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Summary

The COS Method: An Efficient Fourier Method for
Pricing Financial Derivatives

Fang Fang

When valuing and risk-managing financial derivatives, practitioners demand fast and
accurate prices and sensitivities. Aside from the pricing of non-standard exotic fi-
nancial derivatives, so-called plain vanilla European options form the basis for the
calibration of financial models. As any pricing and risk management system has to
be able to calibrate to these plain vanilla options, it is important to be able to value
these options quickly and accurately.

By means of the risk-neutral valuation formula the price of any option, without
early exercise features, can be written as an expectation of the discounted payoff of
this option. Starting from this representation one can apply three types of numerical
methods to calculate the price itself: Monte Carlo simulation, numerical solution
of the corresponding partial-(integro) differential equation (P(I)DE) and numerical
integration.

An important aspect of research in Computational Finance is to continuously
improve the performance of the pricing methods. In this dissertation we present a
novel and efficient option pricing method based on the integration representation
for various financial derivatives. The method is called the COS method, because
the key idea is to replace the probability density function, appearing in the risk-
neutral valuation formula, by its Fourier-cosine series expansion. Fourier-cosine series
coefficients have an elegant closed-form relation with the characteristic function (i.e.
the Fourier transform of the underlying density function), which is readily known,
for example for exponential Lévy processes, and more general for the broader class
of regular affine processes.

For European options, presented in Chapter 2 of this thesis, the risk-neutral
valuation formula appears as an inner product of the probability density function
and the payoff function. Approximating the density function by its Fourier-cosine
series expansion transforms the inner product into combinations of products of cosine
basis functions and the (payoff) function which is known analytically. The method’s
convergence is therefore directly connected to the convergence of the Fourier-cosine
series approximation of the density function. For smooth density functions, we show
that the convergence is exponential. Since the computational complexity grows only
linearly with the number of terms in the expansion, the COS method is optimal in
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error convergence and in computational complexity for European options.

In other chapters of this thesis, the applicability of the COS method has been
generalized to pricing options with early-exercise features and discretely-monitored
barrier options, as well as to the calibration of Credit Default Swaps, under ex-
ponential Lévy processes. Furthermore, an efficient pricing method based on the
COS method has been developed for pricing early-exercise options under the (two-
dimensional) Heston stochastic volatility dynamics.

The main insight for generalizing to the options with early-exercise features under
Lévy processes, as presented in Chapter 3, is that between any two adjacent early-
exercise dates the COS formula for European options can be applied, and that the
series coefficients of the option values at each time lattice can be recovered recursively
from those of the payoff function. This recursion can be written as a matrix-vector
product with the matrix being the sum of two special matrices: a Hankel matrix and a
Toeplitz matrix. Multiplication of a vector to these special matrices can be written as
circular convolution of two vectors and can therefore be computed rapidly by means of
the Fast Fourier Transform (FFT) algorithm. The overall computational complexity
for early-exercise (and discretely monitored barrier) options with M exercise dates
is O((M − 1)N log2N), with N being the number of terms in the cosine expansion.

It is then shown in Chapter 4 that the COS method can be used to calibrate
Credit Default Swaps (CDSs), that are the basic building blocks of the credit risk
market. The (bid-ask) spread for a CDS depends on the default probability of the
underlying reference entity. In the approach adopted here, the credit default spreads
are related to a series of survival/default probabilities with different maturities. These
survival probabilities can be viewed as prices of binary down-and-out barrier options
(without discounting). As such, the COS method for discrete barrier options can
be used to recover the probabilities. A special scheme has been developed to reduce
the computational time by computing several survival probabilities simultaneously.
The method’s capabilities have been demonstrated by the calibration to quotes of
the constituents of the iTraxx Series.

Finally, in Chapter 5, the COS method has been extended by quadrature rules to
efficiently deal with two-dimensional pricing problems, originating for early-exercise
options under the Heston stochastic volatility model. We focus especially on pa-
rameter values for which the volatility can reach zero. This is a nontrivial situation
for which many other numerical schemes fail, including the finite difference PDE
schemes. The problem is related to parameter values for which the Feller condition is
not satisfied, and for which the pricing problem is close to singular. The variance of
the stock process follows a noncentral chi-square distribution, and, for some combi-
nations of the relevant parameters, the density function values tend to infinitely large
numbers when the variance approaches zero. We handle this problem by a transfor-
mation from the variance domain to the log-variance domain. The two-dimensional
discrete pricing formula is then obtained by applying the Fourier-cosine series expan-
sion approximation in the log-stock dimension and a high-order quadrature rule in
the log-variance dimension. The overall computational complexity is almost-linear
in the log-stock dimension and quadratic in the log-variance dimension with very
satisfactory error convergence.

In this thesis we show that the COS method can price various financial derivatives
under exponential Lévy and Heston stochastic volatility models. Highly efficient
pricing results are presented, due to a fast error convergence and a lean computational
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complexity. We further determine the stability of the pricing method by a rigorous
error analysis and by many numerical experiments under extreme parameter values.
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Samenvatting

The COS Method: An Efficient Fourier Method for
Pricing Financial Derivatives

Fang Fang

Voor de waardering en risico-inschatting van financiële derivaten, is het nodig om
productprijzen en de bijbehorende Grieken snel en accuraat door te rekenen. Tijdens
het prijzen van de zogeheten exotische derivaten, die niet standaard op beurzen ver-
handeld worden, vormen de standaard plain vanilla Europese opties de basis voor de
calibratie van de onderliggende financiële aandelenmodellen. Ieder prijs- en risicobe-
heerssysteem dient in zo kort mogelijke tijd gecalibreerd te worden op basis van deze
Europese optieprijzen.

Met behulp van de risico-neutrale waarderingsformule kan de prijs van een fi-
nanciële optie, zonder vervroegde uitoefeningsmogelijkheden, geschreven worden als
de verdisconteerde verwachtingswaarde van de uitbetaling van deze optie op de uitoe-
fendatum. Uitgaande van deze beschrijving kan men drie soorten numerieke metho-
den toepassen om de prijs berekenen: Monte Carlo simulatie, numerieke oplossing van
de bijbehorende partiële-(integro) differentiaalvergelijking en numerieke integratie.

Een belangrijk aspect van onderzoek in Computational Finance is het continu
verbeteren van de prestaties van de rekenmethoden. In dit proefschrift presen-
teren we een nieuwe en efficiënte optiewaarderingsmethode, gebaseerd op de inte-
graalvoorstelling, voor de verschillende financiële derivaten. De methode is genaamd
de COS methode, omdat het centrale idee de benadering van de kansdichtheidsfunctie
in de risico-neutrale waarderingsformule met behulp van een Fourier cosinus expan-
sie is. Fourier cosinuscoëfficiënten hebben een elegante relatie met de karakteristieke
functie (is de Fourier getransformeerde van de onderliggende kansdichtheidsfunctie).
Deze karakteristieke functie kan analytisch bekend verondersteld worden, bijvoor-
beeld voor exponentiële Lévy processen, en meer algemeen voor de klasse van reg-
uliere affine processen.

Voor de waardering van Europese opties, gepresenteerd in Hoofdstuk 2 van dit
proefschrift, wordt de risico-neutrale waarderingsformule gepresenteerd als de inte-
graal van het inwendige product van de kansdichtheidsfunctie en de uitoefenfunctie.
De benadering van de dichtheidsfunctie door de Fourier cosinusreeks leidt tot ver-
menigvuldigingen van de cosinus basisfuncties en de uitoefenfunctie, die analytisch
bekend zijn. De convergentie van de reeks is rechtstreeks gerelateerd aan de con-
vergentie van de Fourier cosinusreeksen. Voor gladde functies tonen we aan dat de
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convergentie exponentieel is. Aangezien de rekencomplexiteit slechts lineair met het
aantal termen in de reeks groeit, is de COS methode optimaal met betrekking tot
convergentie en rekencomplexiteit voor Europese opties.

Een belangrijk inzicht voor generatisatie van de COS methode naar opties die
vervroegd uitgeoefend kunnen worden onder Lévy processen, gepresenteerd in Hoofd-
stuk 3, is dat tussen twee aan elkaar grenzende uitoefendata de COS formule voor Eu-
ropese opties kan worden toegepast. Verder kunnen de coëfficiënten van optiewaarden
op elk uitoefentijdstip recursief worden afgeleid van de coëfficienten van de uitoefen-
functie. Deze recursie kan worden geschreven als een matrix-vector product waarbij
de matrix de som is van twee speciale matrices, een Hankel en een Toeplitz ma-
trix. Vermenigvuldiging van een vector met deze bijzondere matrices kan worden
geschreven als een circulaire convolutie van twee vectoren en kan daarom zeer efficiënt
worden uitgerekend met behulp van de Fast Fourier Transformatie. De rekencom-
plexiteit voor deze opties die vervroegd uitgeoefend kunnen worden, met M uitoe-
fendata, is O((M − 1)N log2(N)), waarin N het aantal termen in de cosinusexpansie
representeert.

Vervolgens wordt in Hoofdstuk 4 de COS methode gebruikt om credit default
swaps (CDS), i.e. de elementaire bouwstenen van de markt voor kredietrisico, te
calibreren. De spreiding van de bied- en laatprijzen voor een CDS hangt af van
de standaard-deviatie van een onderliggende referentie-entiteit. Bij de hier gekozen
aanpak zijn deze credit default spreidingen gerelateerd aan een reeks van overlev-
ingswaarschijnlijkheden van de referentie-entiteit met verschillende looptijden. Deze
overlevingskansen kunnen worden gëınterpreteerd als de waarden van financiële bi-
naire down-and-out barrière opties. Het is derhalve mogelijk om de COS methode
voor discrete barrière opties, ook gepresenteerd in Hoofdstuk 3, te gebruiken om
de gewenste waarschijnlijkheden te berekenen. Speciale technieken zijn verder on-
twikkeld om de rekentijd te verminderen door verschillende overlevingskansen tegeli-
jkertijd door te rekenen. In het hoofdstuk wordt aangetoond dat het mogelijk is om
op basis van verschillende reeksen met data van de iTraxx Series (afkomstig uit de
kredietmarkt) te calibreren.

Tenslotte is, in Hoofdstuk 5, de COS methode uitgebreid met kwadra-tuurregels
met als doel twee-dimensionale optieproblemen efficiënt te berekenen. In het bijzon-
der richten we ons op opties die vervroegd uitgeoefend kunnen worden onder het
Heston stochastische volatiliteitmodel. We focusseren op parameterwaarden waar-
voor de volatiliteit de waarde nul kan bereiken. Dit is een niet-triviale situatie waar-
voor vele bestaande numerieke schema’s falen, eindige differentie discretisaties van
de bijbehorende partiële differentiaalvergelijking incluis. Het probleem is gerelateerd
aan parameterwaarden die niet aan de Feller-conditie voldoen. De variantie van het
aandeel volgt een niet-centraal Chi-kwadraat proces, en voor sommige combinaties
van de relevante parameters, als de variantie naar nul gaat, kan de dichtheidsfunctie
enorm grote waarden aannemen.

We behandelen dit probleem door een transformatie van het variantiedomein naar
het log-variantiedomein. De twee-dimensionale discrete optieprijsformule wordt dan
verkregen door toepassing van een Fourier cosinus expansie in de log-aandeel dimensie
en een hogere orde kwadratuurformule in de log-variantie dimensie. De rekencom-
plexiteit is vrijwel lineair in de log-aandeel dimensie en kwadratisch in de log-variantie
dimensie, met een snelle foutconvergentie.

In dit proefschrift laten we zien dat door middel van de COS methode verschil-
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lende financiële derivaten geprijsd kunnen worden onder exponentiële Lévy en ook
onder Heston stochastische volatiliteit modellen. Uiterst efficiënte rekenmethoden
worden gepresenteerd, op basis van snelle foutconvergentie en een lage rekencom-
plexiteit. We analyseren verder de stabiliteit en consistentie van de methodes door
een rigoureuze foutenanalyse en door vele numerieke experimenten onder extreme
parameterwaarden.
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Chapter 1

Introduction

1.1 Background

In the field of Computational Finance, efficient numerical methods are required to
rapidly price complex contracts and calibrate financial models. Whereas the for-
mer topic requires especially robust numerical techniques, the latter also relies on
efficiency and speed of computation. During calibration, i.e., fitting model param-
eters of the stochastic asset processes to market data, we typically need to price
(liquid) options at a single spot price, with many different strike prices, very quickly.
Particular examples of where this is important would be processes with several pa-
rameters, like the Heston model [41] or the infinite activity Lévy processes (see, for
example, [23]), since there the pricing problem (for many strikes) is used inside an
optimization method.

It is the famous Feynman–Kac theorem that relates the conditional expectation of
the value of a contract payoff function under the risk-neutral measure to the solution
of a partial differential equation. In the research areas covered by this theorem,
various numerical pricing techniques have been developed.

Existing numerical methods in literature can be categorized into three groups:
partial-(integro) differential equation (PIDE) methods, Monte Carlo simulation, and
numerical integration methods. The distinction between the PIDE and the integration
methods is, however, subtle: Given the option pricing PIDE, one can formally write
down the solution as a Green’s function integral. Often the Fourier transform of
the Green’s function is known; hence the problem reduces to evaluating the integral
numerically. The Green’s function, modulo a discounting term, is the risk-neutral
probability density in finance-speak.

Among the three, numerical integration methods are traditionally very efficient
and typically faster than PIDE and Monte Carlo methods for pricing single asset
European options. They are also referred as “transform methods” as the Fast Fourier
Transform (FFT) algorithm is very often combined with numerical integration[20,
61]. The fast computational speed, especially for plain vanilla options, makes these
integration methods state of the art for calibration at financial institutions.

In addition, numerical integration methods can readily cope with various asset
price dynamics for which the characteristic function (i.e., the Fourier transform of
the probability density function) is available. This is the case for models from the
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2 Chapter 1. Introduction

class of regular affine processes of [27], which also includes the exponentially affine
jump-diffusion class of [28], and, in particular, the exponentially Lévy models, and
some stochastic volatility models.

In recent literature, integration-based methods are generalized to pricing options
with early-exercise features. The key idea is to set up a time lattice on each early-
exercise date and view the option as of European type between two adjacent lattices.
Pricing an early-exercisable option usually involves two steps: recovery of the density
and solving the integration that appears in the risk-neutral valuation formula. Some
of existing methods employ quadrature rules in both steps. We will elaborate more
on the details in the next section. Quadrature rule based techniques are not of high
efficiency especially when the integrand is highly oscillatory and therefore a relatively
fine grid has to be used for a satisfactory accuracy.

An important aspect of research in computational finance is to further increase
the performance of the pricing methods. It is the focus of this dissertation to develop
a novel and highly efficient option pricing method for various financial derivatives,
called the COS method. The key idea is to apply Fourier-cosine expansions as an
alternative for the methods based on quadrature rules.

Financial derivatives covered in this dissertation include European options, Bermu-
dan options, American options, (discrete) barrier options and credit default swaps.

1.2 Asset Dynamics

The asset dynamics considered in this dissertation are mainly exponential Lévy pro-
cesses (e.g. Geometric Brownian Motion, the Variance Gamma (VG) model[57], the
CGMY model[19], the Normal Inverse Gaussian model[8]) and stochastic volatility
models (like Heston’s stochastic volatility model [41]).

1.2.1 Exponential Lévy Processes

With exponential Lévy processes the asset price is modelled as an exponential func-
tion of a Lévy process L(t):

S(t) = S0 exp(L(t)). (1.1)

For ease of exposure we assume that the asset pays a continuous stream of dividends,
measured by the dividend rate q. In addition, we assume the existence of a bank
account B(t) which evolves according to dB(t) = rB(t)dt, r being the (determinis-
tic) risk-free rate. Recall that a process L(t) on (Ω,J , P ), with L(0) = 0, is a Lévy
process if:

1 it has independent increments;

2 it has stationary increments;

3 it is stochastically continuous, i.e., for any t ≥ 0 and ε > 0 we have

lim
s→t

P(|L(t)− L(s)| > ε) = 0. (1.2)

2



1.2. Asset Dynamics 3

Each Lévy process can be characterised by a triplet (µ, σ, ν) with µ ∈ R, σ ≥ 0 and
ν a measure satisfying ν(0) = 0 and∫

R
min (1, |x|2)ν(dx) <∞. (1.3)

In terms of this triplet the characteristic function of the Lévy process equals:

φ(u) = E[exp (iuL(t))]

= exp (t(iµu− 1

2
σ2u2 +

∫
R

(eiux − 1− iux1[|x|<1]ν(dx))), (1.4)

the celebrated Lévy-Khinchine formula. As is common in most models nowadays we
assume that (1.1) is formulated directly under the risk-neutral measure. To ensure
that the reinvested relative price eqtS(t)/B(t) is a martingale under the risk-neutral
measure, we need to ensure that

φ(−i) = E[exp (L(t))] = e(r−q)t, (1.5)

which is satisfied if we choose the drift µ as:

µ = r − q − 1

2
σ2 −

∫
R
(ex − 1− x1[|x|<1])ν(dx) (1.6)

The simplest and widely used exponential Lévy process is the Geometric Brownian
Motion (GBM) model, whereby the logarithm of the asset price follows a Brownian
motion (also called a Wiener process) [65]. The asset price St is said to follow a
GBM if it satisfies the following stochastic differential equation:

dSt = µStdt+ σStdWt

where Wt is a Wiener process or Brownian motion, µ is the percentage drift and σ
is the percentage volatility. Both µ and σ are constants. This is also referred to as
the Black-Scholes model.

One problem with the GBM model is that it is not able to reproduce the volatility
skew or smile present in most financial markets. This is the main motivation for
the practitioners to use more general Lévy processes. Over the past few years it
has been shown that several exponential Lévy models are, at least to some extent,
able to reproduce the skew or smile. The particular model we will consider is the
extended CGMY model. The underlying Lévy process is characterized by the triple
(µ, σ, νCGMY ), where the Lévy density is specified as:

νCGMY (x) =


C

exp
(
−G|x|

)
|x|1+Y if x < 0

C
exp

(
−M |x|

)
|x|1+Y if x > 0.

(1.7)

The parameters satisfy C ≥ 0, G ≥ 0, M ≥ 0, and Y < 2. The condition Y < 2 is
induced by the requirement that Lévy densities integrate x2 in the neighbourhood

3



4 Chapter 1. Introduction

of 0. Conveniently, the characteristic function of the log-asset price can be found in
closed-form as:

φ(u) = S(0)iu exp
(
iuµt− 1

2
u2σ2t

+tCΓ(−Y )[(M − iu)Y −MY + (G+ iu)Y −GY ]
)
, (1.8)

where Γ(x) is the gamma function. One can verify that the parameters G and
M represent respectively the smallest and largest finite moment in the model, as
φ(−iu) = E[S(t)u] is infinite for u < −G and for u > M . The model encompasses
several models. When σ = 0 and Y = 0 we obtain the VG model, which is often
parameterised slightly differently with parameters 1 σ, θ and ν, related to C,G and
M through:

C =
1

ν
, G =

1√
1
4θ

2ν2 + 1
2σ

2ν − 1
2θν

, M =
1√

1
4θ

2ν2 + 1
2σ

2ν + 1
2θν

. (1.9)

Finally, when C = 0 the model reduces to the GBM model. The reader is referred
to [23, 67] for the usage of Lévy processes in a financial context and to [66] for a
detailed analysis of Lévy processes in general.

Characteristic functions for several exponential Lévy processes are summarized in
Table 1.1. Notations of the parameters in Table 1.1 basically follow the books [23, 67].
Note that“GBM” stands for Geometric Brownian Motion model; “NIG” represents
the Normal Inverse Gaussian (NIG) distribution, which is a variance-mean mixture
of a Gaussian distribution with an inverse Gaussian [8]; “VG” and “CGMY” stand
for VG model and CGMY model, respectively; “Kou” and “Merton” denote the
jump-diffusion models developed in [50] and [59], respectively.

Table 1.1: Characteristic functions of ln(St/K) for various models.

GBM ϕ(ω, t) = exp (iωµt− 1
2
σ2ω2t)

NIG ϕ(ω, t) = exp (iωµt− 1
2
σ2ω2t)φNIG(ω, t;α, β, δ)

φNIG(ω, t;α, β, δ) = exp
[
δt
(√

α2 − β2 −
√
α2 − (β + iω)2

)]
Kou ϕ(ω, t) = exp (iωµt− 1

2
σ2ω2t)φKou(ω, t;λ, p, η1, η2)

φKou(ω, t;λ, p, η1, η2) = exp
[
λt
(

pη1
η1−iω

− (1−p)η2
η2+iω

− 1
)]

Merton ϕ(ω, t) = exp (iωµt− 1
2
σ2ω2t)φMerton(ω, t;λ, µ̄, σ̄)

φMerton(ω, t) = exp
[
λt
(
exp(iµ̄ω − 1

2
σ̄2ω2)− 1

)]
VG ϕ(ω, t) = exp (iωµt)φV G(ω, t;σ, ν, θ)

φV G(ω, t;σ, ν, θ) = (1− iωθν + 1
2
σ2νω2)−t/ν

CGMY ϕ(ω, t) = exp (iωµt− 1
2
σ2ω2t)φCGMY (ω, t;C,G,M, Y )

φCGMY (ω, t;C,G,M, Y ) = exp(CtΓ(−Y )[(M − iω)Y −MY + (G+ iω)Y −GY ])

Given the characteristic functions, the cumulants, defined in [23], can be com-
puted via

ξn(X) =
1

in
∂n(tΨ(ω))

∂ωn

∣∣∣∣
ω=0

,

1The parameters σ and ν should not be confused with the volatility and Lévy density of the
Lévy triplet.
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1.2. Asset Dynamics 5

where tΨ(ω) is the exponent of the characteristic function ϕ(ω, t), i.e.

ϕ(ω, t) = etΨ(ω), t ≥ 0.

The formulas for the cumulants are summarized in Table 1.2. They have been verified
with the help of Mathematica. Cumulants are used in defining the proper truncation
range in the following chapters.

Table 1.2: Cumulants of ln(St/K) for various models.

GBM ξ1 = (µ− 1
2
σ2)t, ξ2 = σ2t, ξ4 = 0

NIG ξ1 = (µ− 1
2
σ2 + w)t+ δtβ/

√
α2 − β2

ξ2 = δtα2(α2 − β2)−3/2

ξ4 = 3δtα2(α2 + 4β2)(α2 − β2)−7/2

w = −δ(
√
α2 − β2 −

√
α2 − (β + 1)2)

Kou ξ1 = t
(
µ+ λp

η1
+
λ(1−p)
η2

)
ξ2 = t

(
σ2 + 2λp

η2
1

+ 2
λ(1−p)
η2
2

)
ξ4 = 24tλ

(
p

η4
1

+ 1−p
η4
2

)
w = λ

(
p

η1+1
− 1−p
η2−1

)
Merton ξ1 = t(µ+ λµ̄) ξ2 = t

(
σ2 + λµ̄2 + σ̄2λ

)
ξ4 = tλ

(
µ̄4 + 6σ̄2µ̄2 + 3σ̄4λ

)
VG ξ1 = (µ+ θ)t ξ2 = (σ2 + νθ2)t

ξ4 = 3(σ4ν + 2θ4ν3 + 4σ2θ2ν2)t w = 1
ν

ln(1− θν − σ2ν/2)

CGMY ξ1 = µt+ CtΓ(1− Y )
(
MY−1 −GY−1

)
ξ2 = σ2t+ CtΓ(2− Y )

(
MY−2 +GY−2

)
ξ4 = CtΓ(4− Y )

(
MY−4 +GY−4

)
w = −CΓ(−Y )[(M − 1)Y −MY + (G+ 1)Y −GY ]

where w is the drift correction term that satisfies exp(−wt) = ϕ(−i, t).

1.2.2 Heston’s Stochastic Volatility Model

Like Lévy processes, stochastic volatility models have also been developed to capture
the volatility smiles and skews present in the market quotes. Within this class, the
Heston stochastic volatility model[41], whereby the variance of (the logarithm of) the
stock price is modeled by a square-root process, has become popular in industrial
practice.

The Heston stochastic volatility model defines the dynamics of the logarithm
of the stock price (log-stock), xt, and the variance, νt, by the following stochastic
differential equations (SDEs) [41]:

dxt =

(
µ− 1

2
νt

)
dt+ ρ

√
νtdW1,t +

√
1− ρ2

√
νtdW2,t (1.10)

dνt = λ (ν̄ − νt) dt+ η
√
νtdW1,t, (1.11)

where the three non-negative parameters, λ, ν̄ and η, represent the speed of mean
reversion, the mean level of variance, and the volatility of the volatility process,
respectively. The Brownian motions, W1,t and W2,t, are independent and ρ is the
correlation between the log-stock and the variance processes.

5



6 Chapter 1. Introduction

We will pay special attention to the properties of this model, as well as difficulties
arisen in option pricing under this model, in Chapter 5.

1.3 Existing Integration-based Methods

1.3.1 European Options

By means of the risk-neutral valuation formula the price of any option without early
exercise features can be written as an expectation of the discounted payoff of this
option:

v(t, St) = e−rτE [v(T, ST )] , (1.12)

where v denotes the value of the option, r is the risk-neutral interest rate2, t is the
current time point, T is the maturity of the option and τ = T − t. The variable
Sτ denotes the asset price at time τ . The expectation is taken with respect to the
risk-neutral probability measure.

As (1.12) is an expectation, it can be calculated via numerical integration provided
that the probability density is known in closed-form, which is, however, not the case
for many models. What is usually available or easier to derive is the characteristic
function.

The characteristic function (Ch.f.) is in essence the continuous Fourier transform
of the density function, and thus, one needs to apply inverse continuous Fourier
transform to recover the density. The fast Fourier transform (FFT) algorithm that
computes discrete Fourier transforms in O(N log2(N)) operations can be employed
after the continuous Fourier integral is “discretized”.

Different inversion methods exist.

Pioneering articles applying Fourier transform techniques are concerned with the
pricing of European-style options, like the Gil-Pelaez inversion [38] or the Carr-Madan
inversion by Carr and Madan [20].

Gil-Palaez inversion relates the cumulative distribution function F (s) to the char-
acteristic function φ(u) as follows:

F (s) =
1

2
− 1

π

∫ ∞
0

Re

(
φ(u)

e−ius

iu

)
du. (1.13)

Carr and Madan [20] considered another approach. Note that L1-integrability is a
sufficient condition for the Fourier transform of a function to exist. A call option is
not L1-integrable with respect to the logarithm of the strike price, as:

lim
k→−∞

v(t, S(t)) = S(t),

Pre-multiplying the option price with exp (αk) for α > 0 solves this however, and
Carr and Madan ended up with this method by pre-multiplying a damping function
to the option value so ensuring the existence of the Fourier transform. They presented

2Although we assume throughout the paper that interest rates are deterministic, this assumption
can be relaxed at the cost of increasing the dimensionality of some of the methods.
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1.3. Existing Integration-based Methods 7

the following highly efficient pricing formula,

F{eαkv(t, k)} = e−rτ
∫ ∞
−∞

eiukeαkE
[
(S(T )− ek)+

]
dk

=
e−rτφ(u− (α+ 1)i)

−(u− αi)(u− (α+ 1)i)
, (1.14)

where we now consider the option price v as a function of time and k.
A necessary and sufficient condition for (1.14) to exist is that

|φ(u− (α+ 1)i)| ≤ φ(−(α+ 1)i) = E[S(T )α+1] <∞,

i.e., that the (α + 1)th moment of the asset price exists. The option price can be
recovered by inverting (1.14) and undamping

v(t, k) =
1

2π
e−rτ−αk

∫ ∞
−∞

e−iuk
φ(u− (α+ 1)i)

−(u− αi)(u− (α+ 1)i)
du (1.15)

Pricing requires only one numerical integration and the numerical stability of (1.15)
can be controlled by means of the damping coefficient α. Finally we note that if we
discretize (1.15) with Newton-Côtes quadrature the option price can be efficiently
evaluated by means of the FFT, yielding option prices over a whole range of strike
prices.

1.3.2 Bermudan Options

Define the set of exercise dates as T = {t1, . . . , tM} and 0 = t0 ≤ t1. For ease of
exposure, assume the exercise dates are equally spaced, so that tm+1− tm = ∆t. The
best known examples of options with early exercise are American and Bermudan
options. American options can be exercised at any time prior to the option’s expiry,
whereas Bermudan options can only be exercised at certain dates in the future.
If the option is exercised at some time t ∈ T the holder of the option obtains the
exercise payoff g(t, S(t)). The Bermudan option price can then be found via backward
induction as 

v(tM , S(tM )) = g(tM , S(tM ))
c(tm, S(tm)) = e−r∆tEtm [v(tm+1, S(tm+1))]

(m = M − 1, . . . , 1),
v(tm, S(tm)) = max{c(tm, S(tm)), g(tm, S(tm))},
v(t0, S(t0)) = c(t0, S(t0))

(1.16)

with c being the continuation value of the option and v the value of the option
immediately before the exercise opportunity.

The dynamic programming problem in (1.16) is a successive application of the
risk-neutral valuation formula, and we can write the continuation value as

c(tm, S(tm)) = e−r∆t
∫ ∞
−∞

v(tm+1, y)f(y|S(tm))dy, (1.17)

where f(y|S(tm)) represents the probability density describing the transition from
S(tm) at tm to y at tm+1.

7



8 Chapter 1. Introduction

Based on (1.16) and (1.17) the QUAD method was introduced in [6]. The method
requires the transition density to be known in closed-form, which is the case in e.g.
the GBM model and Merton’s jump-diffusion model. This requirement is relaxed
in [61], where the QUAD-FFT method is introduced. The underlying idea is that the
transition density can be recovered by inverting the characteristic function, so that
the QUAD method can be used for a wider range of models. As such the QUAD-FFT
method effectively combines the QUAD method with the early transform methods.
The overall complexity of both methods is O(MN2) for an M -times exercisable
Bermudan option with N grid points used to discretise the price of the underlying
asset.

In a presentation by Reiner [64], it was recognized that for the GBM model
the risk-neutral valuation formula in (1.17) can be seen as a convolution or cross-
correlation of the continuation value with the transition density. As convolutions
can be handled very efficiently by means of the FFT, an overall complexity of
O(MN log2N) can be achieved. By working forward instead of backward in time a
number of discrete path-dependent options can also be treated, such as lookbacks,
barriers, Asian options and cliquets. Building on Reiner’s idea, Broadie and Ya-
mamoto [15] reduced the complexity to O(MN) for the GBM model by combining
the double-exponential integration formula and the Fast Gauss Transform. Their
technique is applicable to any model in which the transition density can be writ-
ten as a weighted sum of Gaussian densities, which is the case in e.g. Merton’s
jump-diffusion model.

As one of the defining properties of a Lévy process is that its increments are
independent of each other, the insight of Reiner has a much wider applicability than
only to the GBM model. This is especially appealing since the usage of Lévy processes
in finance has become more established nowadays.

By combining Reiner’s ideas with the work of Carr and Madan, the Convolution
method, the CONV method for short was introduced [54].The difference with the
Carr–Madan approach is that the transform is with respect to the log-spot price in
the CONV method instead of the log-strike price (something which [52] and [63] also
consider). It avoids a “density-recovery step” as in the QUAD-FFT method, since it
is based solely on the price process’s characteristic function. An overal computational
complexity is therefore O(MN log2N) for an M -times exercisable Bermudan option.

1.3.3 American Options

For the valuation of American options by integration-based methods, there are basi-
cally two approaches. One way is to approximate an American option by a Bermudan
option with many exercise opportunities, the other is to use Richardson extrapolation
on a series of Bermudan options with an increasing number of exercise opportunities.
This method has been described in detail in [21], though the approach in finance
dates back to [37]. The QUAD method in [6] also uses the same technique to price
American options. We restrict ourselves to the essentials here. Let v(∆t) be the
price of a Bermudan option with a maturity of T years where the exercise dates are
∆t years apart. It is assumed that v(∆t) can be expanded as

v(∆t) = v(0) +

∞∑
i=1

ai(∆t)
γi , (1.18)

8



1.4. The CONV Method 9

with 0 < γi < γi+1. v(0) is the price of the American option. Classical extrapolation
procedures assume that the exponents γi are known, which means that we can use
n+ 1 Bermudan prices with varying ∆t in order to eliminate n of the leading order
terms in (1.18). The only theoretical paper considering an expansion of the Bermudan
option price in terms of ∆t we are aware of is of Howison [43], who shows that γ1 = 1
for the GBM model. Numerical tests indicate that the assumption γi = 1 produces
satisfactory results also for more general Lévy models.

1.4 The CONV Method

1.4.1 Derivation of the CONV method

The main premise of the CONV method is that the conditional probability density
f(y|x) in (1.17) only depends on x and y via their difference, i.e.

f(y|x) = f(y − x). (1.19)

Note that x and y do not have to represent the asset price directly, they could be
monotone functions of the asset price. The assumption made in (1.19) therefore
certainly holds when the asset price is modeled as a monotone function of a Lévy
process, since one of the defining properties of a Lévy process is that its increments
are independent of each other. For the time being, let x and y in (1.19) represent the
log-spot price on two adjacent time points, tm and tm+1, respectively. By including
(1.19) in (1.17) and changing variables z = y − x the continuation value can be
expressed as

c(tm, x) = e−r∆t
∫ ∞
−∞

v(tm+1, x+ z)f(z)dz, (1.20)

which is a cross-correlation3 of the option value at time tm+1 and the density f(z),
or equivalently, a convolution of v(tm+1) and the conjugate of f(z). For many expo-
nential Lévy models we either do not have a closed-form expression for the density
(e.g. the CGMY/KoBoL model of [12] and [19] and many Exponential Affine Jump
Diffusion (EAJD) models), or if we have, it involves one or more special functions
(e.g. the VG model). In contrast, the characteristic function of the log-spot price can
typically be obtained in closed-form or, in case of the EAJD models, via the solution
of a system of ordinary differential equations (ODEs).

