.2 Calibration data integrity

For core B38D, we only used the datawhich passed the quality-control protocol of TNO. The

data from core E10-3 have also been subjected to a quality-control procedure by Panterra

Geoconsultants. We subjected the E10-3 data to another round of quality checking because

some analyses were suspect. This suspicion originated from the porosity-permeability re-

lation, as shown in Figure 7.1. As also mentioned in the core report, the increase in per-

meability as the porosity reaches 0% is probably arti�cial. According to the report, these

analyses are probably in�uenced by leakage (along fractures or along the Hassler sleeve).

Apart from these physical constraints, the increasing uncertainty with decreasing mag-

nitude at the low end, is a common feature of non-negative petrophysical data, because of

�nite instrument sensitivities. Hence, we omitted all measured permeabilities smaller than

0.01 mD from the calibration procedures and we adopted a porosity threshold of 3% based

on the poroperm relation (Fig. 7.1).

Geochemical data are also subject to detection or quantitation limits. For the selected

set of elements, there were only a handful data points for which the concentration was

reported as below the level of detection (LOD). Because the modelling methods used in this

study rely on positive concentrations, we had to de�ne a strategy for coping with zeros

in the geochemical data set. We applied the multiplicative zero-replacement technique

proposed by Martín-Fernández et al. (2003), which is based upon replacing zeros by a small

value δ and simultaneously de�ating the concentration of all other components by the
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same amount. The analyte-speci�c replacement value δj was set at the minimum positive

concentration in the data set. Apart from being positive, we also had to de�ne a way to

cope with compositions whose total concentration exceeds 100%. We decided to close these

data to the maximum total concentration in the data set which does not exceed the physical

limit of 100%.

7.3 Modelling methods

7.3.1 MLC method

TheMultivariate Logratio Calibration (MLC)method (seeWeltje et al. (2015) and Chapter 2)

forms the basis for all calibration excercises undertaken in this study. The rationale behind

the MLCmethod is that both core-scanning and chemical composition data are modelled as

logratios (Weltje and Tjallingii, 2008). To establish a framework suitable for calibrating all

considered data types with high predictive capability, a further generalisation of the MLC

method is presented here. We refer to this method as the Generalised Logratio Calibration

(GLC) and, compared to the MLC method, it possesses a number of new features. The

di�erent features are given below. They are described in more detail in Appendix D.

1. Flexibility. The GLC method is more �exible than the MLC method because it en-

compasses a larger set of possible invertible transformations that can be applied to the

Y-data in order to make calibration of non-compositional quantities possible. Trans-

formations are selected on the basis of the nature of the Y-data: we employ the invert-

ible transformation which makes the Y-data unconstrained and ensures physically

tractable predictions.

2. Robustness. Weltje et al. (2015) de�ned the optimal number of PLS components as

the number for which the MSPE is minimal. In contrast to their de�nition, the MSPE

in the GLC is based on a robust measure of scale. This will not only give a more

reliable estimate of the optimal number of PLS components but it will also give a

more reliable estimate of the prediction uncertainty compared to the MLC method.

3. X-variable selection. The GLC is based on X-variable selection using the Variable

Importance in Projection (VIP) (see Eriksson et al., 2001). Removal of uninformat-

ive X-variables may be bene�cial, given that counting statistics prescribe that low-

intensities variables have a higher uncertainty than high-intensity variables, and er-

rors in clr-space are not independent which means that low-intensity variables po-

tentially "pollute" all other variables Bloemsma and Weltje (2015). Hence, variables

must be included in the model only in case they contribute to a better prediction.

4. Y-variable selection. Given that clr-transformed variables are intrinsically correl-

ated, removal of unpredictable Y-variables may also increase the inferred predictive

performance. In this study, the only multivariate Y data are geochemical data. Y-

variable selection in the GLC is based on the removal of all elements whose R2 is

smaller than some threshold value.

5. Independent prediction of scale and composition. The MLC approach to con-

struct complete from incomplete geochemical compositions (i.e. that the sum over
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all variables is smaller than 100%) by adding the "Undef" to the composition implies

that all Y-variables must be included in the model (see Weltje et al., 2015). To enable

Y-variable selection in the GLC, we follow a two-step approach whereby scale (scale

= 1 - undef) and composition are modelled separately. Apart from the fact that this

two-step approach ensures that the predictions are unbiased relative to the "absolute"

concentrations, it is also expected to give better predictions because composition and

scale are also estimated in a fundamentally di�erent manner by conventional spec-

trochemical methods (Chapter 5).

7.3.2 GLC and data scaling

The MLC method is based on scaling the X- and Y-data matrices prior to calibration, in

order to reduce the importance of imprecise variables: in case two variables contain the

same information, scaling ensures that the one with a high precision is implicitly made

more important than the one with a low precision. The scaling factors may be derived

from replicate analyses (see Weltje et al. (2015), and Chapter 2, this thesis). Progress in un-

certainty modelling of geochemical data, however, showed that the uncertainty associated

with chemical analyses can be predicted on the basis of the concentration c by means of

the Binomial Horwitz Function (Bloemsma and Weltje (submitted), and Chapter 5):

δc = 0.02[c(1− c)]0.8495 10−8.88 ≤ c ≤ 1− 10−8.88 (7.1)

where δc is the expected standard deviation of c. Given that q = log(c) and assuming that

the errors δc are independent among the analytes, the error in q reads:

δq = 0.02[c(1− c)]0.8495−1 ≈ 0.02[c(1− c)]−0.15 10−8.88 ≤ c ≤ 1− 10−8.88 (7.2)

The fact that the exponential term in the above equation is relatively small means that the

errors associated with the log-transformed, and therefore also of the clr-transformed vari-

ables, become concentration-independent. If the number of X-variables is reasonably large

(> 20), these errors are also independent (Bloemsma and Weltje (2015)). From the stand-

point of least-squares estimation, scaling the element concentrations according to their

uncertainty is therefore an unnecessary operation because for all practical purposes, the

PLS model will be indistinguishable from the Maximum Likelihood solution. Scaling the

petrophysical data will have no e�ect on the associated calibration models because all pet-

rophysical data included in this study are univariate.

7.3.3 Summary statistics

Model selection in the GLC is executed on the basis of the MSPE (see Appendix D). In case

the data are of type 1 (i.e., unconstrained data such as the mean grain size in phi-units), the

MSPE may be readily used as an estimate of the prediction uncertainty. For all bounded

data types (types 2, 3 and 4), however, the MSPE is de�ned in terms of transformed data

which makes the MSPE di�cult to interpret in terms of the original units of measurement.

Moreover, the uncertainty of these data types is muchmore likely to behave proportionally.

For these data types, it is therefore more sensible to evaluate a Mean Relative Prediction

Error:

MRPE(%) = 100%× std

(

log

(

y

ŷ

))

(7.3)
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For multivariate Y, one summary statistic is obtained by vectorising the Y-data matrix prior

to MRPE calculation.

Whereas the MSPE and the MRPE are "absolute" error estimates, another relevant sum-

mary statistic is the signal strength of the predictions, i.e. the variance of the residuals

relative to the variance of the predictions. We refer to this metric as the R2
e�. For data

types 1, 2 and 3, R2
e� = R2 re�ects the squared Pearson correlation coe�cient associated

with the data and predictions in the modelling space, i.e.:

R2
e� = 1− var(y∗ − ŷ∗)

var(y∗)
(7.4)

For compositional data, R2
e� is derived in a slightly di�erent manner. Although the same

equation is used, y∗ is substituted by z∗ whose elements are given by:

z∗j = log

(

wj

1− wj

)

(7.5)

The rationale behind this transformation is discussed in more detail in Appendix D.

7.3.4 Predictive performance (petrophysical properties)

Our goal is to calculate the ratio between mean prediction error and uncertainty of con-

ventional analyses, which we refer to as the Predictive Performance Ratio (PPR).

All petrophysical properties analysed in this study are strictly positive. Hence, it is

reasonable to assume a constant relative error for both the prediction uncertainty and the

uncertainty of laboratory data so that the PPR may be de�ned as:

PPRpetro = MRPE/MREIL (7.6)

where the MRPE is the mean prediction error inferred using LOOCV. An inter-laboratory

experiment conducted by Thomas and Pugh (1989) involving sedimentary rock yielded val-

ues for the MREIL for both the grain density (0.13%), porosity (0.67%) and permeability

(4.96%). The minimum porosity and permeabilities values in that study were considerably

larger than found in this study. Under the in�uence of the decreasing sensitivity of the

analytical methods, it is very likely that the data used in this study have a larger associated

error. To compensate for this, we adopt the maximum values reported by Thomas and Pugh

(1989) as the MREIL, i.e, 0.20%, 1.5% and 20% for the grain density, porosity and permeab-

ility, respectively. Although the petrophysical data of B38D were derived using di�erent

analytical techniques, the same values are applied to both cores.

7.3.5 Predictive performance (geochemical composition)

The absolute and relative inter-laboratory error associatedwith geochemical data is concentration-

dependent (Horwitz et al., 1980). Hence, the structure of the PPR used for petrophysical data

(Eqn. 7.6) is unsuitable.

An often used performance criterion for analytical instruments is the HorRat (see Hor-

witz and Albert, 2006, and references therein):

HorRat =
σemp

0.02c0.8495
(7.7)
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In this equation, σemp re�ects the spread between "true" analyte concentrations and the

concentration c determined with some analytical instrument. In Chapter 5, we discussed

the problems surrounding the denominator (i.e., the Horwitz function) of the HorRat which

re�ects the expected inter-laboratory spread. We concluded that the asymmetry of the Hor-

witz function is inconsistent with the de�nition of analyte concentrations as mass fractions.

Applying a rigorous modelling framework to a database with inter-laboratory spreads as-

sociated with routine analysis of geological samples yielded the following alternative to the

HorRat:

GPR = medij

{ |ĉij − c̄ij |
0.022[c̄ij(1− c̄ij)]0.867

}

10−9.68 ≤ c ≤ 1− 10−9.68 (7.8)

In this equation, medij re�ects the median over all calibration samples i and analytes j. In
Chapter 5 it was proposed that a GPR smaller or equal to two means that the analytical

setup performs satisfactory.

What was not considered is the fact that the empirical standard deviation estimate (i.e.,

the numerator of Eqn. 7.7) is estimated in the problematic concentration space. In this

chapter, we go one step further and estimate this spread also in a binomial-like space.

Therefore we propose the following transformation:

z = log(c/(1− c)) = log(c)− log(1− c) (7.9)

Previously (Eqn. 7.2) we showed that, given q = log(c), it holds that δq = 0.02[c(1 −
c)]−0.15. It also holds that:

δz =
√

(0.02[c(1− c)]−0.15)2 + (0.02[c(1− c)]−0.15)2 = 20.50.02[c(1− c)]−0.15 (7.10)

Based on this expression we propose the following de�nition for the PPR associated with

the geochemical data:

PPRchem = medij







| log
(

ŵij

1−ŵij

)

− log
(

wij

1−wij

)

|
20.50.02[wij(1− wij)]−0.1505







(7.11)

In this equation, ŵij is the LOOCV predicted concentration. The fundamental di�erence

between Equation 7.11 and the GPR is that, in contrast to the spread around concentration

estimates ŵij , the spread around log
(

ŵij

1−ŵij

)

is by de�nition symmetric. This makes the

PPRchem a robust and unbiased statistical measure. We will use the PPRchem in a similar

manner as the GPR, i.e., in case PPRchem is smaller than two, the core scanner performs

as good as conventional analytical methods.

7.3.6 Repeatability of XRF-CS data

Replicate scans enable quanti�cation of the contribution of repeatability errors to the in-

ferred prediction errors. Since we have a well-de�ned UF only for the geochemical uncer-

tainty, this investigation is limited to the geochemical data. We quantify the contribution

of repeatability errors to the geochemical prediction errors by means of the X-data Repeat-

ability Ratio:

XRR = medkj







std[log
(

w̌kj

1−w̌kj

)

]

20.50.02[ŵkj(1− ŵkj)]−0.1505







(7.12)
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Comp. Scale Geochem. Comp. Scale Geochem.

X-vars out Cr Y none Cr, Cu, Ni, Y Cr, Zn -

Y-vars out Br, Cr, S, Zr - - Br, Cr, S, Zr (set) - -

No. PLS comp. 12 12 - 9 5 -

R2 0.65 0.53 0.70 (R2
e�) 0.63 0.22 0.70 (R2

e�)

MSPE 0.22 0.30 - 0.18 0.17 -

MSI% 57.93 55.98 - 73.66 75.37 -

MRPE% - - 54.46 - - 51.75

PPRchem - - 3.12 - - 3.13

XRR - - 0.74 - - 0.28

Table 7.1: Summary of the geochemical calibration results of core E10-3, with (left columns) and without (right

columns) the coal sample.

where the vector w̌kj contains the replicate intensities of the k-th replicates set and analyte
j, transformed to concentrations. The mean predicted concentration at this core position

is given by ŵ. A XRR equal to unity implies that the repeatability errors have the same

magnitude as the expected inter-laboratory errors. Comparison of the XRR and the PPR

provides insight into the contribution of repeatability errors to the prediction error (MSPE).

7.4 Results

7.4.1 Geochemical calibration

The core scanning data were geochemically calibrated using the GLC method with a VIP

threshold of 0.25 and a R2 threshold of 0.5. To obtain one XRF-CS measurement for each

calibration point, all XRF-CS measurements within 1 cm from the calibration point were

averaged in logratio space.

The summary statistics of the geochemical calibration exercise are shown in Table 7.1

(E10-3) and 7.2 (B38D). For core E10-3, the predictions along the entire core and along the

six example slabs are given in Figures 7.2B and 7.3B, respectively. The predictions for core

B38D are shown in Figure 7.4. Cross plots of data and predictions are shown in Figures 7.5

and 7.6 for cores E10-3 and B38D, respectively.

For both cores, a total of 15 elements could be adequately calibrated. In core E10-3, S,

Zr, Br and Cr were consecutively removed because theirR2 value was below the threshold

value. From the set of calibrated elements in core E10-3, Ga and SiO2 display the highest

signal strength (R2
e� = 0.86 and R2

e� = 0.81, respectively) whereas the lowest R2
e� values

were found for Sr (R2
e� = 0.49) and TiO2 (R2

e� = 0.52) (Fig. 7.5). In core B38D, Cu, Ga

and Rb were removed on the basis of their R2 and as shown in Figure 7.6, SiO2 and Fe2O3

demonstrate the highest signal strengths of 0.92 and 0.90, respectively. For this core, the

elements with the lowest signal strength include Y (R2
e� = 0.39) and Ni (R2

e� = 0.47).

Cross plots shown in Figures 7.5 and 7.6 suggest that the ability to predict the con-

centration is concentration-dependent: particularly for major elements such as SiO2, the

scatter seems to increase as the concentration decreases.
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Figure 7.2: Results of the proposed calibration method for core E10-3: line scan image (A), grain size group (B),

lithofacies association (C), bulk geochemical composition (D), grain density (E), porosity (F), and permeability (G).

In A, the position of the example slabs are indicated. E, F and G show the plug data (red), the core scan predictions

(black) and the associated 90% con�dence interval (gray). In B and C, the assigned and predicted core descriptions

are shown side by side.
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Comp. Scale Geochem. Comp. Scale Geochem.

X-vars out none none - none Rh -

Y-vars out Cu, Ga, Rb - - Cu, Ga, Rb (set) - -

No. PLS comp. 8 8 - 10 3 -

R2 0.78 0.77 0.77 (R2
e�) 0.75 0.74 0.89 (R2

e�)

MSPE 0.07 0.36 - 0.04 0.38 -

MSI% 77.59 64.28 - 74.47 84.15 -

MRPE - - 40.23 - - 28.17

PPRchem - - 2.76 - - 1.57

XRR - - 0.35 - - 0.46

Table 7.2: Summary of the geochemical calibration results of core B38D, with (left columns) and without (right

columns) the samples with a high TOC content.
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Figure 7.5: Cross plots of the analyte concentration in the calibration data against the predicted (LOOCV) analyte concentration in core E10-3. Each cross plot shows the

R2
e�

and the line y=x. The data point indicated by a ’*’ represents the coal sample.
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Figure 7.6: Cross plots of the analyte concentration in the calibration data against the predicted (LOOCV) analyte concentration in core B38D. Each cross plot shows the

R2
e�

and the line y=x. The data points indicated by a ’*’ represent the organic-rich samples.
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Geochemical calibration (only siliciclastics-dominated samples)

The results we obtained by geochemical calibration illustrate the ability of the GLC model

to predict the geochemical composition of the cores as a whole. However, the fact that the

uncertainty seems to increase as the concentration of major elements decreases suggests

that excluding samples with a small compositional scale may have a positive e�ect on the

inferred predictive performance. Hence, we perform another geochemical calibration ex-

ercise, but now without the samples with a scale smaller than 40%, i.e., samples with a high

carbon content. The resulting summary statistics are shown in Tables 7.1 (E10-3) and 7.2

(B38D).

The associated summary statistics illustrate the ability of the GLC model to predict the

analyte concentrations in all but the coal and peat layers. There are a number of noticeable

di�erences with the initial calibration results. Firstly, the PPR remained constant for core

E10-3, and it decreased for core B38D from 2.76 to 1.57. The same applies to the MSPE

values associated with both composition and scale. We also observe that for core E10-3,

the number of excluded intensity variables is smaller in the �rst model: in contrast to the

initial model, Cu, Ni and Y were not included in the �nal calibration model. Stability gener-

ally increased substantially from the �rst to the second model: only for the compositional

calibration model in B38D the MSI was e�ectively unchanged. We get mixed results for the

XRR: it decreased in core E10-3 from 0.70 to 0.27, whereas in core B38D it increased from

0.36 to 0.46.

