
 
 

Delft University of Technology

Nonparametric inference for Poisson-Laguerre tessellations

van der Jagt, Thomas; Jongbloed, Geurt; Vittorietti, Martina

DOI
10.1111/sjos.70011
Publication date
2025
Document Version
Final published version
Published in
Scandinavian Journal of Statistics

Citation (APA)
van der Jagt, T., Jongbloed, G., & Vittorietti, M. (2025). Nonparametric inference for Poisson-Laguerre
tessellations. Scandinavian Journal of Statistics, 52(4), 1816-1851. https://doi.org/10.1111/sjos.70011

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1111/sjos.70011
https://doi.org/10.1111/sjos.70011


Received: 17 February 2025 Revised: 10 July 2025 Accepted: 22 July 2025

DOI: 10.1111/sjos.70011

O R I G I N A L A R T I C L E

Nonparametric inference for
Poisson-Laguerre tessellations

Thomas van der Jagt Geurt Jongbloed Martina Vittorietti

Delft Institute of Applied Mathematics,
Delft University of Technology, Delft, The
Netherlands

Correspondence
Thomas van der Jagt, Delft Institute of
Applied Mathematics, Delft University of
Technology, Mekelweg 4, 2628CD Delft,
The Netherlands.
Email: t.f.w.vanderjagt@tudelft.nl

Abstract
In this paper, we consider statistical inference for
Poisson-Laguerre tessellations in Rd. The object of interest
is a distribution function F which describes the distri-
bution of the arrival times of the generator points. The
function F uniquely determines the intensity measure of
the underlying Poisson process. Two nonparametric esti-
mators for F are introduced, which depend only on the
points of the Poisson process that generate non-empty cells
and the actual cells corresponding to these points. The pro-
posed estimators are proven to be strongly consistent as the
observation window expands unboundedly to the whole
space. We also consider a stereological setting, where one
is interested in estimating the distribution function asso-
ciated with the Poisson process of a higher-dimensional
Poisson-Laguerre tessellation, given that a corresponding
sectional Poisson-Laguerre tessellation is observed.
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1 INTRODUCTION

Tessellations have proven to be useful in a wide range of fields. For example, a Poisson-Voronoi
tessellation may serve as a model for a wireless network, see Baccelli and Błaszczyszyn (2009). In
cosmology, Voronoi tessellations can be used to describe the distribution of galaxies, as shown in
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VAN DER JAGT et al. 1817

van de Weygaert (1994). There are several generalizations of the Voronoi tessellation, such as
the Laguerre tessellation, which offers more flexibility compared to the Voronoi model. In the
field of materials science, Laguerre tessellations have been fitted to the so-called microstructure
of a material. For instance, Laguerre tessellations were found to be accurate models for foams in
Lautensack (2008), Liebscher (2015), for sintered alumina in Falco et al. (2017) and for composites
in Wu et al. (2010). A major challenge in this field is that, in practice, often only 2D microscopic
images of cross sections of the 3D microstructure can be obtained. By studying a 3D object via
a 2D slice, there is evidently a loss of information. Inverse problems of this type, which involve
the estimation of higher-dimensional information from lower-dimensional observations, belong
to the field of stereology.

In this paper, we focus on statistical inference for a particular class of random tessellations
known as Poisson-Laguerre tessellations. We do this both for the case where one directly observes
a tessellation as well as for the case where the observed tessellation is obtained by intersecting a
higher-dimensional tessellation with a hyperplane. The latter type of tessellation is often referred
to as a sectional tessellation. A Laguerre tessellation in Rd is defined via a set of weighted points
𝜂 = {(x1, h1), (x2, h2),…}, called generators. Here, xi is a point in Rd and hi > 0 its weight. Each
generator corresponds to a set, which is either a polytope or the empty set. This set is usually
called a cell, and we may also say that a generator generates this cell. The non-empty cells form
a tessellation, meaning that these cells have disjoint interiors and the union of these cells equals
Rd. We refer to the subset 𝜂∗ ⊂ 𝜂 of points that generate non-empty cells as the extreme points of
𝜂. We may write:

𝜂
∗ ∶=

{
(x, h) ∈ 𝜂 ∶ C((x, h), 𝜂) ≠ ∅

}
, (1)

where C((x, h), 𝜂) denotes the cell associated with (x, h). A Poisson-Laguerre tessellation, which
is a random tessellation, is obtained by taking 𝜂 to be a Poisson (point) process on Rd × (0,∞).
The intensity measure of 𝜂 is assumed to be of the form 𝜈d × F. Here, 𝜈d is Lebesgue measure on
Rd and F is a non-zero locally finite measure concentrated on (0,∞). An example of a realization
of a Poisson-Laguerre tessellation, and the corresponding realization of extreme points, is shown
in Figure 1. Random Laguerre tessellations generated by an independently marked Poisson pro-
cess were first studied in Lautensack (2007) and Lautensack and Zuyev (2008). We mostly follow
the description of Poisson-Laguerre tessellations as given in Gusakova and Wolde-Lübke (2025).
Additionally, we will also rely on the result from Gusakova and Wolde-Lübke (2025), which
states that the sectional Poisson-Laguerre tessellation is again a Poisson-Laguerre tessellation.
The so-called 𝛽-Voronoi tessellation as introduced in Gusakova et al. (2022) may be seen as a para-
metric model for a Poisson-Laguerre tessellation. In Gusakova et al. (2024) it was shown that the
sectional Poisson-Voronoi tessellation is in fact a 𝛽-Voronoi tessellation.

Because tessellations are usually not directly observed in nature, typically the first step
towards statistical inference for tessellations is a reconstruction step. Such a reconstruction
method is used to obtain a tessellation from an image, for details see Section 9.10.1 in Chiu
et al. (2013) and references therein. Therefore, when applying the methodology in this paper
to real data, it needs to be combined with such a reconstruction method. It is important to
point out that the reconstruction methods used in Lautensack (2008), Liebscher (2015), and Seitl
et al. (2021) reconstruct a Laguerre tessellation along with the extreme points simultaneously.
Effectively, statistical inference for a Poisson-Laguerre tessellation is then reduced to statisti-
cal inference for the point process 𝜂∗ as in Equation (1). This appears to be the most common
approach towards statistical inference for random Laguerre tessellations, and this is also the
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1818 VAN DER JAGT et al.

F I G U R E 1 Left: A realization of a planar Poisson-Laguerre tessellation. Cells are colored according to their
area. Right: The corresponding realization of extreme points. Around each point, there is a circle with a radius
proportional to the weight of the point.

approach we take. For instance, in Seitl et al. (2022) a methodology is proposed for statistical infer-
ence for Laguerre tessellations, where parametric models are considered for the underlying point
process. In Stoyan et al. (2021), a Laguerre tessellation, along with the corresponding extreme
points, is fitted to real data. Furthermore, a statistical analysis is performed on this point process
of extreme points.

Recall that the intensity measure of the underlying Poisson process 𝜂 is assumed to be of the
form 𝜈d × F. For z ≥ 0 we define F(z) ∶= F((0, z]), the distribution function of F. Note that this
distribution function is the only parameter in this model to be estimated. In this paper, we define
nonparametric estimators for F. These estimators for F depend on both the observed Laguerre
cells in a bounded observation window as well as the points of 𝜂∗ in the same window. Here, it
is important to realize that 𝜂∗ is not necessarily a Poisson process, as it is a dependent thinning
of 𝜂. The proposed estimators are proven to be consistent as the observation window expands
unboundedly to the whole of Rd. Additionally, we consider the stereological setting where the
observed Poisson-Laguerre tessellation in Rd−1 is obtained by intersecting a Poisson-Laguerre
tessellation in Rd with a hyperplane. Based on this observed sectional tessellation, we intro-
duce an estimator for the distribution function corresponding to the Poisson process of the
higher-dimensional tessellation.

This paper is organized as follows. In Section 2, we introduce necessary notation and def-
initions. Then, the main mathematical object of interest, the Poisson Laguerre tessellation, is
discussed in Section 3. In Section 4, we introduce our first estimator for F, which is based on a
thinning of the extreme points. To the best of our knowledge, no estimators have been proposed
in the context of Poisson-Laguerre tessellations as of yet. A second estimator for F is introduced
in Section 5, which depends on all observed extreme points, as well as the volumes of the cor-
responding Laguerre cells. In Section 6, we consider statistical inference for Poisson-Laguerre
tessellations in a stereological setting. In Section 7, we perform a simulation study for the proposed
estimators to empirically verify their behavior. Finally, we conclude this paper with a discussion
in Section 8.
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VAN DER JAGT et al. 1819

2 PRELIMINARIES

In this section, we introduce notation and various definitions that we need throughout this
paper. Let 𝜈d denote Lebesgue measure on Rd, and 𝜎d−1 Lebesgue measure on the sphere Sd−1 =
{x ∈ Rd ∶ ||x|| = 1}, also known as the spherical measure. Given x ∈ Rd and r > 0, we write
B(x, r) = {y ∈ Rd ∶ ||x − y|| < r} and B(x, r) = {y ∈ Rd ∶ ||x − y|| ≤ r} for the open and closed ball
respectively, with radius r centered at x. We introduce the following constant:

𝜅d ∶= 𝜈d

(
B(0, 1)

)
= 2𝜋

d
2

Γ
(

1 + d
2

) .