Therefore, the Fourier transform of (1.20) is taken. The insight that the contin-
uation value can be seen as a convolution is useful here, as the Fourier transform
of a convolution is the product of the Fourier transforms of the two functions be-
ing convolved. In the remainder the following definitions for the continuous Fourier

3The cross-correlation of two functions f(t) and g(t), denoted f ? g, is defined by

f ? g ≡ f̄(−t) ∗ g(t) =

∫ ∞
−∞

f(τ)g(t+ τ)dτ,

where ‘∗’ denotes the convolution operator.

9



10 Chapter 1. Introduction

transform and its inverse are employed:

ĥ(u) := F{h(t)}(u) =

∫ ∞
−∞

eiuth(t)dt, (1.21)

h(t) := F−1{ĥ(u)}(t) =
1

2π

∫ ∞
−∞

e−iutĥ(u)du. (1.22)

If we dampen the continuation value (1.20) by a factor exp (αx) and subsequently
take its Fourier transform, we obtain

er∆tF{cα(tm, x)}(u) =

∫ ∞
−∞

eiuxeαx
∫ ∞
−∞

v(tm+1, x+ z)f(z)dzdx (1.23)

=

∫ ∞
−∞

∫ ∞
−∞

eiu(x+z)v(tm+1, x+ z)e−iz(u−iα)f(z)dzdx.

where in the first step we used the risk-neutral valuation formula from (1.20). We
introduced the convention that (·)α indicates damping by the damping factor, i.e.,
cα(tm, x) = eαxc(tm, x) and vα(tm, x+ z) = eα(x+z)v(tm, x+ z). Changing the order
of integration and remembering that x = y − z, we obtain

er∆tF{cα(tm, x)}(u) =

∫ ∞
−∞

∫ ∞
−∞

eiuyvα(tm+1, y)dy e−i(u−iα)zf(z)dz

=

∫ ∞
−∞

eiuyvα(tm+1, y)dy

∫ ∞
−∞

e−i(u−iα)zf(z)dz

= F{eαyv(tm+1, y)}(u) φ(−(u− iα)). (1.24)

In the last step we used the fact that the complex-valued Fourier transform of the
density is the extended characteristic function

φ (x+ yi) =

∫ ∞
−∞

ei(x+yi)zf(z)dz, (1.25)

which is well-defined when φ(yi) < ∞, as |φ(x + yi)| ≤ |φ(yi)|. As such (1.24) puts
a condition on the damping coefficient α, because φ(αi) must be finite.

The Fourier transform of the damped continuation value can thus be calculated
as the product of two functions, one of which, the extended characteristic function,
is readily available for exponential Lévy models. We now recover the continuation
value by taking the inverse Fourier transform of the right-hand side of (1.24), and
calculate v(tm) as the maximum of the continuation and the exercise value at tm.
We repeat (1.16) recursively until we have obtained the option price at time t0. In
pseudo-code the CONV algorithm is presented as follows:

Algorithm 1.4.1 (The CONV algorithm for Bermudan options).

v(tM , x) = g(tM , x) for all x
g(t0, x) = 0 for all x
For m = M − 1 to 0

Dampen v(tm+1, x) with exp(αx) and take its Fourier transform
Calculate the right-hand side of (1.24)
Calculate c(tm, x) by applying Fourier inversion to (1.24) and undamping
v(tm, x) = max {g(tm, x), c(tm, x)}

10



1.4. The CONV Method 11

The essence of the CONV method is the calculation of a convolution4:

cα(x) =
1

2π

∫ ∞
−∞

e−iuxv̂α(u)φ (−(u− iα)) du, (1.26)

where v̂α(u) is the Fourier transform of vα:

v̂α(u) =

∫ ∞
−∞

eiuyvα(y)dy. (1.27)

Both integrals in (1.26) and (1.27) are approximated by a discrete sum, so that the
FFT algorithm can be employed for a faster computation. This necessitates the use
of uniform grids for u, x and y:

uj = u0 + j∆u, xj = x0 + j∆x, yj = y0 + j∆y, (1.28)

where j = 0, . . . , N − 1. Though they may be centered around a different point, the
x- and y-grids have the same mesh size: ∆x = ∆y. Further, the Nyquist relation
must be satisfied, i.e.,

∆u ·∆y =
2π

N
. (1.29)

Details about the exact location of x0 and y0 are given in[54]. Inserting (1.27)
into (1.26), and approximating (1.27) and (1.26) with the composite Trapezoidal
rule yields:

cα(xp) ≈
∆u∆y

2π

N−1∑
j=0

e−iujxpφ (−(uj − iα))

N−1∑
n=0

wne
iujynv(yn), (1.30)

for p = 0, . . . , N − 1. Inserting the definitions of the grids into (1.30) yields:

cα(xp) ≈
e−iu0(x0+p∆y)

2π
∆u

N−1∑
j=0

e−ijp2π/Neij(y0−x0)∆uφ (−(uj − iα)) v̂α(uj),

(1.31)

where the Fourier transform of vα is approximated by:

v̂α(uj) ≈ eiu0y0∆y

N−1∑
n=0

eijn2π/Neinu0∆ywnvα(yn). (1.32)

Let us now define the DFT and its inverse of a sequence xp, p = 0, . . . , N − 1, as:

Dj{xn} :=

N−1∑
n=0

eijn2π/Nxn, D−1
n {xj} =

1

N

N−1∑
j=0

e−ijn2π/Nxj . (1.33)

Set u0 = −N/2∆u and recall einu0∆y = (−1)n. This finally leads us to write (1.31), (1.32)
as:

cα(xp) ≈ eiu0(y0−x0)(−1)pD−1
p {eij(y0−x0)∆uφ (−(uj − iα))Dj{(−1)nwnvα(yn)}}.

(1.34)
As a result, in the CONV algorithm the FFT algorithm is used twice.

The method has also been generalized to multi-dimensional cases like pricing
basket options.

4For notational convenience we have dropped the discounting term out of the equation.
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12 Chapter 1. Introduction

1.4.2 Numerical results

Herewith we demonstrate the performance of the CONV method by a few numerical
tests. The parameter sets for the experiments are summarized in Table 1.3, where
we included one VG test and two CGMY tests (one with Y < 1 and the other with
Y > 1, as the latter is considered a hard test case when numerically solving the
corresponding PIDE). The reference results are calculated with the CONV method
using 220 grid points.

Table 1.3: Parameter sets for the numerical experiments in this sectio

T1-VG: S0 = 100, r = 0.1, q = 0, σ = 0.12,

θ = −0.14, ν = 0.2;

T2-CGMY: S0 = 1, r = 0.1, q = 0, σ = 0,

C = 1, G = 5, M = 5, Y = 0.5;

T3-CGMY: S0 = 90, r = 0.06, q = 0, σ = 0

C = 0.42, G = 4.37, M = 191.2, Y = 1.0102;

As shown in Table 1.4, error convergence for a Bermudan option is quadratic
and the computational complexity is almost linear. Within fraction of a second, the
accuracy is up to the 6th decimal place.

Table 1.4: CPU time, error and convergence rate pricing a 10-times exercisable
Bermudan put under T1-VG; K = 110, T = 1 with reference value Vref (0, S0) =
9.040646119.

n (N = 2n) time(sec) error error(n)/ error(n+ 1)

8 0.007 1.09e-2 -

9 0.008 2.50e-3 4.4

10 0.010 6.51e-4 3.8

11 0.016 1.65e-4 4.0

12 0.026 4.15e-5 4.0

13 0.090 1.99e-06 4.0

The CONV method can also rapidly price American options with reasonable ac-
curacy. The efficiency can be superior to PIDE methods in valuing American options
especially under sophisticated Lévy dynamics such as VG and CGMY. For example,
as demonstrated in Table 1.5, using the CONV method with 2-times Richardson ex-
trapolation on 512-, 256- and 128-times exercisable Bermudans, one obtains Amer-
ican option prices that are accurate up to 5 decimal places, within half a second.
Both CGMY tests stem from the PIDE literature, where reference values for the
same American puts were reported as 0.112171 for T2-CGMY [1], and 9.2254842 for
T3-CGMY [73].

The results indicate that the CONV method is able to price American options
under a wide variety of Lévy processes. A reasonable accuracy can be obtained
rapidly.

12



1.5. Organization of This Thesis 13

Table 1.5: CPU time and errors of the CONV method for American puts under VG
and CGMY

T1-VG T2-CGMY T3-CGMY

K = 110, T = 1 K = 1, T = 1 K = 98, T = 0.25

(N = 2n) Vref (0, S(0)) = 10.0000 Vref (0, S(0) = 0.112152 Vref (0, S(0) = 9.225439

n time(sec) error time(sec) error time(sec) error

7 0.073 -3.49e-1 0.062 -6.35e-3 0.074 -1.89e-1

8 0.096 4.13e-2 0.097 1.38e-4 0.093 2.93e-2

9 0.115 1.37e-2 0.116 1.16e-4 0.118 -1.30e-3

10 0.157 -6.17e-3 0.160 1.10e-5 0.162 -3.97e-4

11 0.270 6.03e-3 0.275 1.18e-5 0.278 2.89e-4

12 0.466 1.31e-3 0.482 -2.35e-6 0.483 9.59e-5

In summary, the overall error convergence is quadratic due to the usage of the
Trapezoidal rule, and the computational complexity is O(MN log2(N)).

In the rest of this thesis, we will show that the COS method improves the er-
ror convergence to exponential for many cases while O(MN log2(N)) complexity
remains.

1.5 Organization of This Thesis

The remainder of this thesis is as follows.

In Chapter 2 the COS method for recovering probability density functions from
characteristic functions and for valuing European options is developed. The key
insight lies in the close relation between the characteristic function with the series
coefficients of the Fourier-cosine expansion of the density function. In most cases, the
convergence rate of the COS method is exponential and the computational complexity
is linear. Its range of application covers underlying asset processes for which the
characteristic function is known and various types of option contracts. This chapter
contains essentially the contents of the paper [32].

In Chapter 3 the method is generalized for early-exercise options and discretely-
monitored barrier options under Lévy asset price models. The error convergence
is exponential for processes characterized by smooth (C∞[a, b] ∈ R) transitional
probability density functions. The computational complexity is O((M − 1)N logN)
with N a (small) number of terms from the series expansion, and M , the number
of early-exercise/monitoring dates. This chapter contains essentially the contents of
the paper [33].

In Chapter 4 the COS method is generalized to calculating survival/default prob-
abilities and pricing Credit Default Swaps under advanced jump dynamics. We have
chosen to use the firm’s value approach, modeling the firm’s value by an exponen-
tial Lévy model. For this approach the default event is defined as a first passage of
a barrier and it is therefore possible to exploit a numerical technique developed to
price barrier options under Lévy models to calculate the default probabilities. This
chapter contains essentially the contents of the paper [31].

13



14 Chapter 1. Introduction

In Chapter 5 the COS method is combined with a quadrature rule to solve the
two-dimentional pricing problem under Heston’s stochastic volatility model. Error
analysis and experiments demonstrate fast error convergence along both dimensions,
which, together with lean computational complexity, is verified by numerical experi-
ments. This chapter contains essentially the contents of the paper [34].

In Chapter 6 conclusions are presented, as well as an outlook of topics for future
research.

14



Chapter 2

Density Recovery and
European Option Valuation

2.1 Introduction

In this chapter, we derive the highly efficient COS method for recovering density
functions as well as for pricing European options. The error convergence is expo-
nential for many processes and the computational complexity is linear. This chapter
contains essentially the contents of the paper [32].

Other highly efficient techniques for pricing plain vanilla options include the fast
Gauss transform [15] and the double-exponential transformation [60, 75]. The COS
method can, however, handle more general dynamics for the underlying compared
to these methods. In fact, we can price a vector of strike prices simultaneously.
Furthermore, the COS method offers a highly efficient way to recover the density from
the characteristic function, which is of importance for several financial applications,
like calibration, the computation of forward starting options, or static hedging.

This chapter is organized as follows. In Section 2.2, we introduce the Fourier-
cosine expansion for solving inverse Fourier integrals. Based on this, we derive, in
Section 2.3, the formulas for pricing European options and the Greeks. We focus on
the Lévy and the Heston processes for the underlying. An error analysis is presented
in Section 2.4, and numerical results are given in Section 2.5.

2.2 Fourier Integrals and Cosine Series

The point of departure for pricing European options with numerical integration tech-
niques is the risk-neutral valuation formula:

v(x, t0) = e−r∆tEQ [v(y, T )|x] = e−r∆t
∫
R
v(y, T )f(y|x)dy, (2.1)

where v denotes the option value, ∆t is the difference between the maturity, T , and
the initial date, t0, and EQ[·] is the expectation operator under risk-neutral measure
Q. x and y are state variables at times t0 and T , respectively; f(y|x) is the probability
density of y given x, and r is the risk-neutral interest rate.
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As indicated in Section 1.3, in the Carr–Madan approach [20] and its variants,
the Fourier transform of a version of valuation formula (2.1) is taken with respect
to the log-strike price. Damping of the payoff is then necessary as a call option is
not L1-integrable with respect to the logarithm of the strike price. The method’s
accuracy depends on the correct value of the damping parameter. A closed-form
expression for the resulting integral is available in Fourier space. To return to the
log-price domain, quadrature rules have to be applied to the inverse Fourier integral
for which the application of the FFT algorithm is appropriate.

The CONV method [54] can also be efficiently used for European options, and
numerical experiments in [54] have shown that the accuracy is not influenced by
the choice of the damping parameter. In the derivation of the CONV method (as
presented in Chapter 1) the risk-neutral valuation formula is rewritten as a cross-
correlation between the option value and the transition density. The cross-correlation
is handled numerically by replacing the option value by its Fourier series expansion so
that the cross-correlation is transformed into an inner product of series coefficients.
The coefficients are recovered by applying quadrature rules, combined with the FFT
algorithm. Error analysis and experimental results have demonstrated second order
accuracy and O(N log2(N)) computational complexity for European options.

These numerical integration methods have to numerically solve forward or inverse1

Fourier integrals. The density and its characteristic function, f(x) and φ(ω), form
an example of a Fourier pair,

φ(ω) =

∫
R
eixωf(x)dx, (2.2)

f(x) =
1

2π

∫
R
e−iωxφ(ω)dω. (2.3)

Existing numerical integration methods in finance typically compute the Fourier in-
tegrals by applying equally spaced numerical integration rules and then employing
the FFT algorithm by imposing the Nyquist relation to the grid sizes in the x- and
ω-domains,

∆x ·∆ω ≡ 2π/N,

with N representing the number of grid points. The grid values can then be obtained
in O(N log2N) operations. However, there are disadvantages: The error convergence
of equally spaced integration rules, except for the Clenshaw–Curtis rule, is not very
high; N has to be a power of two; finally, the relation imposed on the grid sizes
prevents one from using coarse grids in both domains.

Remark 2.2.1. In principle we could use the fractional FFT algorithm (FrFT),
which does not require the Nyquist relation to be satisfied, as in [22]. However,
numerical tests for several options indicated that this advantage of the FrFT did not
outweigh the speed of the FFT in our applications.

Remark 2.2.2. Alternative methods for the forward Fourier integral, based on re-
placing f(x) in (2.2) by its Chebyshev [62] or Legendre [29] polynomial expansion,
can achieve a high accuracy with only a limited number of terms in the expansion.
However, the resulting computational complexity is typically at least quadratic.

1Here we use the convention of the Fourier transform definition often seen in the financial engi-
neering literature. Other conventions can also be used, and modifications to the methods are then
straightforward.
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2.2.1 Inverse Fourier integral via cosine expansion

In this section, as a first step, we present a different methodology for solving, in
particular, the inverse Fourier integral in (2.3). The main idea is to reconstruct
the whole integral—not just the integrand—from its Fourier-cosine series expansion
(also called “cosine expansion”), extracting the series coefficients directly from the
integrand. Fourier-cosine series expansions usually give an optimal approximation of
functions with a finite support2 [13]. In fact, the cosine expansion of f(x) in x equals
the Chebyshev series expansion of f(cos−1(t)) in t.

For a function supported on [0, π], the cosine expansion reads

f(θ) =

∞∑′

k=0

Ak · cos (kθ) with Ak =
2

π

∫ π

0

f(θ) cos(kθ)dθ, (2.4)

where
∑′

indicates that the first term in the summation is weighted by one-half. For
functions supported on any other finite interval, say [a, b] ∈ R, the Fourier-cosine
series expansion can easily be obtained via a change of variables:

θ :=
x− a
b− a

π, x =
b− a
π

θ + a.

It then reads

f(x) =

∞∑′

k=0

Ak · cos

(
kπ
x− a
b− a

)
, (2.5)

with

Ak =
2

b− a

∫ b

a

f(x) cos

(
kπ
x− a
b− a

)
dx. (2.6)

Since any real function has a cosine expansion when it is finitely supported, the
derivation starts with a truncation of the infinite integration range in (2.3). Due to
the conditions for the existence of a Fourier transform, the integrands in (2.3) have
to decay to zero at ±∞ and we can truncate the integration range in a proper way
without losing accuracy.

Suppose [a, b] ∈ R is chosen such that the truncated integral approximates the
infinite counterpart very well, i.e.,

φ1(ω) :=

∫ b

a

eiωxf(x)dx ≈
∫
R
eiωxf(x)dx = φ(ω). (2.7)

By subscripts for variables, like i in φi, we denote subsequent numerical approxima-
tions (not to be confused with subscripted series coefficients, Ak and Fk).

Comparing (2.7) with the cosine series coefficients of f(x) on [a, b] in (2.6), we
find that

Ak ≡
2

b− a
Re

{
φ1

(
kπ

b− a

)
· exp

(
−i kaπ
b− a

)}
, (2.8)

where Re{·} denotes taking the real part of the argument. It then follows from (2.7)
that Ak ≈ Fk with

2The usual Fourier series expansion is actually superior when a function is periodic.
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18 Chapter 2. Density Recovery and European Option Valuation

Fk ≡
2

b− a
Re

{
φ

(
kπ

b− a

)
· exp

(
−i kaπ
b− a

)}
. (2.9)

We now replace Ak by Fk in the series expansion of f(x) on [a, b], i.e.,

f1(x) =

∞∑′

k=0

Fk cos

(
kπ
x− a
b− a

)
, (2.10)

and truncate the series summation such that

f2(x) =

N−1∑′

k=0

Fk cos

(
kπ
x− a
b− a

)
. (2.11)

The resulting error in f2(x) consists of two parts: a series truncation error from
(2.10) to (2.11) and an error originating from the approximation of Ak by Fk. An
error analysis that takes these different approximations into account is presented in
Section 2.4.

Since the cosine series expansion of entire functions (i.e., functions without any
singularities3 anywhere in the complex plane, except at ∞) exhibits an exponential
convergence [13], we can expect (2.11) to give highly accurate approximations to
functions that have no singularities on [a, b], with a small N .

To demonstrate this, here we evaluate (2.11), where

f(x) =
1√
2π
e−

1
2x

2

,

and determine the accuracy for different values of N . We choose [a, b] = [−10, 10],
and the maximum absolute error is measured at x = {−5,−4, . . . , 4, 5}.

Table 2.1 indicates that a very small error is obtained with only a small number
of terms, N , in the expansion. From the differences in the CPU times in the table,
defined as “time(N)-time(N/2),” we can observe a linear complexity. This technique
is thus highly efficient for the recovery of the density function; see also Section 2.5.

Table 2.1: Maximum error when recovering f(x) from φ(ω) by Fourier-cosine expan-
sion.

N 4 8 16 32 64
Error 0.25 0.11 0.0072 4.04e-07 3.33e-16

CPU time (msec.) 0.046 0.061 0.088 0.16 0.29
Diff. in CPU (msec.) – 0.015 0.027 0.072 0.13

2.3 Pricing European Options

In this section, we derive the COS formula for European-style options by replacing
the density function by its Fourier-cosine series. We make use of the fact that a
density function tends to be smooth and therefore only a few terms in the expansion
may already give a good approximation.

3By “singularity” we mean [13] poles, fractional powers, logarithms, other branch points, and
discontinuities in a function or in any of its derivatives.
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2.3. Pricing European Options 19

Since the density rapidly decays to zero as y → ±∞ in (2.1), we truncate the
infinite integration range without losing significant accuracy to [a, b] ⊂ R, and we
obtain approximation v1:

v1(x, t0) = e−r∆t
∫ b

a

v(y, T )f(y|x)dy. (2.12)

We will give insight into the choice of [a, b] in Section 2.5.
In the second step, since f(y|x) is usually not known whereas the characteristic

function is, we replace the density by its cosine expansion in y,

f(y|x) =

+∞∑′

k=0

Ak(x) cos

(
kπ
y − a
b− a

)
(2.13)

with

Ak(x) :=
2

b− a

∫ b

a

f(y|x) cos

(
kπ
y − a
b− a

)
dy, (2.14)

so that

v1(x, t0) = e−r∆t
∫ b

a

v(y, T )

+∞∑′

k=0

Ak(x) cos

(
kπ
y − a
b− a

)
dy. (2.15)

We interchange the summation and integration, and insert the definition

Vk :=
2

b− a

∫ b

a

v(y, T ) cos

(
kπ
y − a
b− a

)
dy, (2.16)

resulting in

v1(x, t0) =
1

2
(b− a)e−r∆t ·

+∞∑′

k=0

Ak(x)Vk. (2.17)

Note that the Vk are the cosine series coefficients of payoff function v(y, T ) in y.
Thus, from (2.12) to (2.17) we have transformed the product of two real functions,
f(y|x) and v(y, T ), into that of their Fourier-cosine series coefficients.

Due to the rapid decay rate of these coefficients, we further truncate the series
summation to obtain approximation v2:

v2(x, t0) =
1

2
(b− a)e−r∆t ·

N−1∑′

k=0

Ak(x)Vk. (2.18)

Similar to Section 2.2, coefficients Ak(x) defined in (2.14) can be approximated
by Fk(x) as defined in (2.9). Replacing Ak(x) in (2.18) by Fk(x), we obtain

v(x, t0) ≈ v3(x, t0) = e−r∆t
N−1∑′

k=0

Re

{
φ

(
kπ

b− a
;x

)
e−ikπ

a
b−a

}
Vk, (2.19)

with characteristic function φ. This is the COS formula for general underlying pro-
cesses. We will show that the Vk can be obtained analytically for plain vanilla and
digital options, and that (2.19) can be simplified for the Lévy and the Heston models,
so that many strikes can be handled simultaneously.

The key step in obtaining this semianalytic formula (2.19) for option pricing is the
replacement of the probability density function by its Fourier-cosine series expansion.
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20 Chapter 2. Density Recovery and European Option Valuation

The advantage is that the product of the density and the payoff is transformed into
a linear combination of products of cosine basis functions and a (payoff) function
which is known analytically.

Important for convergence is therefore the convergence of the density function’s
cosine series, not the cosine series of the payoff, which appears only because we
interchanged the summation and the integration in (2.17).

Heuristically speaking, we decompose the probability density into a weighted
sum of many “density-like basis functions” with which option values can be obtained
analytically. What matters for the accuracy and the computational speed is how well
this probability density function is approximated.

2.3.1 Coefficients Vk for plain vanilla options

Before we can use (2.19) for pricing options, the payoff series coefficients, Vk, have
to be recovered. We can find analytic solutions for Vk for several contracts.

As we assume here that the characteristic function of the log-asset price is known,
we represent the payoff as a function of the log-asset price. Let us denote the log-asset
prices by

x := ln(S0/K) and y := ln(ST /K),

with St the underlying price at time t and K the strike price. The payoff for European
options, in log-asset price, reads

v(y, T ) ≡ [% ·K(ey − 1)]+ with % =

{
1 for a call,
−1 for a put.

Before deriving Vk from its definition in (2.16), we need two mathematical results.

Result 2.3.1. The cosine series coefficients, χk, of g(y) = ey on [c, d] ⊂ [a, b],

χk(c, d) :=

∫ d

c

ey cos

(
kπ
y − a
b− a

)
dy, (2.20)

and the cosine series coefficients, ψk, of g(y) = 1 on [c, d] ⊂ [a, b],

ψk(c, d) :=

∫ d

c

cos

(
kπ
y − a
b− a

)
dy, (2.21)

are known analytically.

Proof. Basic calculus shows that

χk(c, d) :=
1

1 +
(
kπ
b−a

)2

[
cos

(
kπ
d− a
b− a

)
ed − cos

(
kπ
c− a
b− a

)
ec

+
kπ

b− a
sin

(
kπ
d− a
b− a

)
ed − kπ

b− a
sin

(
kπ
c− a
b− a

)
ec
]

(2.22)

and

ψk(c, d) :=


[
sin
(
kπ d−ab−a

)
− sin

(
kπ c−ab−a

)]
b−a
kπ , k 6= 0,

(d− c), k = 0.

(2.23)
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2.3. Pricing European Options 21

Focusing, for example, on a call option, we obtain

V callk =
2

b− a

∫ b

0

K(ey − 1) cos

(
kπ
y − a
b− a

)
dy =

2

b− a
K (χk(0, b)− ψk(0, b)) ,

(2.24)
where χk and ψk are given by (2.22) and (2.23), respectively. Similarly, for a vanilla
put, we find

V putk =
2

b− a
K (−χk(a, 0) + ψk(a, 0)) . (2.25)

Analytic expressions of Vk can also be obtained for some exotic options.

2.3.2 Coefficients Vk for digital and gap options

Whereas for European products (2.19) always applies, the coefficients Vk are different
for different payoff functions. With analytic expressions for these coefficients, the
convergence of the COS does not depend on the continuity of the payoff.

Digital options are popular in the financial markets for hedging and speculation.
They are also important to financial engineers as building blocks for constructing
more complex option products. Here we consider the payoff of a cash-or-nothing call
option as an example, which is 0 if ST ≤ K and K if ST > K. For this contract the
cash-or-nothing call coefficients, V cashk , can be obtained analytically:

V cashk =
2

b− a
K

∫ b

0

cos

(
kπ
y − a
b− a

)
dy =

2

b− a
Kψk(0, b).

We also give the formula for a so-called gap call option [40], whose payoff reads

v(y, T ) = [K(ey − 1)+ − rb] · 1{ST<H} + rb,

where 1Ψ equals 0 if Ψ is empty and 1 otherwise, and rb is a so-called rebate and
is paid if the barrier is hit. The time-dependent version of this payoff represents a
barrier option, which will be discussed in the follow-up chapter. The integral that
defines V gapk for such payoff functions can be split into two parts:

V gapk =
2

b− a

∫ h

0

K(ey − 1) cos

(
kπ
y − a
b− a

)
dy +

2

b− a

∫ b

h

rb · cos

(
kπ
y − a
b− a

)
dy,

where h := ln(H/K). It then follows that

V gapk =
2

b− a
K (χk(0, h)− ψk(0, h)) +

2

b− a
rb · ψk(h, b). (2.26)

For those contracts, however, for which the Vk can be obtained only numerically, the
error convergence is dominated by the numerical rules employed.

2.3.3 Formula for exponential Lévy processes and the Heston
model

It is worth mentioning that (2.19) is greatly simplified for the Lévy and the Heston
models, so that options for many strike prices can be computed simultaneously. Here
we use boldfaced values to distinguish vectors.
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22 Chapter 2. Density Recovery and European Option Valuation

For Lévy processes, whose characteristic functions can be represented by

φ(ω; x) = ϕlevy(ω) · eiωx with ϕlevy(ω) := φ(ω; 0), (2.27)

the pricing formula is simplified to

v(x, t0) ≈ e−r∆t
N−1∑′

k=0

Re

{
ϕlevy

(
kπ

b− a

)
eikπ

x−a
b−a

}
Vk. (2.28)

Recalling the Vk-formulas for vanilla European options in (2.24) and (2.25), we can
now present them as a vector multiplied by a scalar,

Vk = UkK,

where

Uk =

{
2
b−a (χk(0, b)− ψk(0, b)) for a call,

2
b−a (−χk(a, 0) + ψk(a, 0)) for a put.

(2.29)

As a result, the pricing formula reads4

v(x, t0) ≈ Ke−r∆t · Re


N−1∑′

k=0

ϕlevy

(
kπ

b− a

)
Uk · eikπ

x−a
b−a

 , (2.30)

where the summation can be written as a matrix-vector product if K (and therefore
x) is a vector. In the section with numerical results, we will show that with very
small N we can achieve highly accurate results.

Remark 2.3.1. Equation (2.30) is an expression with independent variable x. It
is therefore possible to obtain the option prices for different strikes in one single
numerical experiment, by choosing a K-vector as the input vector (the same is true
for the Carr–Madan formula).

The characteristic functions for some important exponential Lévy processes have
been given in Table 1.1. Next, we elaborate a bit more on the Heston model.

For the Heston model, the COS pricing equation is also simplified, since

φ(ω; x, u0) = ϕhes(ω;u0) · eiωx, (2.31)

with u0 the volatility of the underlying at the initial time and ϕhes(ω;u0) := φ(ω; 0, u0).
We then find

v(x, t0, u0) ≈ Ke−r∆t · Re


N−1∑′

k=0

ϕhes

(
kπ

b− a
;u0

)
Uk · eikπ

x−a
b−a

 . (2.32)

The characteristic function of the log-asset price, ϕhes(ω;u0), reads

ϕhes(ω;u0) = exp

(
iωµ∆t+

u0

η2

(
1− e−D∆t

1−Ge−D∆t

)
(λ− iρηω −D)

)
· exp

(
λν̄

η2

(
∆t(λ− iρηω −D)− 2 log

(
1−Ge−D∆t

1−G

)))
,

4Although the Uk values are real, we keep them in the curly brackets. This allows us to inter-
change Re {·} and

∑′, and it simplifies the implementation in MATLAB.
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2.4. Error Analysis 23

with
D =

√
(λ− iρηω)2 + (ω2 + iω)η2 and G =

λ− iρηω −D
λ− iρηω +D

.

This characteristic function is uniquely specified, since we take
√

(x+ yi) such that
its real part is nonnegative, and we restrict the complex logarithm to its principal
branch. In this case the resulting characteristic function is the correct one for all
complex ω in the strip of analycity of the characteristic function, as proven in [56].

Remark 2.3.2 (the Greeks). Series expansions for the Greeks, e.g., ∆ and Γ, can
be derived similarly. Since

∆ =
∂v

∂S0
=
∂v

∂x

∂x

∂S0
=

1

S0

∂v

∂x
, Γ =

∂2v

∂S2
0

=
1

S2
0

(
− ∂v

∂S0
+
∂2v

∂S2
0

)
,

it then follows that

∆ ≈ e−r∆t
N−1∑′

k=0

Re

{
ϕ

(
kπ

b− a
;u0

)
eikπ

x−a
b−a

ikπ

b− a

}
Vk
S0

(2.33)

and

Γ ≈ e−r∆t
N−1∑′

k=0

Re

{
ϕ

(
kπ

b− a
;u0

)
eikπ

x−a
b−a

[
− ikπ

b− a
+

(
ikπ

b− a

)2
]}

Vk
S2

0

. (2.34)

It is also easy to obtain the formula for Vega, ∂v
∂u0

, for example, for the Heston
model (2.32), as u0 appears only in the coefficients:

∂v(x, t0, u0)

∂u0
≈ e−r∆t

N−1∑′

k=0

Re

∂ϕhes
(
kπ
b−a ;u0

)
∂u0

eikπ
x−a
b−a

Vk. (2.35)

2.4 Error Analysis

In the derivation of the COS formula there are three steps that introduce errors:
the truncation of the integration range in the risk-neutral valuation formula, the
substitution of the density by its cosine series expansion on the truncated range, and
the substitution of the series coefficients by the characteristic function approximation.
Therefore, the overall error consists of three parts:

1. The integration range truncation error:

ε1 := v(x, t0)− v1(x, t0) =

∫
R\[a,b]

v(y, T )f(y|x)dy. (2.36)

2. The series truncation error on [a, b]:

ε2 := v1(x, t0)− v2(x, t0) =
1

2
(b− a)e−r∆t

+∞∑
k=N

Ak(x) · Vk, (2.37)

where Ak(x) and Vk are defined in (2.14) and (2.16), respectively.
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24 Chapter 2. Density Recovery and European Option Valuation

3. The error related to approximating Ak(x) by Fk(x) in (2.9):

ε3 := v3(x, t0)− v2(x, t0)

= e−r∆t
N−1∑′

k=0

Re

{∫
R\[a,b]

eikπ
y−a
b−a f(y|x)dy

}
Vk. (2.38)

We do not have to take any error in the coefficients Vk into account here, as we have a
closed-form solution, at least for the plain vanilla options considered in this chapter.

The key to bound the errors lies in the decay rate of the cosine series coefficients.
The convergence rate of the Fourier-cosine series depends on the properties of the
functions on the expansion interval. We first give the definitions classifying the rate
of convergence of the series for different classes of functions, taken from [13].

Definition 2.4.1 (Algebraic index of convergence). The algebraic index of conver-
gence n(≥ 0) is the largest number for which

lim
k→∞

|Ak| kn <∞, k � 1,

where the Ak are the coefficients of the series. An alternative definition is that if the
coefficients of a series, Ak, decay asymptotically as

Ak ∼ O(1/kn), k � 1,

then n is the algebraic index of convergence.