7.4.2 Petrophysical calibration

We applied the GLC model to the petrophysical data. The same thresholds and tolerance

were used as adopted for the geochemical calibration. The results are summarised in Table

7.3 and cross plots between plug data and LOOCV predictions are shown in Figure 7.7.

Table 7.3 shows that the signal strength R2
e� does not vary much among the properties

and is comparable to the values associated with the geochemical calibration. The only

exception is the permeability of core B38D which demonstrates a relatively high signal

strength of 0.90. The PPR varies between 6.0 for the permeability and 12.6 for the porosity

(both in core E10-3), suggesting that the quality of the predictions is in all cases lower than

that of conventional petrophysical analysis. Compared to conventional analyses, the core

scanner has the highest predictive performance for the permeability in core E10-3 whereas

performance for the porosity in core E10-3 is lowest. The permeability in the soft-sediment

core B38D scores roughly in between these two extremes with a PPR of 8.05.

The MSI values we found for core E10-3 vary between 81% and 94%, suggesting that the

set of calibration data is su�cient to constrain the calibration models. The stability associ-

ated with the permeability model of core B38D is only 26%. For this core, more calibration

data are therefore likely to increase the predictive performance.

7.5 Discussion

7.5.1 Geochemical calibration

For cores comprising e�ectively all di�erent lithologies or sediment types, the core scan-

ner apparently performs up to three times worse than conventional analysis. The summary
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E10-3 E10-3 E10-3 B38D

Grain density Porosity Permeability Permeability

[gr/cm3] [%] [mD] [m/D]

X-vars excluded Cr, Cu, Mn, Ni Cr, Cu, Y Cr, Cu, Ga, Mn, Y none

PLS comp. 12 8 9 10

R2
e� 0.75 0.72 0.82 0.91

MSPE 9.11e-5 2.73e-5 1.07 1.61

MSI% 94.2907 81.39 86.90 26.22

MRPE% 1.35 16.49 116.72 161.02

PPRpetro 6.41 10.99 5.84 8.05

Table 7.3: Summary of the petrophysical calibration results.
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Development of a modelling framework for core-data integration using XRF scanning 135

statistics associated with the reduced set of calibration samples of core B38D show that lim-

iting the model’s application range to siliciclastics has a positive e�ect on the quantitative

performance. The PPRchem of core B38Dwithout the ICP-OES and glass-bead XRF analyses

was as small as 1.57, indicating that the performance of the core-scanning methodology is

comparable to that of conventional analysis methods. An explanation for the fact that the

PPRchem remained constant in core E10-3 is that there was only one coal sample excluded

in combination with the robust de�nition of PPRchem (Eqn. 7.11). Supported by the fact

that the lowest MSI values were around 50%, we want to stress that if more calibration data

would have been available, the PPR value is likely to decrease.

Comparing the �rst and second calibration results yields that the XRR in core E10-3

decreased whereas that in core B38D slightly increased. An explanation for the reduced

XRR in core E10-3 is that many low-intensity elements were excluded from the model (e.g.,

Cr, Cu, Ni and Y) probably because they primarily reside in the coal-bearing intervals (see

Fig. 7.2). In core B38D, on the other hand, the set of included intensity variables was

practically equal. For the complete set of calibration data, the XRR values were 0.74 (E10-3)

and 0.35 (B38D). This implies that the magnitude of repeatability errors is slightly smaller

than the inter-laboratory error associated with conventional analyses. Comparing the XRR

to the PPR values, however, shows that repeatability errors have a marginal contribution

to the total prediction error.

An important aspect is whether the inability to predict the analyte concentrations in

samples with a low concentration of siliciclastics is due to incorrect predictions of scale (i.e.,

the total concentration of quanti�able analytes) or of composition. Therefore we analyse

the predictions of samples that were excluded in the second calibration exercise and com-

pare them to the measured concentrations (i.e. the calibration data). The results are shown

in Figure 7.8. In core E10-3 we observe that the predicted scale for the coal sample is 63%

whereas the scale determined using destructive XRF is 7.5%. Apparently, scale cannot be ac-

curately predicted by extrapolation for these cores. For core B38D, the core scanner seems

to be better at predicting the composition than the scale. We only observe appreciable bias

for Zn and CaO, but it is beyond the scope of this contribution to �nd an explanation for

this bias.

Carbon does not produce �uorescent energy and is therefore not explicitly resolved in

the intensity data set. A high carbon content will cause the intensities of all "active compon-

ents" to decrease (i.e., dilution e�ect). However, the proposed modelling approach is based

on clr-transforming the intensities which means that information about the total intensity

is removed. The reason for doing so is to obtain a model which is less sensitive to variations

in the measurement geometry and which is therefore more robust. The consequence of this

approach, however, is that prediction of compositional scale in coal- and peat-bearing in-

tervals is possible only in case the scale correlates with any of the measurable components

(e.g., S intensities). The success of this approach is highly case-speci�c.

7.5.2 Element intensity importance

The VIP values associated with all initial calibration models (i.e. before X-variable removal)

as well as the associated cross-correlation coe�cients are shown in Figure 7.9. Their high

VIP values indicate that Ca, Fe, Si were important in all calibration models. Elements which

were relatively unimportant for the prediction of the various core properties are Cl (B38D),

Cr (E10-3), Y (E10-3) and Rh (B38D).
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Figure 7.8: Cross plots between the plug and predicted (LOOCV) chemical scale (A, C) and clr-transformed

composition (B, D) of cores E10-3 (A, B) and B38D (C, D). All cross plots show the line y=x.
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Typically, a high VIP was accompanied by a high cross-correlation coe�cient (see Fig.

7.9), suggesting that variables were included in the model because they demonstrate a

monotonic relation with that particular property. For instance, Si has a high VIP values and

a strongly positive correlation coe�cient with the chemical scale in both cores. This can

be explained geochemically by considering that the most prominent unobservable chem-

ical component is carbon which, in turn, is found exclusively in Si-poor intervals. Another

example is Fe in core E10-3 which displays the highest VIP value for the grain density

and also the strongest (positive) correlation coe�cient. Fe is important for the prediction

of grain density because (i) this core contains high concentrations of Fe-bearing minerals,

and (ii) Fe-bearing minerals have a high density. In contrast to core E10-3, however, Fe is

strongly negatively correlated with chemical scale in core B38D. In this core, Fe turns out

to be enriched in intervals with a high concentration of organic material. With Fe2O3 con-

centrations not exceeding 10%, Fe intensities most likely re�ect variations in pyrite content

(Gri�oen et al., 2012).

The majority of the element intensities with a high VIP were acquired in the 10kV

run. For core E10-3, the calibration models which bene�ted most from intensities acquired

in 30 or 50kV runs are the chemical scale (Cu, Ni, Rb, Sr, Zr) and the porosity (Br). The

former set of elements is important for prediction of chemical scale probably because these

elements are primarily enriched in coal layers characterised by a small compositional scale.

Given that the formation water contained substantial amounts of Br ions (> 7 mg/L), the

Br intensities may re�ect the amount of precipitated formation water, which is presumably

proportional to porosity. However, this interpretation is by no means conclusive because

we were unable to properly calibrate Br.

Core B38D was also scanned at 50kV yielding Ba and Ag intensities. The VIP values

show that in this core, Ba was moderately important for the prediction of the petrophys-

ical properties. Biplot analysis (Chapter 6, Fig. 6.8) showed that Ba is primarily a proxy

for sandy sediments. Including Ag intensities in the calibration model was only bene�-

cial for the prediction of permeability. As we already discussed, Ag is only present in the

instrument and probably re�ects the scattering properties of the sediment which will be

in�uenced by e.g., water content and porosity. This shows that including intensities which

have little geochemical signi�cance may increase prediction performance.

7.5.3 Extrapolation abilities (histogram analysis)

By inferring the predictive capabilities using LOOCV it is implicitly assumed that predic-

tions are reasonably close to the calibration data. We can gain more insight into the lim-

itations of the proposed methodology by analysing histograms of measured and predicted

permeabilities (Fig. 7.10). These histograms demonstrate that the predictions of core B38D

(Fig. 7.10, B and D) resemble the two populations in the calibration data set, re�ecting the

sandy and peat/loam intervals. However, the predictions exceed the maximum measured

permeability in quite a few cases up to three orders of magnitude. High-end exceedances

are less common in core E10-3 (Fig. 7.10, A and C). In this core, however, there are a

considerable number of permeability predictions which are much smaller than the lowest

measured permeability.

Inspection of core B38D reveals that high-end exceedances occur exclusively in coarse-

grained sediment intervals. The grain size in these intervals range up to gravel. The

most permeable intervals are characterised by a high quartz content. In case the core-
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Figure 7.10: Histograms of the permeability values in the calibration data set (A,B) and the core-scanning pre-

dictions (C,D) for core E10-3 (A,C) and B38D (B,D).

scanning measurement corresponds to a single pebble which consists almost exclusively of

quartz, these scanning measurements were therefore erroneously "interpreted" as an ultra-

permeable sand (i.e., more permeable than the maximum measured permeability). The fact

that these exceedances are less common in core E10-3 suggests that also the stability of the

calibration model plays a role. Hence, we conclude that the integrity of the predictions is

controlled by the representativity of the scan measurement for the sediment bed, and the

size of the calibration data set.

7.5.4 Extrapolation abilities (explicit poroperm relation)

To further investigate the integrity of the core-scanning-based predictions, we study the

poro-perm relation of the independently calibrated predictions of core E10-3 and compare

this relation to that of the plug data. This "explicit" poroperm relation is shown in Figure

7.11A only for the plug positions. In this �gure, also the plug data are shown which were

not included in the calibration procedure. The relation associated with all scan positions

is shown in Figure 7.11B. To facilitate interpretation, the assigned and predicted lithofacies

class are indicated for the plug and core-scanning data, respectively.

Figure 7.11A shows that the poro-perm relation of the plug data is very similar to that
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Figure 7.11: (A) Plug porosity versus plug permeability as well as the core scanning predictions at the plug

positions (black stars). For the plug data, the color indicates the lithofacies association of the core description. (B)

The predicted (LOOCV) porosities and permeabilities for the whole core. Colors indicate the predicted lithofacies

association.

of the associated predictions. This underlines the integrity of the core-scanning-based pre-

dictions within the calibrated range. Analysing the predictions outside the calibrated range

(Fig. 7.11B), however, yields that the predictions tend to deviate from the main poro-perm

relation both at the high and the low end. Outside the range of calibration values, the poro-

perm relation of the predictions shows a curvilinear relation. On the low end, we suspected

the plug permeability data to be incorrect due to leakage along fractures and the Hassler

sleeve. The predicted poro-perm relation is more in line with what we expect, namely pos-

itive correlation between porosity and permeability along the entire range. With regard

to the deviation at the high end we cannot draw any �rm conclusions, because, as we dis-

cussed in Section 7.5.3, the representativity of the XRF-CS measurements deteriorates as

the grain size increases. We suspect that the curvilinear appearance of the extrapolations is

to some extent controlled by the logarithmic transformation that is applied to the porosity

before linking it to the intensities.

Two plug measurements which do not fall within the general poro-perm trend (indic-

ated with arrows in Figure 7.11A) are not re�ected by the predictions at the plug locations.

For a given porosity, plug #25 has a lower than expected permeability whereas plug #4 has

a higher than expected permeability. The sedimentological description at the position of

the former mentions cm-scale mudstone and siltstone intraclasts whereas at the position

of the former large concretions of anhydrite were found. The presence of a large intra-

clast or concretion inside a plug may have caused their deviation from the main poro-perm

trend, which would justify labelling them as "outliers". In contrast to plug #25, however,

the poro-perm predictions for the whole core (Fig. 7.11B) suggest that the combination of

porosity and permeability of plug #4 is quite common in core E10-3. This would imply

that this plug measurement is not an outlier but a sample from an important subpopulation

characterised by a di�erent poro-perm relation. As demonstrated by Figure 7.11B, how-
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ever, this subpopulation includes all coal-bearing SW intervals. Poro-perm predictions are

unreliable because they are not supported by plug data. An example of such predictions

may be observed in ES5 (Fig. 7.3). Furthermore, plug #4 is not coal-bearing but a sandstone

plug. These two factors suggest that plug #4 is indeed not representative for the core.

7.6 General discussion, conclusions and recommendations

7.6.1 Quantitative performance evaluation

The quantitative performance of the XRF core scanner is generally lower than that of con-

ventional geochemical and petrophysical analyses. Based on this study and a PPR threshold

of 2, the proposed methodology can be considered a full-�edged alternative only for con-

ventional geochemical analysis of unconsolidated-sediment cores and only for siliciclastics-

dominated sediments. Ranking the calculated predictive performances in decreasing order

yields: geochemistry, permeability, grain density, porosity. The fact that the highest PPR is

that of the geochemical composition is not surprising, given that XRF is a chemical tech-

nique.

We derived that repeatability errors in the intensities are relative small compared to the

prediction error. Hence, longer measurement times and more stable spectrum interpreta-

tion software are not the key to smaller prediction errors. The MSI values suggested that

for most properties (in particular the bulk geochemical composition) the PPR will increase

when more calibration data become available. The results also showed that extrapolations

in the Y-data range are of questionable integrity. In addition, the explicit poro-perm rela-

tion showed that the integrity of the predictions is also determined by the X-data range,

i.e., predictions associated with XRF-CS signatures which are very di�erent from the calib-

ration data are questionable. For core E10-3, a pragmatic solution would have been to use

only the predictions which (i) fall within the range of the calibration data, and (ii) which

were assigned the BC3 lithofacies class.

The performance criterion PPR we de�ned is based on the premise that all calibration

data were internally consistent. Given the professionalism of the laboratories involved,

this is a reasonable assumption. For the geochemical data, however, this assumption was

possibly violated because determining the geochemical composition of sediments with a

carbon content of more than 90% is also pushing the limits of conventional XRF analyses.

The inability to predict the compositional scale is therefore probably in�uenced by the

limited number of calibration samples, as well as systematic errors in the calibration data.

7.6.2 Possible improvements

Possible improvements are strati�ed modelling (i), �agging of extrapolations (ii) and reduc-

tion of sampling errors (iii).

The proposed modelling framework is founded upon mathematical and statistical con-

siderations. Modelling intensities bymeans of logratioswas assumed to remove the variable

measurement geometry and linearise matrix e�ects (Weltje and Tjallingii, 2008). As these

authors showed, these assumptions hold for cores with little lithological variability such

as marine soft-sediment cores (Chapter 2). It is very likely, however, that this assumption

does not hold for cores comprising more lithological variability, such as cores E10-3 and
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B38D. Instead of setting up one calibration model, setting up di�erent calibration models

strati�ed by lithology is therefore likely to improve predictive capabilities.

Extrapolations made by the model in both the X and the Y space may be unreliable.

Extrapolation may be prevented by carefully selecting calibration samples (see Weltje et al.

(2015) and Chapter 2, this thesis). In the hydrocarbon industry, however, cores are plugged

prior to slabbing which implies that sample selection based on XRF-CS data is not possible

and prediction by extrapolation cannot be avoided. For these cores it is important to have

a safety mechanism which can ’�ag’ extrapolation by the model in both the X and the Y

space in an automated manner, for instance by determining the convex hull in both multi-

dimensional spaces. Predictions would then only be marked as reliable in case both X-data

and Y-predictions fall within the two convex hulls.

Sampling errors are introduced because the scanner did not measure the same sample

volume as the conventional analytical instrument: the core scanner analysed the core slab

right next to the plug location whereas the petrophysical properties were derived from the

plug sample as a whole. In the future, it may be attempted to mitigate sampling errors by

scanning the plugs after trimming and before they have been cleaned.

7.6.3 Concluding remarks

It is evident that mitigating sampling errors may reduce the prediction error. The ques-

tion is, however, whether reducing this prediction error is necessary and even advisable.

In order to answer that question, we should consider the objective of core scanning and

core analysis in general: the objective is not to accurately characterise the uppermost mil-

limeters of a core slab or the core slab as a whole, but to characterise the properties of a

stratigraphic interval in the subsurface. Reducing the inferred prediction error by mitigat-

ing sampling errors may result in a false sense of certainty because the inferred prediction

error may become smaller than the geological uncertainty. In that case, we ignore the in-

trinsic uncertainty associated with cores as samples of the subsurface. On the other hand,

mitigating sampling errors will give better calibration models because they require fewer

data to estimate their parameters.

To make use of the improved calibration models by mitigating sampling errors requires

a hybrid approach. Firstly, establish calibration models from closely-linked core scan and

calibration data, yielding a calibration model with a minimal associated prediction error.

Secondly, quantify the intrinsic variability of these predictions in a particular application,

for instance by determining the variance in sediment properties parallel to the bedding dir-

ection. In the light of the objective to characterise the subsurface, a realistic uncertainty of

the core-scanning data is then given by the sum of the prediction error associated with the

calibration model, and the sedimentological error associated with the bed-parallel compos-

itional variability.

Although the results showed that the XRF-CS predictions are inferior to conventional

geochemical and petrophysical analyses, what should be kept in mind is that XRF-CS and

conventional methods are not directly comparable. In practical applications it is simply

impossible to acquire conventional geochemical or petrophysical analyses on a 1-cm res-

olution due to �nancial and time constraints, but also due to the fact that conventional

methods are destructive. Generally it is unwanted or even not allowed to sample a core

so intensively that its integrity is jeopardised. Hence, in cases where the core is hetero-

geneous and the objective is to make a detailed description of the core, there is simply no
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conventional alternative to in-situ core-scanning techniques. We will illustrate the value

of the integrated core description of E10-3 in Chapter 8.
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CHAPTER 8

Integrated core analysis using XRF scanning. Part III:

Applications

8.1 Introduction

8.1.1 General introduction

In Chapter 6 and 7, new methods were introduced for the prediction of lithofacies, chem-

ical and petrophysical properties from XRF-CS data. The high resolution predictions of

lithofacies, chemical and petrophysical properties together constitute the "integrated core

description". Two cores were analysed: core E10-3 constituting consolidated sediments

and core B38D containing unconsolidated sediments. In this chapter, the added value of

the "integrated core description" is investigated for core E10-3.