We may also use the following fact: 𝜎d−1
(
Sd−1) = d𝜅d. Let A,B ⊂ Rd, then the sum of sets is

defined as: A + B = {a + b ∶ a ∈ A, b ∈ B}. If x ∈ Rd, we also write: A + x = {a + x ∶ a ∈ A}. Let
+ denote the space of all (not necessarily bounded) distribution functions on (0,∞).

We now introduce several definitions related to point processes. While these definitions are
valid for point processes in much more general spaces, in this paper, we only consider point pro-
cesses on Rd × (0,∞). For more background on the theory of point processes, we refer to Daley
and Vere-Jones (2008) and Last and Penrose (2017). Suppose X = Rd × (0,∞), and let (Ω,,P)
be a probability space. A measure 𝜇 on X is locally finite if 𝜇(B) < ∞ for all bounded B ∈ (X).
Here, (X) denotes the Borel 𝜎-algebra of X. Let N(X) denote the space of locally finite count-
ing measures (integer-valued measures) on X. We equip N(X) with the usual 𝜎-algebra  (X),
which is the smallest 𝜎-algebra on N(X) such that the mappings 𝜇 → 𝜇(B) are measurable for all
B ∈ (X). A point process on X is a random element 𝜂 of (N(X), (X)), that is a measurable map-
ping 𝜂 ∶ Ω → N(X). The intensity measure of a point process 𝜂 on X is the measure Λ defined by
Λ(B) ∶= E(𝜂(B)), B ∈ (X).

Definition 1. SupposeΛ is a 𝜎-finite measure on X. A Poisson process with intensity
measure Λ is a point process 𝜂 on X with the following two properties:

1. For every B ∈ (X), the random variable 𝜂(B) is Poisson distributed with mean
Λ(B).

2. For every m ∈ N and pairwise disjoint sets B1,…,Bm ∈ (X), the random variables
𝜂(B1),…, 𝜂(Bm) are independent.

Let 𝛿 denote the Dirac measure, hence for x ∈ X and B ∈ (X): 𝛿x(B) = 1{x ∈ B}. A counting
measure𝜇 on X is called simple if𝜇({x}) ≤ 1 for all x ∈ X. As such, a simple counting measure has
no multiplicities. Similarly, a point process 𝜂 on X is called simple if P(𝜂({x}) ≤ 1,∀x ∈ X) = 1. Let
Ns(X) be the subset of N(X) containing all simple measures. Define:s(X) ∶= {A ∩Ns(X) ∶ A ∈
 (X)}. Then, a simple point process on X may be seen as a random element 𝜂 of (Ns(X),s(X)).
If a point process is simple, it is common to identify the point process with its support and view
the point process as a random set of discrete points in X. We may, e.g., write x ∈ 𝜂 instead of
x ∈ supp(𝜂). It is common practice to switch between the interpretations of a simple point process
as a random counting measure or as a random set of points, depending on which interpretation is
more convenient. We will also do this throughout this paper. Enumerating the points of a simple
point process in a measurable way, we may write:

𝜂 = {x1, x2,…}, and 𝜂 =
∑

i∈N

𝛿xi .
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1820 VAN DER JAGT et al.

For v ∈ Rd let Sv denote the shift operator. Suppose 𝜂 = {(x1, h1), (x2, h2),…} is a point process with
xi ∈ Rd and hi > 0. Then, we define Sv𝜂 ∶= {(x1 − v, h1), (x2 − v, h2),…}. Additionally, for a deter-
ministic set B ⊂ Rd × (0,∞) we define SvB ∶= {(x + v, h) ∶ (x, h) ∈ B}. Note that in the random
counting measure interpretation of a point process, the definition is as follows: Sv𝜂(B) ∶= 𝜂(SvB),
for B ∈ (Rd × (0,∞)). This is indeed consistent with the previous definition since Sv𝜂(B) =∑

i 𝛿(xi,hi)(SvB) =
∑

i 𝛿(xi−v,hi)(B). We call 𝜂 stationary if Sv𝜂 and 𝜂 are equal in distribution for all v ∈
Rd. Throughout this paper, (Wn)n≥1 is a fixed convex averaging sequence. That is, each Wn ⊂ Rd

is convex and compact, and the sequence is increasing: Wn ⊂ Wn+1. Finally, the sequence (Wn)n≥1
expands unboundedly: sup{r ≥ 0 ∶ B(x, r) ⊂ Wn for some x ∈ Wn}→∞ as n →∞.