Definition 2.4.2 (Exponential index of convergence). If the algebraic index of con-
vergence n(≥ 0) is unbounded—in other words, if the coefficients, Ak, decrease faster
than 1/kn for any finite n—the series is said to have exponential convergence. Alter-
natively, if

Ak ∼ O(exp(−γkr)), k � 1,

with γ, the constant, being the “asymptotic rate of convergence,” for some r > 0, then
the series shows exponential convergence. The exponent r is the index of convergence.

For r < 1, the convergence is called subgeometric.
For r = 1, the convergence is either called supergeometric with

Ak ∼ O(k−n exp(−(k/j) ln(k)))

(for some j > 0) or geometric with

Ak ∼ O(k−n exp(−γk)). (2.39)
The density of the GBM process is a typical function that has a geometrically

converging cosine series expansion.

Proposition 2.4.1 (Convergence of Fourier-cosine series [13], pp. 70–71). If g(x) is
infinitely differentiable with nonzero derivatives, then its Fourier-cosine series expan-
sion on [a, b] has geometric convergence. The constant γ in (2.39) is then determined
by the location in the complex plane of the singularities nearest to the expansion
interval. Exponent n is determined by the type and strength of the singularity.
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2.4. Error Analysis 25

Otherwise, the convergence is algebraic. Integration by parts shows that the alge-
braic index of convergence, n, is at least as large as n′, with n′ denoting the highest
order of derivative that exists or is nonzero.

If the function g(x) has a discontinuity in [a,b], say at x0, then at the discontinuity
the series value converges to 1

2 (g(x+
0 ) + g(x−0 )), as the Fourier-cosine series has in

essence the same properties as a Fourier series.

References to the proof of this proposition are available in [13]. Note that in the
case of a discontinuous probability density function, we will encounter a very low alge-
braic convergence order, which can be related to the well-known Gibbs phenomenon
observed in Fourier series expansions of discontinuous functions.

The following proposition further bounds the series truncation error of an alge-
braically converging series.

Proposition 2.4.2 (Series truncation error of algebraically converging series). It
can be shown that the series truncation error of an algebraically converging series
behaves like ∞∑

k=N+1

1

kn
∼ 1

(n− 1)Nn−1
.

The proof can be found in [10].
With the two propositions above, we can state the following lemmas.

Lemma 2.4.1. Error ε3 consists of integration range truncation errors, and can be
bounded by

|ε3| < Q |ε4| , (2.40)

where Q is some positive constant and

ε4 :=

∫
R\[a,b]

f(y|x)dy.

Proof. Assuming f(y|x) to be a real function, we rewrite (2.38) as

ε3 = e−r∆t
N−1∑′

k=0

Vk

∫
R\[a,b]

cos

(
kπ
y − a
b− a

)
f(y|x)dy.

Applying triangle inequality twice, we yield

|ε3| ≤ e−r∆t
N−1∑′

k=0

|Vk| ·

∣∣∣∣∣
∫
R\[a,b]

cos

(
kπ
y − a
b− a

)
f(y|x)dy

∣∣∣∣∣
≤ e−r∆t

N−1∑′

k=0

|Vk| ·
∫
R\[a,b]

∣∣∣∣cos

(
kπ
y − a
b− a

)∣∣∣∣ · |f(y|x)| dy.

Recall that f(y|x) ≥ 0 and that |cos(t)| ≤ 1, we can bound ε3 as follows:

|ε3| ≤ ε4 · e−r∆t
N−1∑′

k=0

|Vk| ,

where ε4 :=
∫
R\[a,b] f(y|x)dy, which depends on the size of

[a, b]. According to Propositions 2.4.1 and 2.4.2, the Vk exhibit at least algebraic
convergence. Therefore, the finite summation is bounded, i.e.
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26 Chapter 2. Density Recovery and European Option Valuation

e−r∆t
N−1∑′

k=0

|Vk| ≤ Q,

for some positive constant Q. It then follows

|ε3| < Q |ε4|

Thus, two of the three error components are truncation range related. When the
truncation range is sufficiently large, the overall error is dominated by ε2.

Equation (2.37) indicates that ε2 depends on both Ak(x) and Vk, the series coeffi-
cients of the density and that of the payoff, respectively. We assume that the density
is typically smoother than the payoff functions in finance and that the coefficients
Ak decay faster than Vk. Consequently, the product of Ak and Vk converges faster
than either Ak or Vk, and we can bound this product as follows:∣∣∣∣∣

+∞∑
k=N

Ak(x) · Vk

∣∣∣∣∣ ≤ C
+∞∑
k=N

|Ak(x)| , (2.41)

with C some constant. Error ε2 is thus dominated by the series truncation error of
the density function.

Proposition 2.4.3 (Series truncation error of geometrically converging series [13],
p. 48). If a series has geometrical convergence, then the error after truncation of the
expansion after (N + 1) terms, ET (N), reads

ET (N) ∼ P ∗ exp(−Nν).

Here constant ν > 0 is called the asymptotic rate of convergence of the series, which
satisfies

ν = lim
n→∞

(− log |ET (n)|/n) ,

and P ∗ denotes a factor which varies less than exponentially with N .

Lemma 2.4.2. Error ε2 converges exponentially in the case of density functions
g(x) ∈ C∞([a, b]) with nonzero derivatives:

|ε2| < P exp(−(N − 1)ν), (2.42)

where ν > 0 is a constant and P is a term that varies less than exponentially with N .

The proof of this is straightforward, applying Proposition 2.4.3 to (2.41).
Based on Proposition 2.4.2, we can prove the following lemma.

Lemma 2.4.3. Error ε2 for densities having discontinuous derivatives can be bounded
as follows:

|ε2| <
P̄

(N − 1)β−1
, (2.43)

where P̄ is a constant and β ≥ n ≥ 1 (n the algebraic index of convergence of Vk).
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The proof of this lemma is straightforward. Note that β ≥ n because the density
function is usually smoother than a payoff function.

Collecting the results (2.36), (2.40), (2.42), and (2.43), we can summarize that,
with a properly chosen truncation of the integration range, the overall error converges
either exponentially for density functions, with nonzero derivatives, belonging to
C∞([a, b] ⊂ R), i.e.,

|ε| < |ε1|+Q |ε4|+ Pe−(N−1)ν , (2.44)

or algebraically for density functions with a discontinuity in one of its derivatives,
i.e.,

|ε| < |ε1|+Q |ε4|+
P̄

(N − 1)β−1
. (2.45)

2.5 Numerical Results

In this section, we perform a variety of numerical tests to evaluate the efficiency and
accuracy of the COS method. Implementation of the COS formula is straightforward.
We focus on the plain vanilla European options and consider different processes for
the underlying asset from GBM to the Heston stochastic volatility process and the
infinite activity Lévy processes VG and CGMY. In the latter case we choose a value
for parameter Y close to 2, representing a distribution with very heavy tails. We will
choose long and short maturities in the tests.

The underlying density function for each individual experiment is also recovered
with the help of the cosine series based inversion technique presented in Section 2.2.
This may help the reader to get some insight into the relationship between the error
convergence and the properties of the densities.

We compare our results with the COS method to two of its competitors, the Carr–
Madan method [20] and the CONV method (see Chapter 1). However, contrary to the
common implementations of these methods we use the Simpson rule for the Fourier
integrals in order to achieve fourth order accuracy. The FFT has been used for the
Carr–Madan as well as for the CONV method.

By these numerical experiments and comparisons with the other methods, we aim
to demonstrate the stability and robustness of the COS method, also under extreme
conditions.

It should be noted that parameter N in the experiments to follow denotes, for the
COS method, the number of terms in the Fourier-cosine expansion, and it denotes
the number of grid points for the other two methods.

All CPU times presented, in milliseconds, are determined after averaging the com-
puting times obtained from 104 experiments. The computer used for all experiments
has an Intel Pentium 4 CPU, 2.80GHz with cache size 1024 KB; the code is written
in MATLAB 7-4.

Remark 2.5.1. Some experience is helpful when choosing the correct truncation
range and damping factor α in the Carr–Madan method. A suitable choice appears
to be α = 0.75 from [68] for the experiments based on GBM as well as on the Heston
model. This is the parameter used in the experiments to follow. However, many
α-values have been suggested in the literature for optimal convergence, even α = 25
in [63]. Optimal values are determined numerically in [55].
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28 Chapter 2. Density Recovery and European Option Valuation

2.5.1 Truncation range for COS method

To determine the interval of integration [a, b] within the COS method, we propose
the following:

[a, b] :=

[
ξ1 − L

√
ξ2 +

√
ξ4, ξ1 + L

√
ξ2 +

√
ξ4

]
with L = 10. (2.46)

Here ξn denotes the nth cumulant of ln(ST /K). The cumulants for the models
employed are presented in Section 1.2.1.

Cumulant ξ4 is included in (2.46), because the density functions of many Lévy
processes for short maturity, T , have sharp peaks and fat tails (correctly indicated
via ξ4).

Formula (2.46) is accurate5 in the range T = 0.1 to T = 10. It then defines
a truncation range which gives a truncation error around 10−12. Larger values of
parameter L would require larger N to reach the same level of accuracy.

Remark 2.5.2. When pricing call options, the method’s accuracy exhibits some
sensitivity regarding the choice of parameter L in (2.46). A call payoff grows expo-
nentially with the log-stock price which may introduce a significant cancelation error
for large values of L. Put options do not suffer from this, as their payoff value is
bounded by the value K. For pricing call options, one can therefore either stay with
L ∈ [7.5, 10] or rely on the well-known put-call parity,

vcall(x, t0) = vput(x, t0) + S0e
−qT −Ke−rT . (2.47)

In the experiments to follow, we use (2.47) when pricing calls, which gives a slightly
higher accuracy than directly applying (2.28) with (2.46).

2.5.2 Geometric Brownian Motion

The first set of call option experiments is performed under the GBM process with a
short time to maturity. Parameters selected for this test are

S0 = 100, r = 0.1, q = 0, T = 0.1, σ = 0.25. (2.48)

The convergence behavior at three different strike prices, K = 80, 100, and 120,
is checked.

Figure 2.1 shows that the recovered density function with the small maturity
time T does not have fat tails, as is commonly known. This, however, implies that
the tails of the characteristic function in the Fourier domain are fat. As a result,
the truncation range for the Carr–Madan method in the Fourier domain has to be
selected relatively large, requiring a significantly larger value of N compared to the
other two methods to achieve the same level of accuracy.

As shown in Figure 2.2, the error convergence of the COS method is exponen-
tial (geometric) and superior to that of the fourth order CONV and Carr–Madan

5A truncation rule which includes cumulant ξ6, such as [a, b] :=
[
ξ1−L

√
ξ2 +

√
ξ4 +

√
ξ6, ξ1+

L

√
ξ2 +

√
ξ4 +

√
ξ6
]
, is more accurate for extremely short maturities, like T = 0.001. The sixth

cumulant is, however, relatively difficult to derive for many models.
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Figure 2.1: Recovered density function of the GBM model involved in the experi-
ments; K = 100, with other parameters as in (2.48).
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Figure 2.2: COS versus Carr–Madan and CONV in error convergence for pricing
European call options under the GBM model.

methods. With N = 26, the COS results already coincide with the reference values.
Further, we observe that the error convergence rate is basically the same for the
different strike prices.

In Table 2.2, CPU time and error convergence information, comparing the COS
and the Carr–Madan method, are displayed for pricing the options at K = 80, 100,
and 120. The maximum error of the option values over the three strike prices is
presented. The results for these strikes are obtained in one single computation for
both methods.

To get the same level of accuracy, the COS method uses significantly less CPU
time, which becomes more prominent when the desired accuracy is high. For the
Carr–Madan computation we have used a truncation range of size [0, 100] in this
latter experiment.6

Remark 2.5.3. In all numerical experiments we observe a linear computational

6To produce the Carr–Madan results from Figure 2.2 with the very small errors, we needed a
larger truncation range, i.e., [0, 1200].
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complexity for the COS method. By doubling N , performing the computations, and
checking the differences between subsequent timings, we can distinguish the linear
complexity from the computational overhead.

Table 2.2: Error convergence and CPU time comparing the COS and Carr–Madan
methods for European calls under GBM, with parameters as in (2.48); K =
80, 100, 120; reference val. = 20.799226309 . . . , 3.659968453 . . . , and 0.044577814 . . . ,
respectively.

N 16 32 64 128 256
COS msec. 0.33 0.38 0.50 0.73 1.30

max. abs. err. 6.66e-03 7.17e-08 3.91e-14 3.91e-14 3.91e-14
Carr–Madan msec. 2.45 2.57 2.74 3.18 3.85

max. abs. err. 2.45e+07 1.76e+06 1.62e+03 1.62e+01 7.95e-02

Cash-or-nothing option

We confirm that the convergence of the COS method does not depend on a dis-
continuity in the payoff function, provided we have an analytic expression for the
coefficients V cashk by pricing a cash-or-nothing call option here. The underlying pro-
cess is GBM, so that an analytic solution exists. Parameters selected for this test are

S0 = 100, K = 120, r = 0.05, q = 0, T = 0.1, σ = 0.2. (2.49)

Table 2.3 presents the exponential convergence of the COS method. Since the payoff
is bounded here, we apply the COS formula (2.30) directly.

2.5.3 The Heston model

As a second test we choose the Heston model and price calls with the following
parameters:

S0 = 100, K = 100, r = 0, q = 0, λ = 1.5768, η = 0.5751,

ν̄ = 0.0398, u0 = 0.0175, ρ = −0.5711. (2.50)

Two maturities, T = 1 and T = 10, are considered. Since the analytic formula
for ξ4 is involved (it can be obtained using Maple, but it is lengthy), we define the
truncation range, instead of (2.46), by

[a, b] := [ξ1 − 12
√
|ξ2|, ξ1 + 12

√
|ξ2|].

Cumulant ξ2 may become negative for sets of Heston parameters that do not satisfy
the Feller condition, i.e., 2ν̄λ > η2. We therefore use the absolute value of ξ2.

Figure 2.3 presents the recovered density functions. It shows that T = 1 gives
rise to a sharper-peaked density than T = 10, as expected.

In this test, we compare the COS method with the Carr–Madan method, which
is often used for the calibration of the Heston model in industry. The option price
reference values are obtained by the Carr–Madan method using N = 217 points, and
the truncated Fourier domain is set to [0, 1200] for the experiment with T = 1 and
to [0, 500] for T = 10.
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Table 2.3: Error and CPU time for a cash-or-nothing call option with the COS
method, with parameters as in (2.49); reference val. = 0.273306496 . . ..

N 40 60 80 100 120 140
Error 2.46e-02 1.64e-02 6.35e-04 6.85e-06 2.44e-08 2.79e-11

CPU time (msec.) 0.330 0.334 0.38 0.43 0.49 0.50
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Figure 2.3: Recovered density functions of the Heston experiments, with parameters
as in (2.50).

Tables 2.4 and 2.5 illustrate the high efficiency of the COS method compared to
the Carr–Madan method.

Table 2.4: Error convergence and CPU times for the COS and Carr–Madan methods
for calls under the Heston model with T = 1, with parameters as in (2.50); reference
val. = 5.785155450 . . ..

COS Carr–Madan
N Error Time (msec.) N Error Time (msec.)
64 −4.92e-03 0.61 256 −2.29e+06 4.70
96 −2.99e-04 0.78 512 2.31e+01 6.94
128 1.94e-05 0.94 1024 −2.61e-01 11.30
160 2.99e-06 1.11 2048 −2.14e-03 20.29
192 −3.17e-07 1.27 4096 3.76e-07 38.54

Note the very different values of N that the two methods require for satisfactory
convergence. All CPU times are given in milliseconds. The COS method appears to
be approximately a factor 20 faster than the Carr–Madan method for the same level
of accuracy. The convergence rate of the COS method is somewhat slower for the
short maturity example, as compared to the 10 year maturity. This is due to the fact
that the density function for the latter case is smoother, as seen in Figure 2.3. The
COS convergence rate for T = 1 is, however, still exponential in the Heston model.

Additionally, for a fair comparison, we mimic the calibration situation, in which
around 20 strikes are priced simultaneously. We repeat the experiment for T = 1
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32 Chapter 2. Density Recovery and European Option Valuation

Table 2.5: Error convergence and CPU time for the COS and Carr–Madan methods
for calls under the Heston model with T = 10, with parameters as in (2.50); reference
val. = 22.318945791 . . ..

COS Carr–Madan
N Error Time (msec.) N Error Time (msec.)
32 7.40e-03 0.46 128 −1.99e+06 3.64
64 −5.02e-05 0.62 256 1.36e+05 4.78
96 1.40e-07 0.81 512 3.27e+01 7.08
128 4.92e-10 0.98 1024 −2.61e-01 11.38
160 −1.85e-10 1.36 2048 −2.15e-03 20.93

but now with 21 consecutive strikes, K = 50, 55, 60, . . . , 150; see the results in Table
2.6. The maximum error over all strike prices is presented. With N = 160, the COS
method can price all options for 21 strikes highly accurately, within 3 milliseconds.

Table 2.6: Error convergence and CPU time for calls under the Heston model by the
COS and Carr–Madan method, pricing 21 strikes, with T = 1, with parameters as
in (2.50).

N 32 64 96 128 160
COS CPU time (msec.) 0.85 1.45 2.04 2.64 3.22

max. abs. err. 1.43e-01 6.75e-03 4.52e-04 2.61e-05 4.40e-06
N 512 1024 2048 4096 8192

Carr–Madan CPU time (msec.) 7.44 12.84 20.36 37.69 76.02
max. error 4.70e+06 6.69e+01 2.61e-01 2.15e-03 2.08e-07

2.5.4 Variance Gamma

As a next example we price call options under the VG process, which belongs to the
class of infinite activity Lévy processes. The VG process is usually parameterized
with parameters σ, θ, and ν related to C,G, and M in (1.7) through

C =
1

ν
, G =

θ

σ2
+

√
θ2

σ4
+

2

νσ2
, M = − θ

σ2
+

√
θ2

σ4
+

2

νσ2
. (2.51)

The parameters selected in the numerical experiments are

K = 90, S0 = 100, r = 0.1, q = 0, σ = 0.12, θ = −0.14, ν = 0.2, L = 10. (2.52)

This case has been chosen because a relatively slow convergence was reported for the
CONV method for very short maturities in [54]. Here we compare the convergence
for T = 1 year and for T = 0.1 year.

Figure 2.4 presents the difference in shape of the two recovered density functions.
For T = 0.1, the density is much more peaked. Results are summarized in Table 2.7.
Note that for T = 0.1 the error convergence of the COS method is algebraic instead
of exponential. This is in agreement with the recovered density function in Figure
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(b) Zoom in

Figure 2.4: Recovered density functions for the VG model and two maturity dates;
K = 90, with other parameters as in (2.52).

Table 2.7: Convergence of the COS method for a call under the VG model with
K = 90 and other parameters as in (2.52).

T = 0.1; Reference val. = 10.993703187 . . . T = 1; Reference val. = 19.099354724 . . .
N Error Time (msec.) N Error Time (msec.)
64 −1.66e-03 0.46 32 −6.57e-04 0.35
128 4.35e-04 0.65 64 2.10e-06 0.47
256 4.55e-05 1.03 96 −3.32e-08 0.56
512 −1.13e-06 1.79 128 4.19e-10 0.64
1024 2.52e-08 3.40 160 −1.88e-11 0.75

2.4, which is clearly not in C∞([a, b]). In the extreme case, we would observe a delta
function-like function for T → 0.

We also plot the errors in Figure 2.5, comparing the convergence of the COS
method to that of the CONV method.7 The convergence rate of the COS method
for T = 1 is significantly faster than that of the CONV method, but for T = 0.1 the
convergence is comparable.

2.5.5 CGMY process

Finally, we evaluate the method’s convergence for calls under the CGMY model. It
has been reported in [1, 73] that PIDE methods have difficulty solving the cases for
which parameter Y ∈ [1, 2]. Therefore we evaluate the COS method with Y = 0.5,
Y = 1.5, and Y = 1.98, respectively. The other parameters are selected as follows:

S0 = 100, K = 100, r = 0.1, q = 0, C = 1, G = 5, M = 5, T = 1. (2.53)

In Figure 2.6, the recovered density functions for the three cases are plotted. For
large values of Y , the tails of the density function are fatter and the center of the
distribution shifts.

Reference values for the numerical experiments are computed by the COS method
with N = 214, as there are no reference values available for the latter cases. The

7The Simpson rule did not improve the convergence rate here.
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Figure 2.5: Convergence of the COS method for the VG model.
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Figure 2.6: Recovered density functions for the CGMY model with different values
of Y ; other parameters are as in (2.53).

numerical results are presented in Tables 2.8 and 2.9 for Y = 0.5 and Y = 1.5,
respectively.

Again, the COS method converges exponentially, which is faster than the fourth
order convergence of the CONV method. With a relatively small value of N , i.e.,
N ≤ 100, the COS results are accurate up to seven digits. The computational time
spent is less than 0.1 millisecond. Comparing Tables 2.8 and 2.9, we notice that
the convergence rate with Y = 1.5 is faster than that of Y = 0.5, because density
functions from fat-tailed distributions can often be well represented by cosine basis
functions. In Table 2.10, for example, with Y = 1.98 we need very small values of N
for highly accurate call option prices. No other pricing method, to our knowledge,
can price options for very large Y ≈ 2 accurately in a robust way.

2.6 Conclusions and Discussion

In this chapter we have introduced an option pricing method based on Fourier-cosine
series expansions, the COS method, for pricing European-style options. The method
can be used as long as a characteristic function for the underlying price process is
available. The COS method is based on the insight that the series coefficients of
many density functions can be accurately retrieved from their characteristic func-
tions. As such, one can decompose a density function into a linear combination of
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Table 2.8: Comparison of the COS and CONV methods in accuracy and speed
for CGMY with Y = 0.5 and other parameters as in (2.53); reference val. =
19.812948843 . . ..

COS CONV
N Error Time (msec.) N Error Time (msec.)
32 1.36e-02 0.61 64 1.53e-02 0.66
48 5.61e-04 0.69 128 5.31e-04 0.94
64 3.32e-05 0.78 256 3.15e-05 1.49
80 2.57e-06 0.89 512 1.62e-06 2.89
96 2.44e-07 0.95 1024 −1.82e-07 4.90
128 3.11e-09 1.11 2048 −2.71e-07 9.64

Table 2.9: Comparison of the COS and CONV methods in accuracy and speed
for CGMY with Y = 1.5 and other parameters from (2.53); reference val. =
49.790905469 . . ..

COS CONV
N Error Time (msec.) N Error Time (msec.)
8 2.40e-01 0.53 64 1.21e-02 0.70
16 −4.92e-02 0.56 128 7.12e-04 1.13
24 −1.73e-03 0.58 256 4.37e-05 1.79
32 −1.23e-05 0.63 512 2.81e-06 3.13
40 −2.16e-08 0.68 1024 1.49e-07 5.32
48 −3.60e-11 0.72 2048 6.49e-10 9.98

Table 2.10: The COS method for CGMY model with Y = 1.98 and other parameters
as in (2.53); reference val. = 99.999905510 . . ..

N 8 16 24 32 40 48
Msec. 0.52 0.55 0.61 0.63 0.66 0.70
Error −6.36e-01 2.65e-02 1.00e-04 4.29e-06 3.25e-09 1.18e-11

cosine functions. It is this decomposition that makes the numerical computation of
the risk-neutral valuation formula easy and highly efficient.

Derivation of the COS method has been accompanied by an error analysis. In
several numerical experiments, the convergence rate of the COS method has shown
to be exponential, in accordance with the analysis. When the density function of
the underlying process has a discontinuity in one of its derivatives an algebraic con-
vergence is expected and was observed. The computational complexity of the COS
method is linear in the number of terms, N , chosen in the Fourier-cosine series ex-
pansion. Very fast computing times were reported here for the Heston and the Lévy
models. With N < 150, all numerical results (except for the VG model with very
short maturities) are accurate up to eight digits, in less than 1 millisecond of CPU
time. By recovering the density function we can estimate the convergence behavior
of our numerical method.
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Chapter 3

Pricing Early-Exercise and
Barrier Options under
Exponential Lévy Processes

3.1 Introduction

In this chapter, the COS method is generalized to pricing Bermudan, American
and discrete barrier options under Lévy processes. It exhibits the same convergence
behavior as for European options, and the computational complexity is almost linear.
This chapter contains essentially the contents of the paper [33].

Within stock option pricing applications, interesting numerical mathematics ques-
tions can be found in product pricing and in calibration. Whereas the former topic
requires especially robust numerical techniques, the latter also relies on efficiency and
speed of computation.

Numerical integration methods, based on a transformation to the Fourier domain
(the so-called transform methods), are traditionally very efficient, due to the avail-
ability of the Fast Fourier Transform (FFT) [20, 61], for the pricing of basic European
products, and thus for calibration purposes.

Recently, transform methods have been generalized to solving somewhat more
complicated option contracts, like Bermudan, American or barrier options, see, for
example, [54, 30, 6, 7, 45, 70, 26, 69]. These exotic options, still with basic features,
are used in the financial industry as building blocks for more complicated products.
A natural aim for the near future with these transform methods is to calibrate to
these exotic products and to price the huge portfolios (at the end of a trading day)
very fast.

Next to FFT-based methods, new techniques based on the Fast Gauss or the
Hilbert Transform have been introduced for this purpose [15, 16, 36]. In this chapter
we will also generalize a transform method to pricing Bermudan, American and
discretely-monitored barrier options. It is the method based on Fourier-cosine series
expansions, called the COS method, introduced by us in [32], where we showed that
it was highly efficient for pricing European options.

The integration-based methods are, for these option contracts, in competition
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with the methods that require the solution of discrete partial (integro-) differential
equation-based operators (PIDE) [74, 18]. PIDE-based methods are traditionally
used since early-exercise and the exotic features can often be interpreted as special
payoffs or boundary conditions. They represent the state of the art for pricing options
under the local volatility process. Generally speaking, however, the computational
process with PIDE is rather expensive, especially for the infinite activity Lévy pro-
cesses we are interested in, because they give rise to an integral in the PIDE with a
weakly singular kernel [2, 42, 73].

We will therefore compare our results with other highly efficient transform meth-
ods, i.e., with the Convolution (CONV) method [54] (see Chapter 1), based on the
FFT, which is one of the state-of-the-art methods for pricing Bermudan and Amer-
ican options. Its computational complexity for pricing a Bermudan option with M
exercise dates is O((M − 1)N log2(N)), where N denotes the number of grid points
used for numerical integration. Quadrature rule based techniques are, however, not of
the highest efficiency when solving Fourier transformed integrals. As these integrands
are highly oscillatory, a relatively fine grid has to be used for satisfactory accuracy
with the FFT. The COS method presented here requires a substantially smaller value
of N (the number of leading terms in the Fourier-cosine series expansion).

Especially for barrier options, another highly efficient alternative method from [36]
is based on the Hilbert transform. Its error convergence is exponential for models
with rapidly decaying characteristic functions, also with a computational complexity
of O((M − 1)N log2N) for a barrier option with M monitoring dates. This method
is, however, not applicable for Bermudan options.

This chapter is organized as follows. In Section 3.2 the COS method for pricing
Bermudan and barrier options is presented. The handling of the discretely monitored
barrier options is discussed in particular in Subsection 3.2.4. Error analysis is per-
formed in Section 3.3. Numerical results are presented in Section 3.4, where we focus
on option pricing under exponential Lévy processes, in particular under the CGMY
[19] and the Normal Inverse Gaussian [8] processes.

3.2 Pricing Bermudan and Barrier Options

A Bermudan option can be exercised at pre-specified dates before maturity. The
holder receives the exercise payoff when he/she exercises the option. Between two
consecutive exercise dates the valuation process can be regarded as that for a Euro-
pean option, which can be priced with the help of the risk-neutral valuation formula.

Let t0 denote the initial time and T = {t1, · · · , tM} be the collection of all exercise
dates with ∆t := (tm − tm−1), t0 < t1 < · · · < tM = T . The pricing formula for a
Bermudan option with M exercise dates has been given in (1.16). Here we recall the
two main functions: for m = M,M − 1, . . . , 2, it holds that{

c(x, tm−1) = e−r∆t
∫
R v(y, tm)f(y|x)dy,

v(x, tm−1) = max (g(x, tm−1), c(x, tm−1)) ,
(3.1)

followed by

v(x, t0) = e−r∆t
∫
R
v(y, t1)f(y|x)dy. (3.2)
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Here x and y are state variables, defined as the logarithm of the ratio of the asset
price St over the strike price K,

x := ln(S(tm−1)/K) and y := ln(S(tm)/K),

v(x, t), c(x, t) and g(x, t) are the option value, the continuation value and the payoff
at time t, respectively. Note that for vanilla options, g(x, t) equals v(x, T ), with

v(x, T ) = [%K(ex − 1)]+, % =

{
1 for a call,
−1 for a put.

The probability density function of y given x under a risk-neutral measure is denoted
by f(y|x) in (3.2), and r is the (deterministic) risk-neutral interest rate.

Equations (3.1), (3.2) can be efficiently evaluated by the COS method in [32],
provided that the Fourier-cosine series coefficients of v(y, tm) are known.

3.2.1 The COS Method for Continuation Values

The continuation value in (3.1) can be obtained using the same idea as in Chapter
2. In the following, we briefly recall the derivation.

Suppose that we have, with [a, b] ⊂ R,∫
R\[a,b]

f(y|x)dy < TOL, (3.3)

for some given tolerance, TOL, then we can approximate c(x, tm−1) in (3.1) by

c1(x, tm−1) = e−r∆t
∫ b

a

v(y, tm)f(y|x)dy. (3.4)

(The intermediate terms, ci, are used in the error analysis in Section 3.3.) We replace
the density function by its Fourier-cosine series expansion on [a, b],

f(y|x) =

∞∑′

k=0

Ak(x) cos

(
kπ
y − a
b− a

)
. (3.5)

The series coefficients {Ak(x)}∞k=0 are defined by

Ak(x) :=
2

b− a

∫ b

a

f(y|x) cos

(
kπ
y − a
b− a

)
dy. (3.6)

Interchanging the summation and integration operators yields

c1(x, tm−1) =
1

2
(b− a)e−r∆t

∞∑′

k=0

Ak(x)Vk(tm), (3.7)

with Vk(tm) the Fourier-cosine series coefficients of v(y, tm) on [a, b], i.e.

Vk(tm) :=
2

b− a

∫ b

a

v(y, tm) cos

(
kπ
y − a
b− a

)
dy. (3.8)
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Truncating the infinite series gives

c2(x, tm−1) =
1

2
(b− a)e−r∆t

N−1∑′

k=0

Ak(x)Vk(tm). (3.9)

As a third step, we use the relation between Ak(x) and the conditional characteristic
function, φ(ω;x), defined as

φ(ω;x) :=

∫
R
f(y|x)eiωydy. (3.10)

Coefficients Ak(x) can be written as

Ak(x) =
2

b− a
Re

{
e−ikπ

a
b−a

∫ b

a

ei
kπ
b−ayf(y|x)dy

}
. (3.11)

where Re {·} denotes taking the real part of the input argument. With (3.3), the
finite integration in (3.11) can be approximated by∫ b

a

ei
kπ
b−ayf(y|x)dy ≈

∫
R
ei

kπ
b−ayf(y|x)dy =: φ

(
kπ

b− a
;x

)
.

As a result, Ak(x) can be approximated by Fk(x) with

Fk(x) :=
2

b− a
Re

{
φ

(
kπ

b− a
;x

)
e−ikπ

a
b−a

}
. (3.12)

ReplacingAk(x) in (3.9) by Fk(x) gives the COS formula for pricing European options
for different underlying processes:

ĉ(x, tm−1) := e−r∆t
N−1∑′

k=0

Re

{
φ

(
kπ

b− a
;x

)
e−ikπ

a
b−a

}
Vk(tm). (3.13)

Here the function ĉ(x, tm−1) represents the approximation of the continuation value
c(x, tm−1). An error analysis justifying the different approximations for European
options was presented in [32] and has been given in Chapter 2.

For exponential Lévy processes, formula (3.13) can be simplified to

ĉ(x, tm−1) = e−r∆t
N−1∑′

k=0

Re

{
ϕlevy

(
kπ

b− a

)
eikπ

x−a
b−a

}
Vk(tm), (3.14)

where ϕlevy(ω) := φlevy(ω; 0), see [32]. Using this, we can also approximate v(x, t0)
in (3.2) by

v̂(x, t0) = e−r∆t
N−1∑′

k=0

Re

{
ϕlevy

(
kπ

b− a

)
eikπ

x−a
b−a

}
Vk(t1), (3.15)

provided that the series coefficients, Vk(t1), are known. We will show that the Vk(tm),
k = 0, 1, · · · , N − 1, can be recovered from Vj(tm+1), j = 0, 1, · · · , N − 1.
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3.2.2 Pricing Bermudan Options

The idea of pricing Bermudan options is to compute Vk(t1), the cosine coefficients
of the option value at time point t1, and insert it into (3.15), to obtain the value of
the option. The main contribution of this section is the derivation of an induction
formula for Vk(t1).

The integral in the definition of Vk(tm) in (3.8) can be split into two parts, if
we determine the early-exercise point, x∗m, at time tm, which is the point where the
continuation value equals the payoff, i.e., c(x∗m, tm) = g(x∗m, tm).

Once we have x∗m, we can split the integral that defines Vk(tm) into two parts:
One on the interval [a, x∗m] and the other on (x∗m, b], i.e.