The added value of the integrated core description will be explored by means of three

applications. In these applications, we combine the integrated core description with all

other available core data, i.e., also with those which were not linked to the XRF-CS data

in Chapters 6 and 7, such as thin-section and XRD analyses. Ultimately, this leads to a

far more detailed description of core E10-3 in terms of reservoir quality and its controlling

mechanisms: a detailed description which could not have been made based on the data

acquired in routine core analysis.

8.1.2 Core E10-3: controls on reservoir quality

Hereafter we summarise the conclusions drawnwith regard to the factors controlling reser-

voir quality in core E10-3, as given in the core report (see Boels, 2003). The sediments of

core E10-3 are dominated by three sandstone intervals, which were interpreted as braided-

channel deposits (Boels, 2003). The reservoir quality of the sandstones is mainly controlled

by variations in grain size, and diagenetic overprint. Early-diagenetic kaolinite and hem-

atite reduces reservoir quality. Pore-�lling kaolinite formed as a result of grain dissolution

and hematite replaced matrix grains. Its occurrence could not be distinguished from grain-
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size variations, because matrix grains are more abundant in the �ne-grained sandstones.

Quartz precipitation during intermediate diagenesis enhances reservoir quality. Ferroan

dolomite is late diagenetic and destroys porosity. According to Boels (2003), however, its

occurrence is too local and little to have a large e�ect on the reservoir quality. Further-

more, diagenesis was quali�ed as heterogeneous in core E10-3, and it was not attempted

to reconstruct the relative importance of these mechanisms: the resolution of the data at

hand (i.e., 10 thin section petrographical and 10 XRD analyses) was not su�cient for this

task.

8.2 Application 1: Enhanced facies properties

8.2.1 Objective

One of themost important goals of core analysis is to obtain reliable estimates of petrophys-

ical properties which, in turn, serve as input for reservoir models. The standard approach

is to drill plugs at regular intervals (e.g., 1 ft or 25 cm). The rationale behind this approach

is that the plugs are a representative sample of the core and that the plugs are su�cient

to constrain the average poro-perm values associated with each lithofacies. The core scan,

however, covers the entire core on a virtually continuous scale which means that, given

that the predictions are unbiased, the nearly continuous poro-perm predictions are a rep-

resentative sample by de�nition. Our objective is to investigate the impact of using the

core-scan predictions instead of plug data to calculate the average porosity and permeabil-

ity of a particular grain-size group or lithofacies association.

8.2.2 Approach

In addition to the conventional approach whereby the average class properties are calcu-

lated by taking the mean value over all plug data acquired from that particular class (i.e.,

method 0: see Figure 8.1A), we propose two alternative methods which rely increasingly

more on the XRF-CS predictions. Method 1 is based on calculation of the average porosity

and permeability as predicted from the core scan, however, using the original core de-

scription (see Figure 8.1B). Comparison of the outcome of method 1 with the conventional

approach gives insight into the e�ect of inadequate sampling on the lithofacies properties.

Method 2 is similar to the �rst, but the predicted core description (i.e., predicted on the

basis of XRF-CS data) is used to label porosity and permeability predictions (see Fig. 8.1C).

Comparing the results of method 1 and 2 gives insight into the relative importance of us-

ing a predicted core description instead of the original core description for prediction of

lithofacies properties.

8.2.3 Results and discussion

In our analysis, we only include BC3 (lithofacies) and S1-S5 (grain-size group), and only

the porosities between 3% and 20.8% and permeabilities between 0.01 and 387 mD (i.e. the

calibrated ranges). We derive average poro-perm values by employing the arithmetic mean

for the porosity, and the geometric mean for the permeability. The average porosities and

permeabilities of each class, derived using the di�erent methods, are shown in Figure 8.2

(A and B).
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Figure 8.1: A, B andC illustrate the variousmethods (method 0, 1 and 2, respectively) that were used in application

1 to derive average grain size group properties: average plug data (A), average predicted poro-perm using existing

core description (B) and using updated core description (C). D shows the poro-perm predictions labeled with their

assigned RQI class, as derived in application 2 (Sect. 8.3).
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Figure 8.2: A and B show the average poro-perm values, as estimated with the three methods. C and D show the

average poro-perm values associated with the RQIs (See Sect. 8.3 for discussion).

We observe that the main di�erences are among the conventional method and the two

alternatives. Hence, it is not so much the change in the classi�cation scheme but merely

the increase in resolution which in�uences the average poro-perm per class.

We also observe that the methods yield similar poro-perm values for BC3. The reason

why the di�erences are so small for BC3 is that it was already frequently plugged, which

means that the average poro-perm values are well-constrained. For most other classes,

however, the alternative methods yield noticeably di�erent average poro-perm values. Ac-

cording to the conventional method (method 0), for instance, grain-size group S5 has higher

poro-perm values than those derived using methods 1 and 2, whereas the opposite applies

to grain-size group S4 (Fig. 8.2, A and B).

In terms of magnitude, the di�erences in porosity estimates derived using the methods

is small (1%). For the permeability, the spread among the methods ranges from 67% for S1

and 25% for S5. Although the relative spread is smallest for S5, this spread may have the

largest impact on associated reservoir models. The 25% spread of S5 translates to 20 mD

di�erence between method 0 (114.8 mD) and method 2 (91.2 mD).
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8.3 Application 2: Automatic reservoir quality prediction

8.3.1 Objective

Core descriptions serve di�erent purposes, i.e., they may re�ect the lithology of the core

or they may re�ect an interpretation of the environment in which the sediments were de-

posited. Under particular circumstances, lithology in combination with sedimentary en-

vironment may be a good indicator for the porosity and permeability and therefore of the

reservoir quality. In other cases, it is impossible to obtain a continuous description of the

core in terms of reservoir quality without having to employ specialised measurement tech-

niques such as mini-permeametry. Our next goal is to use the core-scanning predictions

to automatically describe the core in terms of a set of reservoir quality classes with unique

properties in an objective manner.

8.3.2 Approach

One way to automatically subdivide the core into classes with distinct poro-perm values

is to apply some sort of binning to porosity and permeability values. A more rigorous

approach is to design a new classi�cation scheme with non-overlapping classes in the de-

sired space (in this case the porosity-permeability space) using cluster analysis. We use

hierarchical clustering based on Ward’s distance measure (Ward, 1963) to construct such a

classi�cation scheme. The methodology presented here is suitable for developing any kind

of classi�cation scheme by using a di�erent set of variables (e.g., geochemical facies, grain-

density facies). The only parameter which has to be set when employing cluster analysis

is the desired number of clusters.

Because the poro-perm relation is generally modelled in a linear-logarithmic space,

clustering is applied to the raw porosities and to logarithmically-transformed permeabilit-

ies. To ensure that the variables are given equal weight, they are normalised to unit vari-

ance. After cluster analysis, the mean poro-perm values are calculated for every cluster.

The classes are subsequently ranked according to their mean permeability. We refer to this

classi�cation as the Reservoir Quality Index (RQI) scheme.

8.3.3 Results and discussion

In core E10-3 only the Braided Channel Units (BCUs) have signi�cant reservoir potential.

Therefore, only those poro-perm data were included whose predicted lithofacies is BC3,

and all other poro-perm data were labeled as RQI-0. The included data were divided into

�ve clusters, i.e., the same number of sandstone grain-size groups as used in the original

core description.

The poro-perm relation labeled with the RQI classes displayed in Figure 8.1D shows

that, as expected, RQI classes are always non-overlapping. Assuming that the aim of a

classi�cation scheme is to continuously describe the core in terms of classes with unique

reservoir qualities, this scheme is superior to the original grain size and lithofacies classi�c-

ation schemes. The poro-perm relation also shows that for this particular core, binning the

porosity and permeability along their major axes would have given a similar result, which

is due to the fact that the poro-perm relation is monotonic. This, however, may not always

be the case.
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Figure 8.3: RQI classi�cation along for the entire core (A and B), and for BCU1 only (C and D).

Comparing the average poro-perm values of the RQI classi�cation with the grain-size

scheme (Figure 8.2) indicates that the properties of RQI-5 are more favourable than those

of S5 whereas the predicted abundance of S5 is much lower than that of RQI-5. Despite the

RQI classi�cation scheme being based upon the same data set, it suggests that core E10-3

has intervals with better reservoir quality than implied by the lithofacies and grain size

descriptions. The RQI scheme is more speci�c, i.e., the average poro-perm values of each

class are a better approximation of the cm-scale poro-perm predictions.

The RQI classi�cation along core (Fig. 8.3) readily shows that the reservoir quality is

heterogeneous. Moreover, there are some noticeable di�erence between the BCUs. In-

tervals with high (RQI-3 and higher) reservoir quality are found mainly in BCU1: it is the

only BCUwhich contains RQI-5 intervals with appreciable thickness. A di�erence between

BCU1 and BCU2 is that whereas in the former the highest quality sandstones are found in

the middle, in the latter the highest reservoir quality is found at the base. The highest

quality sandstones in BCU3 are found at the top.

These results are illustrative for the disadvantages of the RQI scheme relative to con-

ventional lithofacies descriptions. RQI classes are di�cult to interpret geologically because

the reservoir quality is controlled by di�erent, possibly independent mechanisms. Our next

challenge is to unravel the control on this heterogeneity by integrating the RQI description

with the other available data sets.
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8.4 Application 3: Diagenetic controls on reservoir properties

8.4.1 Objective

In Chapter 7, we discussed the importance of grain-size variations for the reservoir quality

of core E10-3. Thin-section analysis yielded that reservoir quality is controlled by di�erent

mechanisms whose importance varies strongly throughout the cored interval (Boels, 2003).

In the core study, however, it was not attempted to reconstruct the relative importance of

these mechanisms due to the limited data that were at hand. Our objective is to investigate

to what extent core-scanning data can help to make a more detailed description of the

diagenetic overprints in the stratigraphic record.

8.4.2 Approach

Using the classi�cation of the core in terms of RQI and the geochemical record, we may dis-

tinguish two types of mechanisms: those that control the reservoir quality (positively and

negatively), and those that have no e�ect on reservoir quality. Under the assumption that

all relevant mechanisms have a geochemical response, our goal is to subdivide the signals of

the di�erent chemical elements into three groups, and associate themwith phenomena that

were distinguished by thin section analysis. We use a methodology which we refer to as

crosscorrelation-variance analysis. This method is based on classifying all chemical elements

based on crosscorrelation coe�cients between the clr-transformed concentrations and the

properly-transformed poro-perm. Pearson’s (cross)correlation coe�cients are sensitive to

linear relations of, in this case, elemental abundance and poro-perm values. This approach

can be considered a univariate implementation of the method proposed by Bloemsma et al.

(2012) (Chapter 3, this thesis).

The elements that correlate signi�cantly (positively and negatively) with porosity and

permeability are placed in group 1. The other elements are subdivided into those that

have a high variance (group 2), and the elements which have a low variance (group 3). The

elements in group 1 are considered to re�ect the geochemical response of reservoir-quality-

controlling mechanisms and may be readily interpreted. The elements in group 2 re�ect

the response of an important mechanism, whose response is not monotonically related to

the poro-perm values. Because this relation may also be non-monotonic, it is important to

study the nature of the relation between the abundance of group 2 elements and poro-perm

values graphically by means of cross plots. The elements in group 3 do not deserve further

investigation because they probably re�ect noise.

After this classi�cation step, the correlation among the elements is examined using

biplot analysis. The results of the biplot analysis are combined with XRD analysis, petro-

graphical analysis and general sedimentological and geochemical principles.

Generally, the signi�cance of correlation coe�cients is determined using a statistical

criterion which is based upon the null hypothesis that two properties are uncorrelated.

Evaluation of the t-statistic-based criterion (Eqn. A.7 in App. A), for instance, yields for

α = 0.05 and N = 142 (i.e. the number of plugs used to constrain the permeability

calibration), a critical value of 0.16. In this case, however, testing against the null hypothesis

of uncorrelatedness is pointless, given that the predicted concentrations and the poro-perm

predictions are by de�nition not independent: they were both generated from the same

set of intensities which disquali�es this strictly statistical approach. We therefore adopt a
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relatively high (but arbitrary) correlation-coe�cient threshold of 0.25. It is also di�cult to

de�ne a variance threshold, which determines whether elements are placed in group 2 or

group 3. We choose to place the two elements with the highest variance in group 2.

8.4.3 Results and discussion

The crosscorrelation-variance analysis is limited to the viable reservoir units by consid-

ering only RQI-1 up to RQI-5. The results are shown in Figure 8.4 and the biplot of the

geochemical compositon is shown in Figure 8.5. Figure 8.4 shows that for both porosity

and permeability, group 1 contains SiO2 and Cu (positive correlation), and Y and Fe2O3

(negative correlation). For both porosity and permeability, group 2 contains CaO, MnO and

Ni.

Group-1 elements

The simplest mineralogical explanation for the positive correlation between permeability

and SiO is that SiO re�ects the quartz content. The quartz content is generally positively

correlated with grain size, and the grain size controls the pore size and therefore the per-

meability. Fe2O3 has replaced matrix grains. Because matrix grains are primarily abundant

in �ne-grained sandstone, this diagenetic signal cannot be distinguished from variations in

detrital grain size.

Relating Cu and Y uniquely to a particular mineral would require single-grain analysis.

However, analysis of the biplot (Fig. 8.5) shows that SiO2 and Cu are highly positively cor-

related, suggesting that Cu is positively correlated with grain size. Possibly, Cu is contained

in heavy minerals which are deposited under the same conditions as large quartz grains.

Y is a relatively immobile accessory element found in biotite, pyroxene, feldspar and

several high-density minerals (e.g., garnet, zircon). The compositional biplot (Fig. 8.5)

shows that Y is strongly linked to a suite of other elements including Rb and K2O. These

elements are generally associated with clay minerals. Following hydrodynamic principles,

the concentration of clay minerals is determined by the mean grain size and the sorting

which, in turn, in�uence porosity and permeability. Y is probably enriched in the weath-

ering product of the above-mentioned minerals (i.e., clay minerals), which would make Y a

proxy for the clay content.

Our interpretation of the crosscorrelation-variance analysis results is that reservoir

quality is controlled by various mechanisms which, however, cannot be distinguished from

grain size. Given that variations in geochemistry mainly re�ect variations in grain size

(Bloemsma et al., 2012), one carefully selected geochemical proxy may therefore give a

good indication of reservoir quality. A proxy suitable for this purpose would be the log-

ratio between the element with the most positive and the most negative correlation coef-

�cient. For both the porosity and permeability this yields Log(SiO2/Y) which is displayed

against porosity and permeability in Figures 8.4C and 8.4D, respectively.

Group-2 elements

CaO and MnO are not (linearly) correlated with reservoir quality and they constitute dom-

inant geochemical signals. Hence, they merit closer investigation. The biplot showed that

CaO and MnO are positively correlated and therefore probably associated with the same
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Figure 8.4: Results of the correlation-variance analysis conducted in application 3. A and B show the correlation

coe�cient against the variance of the di�erent element concentrations for the porosity and permeability, respect-

ively. C and D show the selected geochemical proxies whereas E and F show the non-correlating element with

the highest variance.
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Figure 8.5: Biplot of the predicted geochemical composition with the RQI classi�cation scheme indicated. The

two principal components together explain 85% of the geochemical variability.

mechanism. Cross plots between CaO and both porosity and permeability (Fig. 8.4, E and F)

show that poro-perm is not independent from CaO, but not related in a monotonic (linear)

manner.

For clr-values below unity, Ca is positively correlated with porosity and permeability.

For clr-values higher than unity, CaO is negatively correlated with porosity and permeab-

ility. A clr-value of one corresponds roughly to a concentration of 0.1%. Although not

shown here, similar results were obtained for the MnO concentrations. The fact that we

observe two di�erent regimes suggest that there are two di�erent mechanism a�ecting the

CaO concentration. To better understand this behaviour we need to consider mineralogical

information.

A conclusive explanation for positive correlation betweenCaO abundance and reservoir

quality in the low-concentration regime cannot be given: because of its low concentration,

the Ca-bearing minerals which may have caused this trend may not even be identi�able

from XRD or thin-section analysis. Given the strong grain-size control on reservoir quality,

the simplest explanation for this trend is that it is (again) caused by variations in grain

size. Probably, CaO is contained in small amounts in a detrital component which is either

relatively large or has a relatively high density, such as schist fragments or anhydrite grains

(Henares et al., 2014).

Conventional XRF analysis showed that CaO concentration ranges up to 7% and in the

XRF-CS predictions the CaO concentration even exceeds 30%. Because CaO concentrations

are fairly high, the associated mineral(s) must have been detected by XRD and thin-section

analysis. Both data sets revealed that there are two main sources of CaO in this core which
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are anhydrite (CaSO4) and dolomite (CaMg(CO3)2). The concentration of dolomite is in

the same range as the CaO concentrations: whereas the anhydrite concentration does not

exceed 1%, the dolomite concentration ranges up to 18%. Given that the transition from

positive to negative correlation was around 0.1%, the results suggest that both anhydrite

and dolomite may be the potential cause for reduced reservoir quality. Thin section ana-

lysis con�rms that both dolomite and anhydrite act as a reservoir-quality reducing mineral,

because both minerals were found to �ll secondary pores. Hence we interpret the negative

correlation between CaO and MnO in the high-concentration regime as being caused by

dolomite and/or anhydrite cementation, which reduced reservoir quality.

Synthesis

By combining the mineralogical interpretation with the core-scanning data we will try

to reconstruct the importance of the various reservoir-quality controlling mechanisms in

detail.