3 POISSON-LAGUERRE TESSELLATIONS

In this section, we describe the main mathematical object of interest in this paper, the
Poisson-Laguerre tessellation. This random tessellation is a generalization of the well-known
Poisson-Voronoi tessellation, and was first studied in Lautensack (2007) and Lautensack and
Zuyev (2008). We will mostly follow the description of the Poisson-Laguerre tessellation as given
in Gusakova and Wolde-Lübke (2025), which is subtly different. Let us start with the definition
of a tessellation:

Definition 2. A tessellation of Rd is a countable collection T = {Ci ∶ i ∈ N}, of sets
Ci ⊂ Rd (the cells of the tessellation) such that:

• int(Ci) ∩ int(Cj) = ∅, if i ≠ j.
• ∪i∈NCi = Rd.
• T is locally finite: #{i ∈ N ∶ Ci ∩ B ≠ ∅} < ∞ for all bounded B ∈ (Rd).
• Each Ci is a compact and convex set with interior points.

Now, we will introduce the Laguerre diagram. Let 𝜑 = {(xi, hi)}i∈N, with xi ∈ Rd and hi > 0.
Assume moreover that xi ≠ xj for i ≠ j. The Laguerre cell associated with (x, h) ∈ 𝜑 is defined as:

C((x, h), 𝜑) =
{

y ∈ R
d ∶ ||y − x||2 + h ≤ ||y − x′||2 + h′ for all (x′, h′) ∈ 𝜑

}
. (2)

The Laguerre diagram generated by 𝜑 is the set of non-empty Laguerre cells, and is denoted by
L(𝜑):

L(𝜑) ∶=
{

C((x, h), 𝜑) ∶ (x, h) ∈ 𝜑 and C((x, h), 𝜑) ≠ ∅
}
.

A Laguerre diagram is not necessarily a tessellation; conditions on 𝜑 are needed to ensure that
L(𝜑) is locally finite and that all cells are bounded. As we will discuss in a moment, the random
Laguerre diagrams we consider are in fact tessellations. A Laguerre diagram has an interesting
interpretation as a crystallization process. From the definition of a Laguerre cell, it follows that:

x ∈ C((xi, hi), 𝜑) ⇔ ∃t ≥ hi ∶ x ∈ B
(

xi,
√

t − hi

)
and x ∉

⋃

j≠i
B
(

xj,

√
(t − hj)+

)
,

with (x)+ = max{x, 0}. Hence, we may consider the ball Bi(t) ∶= B(xi,
√
(t − hi)+) which starts

growing at time t = hi. The ball initially grows fast, and then its growth slows down. If Bi is the
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VAN DER JAGT et al. 1821

F I G U R E 2 Visualization of the crystallization process. From left to right, the crystallization process is
shown at times t = 60, t = 80, t = 120, and t = 280.

first ball to hit a given point x ∈ Rd, then x ∈ C((xi, hi), 𝜑). It is possible that xi lies in another
cell C((xj, hj), 𝜑), i ≠ j and yet C((xi, hi), 𝜑)may be non-empty. It is also possible that a pair (xi, hi)
does not generate a cell, essentially because its ball starts growing too late. A visualization of the
crystallization process is given in Figure 2. In the literature, one can also find other parameter-
izations of Laguerre diagrams. For instance, the parameterization in Lautensack (2007) can be
obtained as follows. Let 𝜓 = {(xi, ri)}i∈N ⊂ Rd × (0,∞), set hi = −r2

i for all i ∈ N, and then con-
sider the Laguerre diagram generated by 𝜑 = {(xi, hi)}i∈N. The pair (xi, ri) is then often associated
with the sphere centered at xi with radius ri. Note that this choice leads to negative weights in our
choice of parameterization. We would like to note that the weights are allowed to be negative; we
consider positive weights for mathematical convenience.

Throughout this paper we assume that 𝜂 is a Poisson process on Rd × (0,∞) with intensity
measure 𝜈d × F. Here, F is a locally finite measure concentrated on (0,∞). Because the mea-
sure 𝜈d × F has no atoms, 𝜂 is a simple point process. From proposition 3.6. in Gusakova and
Wolde-Lübke (2025) it follows that L(𝜂), the Laguerre diagram generated by the Poisson process
𝜂, is with probability one a tessellation. We refer to L(𝜂) as the Poisson-Laguerre tessellation gen-
erated by 𝜂. We do note that in the aforementioned paper, it is additionally assumed that F is
absolutely continuous with respect to Lebesgue measure. However, this assumption is not needed
for L(𝜂) to be a tessellation with probability one, as this is a straightforward modification of the
proofs given in Gusakova and Wolde-Lübke (2025).