Vk(tm) =

{
Ck(a, x∗m, tm) +Gk(x∗m, b), for a call,

Gk(a, x∗m) + Ck(x∗m, b, tm), for a put,
(3.16)

for m = M − 1,M − 2, · · · , 1, and

Vk(tM ) =

{
Gk(0, b), for a call

Gk(a, 0), for a put,
(3.17)

whereby

Gk(x1, x2) :=
2

b− a

∫ x2

x1

g(x, tm) cos

(
kπ
x− a
b− a

)
dx. (3.18)

and

Ck(x1, x2, tm) :=
2

b− a

∫ x2

x1

c(x, tm) cos

(
kπ
x− a
b− a

)
dx. (3.19)

Remark 3.2.1 (Newton’s Method). Since the numerical approximation for c(x, tm),
denoted by ĉ(x, tm), in (3.14) is a semi-analytic formula which returns a numerical
approximation of c(x, tm) on the whole support of x, we can easily find the derivatives
of ĉ(x, tm) w.r.t. x, and we can therefore employ Newton’s method to determine x∗m.
On each time lattice, there is at most one point which satisfies ĉ(x, tm)−g(x, tm) = 0,
for the option problems considered here 1. If x∗m is not in [a, b], it is set equal to the
nearest boundary point.

Note that in this chapter we only consider the pricing of Bermudan put options.

Result 3.2.1. The Gk(x1, x2) in (3.18) can be determined analytically.

Proof. With g(x, tm) ≡ ±K(1− ex)+, it follows for a put, with x2 ≤ 0, that

Gk(x1, x2) =
2

b− a

∫ x2

x1

K(1− ex) cos

(
kπ
x− a
b− a

)
dx, (3.20)

and for a call, with x1 ≥ 0, that

Gk(x1, x2) =
2

b− a

∫ x2

x1

K(ex − 1) cos

(
kπ
x− a
b− a

)
dx, (3.21)

1Generalizations for more early-exercise points are easily determined.
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The fact that x∗m ≤ 0, for put options, and x∗m ≥ 0, for call options, ∀t ∈ T , gives

Gk(x1, x2) =
2

b− a
%K [χk(x1, x2)− ψk(x1, x2)] , % =

{
1 for a call,
−1 for a put,

(3.22)

with χk(x1, x2) and ψk(x1, x2) defined in (2.22) and (2.23), respectively.

We now derive the formulas for the Fourier cosine coefficients of the option values,
Vj(tm) with j = 0, 1, · · · , N − 1 and m = 1, 2, · · · ,M .

At time tM , these coefficients, Vj(tM ), are exact, see Equation (3.17). At time
tM−1, from COS formula (3.14) we obtain approximation ĉ(x, tM−1), the continuation
value at tM−1, which is inserted into (3.19). Interchanging summation and integration
gives the following coefficients, Ĉ:

Ĉk(x1, x2, tM−1) = e−r∆tRe


N−1∑′

j=0

ϕlevy

(
jπ

b− a

)
Vj(tM ) · Mk,j(x1, x2)

 , (3.23)

with the coefficients Mk,j(x1, x2) defined as

Mk,j(x1, x2) :=
2

b− a

∫ x2

x1

eijπ
x−a
b−a cos

(
kπ
x− a
b− a

)
dx, (3.24)

and i =
√
−1 being the imaginary unit.

For time points tm, m = M − 2,M − 3, · · · , 1, we can define

Ĉk(x1, x2, tm) := e−r∆tRe


N−1∑′

j=0

ϕlevy

(
jπ

b− a

)
V̂j(tm+1) · Mk,j(x1, x2)

 , (3.25)

which is the result of replacing Vj(tm+1) in the definition of Ck(x1, x2, tm) by its

numerical approximation V̂j(tm+1).

Replacing Ck in (3.16) by Ĉk gives us the numerical approximation of the Fourier
cosine coefficients of the option values at times tm for m = 1, 2, · · · ,M −1. In vector
form, it reads

V̂(tm) =

{
Ĉ(a, x∗m, tm) + G(x∗m, b), for a call,

Ĉ(x∗m, b, tm) + G(a, x∗m), for a put.
(3.26)

with

Ĉ(x1, x2, tm) =

{
e−r∆tRe {M(x1, x2) Λ} V(tM ), m = M − 1,

e−r∆tRe {M(x1, x2) Λ} V̂(tm+1), m = 1, 2, · · · ,M − 2.
(3.27)

where we use bold-faced letters to denote vectors, e.g. V(tM ) is the vector
(V0(tM ), V1(tM ), · · · , VN−1(tM ))T . “M Λ” denotes a matrix-matrix multiplication

with M being a matrix with elements {Mk,j}N−1
k,j=0 and Λ a diagonal matrix with

elements
{
ϕlevy

(
jπ
b−a

)}N−1

j=0
.

This matrix-vector product representation is useful for analyzing the convergence
properties of Bermudan option values to their American counterparts (with M →∞),
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in Section 3.4.3. It should, however, not be employed to determine the coefficients,
since these matrix-vector product costs O(N2) operations and is thus expensive.

In Section 3.2.3 we will present an efficient algorithm for the computation of
V̂(tm), with complexity O(N log2(N)), based on the FFT algorithm.

We first summarize the algorithm for pricing Bermudan options:

Algorithm 3.2.1 (Pricing Bermudan options with the COS method).

Initialization: For k = 0, 1, · · · , N − 1,

• Vk(tM ) = Gk(0, b) for call options; Vk(tM ) = Gk(a, 0) for put options;

Main Loop to Recover V̂k(tm): For m = M − 1 to 1,

• Determine early-exercise point x∗m by Newton’s method;

• Compute V̂k(tm) (with the help of the FFT algorithm).

Final step: Reconstruct v̂(x, t0) by inserting V̂k(t1) into (3.15).

Remark 3.2.2 (The Greeks). To compute the Greeks, one only needs to modify the
final step in Algorithm 3.2.1, from t1 to t0, as the Greeks can be approximated by

∆̂ = e−r∆t
2

b− a

N−1∑′

k=0

Re

{{
ϕ

(
kπ

b− a

)
eikπ

x−a
b−a

ikπ

b− a

}}
V̂k(t1)

S0
(3.28)

and

Γ̂ = e−r∆t
2

b− a

N−1∑′

k=0

Re

{{
ϕ

(
kπ

b− a

)
eikπ

x−a
b−a

[
− ikπ

b− a
+

(
ikπ

b− a

)2
]}}

V̂k(t1)

S2
0

.

(3.29)

3.2.3 Efficient Algorithm

In the following we will develop an FFT-based algorithm for computing the matrix-
vector product in (3.27). The main insight is that matrix M in (3.27) is a sum of a
Hankel and a Toeplitz matrix.

Theorem 3.2.1. Ĉ(x1, x2, tm) in (3.27) can be computed in O(N log2(N)) opera-
tions with the help of the Fast Fourier Transform (FFT) algorithm.

Proof. Replacing eiα = cos(α) + isin(α) in the definition of Mk,j(x1, x2) in (3.24)
gives the following representation:

Mk,j(x1, x2) = − i
π

(
Mc

k,j(x1, x2) +Ms
k,j(x1, x2)

)
, (3.30)

where

Mc
k,j :=


(x2 − x1)πi

(b− a)
, k = j = 0,

exp

(
i(j + k)

(x2 − a)π

b− a

)
− exp

(
i(j + k)

(x1 − a)π

b− a

)
j + k

, otherwise

(3.31)

43



44
Chapter 3. Pricing Early-Exercise and Barrier Options under

Exponential Lévy Processes

and

Ms
k,j :=


(x2 − x1)πi

b− a , k = j,

exp

(
i(j − k)

(x2 − a)π

b− a

)
− exp

(
i(j − k)

(x1 − a)π

b− a

)
j − k , k 6= j.

(3.32)

After inserting (3.30) into (3.23) and (3.25), we obtain a matrix-vector product rep-

resentation for Ĉ(x1, x2, tm), i.e.,

Ĉ(x1, x2, tm) =
e−r∆t

π
Im {(Mc +Ms)u} , (3.33)

where Im {·} denotes taking the imaginary part of the input argument, and

u := {uj}N−1
j=0 , uj := ϕ

(
jπ

b− a

)
Vj(tm+1), u0 =

1

2
ϕ (0)V0(tm+1). (3.34)

The matrices

Mc := {Mc
k,j(x1, x2)}N−1

k,j=0 and Ms := {Ms
k,j(x1, x2)}N−1

k,j=0

have special structure, so that the FFT algorithm can be employed for the efficient
computation of matrix-vector products.

In particular, matrix Mc is a Hankel matrix,

Mc =


m0 m1 m2 · · · mN−1

m1 m2 · · · · · · mN

...
...

mN−2 mN−1 · · · m2N−3

mN−1 · · · m2N−3 m2N−2


N×N

(3.35)

and Ms is a Toeplitz matrix,

Ms =


m0 m1 · · · mN−2 mN−1

m−1 m0 m1 · · · mN−2

...
. . .

...
m2−N · · · m−1 m0 m1

m1−N m2−N · · · m−1 m0


N×N

(3.36)

with

mj :=


(x2 − x1)π
b− a i j = 0

exp

(
ij

(x2 − a)π

b− a

)
− exp

(
ij

(x1 − a)π

b− a

)
j j 6= 0

(3.37)

This concludes the proof.
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The matrix-vector product, with these special matrices, can be transformed into
a circular convolution. This is well-known for Toeplitz matrices, described in detail,
for example, in [2]. The product Msu is equal to the first N elements of ms ~ us
with the 2N -vectors:

ms = [m0,m−1,m−2, · · · ,m1−N , 0,mN−1,mN−2, · · · ,m1]
T
,

and us = [u0, u1, · · · , uN−1, 0, · · · , 0]
T
. For the Hankel matrix this is less known, so

we formulate it in the following result:

Result 3.2.2. The product Mcu is equal to the first N elements of mc ~ uc, in
reversed order, with the 2N -vectors: mc = [m2N−1,m2N−2, · · · ,m1,m0]

T
and uc =

[0, · · · , 0, u0, u1, · · · , uN−1]
T
.

For the efficient computation ofMcu, we need to construct the following circulant
matrix, Mu,

Mu =



0 uN−1 uN−2 · · · · · · · · · 0
0 0 uN−1 uN−2 · · · · · · 0
...

. . .
. . .

...
0 · · · 0 uN−1 uN−2 · · · u0

u0 0 · · · 0 uN−1 · · · u1

u1 u0 0 · · · 0 · · · u2

...
. . .

. . .
...

uN−2 · · · u0 0 · · · 0 uN−1

uN−1 uN−2 · · · u0 0 · · · 0


(2N)×(2N)

. (3.38)

Straightforward computation shows that the first N elements of the product of uc
and mc equal Mcu, in reversed order.

A circular convolution of two vectors is equal to the inverse discrete Fourier trans-
form (D−1) of the products of the forward DFTs, D, i.e.,

x ~ y = D−1{D(x) · D(y)}.

We now summarize the algorithm of computing Ĉ(x1, x2, tm) as follows:

Algorithm 3.2.2 (Computation of Ĉ(x1, x2, tm)).

1. Compute mj(x1, x2) for j = 0, 1, · · · , N − 1 using (3.37).

2. Construct ms(x1, x2) and mc(x1, x2) using the properties of mj ’s.

3. Compute u(tm) using (3.34).

4. Construct us by padding N zeros to u(tm).

5. Msu = the first N elements of D−1{ D(ms) · D(us) }.

6. Mcu = reverse{ the first N elements of D−1{ D(mc) · sgn · D(us) }}.

7. Ĉ(x1, x2, tm) = e−r∆tIm {Msu + Mcu} /π.
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Note that the operation D(us) is computed only once, and“reverse{x}” denotes
an x-generated vector, whose elements are the same as those of x but sorted in
reversed order.

Remark 3.2.3 (Efficient computation). It is worth mentioning that the computation
of the exponentials takes significantly more computer clock cycles than additions or
multiplications. One can however benefit from some special properties of the mj’s,
like m−j = −mj and, for j 6= 0,

mj+N =
exp

(
iN (x2−a)π

b−a

)
· exp

(
ij (x2−a)π

b−a

)
− exp

(
iN (x1−a)π

b−a

)
· exp

(
ij (x1−a)π

b−a

)
j +N

.

So, in order to construct ms and mc, the factors exp
(
ij (x2−a)π

b−a

)
and exp

(
ij (x1−a)π

b−a

)
,

for j = 0, 1 · · · , N − 1, should be computed only once.
Also, the DFT of uc and of us need not be computed separately, as the shift

property of DFTs gives D(uc) = sgn · D(us) with sgn = [1,−1, 1,−1, · · · ]T .

Remark 3.2.4 (Overall Computational Complexity). Since the computation of Gk(x1, x2)
is linear in N , the overall complexity of this recovery procedure is dominated by the
computation of Ĉ(x1, x2, tm), whose complexity is O(N log2N) with the FFT. As a
result, the overall computational complexity for pricing a Bermudan option with M
exercise dates is O((M − 1)N log2N), as the work needed for the final step, from t1
to t0, is O(N).

Remark 3.2.5 (Use of FFT algorithm). In the main loop of the CONV method
from [54] (Chapter 1), the FFT algorithm is required five times, the same as in the
COS method presented above, and the length of the CONV input vectors is halved
compared to the COS method. Therefore, the CONV method would be approximately
twice as fast, if we did not take the method’s accuracy into account. However, for
models characterized by density functions in C∞[a, b], the COS method exhibits an
exponential convergence rate, which is superior to the second order convergence of
the CONV method. For the same level of accuracy, the COS method is therefore
significantly faster than the CONV method.

3.2.4 Discretely-Monitored Barrier Options

Discretely-monitored “out” barrier options are options that cease to exist if the asset
price hits a certain barrier level, H, at one of the pre-specified observation dates. If
H > S0, they are called “up-and-out” options, and “down-and-out” otherwise. The
payoff for an up-and-out option reads

v(x, T ) = (max(α(ST −K), 0)− rb)1{Sti<H} + rb, (3.39)

where α = 1 for a call and α = −1 for a put, rb is a rebate, and 1A is the indicator
function,

1A =

{
1 if A is not empty,
0 otherwise.

With the set of observation dates, T = {t1, · · · , tM}, t1 < · · · < tM−1 < tM = T , the
price of an up-and-out option, monitored M times, satisfies the following recursive
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formula 
c(x, tm−1) = e−r(tm−tm−1)

∫
R v(x, tm)f(y|x)dy,

v(x, tm−1) =

{
e−r(T−tm−1)rb, x ≥ h,
c(x, tm−1), x < h,

(3.40)

where h := ln(H/K) and m = M,M − 1, · · · , 2.
Note that the recursive pricing formula (3.40) is very similar to that for the

Bermudan options. What makes barrier pricing easier is that the root-finding algo-
rithm is not needed as the barrier points are known in advance. Thus, similar to
Bermudan options, discrete barrier options can be priced in two steps:

1. Recovery of series coefficients of the option value at t1,

2. The COS formula for European options given by (3.15).

Based on the derivation for Bermudan options, we have the following lemma:

Lemma 3.2.1 (Backward Induction for Discrete Barrier Options). By backward re-
cursion we find the following numerical approximation for discretely monitored bar-
rier options: For m = M − 1,M − 2, · · · , 1,

V̂k(tm) = Ĉk(a, h, tm) + e−r(T−tm−1)rb
2

b− a
ψk(h, b) (3.41)

with Ĉk(x1, x2, tm) and ψk(x1, x2) given by (3.33) and (2.23), respectively. If h < 0,
we have

Vk(tM ) =

{
2rbψk(h, b)/(b− a) for a call,

Gk(a, h) + 2rbψk(h, b)/(b− a) for a put.
(3.42)

For h ≥ 0, we find

Vk(tM ) =

{
Gk(0, h) + 2rbψk(h, b)/(b− a) for a call,

Gk(a, 0) for a put.
(3.43)

A similar recursion formula for a down-and-out option can be derived easily.

The proof is straightforward, as it goes along the lines of the derivation for Bermu-
dan options in the previous section.

The computation of Ĉ(a, h, tm) via (3.33) is less expensive than for Bermudan
options, because h is known in advance, and consequently, ψk(h, b) in (2.23),Mc and
Ms in (3.33) are known before the recursion step. Therefore, the FFT technique is
required only three times.

Barrier options with an “in” barrier, or double barrier options, can be priced as
easily with the COS method. Alternatively, one could apply the barrier parity and
symmetry results on “out” barrier options [71, 39].

We summarize the method by means of the following algorithm:
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Algorithm 3.2.3 (Pricing Discrete Barrier Options by the COS Method).

Initialization:

• Compute Vk(tM ) using (3.42) or (3.43) .

• For up-and-out: x1 = a and x2 = h, and c = h and d = b;
For down-and-out: x1 = h and x2 = b, and c = a and d = h.

• Construct ms(x1, x2) and mc(x1, x2) using the properties of mj ’s.

• d1 = D{ms(x1, x2)}, d2 = sgn · D{mc(x1, x2)}

• G = 2
b−arb {ψk(c, d)}N−1

k=0 .

Main Loop to Recover V̂(tm−1): For m = M to 2,

1. Compute u(tm) using Equation (3.34).

2. Construct us by padding N zeros to u(tm).

3. Msu = the first N elements of D−1{ d1 · D(us) }.

4. Mcu = reverse{ the first N elements of D−1{ d2 · D(us) } }.

5. Ĉ(tm−1) = e−r∆t/πIm {Msu + Mcu}.

6. V̂(tm−1) = Ĉ(tm−1) + e−r(T−tm−1)G

Finalization: Compute v̂(t0, x) according to (3.15); Or Greeks by (3.28) and
(3.29).

3.3 Error Analysis

In this section, we analyze the rate of convergence as well as the stability of the COS
method.

3.3.1 Convergence for European Options

We define ε as
ε (x;N, [a, b]) := c(x)− ĉ (x;N, [a, b]) . (3.44)

An upper bound for this local error with respect to the truncation range as well as
the convergence rate of ε in dependence on N , the number of leading terms in the
Fourier cosine series, have been derived in Section 2.4. Here we briefly recall the
main conclusions.

The COS formula for European options was derived in three steps in Section
3.2.1. Thus, error ε is decomposed in three components:

1. The integration range truncation error:

ε1 (x; [a, b]) := c(x)− c1(x; [a, b]) =

∫
R\[a,b]

v(y)f(y|x)dy. (3.45)
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2. The series truncation error on [a, b]:

ε2 (x;N, [a, b]) := c1(x; [a, b])− c2(x;N, [a, b]) =
1

2
(b− a)e−r∆t

∞∑
k=N

Ak(x) · Vk.

(3.46)

3. The error related to approximating Ak(x) by Fk(x) in (3.12):

ε3 (x;N, [a, b]) := ĉ (x;N, [a, b])− c2 (x;N, [a, b])

= e−r∆t
N−1∑′

k=0

Re

{∫
R\[a,b]

eikπ
y−a
b−a f(y|x)dy

}
Vk.

(3.47)

Our focus here is on Bermudan puts, for which the option value, v(y), is bounded on
[a, b]. We then have

ε1 (x; [a, b]) ∼ O

(∫
R\[a,b]

f(y|x)

)
∼ O(TOL),

according to (3.3). To study the impact of x on ε1, we use the property f(y|x) =
f(y − x), which holds for Lévy processes. After a change of variables on (3.45), we
find

|ε1 ([a, b])| =

∣∣∣∣∣
∫
R\[a−x,b−x]

v(x+ z)f(z)dz

∣∣∣∣∣ ∼ O
(∫

R\[a−x,b−x]

f(z)dz

)
. (3.48)

So, when [a, b] is centered around x, or min(|a| , |b|) >> x, the influence of x on
ε1 can be ignored, and ε1 only depends on the size of the truncation range: Larger
intervals [b−a] result in smaller values of ε1. Numerical experiments supporting this
are presented in Figure 3.1. The definition of a proper truncation range is given in
(3.71), which is almost the same as the one for European options defined in Chapter
2 but with a different interval center.

The second error component, ε2, converges exponentially for probability density
functions of class C∞([a, b]), given a value of x [13, 32], i.e.,

|ε2| < P · exp(−(N − 1)ν), (3.49)

where ν > 0 is a constant and P is a term which varies less than exponentially
with N . When the probability density function has a discontinuous derivative, the
Fourier-cosine expansion converges algebraically, i.e.

|ε2| <
P̄

(N − 1)β−1
, (3.50)

where P̄ is a constant and β ≥ n ≥ 1 (and n is the algebraic index of convergence of
the series coefficients).

For Lévy processes, a non-zero x corresponds to a shift, f(z := y − x), and is
thus not related to the smoothness of f(z). As a result, the convergence speed, ν in
(3.49) or β in (3.50), does not depend on x.
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The third error component, ε3, consists of the integration range related truncation
error [32], and can be bounded by

|ε3| < |ε1|+Q

∣∣∣∣∣
∫
R\[a,b]

f(y|x)dy

∣∣∣∣∣ , (3.51)

where Q is some constant independent of N . Applying a change of variables as for
ε1, it is clear that also here the choice of x has no impact on ε3, if min(|a| , |b|) >> x
or if [a, b] is centered around x.

Collecting the three error components and applying the triangle inequality, we
can bound the local error, ε, as follows:

|ε (x;N, [a, b])| ≤ |c− c1|+ |c1 − c2|+ |c2 − ĉ|

≤ Q̄ ·

∣∣∣∣∣
∫
R\[a,b]

f(y|x)dy

∣∣∣∣∣+ |ε2 (x;N)| , (3.52)

with Q̄ some constant not depending on [a, b] and N . With integration interval [a, b]
chosen sufficiently wide, the series truncation error, ε2(N), dominates the overall
error, which implies that for smooth density functions, ε converges exponentially;
otherwise it goes algebraically.

3.3.2 Error Propagation in the Backward Recursion

In this section we study the error in the Fourier coefficients,

ε(k, tm) := Vk(tm)− V̂k(tm), (3.53)

and its propagation in the backward recursion, which is directly related to the error in
the Bermudan option values. We focus on put options here and assume that the error
resulting from applying Newton’s method is not significant, i.e., the early-exercise
points are determined exactly.

For ease of presentation, we analyze the case that the underlying density function
is infinitely differentiable. Similar analysis can be done for other cases.

Theorem 3.3.1. With [a, b] ⊂ R sufficiently large and a probability density function
in C∞ ([a, b]), error ε(k, tm) converges exponentially in N .

Proof. The proof is obtained by an induction argument. At time tM−1, we compare
(3.26) and (3.16), and find

ε(k, tM−1) = Ck(x∗M−1, b, tM−1)− Ĉk(x∗M−1, b, tM−1),

=

∫ b

x∗
M−1

(c(x, tM−1)− ĉ(x, tM−1)) cos

(
kπ
x− a
b− a

)
dx. (3.54)

Since Vk(tM ) is exact, ĉ(x, tM−1) resulting from the COS formula only consists of
local error ε(x;N, [a, b]). So,

ε(k, tM−1) =

∫ b

x∗
M−1

ε (x;N, [a, b]) cos

(
kπ
x− a
b− a

)
dx. (3.55)
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This equation can be seen as an inner product of two square-integrable functions.
With the Cauchy-Schwarz inequality, we bound error ε(k, tM−1) as follows:

|ε(k, tM−1)| ≤

√√√√∫ b

x∗
M−1

ε2 (x;N, [a, b]) dx ·

√√√√∫ b

x∗
M−1

cos2

(
kπ
x− a
b− a

)
dx. (3.56)

We assume that the integration interval [a, b] is chosen sufficiently large, so that the
local error, ε, is dominated by the series truncation error ε2. Based on the analysis
in Section 3.3.1, it then follows that, for density functions belonging to C∞([a, b]),
error ε(x;N) converges exponentially w.r.t. N , i.e.,

|ε(x;N, [a, b])| ≤ P (x,N) exp (−(N − 1)ν) ,

where ν > 0 is a constant not depending on N and x, and P (x,N) > 0 is a function
which varies less than exponentially in N . With

p(N) := max
x∈[a,b]

P (x,N), (3.57)

it then holds that∫ b

x∗
M−1

ε2 (x;N, [a, b]) dx ≤ (b− x∗M−1) · (p(N) · exp(−(N − 1)ν))
2
.

Since cos2(α) ≤ 1, we have∫ b

x∗
M−1

cos2

(
kπ
x− a
b− a

)
dx ≤ (b− x∗M−1).

After inserting these parts, Equation (3.56) can be written as:

|ε(k, tM−1)| ≤ (b− x∗M−1) · p(N) · exp(−(N − 1)ν), (3.58)

for k = 0, 1, · · · , N − 1.
This indicates that the convergence behaviour of ε(k, tM−1) in N is as the local

error for pricing European options. Written in vector form, with

ε(tM−1) := (ε(0, tM−1), ε(1, tM−1), · · · , ε(N − 1, tM−1))
T
,

it follows that

|ε(tM−1)|∞ ≤ (b− x∗M−1) · p(N) · exp(−(N − 1)ν). (3.59)

As a second step, we prove that if the theorem holds for time tm+1, i.e.

|ε(tm+1)|∞ ≤ p(N) exp (−(N − 1)ν) , (3.60)

with p(N) as in (3.57), then it follows that

|ε(tm)|∞ ∼ O (exp(−(N − 1)ν)) ,

for m = M − 2,M − 3, · · · , 1.
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At time tm, the definition of error ε(k, tm) gives

ε(k, tm) =

∫ b

x∗
m

(c(x, tm)− c̄(x, tm)) cos

(
kπ
x− a
b− a

)
dx, (3.61)

where c̄(x, tm) is obtained by inserting V̂k(tm+1) into the COS formula. So,

c̄(x, tm) = e−r∆t
N−1∑′

j=0

Re

{
ϕ

(
jπ

b− a

)
eijπ

x−a
b−a

}
(Vj(tm+1)− ε(j, tm+1))

= ĉ(x, tm)− e−r∆t
N−1∑′

j=0

Re

{
ϕ

(
jπ

b− a

)
eijπ

x−a
b−a

}
ε(j, tm+1).

Inserted in Equation (3.61), we find that ε(k, tm) consists of two parts: One related
to the local error, as for the European options, and a second related to ε(k, tm+1),
i.e.

ε(k, tm) =

∫ b

x∗
m

(ε(x;N, [a, b]) + ε̄(x, tm+1)) cos

(
kπ
x− a
b− a

)
dx, (3.62)

where

ε̄(x, tm+1) := e−r∆t
N−1∑′

j=0

Re

{
ϕ

(
jπ

b− a

)
eijπ

x−a
b−a

}
ε(j, tm+1). (3.63)

Interchanging summation in (3.63) with integration in (3.62) gives the matrix-
vector product form for the errors:

ε(tm) = ε1(tm) + e−r∆tRe {M(x∗m, b) Λ} ε(tm+1), (3.64)

where the matricesM and Λ are the same as in (3.27). Error ε1 is an N -vector with
as k-th element,∫ b

x∗
m

ε(x;N, [a, b]) cos

(
kπ
x− a
b− a

)
dx, k = 0, 1, · · · , N − 1.

Equation (3.64) explains how ε1(tm) and ε(tm+1) evolve in the backward recursion.
To bound ε1, we can repeat the steps from (3.55) to (3.59), to find:

|ε1(tm)|∞ ≤ (b− x∗m) · p(N) · exp (−(N − 1)ν) . (3.65)

For the term e−r∆tRe {M(x∗m, b) Λ} ε(tm+1), whose k-th element reads∫ b

x∗
m

ε̄(x, tm+1) cos

(
kπ
x− a
b− a

)
dx,

we start with the definition of ε̄(x, tm+1) in (3.63) and apply the Cauchy-Schwarz
inequality, as follows

(
er∆tε̄(x, tm+1)

)2 ≤ N−1∑′

j=0

(
Re

{
ϕ

(
jπ

b− a

)
eijπ

x−a
b−a

})2 N−1∑′

j=0

ε2(j, tm+1). (3.66)
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From Aj(x) and Fj(x), as defined in (3.11) and (3.12), respectively, we have

Re

{
ϕ

(
jπ

b− a

)
eijπ

x−a
b−a

}
=

1

2
(b− a)

[
Aj(x) +

∫
R\[a,b]

f(y|x) cos

(
jπ
y − a
b− a

)
dy

]
.

Since f(y|x) ∈ R+, it is clear that f(y|x) cos(α) ≤ f(y|x), and thus,(
Re

{
ϕ

(
jπ

b− a

)
eijπ

x−a
b−a

})2

≤ 1

4
(b− a)2

[
A2
j (x) + 2Aj(x)

∫
R\[a,b]

f(y|x)dy

+

(∫
R\[a,b]

f(y|x)dy

)2
 . (3.67)

Assuming now that the interval of integration is set sufficiently large, so that the
related truncation error can be neglected, and including the leading term of (3.67)
into (3.66), one finds

(
er∆tε̄(x, tm+1)

)2 ≤ 1

4
(b− a)2

N−1∑′

j=0

A2
j (x)

N−1∑′

j=0

ε2(j, tm+1).

For density functions belonging to C∞([a, b]), the series coefficients Aj(x) converge

exponentially in j, see [13], so that
∑′N−1

j=0
A2
j (x) represents the sum of a geometric

series and is therefore bounded. Define

W := max
x∈[a,b]

N−1∑′

j=0

A2
j (x).

With Assumption (3.60) one obtains:

|ε̄(x, tm+1)| ≤ 1

2
(b− a)e−r∆t

√
NWp(N)e−(N−1)ν . (3.68)

Application of the Cauchy-Schwarz inequality results in:∣∣∣∣∣
∫ b

x∗
m

ε̄(x, tm+1) cos

(
kπ
x− a
b− a

)
dx

∣∣∣∣∣ ≤ (b− x∗m)p̄(N)e−(N−1)ν , (3.69)

or, in vector form:

e−r∆t |Re {M(x∗m, b) Λ} ε(tm+1)|∞ ≤ (b− x∗m)p̄(N)e−(N−1)ν , (3.70)

where p̄(N) := 1
2 (b− a)e−r∆t

√
NWp(N). Inserting (3.65) and (3.70) in (3.64) com-

pletes the proof.

Summarizing, when the local error evolves through time, via the backward recur-
sion, the method’s convergence rate does not change. This is an indication for the
method’s stability.

Similarly, we can prove that if the local error converges algebraically, so does
ε(k, tm).

53



54
Chapter 3. Pricing Early-Exercise and Barrier Options under

Exponential Lévy Processes

Remark 3.3.1. The choice of integration range, [a, b], is quite important. An inter-
val which is chosen too small will lead to a significant integration-range truncation
error, whereas an interval which is set very large would require a large value for N
to achieve a certain level of accuracy, as determined in (3.65) and (3.70).

3.3.3 Choice of Truncation Range

We use the same definition of the truncation range as given in Chapter 2 (Section
2.5.1) but now we center the interval at x0 := ln(S0/K), i.e.

[a, b] :=

[
(ξ1 + x0)− L

√
ξ2 +

√
ξ4, (ξ1 + x0) + L

√
ξ2 +

√
ξ4

]
, (3.71)

with L ∈ [8, 12] depending on the user-defined tolerance level, TOL, as given in (3.3)
and ξ1, . . . , ξ4 being the cumulants of the underlying process as given in Section 1.2.

Here, we analyze the relation between TOL and L in (3.71) via numerical exper-
iments, aiming to determine one value of L for different exponential Lévy asset price
processes. We present the observed error for different values of L in Figure 3.1. With
N large, e.g. N = 214, the series truncation error is negligible and the integration
range error, which has a direct relation to the user-defined TOL, dominates. The re-
sults in Figure 3.1 can therefore be used as a guidance for setting parameter L, given
a tolerance TOL. Again, BS denotes the Black-Scholes model (Geometric Brownian
Motion), VG stands for the Variance Gamma model [57], CGMY denotes the model
from [19], NIG is short for the Normal Inverse Gaussian Lévy process [8], Merton
denotes the jump-diffusion model developed in [59], and Kou is the jump-diffusion
model from [48]. We see in Figure 3.1 that the integration range error decreases
exponentially with L. The use of L = 8 seems appropriate for all the Lévy processes
considered. This value is used in all numerical experiments to follow. Via experi-
ments, we also found that formula (3.71), together with a proper choice of L, defines
an appropriate truncation range for any maturity time longer than 0.1 years. For
even shorter maturities, one can use a larger value of L.

3.4 Numerical Results

We will show the method’s impressive convergence by pricing Bermudan, American
and discretely-monitored barrier options. In the following, we present numerical re-
sults for the BS, CGMY and NIG models. Extensive tests (not given here) have
demonstrated that the COS method also shows excellent performance for other Lévy
processes. The characteristic functions as well as the cumulants for several exponen-
tial Lévy asset price processes have been give in Section 1.2.

The same computer as for Chapter 1 is used for the numerical experiments below.
In order to observe the exponential error convergence, we define a ratio,

ratio =
ln
(∣∣err(2d+1)

∣∣)
ln (|err(2d)|)

, d ∈ Z+, (3.72)

where err(2d) denotes the error between reference solution and approximation ob-
tained with N = 2d. If err(N) = C1 exp(−P1N) with C1 and P1 not depending
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Figure 3.1: L versus the logarithm of the absolute errors for pricing calls by the
COS method with N = 214, T = 1 year and three different strike prices.

on N , this ratio should be equal to 2; If the error convergence is algebraic, i.e.
err(N) = C2N

−P2 with C2 and P2 not depending on N , this ratio should equal
(d+ 1)/d.