Grain size and anhydrite/dolomite cementation have been identi�ed as the dominant

reservoir-quality controlling mechanisms. Grain size controls the detrital composition and

is therefore an important factor throughout the core. However, as thin section analysis

revealed, the abundance of anhydrite and dolomite cement varies strongly throughout the

cored interval. To determine their spatial distribution we make use of their physical and

chemical properties. Compared to quartz, anhydrite and dolomite have a relatively high

density (average densities are 2.97 and 2.85 g/cm3, respectively). Hence, their abundance

will be re�ected by the high-resolution grain density record. Dolomite and anhydrite may

be distinguished based on the concentration of S and Mg. Unfortunately, Mg nor S could

be predicted with enough certainty from the XRF-CS data. To permit this distinction to be

made, we limit ourselves to the Mg and S concentrations, as determined using destructive

XRF analysis.

The core photograph, RQI classi�cation, predicted grain density, predicted CaO con-

centrations, measured MgO concentrations and measured S concentrations are shown in

Figure 8.6 (A-F). Firstly, we observe that in the top of BCU3 and BCU2, grain densities

are positively correlated with the concentration of CaO. Secondly, we observe that elev-

ated CaO concentrations are common in BCU3, and relatively rare in BCU1 and BCU2. At

the top of BCU1 and BCU2, high CaO concentrations are associated with elevated S. At

the base of BCU1, the elevated CaO concentrations are accompanied by high S nor Mg

concentrations. Only in BCU3, elevated CaO concentrations are accompanied with high S

concentrations.

Elevated S concentrations suggest the presence of anhydrite. Anhydrite was indeed

recognised based on visual inspection of the uppermost core section: according to the core

report, spotty, brown-yellow concretions are visible with the naked eye. Also the declining

anhydrite abundance with depth suggested by the S concentration (Fig. 8.6 D) is con�rmed

by the fact that the size and frequency of these concretions reduce with depth (they are not

visible anymore below section 2). At the base of BCU1 we observe neither elevated S nor

Mg, indicating that there is possibly a third source of Ca (possibly calcite). Based on these

results we propose the following interpretation for the controls on the reservoir quality

and their relative importance (Fig. 8.6 F):

1. Grain size (BCU3, BCU2, BCU1),
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Figure 8.6: Reconciliation of the controls on reservoir quality in the BCUs (application 3). Displayed are the
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using pressed-pellet XRF, the plug and predicted CaO concentration (E), RQI classi�cation scheme (F) and our
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of the above sources of information in addition to the XRD analysis and petrographical analysis: an "X" indicates

a measurement whereas "D" and "A" imply the presence of dolomite and anhydrite.
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2. Dolomite cementation (BCU3, BCU2, BCU1),

3. Anhydrite cementation (BCU3),

4. Calcite cementation (BCU1).

These �ndings are consistentwith the core report, which states that diagenetically-controlled

reservoir quality varies throughout this core.

8.5 General discussion and conclusions

We demonstrated that upscaling the lithofacies properties with the high-resolution poro-

perm predictions can result in di�erent average values. This, in turn, can have a substantial

impact on reservoir models. It was also shown that by complementing petrophysical ana-

lysis with core scanning data, a core may be described in terms of its reservoir quality on

a centimeter resolution (potentially even on a sub-centimeter scale) in a fully automated

and objective manner. Finally, we demonstrated that core scanning data enable estimation

of the thickness of diagenetically altered intervals, and unfolding conclusions drawn from

thin sections to the entire core. These conclusions could not be drawn from data acquired

in routine core analysis because their resolution and coverage are insu�cient.

Comparison between the RQI (Fig. 8.6 B) and our interpretation of diagenetic and grain-

size controls (Fig. 8.6 B) con�rms that reduced reservoir quality is accompanied by elevated

CaO concentrations. At the top of BCU1 and BCU2, these elevated CaO concentrations are

assigned to dolomite cement. The thickness of these cemented intervals is roughly between

two and �ve meter. The conclusion in the core report that the occurrence of dolomite "is

too local and little to have a large e�ect on reservoir properties" is therefore untrue. Fur-

thermore, we identi�ed a possible third reservoir-quality-reducing mechanism, probably

associated with calcite cement, which reduced the quality in an even thicker interval at the

base of BCU1.

The RQI classi�cation in combination with the average geochemical composition facil-

itates rigorous selection of intervals or plugs which require more in-depth analysis with

XRD, SEM, etc. In this core, for instance, the geochemical and RQI records immediately

show that sampling the lowermost section of BCU1 may be deemed necessary for a better

description of this core. When considering the link between core and reservoir character-

isation, the high resolution geochemical records facilitate more detailed characterisation of

diagenetically-altered intervals. Although the lateral extent of such diagenetic processes

having a geochemical response may be limited, the high resolution of the scanning data

ensures that a horizon which has a distinct geochemical response will be picked up. Such

high resolution records potentially lead to better well-to-well correlations. Considering

the extra investment that has to be made negligible compared to the costs of core recovery

and routine core analysis, we consider XRF-CS a necessary addition to the core-analysis

work�ow.
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CHAPTER 9

General discussion and outlook

9.1 Discussion

9.1.1 Objectives

One goal of this study was to build a mathematical-statistical framework for the construc-

tion of so-called integrated core descriptions using XRF core scanning. The other goal of this

study was the development of methods that facilitate integrated core analysis. To reach

those goals, six objectives were de�ned which we will evaluate below:

1. Characterise statistically the relevant data types. We found that counting errors in

the clr space are not iid , as requested by conventional least-squares methods (Chapt.

4). We analysed the behaviour of the inter-laboratory error of geochemical data in

Chapter 5, and concluded that its behaviour could not be explained by counting. We

also found that the structure of commonly-used uncertainty functions is inconsist-

ent with theoretical considerations. A new formulation and modelling approach was

proposed which accommodates for this �aw. The implications of the statistical eval-

uations presented in Chapters 4 and 5 for calibration of XRF-CS data were that: (i)

the errors of element intensities can often be adequately "whitened" using appropri-

ate scaling, (ii) it is reasonable to calibrate core-scanning data using a method based

on a least-squares criterion, (iii) uncertain element intensities "pollute" the other ele-

ment intensities when expressed in clr-space, (iv) the total analyte concentration in

quantitative spectroscopy is established in a fundamentally di�erent manner than

the analyte concentration itself.

2. Formalise interpretation and geological inference fromgeochemical data usingmath-

ematical and statistical methods. In Chapter 3 we demonstrated that a model inspired

by PLS may be used to formalise geological interpretation of geochemical data. PLS

enables symmetric decomposition of data sets into unique signals and signals shared

with other data sets. These two types of signals have geological signi�cance when

applied to geochemical composition and grain size. Applying this methodology to

159
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three soft-sediment cores yielded that employing "textbook" proxies like Al/Ti for

grain size can be risky: for the three analysed cores, Ti concentrations once showed

no correlation, once positive correlation and once negative correlation with grain

size.

3. Improve the existing logratio-based calibration method so that the mis�t between

composition predicted by the scanner and composition estimated using conventional

analytical techniquesmay be reduced. We proposed amultivariate calibrationmethod

in Chapter 2 which was further re�ned in Chapter 7 by introducing X- and Y-variable

selection routines and a robust model-selection criterion. We found that this new

method has considerably higher predictive power than the univariate and bivariate

calibration methods.

4. Extend the existing logratio-based calibration method by enabling prediction of

properties which were not directly observed. The multivariate calibration approach

proposed in Chapter 2 was an extension of conventional calibration methods, be-

cause it enables estimation of "true" analyte concentrations. This was achieved by

padding the "undef" so as to ensure that the geochemical data become "complete"

compositions. The other important extension proposed in Chapter 7 is selection of

the appropriate Y-data transformation based on the sample space. This extension

enables estimation of chemical as well as non-chemical properties, such as porosity

and permeability.

5. Evaluate the performance of newly-proposed calibrationmethods for di�erent types

of cores (marine soft-sediment cores, terrestrial soft-sediment cores and consolidated-

sediment cores). We evaluated the quantitative performance of XRF-CS for predic-

tion of lithofacies, chemical composition and petrophysical properties for consolid-

ated and unconsolidated sediments. On the basis of the analysed data, we concluded

that the proposed methodology is a full-�edged alternative only for conventional

geochemical analysis of unconsolidated-sediment cores and only for siliciclastics-

dominated sediments.

6. Explore the added value of core-scanning technologywithin the conventional routine

core analysis work�ow using real-world cases. We have thoroughly explored the

added value and new applications of XRF core scanning analysis within the core-

analysis work�ow. Firstly, we showed that the use of core scanning-based predic-

tions of the petrophysical properties can result in di�erent average facies properties

which, in turn, can have important consequences for reservoir models. Secondly,

we showed that by complementing petrophysical analysis with core scanning data, a

core may be automatically classi�ed in terms of its reservoir quality on a centimeter

scale. Thirdly, we showed XRF-CS enables extrapolation of thin-section analysis and

associated interpretations to the entire core on a high resolution.

9.1.2 Performance

We may turn the performance evaluation conducted in this thesis into a set of guidelines.

In Chapter 7 we obtained that, depending on the type of core and its lithological range (i.e.

including or excluding organic-rick sediments), the PPR value ranges between 1.6 and 3.2.
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Re-evaluation of the data sets analysed in Chapter 2 (i.e., a marine soft-sediment core) and

application of the state-of-the-art calibrationmethod proposed in Chapter 7 yields PPRchem

= 0.82 (core GeoB7920) and PPRchem = 1.00 (core AU10v). Drawing �rm conclusions about

the quantitative performance would require the analysis of more cores, however, the results

suggest that the quantitative performance is related to the type of sediment and/or the

associated compositional variability. Assuming that the results are representative for their

respective class of cores, we postulate the following guidelines:

1. Homogeneous soft-sediment cores (i.e., only siliciclastics): PPR ≤ 2

2. Heterogeneous soft-sediment cores (i.e., siliciclastics as well as organic material): 1

≤ PPR ≤ 3

3. Heterogeneous cores of sedimentary rock (organic and diagenetically-altered sedi-

ments): 3 ≤ PPR ≤ 4

If we adopt a PPR-fence value of 2, we conclude that the core scanner can serve as a fully-

�edged alternative only to homogeneous soft-sediment cores. Nevertheless, more calibra-

tion data and strati�ed calibration models (e.g., by lithofacies) are likely to give lower PPR

values.

9.1.3 Application of XRF-CS

Choosing the optimal data acquisition strategy is not only a matter of choosing the most

accurate analytical method. De�ning a data-acquisition strategy is a matter of �nding an

optimum between time and cost constraints on the one hand, and required data quality

and information content on the other hand. Hence, in applications where time is more im-

portant than quality, core scanning data with a lower predictive performance may still be

a favourable option. In that case, the question is whether the quality of the core scanning

data is su�cient for �nding an answer to the respective scienti�c question. In practice, de-

�ning the requirements which the data should ful�ll is considered very di�cult: frequently,

the purpose of the data is not speci�ed on forehand, hence restricting its versatility is un-

wanted. Furthermore, it requires an extensive knowledge about mathematical statistics

which is not always present/available. Given the modest additional costs of a full core

scan, however, we recommend considering to complement conventional techniques such

as laser-particle analysis and pressed-pellet XRF with a core scan.

In addition to e�ciency and accuracy, also the non-destructiveness of core scanning can

be an important aspect when setting up a data-acquisition strategy. Obviously, it is pos-

sible to retrieve samples every centimeter and analyse them with a conventional analytical

technique. In certain applications, however, the fact that intensive sampling disturbs the

integrity of the core is unwanted or not even allowed, for instance when the core material

is state-owned or property of a third party. In those cases, core scanning may be the only

way to retrieve high resolution data of sediment properties.

Core scanning can play a key role in the analysis of hydrocarbon reservoir rocks. For

these cores, there are clearly-de�ned objectives and data requirements. Moreover, hydro-

carbon exploration focuses increasingly more on smaller and more heterogeneous (thin-

bedded) reservoirs. Considering the modest additional investment necessary to run a full

core scan, high resolution core scanning can contribute to increasing the understanding of

the control on reservoir quality, and reducing statistical uncertainty and �nancial risk.
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9.2 Future developments

9.2.1 Line-scan imaging

When it comes to future developments of core-scanning technology, we think that it is

key to combine XRF-CS with other analytical methods which ful�ll the following require-

ments: data acquisition is time- and cost-e�cient, data can be acquired in-situ and non-

destructively, the data have a high spatial resolution. Line-scan imaging ful�lls these re-

quirements.

In this thesis, line-scan imaging has been used only in a qualitative sense. Given that

a geologist makes a core description on the basis of the core’s appearance, exploiting im-

age data in a quantitative sense is likely to increase predictive performance. Apart from

the average color (see Chapter 6), relevant and unique information which can potentially

be retrieved from core images is the grain-size distribution. However, the pixel size of

70 microns of the cameras mounted on the Avaatech scanners is insu�cient for accurate

prediction of grain size in the silt to sand range. Hence, our colleagues at the NIOZ have

attempted to increase the resolution of the line-scan camera system. It turned out, how-

ever, that increased resolution ( 20 micron) translated to a increase in the amount of data,

thereby introducing new problems concerning data transfer and storage.

Apart from technical challenges, grain-size extraction from line-scan images is certainly

not a straightforward operation. Firstly, extraction of grain size is hampered by the pres-

ence of sedimentary structures. Secondly, grain size is not a feature of a particular pixel,

but merely a feature of a sedimentary bed. Retrieving grain-size information from core

images therefore requires estimation of the bedding direction at every vertical position.

It was found that an e�ective, though complicated method to estimate this direction is to

�nd maximum cross-correlation between two short "traces" along the axis of the core (MSc

thesis work of Idtz Wieling (2013)). In an attempt to develop a simpler method, an altern-

ative approach based on 2D autocorrelation functions (ACFs) of small segments of the core

image was explored. Apart from being less complicated, an additional argument behind

the application of ACFs was that they have been used quite e�ectively for determination

of the grain size from images of isotropic sediments (Rubin, 2004). Employing ACFs for

both estimation of bedding direction as well as grain size would therefore yield a universal

approach.

The �rst step in this process was to obtain one unique data set from the three individual

color channels (i.e., RGB). In order to stay within the context of compositional data ana-

lysis, our approach was to derive the �rst principal component from the clr-transformed

RGBD values. In case the image is anisotropic, the ACF of the �rst principal component has

the appearance of a 2D multivariate Gaussian probability density function having a long

axis and a short axis. The long axis is the direction of maximum autocorrelation which

most likely corresponds to the bedding direction. Determination of this direction may be

done by Singular Value Decomposition of the covariance matrix of the x- and y-direction

gradient of this ACF. Moreover, the ratio between largest and smallest eigenvalue gives

an indication of the anisotropy of the image. This approach proved to be quite powerful

for the determination of clearly linear features such as fractures (see Fig. 9.1), particularly.

The ability to retrieve more subtle trends turned out to be more tricky. More research is

necessary to turn this basic idea into a robust method with practical value.
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Figure 9.2: Comparison between the plug permeabilities acquired using Hassler-sleeve experiments and the

minipermeametry data acquired directly from the plugs (A) and from the resinated slabs (B).

9.2.2 Minipermeametry

Another technique which is time-e�ective, cost-e�ective and non-destructive is miniper-

meametry. Minipermeametry is based on placing a small, air-tight nozzle on the rock and

putting on an over-pressure. By carefully processing the pressure-decay curve, it is pos-

sible to estimate the horizontal gas permeability (Jones, 1994). Minipermeametry can be of

great value because after slabbing the core, it is no longer possible to retrieve permeability

data with the conventional techniques (Hassler-sleeve experiment). Minipermeametry and

XRF core scanning data are therefore a potentially powerful combination. The fact that

minipermeametry can be conducted nearly continuous means that the XRF-CS data can be

better calibrated.

To investigate the accuracy of minipermeametry data on slabs we conducted an experi-

ment. Firstly, we compared minipermeameter data derived from plugs with Hassler-sleeve

data. Secondly, minipermeameter data acquired from the resinated slab at the plug posi-

tions were compared to permeability measurements of the plugs. For this experiment we

used the slabs and plugs of core E10-3. The minipermeameter data were acquired with a

PDPK-400 of Corelab. The results are shown in Figure 9.2.

Under the assumption that the Hassler-sleeve data are correct, we found MRE=82%

for the minipermeametry measurements of the plugs, and MRE=138% for the miniper-

meametrymeasurements of the resinated slabs. TheMRE associated with the plugminiper-

meametry data is considerably smaller than that associated with the core-scanning-based

predictions (MRE=117%). On the other hand, theMRE associatedwith theminipermeametry

measurements of the resinated slabs is larger. We also observe that the minipermeametry

measurements on the resinated slab overestimate the Hassler-sleeve permeabilities on the

low end. Possibly, there was air leaking between the annulus and the rock. Another pos-

sibility is that air could escape laterally: at the plug positions there was typically only a

1-cm wide piece of rock left.

The fact that this systematic overestimation was not apparent in the minipermeametry
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data of the plugs may be caused by the fact that in contrast to the slab, the plugs are relat-

ively smooth and �at. Also at the high end there are data points forwhich theHassler-sleeve

data and minipermeametry data of the slabs are inconsistent. Here, however, the most ex-

treme deviations are characterised by the minipermeameter yielding a considerably lower

permeability than the Hassler-sleeve experiment. This underestimation could be explained

by the resin having penetrated the rock too close to the surface of the slab.

The results demonstrate that more research is necessary to further optimise the data-

acquisition work�ow. Moreover, it needs to be investigated whether a minipermeameter

can be integrated within the XRF-CS instrument for e�ciency. The importance of per-

meability in hydrocarbon exploration means that we think that it is worth investigating

whether XRF-CS and minipermeametry may be integrated, both in one machine as well as

in the core-analysis work�ow.

9.2.3 Alternative technological improvements

Apart from further exploitation of line-scan images and minipermeametry, there are other

sensors which are alreadymounted on core-scanning instruments which may be used more

e�ectively. For example, Itrax core scanners (by Cox) are already equipped with lasers to

determine the exact vertical position of the core relative to the x-ray source and detector. In

the future, it may be attempted to use laser-backscattering information to retrieve inform-

ation about surface roughness. Roughness, in turn, will be correlated with grain and/or

pore size.