For z ≥ 0 we define:

F(z) ∶= F((0, z]). (3)

Thereby, this monotone function F is the only parameter in this model to be estimated. Note that
F is not necessarily bounded; it is bounded if and only if F is a finite measure. If F is a finite
measure one may define the constant 𝜆 = limz→∞ F(z) and the probability measure Q(⋅) = F(⋅)∕𝜆.
The intensity measure of 𝜂 is then given by 𝜆𝜈d × Q, and 𝜂 may be seen as an independently
marked homogeneous Poisson process on Rd with mark space (0,∞). Its intensity is given by 𝜆,
and Q represents its mark distribution. In view of the crystallization process interpretation of a
Laguerre diagram, we may also say that Q, and thereby F, describes the distribution of the arrival
times of the generator points.

Remark 1. While we consider a Poisson process 𝜂 on Rd × (0,∞), in the context
of Poisson-Laguerre tessellations, also Poisson processes on Rd × E have been con-
sidered for other choices of E ⊂ R. We refer to Gusakova and Wolde-Lübke (2025)
for an overview of various classes of Poisson-Laguerre tessellations which involve
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1822 VAN DER JAGT et al.

different choices of E. For instance, the choice E = R represents another important
class of Poisson-Laguerre tessellations that requires additional investigations. For the
purposes of this paper, we could also have taken E = (a,∞) for any choice of a ∈ R,
and have obtained analogous results. For the sake of convenience, we have chosen to
take a = 0. However, the particular value of a does not matter in practice. Note from
the definition of the Laguerre cell that adding a fixed constant c to all weights does not
affect the cell. Analogously, replacing F by F̃, where F̃(z) = F(z − c), does not affect the
distribution of the resulting Poisson-Laguerre tessellation, as it shifts the distribution
of the arrival times by a constant. We would also like to point out that all estimators for
F in this paper only shift by c as a result of adding a constant c to all observed weights.
Hence, as a consequence, when E = (a,∞), one may always add a sufficiently large
constant c to all observed weights to ensure positivity of these weights. In practice,
it does not matter if this a is unknown. After all, adding the true constant c = −a or
using c > −h1, with h1 being the smallest observed weight, will yield estimates of F
which are equal up to a shift.

In the introduction of this paper, we explained that we are interested in estimators for F
which depend on the observed Laguerre cells and the extreme points of 𝜂, which we denote by
𝜂
∗, as defined in Equation (1). To be precise, the estimators we propose for F depend on the

points of 𝜂∗ in the observation window Wn, as well as the Laguerre cells corresponding to these
points of 𝜂∗ in Wn. Recall, (Wn)n≥1 is some fixed convex averaging sequence. The reader may,
e.g., keep Wn = [−n,n]d in mind as an explicit example. Note that the point process 𝜂∗ may be
seen as a (dependent) thinning of 𝜂, and is not necessarily a Poisson process. We conclude this
section with a simulation example, with the purpose of providing an intuitive understanding of
Poisson-Laguerre tessellations.

Example 1. In Figure 1, a realization is shown of a planar Poisson-Laguerre tes-
sellation along with its realization of extreme points. The side length of the square
observation window is equal to 40. For this example, we have taken F to be a
discrete probability measure on {1, 8, 10}. Specifically, F is defined as: F({1}) =
0.01, F({8}) = 0.04 and F({10}) = 0.95. Hence, 𝜂 may be seen as an independently
marked homogeneous Poisson process, with points in R2 and marks in {1, 8, 10}.
The homogeneous Poisson process has intensity 1, and the marks are distributed
according to F. Let us briefly discuss the image in Figure 1 in view of the crys-
tallization process interpretation. Given the choice of F, we expect a small num-
ber of balls corresponding to points with weight h = 1; these balls start growing
early, and result in large cells. A larger number of points with weight h = 8 have
balls associated with them, which start growing later, yielding cells that are a bit
smaller. Finally, a very large number of points with weight h = 10 will generate even
smaller cells.