Next to the series and the integration range truncation error, another error for
Bermudan options is related to the stopping criterion of the root-searching algorithm,
i.e., Newton’s method. With an initial guess x∗m+1 = x∗m, m = M − 2, . . . , 2 (and
x∗M−1 = 0), this error becomes sufficiently small, of O(10−7) in 4 Newton iterations
and of O(10−10) in 5 iterations. In the experiments to follow, we use 5 iterations.

3.4.1 Bermudan and American Options

Here we price Bermudan put options with 10 exercise dates. Test parameters for two
test cases are given in Table 3.1. These parameters are related to the characteristic
functions presented in Table 1.1 and the cumulants from Table 1.2.

Table 3.1: Test parameters for pricing Bermudan options

Test No. Model S0 K T r σ Other Parameters

1 BS 100 110 1 0.1 0.2 –
2 CGMY 100 80 1 0.1 0 C = 1, G = 5,M = 5, Y = 1.5

The CPU times are reported in milli-seconds, and all reference values are obtained
by another method, i.e., by the CONV method from [54] (see also in Chapter 1),
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setting N = 220.
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(a) BS (Test No. 1)
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(b) CGMY with Y = 1.5 (Test No. 2)

Figure 3.2: Error versus CPU time for pricing Bermudan put options under (a) BS
and (b) CGMY model, comparing the COS and the CONV method.

The first test is for the classical BS model with as the reference value 10.479520123.
In Figure 3.2a it is shown that a highly accurate solution is obtained in less than
20 milli-seconds with exponential convergence (the log-error plot displays a straight
line). Compared to the quadrature rule based CONV method, which exhibits a
second-order convergence, we see a significant improvement in the CPU time.

As the second test, we consider a Lévy process of infinite activity, i.e., the CGMY
model with Y > 1 (Test 2 in Table 3.1). For this set of CGMY parameters it is
now well-known that PIDE-based methods have convergence difficulties [2, 73]. The
reference value is found to be 28.829781986 . . .. The performance of the COS method
for this test, shown in Figure 3.2b is highly efficient. Again, in less than 20 milli-
seconds, the solution is accurate to 9 digits, compared to the reference value. Also
here, we observe the exponential error convergence of the COS method.

Remark 3.4.1 (VG and Algebraic Convergence). In [32] and chapter 2 it was shown
that for certain sets of parameters the Variance Gamma (VG) process gives rise to
a probability density function which is not in C∞(R), and thus option pricing under
VG with these parameter sets exhibits only an algebraic convergence. This is observed
for contracts with T < ν, where ν denotes the variance of the VG model, see the
characteristic function in Table 1.1.

When dealing with Bermudan options this also implies that we will encounter
algebraic convergence when the time between two exercise dates, ∆t < ν.

As mentioned in Chapter 1, the prices of American options can be obtained by
applying Richardson extrapolation on the prices of a few Bermudan options with
small M . Let v(M) denote the value of a Bermudan option with M early exercise
dates. We will use the following 4-point Richardson extrapolation scheme,

vAM (l) =
1

21

(
64v(2l+3)− 56v(2l+2) + 14v(2l+1)− v(2l)

)
, (3.73)
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where vAM (l) denotes the approximated value of the American option.

Now we price an American option using (3.73) with the 4-point Richardson ex-
trapolation on Bermudan puts and vary the number of exercise dates. The param-
eters, presented in Table 3.2, are taken from [1] and the reference value given was
V (0) = 0.112152. We deal with the pure Lévy CGMY jump model (σ = 0) and no
dividend payment (q = 0) here.

Table 3.2: Parameters for American put options under the CGMY model

Test No. S0 K T r Other Parameters

3 1 1 1 0.1 C = 1, G = 5,M = 5, Y = 0.5

We compare the results of the COS method with those obtained by the CONV
method using the same extrapolation. For the COS method, N = 512 and the number
of Newton iterations is 5; For the CONV method N = 4096 to reach a very similar
accuracy. The accuracy of the American prices then mainly depends on parameter
d in the extrapolation (3.73). Results are summarized in Table 3.3. We can see
that large values of d give highly accurate results. The COS method in combination
with Richardson extrapolation gives, however, a very satisfactory accuracy within 75
milli-seconds.

Table 3.3: Errors and CPU times for pricing American puts under CGMY model,
Test No. 3

l in Eq. (3.73)
COS CONV

error time (milli-sec.) error time (milli-sec.)

0 4.41e-05 71.41 4.37e-05 134.4

1 7.69e-06 109.2 7.01e-06 198.0

2 9.23e-07 219.3 1.05e-06 336.7

3 3.04e-07 438.9 1.29e-07 610.9

3.4.2 Barrier Options

Now we price monthly-monitored (M = 12) up-and-out call and put options, (UOC)
and (UOP), down-and-out call and put options, (DOC) and (DOP), by the COS
method. The test parameters are in Table 3.4, again related to the characteristic
functions in Table 1.1. We solve the same problems as in [36] with the barrier level,
H = 120 for the up-and-out and H = 80 for the down-and-out options.

The numerical results under the CGMY model (Test 4) are presented in Table
3.5. The CPU times are again measured in milli-seconds, and the reference values are
obtained by the CONV method [54], with N = 215. Note that “ratio”, as presented in
the table, is different from the commonly used ratio defining the rate of convergence.
In (3.72), it is the ratio of the logarithm of two consecutive errors. This ratio should
be equal to two in the case of exponential convergence.
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Table 3.4: Test parameters for pricing barrier options

Test No. Model S0 K T r q Other Parameters

4 CGMY 100 100 1 0.05 0.02 C = 4, G = 50,M = 60, Y = 0.7

5 NIG 100 100 1 0.05 0.02 α = 15, β = −5, δ = 0.5

As expected, the COS method is more efficient for discrete barrier options than
for Bermudan options, because the barrier levels are known in advance.

Exponential error convergence is observed, as the ratios (3.72) are around 2, in
less than 5 milli-seconds with the results accurate up to 8 decimal places.

Table 3.5: Errors and CPU times for pricing monthly-monitored barrier options
under the CGMY model (Test No. 4)

Option Type Ref. Val. N time (milli-sec.) error ratio

DOP 2.339381026

24 2.8 2.23e-1 –

25 2.7 1.98e-2 2.6

26 3.4 3.23e-4 2.0

27 4.6 7.20e-9 2.3

DOC 9.155070561

24 2.7 5.06e-2 –

25 2.9 5.67e-3 1.7

26 3.3 1.99e-4 1.6

27 4.7 5.55e-9 2.2

UOP 6.195603554

24 3.0 5.58e-2 –

25 2.9 8.98e-3 1.6

26 3.6 1.96e-4 1.8

27 4.8 2.23e-8 2.1

UOC 1.814827593

24 2.8 3.38e-1 –

25 2.8 1.24e-2 4.0

26 3.5 3.45e-6 2.9

27 4.7 1.93e-8 1.4

Next, we focus on the NIG model (Test 5) and repeat the barrier option tests in
Table 3.6. To reach the same level of accuracy as for CGMY, we need a slightly larger
value of N under the NIG model. This is because the NIG density function is more
peaked with the parameters from Table 3.4, as shown in Figure 3.3a. Consequently,
one typically requires some more terms in the series to reconstruct the density func-
tion from its Fourier-cosine series expansion. Nevertheless, the performance of the
COS method is still excellent: In less than ten milli-seconds, the accuracy is up to
the 7-th decimal place.

Note that, the smaller the value of ∆t, the larger the value of N needs to be chosen
to reach the same level of accuracy. This is because many Lévy processes have highly
peaked density functions for a very small ∆t. An example is presented in Figure
3.3b, where the recovered density functions of the NIG model for monthly-, weekly-
and daily-monitored barrier options are plotted. We can see that for ∆t = 1/252
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Table 3.6: Errors and CPU times for pricing monthly-monitored barrier options
under the NIG model (Test No. 5)

Option Type Ref. Val. N time (milli-sec.) error ratio

DOP 2.139931117

26 3.1 4.25e-2 –

27 3.7 1.28e-3 2.1

28 5.4 4.65e-5 1.5

29 8.4 1.39e-7 1.6

210 14.7 1.38e-12 1.7

DOC 8.983106036

26 3.1 1.26e-2 –

27 3.7 1.09e-3 1.6

28 5.3 3.99e-5 1.5

29 8.3 9.47e-8 1.6

210 14.8 5.61e-13 1.7

UOP 5.995341168

26 3.4 4.84e-3 –

27 3.7 1.14e-3 1.3

28 5.3 7.50e-5 1.4

29 8.3 1.52e-7 1.7

210 14.7 1.24e-12 1.7

UOC 2.277861597

26 3.1 3.83e-2 –

27 3.7 1.10e-3 2.1

28 5.5 8.67e-5 1.4

29 8.6 7.98e-8 1.7

210 15.1 7.38e-13 1.7
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Figure 3.3: The recovered density functions for (a) the NIG and the CGMY models
and monthly-monitored barrier options and (b) the NIG model for monthly-, weekly-
and daily-monitored barrier options.
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the density is highly peaked, compared to ∆t = 1/12. Nevertheless, as long as the
density function is in C∞(R), the error convergence rate is exponential.

We now price daily-monitored DOP and DOC options under the NIG model with
the parameters from Test 5 in Table 3.4. The reference values are taken from [36].
The results with the COS method are summarized in Table 3.7. We observe that,
as expected, the convergence rate of the COS method is exponential, but the values
of N are somewhat larger than in the previous numerical experiments. The almost
linear computational complexity of the method can clearly be observed from this
table.

Table 3.7: Errors and CPU times for pricing daily-monitored (M = 252) barrier
options under the NIG model (Test 5).

Option Type Ref. Val. N time (milli-sec.) error ratio

DOP 1.88148753

29 130 1.25e-2 –

210 230 2.20e-3 1.4

211 460 1.32e-4 1.5

212 1170 1.98e-6 1.5

213 2560 4.70e-8 1.3

DOC 8.96705248

29 140 3.67e-4 –

210 230 9.18e-5 1.2

211 460 3.14e-5 1.1

212 950 2.00e-6 1.3

213 2430 5.73e-9 1.4

For results accurate up to the 4th digit, the COS method needs about 0.2 seconds
for the daily-monitored DOP as well as for the DOC.

Remark 3.4.2 (Comparison to Hilbert Transform Method). The complexity of the
COS method is O((M − 1)N log2(N)), as the length of the induction loop (in which
the FFT is employed) is M − 1, and the final step uses N operations. Additionally,
its error convergence is exponential for models with density function in the class
C∞([a, b]). By considering both complexity and error convergence, the COS method
is as efficient as the Hilbert transform method in [36]. The experiments above show
that the COS method is as fast in terms of CPU time (although we have a slower CPU
and the code is written in Matlab). The Hilbert transform based method, however,
cannot be used to price Bermudan options, as the information of the early-exercise
points is not known in advance. Moreover, the COS method uses more-or-less the
same CPU time for different types of barrier options, which is not the case in [36].

3.4.3 Extreme Tests

From Bermudan to American options

In this section, we discuss the behavior of the error if M , the number of early-exercise
dates, goes to infinity. We also check how the Bermudan option prices converge to
their American option counterparts.
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American options can, in this framework, be priced basically by two approaches.
One can either price a Bermudan option with very many exercise dates, or employ
extrapolation methods. Whereas the latter approach is much more practical, in terms
of CPU time, and has been used in Section 3.4.1, the former approach is interesting
from a stability point-of-view. Here we therefore consider the pricing of Bermudan
options with many exercise dates, for reasons of stability. It is interesting to consider
the limit case, and check whether the method presented is still applicable.

The series truncation error, ε2, may be problematic at first sight, for ∆t →
0. For small time intervals the transitional probability density function tends to
become highly peaked. However, by letting the number of terms in the Fourier-
cosine expansion increase, for ∆t→ 0, the method can deal with such highly peaked
functions, as long as they are in C∞[a, b]. Moreover, the size of the integration range
is, by means of the cumulants involved in (3.71), automatically adapted to the shape
of the function.

Density recovery: influence of adapted truncation range

From the discussion above it is clear that the recovery of the probability density
functions of the Lévy processes, for ∆t → 0, from their Fourier cosine series expan-
sion, is crucial. Figure 3.4 shows the importance of the proper adaptive choice of
the integration range, by means of the cumulants in (3.71). For several values of ∆t,
with even ∆t = 10−7, the density recovery with a fixed and an adapted integration
range are compared, for GBM as well as for NIG. It is clear that the adaptive choice
of integration range is superior for the recovery. Whereas, we see that for GBM
the density can be recovered on the adapted integration range without significant
difficulties, when ∆t → 0, it is less trivial for the NIG process. For this latter pro-
cess, the recovery gets difficult for the smallest time interval, even with the interval
adaptation.

Stability of the method

Based on Theorem 3.3.1 and its proof in Section 3.3.2, we saw an exponential con-
vergence in N . Inequality (3.70) indicates that the proportionality constant in the
convergence estimate may grow with the number of exercise dates, M , so that with
N fixed the error may increase substantially for increasing M .

However, the error convergence is as fast as exponential in N , so that one can
achieve very high accuracy by slightly increasing N .

We show here, by means of some numerical experiments that the resulting error
in V̂(t1) is bounded. In Figure 3.5, we present the convergence for Bermudan call
options under GBM with a varying number of exercise dates with respect to the num-
ber of terms in the cosine series, N . Shown is the logarithm of the error, log10 |err|,
versus N . The dividend rate is set to zero, so that there are no early-exercise oppor-
tunities, i.e. x∗m = b for m = 0, 1, · · · ,M − 1, and thus, the Bermudan call options
have the same values as their European counterparts. The other parameters are as
in Table 3.1. The truncation range is defined according to the description in Section
3.3.3.

We see a convergence of extreme accuracy, because the reference values are also
obtained by the COS method for European options, and therefore the error related
to the truncation range cannot be observed.
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Figure 3.4: The recovered density functions for ∆t → 0; (a) the GBM model with
fixed and adapted integration range, (b) the NIG model with fixed and adapted
ranges.
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Figure 3.5: Error convergence for increasing M and N .

For two maturities, T = 1 year and short maturity T = 0.1 year, relatively large
values of M do not show any significant impact on the error convergence with respect
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to N . Merely, the start of convergence shifts to larger values of N as M increases,
which confirms the intuition that higher values for N can compensate for the higher
peakedness of the density function. With N small, however, the error presented
remains bounded.

3.5 Conclusions and Discussion

In this chapter, we have generalized the COS option pricing method, based on
Fourier-cosine expansions, to Bermudan and discretely-monitored barrier options.
The method can be used whenever the characteristic function of the underlying price
process is available (i.e., for regular affine diffusion processes and, in particular, for
exponential Lévy processes).

The main insights are that the COS formula for European options from [32] can be
used for pricing Bermudan and barrier options, if the series coefficients of the option
values at the first early-exercise (or monitoring) date are known. These coefficients
can be recursively recovered from those of the payoff function. The computational
complexity isO((M−1)N log2N), for Bermudan and barrier options withM exercise,
or monitoring, dates. The COS method exhibits an exponential convergence in N
for density functions in C∞[a, b] and an impressive computational speed. With a
small value of N , it typically produces highly accurate results. For example, with
N = 128, results are accurate up to the 8th digit in less than 20 milli-seconds for
10-times exercisable Bermudan options and less than 10 milli-seconds for monthly-
monitored barrier options.

However, the smaller the time interval between two consecutive dates, the more
peaked the underlying density function, and thus larger values of N are required for a
similar accuracy. For problems with small time intervals, like daily-monitored barrier
options, the COS method shows a similar performance as the Hilbert transform based
method [36].

Compared to the CONV method [54], which is one of the fast methods for Bermu-
dan options, the COS method converges significantly faster to the same level of accu-
racy. Pricing American options can be done by a Richardson extrapolation method
on Bermudan options with a varying number of exercise dates.
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Chapter 4

Recovering Survival
Probability and Pricing CDSs

4.1 Introduction

This chapter contains essentially the contents of the paper [31].

Credit default swaps (CDSs), the basic building block of the credit risk market,
offer investors the opportunity to either buy or sell default protection on a reference
entity. The protection buyer pays a premium periodically for the possibility to get
compensation if there is a credit event on the reference entity until maturity or the
default time, which ever is first. If there is a credit event the protection seller covers
the losses by returning the par value. The premium payments are based on the CDS
spread.

The spread of CDSs depends on the default probability of the underlying reference
entity and it is possible to back out the market view of default probabilities for
individual names from quoted market prices. It is therefore essential to be able to
use advanced models in credit default modeling.

Lately Lévy models have attracted attention in the field of credit risk, see e.g.
[17], [18] and [58]. In [18] CDSs are priced using the structural approach with a
Variance Gamma model driving the firm value. To calculate the default probabilities
they derive the partial integro-differential equation (PIDE) satisfied by the barrier
option price and solve the equation by adapting a numerical scheme developed by [42]
for pricing American options. If the driving Lévy process in the firm value model only
has negative jumps, i.e., it is a single-sided or spectrally negative Lévy process, then
the default probabilities can be found by numerically performing a double Fourier
inversion as shown in [58]. To price path dependent options on assets driven by jump
diffusions with exponentially distributed Poisson jumps with the use of fluctuation
identities from the theory of Lévy processes has been worked out in [53] and [50, 51].
The resulting price formulas are of relatively simple explicit form when written as
functions of the Laplace variable.

To price vanilla as well as exotic options on Credit Default Swaps can easily be
set up in a structural model. In [47], the single-sided firm value models were used
to generate dynamic CDS spreads by mapping the firm value paths to CDS spreads.
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In this way a Monte Carlo engine to price options on CDSs could be set up to
price (exotic) options on CDSs. Having a method to generate dynamic CDS spreads
available, it is also possible to value so called Constant Maturity CDSs, where the
spread is reset periodically to the market spread of a CDS with constant maturity
tenor, as described in [46].

Here we take a structural approach towards the modeling of credit risk, following
the same methodology as [11], which defines the credit event to be the first time the
value of the reference entity is below a predefined lower barrier representing the total
debt of the firm. In contrast to [11], which used a Geometric Brownian motion to
drive the firm value, we set up a firm value model driven by an exponential Lévy
process. In particular, we study the model developed by [19] (CGMY), and the
Normal Inverse Gaussian (NIG) processes.

We will show that default probabilities can be efficiently recovered from the
Fourier-cosine series expansion of the underlying density, following the path of the
COS method for European options in [32] and that for Bermudan options and dis-
cretely monitored barrier options in [33]. We can price a single CDS within fractions
of a second and several CDSs in less than half a second with a high accuracy. Switch-
ing from one underlying model to another is furthermore as easy as switching from
one characteristic function to another. This enables us to calibrate the Lévy models
to market quotes of CDS prices easily and efficiently.

The chapter is organized as follows. In Section 4.2 we present the mechanics and
valuation of CDSs and introduce the Lévy firm value model. The COS method for
survival probabilities is described in Section 4.3. In Section 4.4, the relevant values
of the parameters in the COS method are determined and discussed in detail. A
calibration study and some numerical examples are presented in Section 4.5. The
paper ends with conclusions in Section 4.6.

4.2 Lévy Default Model and Valuation of CDSs

In this chapter we follow the approach taken by [11] and model the default event of
a firm as the first time the firm value crosses a low barrier.

Let us denote the risk neutral value of a firm at time t as vt, and assume that
under an admissible pricing measure, Q, it follows an exponential Lévy process, i.e.

vt = v0 exp(Xt), t ≥ 0,

with Xt being a Lévy process, which has independent and stationary increments and
is stochastically continuous. We will assume that Q is the mean-correcting Martingale
measure, such that Xt = µt + Yt, where µ = r − log(ϕY (−i)), i2 = −1, with ϕY (·)
being the characteristic function of Yt and r being the risk-free interest rate (assumed
to be constant).

Of our particular interest here are the cases when Yt is either the CGMY or the
NIG process.

In the calibration study, we add a diffusion part to the NIG model and we denote
this extended model NIG-BM. By doing this both the CGMY and the NIG-BM model
are then having four parameters. More details on the diffusion part are discussed later
on. As a result, the dynamics of the NIG-BM model are driven by four parameters:
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[σ, α, β, δ], where σ is the volatility of the diffusion, and the characteristic function
has been given in Table 1.1 of Section 1.2.1.

In what follows, we use ϕlevy to denote the characteristic functions of Lévy pro-
cesses.

4.2.1 Lévy Default Model

For a given recovery rate, R, default occurs the first time the firm’s value is below
the “reference value” RV0. In particular, the time of default is defined as

τdef := inf{t ≥ 0 : vt ≤ RV0}.

If we focus on
Xs = ln(vs/v0),

then the risk-neutral survival probability in the time period (0, t], Psurv(t) = PQ(τdef >
t), satisfies

Psurv(t) = PQ (Xs > lnR, for all 0 ≤ s ≤ t)

= PQ

(
min

0≤s≤t
Xs > lnR

)
= EQ

[
1

(
min

0≤s≤t
Xs > lnR

)]
(4.1)

where the indicator function 1(A) equals 1 if the event A is true and zero otherwise,
and the subindex Q refers to the fact that we are working in a risk-neutral setting
(under the mean-correcting Martingale measure). Eq. (4.1) is nothing but the price
of a Binary Down-and-Out Barrier (BDOB) option without discounting. This is a
key observation that we will exploit in the remainder of this chapter.

Different methods can be applied to find the default probabilities. For single-sided
Lévy models, where the firm value only has negative jumps, the default probabilities
can be calculated using the Wiener-Hopf factorization and a double Fourier inversion
as shown in [58]. In case of VG, the default probabilities can be calculated by solving
a PIDE as described in [18].

In this chapter we use the COS method to compute the survival probabilities and
thus the CDS spreads under Lévy models. It is called the COS method and is based
on the Fourier cosine-series expansion of the underlying density ([32]).

4.2.2 Valuation of Credit Default Swaps

Given a time period, say, (0, τ ], we assume that there are only a finite number of
observing dates, T := {τ0, τ1, τ2, · · · , τM} with τm := m∆τ (m = 0, 1, · · · ,M) and
∆τ := τ/M (and therefore τ0 = 0 and τ = τM ), on which the firm value is monitored,
such that

Psurv(τ) = EQ

[
1
(
Xτ1 ∈ [lnR,∞)

)
· 1
(
Xτ2 ∈ [lnR,∞)

)
· · ·1

(
XτM ∈ [lnR,∞)

)]
.

(4.2)
This coincides with the pricing formula for discrete digital options without discount-
ing.
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Equation (4.2) can be re-written as a recursive formula as follows. The joint
probability density of Xτ1 , Xτ2 , · · · , XτM follows

fXτ1 ,Xτ2 ,··· ,XτM (xτ1 , xτ2 , · · · , xτM )

= fXτM |Xτ1 ,Xτ2 ,··· ,XτM−1
(xτM |xτ1 , xτ2 , · · · , xτM−1

)

· fXτM−1
|Xτ1 ,Xτ2 ,··· ,XτM−2

(xτM−1
|xτ1 , xτ2 , · · · , xτM−2

)

· · · · · fXτ1 |Xτ0 (xτ1 |xτ0).

The Markov property simplifies the above to

fXτ1 ,Xτ2 ,··· ,XτM (xτ1 , xτ2 , · · · , xτM )

= fXτM |XτM−1
(xτM |xτM−1

) · fXτM−1
|XτM−2

(xτM−1
|xτM−2

)

· · · · · fXτ1 |Xτ0 (xτ1 |xτ0)

= ΠM
m=1fXτm |Xτm−1

(xτm |xτm−1
),

where fXτm |Xτm−1
(·|·) denotes the conditional probability density of Xτm given

Xτm−1
. Inserting it into (4.2), one yields

Psurv(τ) =

∫
RM

ΠM
m=11

(
xτm ∈ [lnR,∞)

)
fXτm |Xτm−1

(xτm |xτm−1
)dRM

=

∫ +∞

lnR

· · ·
∫ +∞

lnR

· · ·
∫ +∞

lnR

fXτM |XτM−1
(xτM |xτM−1

)dxτM · · ·

· fXτm |Xτm−1
(xτm |xτm−1

)dxτm · · ·

· fXτ1 |Xτ0 (xτ1 |xτ0)dxτ1 .

Define
p(x, τM ) := 1.

We then have the following recursive relation:{
p(x, τm) :=

∫∞
lnR

fXτm+1
|Xτm (y|x)p(y, τm+1) dy, m = M − 1, · · · , 2, 1, 0,

Psurv(τ) := p(xτ0 , τ0),
(4.3)

where xτ0 = ln(v0/v0) = 0 and τ0 = 0. p can be interpreted as value of the virtual
digital option without discounting.

This is the starting point of the numerical method derived in the next section.
Let us denote by T the maturity of a CDS. The fair spread, C, of a CDS at the

initialization date is the spread that equalizes the present value of the premium leg
and the present value of the protection leg, i.e.

C =
(1−R)

(∫ T
0

exp(−r(s)s)dPdef (s)
)

∫ T
0

exp(−r(s)s)Psurv(s)ds
, (4.4)

where r(t) is the risk-free discount rate over the time period (0, t], and Pdef (t) and
Psurv(t) are the probability of default and the probability of survival, respectively, in
the time period (0, t]. Note that in case of a default event the protection buyer is
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receiving (1 − R) for every insured currency unit, R being the recovery. Eq. (4.4)
indicates that the price of a CDS depends on the survival probability (and of course
on the default probability) of the firm.

It is in principle possible to model a stochastic recovery rate, but here we assume
it to be constant.

When the interest rate is assumed to be constant in [0, T ], (4.4) can be simplified,
via integration-by-parts, to

C = (1−R)

(
1− e−rTPsurv(T )∫ T
0
e−rsPsurv(s)ds

− r

)
, (4.5)

where Psurv(t) = 1− Pdef (t) is used, see also [18, 58].
The price of a CDS is based on a series of survival probabilities on different time

intervals. To see this, we discretize (4.5) using the composite trapezoidal rule, i.e.

Ctrap := (1−R)

(
1− e−rTPsurv(T )∑J

j=0 wje
−rtjPsurv(tj)∆t

− r

)
= C + εc, (4.6)

where εc denotes the discretization error of the numerical integration rule (discussed
later), and wj = 1

2 for j = 0 and j = J and wj = 1 otherwise. Eq. (4.6) suggests
that a CDS price depends on a sequence of survival probabilities defined on the
sequence of time intervals (0, t0], (0, t1], . . . , (0, tJ ], with tj := j∆t and ∆t := T/J .
We will subsequently show that these survival probabilities can be approximated
simultaneously in (almost) linear complexity.

4.3 Recovering Survival Probability with the COS
Method

Let us start from the assumption that the underlying probability density fXt|Xs(y|x)
with 0 ≤ s ≤ t satisfies ∫

R\[a,b]
fXt|Xs(y|x)dy < TOL,

where TOL is some predefined tolerance for numerical errors, e.g. 10−14, and the
interval [a, b] ∈ R is called the truncation range. The idea then sets in that any
smooth function (such Lévy densities in many cases) defined on a finite interval can
be accurately recovered from its Fourier-cosine series.

Recall that the Fourier-cosine series coefficients of the density fXt|Xs(y|x) of a
Lévy process are related to the characteristic function as follows:

fXt|Xs(y|x) =
2

b− a
∑′N−1

n=0
Re

{
ϕlevy

(
nπ

b− a
, t− s

)
einπ

x−a
b−a

}
cos

(
nπ

y − a
b− a

)
+ εf ,

(4.7)
for x, y ∈ [a, b] ⊂ R, and where

∑′
, again, denotes that the first term in the summa-

tion is halved.
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Efficiency of a numerical algorithm is best measured by the error convergence
rate. Fast error convergence guarantees that one can always achieve satisfactory
accuracy by slightly increasing the number of computations.

Detailed error analysis, along with various experiments, has been given in [32]. It
shows that error εf in (4.7) consists of an integration-range related truncation error
and a series truncation error. When the truncation range, [a, b], is sufficiently large,
the series truncation error dominates. Since a Fourier series exhibits an exponential
convergence for smooth functions (in C∞[a, b] with nonzero derivatives), εf converges
exponentially for processes governed by smooth probability densities (or, equivalently,
for processes whose characteristic functions have rapidly decaying tails).

As for the truncation interval [a, b], we use the same definition as given in (3.3)
of Chapter 3, i.e.,

[a, b] :=

[
ξ1 − L

√
ξ2 +

√
ξ4, ξ1 + L

√
ξ2 +

√
ξ4

]
, (4.8)

where ξj is the jth cumulant of Xt. This range is found to be sufficiently large
to make the truncation error of order 10−14 as was illustrated in Chapter 3. As
such, with the above truncation interval and for a small N (e.g. less than 210), Eq.
(4.7) produces a highly accurate approximation (with an error of order O(10−7)) for
probability densities that are in C∞[a, b] and with nonzero derivatives.

As will be shown in the following sections, a density of an asset value defined on
a very short time interval, such as one week (1/48 year), is of our main interest here.
In this case, some stochastic processes yield static distributions with sharp peaks in
the probability density functions. A typical example is the VG model. In [32], it has
been shown that for a peaked VG density, the convergence of Fourier-cosine series
(and thus the COS method) is no longer exponentially but geometrically, i.e. the
error is of order O(N−d) with d ∈ R+. For other models like CGMY and NIG-BM,
it is shown in Section 3.4.3 that the COS method still displays a fast convergence,
even when the time interval, ∆t, decreases to 10−7. To get a first impression of the
performance of the COS method for peaked densities, in Figure 4.1 we compare the
recovered VG density of one week with the analytic solution. The graphs indicate
that recovered densities match very well with the closed-form expressions. Note that
the error can be further reduced with larger values of N , which is due to the regular
convergence of Fourier-cosine series for continuous functions. Here N is set to 214.

4.3.1 The COS Formula of Survival Probability

With the same rule for the range of integration as in (4.8), Equation (4.3) can be
rewritten as

p(x, τm) =

∫ b

lnR

fXτm+1
|Xτm (y|x)p(y, τm+1)dy + εp, (4.9)

where error εp, due to the size of the integration interval, is negligible (as p(y, τm+1) >
0 and

∫
R p(y, τm+1)dy = 1, error εp is of the same order as

∫
x∈R\[a,b] fXτm+1

|Xτm (y|x)dy).

As a second step, we replace the conditional density in (4.9) by (4.7), so that

p(x, τm) =
∑′N−1

n=0
φn(x) · Pn(τm+1) + εcos, (4.10)
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Figure 4.1: Recovered VG density vs. closed-form solution; t = 1/48, r = 0.04,
σ = 0.12, θ = −0.14 and ν = 0.02

where εp is included in εcos. For m = 0, 1, . . . ,M − 1, we have:

Pn(τm+1) :=
2

b− a

∫ b

lnR

cos

(
nπ

y − a
b− a

)
p(y, τm+1) dy, (4.11)

and

φn(x) := Re

{
ϕlevy

(
nπ

b− a
,∆τ

)
einπ

x−a
b−a

}
. (4.12)

Eq. (4.10) is in essence the COS formula for discrete barrier options (without dis-
counting). By εcos we denote the error in the COS formula, in which εf in (4.7) is
the main error contribution.
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Finally, the COS formula for the survival probability reads{
Psurv(τ) = p(x = 0, τ0).

p(x, τ0) =
∑′N−1

n=0 φn(x) · Pn(τ1).
(4.13)

Equation (4.13) suggests that, to get the survival probability, one needs {Pn(τ1)}N−1
n=0 ,

the cosine coefficients of p(x, τ1), that only depend on {Pn(τ2)}N−1
n=0 in Equations (4.10)

and (4.11), and so forth.
In what follows, we will demonstrate that {Pn(τm)}N−1

n=0 can be recovered from
{Pn(τm+1)}N−1

n=0 in almost linear computational complexity, and that {Pn(τ1)}N−1
n=0

can therefore be recursively recovered from {Pn(τM )}N−1
n=0 , the cosine coefficients of

p(x, τM ).

4.3.2 Backward Induction

Starting from the definition of Pn(τm) in (4.11), we replace p(y, τm) by (4.10) and
insert (4.12) to obtain

Pn(τm) =
∑′N−1

k=0
Re

{
ϕlevy

(
kπ

b− a
,∆τ

)
· ωn,k

}
Pk(τm+1), (4.14)

where n = 0, 1, · · · , N − 1, and

ωn,k :=
2

b− a

∫ b

lnR

eikπ
y−a
b−a cos

(
nπ

y − a
b− a

)
dy.

In matrix-vector-product form, (4.14) becomes

P(τm) = Re {Ω Λ} P(τm+1), (4.15)

where we use bold-faced letters to denote vectors, e.g. P(τm) is the vector
(P0(τm), P1(τm), . . . , PN−1(τm))T . “Ω Λ” denotes a matrix-matrix multiplication
with Ω being the matrix with elements {ωn,k}N−1

n,k=0 and Λ a diagonal matrix filled

by
{
ϕlevy

(
kπ
b−a ,∆τ

)}N−1

k=0
. By applying (4.15) recursively, i.e. backwards in time,

we obtain the induction formula for P(τ1):

P(τ1) = (Re {Ω Λ})M−1
P(τM ) (4.16)

with P(τM ) admitting an analytic solution since, for n = 0, 1, · · · , N − 1,

Pn(τM ) :=
2

b− a

∫ b

lnR

cos

(
nπ

y − a
b− a

)
dy.

Straight-forward computation of (4.16) is time-consuming. However, fortunately
an efficient valuation technique exists.