Another sensor which may be mounted on an XRF-CS instrument is a digital micro-

scope. Microscopic imagery at the scan positions is a way to circumvent the problems sur-

rounding data storage and data handling and yet have su�cient resolution. Ideally, these

images enable direct estimation of grain size and bedding direction at the position of the

scan data. Another measurement technique which potentially provides relevant informa-

tion not contained in geochemical records is hyperspectral imaging. Hyperspectral imaging

includes all imaging techniques which gather re�ectance data across a wide spectral range.

Relative to the visible-light spectrum, both short and long wavelengths can provide relev-

ant information about mineralogical composition and the content and nature of organic

compounds (Trachsel et al., 2010). Combining XRF core scanning with hyperspectral core

scanning therefore potentially enables integration of geochemical and mineralogical com-

position. This is of major importance because, unlike chemical components, minerals have

physical properties such as density and size: these properties are indispensable to make the

connection between composition and models of sediment transport (e.g., Komar, 2007).

9.3 Outlook

In this thesis, the predictive performance of the core scanner was tested on the basis of

individual cores. However, the core as a genetic unit is an arbitrairy choice when a pro-

ject involves numerous cores from the same rock or sediment body, which is the case for

a mature �eld or province (e.g., the gas-bearing Rotliegend reservoir rocks in The Nether-

lands). Ideally, the core scanner facilitates prediction of sediment properties in a fully non-

destructive manner at a certain stage, i.e., after enough measurements have been acquired.

This stage may be achieved by following a completely formalised and computer-driven ap-
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proach which, in the context of core analysis, would constitute three phases: a training

phase, optimization phase and a development phase.

In the training phase, calibration/prediction models associated with the core-scanning

data are not yet established which means that any new core should be sampled with the

same sampling intensity. In contrast to conventional equal-interval sampling, sampling

should rely on optimizing the stratigraphic coverage as well as the chemical coverage. This

may be achieved in an automated manner by applying a clustering-based technique to the

joint stratigraphic and chemical spaces. In principle, this phase is therefore equivalent to

what has been outlined in Chapter 2.

As more calibration data become available, calibration models tend to stabilise and

adding more calibration data will not change the model parameters. This marks the op-

timization phase. In this phase the goal should be to maximise predictive performance of

the calibrationmodels, for instance by introducing strati�edmodelling. For instance, it may

be advantageous to set up a separate calibration/prediction model for grain density within

the sand and the clay, or for Rotliegend and Carboniferous cores. This may be done manu-

ally, but there are also unsupervised techniques to establish optimal model strati�cation

such as Multivariate Adaptive Regression Splines (MARS). (Friedman, 1991). The rationale

behind manual and automatic strati�cation is demonstrated in Figure 9.3.

When optimal calibration models have been established, the core scanner may be used

in predictive mode. This marks the start of the development phase. Key element of this

phase is to model the discrepancy between available calibration data and predictions, i.e., a

second-order model (as presented in Chapter 5 of this thesis). By doing so, we also quant-

itatively model the limits of the core scanner. The ability to predict the prediction error

enables optimal sample selection in a strictly automated manner: we sample only if the ex-

pected prediction error is outside the acceptable limits. To what kind of facies this applies

cannot be said beforehand, however, it could be that it is simply impossible to accurately

predict the permeability of the most coarse-grained facies because for these facies, their

chemical compositions are all close to 100% SiO2.

In this last phase, core scanning and conventional methods may be treated "symmet-

rically". With a symmetric approach we mean that the core-scanning predictions and cal-

ibration data are treated as two independently-acquired estimates of sediment properties,

although possibly with a di�erent uncertainty. The advantage of a symmetric approach is

that it enables using the core-scanning data for the purpose of data-quality control: the

core-scanning data in combination with a calibration model allow us to estimate chemical

and petrophysical properties prior to conventional analysis. In case these estimates turn

out to be at odds with the conventional analysis, we have reason to believe that (i) either

our core scanning calibration model is inadequate or incomplete, (ii) the integrity of the

direct measurements is questionable. Either way, this "�agged" data point deserves further

investigation. In this study, we experienced such discrepancies for the pressed-pellet XRF

analysis of core E10-3 which were sporadically at odds with both the core-scanning predic-

tions, the XRD data and the petrographical analysis. In principle, this approach is similar

to that applied in Chapter 3 of this thesis.
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Figure 9.3: Conceptual representation of the rationale behind strati�ed modelling, aimed at relating X (e.g.,

XRF-CS signature) to a variable of interest Y (e.g., total-organic carbon). (A) Manual strati�cation by employing

di�erent models for di�erent lithofacies, and (B) automatic strati�cation: classes showing similar behaviour are

lumped based on X and modelled accordingly.
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APPENDIX A

Appendix of Chapter 3

Our goal is to decompose the geochemical record into a part which is correlated with grain

size, and a part which varies independently from the grain size. More speci�cally, our

aim is to obtain a basis Q in RD (i.e., the clr-transformed geochemical solution space)

that maximizes the geochemical variance explained by the grain size, and vice versa. A

multivariate method to maximize the common covariance is Partial Least Squares, or PLS

(Wold et al., 1983). The model employed in this study is closely related to PLS.

Bulk chemistry and grain-size distribution are both compositional data. From a mod-

elling perspective, the most important implication of their compositional nature is that

standard statistical methods cannot be applied. Instead, processing of compositional data

should be done using log-ratio transformations, or logratios. For multivariate statistical

analysis, the data should be centred log-ratio (clr) transformed.

Given that we havemeasured the geochemical composition (D variables) and the grain-

size distributions (L grain-size classes) of a set ofm specimens, we �rst derive the matrices

X and Y containing the clr-transformed grain-size distributions and chemical composi-

tions of the same set of samples, respectively. Subtracting the mean yields X0 and Y0.

Next, we calculate the cross-covariance matrix C:

C = XT
0 Y0 (A.1)

from which we derive the Singular Value decomposition:

C = USV′ (A.2)

The �rst column ofU (u1) is a vector in RD whereas the �rst column ofV spans a vector

in RL. They jointly maximize the cross-covariance among X and Y. We store u1 and v1

in the �rst column of the matricesP andQ, respectively. Next, we perform direct de�ation

of the cross-covariance matrix C (i.e. the SIMPLS method):

C = C− u1(u
′
1C) (A.3)
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and return to equation A.2 to calculate the scores and loadings of the second PLS compon-

ent. We proceed until the number of calculated components equals the minimum rank of

X and Y . The �nal product of this algorithm are the matrices P and Q.

Using P and Q we can apply the model to the grain-size and geochemical data set as

a whole, i.e., also to the observations related to samples contained in either the grain-size

or the geochemical data set. Because (PT )−1 = and QT are both orthonormal, we may

calculate the scores matrices T and U in the following manner:

T = X0P

U = Y0Q
(A.4)

Subsequently, the k-component PLS approximations are given by:

(X̂0)k = T1:kP
′
1:k

(Ŷ0)k = U1:kQ
′
1:k

(A.5)

wherebyT1:k stands for the �rst k columns ofT. The ’residuals’ are obtained by subtract-

ing the common variability in both data sets from the input data:

(X̌0)k = X0 − (X̂0)k
(Y̌0)k = Y0 − (Ŷ0)k

(A.6)

Alternatively, we may add the mean again to form (X̌)k and (Y̌)k , so that the residual

variability centers around the mean of their parent data.

To determine the maximum number of components that may be removed, we perform

a signi�cance test on the correlation between the scores tk and uk for every k. Signi�cance
of correlation on the k-th basis vector may be tested using the following criterion (Kendall

and Stuart, 1973):

|r|
√

m− 2

1− r2
> t−1(m− 2, p) (A.7)

where r is Pearson’s correlation coe�cient between tk anduk (i.e. the projection of the data

on the k-th basis vector). The right-hand side is the inverse t-distribution with probability

p and degrees of freedom m− 2. For any r and number of observations m that were used

to �t the model, we can calculate the probability of getting the observed r in the absence

of correlation. We remove the common component if the criterion in Equation A.7 with

p = 1− α/2 is met.



APPENDIX B

Appendix of Chapter 4

For MDD we derived that the ECM in the log-space reads:

Φmdd(j, j) = (τπj)
−1(1− πj)

Φmdd(i, j) = r(i, j)qmdd(i)qmdd(j) = −
√

πiπj

(1−πi)(1−πj)

√

πi

(1−πi)τ

√

πj

(1−πj)τ
= −τ−1

(B.1)

After some algebrawe obtain the following result for the product of the clr-transformation

matrixAD and Φmdd :

ADΦmdd(j, j) = ad(τπj)
−1

ADΦmdd(i, j) = aod(τπj)
−1 (B.2)

where ad and aod are the diagonal and o�-diagonal entries of AD , respectively.

Using the result of this �rst matrix product we may write for the full matrix product

ADΦAD :

Ψmdd(j, j) = ADΦmddAD(j, j) = a2d(τπj)
−1 + a2od

∑D
m 6=j(τπm)−1

Ψmdd(i, j) = ADΦmddAD(i, j) = aodad(τ(πi + πj))
−1 + a2od

∑D
m 6={i,j}(τπm)−1

(B.3)

For PDD the following holds for the ECM in the log-space:

Φpdd(j, j) = (∆tξi)
−1

Φpdd(i, j) = 0
(B.4)

Because the log-space ECM is diagonal, it is not di�cult to derive that the following
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holds for the clr-space ECM:

Ψpdd(j, j) = ADΦpddAD(j, j) = a2d(∆tξj)
−1 + a2od

∑D
m 6=j(∆tξm)−1

Ψpdd(i, j) = ADΦpddAD(i, j) = aodad(∆t(ξi + ξj))
−1 + a2od

∑D
m 6={i,j}(∆tξm)−1

(B.5)

The proof is complete if we consider the following properties of MDD and PDD:

[X1, · · · , XD] ∼ Mult(τ,π) → E(Xj) = τπi (B.6a)

Xj ∼ Poiss(∆tξj) → E(Xj) = ∆tξi (B.6b)

Substitution yields that:

Ψ(j, j) = a2dE(Xj)
−1 + a2od

∑D
m 6=j E(Xm)−1

Ψ(i, j) = aodad(E(Xi) + E(Xj))
−1 + a2od

∑D
m 6={i,j} E(Xm)−1 (B.7)

QED.



APPENDIX C

Appendix of Chapter 5

C.1 Modelling approach

C.1.1 UFs and closure

Following Aitchison (1982), closure is given by:

C[c] =
[

c1
∑

k ck
,

c2
∑

k ck
, ...,

cD
∑

k ci

]

(C.1.1)

Because closure de�nes concentrations, we propose to derive the proper UF by propagat-

ing the associated uncertainty through closure.

Given that the UF of pseudo concentrations is given byf(c̃k), the uncertainty of the

closed pseudo concentrations (i.e. the proper concentrations c) is given by:

δ2cj =

(

c̃j
∑

k c̃k

)2




(

f(c̃j)

c̃j

)2

+

(

√
∑

k f
2(c̃k)

∑

k c̃k

)2

− 2
f2(c̃j)

c̃j
∑

k c̃k



 (C.1.2)

Under the assumption that pseudo concentrations are unbiased estimates of the true

concentration, we can assume that
∑

k c̃k = 1 and apply the substitution cj = c̃j/
∑

k c̃k
so that Equation C.1.2 reduces to:

δ2cj = (1− 2c̃j)f
2(c̃j) + c2j

∑

k

f2(c̃k) (C.1.3)

Equation C.1.3 allows us to calculate the uncertainty associated with the closed pseudo

concentrations. Note that, consistent with the de�nition of concentrations, the uncertainty

becomes correlated among the variables. Given that the �rst and second moment of closed

pseudo concentrations are indistinguishable from proper concentrations, we treat them as

such and refer to them as c.
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C.1.2 Derivation of proper UF

If we would strictly follow the approach to derive the proper UF from the pseudo UF by

error propagation upon closure, the proper UF would always be concentration-dependent.

This can be shown by substituting f2(c̃) = a in Equation C.1.3, which leads to the following
expression for δ2c̃j :

δ2c̃j = a− 2ac̃j + aDc̃2j (C.1.4)

To facilitate a constant proper UF, we approximate Equation C.1.3 by the following

function:

δ2cj = a2P +

[

(1− 2c̃j)(bpc̃
dP

j )2 + c̃2j

D
∑

k=1

(bpc̃
dP

k )2

]

(C.1.5)

i.e. we omit the concentration-dependent part in Equation C.1.4. Still, the expression

shown in Equation C.1.5 is not compact and since it is a function of all analyte concen-

trations in the mixture, it is multivariate by nature. Our next goal is to approximate this

expression with a BUF, i.e. an univariate function.

C.1.3 From pseudo to proper UF: Poissonian case

To study the ability to approximate the proper uncertainty (Eq. C.1.5) with a BUF we �rst

consider the Poissonian case, i.e., data whose UF is given by:

δ2cj = b2P c̃ (C.1.6)

Substituting Equation C.1.6 into Equation C.1.5 yields:

δ2cj = (1− 2c̃j)(b
2
P c̃j) + c̃2j

∑

k

b2P c̃k (C.1.7)

If we assume that
∑

k c̃k = 1, this can be further reduced to:

δ2cj = b2P cj(1− cj) (C.1.8)

Hence, in case of proportionality between concentration and variance (cf. the overd-

ispersed Poisson distribution) bP and dP from PUF can be readily plugged into BUF in order

to obtain an exact proper UF (i.e. the UF associated with the closed pseudo concentrations).

The reason for the portability of function parameters in case dP = 1/2 is that only then

the following holds:

∑

k

f2(c̃k) = f2

(

∑

k

c̃k

)

= f2(1) = bP (C.1.9)
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C.1.4 From pseudo to proper UF: General case

After the Poissonian case, we will now analyse the more general case. As we let the con-

centration approach zero, the following holds:

limc→0 δ
2c̃j = a2P

limc→0 δ
2cj = a2P

(C.1.10)

Hence, the intercept term is directly portable from PUF to BUF. For the other terms we

adopt the "standard" composition, i.e.:

cj = 1/D (C.1.11)

for any j ∈ 1, 2, ...D. Based on this standard composition it can be shown that in the

following limiting cases the exponential term dP is directly transferable between PUF and

BUF:

limD→0 b
2
[

D−2d − 2D−2d−1 +D−2d−2
]

= b2D−2d

limD→0 b
2
[

D−1(1−D−1)
]2d

= b2D−2d
(C.1.12)

By numerical simulation (not shown here) it was veri�ed that the exponential terms

before and after closure are indeed equal, irrespective of D, aP and bP .
In case dP 6= 1/2, plugging bP into BUF yields a biased prediction of the proper uncer-

tainty. Given that dP > 1/2 and c̃ is smaller than unity, this follows from:

∑

k

f2(c̃k) > f2

(

∑

k

c̃k

)

(C.1.13)

Approximating the expression for the proper uncertainty shown in Equation C.1.5 by

directly transferring the PUF parameters into BUF will introduce bias. This bias can be

mitigated by again assuming the "standard" composition. Its corresponding multiplicative

correction factor reads:

k =

√

f2(D−1)

(1− 2D−1)f2(D−1) +D−2
∑

k f
2(D−1)

(C.1.14)

where the numerator is the UF before closure and the denominator is the UF after clos-

ure. The multiplicative factor bB which has to plugged into BUF in order to obtain the

proper UF is given by bB = kbP . This leads to the following general methodology for

deriving a proper BUF from a pseudo PUF:

Pseudo UF → Proper UF

PUF(aP , bP , dP ; c̃) → BUF(aP , kbP , dP ; c̃)
(C.1.15)
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Appendix of Chapters 6 and 7

D.1 RCA of core E10-3

Petrophysical analysis

As part of RCA, 4-cm long core plug samples (n=246) with a 1 inch diameter were retrieved

at 25 centimeter intervals and parallel to the bedding direction (i.e. horizontal plugs). The

plugs were cleaned with an azeotropic mixture of methanol, chloroform and water to re-

move any hydrocarbons and salts. Subsequently, the plugs were dried in an oven of 60 ◦C

until their weight remained constant.

The porosity and grain density (n=244)were determined by directmeasurement of grain

volume and bulk volume. The grain volumewasmeasured by helium expansion in a Boyle’s

Law Porosimeter whereas the bulk volume was determined by submerging the sample in

mercury. The grain volume together with the bulk volume allows calculation of the poros-

ity. The grain density was calculated from the weight of the sample in combination with

the grain volume. Information about uncertainty or detection limits were unavailable.

The horizontal permeability was determined using nitrogren gas (n=230). The plugs

were mounted in a "Hassler" type core holder at a con�ning pressure of 400 psig and a

steady state nitrogen gas �ow was established through the sample. The �ow rate, pressure

di�erential, gas temperature and ambient pressure were recorded. These parameters were

used in conjunction with the callipered length and diameter of the plugs to compute the

permeability from Darcy’s equation. The permeabilities were corrected for gas-slippage

using an empirical correlation. The permeability data set is slightly smaller than the poros-

ity and grain density data sets because it was not possible to determine the permeability of

fractured plug. These plugs were not naturally fractured but fractured during plug drilling.

Core descriptions

The core was continuously described in terms of grain-size classes: organic (O), mudstone

(M), siltstone (J), very �ne sandstone (S1), �ne sandstone (S2), medium sandstone (S3),
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coarse sandstone (S4), and very coarse sandstone (S5). Hence, the sandstone was classi�ed

in terms of classes comprising 1/2 phi unit intervals.