4 INFERENCE VIA A DEPENDENT THINNING

4.1 Definition of an estimator

In this section, we define our first estimator for F. This estimator only depends on points (x, h)
of 𝜂∗ with x ∈ Wn and for which x is located in its own Laguerre cell. The estimator is easy
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VAN DER JAGT et al. 1823

to compute, and the techniques used in this section will be important when we define an esti-
mator for F based on all points of 𝜂∗ in Wn × (0,∞). Recall from the previous section that 𝜂
is a Poisson process on Rd × (0,∞), d ≥ 2, with intensity measure 𝜈d × F. We may also write:
𝜂 = {(x1, h1), (x2, h2),…}, with xi ∈ Rd, hi > 0. We start as follows, let y ∈ Rd, and consider the
following thinning of 𝜂:

𝜂
y ∶= {(x, h) ∈ 𝜂 ∶ x + y ∈ C((x, h), 𝜂)}. (4)

In Equation (2), we defined C((x, h), 𝜂), which denotes the Laguerre cell associated with the
weighted point (x, h) ∈ 𝜂. Evidently, for every y ∈ Rd, 𝜂y only contains a subset of points of 𝜂∗.
Hence, we have: 𝜂y

⊂ 𝜂
∗
⊂ 𝜂. In particular, for y = 0 we obtain the set of points of 𝜂∗ which are con-

tained within their own Laguerre cell. In the following lemma, we compute the intensity measure
of 𝜂y.

Lemma 1. Let B ∈ (Rd), y ∈ Rd and z ≥ 0, the intensity measure Λy of 𝜂y satisfies:

Λy(B × (0, z]) = 𝜈d(B)
∫

z

0
exp

(

−𝜅d
∫

||y||2+h

0

(
||y||2 + h − t

) d
2 dF(t)

)

dF(h).

This intensity measure can be computed via the Mecke equation, which may, e.g., be found
in Theorem 4.1 in Last and Penrose (2017). The statement is as follows:

Theorem 1 (Mecke equation). Let Λ be a 𝜎-finite measure on a measurable space
(X,) and let 𝜂 be a point process on X. Then 𝜂 is a Poisson process with intensity
measure Λ if and only if :

E

(
∑

x∈𝜂
f (x, 𝜂)

)

=
∫

E(f (x, 𝜂 + 𝛿x))Λ(dx),

for all non-negative measurable functions f ∶ X ×N(X)→ [0,∞].

Proof of Lemma 1. By definition, the intensity measure of 𝜂y is given by:

Λy(B × (0, z]) ∶= E
(
𝜂

y(B × (0, z])
)
= E

(
∑

(x,h)∈𝜂
1B(x)1(0,z](h)1{x + y ∈ C((x, h), 𝜂)}

)

. (5)

We rewrite the final indicator function in Equation (5) into a more convenient form.
By the definition of a Laguerre cell, we obtain:

x + y ∈ C((x, h), 𝜂) ⇔ ||y||2 + h − h′ ≤ ||x + y − x′||2
, for all (x′, h′) ∈ 𝜂 ⇔ 𝜂

(
Ax,h,y

)
= 0,

where we define the set Ax,h,y as:

Ax,h,y =
{
(x′, h′) ∈ R

d × (0,∞) ∶ ||y||2 + h − h′ > ||x + y − x′||2}
.

Since 𝜂 is a Poisson process, the random variable 𝜂
(

Ax,h,y
)

is Poisson distributed
with parameter E(𝜂

(
Ax,h,y

)
). As a consequence, the probability that 𝜂

(
Ax,h,y

)
= 0 is
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1824 VAN DER JAGT et al.

given by:

P
(
𝜂

(
Ax,h,y

)
= 0

)
= exp

(
−E

(
𝜂

(
Ax,h,y

)))

= exp

(

−
∫

Rd ∫

||y||2+h

0
1
{
||x + y − x′|| <

√
||y||2 + h − t

}
dF(t)dx′

)

= exp

(

−
∫

||y||2+h

0 ∫
Rd

1
{
||x′|| <

√
||y||2 + h − t

}
dx′dF(t)

)

= exp

(

−𝜅d
∫

||y||2+h

0

(
||y||2 + h − t

) d
2 dF(t)

)

. (6)

Note that (6) does not depend on x. Using (6) and the Mecke equation, the expectation
in Equation (5) can be computed as follows:

E

(
∑

(x,h)∈𝜂
1B(x)1(0,z](h)1{𝜂

(
Ax,h,y

)
= 0}

)

=

=
∫

∞

0 ∫
Rd

1B(x)1(0,z](h)P
(
𝜂

(
Ax,h,y

)
= 0

)
dxdF(h) (7)

=
∫

∞

0 ∫
Rd

1B(x)1(0,z](h) exp

(

−𝜅d
∫

||y||2+h

0

(
||y||2 + h − t

) d
2 dF(t)

)

dxdF(h)

= 𝜈d(B)
∫

z

0
exp

(

−𝜅d
∫

||y||2+h

0

(
||y||2 + h − t

) d
2 dF(t)

)

dF(h).