From their definition, we know that the Fourier-cosine coefficients of real-valued
functions are also real-valued, so that we can expand (4.16) into a recursive matrix-
vector-product. For example, if there are 3 monitoring dates, we need to compute

P(τ1) = Re {Ω [Λ Re {Ω [Λ Re {Ω [Λ P(τ3)]} ]} ]} .
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Note that “Λ times vector P(τ3)” can be transformed into an element-wise multipli-
cation of two vectors as Λ is a diagonal matrix. Similarly, for M monitoring dates,
we have

P(τ1) = Re {Ω [Λ · · · Re {Ω [Λ Re {Ω [Λ P(τM )]} ]} ]} . (4.17)

Furthermore, matrix Ω has a special structure, see [33]:

Ω = H + T,

where

H =


w0 w1 w2 · · · wN−1

w1 w2 · · · · · · wN
...

...
wN−2 wN−1 · · · w2N−3

wN−1 · · · w2N−3 w2N−2


N×N

, (4.18)

is a Hankel matrix, and T is a Toeplitz matrix:

T =


w0 w1 · · · wN−2 wN−1

w−1 w0 w1 · · · wN−2

...
. . .

...
w2−N · · · w−1 w0 w1

w1−N w2−N · · · w−1 w0


N×N

, (4.19)

with

wj :=


(b− lnR)
b− a j = 0,

− iπ ·
exp (ijπ)− exp

(
ij

(lnR− a)π

b− a

)
j j 6= 0.

(4.20)

It is well-known that matrix-vector products with the matrix being either a Hankel
or a Toeplitz matrix can be transformed into a circular convolution of two vectors.
Therefore, the FFT algorithm can be applied, and thus the recursive matrix-vector
products in (4.17) can be computed in O((M − 1)N log2(N)) operations.

Remark 4.3.1. Computational effort can be saved further if we compute several
survival probabilities simultaneously, in one computation. For example, suppose that
we have two time intervals (0, t1] ⊂ (0, t2]. We can then define the time partitioning
on (0, t2] in such a way that t1 is exactly on the grid, e.g., t1 = λt2/M with λ being
a positive integer less than M . We now find that

P(τ1; t1) ≡ P(τM−λ+1; t2).

Thus, the Fourier-cosine coefficients of the survival probability on (0, t1] can be re-
covered at no cost during the computation of Psurv(t2).

Remark 4.3.2. As shown in (4.14), to apply this method for more general processes,
the underlying density fXτm+1

|Xτm (xτm+1
|xτm) should have a characteristic function

which satisfies φ(ω|xτm) = φ(ω|0)eiωxτm , i.e. xτm should be easily separated from the
kernel ΩΛ, so that the FFT algorithm can be employed for fast computation. This is
the case for the Lévy processes considered in this article.
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4.4 Choice of Parameters and Error Analysis

To use (4.13) for CDS spreads, we need to determine three relevant parameters: N ,
the number of terms of the cosine series expansion; M , the number of monitoring
dates and J , the number of quadrature points to discretize the integrals in (4.4).
These parameter values are based on the following insights.

4.4.1 Local Error Convergence

The choice of N is comparatively simple, as N is only related to the error convergence
of the COS reconstruction of the underlying probability density, which is directly
related to the convergence rate of its Fourier-cosine series expansion. A detailed
error analysis of εcos has been given in Section 2.4 already and analysis of the error
propagation in the recursive induction in Section 3.3.

For example, as Figure 4.2 suggests, the convergence speed of the absolute errors
is exponential, and with N = 210 the errors are substantially smaller than 1 basis
point.
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Figure 4.2: Convergence of Psurv(∆τ = 1/48) w.r.t. the number of terms in the
cosine series expansion (N) for NIG-BM and CGMY; Parameters are given in Table
4.1.

4.4.2 Number of Monitoring Dates and Integration Points

From a practical point of view, all CDSs should be monitored daily, i.e. the mesh
size in time, ∆τ , has to be 1/252 years if there are 252 working days per year. This
is equivalent to setting M = 2520 for a CDS which matures in 10 years. Such values
for M make the overall computation expensive for calibration purposes.
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However, one can employ larger values of ∆τ at the cost of some accuracy. In [49]
the convergence of the price of discrete barrier options with m monitoring dates
to the price of the equivalent continuous barrier option was discussed within the
Black-Scholes model. A proof of convergence under Lévy processes is not available,
however, via various numerical experiments under these processes, we have observed
a regular convergence pattern in the prices of discrete barrier options w.r.t. the
number of monitoring dates. We observed that the survival probabilities computed
with a coarser time step converge to those with ∆τ = 1/252.

Experiments give some evidence that this convergence is found for extreme pa-
rameter settings as well. An example can be found in the Series 8 iTraxx quotes for
any component company (during the credit crunch of early 2008). In Table 4.1 the
calibrated parameters for “ABN AMRO” on February 20, 2008 under NIG-BM and
CGMY are given. The corresponding market quotes for “ABN AMRO” on February
20, 2008 are given in Table 4.2.

Table 4.1: Calibrated parameters for “ABN AMRO Bank” on February 20, 2008

Model R T r σ Other Parameters

NIG-BM 0.4 1 0.04 0.206 α = 3.043, β = −2.38, δ = 0.044

CGMY 0.4 1 0.04 0 C = 0.038, G = 0.60, M = 11.10, Y = 1.32

Table 4.2: CDS spreads for “ABN AMRO Bank” on February 20, 2008

Maturity (years) 1 3 5 7 10

CDS spread (bps) 88.4 109.1 126.2 128.8 121.0

The convergence of the survival probabilities for the example in Table 4.1 is
displayed in Figure 4.3. One can see that the difference between the weekly-monitored
survival probabilities (∆τ = 1/48) and the daily-monitored versions (∆τ = 1/252) is
at most 2 basis points. This difference is smaller when the parameter values are less
extreme. Therefore, we use ∆τ = 1/48, or M = 48T , in the calibration to follow.

To get an idea on how fast Psurv converges w.r.t. M , we need to examine the
structure of the matrices Ω and Λ in (4.17). According to its definition, Ω is a
constant matrix that does not depend on the underlying model, nor on its parameters,
whereas the diagonal matrix Λ does. The elements on the diagonal of Λ are defined as
ϕlevy(kπ/(b− a),∆τ), so that the convergence rate of Psurv w.r.t. M solely depends
on how fast the characteristic function decays.

For the number of points used in the trapezoidal rule (J) in (4.6), we find that
the computed CDS spreads are not very sensitive to the size of J . Therefore, we use,
in the calibration to follow, J = M/4, which gives only small differences (less than
0.1 basis point as shown in Figures 4.4 and 4.5) to the results computed with J = M
integration points. The second order convergence of the trapezoidal rule is confirmed
in the righthand side pictures of the Figures 4.4 and 4.5.

75



76 Chapter 4. Recovering Survival Probability and Pricing CDSs

50 100 150 200 250

0.985

0.9852

0.9854

0.9856

0.9858

0.986

0.9862

0.9864

0.9866

0.9868

0.987

1/ ∆ τ

S
ur

vi
vi

al
 P

ro
ba

bi
lit

ie
s 

un
de

r 
N

IG
−

B
M

 

 
∆ τ > 1/252
∆ τ = 1/252, Daily−monitored

(a) NIG-BM

50 100 150 200 250

0.985

0.9852

0.9854

0.9856

0.9858

0.986

0.9862

0.9864

0.9866

0.9868

0.987

1/ ∆ τ

S
ur

vi
vi

al
 P

ro
ba

bi
lit

ie
s 

un
de

r 
C

G
M

Y

 

 
∆ τ > 1/252
∆ τ = 1/252, Daily−monitored

(b) CGMY

Figure 4.3: Convergence of the 1-year survival probability w.r.t. ∆τ with parameters
given in Table 4.1.

4.5 Calibration

We investigate the performance of the proposed numerical scheme to calculate the
CDS spreads by calibrating the NIG-BM and the CGMY models to a set of CDS
prices.

4.5.1 Calibration Setting

The data sets are the weekly quotes from iTraxx Series 7 (S7) and 8 (S8). We have
chosen to calibrate the models to spreads for CDSs with maturity 1, 3, 5, 7, and 10

76



4.5. Calibration 77

10 20 30 40

88.32

88.325

88.33

88.335

88.34
C

D
S

 s
pr

ea
ds

J, Number of Trapezoidal points

 

 
CDS(J<=M)
CDS(J=M)

(a) Convergence of CDS spreads w.r.t. J

1 1.5 2 2.5 3 3.5 4
−4

−3.5

−3

−2.5

−2

−1.5

lo
g 10

 |C
D

S
(J

<
=

M
) 

−
 C

D
S

(J
=

M
)|

d, J=3*2d

(b) Second order convergence of the trape-
zoidal rule

Figure 4.4: Convergence of the CDS spreads w.r.t. the number of points used in the
trapezoidal rule (J) under NIG, with parameters given in Table 4.1.
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Figure 4.5: Convergence of the CDS spreads w.r.t. the number of points used in the
trapezoidal rule (J) under CGMY, with parameters given in Table 4.1.

years. This study makes use of 106 firms that are common to both series. For the
chosen trading dates, no market quotes are missing for any firm, i.e., we have quotes
for all maturities for all firms on each of the trading dates.

As the risk-free discount rate we have used the averaged EURIBOR swap rates.
We deal with the well-known ill-posedness of the inverse problem in the calibration

framework (see, for example, [24]) by defining the objective function to be the root
mean square error (RMSE) plus a regularization term, i.e.

Fobj = RMSE + γ · ||X2 −X1||2,

where

RMSE =

√∑
CDS

(market CDS spread−model CDS spread)2

number of CDSs on each day
,
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|| · ||2 denotes the L2–norm, and X2 and X1 are the parameter vectors of two data
sets. This kind of objective function also gives parameter consistency over time.

By the weighting factor γ, the regularization term influences the difference be-
tween two measures on two consecutive dates. This parameter can also be defined
as a vector of the same length as X2 and X1, if the sensitivities of the CDS values
to the component parameters differ significantly in magnitude. In that case, “·” de-
notes the inner product of two vectors. With the objective function above, we aim
to define a satisfactory measure, which fits the market data well and is – more or less
– time-invariant.

Note that the choice of γ in the objective function has a significant impact on
the quality of the calibration fit. If the weighting on the regularization term is too
high, the RMSE increases; If the weighting is too small, the parameter values are not
stable over time. We use γ = [2, 0.5, 0.5, 0.5] for the NIG-BM model, corresponding
to the set [σ, α, β, δ]. More weight is then assigned to σ because the initial calibration
revealed that the CDSs are more sensitive to σ than to the other three parameters.
As for the CGMY models, we employ γ = [2, 0.5, 0.5, 2] corresponding to the set
[C,G,M, Y ]. More weighting is assigned to C and Y because with these two one has
a significant influence on the shape of the densities, compared to G and M .

4.5.2 Calibration Results

Our first observation is that both the NIG-BM and the CGMY models give rise to
a very good fit to the market data. A summary of the RMSE results for all the 106
companies that are present in both S7 and S8 of iTraxx is presented in Table 4.3.

Table 4.3: Summary of calibration results (in basis points) of all 106 firms in iTraxx

RMSE NIG-BM in S7 CGMY in S7 NIG-BM in S8 CGMY in S8

Average (bp.) 0.89 0.79 1.65 1.54

Min. (bp.) 0.22 0.29 0.27 0.46

Max. (bp.) 2.29 1.97 4.27 3.52

From this we can see that the average RMSE of both Lévy models for the Series
7 data are less than 1.0 basis points, and for the Series 8 they are less than 2.0
basis points. Detailed information about the RMSE for each individual company is
summarized in the tables in Appendix A.

Because the S7 and S8 CDS spreads data starts from March 2007 and ends in
March 2008, i.e., including part of the credit crunch period, the CDS spreads all
increase in time. Furthermore, the strong fluctuations in the CDS curves are an
indication for the increasing volatility in the credit market.

A typical example from our calibration results is given in Figure 4.6, where we
plotted the NIG-BM and CGMY results for ABN AMRO CDS spreads. Note that
nearly 80% of all the companies have a very similar CDS evolution. The highly
satisfactory match of the computed CDSs to the market CDSs of both Lévy models
can be seen.

Even in the extreme case, where the CDS spreads have very high values, the data
are still fitted very well, see for example Figure 4.7, where the NIG-BM and the
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Figure 4.6: Calibration fit to ABN AMRO Bank CDS spreads for the CGMY and the
NIG-BM models. Market CDS spreads ‘- -’, CGMY CDS spreads ‘o’, and NIG-BM
CDS spreads ‘+’.

CGMY model fit the DSG International PLC CDS spreads, even though the CDSs
went to nearly 500 basis points.

In Figure 4.8, the evolution of the parameters of the CGMY and NIG-BM densities
for ABN AMRO are plotted. We note that the parameters are in reasonable range
and that they evolve quite “smoothly” over time. The jump in the parameters around
September 19, 2007, reflects the jump in the CDS spreads in this period (cf. Figure
4.6). Recall from Table 4.3 that the average RMSE results for both models are small.
It is also worth noting that the value of the σ parameter in the NIG-BM model is
in the range of 0.1 to 0.2, indicating that the Brownian Motion contributes to the
overall behavior of the model. In Figure 4.9, the evolution of the NIG-BM density is
given. Here we can see that the density is more peaked in the beginning of Series 7
and then flattens out in the end of Series 8.

The CPU times for computing 1-, 3-, 5-, 7- and 10-year CDSs are summarized in
Table 4.4. The calibration routine was implemented in Matlab and the computer is
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Figure 4.7: Calibration fit to DSG International PLC CDS spreads for the CGMY
and the NIG-BM models. Market CDS spreads ‘- -’, CGMY CDS spreads ‘o’, and
NIG-BM CDS spreads ‘+’.

the same one as used for Chapter 1. In less than 0.5 seconds, the 5 CDSs for one
company are computed, independent of the specific type of the underlying process.
Although we use N = 211 in the calibration, a value of N = 210 is usually sufficient
for the NIG-BM model, see for example Table 4.4 (where “max. abs. err. in bp.”
denotes “maximum absolute error in basis point”).

It is worth mentioning that the calibrated Y values in CGMY often approach their
upper limit, Y = 2. Whereas this gives rise to significant convergence difficulties for
various numerical methods, it is not a problem for the COS method. In fact, since
larger values of Y decrease the densities’ peakedness, the COS method converges
slightly faster, compared to lower values of Y , as explained in [32].

From a numerical point of view, we would like to point out that for smooth density
functions we need fewer terms in the Fourier-cosine expansion than for highly-peaked
functions. As a result, the number of the cosine series terms (N) can be kept relatively
small.
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Figure 4.8: Evolution of the parameters of the CGMY (up) and NIG-BM (down)
densities, respectively, for ABN AMRO.

Table 4.4: CPU times in computing 1-, 3-, 5-, 7- and 10-year CDSs with the COS
method; Parameters are given in Table 4.1 and reference values are obtained by
N = 213.

N 29 210 211

NIG-BM
CPU times (sec.) 0.121 0.218 0.418

max. abs. err. in bp. 0.28 7.93e-03 7.32e-06

CGMY
CPU times (sec.) 0.122 0.220 0.423

max. abs. err. in bp. 6.89 1.07 2.94e-02
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Figure 4.9: Evolution of the weekly NIG-BM density for ABN AMRO.

4.5.3 Default Probability Term Structure

It is interesting to see what the default probability term structure generated by
the models look like. In Figure 4.10, we give an example of the term structure for
DSG International PLC under the NIG-BM model. As expected the evolution of
the default probability term structure resembles closely the evolution of the CDS
spreads in Figure 4.7, that is, the CDS spreads increase over time, which is reflected
in higher default probabilities. The CGMY model gives a similar default probability
term structure.

4.6 Conclusion

In this chapter we employed the efficient and flexible COS method for calculating
survival/default probabilities for pricing single name Credit Default Swaps.

We take a structural approach where the firm’s value is modeled by an exponential
Lévy process, focusing on two well known Lévy models: the NIG-BM (a NIG model
extended with a Brownian Motion) model and the CGMY model.

The main idea is to relate the credit default spreads to a series of survival/default
probabilities with different maturities, and to exploit the relationship between these
survival probabilities and the price of Binary Down-and-Out Barrier options. To
rapidly evaluate these option prices, and thus, the survival probabilities, we gener-
alized the option pricing method based on the Fourier-cosine series expansion of the
underlying density. In less than half a second, the 1-, 3-, 5, 7- and 10-year default
probabilities were computed with very satisfactory accuracy. We also checked the
convergence of survival probabilities w.r.t. the number of monitoring dates.

The method’s potential was demonstrated via calibration of the NIG-BM and
the CGMY Lévy models to the quotes of the constituents of the iTraxx Series 7 and
Series 8. Both models give very good fits to the market quotes. The average Root
Mean Square Error is less than 1.0 basis point for both Lévy models with respect
to the Series 7 data, and is less than 2.0 basis points with respect to the Series 8
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Figure 4.10: Default probability term structure of DSG International PLC under
the NIG-BM model given by calibrating the model to the CDS weekly quotes from
March 21, 2007 to February 6, 2008.

data. We have presented in the paper the evolution of the CDS market quotes and
the related model prices over the year covered by the two iTraxx series. What can
be seen is that the models and the method manage to reproduce the market prices
of CDSs even at those times when there are dramatic changes in the prices. The
evolution of the model parameters, resulting from the calibration, shows reasonable
behavior, staying quite stable over time unless there are large changes in the market
CDS spreads. The default probability term structures extracted from the market
quotes mirror the change of the market CDS spreads over time.

From a numerical point-of-view, we saw that in many experiments we could use
a smaller number of cosine series terms for the NIG-BM model than for the CGMY
model as the former has a smoother density due to the diffusion part, making the
COS method converge faster.
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Chapter 5

Pricing Bermudan and
Barrier Options under the
Heston Stochastic Volatility

5.1 Introduction

This chapter contains essentially the contents of the paper [34].
In Mathematical Finance, stochastic volatility models have been developed to

capture the volatility smiles and skews present in market quotes. Within this class,
the Heston stochastic volatility model [41], in which the variance of (the logarithm of)
the stock price is modeled by a square-root process, has become popular in industrial
practice. The pricing of European options is particularly efficient.

Many exotic financial products include some form of path dependency. Monte
Carlo simulation methods are often used for the valuation of such products in prac-
tice. As a result, the recent numerical advances in the context of Heston’s model
were obtained mainly for Monte Carlo simulation methods [14, 5]. However, it is
well-known that the development of efficient simulation methods for pricing prob-
lems with early exercise features, as they are encountered for example when pricing
Bermudan or discretely-monitored barrier options, is not a trivial task.

Here we aim to develop a stable and efficient Fourier-based valuation method that
can price both Bermudan and discrete-barrier options under the Heston stochastic
volatility dynamics. It is in essence a generalization of the COS method in previous
chapters, which is an efficient option pricing method for (one-dimensional) Lévy pro-
cesses, to the (two-dimensional) Heston model. The following three issues, however,
make this topic challenging:

- Near-singular behavior of the probability density of the variance:

The variance in the Heston model is governed by a non-central chi-square dis-
tribution. For some combinations of the relevant parameters, the density of the
variance grows drastically in the left-side tail, i.e. the density values tend to
infinitely large numbers as the variance approaches zero. Truncation of the in-
tegration range for the variance may then easily introduce significant truncation
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errors.

- The integration kernel is not known explicitly:

For path-dependent options, the pricing formula requires a two-dimensional
integration over the log-stock price and the variance. The probability density
function of the joint distribution is, however, not known in closed-form and has
to be recovered from the ChF.

- Quadratic computational complexity:

In numerical analysis, highest computational speed is often related to linear
computational complexity, which means that the computational time grows
only linearly w.r.t. the of unknowns, and/or exponential error convergence,
i.e., the error decreases exponentially with a growing number of unknowns.

A direct application of basic numerical integration rules for options with early
exercise features under Heston’s model would result in quadratic computational
complexity in both dimensions and would therefore cost a significant amount
of CPU time.

The contributions of this chapter are the following. We determine parameters sets
for which the near-singular behavior matters, and tackle the problem by a transfor-
mation from the variance domain to the log-variance domain. Secondly, to solve the
two-dimensional problem in a robust and efficient manner, we combine the Fourier
cosine expansion with quadrature rules.

The chapter is organized as follows. In Section 5.2, we describe the Heston asset
dynamics. We focus on the issue of the left-side tail of the variance density. In
Section 5.3, the discrete pricing formula for Bermudan options is derived and an
efficient recursive algorithm is developed. Minor differences when pricing discrete-
barrier options are highlighted in Section 5.4. In Section 5.5 the error convergence
and the error propagation are analyzed. Various numerical experiments are presented
in Section 5.6, and conclusions are drawn in Section 5.7.

5.2 Heston Model Details

In this section we give some insight in the Heston model. After some known results
from the literature, we focus, in particular, on the near-singular behavior of the vari-
ance process near the origin. By means of several numerical experiments, we find the
relevant parameter sets giving rise to this phenomenon, and propose a transformation
to deal with it when pricing options.

5.2.1 Heston Model Basics

The Heston stochastic volatility model has been briefly described in Chapter 1. Here
we recall the dynamics: the logarithm of the stock price (log-stock), xt, and the vari-
ance, νt, are governed by the following stochastic differential equations (SDEs) [41]:

dxt =

(
µ− 1

2
νt

)
dt+ ρ

√
νtdW1,t +

√
1− ρ2

√
νtdW2,t (5.1)

dνt = λ (ν̄ − νt) dt+ η
√
νtdW1,t, (5.2)
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where the three non-negative parameters, λ, ν̄ and η, represent the speed of mean
reversion, the mean level of variance, and the volatility of the volatility process,
respectively. The Brownian motions, W1,t and W2,t, are independent and ρ is the
correlation between the log-stock and the variance processes.

The square-root process defined in (5.2) precludes negative values for νt, and if
νt reaches zero it can subsequently become positive. The Feller condition, 2λν̄ ≥ η2,
guarantees that νt stays positive; otherwise, it may reach zero. As indicated in
[35, 25], with

q := 2λv̄/η2 − 1 and ζ := 2λ/
(

(1− e−λ(t−s))η2
)
,

the process 2ζνt ∼ χ2
(
q, 2ζνse

−λ(t−s)) , for 0 < s < t, is governed by the non-central

chi-square distribution with degree q and non-centrality parameter 2ζνse
−λ(t−s).

Therefore, the probability density function of νt given νs reads

pν (νt|νs) = ζe−ζ(νse
−λ(t−s)+νt)

(
νt

νse−λ(t−s)

) q
2

Iq

(
2ζe−

1
2λ(t−s)√νsνt

)
, (5.3)

where Iq(·) is the modified Bessel function of the first kind with order q.
The Feller condition is thus equivalent to “q ≥ 0”. This is difficult to satisfy

in practice. It has, for example, been reported [5] that one often finds 2λv̄ << η2

from market data, in which case the cumulative distribution of the variance shows a
near-singular behavior near the origin, or, in other words, the left tail of the variance
density grows extremely fast in value.

Such a behavior in the left tail may easily give rise to significant errors, especially
for integration-based option pricing methods, for which the integration range needs
to be truncated.

A lot of recent research effort has been put in the development of efficient Monte
Carlo methods, based on exact path simulation and moment matching, for the Hes-
ton dynamics. This has brought important insights, in particular in the underlying
distributions that we will briefly review here.

The exact simulation method, developed in Broadie and Kaya [14], provides,
next to an exact formula to sample the log-stock price, insight in the distribution for
stochastic volatility models. Integration of (5.1) and (5.2) yields [14]:

xt − xs = µ(t− s)− 1

2

∫ t

s

ντdτ + ρ

∫ t

s

√
ντdW1,τ +

√
1− ρ2

∫ t

s

√
ντdW2,τ , (5.4)

νt − νs = λν̄(t− s)− λ
∫ t

s

ντdτ + η

∫ t

s

√
ντdW1,τ . (5.5)

Equation (5.5) can be rewritten as an equation for
∫ t
s

√
ντdW1,τ , which, substituted

in (5.4), gives the following exact formula for xt:

xt − xs = µ(t− s) +
ρ

η
(νt − νs − λν̄(t− s)) +

(
λρ

η
− 1

2

)∫ t

s

ντdτ

+
√

1− ρ2

∫ t

s

√
ντdW2,τ . (5.6)
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Equation (5.6) can be used to sample xt, once the values of the variance, νt, and

the time-integrated variance,
∫ t
s
ντdτ , are available. The variance is then sampled

from (an approximation of) the non-central chi-square distribution, and the time-
integrated variance is sampled from a distribution which is recovered from the ChF,
Φ(u; νt, νs), for which a closed-form expression is available:

Φ(υ; νt, νs) := E
[

exp

(
iυ

∫ t

s

ντdτ

)∣∣∣∣ νt, νs]

=

Iq

[
√
νtνs

4γ(υ)e−
1
2γ(υ)(t−s)

η2(1− e−γ(υ)(t−s))

]
Iq

[
√
νtνs

4λe−
1
2λ(t−s)

η2(1− e−λ(t−s))

] · γ(υ)e−
1
2 (γ(υ)−λ)(t−s)(1− e−λ(t−s))

λ(1− e−γ(υ)(t−s))
·

exp

(
νs + νt
η2

[
λ(1 + e−λ(t−s))

1− e−λ(t−s) − γ(υ)(1 + e−γ(υ)(t−s))

1− e−γ(υ)(t−s)

])
, (5.7)

where, again, q = 2λν̄/η2 − 1 and Iq(x) is the modified Bessel function of the first
kind with order q. Variable γ(υ) is defined by

γ(υ) :=
√
λ2 − 2iη2υ. (5.8)

In [14] the cumulative distribution function of the time-integrated variance is recov-
ered numerically from the expression,

Pr

(∫ t

s

ντdτ ≤ x
)

=
2

π

∫ ∞
0

sin(ux)

u
Re {Φ(u)} du, (5.9)

(Re {·} denoting the real part of the expression in brackets) by means of the composite
Trapezoidal rule. This un-biased simulation method requires a significant amount of
CPU time [5], mainly because of the numerical inversion step.

Remark 5.2.1 (Fast inverse Fourier transform by a Fourier cosine expansion). Ap-
plication of the composite Trapezoidal rule for (5.9) is time-consuming, because the
ChF is highly oscillatory, which implies that large values for N are required for ac-
curacy.

5.2.2 The Left-Side Tail

As a first step to understand the near-singular behavior in the variance direction, we
set up a series of numerical experiments to determine the behavior of the left-side
tail. The following results can be used as a rule of thumb to determine the values for
which the variance density is governed by extremely large values at the left tail.

Result 5.2.1 (The left-side tail). Although each of the three parameters, λ, ν̄ and
η, in (5.2) plays a unique role in the tuning of the shape and the magnitude of the
variance density, the decay rate at the left tail can be well characterized by values of
q, whose definition interval is [−1,∞). Based on the non-negativeness of λ, ν̄ and
η, the near-singular problem occurs when q ∈ [−1, 0], which is directly related to the
Feller condition.
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The experiments that support this insight are set up as follows: The values of ν̄
and η are drawn randomly from [0, 1] (we consider interval [0, 1] reasonable for both
ν̄ and η), and λ is given by (1 + q)η2/(2ν̄). The experimental results are displayed
in Figure 5.1.
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Figure 5.1: Decay rate in the left-side tail of the variance density, as q approaches
−1 from above.

As shown in Figure 5.1, the value of q determines the decay rate in the left tail

89



90
Chapter 5. Pricing Bermudan and Barrier Options under the Heston

Stochastic Volatility

of the variance density function, whereas the right-side tail always decays to zero
rapidly. For q >> 0 the density values tend towards zero in both tails. For q smaller
and approaching 0, the decay of the left-side tail slows down. Near q = 0, the left
tail stays almost constant. For q ∈ [−1, 0], the left tail increases drastically in value.

In a recent paper, [5], several challenging test cases, based on different values of
λ,η and ν̄, were illustrated. For all those test cases we find q ≈ −0.96, which indeed
is an indication of difficult tests, see Figure 5.1.

The fact that q determines the decay rate of the densities’ left tail can be un-
derstood if we take a closer look at Equation (5.3) for the variance density function.
When q changes sign, both functions, (·)q/2 and Iq(·), change shape around the origin,
i.e., from monotonically increasing they become monotonically decreasing.

5.2.3 Transformation to Log-Variance Process

Based on the insights in the previous subsections, we propose here a solution strategy
for the problem of the left-side tail: We transform the problem from the variance
domain to the log-variance domain.
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Figure 5.2: Decay rate of the left tail of the log-variance density as q approaches −1
from above

By the change of variables, the density of the log-variance process, based on (5.3),
reads:

pln(ν) (σt|σs) =

ζe−ζ(e
σse−λ(t−s)+eσt )

(
eσt

eσse−λ(t−s)

) q
2

eσtIq

(
2ζe−

1
2λ(t−s)√eσseσt

)
,

(5.10)
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Figure 5.3: Decay rate in log-scale of the left tail of the log-variance density as q
approaches −1 from above

where σs := ln(νs) and pln(ν)(σt|σs) denotes the probability density of the log-
variance at a future time, given the information at current time.

With the change of variables, a term eσt appears, which, for q ∈ [−1, 0], compen-
sates the (·)

q
2 –term, so that it converges towards zero as σt → −∞. It is shown in

Figure 5.2 that the densities of the log-variance process for different parameter sets
are more symmetric than those from Figure 5.1; It is also illustrated in log-scale, in
Figure 5.3, that for q ∈ [−1, 0] the left tails of the densities do not increase signif-
icantly in value anymore. Instead, these tails decay to zero rapidly as σt → −∞,
although the decay rate decreases as q approaches −1. In Figures 5.2 and 5.3 we
have only shown the problematic cases from Figure 5.1; the left-side tails of the cases
with q > 0 also decay very well for the log-variance process, of course.

Remark 5.2.2 (Truncation range). Before applying any numerical method, we need
to define a proper truncation range for the log-variance density. For this, information
about the center of the density as well as the decay of the left and right tails is required.

Instead of giving a rule-of-thumb for this truncation range, as in [32, 54], we
propose to use Newton’s method to determine the interval boundaries, according to
a pre-defined error tolerance, TOL. In accordance with this tolerance, the stopping
criteria of the Newton’s method reads pln(ν)(x|σ0;T ) <TOL for x ∈ R\[aν , bν ].

We also need the derivative of pln(ν)(σt|σs) w.r.t. σt. It can be derived with the
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help of Maple:

dpln(ν)(σt|σs)
dσt

= −
[
(−ζeσt − q − 1) Iq

(
2
√
ζeσtu

)
− Iq+1

(
2
√
ζeσtu

)]
·

ζe−u−ζe
σt+σt ·

(
ζeσt

u

)q/2
, (5.11)

with u := ζeσs−λ(t−s).
A proper initial guess for interval boundaries is also required. We estimate the

center of the truncation range by the logarithm of the mean value of the variance, see
e.g. [5],

ln(E(νt)) = ln
(
ν0e
−λT + ν̄

(
1− e−λT

))
.

As the left tail usually decays much slower than the right tail and because the speed
of decay seems closely related to the value of q, we use the following values as the
initial guesses for the boundaries of the truncation range [aν , bν ]:

[a0
ν , b

0
ν ] =

[
ln(E(νt))−

5

1 + q
, ln(E(νt)) +

2

1 + q

]
. (5.12)

5.2.4 Joint Distribution of Log-stock and Log-variance

When valuing path-dependent options, we need to know the joint distribution of the
log-stock and log-variance processes at a future time, given the information at the
current time, i.e. px,ln(ν)(xt, σt|xs, σs) with 0 < s < t. An analytic formula for this
distribution does not exist, but we can deduce the relevant information from the
Fourier domain.

The SDEs in (5.1), (5.2) indicate that the variance at a future time is independent
from the log-stock value at the current time, i.e. pν(νt|νs, xs) = pν(νt|νs). As a result,
we have

px,ν(xt, νt|xs, νs) = px|ν(xt|νt, xs, νs) · pν(νt|νs), (5.13)

where we use px,ν to denote the joint probability density of the log-stock and the
variance processes at a future time point, given that the information is known at the
current time; px|ν denotes the probability density of the log-stock process at a future
time point, given the variance value (and also given the information known at the
current time). Equivalently, we have

px,ln(ν)(xt, σt|xs, σs) = px| ln(ν)(xt|σt, xs, σs) · pln(ν)(σt|σs), (5.14)

where px| ln(ν) denotes the probability density of log-stock at a future time point,
given the log-variance value as well as the information known at the current time.

The probability density of the log-variance, pln(ν)(σt|σs), is already given in (5.10)
and therefore we need px| ln(ν)(xt|σt, xs, σs). Although there is no closed-form ex-
pression for px| ln(ν), one can easily derive its conditional characteristic function,
ϕ(ω;xs, σt, σs), based on (5.6):

ϕ(ω;xs, σt, σs) := Es [exp (iωxt|σt)]

= exp

(
iω

[
xs + µ(t− s) +

ρ

η
(eσt − eσs − λν̄(t− s))

])
·

Φ

(
ω

(
λρ

η
− 1

2

)
+

1

2
iω2(1− ρ2); eσt , eσs

)
, (5.15)
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where Φ(u; νt, νs) is the ChF of the time-integrated variance as given in (5.7).

5.3 The Pricing Method for Bermudan Options

In this section, we derive the pricing formula for Bermudan options under Heston’s
model. This gives rise to a two-dimensional integral with a kernel which is only
partly available in closed form. To evaluate this two-dimensional integral, we develop
a discrete formula based on Fourier cosine series expansions for the integration of
the part of the kernel which is not known in closed form and a quadrature rule for
the integral of the known part of the kernel. An efficient algorithm to compute the
discrete formula with the help of the FFT algorithm is introduced.