Core E10-3 was also described in terms of lithofacies associations which are a descrip-

tion of a sedimentary bed in terms of grain size, sedimentary structures and relevant dia-

genetic characteristics. The following lithofacies associations were distinguished: poorly

drained �oodplain (IFL), �oodplain (F ), swamp (SW ), crevasse splays (CS), inter-distributary

bay (IB) and braided channel (BC) deposits. Both the grain-size description as well as the

lithofacies description are continuous data sets in the sense that they re�ect bed boundaries

rather than point measurements.

D.1.1 Petrographical analysis

Detailed petrographical analysis including thin section petrography, whole rock as well

as clay fraction X-Ray Di�raction (XRD) and Scanning Electron Microscopy (SEM) were

conducted on the trim ends of 10 plugs. These samples were taken from the braided chan-

nel complex (n=8), interdistributary bay deposit (n=1) and the poorly-drained �oodplain

(n=1) deposits. Point counts yielded that all sandstones samples are sublitharenites with

an average quartz content of 53%. Based on thin section analysis, several diagenetic phases

were recognised with a di�erent mineralogical response. This includes (i) early-diagenetic

precipitative hematite and replacive kaolinite, (ii) quartz cement, and (iii) late-diagenetic

dolomite. The nature and intensity of diagenesis turned out to be heterogeneous in this

core. However, compared to other reservoirs in this area of similar age, Boels (2003) con-

cluded that the general importance of diagenesis for the reservoir quality in this well is

limited and that most variation in reservoir quality is controlled by grain size. However,

not all diagenetic mechanisms could be distinguished from variations in mean grain size,

e.g., hematite was found to be replacing pseudo matrix whose abundance was correlated

with grain size.

D.2 Lithofacies classi�cation scheme (E10-3)

The facies architecture of the cored Carboniferous interval in Well E10-was classi�ed in

terms of following lithofacies associations: poorly drained �oodplain (IFL), �oodplain (F ),

swamp (SW ), crevasse splays (CS), inter-distributary bay (IB) and braided channel (BC3)

deposits.

The dominant lithofacies association in core E10-3 is the braided channel sandstone

lithofacies (BC3): approximately 55% of the core is classi�ed as such. BC3 is assigned to

parts of example slabs 1, 3 and 4 (Fig. 6.4). Sedimentological features of the braided channel

sandstone include cross-bedding (both low- and high-angle), horizontal and ripple lamin-

ation. The sandstone units are mainly composed of moderately sorted �ne- to medium-

grained sands that have a vague �ning upward trend and an erosive base. Depositional

style varies between the Channel Units: where Channel Unit 1 (lowermost) has internal

small-scaled �ning upward cycles related to local cut-o�, Channel Unit 2 has a gradual �n-

ing upward sequence. The sandstones of the braided channel lithofacies association are

interpreted as bedload deposits of a high-energy braided channel complex system.

About 11% of the cored interval was assigned to the Crevasse Splay (CS) deposits. CS is

assigned to parts of example slab 2 (Fig. 6.4). CS deposits consist of parallel, low-angle, and

ripple laminated very �ne-grained sandstone beds withmoderate amounts of carbonaceous
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matter and clay (5-35%) occurring as intraclasts and laminations. Also, these deposits show

rootlets at the top. These deposits are interpreted as crevasse splay deposits on the basis of

the �ne-grained nature of the sandstone beds, the relatively thin beds, the clay occurring

as laminae and the occurrence within �oodplain sediments.

Poorly drained �oodplain deposits (IFL) comprise nearly 18% of the cored interval. IFL

is assigned to parts of ES5 (see Fig. 6.4). The association consists of dark grey to black

claystones with regular coal laminae, abundant rootlets, regular coal laminae, and frequent

siderite nodules. The poorly drained �oodplain is recognised as such by the dark grey

colour, the abundant rootletting, the siderite nodules, and good preservation of organic

matter. This all indicates a waterlogged or slightly submerged, reducing environment with

intense plant growth.

Nearly 12% of the cored interval consists of Interdistributary Bay (IB) deposits. IB is

assigned to parts of ES2 (see Fig. 6.4). IB deposits consists of dark grey, relatively undis-

turbed laminated claystones with a few silt or sand laminae. Some beds have a yellowish

colouration due to siderite cementation. Distortion through soft sediment deformation oc-

curs sporadically. The well-preserved parallel lamination of the claystones, and the absence

of rootletting imply deposition within a permanently standing body of water, hence their

classi�cation as interdistributary bay deposits.

Swamps (SW ) comprise a small percentage of the cored interval (ca. 3%). SW is as-

signed to parts of ES5 (see Fig. 6.4). The deposits consist of parallel laminated organic rich

claystones with cm-thick coal laminae. The coal beds, and the abundance of organic ma-

terial suggest a waterlogged, anoxic environment with abundant �oral inhabitance and no

clastic input.

Approximately 3% of the cored interval consist of Well-drained Floodplain (F ), which

only occurs in the deepest sections of core E10-3. F was assigned to parts of ES6 (see Fig.

6.4). It consists of thoroughly bioturbated sandy claystones with a mottled appearance, and

an overall reddish colouration. Dark fragments occur, which may represent the former host

sediments, giving the rock its brecciated appearance. These sediments are termed Well-

drained Floodplain deposits on basis of the following arguments. The strong disturbance of

the sediment and the presence of pisoids suggest slow sedimentation rates and pedogenesis.

The primary red colouration indicated that at time of deposition the ground water table,

Well E10-3 was periodically below the sediment surface at the time of deposition. For

example, the environment could have been subject to seasonal �ooding.

D.3 Features of the GLC

We propose a number of extensions to the MLC in order make it suitable for prediction of

petrophysical properties and to obtain improved calibration performance. We refer to this

generalization of the MLC method as the Generalized Logratio Calibration (GLC) method.

D.3.1 Extension 1: Model selection

The �rst extension of is selection of the optimal number of components on the basis of the

Median Squared Prediction Error (MSPE) given by:

MSPE = medj

{

∑D
j=1 (yij − ŷij)

2

D
(

1− 2
9D

)3

}

(D.3.1)
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where y re�ects the clr variables of W . We de�ne the optimal PLS model as the one that

gives the smallestMSPE. Because theMSPE is based upon amedian, it is a robust measure of

scale. By doing so, we reduce the in�uence of outliers. Furthermore the denominator term

is introduced in order to ensure that the MSPE is a consistent estimator for the variance:

the denominator is an approximation to the median of a χ2-distributed random variable

(Abrahamowitz and Stegun, 1964).

D.3.2 Extension 2: Transformation selection

The second extension is the transformation applied to the Y-data. Because petrophysical

data have di�erent statistical properties, they also require di�erent transformations. The

GLC is based on selecting the appropriate transformation for a particular data type based

on the sample space. The goal is to ensure that the data become unbound. By doing so, we

ensure that the predictions are physically tractable.

We distinguish between four di�erent data types with the following transformations

and associated inverse transformations, respectively:

Type 1 y ∈ [−∞,∞] | y∗ = y

Type 2 y ∈ [0, 1] | y∗ = ln( y
1−y ), y = exp(y∗)

exp(y∗)+1

Type 3 y ∈ [0,∞] | y∗ = ln(y), y = exp(y∗)

Type 4 y ∈ SD | y∗ = clr(y), y = clr−1(y∗)

(D.3.2)

When expressed in terms of the logarithmic phi-scale, mean grain size is an example of

type-1 data. Porosity and permeability are examples of type-2 and type-3 data, respectively.

Geochemistry is data of type 4. Since compositions are intrinsically correlated and must

therefore be modelled simultaneously, type 4 data are the only type where the Y-data are

explicitly multivariate (type-2 data are compositional and therefore bivariate, however the

information can be captured by just one variable). Note that geochemical calibration is now

a special case of the GLC whereby the data are of type 4.

D.3.3 Extension 3: Removing uninformative X-variables

Another extension is removal of uninformative X-variables. Removal of uninformative X-

variables is important because clr-transformed variables are not independent and likewise

all variables are "polluted" when noisy, uninformative variables are included in the model.

X-variable removal is performed based on the SIMPLS weights matrixR. Investigating

the weights associated with the �rst PLS component (i.e. the �rst column of R) gives

insight into the added value of the X-variables. However, for a more complete overview

over the variable importance in prediction all PLS components need to be assessed. Hence,

we perform this step on the basis of the Variable Importance in Projection (Eriksson et al.,

2001):

VIPj =

√

√

√

√Dx

Dx
∑

j=1

SSp
∑P

p=1(SSp)
(wjp/||wj ||)2 (D.3.3)

In this Equation, SSp represents the variance explained by the pth component which is

given by:

SSp = t′ptpq
′
pqp (D.3.4)
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The VIP has been used extensively in process chemometrics for variable selection in

PLS modelling. A threshold of unity is most commonly used (Mehmood et al., 2012). In

this contribution, however, we use a VIP threshold of 0.25. The reason for choosing a relat-

ively low VIP threshold is that clr-transformed data are by de�nition statistically dependent

which means that too rigorous variable selection may result in the removal of informative

variables. Moreover, because clr-transformed variables are correlated simply removing a

variable is not possible without forming new clr-transformed data. Hence, after variable

exclusion new X- and Y-variables need to be formed.

Apart from variable selection, the VIP is also used as a qualitative tool to gain insight

into the signi�cance of chemical analytes for the petrophysical properties of the sediment

or sedimentary rock. Another measure which serves the same purpose is Pearson’s cross-

correlation coe�cients between the element intensities and the univariate petrophysical

properties:

ρj = corr(x∗
j ,y

∗) (D.3.5)

In this equation, x∗
j is a transformed and appropriately scaled intensity variable j, and y∗ is

the transformed property of interest (e.g., the log-transformed permeability). For multivari-

ate Y-data, more sophisticated methods need to be used to analyse the cross-correlation

structure (see Bloemsma et al. (2012) and Chapter 3 of this thesis).

D.3.4 Extension 4: Removing unpredictable Y-variables

The fourth extension is the identi�cation and removal of unpredictable Y-variables. Given

that the multivariate data are compositional (i.e., data of type 4), we propose a methodology

tailored to compositional data.

Y-variable removal and is done in a sequential manner. Identi�cation of unpredictable

Y-variables is carried out by calculating the following intermediate variable:

zj = log

(

cj

1− cj

)

(D.3.6)

Subsequently, the signal strength R2 is calculated for every analyte j:

R2
j = 1− var(zj − ẑj)

var(zj)
(D.3.7)

The variable with the smallest R2
j is removed, unless it is larger than the user-de�ned

threshold value. The calibration model is then re-executed using the reduced set of vari-

ables. The process is terminated in case no variables are removed.

The reason for calculating the signal strength in this manner is that treating theD-part

composition as D 2-part compositions consisting of the respective element and its com-

plement, allows us to analyse the signal strength of the predicted element concentrations

in a pseudo-independent manner. In addition, notice that by de�ning it in this manner it

reduces to the same form as the R2
e� in case the number of components equals two.

D.3.5 Extension 5: Modelling incomplete compositions

Type-4 data are compositional data which means that their sum equals unity. Geochem-

ical data, however, are generally not proper compositional data sets because most analyt-

ical methods are unable to quantify the concentration of all components in the mixture.
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For instance, carbon and oxygen cannot be quanti�ed using XRF or ICP. General log-ratio

methods are not appropriate for modelling these incomplete compositional data because

"absolute" information, i.e. information about the proportion of quanti�ed components is

lost.

In Chapter 2, this problem was circumvented by calculating the "undef" vector whose

elements are given by:

ui = 1−
D
∑

j=1

wij (D.3.8)

It represents the proportion of mass that could not be adequately quanti�ed. Adding this

"undef" column vector to the matrix with measured concentrations yields a proper com-

positional matrix C:

C = [w1,w2, ...,wD,u] (D.3.9)

As a result, predictions can be made in an unbiased manner. This approach proved to be

quite e�ective for data sets with limited variations in this "undef" (see Weltje et al. (2015)

and Chapter 2). In the light of the extensions proposed here, mixing up scale and com-

position can be problematic in case "undef" is di�cult to predict: the correlation among

clr-variables considerably decreases the predictive power of the model as a whole and jeop-

ardises Y-variable removal. Moreover, removal of the "undef" variable would imply that

"absolute" information is lost which is undesirable.

To circumvent these problems we make the following decomposition of the matrix W

containing incomplete compositions:

W = diag(t)C (D.3.10)

The matrixC contains compositional data and the vector t contains the row-speci�c scale.

The advantage of decomposing an incomplete composition in this manner is that the com-

position and the scale can be separately modelled. The �rst model is associated with the

subcompositional variability in the observed components (i.e. data type 4), the second

model is associated with the scale which is a compositional quantity of data type 2.



APPENDIX E

List of acronyms

alr additive log-ratio (transformation)

ALS Alternating Least Squares

BCU Braided Channel Unit

BHF Binomial Horwitz Function

BHR Binomial Horwitz Ratio

BLC Bivariate Logratio Calibration

blr binary log-ratio (transformation)

BUCE Basic Univariate Calibration Equation

BUF Binomial-like Uncertainty Function

CF Characteristic Function

clr centred log-ratio (transformation)

CUCE Consistent Univariate Calibration Equation

DCM Data Covariance Matrix

DFA Discriminant Function Analysis

DLC Direct Linear Calibration

ECM Error Covariance Matrix

GLC Generalised Logratio Calibration

GPR Geochemical Performance Ratio

iid independent and identically distributed

LOOCV Leave-one-out cross-validation

LOPP Limit of Physical Plausibility

MSI Model Stability Index

MSE Mean Squared Error

MRE Mean Relative Error

MSPE Mean Squared Prediction Error

MRPE Mean Relative Prediction Error

MDD Multinomial-Distributed Data

MLC Multivariate Logratio Calibration
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MLRRA Maximum Likelihood Reduced-Rank Approximation

MLPCA Maximum Likelihood Principal Components Analysis

OSIRA Optimal Scale-Invariant Reduced-rank Approximation

PCA Principal Components Analysis

PDD Poisson-Distributed Data

PG Performance Gain

PLS(R) Partial Least Squares (Regression)

PT Pro�ciency Test

PPR Predictive Performance Ratio

PUF Poisson-like Uncertainty Function

QDFA Quadratic Discriminant Function Analysis

RPG Relative Performance Gain

RQI Reservoir Quality Index

RRA Reduced-Rank Approximation

SDR Inter-laboratory standard deviation

SVD Singular Value Decomposition

TPR True Positive Ratio

TPM Transition Probability Matrix

UF Uncertainty Function

ULC Univariate Logratio Calibration

VIP Variable Importance in Projection

XRR X-data Repeatability Ratio

XRF X-Ray Fluorescence

XRF-CS X-Ray Fluorescence Core Scanning

XRD X-Ray Di�raction
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Wien, K., Wissmann, D., Külling, M., Schulz, H. D., 2005. Fast application of X-ray �uores-

cence spectrometry aboard ship: how good is the new portable Spectro Xepos analyzer?

Geo Mar. Lett. 25, 248–264.

Williams, A., Ellison, S. L. R., Roesslein, M. (Eds.), 2000. Quantifying uncertainty in analyt-

ical measurement. LGC Ltd, London, 2nd edn. LGC Ltd, London (ISBN: 0-948926-15-5).

Wold, S., Martens, H., Wold, H., 1983. The multivariate calibration problem in chemistry

solved by the PLS method. In: Ruhe, A., Kagstrom, B. (Eds.), Proc. Conf. Matrix Pencils.

Springer Verlag, Heidelberg, pp. 286–293.

Xiong, S., Ding, Z., Zhu, Y., Lu, H., 2010. A ∼ 6 Ma chemical weathering history, the grain

size dependence of chemical weathering intensity, and its implications for provenance

change of Chinese loess-red clay deposit. Quaternary Science Reviews 29, 1911–1922.



BIBLIOGRAPHY 201

Yarincik, K. M., Murray, R. W., Peterson, L. C., 2000. Climatically sensitive eolian and hemi-

pelagic deposition in the Cariaco Basin, Venezuela, over the past 578,000 years: Results

from Al/Ti and K/Al. Paleoceanography 15, 210–228.

Young, G. M., Nesbitt, H. W., 1998. Processes controlling the distribution of Ti and Al in

weathering pro�les, siliciclastic sediments and sedimentary rocks. J. Sediment. Res. 68,

448–455.
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Summary

Sedimentary deposits are important archives of the Earth’s history. In addition, they are

of key economical and societal importance because they contain natural resources (e.g.,

hydrocarbons and drinking water). Hence, it is of utmost importance that we understand

the mechanisms controlling the heterogeneity, morphology and spatial distribution of sed-

imentary deposits. Tools for characterisation of sediment bodies in the subsurface include

seismic data, well-log data and core data. Since cores re�ect the only continuous physical

sample of the rock body under investigation, they provide the input necessary to construct

detailed reservoir models. Despite their high information content, �nancial constraints,

time constraints and the desire to keep cores intact limit the amount and resolution of

quantitative data that can be retrieved from cores. In an attempt to overcome these prob-

lems, spectroscopic core scanners have been developed which facilitate fast, inexpensive,

high resolution and non-destructive acquisition of quantitative core data in situ. This re-

search is centered around one such method, which is X-ray �uorescence core scanning

(XRF-CS).

The �rst goal of this study is to build a mathematical-statistical framework for the con-

struction of so-called integrated core descriptions using XRF-CS. We de�ne an integrated

core description as a collection of lithofacies, chemical and petrophysical records on the

same, high (1 cm) resolution, and with quanti�ed uncertainties. The interpretation of these

descriptions, possibly in combination with other data sets, is referred to as integrated in-

tegrated core analysis. Developing methods which facilitate integrated core analysis is the

second goal of this study. To reach these goals, six objectives have been de�ned: (1) to

characterise statistically the relevant data types, (2) to formalise interpretation of bulk

chemical data, to improve (3) and extend (4) the existing state-of-the-art calibration frame-

work, (5) to evaluate the performance of the new modelling frameworks for di�erent sed-

iment properties and di�erent cores, and (6) to explore the added value of XRF-CS in the

core analysis framework.