In Equation (7), we used the fact that (x, h) ∉ Ax,h,y such that 𝜂
(

Ax,h,y
)
= (𝜂 +

𝛿(x,h))
(

Ax,h,y
)
. ▪

Recall that + denotes the space of all (not necessarily bounded) distribution functions on
(0,∞). Given the statement of Lemma 1 we focus on the case y = 0 and define for F ∈ + the
function GF ∶ [0,∞)→ [0,∞) via:

GF(z) ∶=
∫

z

0
exp

(

−𝜅d
∫

h

0
(h − t)

d
2 dF(t)

)

dF(h). (8)

For functions GF with F ∈ + as in Equation (8) we obtain the following important identifiability
result:

Theorem 2. Let F1,F2 ∈ +, R > 0. If GF1 (z) = GF2(z) for all z ∈ [0,R) then F1(z) =
F2(z) for all z ∈ [0,R). In particular, if GF1 = GF2 then F1 = F2.

The key ingredient for the proof of this theorem is a variant of the Grönwall inequality. This
inequality is, in particular, known for its applications in integral- and differential equations. We
refer to Pachpatte (1998) for more variants of this inequality and their applications.

Theorem 3 (Theorem 1.3.3. in Pachpatte (1998)). Suppose u, 𝛼 and 𝛽 are measurable
non-negative functions on [0,∞). Assume that 𝛼 is non-decreasing. Assume for all z ≥ 0:
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VAN DER JAGT et al. 1825

u, 𝛼, 𝛽 ∈ L1([0, z]). If for all z ≥ 0 the following holds:

u(z) ≤ 𝛼(z) + 𝛽(z)
∫

z

0
u(s)ds.

Then, for all z ≥ 0:

u(z) ≤ 𝛼(z)
(

1 + 𝛽(z)
∫

z

0
exp

(

∫

z

s
𝛽(r)dr

)
ds

)
.

Note that if u, 𝛼 and 𝛽 satisfy the conditions in Theorem 3 and 𝛽 is non-decreasing, then:

u(z) ≤ 𝛼(z)(1 + 𝛽(z)z exp (𝛽(z)z)). (9)

We need to point out that in Pachpatte (1998) this theorem also includes the assumption that u, 𝛼
and 𝛽 are continuous. However, as noted on p. 14 in the same reference, this assumption is not
needed.

Proof of Theorem 2. Let z ≥ 0. For i ∈ {1, 2} note that the (Lebesgue-Stieltjes) mea-
sures associated with GFi and Fi are mutually absolutely continuous. The correspond-
ing Radon-Nikodym derivative is given by:

dGFi

dFi
(z) = exp

(
−𝜅d
∫

z

0
(z − t)

d
2 dFi(t)

)
.

Hence, we may also write:

Fi(z) =
∫

z

0

dFi

dGFi

(h)dGFi (h) = ∫

z

0
exp

(

𝜅d
∫

h

0
(h − t)

d
2 dFi(t)

)

dGFi (h).

Via integration by parts, we may write:

∫

z

0
(z − t)

d
2 dFi(t) = 0 ⋅ Fi(z) − z

d
2 Fi(0) −

∫

z

0
Fi(t)d

(
(z − t)

d
2

)
(t) = d

2∫

z

0
Fi(t)(z − t)

d
2
−1dt.

(10)
Moreover, the expression in Equation (10) is a non-decreasing function of z. We now
derive a general upper bound for |F1(z) − F2(z)|:

|F1(z) − F2(z)|

=
||||||
∫

z

0
exp

(

𝜅d
∫

h

0
(h − t)

d
2 dF1(t)

)

dGF1 (h) − ∫

z

0
exp

(

𝜅d
∫

h

0
(h − t)

d
2 dF2(t)

)

dGF2 (h)
||||||

≤

||||||
∫

z

0
exp

(

𝜅d
∫

h

0
(h − t)

d
2 dF1(t)

)

dGF1 (h) − ∫

z

0
exp

(

𝜅d
∫

h

0
(h − t)

d
2 dF2(t)

)

dGF1 (h)
||||||
+

+
||||||
∫

z

0
exp

(

𝜅d
∫

h

0
(h − t)

d
2 dF2(t)

)

d(GF1 − GF2 )(h)
||||||
. (11)
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1826 VAN DER JAGT et al.