5.3.1 The Pricing Equations

For a European option, which is defined at time s and matures at time t, with
0 < s < t, the risk-neutral valuation formula reads

v(xs, σs, s) = e−r(t−s)EQ
s [v(xt, σt, t)] . (5.16)

Here, v(xs, σs, s) denotes the option price at time s, r is the risk-free interest rate
and EQ

s is the expectation operator under the risk-neutral measure, Q, given the
information at s.

The Markov property enables us to price a Bermudan option between two consec-
utive early-exercise dates by the risk-neutral valuation formula (5.16). This value is
then called the continuation value. The arbitrage-free price of the Bermudan option
on any early-exercise date is the maximum of the continuation value and the exercise
payoff.

For M early-exercise dates, and T := {tm, tm < tm+1|m = 0, 1, · · · ,M}, with
tM ≡ T and ∆t := tm+1 − tm, the Bermudan option pricing formula reads

v(xtm , σtm , tm) =


g(xtm , tm) for m = M ;

max [c(xtm , σtm , tm), g(xtm , tm)] for m = 1, 2, · · · ,M − 1;

c(xtm , σtm , tm) for m = 0,
(5.17)

with g(xτ , τ) being the payoff function at time τ and c(xτ , στ , τ) the continuation
value at time τ .

We simplify the notation and use xm and σm for xtm and σtm , respectively. The
continuation value is given by

c(xm, σm, tm) = e−r∆tEQ
tm [v(xm+1, σm+1, tm+1)] , (5.18)

which can be written as:

c(xm, σm, tm) = e−r∆t · (5.19)∫
R

∫
R
v(xm+1, σm+1, tm+1)px,ln(ν) (xm+1, σm+1 | xm, σm) dσm+1dxm+1.
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With (5.14) we get:

c(xm, σm, tm) = e−r∆t ·∫
R

[ ∫
R
v(xm+1, σm+1, tm+1)px| ln(ν) (xm+1| σm+1, xm, σm) dxm+1

]
pln(ν) (σm+1|σm) dσm+1. (5.20)

Equations (5.17) and (5.20) define the problem we would like to solve numerically.
The inner integral in (5.20) equals the pricing formula for European options defined
between tm and tm+1, provided the variance value at the future time point is known.

A scaled log-asset price will be used from now on in this work, defined by

xm = ln (Sm/K) .

5.3.2 Density Recovery by Fourier Cosine Expansions

We will apply the COS method to approximate the unknown conditional probability
density, px| ln(ν) in (5.20).

We first recall how to recover the density function px| ln(ν) in (5.20) by the COS
method.

First we define a truncated integration range, [a, b] ⊂ R, such that∫ b

a

px| ln(ν)(xm+1|σm+1, xm, σm)dy ≤ TOLx, (5.21)

for some pre-defined error tolerance TOLx. In Chapter 2 this interval was defined as

[a, b] := [ξ1 − 12
√
|ξ2|, ξ1 + 12

√
|ξ2|], (5.22)

where ξn denotes the n-th cumulant of the log-stock process. With an integration
interval [a, b] satisfying (5.22), we recover the probability density by its Fourier cosine
series expansion:

px| ln(ν)(xm+1|σm+1, xm, σm) =
∑′∞

n=0
Pn(σm+1, xm, σm) cos

(
nπ

xm+1 − a
b− a

)
.

(5.23)∑′
indicates that the first element in the summation is multiplied by one-half. The

coefficients Pn are the Fourier cosine coefficients, defined by

Pn(σm+1, xm, σm) :=

2

b− a

∫ b

a

px| ln(ν)(xm+1|σm+1, xm, σm) cos

(
nπ

xm+1 − a
b− a

)
dxm+1.

By the expansion in (5.23), one separates xm+1 from xm. This type of variable
separation is not restricted to Fourier cosine series expansions, but in this case the
Fourier expansion is advantageous as the series coefficients have a direct relation to
the characteristic function and are therefore known, i.e.

Pn(σm+1, xm, σm) ≈ 2

b− a
Re

{
ϕ

(
nπ

b− a
;xm, σm+1, σm

)
e−inπ

a
b−a

}
, (5.24)
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with ϕ(θ;x, σm+1, σm) given by (5.15).

The error in this approximation is related to TOLx, as analyzed in Section 2.4,
and Equation (5.24) approximates the Pn with machine accuracy if [a, b] is sufficiently
wide. Subsequently, we truncate the series summation in (5.23).

From Fourier theory, we know that cosine series of functions belonging to C∞([a, b] ⊂
R), with non-zero derivatives, converge exponentially with respect to the number of
terms in the series, so that the series can be truncated without loosing accuracy. By
replacing Pn in (5.23) by (5.24) and truncating the series by N terms, one obtains a
semi-analytic formula which accurately approximates the probability density:

px| ln(ν)(xm+1|σm+1, xm, σm) =
2

b− a
·∑′N−1

n=0
Re

{
ϕ

(
nπ

b− a
; 0, σm+1, σm

)
einπ

xm−a
b−a

}
cos

(
nπ

xm+1 − a
b− a

)
+ εcos.

(5.25)

Here, we used the fact that ϕ(ω;xm, σm+1, σm) = eiωxmϕ(ω; 0, σm+1, σm), i.e., xm
can be separated from the σ-terms and appears as a simple exponential term. This
is important for the efficient computation in the Bermudan case.

The error of this approximation, εcos, decreases exponentially with respect to N ,
provided that the truncation range is set sufficiently wide (proof is given in Chapter
2).

Remark 5.3.1 (Recover a CDF). The COS method can also be used to recover a
cumulative probability distribution, F (x): We simply insert the COS reconstruction
of the density f(t) into the definition integral of the cumulative probability after trun-
cating the integration range, i.e.

F (x) =

∫ x

−∞
f(t)dt ≈

∫ x

a

f(t)dt

≈
∫ x

a

∑′N−1

n=0

2

b− a
Re

{
ϕ

(
nπ

b− a

)}
cos

(
nπ

t− a
b− a

)
dt

=
∑′N−1

n=0

2

b− a
Re

{
ϕ

(
nπ

b− a

)}∫ x

b

cos

(
nπ

t− a
b− a

)
dt

=
∑′N−1

n=0

2

b− a
Re

{
ϕ

(
nπ

b− a

)}
ψn(b, x),

where ψn(l, u) is given in (2.23).

5.3.3 Discrete Fourier-based Pricing Formula

Equation (5.17) shows that the option price at time t0 is a continuation value, which,
as indicated by (5.20), depends on the continuation values at the times t1, t2, · · · , tM .
The option price at time t0 can be recovered by recursion, backwards in time. This
is the same approach as in Chapter 3, but here the integration is more involved,
because of the two-dimensional kernel.
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Quadrature Rule in Log-variance Dimension

Using the initial values defined in (5.12) and (5.22), we obtain the truncation range
[aν , bν ] by Newton’s method.

After truncating the integration region by [aν , bν ]× [a, b], we need to compute

c1(xm, σm, tm) := e−r∆t ·∫ bν

aν

[ ∫ b

a

v(xm+1, σm+1, tm+1)px| ln(ν) (xm+1| σm+1, xm, σm) dxm+1

]
pln(ν) (σm+1|σm) dσm+1. (5.26)

(We use the notation ci, i = 1, . . . , 3 to denote different approximations of continua-
tion value, c, to keep track of the numerical errors that enter with each approxima-
tion.)

There are two ways to discretize the outer integral w.r.t. σm+1, i.e by interpolation-
based quadrature rules or by a spectral series reconstruction of the interpolant (as
in the COS method). In the latter case since the ChF of pln(ν) is not known, one
would have to use a numerical method to retrieve the series coefficients for a se-
ries reconstruction, which would add additional computational costs. However, since
pln(ν) itself is known analytically, we apply a J-point quadrature integration rule (like
Gauss-Legendre quadrature, composite Trapezoidal rule, etc.) to the outer integral,
which gives

c2(xm, σm, tm) := e−r∆t
J−1∑
j=0

wj · pln(ν)(ςj |σm) · (5.27)

[ ∫ b

a

v(xm+1, ςj , tm+1)px| ln(ν) (xm+1| ςj , xm, σm) dxm+1

]
.

Here the wj are the weights of the quadrature nodes ςj , j = 1, 2, ..., J − 1.

Remark 5.3.2 (Which quadrature rule to use?). There are merits and demerits to
using high-order quadrature rules, like the Gauss-Legendre quadrature rule, and to
low-order equidistant rules, like the composite Trapezoidal rule. The advantage of the
former is an exponential error convergence rate for integration of smooth functions,
as is the case for pln(ν), whereas the latter has only polynomial error convergence.
However, the computational complexity of the method can be greatly reduced by the
Trapezoidal rule, due to a special matrix structure which results after discretization
on an equidistant grid. We will come back to this issue.

COS Reconstruction in Log-stock Dimension

In the next step, we replace px| ln(ν), which is not known, by the COS approxima-
tion (5.25), and interchange the summation over n with the integration over xm+1

to obtain:

c3(xm, σm, tm) := e−r∆t
J−1∑
j=0

wj
∑′N−1

n=0
Vn,j(tm+1)Re

{
ϕ̃

(
nπ

b− a
, ςj , σm

)
einπ

xm−a
b−a

}
,

(5.28)
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with

Vn,j (tm+1) :=
2

b− a

∫ b

a

v(xm+1, ςj , tm+1) cos

(
nπ

xm+1 − a
b− a

)
dxm+1, (5.29)

and
ϕ̃(ω, σm+1, σm) := pln(ν)(σm+1|σm) · ϕ (ω; 0, eσm+1 , eσm) . (5.30)

The kernel function ϕ̃ will be the only input which characterizes the Heston model.
By combining the lengthy formulas of (5.10) and (5.15), the Bessel function present
in pln(ν) cancels with the Bessel function in the denominator of ϕ, leaving one Bessel-

term, Iq

(
e

1
2 (σm+1+σm) · 2κ(υ)e−

1
2γ(υ)∆t

)
with γ(υ) given by (5.8),

υ = ω

(
λρ

η
− 1

2

)
+

1

2
iω2(1− ρ2) and κ(υ) =

2γ(υ)

η2(1− e−γ(υ)∆t)
.

Coefficients Vn,j (tm+1) defined in (5.29) can be interpreted as the Fourier cosine
series coefficients of the option value at time tm+1. Expression c3(xm, σm, tm) in
(5.28) thus becomes a scaled inner product of the Fourier cosine series coefficients of
the option price and of the underlying density.

Finally, we interchange the summations in (5.28) which yields the discrete formula
for the continuation value:

c3(xm, σm, tm) = e−r∆tRe

{∑′N−1

n=0
βn(σm, tm)einπ

xm−a
b−a

}
, (5.31)

where

βn(σm, tm) :=

J−1∑
j=0

wjVn,j(tm+1)ϕ̃

(
nπ

b− a
, ςj , σm

)
. (5.32)

Equation (5.31) expresses the continuation value at time tm as a series expansion.
The series coefficients, which depend only on the value of the variance (and not
on the log-stock value) at time tm+1, are (scaled) inner products of the cosine series
coefficients of the option price at time tm+1 and the variance-dependent characteristic
function ϕ̃.

Due to the use of a quadrature rule in the log-variance dimension, we compute
on a log-variance grid. The same log-variance grid is employed for all time points,
which gives:

c3(xm, ςp, tm) = e−r∆tRe

{∑′N−1

n=0
βn(ςp, tm) exp

(
inπ

xm − a
b− a

)}
, (5.33)

with

βn(ςp, tm) :=

J−1∑
j=0

wjVn,j(tm+1)ϕ̃

(
nπ

b− a
, ςj , ςp

)
. (5.34)

For xm, however, no computational grid is needed, since the price is constructed
from a linear combination of cosine basis functions, in which the series coefficients do
not depend on xm itself. As such, xm can be separated from the other variables; it
is only present in the cosine functions. This enables us to derive an analytic formula
for the series coefficients, as shown in the next subsection.
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One of the advantages of this spectral dimension is that Expression (5.31) is
known for any value of xm ∈ R, not just for discrete values. So, one can determine
the early-exercise points rapidly, by solving

c3(xm, ςj , tm)− g(xm) = 0, j = 0, 1, · · · , J − 1,

with an efficient root-finding procedure, like Newton’s method.
When the early-exercise points, x∗(σm, tm), have been determined, Procedure (5.17)

can be used to compute the Bermudan option price. More specifically:

• At tM : v(xM , σM , tM ) = g(xM );

• At tm, with m = 1, 2, · · · ,M − 1:

v̂(xm, σm, tm) =

{
g(xm) for x ∈ [a, x∗(σm, tm)]
c3(xm, σm,m) for x ∈ (x∗(σm, tm), b]

(5.35)

for a put option, and

v̂(xm, σm, tm) =

{
c3(xm, σm,m) for x ∈ [a, x∗(σm, tm)]
g(xm) for x ∈ (x∗(σm, tm), b]

(5.36)

for a call option.

• At t0: v̂(x0, σ0, t0) = c3(x0, σ0, t0).

v̂ denotes that we deal with approximate option values, due to the various approxi-
mations involved.

With the procedure above and Expression (5.31), we can compute recursively
v̂(x0, σ0, t0) from v̂(xM , σM , tM ), backwards in time.

However, a more efficient technique exists. Instead of reconstructing v̂ for each
time point, we can recover the cosine series coefficients using backward recursion, and
only at time t0 we apply (5.31) to reconstruct v̂.

5.3.4 Backward Recursion

In this subsection we show that the cosine coefficients of v̂(x1, σ1, t1) can be recovered
recursively, with the FFT, from those of v̂(xM , σM , tM ) in
O ((M − 1)JN `) operations, with ` = max [log2(N), J ].

We first discuss the final time point, tM . Since the option price at the maturity
date equals the payoff (which does not depend on time), one can derive an analytic
expression for Vn,j(tM ) using (5.29):

Vn,j(tM ) =

{
Gn(0, b), for call options

Gn(a, 0), for put options,
(5.37)

where the Gn-functions are the cosine coefficients of the payoff function g(y), i.e.

Gn(l, u) :=
2

b− a

∫ u

l

g(y) cos

(
nπ

y − a
b− a

)
dy, (5.38)
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with

g(y) = [αK (ey − 1)]
+
, α =

{
1, for a call option

−1, for a put option.
(5.39)

The analytic solution of Gn(l, u) has already been given in (3.20).
Subsequently, we continue with time point tM−1. By inserting Vn,j(tM ) into

(5.34), we obtain βn(ςp, tM−1) for p = 0, 1, · · · , J − 1. With (5.33) one finds an
analytic formula, c3(xM−1, ςp, tM−1), for the continuation value at time tM−1. By
Newton’s method, we then solve c3(y, ςp, tM−1)− g(y) = 0 to determine the location
of the early-exercise point, y ≡ x∗(ςp, tM−1).

With early-exercise point, x∗(ςp, tM−1), known and v̂(xM−1, ςp, tM−1) as in (5.35)
or (5.36), we split the integral in (5.29) in two parts (for p = 0, 1, · · · , J − 1.):

V̂k,p(tM−1) =

 Ĉk,p(x
∗(ςp, tM−1), b, tM−1) +Gk(a, x∗(ςp, tM−1)) for a put,

Ĉk,p(a, x
∗(ςp, tM−1), tM−1) +Gk(x∗(ςp, tM−1), b) for a call.

where V̂ , Ĉ denote approximate values; The Ĉk,p represent the cosine coefficients of
the continuation value:

Ĉk,p(l, u, tM−1) :=
2

b− a

∫ u

l

c3(y, ςp, tM−1) cos

(
kπ
y − a
b− a

)
dy. (5.40)

For the exact cosine coefficient of the continuation value, Ck,p, we should have used
c from (5.40), instead of the COS approximation c3 from (5.33).

After replacing c3 in (5.40) by the COS approximation, interchanging summation
and integration, we obtain

Ĉk,p(l, u, tM−1) = e−r∆t Re

{∑′N−1

n=0
Mk,n(l, u)βn(ςp, tM−1)

}
, (5.41)

with

Mk,n(l, u) :=

∫ u

l

exp (inπ
y − a
b− a

) cos

(
kπ
y − a
b− a

)
dy. (5.42)

Expression (5.42) can be obtained analytically, as given in Chapter 3 and Eq. (3.30).
The expressions above can be cast in an easy readable format in matrix/vector

notation:

Ĉ(l, u, tM−1) = e−r∆t Re {M(l, u)B′(tM−1)} , (5.43)

where B′ indicates that the first row of matrix B is multiplied by one-half.
Matrix M(l, u) is an N ×N matrix composed of elements from Mk,n(l, u), and

matrix B(tM−1) is an N × J matrix, with J column vectors:

B(tM−1) = [β0(tM−1), β1(tM−1), · · · , βJ−1(tM−1)] . (5.44)

The column vectors (denoted by subscripts), βp(tM−1), are connected to the coeffi-
cients V(tM ), i.e., to the matrix with elements Vn,j(tM ), as follows:

βp(tM−1) = [V(tM ) · ϕ̃(ςp)] w, (5.45)
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where w is a column vector (length J) with the quadrature weights and the (time-

invariant) matrix ϕ̃(ςp) is an N×J matrix with as elements ϕ̃
(
nπ
b−a , ςj , ςp

)
, as defined

in (5.30). The operator “·” in (5.45) denotes an element-wise matrix-matrix product.
From [33] we know that matrixM(l, u) can be written as the sum of a Hankel ma-

trix,Mc(l, u), and a Toeplitz matrix,Ms(l, u). Because matrix-vector products with
Hankel and Toeplitz matrices can be transformed into circular convolutions of two
vectors, the FFT algorithm can be applied to achieve the O(N log2(N)) complexity
in log-stock space. Details have been given in Section 3.2.3.

Repeating the same computational procedure, backwards in time, we can derive
the equations that connect V̂(tm−1) to V̂(tm), for m = M − 1,M − 2, · · · , 2:



V̂(tm) :=

 Ĉ(x∗(ςp, tm), b, tm) + G(a, x∗(ςp, tm)) for a put

Ĉ(a, x∗(ςp, tm), tm) + G(x∗(ςp, tm), b) for a call

β̂j(tm−1) :=
[
V̂(tm) · ϕ̃(ςj)

]
w

B̂(tm−1) :=
[
β̂0(tm−1), β̂1(tm−1), · · · , β̂J−1(tm−1)

]
Ĉ(l, u, tm−1) := e−r∆t Re

{
M(l, u)B̂′(tm−1)

}
(5.46)

We continue the procedure until V̂(t1) is recovered, which is then inserted into
(5.34) and (5.31) to get a grid of option prices, v̂(x0, ςj , t0), for j = 0, 1, · · · , J − 1.

Now, one can either use a spline interpolation to get the value of v̂(x0, σ0, t0) from
v̂(x0, ςj , t0) or, at the initial stage of the computation, shift the σ-grid, so that σ0 lies
exactly on the grid.

We summarize the backward recursion algorithm below.
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Algorithm 5.3.1 (Pricing Bermudan options under Heston’s model).

Initialization:

• Find aν and bν by Newton’s method;

• Calculate V(tM ) with the analytic formula;

• Prepare matrix ϕ̃(ςj) for j = 0, 1, · · · , J − 1.

Main Loop to recover V̂(tm) for m = M − 1 to 1:

• Determine early-exercise point by Newton’s method;

• Calculate the first row and column of Ms and Mc.

• For j = 0, 1, · · · , J − 1, calculate β̂j(tm) =
[
V̂(tm) · ϕ̃(ςj)

]
w.

• Multiply the first element of β̂j(tm) by one-half.

• Compute the column vectors of Ĉ(tm), e−r∆t Re
{
Mβ̂′j(tm−1)

}
,

using the FFT algorithm;

• Recover V̂(tm) by (5.35) or (5.36).

Final step: Calculate v̂(x, ςj , t0) by inserting V̂(t1) into (5.34) and (5.31). Use
spline interpolation to get v̂(x, σ0, t0).

Remark 5.3.3 (Multiple values of S0). Due to the use of the spectrally-oriented dis-
cretization in the log-stock dimension, the cosine coefficients of V̂(tm) do not depend
on the initial value of asset prices. Only in the final step, one needs to insert an ini-
tial value, S0, into (5.34) and (5.31) to get the option price. If necessary, the method
could thus price multiple options that only vary in the value of S0 simultaneously,
with almost no additional cost.

Remark 5.3.4 (Scaled Bessel function). Special attention should be given to the
calculation of ϕ̃(ω, σm+1, σm). First of all, it involves a modified Bessel function
of the first kind, which increases dramatically in value when q → −1 and/or ω →
∞. The scaled Bessel function should be used instead. A robust package has been
developed in [3, 4] with algorithms to compute I∗d (z) := exp (− |Re {z}|) Id(z) with
a complex-valued argument, z, and a real-valued order, d. As MATLAB (which we
used here) incorporates this package for the MATLAB Bessel function, we replace
Iq (·) by e|Re{·}|I∗q (·) during the computations.

Remark 5.3.5 (Computation of Bessel function). The computation of the modified
Bessel function costs significantly more (approximately a factor of 1000) CPU time
than a simple multiplication, because the main part of the Bessel function algorithm
is based on iterations. If the computation of the Bessel function costs A times the

number of operations needed for a multiplication, a matrix based on ϕ̃
(
kπ
b−a , ςq, ςj

)
would require O(NJ2A) operations to compute all matrix elements.

If one employs equidistant quadrature rules for the log-variance dimension, then
for a given value of k, the input argument of the Bessel function is a function of the

101



102
Chapter 5. Pricing Bermudan and Barrier Options under the Heston

Stochastic Volatility

grid point combination, ςq+ ςj, which gives rise to the Hankel matrix (if ςj represents
an equidistant grid). The favorable structure of a Hankel matrix enables us to only
determine one row and one column of the J × J matrix, for each value of k. The
total number of operations needed is therefore reduced to O(NJA). However, since
the error convergence is much slower with equidistant quadrature rules, the value of
J should be set much larger than for Gaussian quadrature rules. We will discuss this
trade-off effect in the section with numerical results.

With the considerations in the remarks above, the computational effort in the
initialization step with non-equidistant quadrature rules is dominated by the compu-
tation of the Bessel function in matrix ϕ̂, which is of order O(ANJ2).

The computations in the main loop of the algorithm are of order
O(MN log2(N)J2), dominated by the calculation of matrix B̂(tm−1). Since the

computation of vector β̂j(tm−1) costs O(NJ) operations, the calculation of matrix

B̂(tm−1) is of O(NJ2) complexity.

The direct computation of the matrix-matrix product in (5.43) would costO(N2J)
operations. The computational complexity of (5.43) is, however, O(N log2(N)J), due
to the special structure of matrix M(l, u) and the use of the FFT algorithm.

Therefore, the overall complexity is O(max[A,M log2(N)]NJ2).

Remark 5.3.6 (Computation of Bermudan call). In [32], it has been reported that
larger errors for call than for put prices can be observed, because call option prices
are not bounded. It has been recommended to use the put-call parity for the valuation
of call options. This also holds for Bermudan options, where the put-call parity can
be applied to get the continuation values between two adjacent dates.

5.4 Discrete Barrier Options

Also for discretely-monitored barrier options, the pricing technique explained above
can be used. It is even somewhat easier, as the barrier levels are known in advance,
unlike the (time-dependent) early-exercise points which need not be determined inside
the recursion loop. In the following we give the pricing formula for barrier put options
with double barriers.

For an “out” barrier put option with M monitoring dates, the pricing formula
reads for m = 0, 1, · · · ,M − 1:

v(xm, σm, tm) =

{
Rebate rb, when knocked out,
c(xm, σm, tm), otherwise,

(5.47)

and:

v(xM , σM , tM ) =

{
Rebate rb, when knocked out,
g(xM ), otherwise,

(5.48)

where the continuation value is governed by (5.20), as for Bermudan options.

The option price at the maturity date, tM , equals the payoff if the option is not
knocked out (or knocked in), otherwise the option price equals the rebate. Following
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(5.29), the Fourier cosine coefficients of v(xm, σm, tM ), i.e., Vn,j(tM ), satisfy

Vn,j(tM ) =
2

b− a

∫
[a,l]∪[u,b]

rb cos

(
nπ

y − a
b− a

)
dy +

2

b− a

∫ u

l

g(y) cos

(
nπ

y − a
b− a

)
dy

=
2rb
b− a

(ψn(a, l) + ψn(u, b)) +Gn(l, u), (5.49)

with g(y) as defined in (5.39), l and u denote lower and upper barrier levels, respec-
tively 1, and the Gn-terms are the cosine coefficients of the payoff function g(y), as
given in (3.20).

At tM−1 the barrier levels split the integral in (5.35) or (5.36) into several parts:

V̂k,p(tM−1) =
2rb
b− a

(ψk(a, l) + ψk(u, b)) +
2

b− a

∫ u

l

c3(y, ςp, tM−1) cos

(
kπ
y − a
b− a

)
dy

=
2rb
b− a

(ψk(a, l) + ψk(u, b)) + Ĉk,p(l, u, tM−1). (5.50)

where Ĉk,p are the cosine coefficients of the continuation value as given in (5.40).
We can repeat the derivation from before: We replace c3 in (5.40) by the COS

approximation and interchange the summation and the integration, which gives:

Ĉ(l, u, tM−1) = e−r∆t Re {M(l, u)B′(tM−1)} , (5.51)

where, as before, the first row of matrix B is multiplied by one-half, and B(tM−1)
is obtained as in (5.44) and (5.45). Matrix M(l, u) is an N × N matrix, which
is time-invariant as l and u are a-priori known barrier levels. As a result, this
matrixM(l, u) (only two columns and two rows needed for the circular convolution)
can be pre-computed. Compared to Algorithm 5.3.1 the main difference is that the
computation of this matrix is not in the main recursion loop.

Following the same procedure, we move backwards in time and find the equations
that connect V̂(tm−1) with V̂(tm), for m = M − 1,M − 2, · · · , 2. Having V̂(t1)
approximated, we insert it in (5.34) and (5.31) to obtain the option price v̂(x0, σ0, t0).

5.5 Error Analysis

Using the same approach as in the error analysis sections of Chapter 2 and 3, we
study here the convergence of the local error at each time lattice, as well as the
propagation of the error from one time lattice to the next.

5.5.1 Local Error

We first analyze the convergence of the local error

ε(xm, σm, tm) := |c(xm, σm, tm)− c3(xm, σm, tm)| .

We depart from (5.20) and denote the inner integral by ϑ(xm, σm+1, σm), which
actually satisfies a risk-neutral valuation formula and thus defines the continuation

1For single-sided barrier options, one can simply apply the same method by setting l = a or
u = b.
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value at time tm given σm+1 and σm. For analysis purposes, we introduce an interme-
diate approximation, after the truncation of the integration range of the outer-integral
by [aν , bν ]:

c0(xm, σm, tm) := e−r∆t
∫ bν

aν

pln(ν) (σm+1|σm)ϑ(xm, σm+1, σm)dσm+1. (5.52)

Since the option price is bounded on a bounded interval, we can assume that a
positive number, δ0, exists with

δ0 = sup [ϑ(xm, σm+1, σm)] , ∀σm+1, σm ∈ [aν , bν ],∀xm ∈ [a, b].

It then follows that

|c− c0| ≤ δ0e−r∆t
∫
R\[aν ,bν ]

pln(ν) (σm+1|σm) dσm+1,

which suggests that this truncation error depends only on the decay to zero of the
log-variance density function, far in the tails. One can expect larger truncation errors
for the difficult parameter sets, like for q ∈ (−1, 0] compared to q ∈ (0,+∞). We
assume a positive number, depending on q, δ1(q), to exist such that

e−r∆t
∫
R\[aν ,bν ]

pln(ν) (σm+1|σm) dσm+1 ≤ TOL · δ1(q). (5.53)

TOL in (5.53) appears because the size [aν , bν ] ensures that pln(ν)(σm+1|σm) < TOL
for σm+1 ∈ R\[aν , bν ]. Collecting the information gives:

|c− c0| ≤TOL · δ1(q) · δ0.

Another intermediate quantity is obtained by replacing px| ln(ν) in (5.52) with the
approximation by the Fourier cosine series expansion, i.e.

c(xm, σm, tm) = e−r∆t
∫ bν

aν

pln(ν) (σm+1|σm) ϑ̃(xm, σm+1, σm)dσm+1, (5.54)

where ϑ̃ is the COS-approximation of ϑ:

ϑ̃(xm, σm+1, σm) :=
2

b− a

∫ b

a

v(xm+1, σm+1, tm+1)
[∑′N−1

n=0
cos

(
nπ

xm+1 − a
b− a

)
·

Re

{
ϕ

(
nπ

b− a
; 0, σm+1, σm

)
einπ

xm−a
b−a

}]
dxm+1.

The error analysis in [32] shows that the error due to the COS approximation,

εcos(N, a, b) := sup
[∣∣∣ϑ(xm, σm+1, σm)− ϑ̃(xm, σm+1, σm)

∣∣∣] ,
∀xm ∈ [a, b],∀σm+1, σm ∈ R, converges exponentially in N for very smooth densities
when the integration range [a+ xm, b+ xm] is sufficiently wide. As such, we have

|c0 − c|= εcos(N, a, b)

(
e−r∆t

∫ bν

aν

pln(ν) (σm+1|σm) dσm+1

)
≤ εcos(N, a, b).
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The approximation c3 defined in (5.31) can now be obtained by applying a quadra-
ture rule to the integral of (5.54). Suppose that the (absolute) error from the quadra-
ture rule is εQ(J). With the triangle inequality, it then follows that ∀ xm ∈ [a, b] and
∀ σm, σm+1 ∈ [aν , bν ]:

ε(xm, σm, tm) = |c− c3| ≤ |c− c0|+ |c0 − c|+ |c− c3|
≤TOL · δ0 · δ1(q) + εcos(N, a, b) + εQ(J) := εloc. (5.55)

The local error thus consists of three parts:

1. Truncation error from the log-variance domain, which depends on the decay
rate to zero of the log-variance density, outside the truncation range;

2. Quadrature error, which converges exponentially in J when a Gauss-Legendre
quadrature rule is used (as the log-variance density belongs to C∞);

3. COS approximation error, which converges exponentially in N when interval
[a, b] is set sufficiently wide.

One can observe the numerical convergence of the local error with respect to param-
eter J by setting N sufficiently large and TOL sufficiently small. This is included in
Section 5.6.

5.5.2 Error Propagation during Recursion

In the backward recursion, we recovered the approximate Fourier cosine series co-
efficients V̂k,p(tm) instead of Vk,p(tm). In this subsection, we will study the error

εk,p(tm) :=
∣∣∣V̂k,p(tm)− Vk,p(tm)

∣∣∣ , and its evolution through time. We focus on a

Bermudan put here.
Starting at tM , V(tM ) is exact since the option price at tM is known analytically.

At time tM−1, an error, εk,p(tM−1), exists because we replaced c by c3 to determine
Vk,p(tM−1). Based on (5.40), we get

εk,p(tM−1) =
2

b− a

∣∣∣∣∣
∫ b

x∗(ςp,tM−1)

(c3(y, ςp, tM−1)− c(y, ςp, tM−1)) cos

(
kπ
y − a
b− a

)
dy

∣∣∣∣∣
The above integral can be seen as an inner product of function (c3−c) and the cosine
function, so that we can bound this error by the Cauchy-Schwarz inequality:

(εk,p(tM−1))2 ≤ 4

(b− a)2

[∫ b

x∗(ςp,tM−1)

ε2(y, σM−1, tM−1)dy ·
∫ b

x∗(ςp,tM−1)

cos2

(
kπ
y − a
b− a

)
dy

]

The early-exercise point always lies in [a, b] so that b−x∗ < b−a. With cos2(x) ≤ 1,
we find, for all k, p, that

(εk,p(tM−1))2 ≤ 4

(b− a)2

∫ b

x∗(ςp,tM−1)

ε2(y, σm, tm)dy ≤ 4

b− a

∫ b

a

ε2(y, σm, tm)dy.

With (5.55) for all σm and y, we obtain

εk,p(tM−1) ≤ 2εloc.
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In the matrix max-norm, this reads as∣∣∣∣∣∣V̂(tM−1)−V(tM−1)
∣∣∣∣∣∣

max
≤ 2εloc.

In the following, we will prove, by induction, that if∣∣∣∣∣∣V̂(tm+1)−V(tm+1)
∣∣∣∣∣∣

max
∼ O (εloc) , (5.56)

then it will also hold for time tm:
The final equation in (5.46) is equivalent to:

Ĉk,q(x
∗(ςq), b, tm) =

2

b− a

∫ b

x∗(ςp,tM−1)

ĉ3(y, ςq, tm) cos

(
kπ
y − a
b− a

)
dxm,

where ĉ3(xm, σm, tm) is based on the same definition as c3(xm, σm, tm) in (5.28),
except that Vn,j(tm+1) is replaced by V̂n,j(tm+1). As such, it holds that

c3(xm, σm, tm)− ĉ3(xm, σm, tm) =

e−r∆t
J−1∑
j=0

wj
∑′N−1

n=0

(
V̂n,j(tm+1)− Vn,j(tm+1)

)
· Re

{
ϕ̃

(
nπ

b− a
, ςj , σm

)
einπ

xm−a
b−a

}
.

To analyze this error term, we decompose ϕ̃ using (5.30) and replace the Re {·}-term
by Pn, defined in (5.24), which gives

c3(xm, σm, tm)− ĉ3(xm, σm, tm) = e−r∆t
J−1∑
j=0

wjpln(ν)(ςj |σm)Θ(ςj , xm, σm), (5.57)

where

Θ(ςj , xm, σm) :=
∑′N−1

n=0

(
V̂n,j(tm+1)− Vn,j(tm+1)

)
·[

Pn(ςj , xm, σm)−
∫
R\[a,b]

px| ln(ν)(y|ςj , xm, σm) cos

(
nπ

y − a
b− a

)
dy

]
.