Prior to this study, the state-of-the-art calibration method for XRF-CS was a bivariate

method based on logratios (i.e., the BLC method). In an attempt to improve and extend this

method, a multivariate alternative (i.e., the MLC method) is proposed which uses Partial

Least Squares (PLS) (Chapt. 2). The MLC is an extension of the BLC because it facilitates
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prediction of "absolute" concentrations. The quality of the MLC method is compared to

that of a variety of alternative models, including the BLC method. Results show that (1)

the commonly used direct linear calibration (DLC) methods, which are based on the ques-

tionable assumption of a unique linear relation between intensities and concentrations and

do not acknowledge the compositional nature of the calibration problem, give poor results;

(2) the univariate log-ratio calibration (ULC) method, which is consistent with the com-

positional nature of the calibration problem but does not fully incorporate absorption and

enhancement e�ects on intensities nor does it permit estimation of "relative" concentra-

tions, is markedly better, and (3) the MLC model which incorporates measurement uncer-

tainties, accommodates absorption and enhancement e�ects on intensities, and exploits the

covariance between and among intensities and concentrations, is the best by far. The im-

proved predictive capabilities of the MLCmethod compared to the other methods are fully

exploited by employing automatic sample selection based on the multivariate geometry of

intensity measurements in log-ratio space.

In Chapter 3, PLS is used to formalise interpretation of geochemical data (Chapter 3).

The rationale behind PLS is decomposition of two data sets into unique signals, and sig-

nals that are shared among the two data sets. When applied to geochemical composition

and grain size, these two types of signals have geological signi�cance: whereas the unique

chemical signals are likely to be the response of provenance, the shared signal mainly re-

�ects the conditions under which the sediment was deposited. Applying this methodology

to three marine soft-sediment cores yields that employing "textbook" proxies for grain size,

such as Al/Ti, can be risky: for the three analysed cores, Ti concentrations once showed

no correlation, once positive correlation and once negative correlation with grain size. As

for XRF-CS data, chemical proxies therefore require "calibration" for which the PLS-based

model provides a framework.

Uncertainty estimates are indispensable for statistically rigorous inference, and for quan-

ti�cation of the predictive performance of XRF-CS. In an attempt to characterise statis-

tically spectroscopic and compositional data, Chapters 4 and 5 deal with theoretical and

empirical error models associated with these data. We propose that, given their counting

or similar statistical nature, all spectroscopic and compositional data are prone to errors

caused by counting a �nite-sized sample (i.e. counting errors). Given that it removes the

e�ect of scale and transforms the data to a suitable metric space, analysing these count

data in terms of centered logratios is a potentially powerful approach. Error propagation

shows that in this space, the error-correlation structure of multinomial (e.g., point counts)

and Poisson-distributed (e.g., element intensities) data become identical (Chapt. 4). Fur-

thermore, counting errors in clr space are generally not iid: in clr-space, the errors are

correlated among the variables and the error associated with low counts is higher than

that associated with high counts. To make reduced-rank approximations to count data in

clr space in a maximum likelihood manner, an algorithm is proposed, which is referred to

as Optimal Scale-invariant Reduced-Rank Approximation (OSIRA).

In Chapter 5 we review the structure of widely-used functions for predicting the un-

certainty of chemical analyses. The structure of these functions suggests that counting is

not the dominant mechanism controlling chemical uncertainty. Moreover, their structure

is inconsistent with the de�nition of concentrations as mass fractions. This inconsistency

re�ected by the asymmetric nature of these UFs (i.e., f(c) 6= f(1-c) where c ∈ [0, 1]). De-
rivations using physical-spectroscopic theory yield that for strictly univariate calibration
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without matrix corrections, the analytical uncertainty may indeed behave in a fully asym-

metrical manner. Ideally, matrix corrections or appropriate multivariate calibration com-

pensate for this �aw, making the concentration estimates indistinguishable from proper

concentrations. In practical applications, however, the analytical uncertainty can behave

anywhere between fully asymmetric and fully symmetric. Irrespective of its behaviour,

however, statistical theory prescribes that UFs used for inference must be symmetric. A

new modelling framework is developed to cope with this inconsistency and a fundament-

ally di�erent de�nition of the well-known Horwitz function (i.e., the Binomial Horwitz

Function (BHF)) and the associated performance criterion ’HorRat’ is proposed.

In Chapter 6 we investigate the ability to predict lithofacies (i.e. categorical data) from

XRF-CS data. Given that the associatedmean prediction error turned out to be 16%, we con-

clude that XRF-CS can be of great value for automatic lithofacies prediction. Next, we tried

to further improve the prediction of chemical composition and petrophysical properties.

An extension of the modelling framework presented in Chapter 2 is proposed in Chapter

7, which is tested on two cores: one unconsolidated- and one consolidated-sediment core,

both comprising a large compositional and sedimentological variability. The quality of the

XRF-CS predictions is found to be signi�cantly lower than conventional geochemical and

petrophysical analysis. Only for the geochemical composition of relatively homogeneous

sediments, the core scanner performs as good as destructive analysis. Evaluation of the

results yields a set of guidelines for the expected ratio between prediction uncertainty as-

sociated with XRF-CS data and the uncertainty of conventional destructive analysis (i.e.,

the PPR): homogeneous soft-sediment cores (PPRchem ≤ 2), heterogeneous soft-sediment

cores (1 ≤ PPRchem ≤ 3), heterogeneous cores of sedimentary rock (3 ≤ PPRchem ≤ 4).
Chapter 8 explores the added value of integrated core analysis. We show that incor-

porating XRF-CS predictions in the work�ow can yield di�erent average facies properties

which, in turn, can have important consequences for reservoir models. Secondly, by com-

plementing standard petrophysical analysis with XRF-CS data, it is shown how a core may

be described in terms of its reservoir quality in a fully automated manner. Thirdly, the

use of high-resolution predictions of reservoir quality in combination with petrographical

analyses facilitate detailed identi�cation of the control on reservoir quality in a detailed

manner: in addition to grain size and dolomite cement, it turns out that also calcite cement

controlled reservoir quality. Furthermore, dolomite cement plays a larger role for reservoir

quality than suggested by the petrographical analyses. This illustrates the importance of

high resolution geochemistry-controlled extrapolation of thin-section analysis.

Future improvements to calibration and processing of XRF-CS data may be achieved

by establishing separate calibration models for di�erent lithologies (i.e., strati�ed calibra-

tion). Exploitation of the core images will also contribute to more detailed descriptions.

Complementing the XRF data with other data sets such as hyperspectral images, in-situ

microscopic images and minipermeametry will further support integrated core analysis.

Hyperspectral imaging hopefully leads to a better understanding of the relation between

chemical and mineralogical composition, which is important to make the connection with

sediment-transport equations, whereas microscopic image analysis potentially facilitates

direct estimation of grain size. Another subject of future research is the application of XRF-

CS in a project involving numerous cores (e.g., re-evaluation of the structure of a mature

gas �eld).
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Samenva�ing

Sedimentaire afzettingen bevatten een schat aan informatie over de geschiedenis van de

aarde. Daarnaast zijn ze van groot economisch enmaatschappelijk belang, omdat ze natuur-

lijke grondsto�en bevatten zoals olie en drinkwater. Het is daarom belangrijk om te be-

grijpenwelkemechanismen hun voorkomen, heterogeniteit enmorfologie bepalen. Beschik-

bare technieken voor het karakteriseren van sedimentlichamen in de ondergrond zijn seis-

mische surveys, metingen aan boorgaten en de analyse van kernmateriaal. Gezien het feit

dat kernen gedetailleerde en directe metingen aan het gesteente mogelijk maken, spelen

zij een belangrijke rol bij het integreren en kalibreren van seismische en andere "indir-

ecte" metingen. Ook leveren ze de benodigde input voor gedetailleerde reservoir modellen.

Ondanks hun schat aan kwantitatieve informatie, zorgen �nanciële en tijds-beperkingen,

alsmede de wens om kernen intact te houden ervoor dat het niet mogelijk is om kernen op-

timaal te benutten. Om deze beperkingen het hoofd te bieden zijn er spectroscopische scan-

ners ontwikkeld die het mogelijk maken om snel, goedkoop, op een hoge resolutie én op

een non-destructievemanier kwantitatieve kerndata in situ te vergaren. Dit onderzoek richt

zich op één van deze technieken, te weten X-straling Fluorescentie kernscanning (XRF-CS).

Eén doel van deze studie is om een mathematisch-statistisch raamwerk te bouwen

waarmee zogenaamde geïntegreerde kernbeschrijvingen kunnen worden gemaakt met be-

hulp van XRF-CS. Wij de�niëren een geïntegreerde kernbeschrijving als een verzameling

van lithofacies, chemische samenstelling en petrofysische data op dezelfde, hoge (1 cm) res-

olutie en met bijbehorende onzekerheid. De interpretatie van een geïntegreerde kernbes-

chrijving, al dan niet gecombineerd met andere data types, de�niëren wij als geïntegreerde

kernanalyse. Ontwikkeling van methodes voor geïntegreerde kernanalyse is het tweede

doel van deze studie. Om deze twee doelen te bereiken de�niëren we de volgende con-

crete subdoelen: (1) statistisch karakteriseren van relevante data types, (2) formalis-

eren van interpretatie van bulk chemische data, verbeteren (3) en uitbreiden (4) van de

meest recente kalibratie methode, (5) evalueren van de prestaties van nieuw ontwikkelde

methodes, (6) exploreren van de toegevoegde waarde van geïntegreerde kern analyse.

Voordat deze studie begon was de meest geavanceerde kalibratie methode voor XRF-CS

een bivariate methode (BLC) gebaseerd op additieve log-ratio’s. In een poging om kalib-

ratie van core scanning data te verbeteren en uit te breiden hebben we een multivariate
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methode (MLC) ontwikkeld dat is gebaseerd op gecentreerde log-ratio’s en Partial Least

Squares (PLS) (Hoofdstuk 2). Deze methode is een uitbreiding op de BLC methode, omdat

hiermee voorspelling van "absolute concentraties" mogelijk is. We hebben de prestatie van

dit en andere modellen vergeleken. De resultaten laten zien dat de gebruikelijke directe

lineaire kalibratie methodes die zijn gestoeld op de aanname dat er een unieke relatie be-

staat tussen element intensiteiten en concentraties en daarom dus geen recht doen aan de

compositionele aard van deze data, slecht presteren. Aanzienlijk beter presteert het bivari-

ate log-ratio kalibratie model. Dit model is consistent met de compositionele aard van het

probleem, maar incorporeert matrix e�ecten niet optimaal en maakt geen voorspelling van

"absolute" concentraties mogelijk. Het voorgestelde multivariate model dat wel rekening

houdt met laatstgenoemde zaken presteert het beste. Ook hebben we laten zien dat de

voorspellende waarde van het model toeneemt, door gebruik te maken van automatische

selectie van kalibratie monsters op basis van element intensiteiten in de logratio ruimte.

We laten in Hoofdstuk 3 zien dat PLS ook worden gebruikt om interpretatie van geo-

chemische data te formaliseren. We laten zien dat een op PLS gebaseerd model het mo-

gelijk maakt om de variatie in een data set te partitioneren in unieke signalen, en signalen

die de data set gemeenschappelijk heeft met een andere data set. Als we dit toepassen op

geochemische en korrelgrootte data, dan hebben deze type signalen een geologische relev-

antie. De gedeelde geochemische signalen re�ecteren de omstandigheden waaronder het

sediment is afgezet, terwijl de unieke signalen mogelijk informatie over provenance bevat-

ten. Toepassing van dit model op drie mariene sediment kernen liet zien dat het gebruiken

van chemische proxies voor korrelgrootte uit "tekstboeken" risicovol kan zijn: Ti was re-

spectievelijk positief gecorreleerd, negatief gecorreleerd en niet gecorreleerd met korrel-

grootte in elk van de drie kernen. Net als XRF-CS data, moeten chemische korrelgrootte

proxies dus "gekalibreerd", waarvoor het gepresenteerde model kan worden gebruikt.

Schattingen van de onzekerheid van zowel de kalibratie data als de XRF-CS voorspellin-

gen zijn onontbeerlijk. In een poging om spectroscopische en compositionele data stat-

istisch te karakteriseren hebben we in Hoofdstukken 4 en 5 theoretische en empirische

onzekerheidsmodellen geanalyseerd en ontwikkeld. Wij stellen dat, aangezien alle spec-

troscopische en compositionele data tot stand komen door tellen of een soortgelijk proces,

zij onderhevig zijn aan zogenaamde telfouten die het resultaat zijn van de eindige grootte

van de monsters. Aangezien de gecentreerde logratio (clr) transformatie schaal e�ecten

wegneemt en de data representeert in een metrische ruimte is het analyseren van deze

soorten data in de clr ruimte een potentieel krachtige aanpak. Foutenpropagatie liet zien

dat in deze ruimte, de covariantiestructuur van de fout geassocieerd met multinomiale en

Poisson-gedistribueerde data identiek wordt (Hoofdstuk 4). Een eigenschap van deze uni-

versele covariantiestructuur is dat de fouten niet iid zijn: ze zijn gecorreleerd en de fout ge-

associeerd met een klein aantal getelde objecten is relatief groter dan die geassocieerd met

een groot aantal getelde objecten. We hebben een nieuw algoritme ontwikkeld (OSIRA) om

reduced-rank approximations te maken van teldata, met volledige inachtneming van deze

eigenschappen.

In Hoofdstuk 5 hebben we de structuur geanalyseerd van bestaande functies die de

inter-laboratorium spreiding van chemische analyses voorspellen. Hun structuur sugge-

reert dat de onzekerheid van chemische analyses niet wordt gedomineerd door telfouten.

Ook hebbenwe aangetoond dat hun structuur niet consistent ismet de de�nitie van concen-

traties als massafracties. Eén van deze inconsistenties is hun asymmetrische vorm (i.e., f(c)
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6= f(1-c) waarbij c ∈ [0, 1]). A�eiding van deze vorm uit standaard fysisch-spectroscopische

theorie leverde op dat strikt univariate kalibratie zonder matrix correcties inderdaad kan

resulteren in een asymmetrische onzekerheid. In het ideale geval zorgen matrix correcties

of multivariate kalibratie ervoor dat de concentratie schattingen niet te onderscheiden zijn

van "echte" concentraties in de strikt statistische zin. In praktische applicaties zal het

gedrag van deze onzekerheid variëren tussen perfect symmetrisch en asymmetrisch. Onaf-

hankelijk van dit gedrag schrijft statistische theorie echter voor dat als het doel is om deze

voorspelde onzekerheid te gebruiken voor statistische gevolgtrekking, de onzekerheid sym-

metrisch moet zijn. We hebben een methode voorgesteld ommet deze tegenstrijdigheid om

te gaan. Dit leidde tot eenwijziging in de parametrische vorm van de veelgebruikte Horwitz

functie, i.e., de Binomiale Horwitz Functie (BHF).

In Hoofdstuk 6 onderzoeken we of het mogelijk is om lithofacies te voorspellen o.b.v.

XRF-CS data. Een methode is ontwikkeld die is toegepast op twee kernen met veel litho-

logische variatie: een ongeconsolideerde en een geconsolideerde sediment-kern. De gem-

iddelde fout in de voorspelling van lithofacies is 16%. Op basis hiervan concluderen we

dat XRF-CS data van grote waarde kunnen zijn voor het genereren en controleren van de

kwaliteit van kernbeschrijvingen. Op basis van onze bevindingen in Hoofdstukken 4 en

5, zijn we tot een verbetering en een uitbreiding van de MLC methode voor chemische

en petrofysische data gekomen (i.e., de GLC methode). De kwaliteit van de kwantitatieve

voorspellingen is in de meeste gevallen lager dan die van conventionele technieken. Al-

leen voor de geochemische compositie van relatief homogene sedimentkernen presteerde

de core scanner even goed als conventionele technieken. Evaluatie van deze resultaten,

gecombineerd met andere resultaten uit deze studie resulteert in een richtlijn voor de ver-

wachte ratio (i.e., de PPR) tussen de fout in XRF-CS voorspelling en gemeten bulk geo-

chemische samenstelling: homogene sediment kernen (PPR ≤ 2), heterogene sediment

kernen (1 ≤ PPR ≤ 3), heterogene sedimentaire gesteente kernen (3 ≤ PPR ≤ 4).

In Hoofdstuk 8 exploreren we de toegevoegde waarde van geïntegreerde kern analyse

aan de hand van drie voorbeelden. Allereerst laten we zien dat het gebruik van hoge-

resolutie voorspellingen van petrofysische eigenschappen kan leiden tot signi�cant ver-

schillende facies eigenschappen, wat weer van grote invloed kan zijn op reservoir modellen

(8). Vervolgens laten we zien dat door petrofysische analyses te combineren met XRF-CS

data het mogelijk is om op een automatische manier een voorspelling van de reservoirk-

waliteit te krijgen op de centimeter-schaal. Tenslotte demonstreren we zien dat gebruik

van geïntegreerde kernbeschrijvingen het mogelijk maakt om op een meer gedetailleerde

manier te analyseren welke mechanismen van invloed zijn geweest op de reservoirkwal-

iteit. Naast korrelgrootte en dolomietcement, suggereren de resultaten dat ook calcietce-

ment de reservoirkwaliteit beïnvloedt. Daarnaast is de rol van dolomietcement groter dan

gesuggereerd door het beperkte aantal petrogra�sche analyses. Dit betekent dat hoge-

resolutie geochemische data het mogelijk maken om op een betrouwbare manier bevindin-

gen van petrogra�sche analyses te extrapoleren naar de gehele kern.

Een aanbeveling ten aanzien van toekomstig onderzoek is het opstellen van apartemod-

ellen voor verschillende lithologiën. Waarschijnlijk zal dit bijdragen aan het reduceren van

onzekerheid. Daarnaast is het aan te raden om meer informatie te halen uit kernfoto’s.

In meer algemene zin is het complementeren van XRF-CS data met andere data bronnen

een kansrijke vervolgstap: wij denken hierbij aan hyperspectrale metingen, in-situ micro-

scopische foto’s en minipermeametrie. De eerste uitbreiding zal hopelijk leiden tot een
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betere koppeling tussen chemische en mineralogische kompositie, welke onontbeerlijk is

om de link te kunnen leggen met de fysica van sediment transport. Analyse van in-situ mi-

croscopische beelden zal continue schattingen van korrelgrootte mogelijk moeten maken,

welke nodig zijn voor het toepassen van het PLS model (Hoofdstuk 3). Tenslotte zal mo-

eten worden onderzocht hoe de scanner optimaal gebruikt kan worden in een project dat

meerdere kernen behelst (e.g., herevaluatie van de structuur van een ontwikkeld gasveld).



Curriculum Vitae

Menno Bloemsma was born in Almelo on June 16th, 1984. After obtaining his VWO at

Erasmus College in Almelo (2002), his academic education started in Leiden with the joint

Leiden/Delft BSc program in Life Sciences and Technology. In 2003, he made the transition

to Applied Earth Sciences at TU Delft. Subsequently, he started the MSc program in Geo-

matics at the same university. After an internship with Fugro-Jason, he executed his MSc

thesis project under supervision of Gert Jan Weltje, which was aimed at investigating the

potential of XRF core scanning, in particular for the hydrocarbon industry (graduation in

August 2010). His thesis was nominated for the ’best thesis award’ of the department, and

he presented his results at the illustrious Working Group on Sediment Generation (WGSG)

in Calabria, Italy. Being inspired by this scienti�c gathering and fascinated by the topic,

Menno continued at the TU Delft with the task to develop a software package for ana-

lysis of XRF core scanning data. Hereafter, Wintershall Noordzee BV and TNO gave him

the opportunity to pursue a PhD on the same topic, which started in January 2011. Menno

communicated his results by means of several journal papers and conference abstracts. An-

other important product of his research is a software package which is far more advanced

than the package developed prior to his PhD research, and which is used by several uni-

versities. Menno continued his career at Tata Steel as a process and product technologist.

211



212



Acknowledgements

Finishing your PhD is by no means a one-man job: many persons have contributed to this

thesis, whom I would like to thank hereafter.

I would like to thank my mentor, Gert Jan Weltje, for his endless support. I still remem-

ber vividly howwe discussed our fascination for latent-variable models during the BSc �eld

work in Vesc which, at the time of writing, is more than six years ago. Who would have

thought that this discussion was the onset of a fruitful collaboration, which led to my PhD

degree. Although technically you were my supervisor, I sincerely appreciate the fact that

our collaboration was based on equality and teamwork. Especially when taking into con-

sideration that this style of supervision can be nerve wrecking sometimes. I am also very

grateful for the fact that you have taught me the skill (and art of) scienti�c writing: a valu-

able skill which I will employ throughout my career, I’m sure. Thanks for the numerous

trips we undertook together, e.g., to Italy, Germany and Austria. I will certainly miss our

vivid discussions about a variety of topics, e.g., vectors in compositional space, fall-velocity

corrections and the nature of compositional data. And although there currently lies an end

product on your desk, I am con�dent about the fact that this thesis will not be the end of

our collaboration.

I also want to thank Rik Tjallingii. I always enjoyed our discussions, the last year

mostly by phone, about the link between numerical models and geological objectives. Apart

from being pleasant, these discussions taught me to select appropriate starting points for

mathematically-oriented papers for a geologist audience. I am also very grateful for the

time and e�ort you put into the various scanning projects. Not all projects made it to this

thesis, notwithstanding a paper, which I regret. However, I certainly hope that this thesis

is not the end of our collaboration. And if not about XRF scanners, I am sure we will stay

in touch. I also want like to thank my promotor, Stefan Luthi. Although you followed my

scienti�c progressions from a distance, I am grateful for your con�dence in Gert Jan and

myself to successfully execute this project. Also my other committee members are thanked

for taking the time to read and assess my dissertation, and come to Delft.

Thirdly, I am deeply grateful for the sponsors and partners of this project. I acknowledge

�nancial support of Wintershall Noordzee BV, and thank Bert de Wijn for the freedom he

gave us in determining the direction of research. I also thank TNO, the Geological Survey

of the Netherlands, for sponsoring. Of the Survey, I have worked with Michiel van der

Meulen, Ronald Vernes, Ronald Harting and Eppie de Heer, whom I thank for their time and

e�orts. I also want to acknowledge the support I received from the NIOZ: they facilitated

213



214

my research to a great extent. The support of Geert-Jan Brummer and Rik Tjallingii, as well

as the assistance of Rineke Gieles have been valuable. I also thank Greg van de Bilt, Sergio

Fernandez and Mike Burns of Panterra Geoconsultants BV for their support, and for letting

me and some of our MSc students use their lab facilities.

At TUD, I felt myself surrounded by helpful and sincere people with creative minds.

Rik Donselaar, I am very grateful for the fact that you got me involved in the "anhydrite

enigma" project, and I admire the way you and Gert Jan paired up and set up new research

projects, some of them with a key role for XRF core scanning. I also want to mention my

colleagues of the applied geology department: Adriaan, Andrea, Cees, Geertje, Helena, Ilja,

Jiaguang, Koen, Kevin, Liang, Navid, Nico, Pantelis, Remi, Rodolfo, Siddarth, Thais, Wieske,

Xiaoxi. You are thanked for the numerous co�ee breaks, drinks, discussions and "think

and drink" sessions. I also want to thank Rik Noorland for the inspirational discussions

about numerical problems, the latest nerdy gadgets, about the beauty of programming. I

thank the IAG and the members of the GeoPT steering committee (Peter Webb, Michael

Thompson and Phil Potts) for providing the GeoPT data set used in Chapter 5. During my

research, I enjoyed working with two MSc students: Idtz Wieling (MSc student of Delft

Univ. of Techn.) who investigated core scanning and image analysis and who acquired the

core-scanning data, and Martijn van de Boor for his contributions to gamma-ray logging.

Wie ik graag wil noemen zijn mijn oud-huisgenoten, studiegenoten en clubgenoten.

Ook al heb ik ze de laatste jaren minder vaak gesproken of gezien dan ik wenste, jullie

hebben de mogelijkheid geboden om werk zo af en toe even helemaal te vergeten. PLM, nu

ik in de buurt kom wonen moeten we zeker weer eens samen op de wielren�ets stappen.

Kokki en Geertrui, wanneer gaan we die alpiene skills die we hebben opgedaan in Zwitser-

land in de praktijk brengen? Kwak, je bent een waardevolle vriend en ik waardeer het dat

je mijn paranimf wil zijn. En clubje Tool, vergeet niet dat we cool zijn, althans, soms dan...

I want to extend my deepest gratitude to my family. All in all, they were the ones who

established the boundary conditionswhich allowedme to developmyself as an independent

researcher, and as a person. And last but certainly not least, I want to thank the love of my

life; Annelous, I am very grateful for your unconditional support. This thesis is partly your

accomplishment.

Menno Rudolf Bloemsma

Barendrecht, August 2015



List of Publications

9.1 Journal papers

Bloemsma, M.R., Weltje, G.J., submitted. Predicting the uncertainty of routine chemical

analyses: a new modelling approach based on evaluation of pro�ciency tests. Analyst.

Bloemsma, M.R., Weltje, G.J., 2015. Reduced-rank approximations to spectroscopic and

compositional data: A universal framework based on log-ratios and counting statistics.

Chemometrics and Intelligent Laboratory Systems, 142, pp. 206-218.

Bloemsma, M.R., Zabel, M., Stuut, J.B., Tjallingii, R., Collins, J., Weltje, G.J., 2012. Model-

ling the joint variability of grain size and chemical composition in sediments. Sedimentary

Geology. doi:10.1016/j.sedgeo.2012.04.009.

Weltje, G.J., Bloemsma, M.R., Tjallingii, R., Heslop, D., Röhl, U., Croudace, I.W. (in press).

Prediction of geochemical composition from XRF-core-scanner data: A new multivariate

approach including automatic selection of calibration samples and quanti�cation of un-

certainties. In: Croudace, I.W., Rothwell, G. (Eds.), Micro-XRF Studies of Sediment Cores.

Developments in Paleoenvironmental Research (DPER) special publication.

Henares, S.,Bloemsma,M.R., Donselaar, M.E., Mijnlie�, H.F., Redjosentono, A.E., Veldkamp,

H.G., Weltje, G.J., 2014. The role of detrital anhydrite in diagenesis of aeolian sandstones

(Upper Rotliegend, The Netherlands): Implications for reservoir-quality prediction. Sedi-

mentary Geology, 314, 60-74.

Li, J., Luthi, S.M., Donselaar, M.E., Weltje, G.J., Prins, M.A., Bloemsma, M.R., 2014. An

ephemeral meandering river system: Sediment dispersal processes in the Río Colorado,

Southern Altiplano Plateau, Bolivia. Zeitschrift für Geomorphologie.

9.2 Conference proceedings and abstracts

Bloemsma, M.R., Weltje, G.J., 2014. Partial least squares in a compositional framework:

a powerful tool for process-based statistical analysis of sediment properties. Oral present-

ation at the 2nd workshop of the Working Group On Sediment Generation (WGSG). June

215



216 CONFERENCE PROCEEDINGS AND ABSTRACTS

25-27, 2014. Geoscience Center of Univ. Göttingen, Germany.

Weltje, G.J., Bloemsma, M.R., 2014. Process-based compositional analysis of clastic sedi-

ments: provenance �ngerprinting using bulk properties. Keynote at the 2nd workshop of

theWorking Group On Sediment Generation (WGSG). June 25-27, 2014. Geoscience Center

of Univ. Göttingen, Germany.

Barrett, S., Tjallingii, R., Bloemsma, M.R., Brauer, A., Starnberger, R., Spötl, C., Dulski,

P., 2015. Compositional classi�cation and sedimentological interpretation of the laminated

lacustrine sediments at Baumkrichen (Western Austria) using XRF core scanning data. EGU

General Assembly 2015, Vienna, Austria.

Martin-Puertas, C., Tjallingii, R., Bloemsma, M.R., Brauer, A., 2015. Developments in

the use of high-resolution X-Ray �uorescence core scanning data of varved sediments for

paleoclimate studies: an example of Lake Meerfelder Maar, Germany. EGU General As-

sembly 2015, Vienna, Austria.

Bloemsma, M.R., Tjallingii, R., 2013. Developments in calibration and data processing of

X-Ray �uorescence core scanning data: theory behind, and a demonstration of the AvaaXel-

erate software package. Invited lecture centered around the software package developed

by MRB in close collaboration with RT.

Bloemsma, M.R., Weltje, G.J., 2012. Advances in core scanning techniques. Invited lecture

at the Dutch IODP symposium. Utrecht, The Netherlands.

Bloemsma, M.R., Weltje, G.J., Stuut, J.B.W., Zabel, M., Tjallingii, R., Collins, J.A., 2012.

Grain-size independent �ngerprinting using Partial Least Squares: a new tool for che-

mostratigraphic correlation. Proceedings of the 29th IAS Meeting of Sedimentology. Schl-

adming, Austria.

Weltje, G.J., Bloemsma, M.R., Garzanti, E., 2012. Provenance analysis of heavy-mineral

assemblages: an old problem revisited. Proceedings of the 29th IAS Meeting of Sedimento-

logy. Schladming, Austria.

Bloemsma,M.R., Weltje, G.J., Stuut, J.B.W., Zabel, M., 2011. Modelling the relation between

grain-size distribution and geochemical composition: application to a marine record of

mixed �uvial-aeolian provenance (Late Quaternary, o�shore Northern Senegal). EGU Gen-

eral Assembly 2011, Vienna, Austria.

Bloemsma, M.R., Weltje, G.J., Stuut, J.B.W., Zabel, M., 2010. Characterisation of sediments

by linear combinations of grain-size-dependent source compositions. Oral presentation at

the 1st workshop of the Working Group On Sediment Generation (WGSG). June 29th - July

1st, 2010.



MISCELLANEOUS 217

9.3 Miscellaneous

Tjallingii, R., Bloemsma, M.R., 2013. Getting started with AvaaXelerate. User manual for

the Xelerate software package, which was developed as part of this thesis.

Bloemsma,M.R., Weltje, G.J., 2012. Proefproject core scanner: Het gebruik van XRF scanning

binnen een modelgedreven kernanalyse work�ow. Technical report prepared for Geological

Survey of the Netherlands (TNO). 123 p.


	Introduction
	General introduction
	Core analysis and core-scanning technology
	XRF and its application in geoscience
	The multivariate approach
	Objectives
	Structure of this thesis

	Multivariate logratio calibration of XRF-CS data
	Introduction
	Calibration in conventional XRF spectrometry
	Log-ratio calibration
	"Absolute" concentrations
	MLC workflow
	Multivariate calibration approach
	Parameter estimation
	Replicates and scaling
	Summary statistics
	Automatic selection of calibration samples

	Comparative calibration exercise
	Data set 1: GeoB7920
	Data set 2: AU10v

	Results
	Discussion
	Comparative performance of calibration models
	Recommended measurement and sampling strategies

	Conclusions

	Modelling the joint variability of grain size and chemical composition in sediments
	Introduction
	Material and methods
	Materials
	Analytical methods
	Data preprocessing

	Modelling approach
	Conceptual model
	Statistical model

	Synthetic examples
	Synthetic example 1
	Synthetic example 2

	Results
	Discussion
	Correlation between bulk properties
	Residuals analysis
	Palaeo-climatological interpretation
	General discussion


	Reduced-rank approximations to compositional and spectroscopic data in log-ratio space
	Introduction
	Statistical basis
	Notation
	Fixed-size count data
	Fixed-time count data
	CLR space error model
	ECM in the clr space
	Limiting properties of the clr-space ECM
	ECM of a count data set

	Simulation experiment
	Reduced-rank methods
	Generating synthetic data
	Example data set
	Experimental design
	Diagnostics
	Computational load

	Results
	Discussion
	Method performance
	Method selection
	Computational performance
	Optimal Scale-Invariant Reduced-rank Approximation (OSIRA)
	General remarks

	Conclusions

	Modelling the uncertainty of routine chemical analyses
	Introduction
	UFs and spectrochemical theory
	UFs from PT data
	Parametric forms
	UF examples
	Physical plausibility
	Calibration
	Propagation of counting errors
	SDR at low concentrations
	SDR at high concentrations

	UFs and statistical theory
	Properties of compositional data
	Symmetry of uncertainty
	Plausibility of concentration-uncertainty relations
	Evaluation of existing UFs

	Synthesis
	Physical and statistical theory compared
	BUCE and CUCE compared
	Re-establish consistency by means of closure?
	Mimicking closure
	Symmetry in empirical uncertainty data

	Modelling framework
	Definition of UFs
	Modelling stage 1: System characterization
	Modelling stage 2: Pseudo concentrations to concentrations
	Domain of the UF
	Measuring performance

	Application
	GeoPT data set
	GeoPT Results
	Discussion of GeoPT results

	Discussion and conclusions

	Integrated core analysis using XRF-CS. Part I: Prediction of lithofacies
	Introduction
	Materials and Methods
	Geological setting and sedimentological interpretation
	Core analysis
	XRF core scanning
	Integrity of XRF-CS data

	Modelling methods
	Discriminant-function analysis
	Predictive performance
	Dendrogram and biplot analysis

	Results
	Core E10-3
	Core B38D

	Discussion
	Dendrogram and biplot analysis
	Relation between confusion matrix and dendrogram
	Interpretation of element intensities
	Nature of discrepancies

	General discussion, conclusions and recommendations
	General discussion and conclusions
	Outlook


	Integrated core analysis using XRF-CS. Part II: Prediction of chemical and petrophysical properties
	Introduction
	Materials and Methods
	Core analysis
	Calibration data integrity

	Modelling methods
	MLC method
	GLC and data scaling
	Summary statistics
	Predictive performance (petrophysical properties)
	Predictive performance (geochemical composition)
	Repeatability of XRF-CS data

	Results
	Geochemical calibration
	Petrophysical calibration

	Discussion
	Geochemical calibration
	Element intensity importance
	Extrapolation abilities (histogram analysis)
	Extrapolation abilities (explicit poroperm relation)

	General discussion, conclusions and recommendations
	Quantitative performance evaluation
	Possible improvements
	Concluding remarks


	Integrated core analysis using XRF-CS. Part III: Applications
	Introduction
	General introduction
	Core E10-3: controls on reservoir quality

	Application 1: Enhanced facies properties
	Objective
	Approach
	Results and discussion

	Application 2: Automatic reservoir quality prediction
	Objective
	Approach
	Results and discussion

	Application 3: Diagenetic controls on reservoir properties
	Objective
	Approach
	Results and discussion

	General discussion and conclusions

	General discussion and outlook
	Discussion
	Objectives
	Performance
	Application of XRF-CS

	Future developments
	Line-scan imaging
	Minipermeametry
	Alternative technological improvements

	Outlook

	Appendices
	Appendix of Chapter 3
	Appendix of Chapter 4
	Appendix of Chapter 5
	Modelling approach
	UFs and closure
	Derivation of proper UF
	From pseudo to proper UF: Poissonian case
	From pseudo to proper UF: General case

	GeoPT unpublished references

	Appendix of Chapters 6 and 7
	RCA of core E10-3
	Petrographical analysis

	Lithofacies classification scheme (E10-3)
	Features of the GLC
	Extension 1: Model selection
	Extension 2: Transformation selection
	Extension 3: Removing uninformative X-variables
	Extension 4: Removing unpredictable Y-variables
	Extension 5: Modelling incomplete compositions


	List of acronyms
	Bibliography
	Curriculum Vitae
	Acknowledgements
	List of publications
	Journal papers
	Conference proceedings and abstracts
	Miscellaneous