From (5.22), we know that∫
R\[a,b]

px| ln(ν)(y|ςj , xm, σm) cos

(
nπ

y − a
b− a

)
dy ∼ O(TOLx).

As Θ can be viewed as an inner product of two vectors, we can apply the Cauchy-
Schwarz inequality:

Θ2(ςj , xm, σm)≤
∑′N−1

n=0
ε2
n,j(tm+1)

∑′N−1

n=0
[Pn(ςj , xm, σm) +O(TOLx)]

2
.

For smooth density functions, as we have in Heston’s model, the cosine series coeffi-
cients Pn converge exponentially in n. The sum,

∑′
(Pn +O(TOL)x)2, is therefore a
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sum of a geometric series, which is thus bounded. We assume that a positive number,
δ3, exists, which satisfies

δ3 := sup

[∑′N−1

n=0
[Pn(ϑj , xm, σm) +O(TOLx)]

2

]
, ∀xm ∈ [a, b],∀σm, ςj ∈ R.

It then follows that

Θ2(ςj , xm, σm) ≤ δ3
∑′N−1

n=0
ε2
n,j(tm+1)

With (5.56), we can write εn,j(tm+1) ≤
√
δ4εloc for some positive number δ4, and

find that
Θ2(ςj , xm, σm) ≤ δ3δ4Nε2loc.

Returning to Eq. (5.57) and employing the Cauchy-Schwarz inequality, gives us

|c3(xm, σm, tm)− ĉ3(xm, σm, tm)| ≤ e−r∆t
√√√√J−1∑

j=0

(wjpln(ν)(ςj |σm))2

J−1∑
j=0

Θ2(ςj , xm, σm)

≤ e−r∆t
√
δ3δ4δ5 ·

√
JN · εloc,

where δ5 is an upper bound for
∑J−1
j=0 (wjpln(ν)(ςj |σm))2 for all values of σm.

With the results above, error εk,q(tm) can be bounded as follows:∣∣∣V̂k,q(xm, σm, tm)− Vk,q(xm, σm, tm)
∣∣∣ =

∣∣∣Ĉk,q(a, x∗(ςq, tm), tm)− Ck,q(a, x∗(ςq, tm), tm)
∣∣∣

≤ 2

b− a

√∫ b

x∗(ςp,tM−1)

(c(y, ςq, tm)− c3(y, ςq, tm))2dy

√∫ b

x∗(ςp,tM−1)

cos2

(
kπ
y − a
b− a

)
dy

≤ 2e−r∆t
√
δ3δ4δ5 ·

√
JN · εloc. (5.58)

So, when εloc converges exponentially in both N and J , it holds that∣∣∣∣∣∣V̂(tm)−V(tm)
∣∣∣∣∣∣

max
∼ O(εloc).

The speed of convergence will, however, decrease when the number of monitoring
dates increases, due to the increasing weighting term in (5.58). Larger values for N
and J are required in that case. We will examine this via numerical experiments in
the next sections.

5.6 Numerical Results

In this section, we first confirm, by numerical experiments, in Subsection 5.6.1 the
error convergence analysis from Section 5.5 by pricing discrete barrier options for
which we set l = a and u = b. This should give us the prices of European options
with the barrier option pricing algorithm, and therefore we can generate reference
values by the European version of the COS method from [32]. Since only a limited
number of reference values are found in the literature, we use this special case to
study the error convergence.
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Subsequently, we price two Bermudan-style options with several early-exercise
dates in Subsection 5.6.2. Their values should resemble American reference options
that we use for comparison.

The computer used is a standard laptop with an Intel(R) 2.2GHz CPU and a
4-GB memory. The program is written in MATLAB.

5.6.1 Error Analysis Experiment

We check the error convergence analysis from Section 5.5 by pricing discrete barrier
options for which we set l = a and u = b. This gives us European option prices, so
we compute highly accurate reference values (accurate up to the 8-th decimal place)
by the European option pricing method from [32].

Three tests are extracted from [5], one relatively easy case, with q > 0, and two
significantly more difficult cases for which q ∈ [−1, 0]:

• Test No.1 (q = 0.6): η = 0.5, λ = 5, ν̄ = 0.04, T = 1;

• Test No.2 (q = −0.84): η = 0.5, λ = 0.5, ν̄ = 0.04, T = 1;

• Test No.3 (q = −0.96): η = 1, λ = 0.5, ν̄ = 0.04, T = 10.

Numerical methods for early-exercise or barrier options are usually either based
on finite differences for PDEs [44] or on tree-based methods [72, 9]. Results with these
techniques using the parameter sets that give rise to significant pricing difficulties for
early-exercise options under Heston’s dynamics (i.e. Feller condition not satisfied)
have however not yet been published.

Other parameters to determine the values of the put (α = −1) include:

ρ = −0.9, ν0 = 0.04, S0 = 100,K = 100, r = 0,

and we do not consider dividend payment here.
First of all, we compare the error convergence in J for the Heston pricing methods

with the composite Trapezoidal rule (upper part of Table 5.1) with results obtained
by the Gauss-Legendre quadrature rule (lower part of Table 5.1). We prescribe the
pre-defined truncation error tolerances, TOL, in log-variance dimension as 10−4, 10−6

and 10−8, respectively. The number of monitoring dates is set to 12 and for N we
choose N = 27.

The results in Table 5.1 demonstrate that when N and J are sufficiently large
(like N = J = 27), the truncation error, governed by ”TOL”, dominates the overall
error; For small values of TOL (like TOL≤ 10−6) and N is fixed, a very fast error
convergence in J is obtained (and the computational complexity is quadratic in J).
As pointed out earlier, with the composite Trapezoidal rule, the calculation of φ̃ in
the initialization phase requires less CPU time than with the non-equidistant Gauss-
Legendre rule. From the experiments of Test No. 1, we can conclude that for q > 0
both methods give highly accurate results within a fraction of a second.

We continue with the difficult test cases for which q → −1. While seemingly
pleasant in both CPU time and convergence for Test No.1, the composite Trapezoidal
rule (as well as the composite Simpson rule) is no longer appealing when q is less
than zero, as it requires very large values of J to achieve the desired accuracy. The
Gauss-Legendre rule can, however, still produce satisfactory results for relatively
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Table 5.1: Convergence in J for Test No.1 (q = 0.6) with N = 27,M = 12 and the
European option reference value is 7.5789038982.

Fourier cosine expansion plus composite Trapezoidal Rule

(J = 2d) TOL = 10−4 TOL = 10−6 TOL = 10−8

d time(sec) error time(sec) error time(sec) error

4 0.05 -4.53 10−3 0.06 4.89 10−2 0.06 2.09

5 0.15 -7.04 10−3 0.15 -3.97 10−5 0.16 7.66 10−4

6 0.56 -4.93 10−3 0.55 -3.37 10−5 0.56 -5.28 10−7

7 2.34 -4.29 10−3 2.35 -1.29 10−5 2.42 -4.08 10−7

Fourier cosine expansion plus Gauss-Legendre Rule

(J = 2d) TOL = 10−4 TOL = 10−6 TOL = 10−8

d time(sec) error time(sec) error time(sec) error

4 0.12 -7.51 10−3 0.12 1.02 10−2 0.12 1.41

5 0.43 -3.95 10−3 0.42 -1.85 10−5 0.40 2.99 10−5

6 1.69 -3.95 10−3 1.59 -1.54 10−5 1.54 -6.41 10−6

7 6.88 -3.95 10−3 7.07 -1.34 10−5 6.49 -6.32 10−7

small values of J . Therefore, we only illustrate the results obtained by the Gauss-
Legendre rule in log-variance dimension in Table 5.2.

Table 5.2: Convergence in J as q → −1; Fourier cosine expansion plus Gauss-
Legendre rule, N = 28,M = 12, TOL= 10−7, European reference values are
6.2710582179 (Test No. 2) and 13.0842710701 (Test No.3).

Test No. 2 (q = −0.84) Test No. 3 (q = −0.96)

(J = 2d) time(sec) time(sec)

d total Init. Loop error total Init. Loop error

6 3.03 2.85 0.18 5.63 3.11 2.93 0.18 -2.27e+1

7 13.3 12.78 0.56 6.89 10−3 12.1 11.55 0.53 -8.51 10−2

8 56.4 52.32 4.07 -2.12 10−5 55.7 51.74 4.00 -1.60 10−3

Compared to Test No.1, the absolute errors in the Tests No. 2 and No.3 are larger
for the same N and the same J . When q → −1, the left-side tail of the log-variance
density function tends to converge slower to zero. As a result, the truncation range
in the log-variance dimension is set very wide (by Newton’s method) to reach the
same tolerance level, TOL. The wider the truncation range the larger values of J are
required for the same level of accuracy. However, the error convergence in J is still
reasonably fast.

The results presented in Table 5.2 indicate that, as q approaches −1, the initial-
ization step dominates the overall computational time, in particular the expensive
computation of the Bessel function. The computations in the main loop of the pricing
algorithm cost less than 8 percent of the total time. So, if we can find a proxy for the
Bessel function which can be computed in a cheap way (like the moment matching

109



110
Chapter 5. Pricing Bermudan and Barrier Options under the Heston

Stochastic Volatility

based functions in [5]), the overall computation time could be significantly reduced.
We leave this for further research.

Next, we examine the error convergence in N , keeping the number of points in
log-variance direction, J , fixed. The results are presented in Table 5.3. One can
observe that the error convergence is faster than quadratic (the linear increments in
CPU time are not shown).

Table 5.3: Convergence in N ; COS + Gauss-Legendre, M = 12, TOL= 10−7, J = 27

for Test No.1 and J = 28 for Test No.2.

d : (N = 2d)

Test: 4 5 6 7

No. 1 (q = 0.6) 2.94 10−1 -1.63 10−2 -3.01 10−5 -1.79 10−6

No. 2 (q = −0.84) 7.32 10−1 -9.75 10−2 -2.30 10−2 -1.72 10−4

We also check the propagation of the error through time. For this, we fixed N
and J and measured the error convergence for increasing values of M (presented in
Table 5.4). We employ somewhat different values for J here to indicate that it does
not need to be a power of 2. The results confirm that the local error grows only
very slowly for q > 0 and somewhat faster for q ∈ [−1, 0]. The overall error can
be further reduced by setting larger values for J and/or N . Doubling parameter M
corresponds to doubling of CPU time in the main loop, which is in accordance with
the error analysis.

Table 5.4: Error propagation in M ; COS + Gauss-Legendre, TOL= 10−7; N =
27, J = 100 for Test No.1, and N = 28, J = 300 for Test No.2.

M :

Test: 10 20 40

No. 1 (q = 0.6) -2.14 10−6 -3.13 10−6 -4.92 10−6

No. 2 (q = −0.84) -2.56 10−5 -2.71 10−5 -7.02 10−4

5.6.2 Bermudan Options

We will now consider Bermudan options, and use Algorithm 5.3.1 to price them.
With increasing values for the number of exercise dates, M , the prices of Bermudan
options converge towards the equivalent American options. The M time lattices can
be viewed as a discretization in time.

Tree-based methods that are used to price American options using M time steps
return thus prices of the equivalent Bermudan options with M exercise dates. The
same holds for other pricing methods: If M time steps are used in a path simulation
for American options, then the price of a Bermudan option with M early-exercise
dates is computed.
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This insight enables us to take a reference value from the American option pricing
literature here, with our choice of parameter M resembling the number of time steps
used in a tree-based, PDE or Monte Carlo method.

Two parameter test sets are used here. One is chosen in the PDE-based finite
differences literature, for example in [44], with q > 0; and the second is with q ∈
[−1, 0], inspired by results with a tree-based method in [72]. The reference value for
the first test case is available and accurate up to the 6th digit, see [44]. For the latter
test Bermudan reference values are not available. So we provide our results that may
serve as a reference test for future computations by other pricing methods.

The most commonly used test parameters for American options under the Heston
dynamics in the literature read:

• Test No. 4 (q = 0.98): S0 = {8, 9, 10, 11, 12},K = 10, T = 0.25, r = 0.1, λ =
5, η = 0.9, ν̄ = 0.16, ν0 = 0.0625 and ρ = 0.1,

which gives q > 0. So, a very accurate and efficient pricing performance is expected
from our method.

Results are presented in Table 5.5, where CPU time is measured for five different
values of S0 computed simultaneously. The convergence of the Bermudan options to
the American option reference values is clearly visible 2.

Table 5.5: Errors of Test No. 4 (q = 0.98); COS + Gauss-Legendre, N = 27, J = 27

and TOL= 10−7

S0 8 9 10 11 12 time (sec)

ref.val. 2.000000 1.107621 0.520030 0.213677 0.082044 total Init. Loop

M=10 -1.80 10−2 -4.79 10−3 -2.85 10−3 -1.31 10−3 -5.18 10−4 6.9 6.34 0.57

M=20 -9.54 10−3 -2.39 10−3 -1.40 10−3 -6.65 10−4 -2.78 10−4 7.5 6.36 1.13

M=40 -5.14 10−3 -1.07 10−3 -5.50 10−4 -2.54 10−4 -1.22 10−4 8.9 6.57 2.32

M=80 -2.83 10−3 -2.86 10−4 2.75 10−5 5.42 10−5 -8.43 10−7 14.1 7.35 6.70

A negative correlation coefficient, ρ, is often observed in market data. A test
example for a Bermudan put with this parameter and q ∈ [−1, 0] was given in [72],
where the parameters were set as:

• Test No. 5 (q = −0.47): S0 = {90, 100, 110},K = 100, T = 0.25, r = 0.04, λ =
1.15, η = 0.39, ρ = −0.64, ν̄ = 0.0348, ν0 = 0.0348.

However, reference values were not available in the paper, so that we provide our
results as a reference in Table 5.6.

5.7 Conclusions

In this chapter, we have focused on pricing Bermudan and discretely-monitored bar-
rier options under Heston’s stochastic volatility model with a Fourier-based method.

2Although it is not our main concern in this paper, one can obtain American option prices much
more rapidly by extrapolating prices of Bermudan options with small values of M . Details are given
in [54] and Chapter 3.
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Table 5.6: Results of Test No. 5 (q = −0.47); COS + Gauss-Legendre; N = 28, J =
28 and TOL= 10−7.

S0 time (sec)

M 90 100 110 total Init. Loop

20 9.9783714 3.2047434 0.9273568 68.9 58.2 10.7

40 9.9916484 3.2073345 0.9281068 81.9 59.3 22.6

60 9.9957789 3.2079202 0.9280425 93.2 59.4 33.8

The near-singular problem in the left-side tail of the Heston variance density has
been dealt with by a change of variables to the log-variance domain. An efficient
discrete pricing formula is derived by applying a Fourier series expansion technique
to the log-stock dimension and a quadrature rule to the log-variance dimension. By
means of an error analysis we have determined the various sources for the errors,
which are verified by numerical experiments.

The pricing method exhibits a fast error convergence. Furthermore, the method
is robust with respect to parameter variations. For pricing early-exercise options
for which the parameters in the Heston model satisfy the Feller condition, the new
solution method gives highly accurate option prices within a fraction of a second.
The challenge was, however, to price options in case the Feller condition was not
satisfied. In that case, the computation of the Bessel functions in the initialization
step of the algorithm dominates the overall computation time. Also in the latter case,
the error convergence is highly satisfactory. Choosing approximately 128 points in
the log-stock and in the log-variance dimension is usually sufficient for an (relative)
error of the order 10−4, even if the Feller condition is not satisfied.

For the near future research, we expect a significant speed-up when the Bessel
function computations can be replaced by the computation of an accurate proxy.
Replacing the MATLAB implementation by an efficient C code would further reduce
CPU time.
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Chapter 6

Conclusions and Outlook

6.1 Conclusions

In this dissertation an option pricing method based on Fourier-cosine series expan-
sions, the COS method, has been presented. The COS method can be applied as long
as the characteristic function for the underlying asset price process is available. It is
based on the insight that the series coefficients of many probability density functions
can be accurately and easily retrieved from their characteristic functions. As such,
one can decompose a probability density function into a linear combination of cosine
functions. It is this decomposition that makes the numerical computation of the
risk-neutral valuation formula highly efficient.

The COS method is efficient not only for recovering density and for pricing Eu-
ropean options, but also for pricing a number of different financial products under
various asset dynamics, such as Bermudan, American and discretely monitored bar-
rier options as well as credit default swaps under exponential Lévy processes, and
options with early-exercise features under the (two-dimensional) Heston stochastic
volatility model.

Derivation of the COS method in this thesis has been accompanied by an error
analysis. The error convergence is exponential in N , the number of leading terms
in Fourier-cosine series expansion, for probability density functions in C∞[a, b]. This
convergence rate has also been confirmed by various numerical experiments. If the
density function of the underlying process has a discontinuity in one of its derivatives,
an algebraic error convergence is expected and has been observed.

The computational complexity of the COS method is linear in N for European op-
tions and almost-linear in N for Bermudan and discretely monitored barrier options.
In the latter case, the complexity is O(M − 1)N log2(N) with M being the number
of early-exercise/monitoring dates. One should keep in mind that, for a very small
time interval between two consecutive exercise dates, the underlying density function
becomes a highly peaked function. Therefore, to get a satisfactory accuracy, a larger
value for N is required for cases whereby the time interval is smaller or the number
of early-exercise/monitoring dates is bigger. For problems with small time intervals,
like daily-monitored barrier options, the COS method shows a similar performance as
the Hilbert transform based method by Feng and Linetsky. Compared to the CONV
method from Chapter 1, however, the COS method converges significantly faster to
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reach the same level of accuracy.

In the calculation of survival/default probabilities for pricing single name Credit
Default Swaps, the credit default spreads could be related to a series of survival/default
probabilities with different maturities. These survival probabilities can be viewed
as prices of binary down-and-out barrier options, without discounting, for which the
COS method for the discretely monitored barrier options can be efficiently employed.
The method’s potential has been demonstrated via the calibration of different expo-
nential Lévy jump models to the quotes of the constituents of the iTraxx Series 7
and Series 8.

The valuation of Bermudan and discrete barrier options under Heston’s stochas-
tic volatility model gives rise to a two-dimensional option pricing problem. We have
focused on the case for which the problem parameters do not satisfy the Feller condi-
tion so that zero variance could be reached in the asset price process. This situation
is sometimes called the near-singular problem of the left-side tail of the variance. A
change of variables to the log-variance domain enables us to price the early-exercise
options for all parameter settings including the cases the Feller condition is not sat-
isfied. The derived discrete pricing formula is in essence a combination of the COS
formula in the log-asset dimension and a quadrature rule in the log-variance dimen-
sion. If the Feller condition is satisfied, the solution method returns highly accurate
option prices for early-exercise options within a fraction of a second. For nontrivial
parameter settings, the overall computational time is dominated by the computation
of a Bessel function (that appears in the joint characteristic function of log-asset and
log-variance) in the initialization of the option pricing method. The method’s fast
error convergence and robustness have also been analyzed and verified via various
experiments.

6.2 Outlook

Application of the COS method can be generalized for more asset price processes
and/or for more option types.

In the Heston case, we expect an additional significant speed-up when the time-
consuming evaluation of the Bessel function, which appears in the characteristic
function, can be replaced by a suitable proxy function that can be calculated in
much less operations. Promising attempts in this direction from the literature of
Monte Carlo simulation methods for Heston dynamics could be helpful here.

Alternative asset price processes other than Lévy processes appear in several op-
tion pricing settings. We can think of energy derivative pricing and the use of mean-
reverting (non-Lévy) processes. In these cases the COS method for options with
early-exercise features has to be adapted to reach the highest efficiency. The same
is true for hybrid dynamics, an example of which is the generalization of the Heston
stochastic volatility dynamics to, for example, similar processes with a stochastic in-
terest rate. It is a challenge to develop efficient Fourier-cosine based pricing methods
for early-exercise options under such processes.

Regarding more option types, we have thoughts in several directions. The gen-
eralization to swing options and other control problems is already on its way. The
resulting methods are based on the COS method for Bermudan options enhanced by
the possibility of multiple exercise opportunities within one contract.
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Generalization to multi-asset option pricing problems is in principle also possible.
One needs to find a relation between the multi-dimensional Fourier-cosine series
coefficients and the characteristic function or the joint moment-generating function.
Initial ideas in this direction already exist.

Finally, in the field of risk management, the COS method can also be used for the
recovery of portfolio loss distributions within and beyond the Vasicek framework, and
for the computation of risk measures like value-at-risk (VaR) and expected shortfall
(ES) as an alternative for Monte Carlo simulation or sampling-based methods.

These are very interesting issues left for future research in the field of “Compu-
tational Finance”.
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Table A.1: RMSE in basis points of the computed CDSs to market CDSs (part 1)

company name
RMSE in S7 RMSE in S8

NIG-BM CGMY NIG-BM CGMY

ABN AMRO Bank NV 0.61 0.55 1.33 1.60

Aegon NV 0.92 0.81 2.34 2.18

Allianz SE 0.76 0.71 0.89 1.13

Assicurazione Generali SPA 0.51 0.43 0.77 0.84

Aviva PLC 0.58 0.51 1.94 2.08

AXA 0.79 0.65 1.35 1.49

Banca Monte dei Paschi di Siena SPA 0.65 0.71 1.62 1.82

Banco Bilbao Vizcaya Argentaria SA 0.60 0.46 1.49 1.46

Banco Espirito Santo SA 0.70 0.66 1.09 1.23

Banco Santander Central Hispano SA 0.70 0.64 1.17 1.34

Barclays Bank PLC 0.48 0.46 1.22 1.32

BNP Paribas 0.38 0.30 1.04 1.07

Capitalia SPA 1.29 1.35 1.44 2.07

Commerzbank AG 0.84 0.62 1.06 1.13

Deutsche Bank AG 0.89 0.77 1.21 1.30

Hannover Rueckversicherung AG 0.61 0.62 1.59 1.61

Intesa Sanpaolo 0.40 0.44 0.27 0.46

Muenchener Rueckversicherung AG 0.59 0.71 0.99 0.95

Swiss Reinsurance Company 1.00 0.87 2.70 2.38

Unicredito Italiano SPA 0.57 0.53 1.33 1.63

Bayerische Motorenwerke AG 0.54 0.55 0.95 1.30

Compagnie Financiere Michelin 0.83 0.97 3.67 2.02

Continental AG 1.63 1.10 1.44 1.54

DaimlerChrysler AG 0.76 0.75 1.10 1.12

GKN Holdings PLC 2.19 1.50 2.53 2.17

Peugeot SA 0.74 0.64 1.72 2.28

Renault 0.80 0.64 2.73 2.56

Valeo 1.32 1.01 1.67 1.43

Volkswagen AG 0.78 0.82 2.86 1.67

Accor 0.83 0.89 2.57 2.07

Aktiebolaget Electrolux 0.69 0.35 1.79 2.20

Altadis SA 1.83 1.45 1.60 1.51

British American Tobacco PLC 0.67 0.29 1.55 1.60

Cadbury Schweppes PLC 0.62 0.55 1.60 1.59
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Table A.2: RMSE in basis points of the computed CDSs to market CDSs (part 2)

company name
RMSE in S7 RMSE in S8

NIG-BM CGMY NIG-BM CGMY

Carrefour 0.71 0.68 1.35 0.90

Compass Group PLC 0.78 0.66 1.55 0.99

Deutsche Lufthansa AG 0.89 0.68 1.61 1.83

Diageo PLC 0.32 0.32 1.49 1.16

DSG International PLC 0.93 0.72 4.27 3.33

Gallaher Group PLC 0.41 0.52 1.07 0.57

Groupe Auchan 0.44 0.46 1.51 0.90

Experian Finance PLC 0.71 0.52 1.82 1.70

Henkel KGaA 0.74 0.73 1.57 1.32

Kingfisher PLC 1.17 0.70 3.58 3.30

Koninklijke Philips Electronics NV 0.81 0.69 1.40 1.47

LVMH Moet Henessy Louis Vuitton 0.62 0.72 1.47 1.17

Marks and Spencer 1.15 0.89 1.76 2.22

Metro AG 0.52 0.60 1.10 1.18

PPR 1.48 0.78 1.92 1.97

Safeway Ltd 1.09 0.94 1.72 1.49

Sodexho Alliance 0.46 0.42 1.19 1.32

Svenska Cellulosa Aktiebolaget SCA 0.52 0.40 1.69 1.73

Tate & Lyle PLC 0.66 0.94 0.94 1.01

Tesco PLC 0.33 0.44 1.28 0.77

Unilever NV 0.52 0.48 1.50 0.51

Centrica PLC 0.80 1.15 2.14 1.23

Edison SPA 0.40 0.58 0.88 0.74

Enel SPA 0.76 0.75 2.96 3.00

Energie Baden-Wuerttemberg AG 0.46 0.52 1.60 0.99

Fortum Oyj 0.59 0.63 1.70 0.98

Gas Natural SDG SA 0.32 0.45 1.87 1.54

GAZ de France 0.25 0.41 1.43 1.00

Iberdrola SA 0.71 1.97 1.66 1.54

National Grid PLC 1.25 0.99 1.69 1.10

Repsol YPF SA 1.06 1.00 1.36 1.30

RWE AG 0.22 0.41 0.89 0.60

SUEZ 0.46 0.52 0.94 0.76

Union Fenosa SA 0.59 0.64 2.11 1.85

United Utilities PLC 0.32 0.90 0.97 0.88

Vattenfall Aktiebolag 0.36 0.52 1.25 0.80
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Table A.3: RMSE in basis points of the computed CDSs to market CDSs (part 3)

company name
RMSE in S7 RMSE in S8

NIG-BM CGMY NIG-BM CGMY

Veolia Environnement 1.55 0.97 1.19 1.19

Adecco SA 0.63 0.31 1.71 2.06

Akzo Nobel NV 0.67 0.55 1.67 1.28

Arcelor Finance 0.66 0.38 1.71 1.96

Bayer AG 0.57 1.02 1.42 1.25

Ciba Specialty Chemicals Holding Inc. 1.71 0.74 1.96 2.26

Compagnie de Saint-Gobain 0.77 0.51 2.14 1.68

European Aeronautic Defence

and Space Company EADS NV 0.65 0.45 1.42 1.03

Glencore International AG 2.29 1.17 2.55 3.52

Imperial Chemical Industries PLC 0.94 0.54 0.74 0.70

Koninklijke DSM NV 0.97 0.37 1.45 1.51

Lafarge 1.40 1.04 1.77 1.89

Linde AG 0.94 0.91 1.13 1.40

Sanofi-Aventis 0.45 0.45 1.16 0.83

Siemens AG 0.74 1.40 1.21 1.05

Solvay 0.48 1.27 0.95 1.04

ThyssenKrupp AG 1.53 0.84 2.23 2.08

UPM-Kymmene Oyj 1.31 1.06 3.06 2.99

VINCI 0.76 0.49 1.28 1.21

Bertelsmann AG 1.33 1.90 1.36 1.10

British Telecommunications PLC 1.56 1.20 1.62 1.65

Deutsche Telekom AG 1.16 1.24 2.19 1.51

France Telecom 1.31 1.77 1.48 1.38

Hellenic Telecommunications Organisation SA 1.44 1.05 3.54 2.79

Koninklijke KPN NV 2.29 0.64 1.90 3.17

Pearson PLC 1.80 0.81 1.68 1.43

Reuters Group PLC 0.87 1.15 1.12 1.04

STMicroelectronics NV 0.80 0.87 0.97 1.79

Telecom Italia SPA 1.82 1.58 2.55 2.46

Telefonica SA 1.20 0.96 1.59 1.59

Telekom Austria Aktiengesellschaft 0.99 0.77 1.59 1.27

Telenor ASA 0.57 0.90 0.85 0.93

TeliaSonera Aktiebolag 1.05 0.70 1.61 1.23

Vivendi 2.02 1.58 2.37 2.64

Vodafone Group PLC 1.27 1.94 2.02 1.69

Wolters Kluwer NV 1.51 1.43 1.45 1.19
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Lévy processes using Fourier space time-stepping. Proc. 4th IASTED Intern.
Conf. Financial Engin. Applic., pages 92–97, 2007.

[46] H. Jönsson and W. Schoutens. Pricing constant maturity credit default swaps
under jump dynamics.

[47] H. Jönsson and W. Schoutens. Single name credit default swaptions meet single
sided jump models. Review of Derivatives Research, 11(1-2):153–169, 2009.



130 BIBLIOGRAPHY

[48] S. G. Kou. A jump diffusion model for option pricing. Management Science,
48(8):1086–1101, 2002.

[49] S. G. Kou. On pricing of discrete barrier options. Statistica Sinica, 13:955–964,
2003.

[50] S. G. Kou and H. Wang. First passage times of a jump diffusion process. Ad-
vances in Applied Probability, 35:504–531, 2003.

[51] S. G. Kou and H. Wang. Options pricing under a double exponential jump-
diffusion model. Management Science, 50:1178–1192, 2004.

[52] A. Lewis. A simple option formula for general jump-diffusion and other exponen-
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[63] S. Raible. Lévy processes in finance: Theory, numerics and empirical facts. PhD
Thesis, Inst. für Math. Stochastik, Albert-Ludwigs-Univ. Freiburg, 2000.

[64] E. Reiner. Convolution methods for path-dependent options. Financial Math.
workshop, IPAM UCLA, Jan. 2001.

[65] Scheldon M. Ross. Introduction to Probability Models. Academic Press; 6 edition,
1997.



BIBLIOGRAPHY 131
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[67] W. Schoutens. Lévy processes in finance: Pricing financial derivatives. Wiley,
2003.

[68] W. Schoutens, E. Simons, and J. Tistaert. A perfect calibration! now what?
Wilmott Magazine, pages 66–78, March 2004.

[69] K. J. Singleton and L. Umantsev. Pricing coupon-bond options and swaptions
in affine term structure models. Math. Finance, 12(4):427–446, 2002.

[70] V. Surkov. Parallel option pricing with Fourier space time-stepping method on
graphics processing units. Parallel Computing, Feb. 2010. To appear.

[71] N. Taleb. Dynamic Hedging. John Wiley & Sons, New York, 2002.

[72] M. Vellekoop and H. Nieuwenhuis. A tree-based method to price American
options in the Heston model. J. Comp. Finance, 13(1), Fall 2009.

[73] I. Wang, J. W. Wan, and P. Forsyth. Robust numerical valuation of European
and American options under the CGMY process. J. Comp. Finance, 10(4):31–
70, 2007.

[74] P. Wilmott. Derivatives: The theory and practice of financial engineering. Wiley
Frontiers in Finance Series, 1998.

[75] Y. Yamamoto. Double-exponential fast Gauss transform algorithms for pricing
discrete lookback options. Publ. Res. Inst. Math. Sci., 41:989–1006, 2005.


	Acknowledgements
	Summary
	Samenvatting
	Introduction
	Background
	Asset Dynamics
	Exponential Lévy Processes
	Heston's Stochastic Volatility Model

	Existing Integration-based Methods
	European Options
	Bermudan Options 
	American Options 

	The CONV Method
	Derivation of the CONV method
	Numerical results

	Organization of This Thesis

	Density Recovery and European Option Valuation
	Introduction
	Fourier Integrals and Cosine Series
	Inverse Fourier integral via cosine expansion

	Pricing European Options
	Coefficients Vk for plain vanilla options
	Coefficients Vk for digital and gap options
	Formula for exponential Lévy processes and the Heston model

	Error Analysis
	Numerical Results
	Truncation range for COS method
	Geometric Brownian Motion
	The Heston model
	Variance Gamma
	CGMY process

	Conclusions and Discussion

	Pricing Early-Exercise and Barrier Options under Exponential Lévy Processes
	Introduction
	Pricing Bermudan and Barrier Options
	The COS Method for Continuation Values
	Pricing Bermudan Options
	Efficient Algorithm
	Discretely-Monitored Barrier Options

	Error Analysis
	Convergence for European Options
	Error Propagation in the Backward Recursion
	Choice of Truncation Range

	Numerical Results
	Bermudan and American Options
	Barrier Options
	Extreme Tests

	Conclusions and Discussion

	Recovering Survival Probability and Pricing CDSs
	Introduction
	Lévy Default Model and Valuation of CDSs
	Lévy Default Model
	Valuation of Credit Default Swaps

	Recovering Survival Probability with the COS Method
	The COS Formula of Survival Probability
	Backward Induction

	Choice of Parameters and Error Analysis
	Local Error Convergence
	Number of Monitoring Dates and Integration Points

	Calibration
	Calibration Setting
	Calibration Results
	Default Probability Term Structure

	Conclusion

	Pricing Bermudan and Barrier Options under the Heston Stochastic Volatility
	Introduction
	Heston Model Details
	Heston Model Basics
	The Left-Side Tail
	Transformation to Log-Variance Process
	Joint Distribution of Log-stock and Log-variance

	The Pricing Method for Bermudan Options
	The Pricing Equations
	Density Recovery by Fourier Cosine Expansions
	Discrete Fourier-based Pricing Formula
	Backward Recursion

	Discrete Barrier Options
	Error Analysis
	Local Error
	Error Propagation during Recursion

	Numerical Results
	Error Analysis Experiment
	Bermudan Options

	Conclusions

	Conclusions and Outlook
	Conclusions
	Outlook

	RMSE Results of All Companies of iTraxx
	Curriculum vitae
	List of publications
	Attended Conferences