Let us now consider the first term of (11). For h ≥ 0 define:

C(h) ∶= max

{

exp

(

𝜅d
∫

h

0
(h − t)

d
2 dF1(t)

)

, exp

(

𝜅d
∫

h

0
(h − t)

d
2 dF2(t)

)}

.

Note that C is increasing. Since |ex − ey| ≤ max{ex
, ey}|x − y| for x, y ≥ 0 the first term

in Equation (11) is bounded by:

∫

z

0

||||||
exp

(

𝜅d
∫

h

0
(h − t)

d
2 dF1(t)

)

− exp

(

𝜅d
∫

h

0
(h − t)

d
2 dF2(t)

)||||||
dGF1(h)

≤
∫

z

0
C(h)𝜅d

|||||∫

h

0
(h − t)

d
2 dF1(t) −

∫

h

0
(h − t)

d
2 dF2(t)

|||||
dGF1 (h)

=
∫

z

0
C(h)𝜅d

|||||

d
2∫

h

0
(F1(t) − F2(t))(h − t)

d
2
−1dt

|||||
dGF1 (h)

≤
d𝜅d

2
C(z)
∫

z

0 ∫

h

0
|F1(t) − F2(t)|(h − t)

d
2
−1dtdGF1(h)

≤
d𝜅d

2
C(z)z

d
2
−1
∫

z

0 ∫

z

0
|F1(t) − F2(t)|dtdGF1(h)

= d𝜅d

2
C(z)z

d
2
−1GF1(z)∫

z

0
|F1(t) − F2(t)|dt.

Via integration by parts, the second term of (11) is bounded by:
|||||
exp

(
𝜅d
∫

z

0
(z − t)

d
2 dF2(t)

)(
GF1(z) − GF2(z)

)|||||
+

+
||||||
∫

z

0

(
GF1 (h) − GF2 (h)

)
d

(

exp

(

𝜅d
∫

h

0
(h − t)

d
2 dF2(t)

))

(h)
||||||

≤ ||GF1 (z) − GF2(z)|| exp
(
𝜅d
∫

z

0
(z − t)

d
2 dF2(t)

)
+

+ sup
h∈[0,z]

||GF1 (h) − GF2(h)||∫

z

0
d

(

exp

(

𝜅d
∫

h

0
(h − t)

d
2 dF2(t)

))

(h)

≤ sup
h∈[0,z]

||GF1(h) − GF2 (h)||2 exp
(
𝜅d
∫

z

0
(z − t)

d
2 dF2(t)

)
.

Combining all results, we obtain:

|F1(z) − F2(z)| ≤
d𝜅d

2
C(z)z

d
2
−1GF1 (z)∫

z

0
|F1(t) − F2(t)|dt+

+ sup
h∈[0,z]

||GF1(h) − GF2 (h)||2 exp
(
𝜅d
∫

z

0
(z − t)

d
2 dF2(t)

)
.

Applying Theorem 3 and (9) with u(z) = |F1(z) − F2(z)| yields:

|F1(z) − F2(z)| ≤ K(z) sup
h∈[0,z]

||GF1(h) − GF2 (h)||. (12)
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VAN DER JAGT et al. 1827

Here, K(z) is given by:

K(z) ∶=
(

1 + d𝜅d

2
C(z)z

d
2 GF1(z) exp

(
d𝜅d

2
C(z)z

d
2 GF1 (z)

))
2 exp

(
𝜅d
∫

z

0
(z − t)

d
2 dF2(t)

)
.

The statement of the theorem immediately follows from Equation (12). ▪

Suppose we wish to estimate GF , and we observe the extreme points of 𝜂 within the bounded
observation window Wn, as well as their Laguerre cells. We define the following unbiased
estimator for GF :

Ĝn(z) ∶=
1

𝜈d(Wn)
∑

(x,h)∈𝜂
1Wn(x)1(0,z](h)1{x ∈ C((x, h), 𝜂)}

= 1
𝜈d(Wn)

∑

(x,h)∈𝜂0

1Wn(x)1(0,z](h). (13)

In Equation (13), 𝜂0 represents the point process 𝜂y as in Equation (4) with y = 0. Hence, GF is a
function which we can estimate and which uniquely determines F; this motivates the following
definition:

Definition 3 (First inverse estimator of F). Define F̂0
n to be the unique function

F̂0
n ∈ + which satisfies: GF̂0

n
(z) = Ĝn(z) for all z ≥ 0, with Ĝn as in Equation (13).

Let us now discuss why F̂0
n is well-defined. Clearly, if there exists a function F̂0

n ∈
+ which satisfies GF̂0

n
(z) = Ĝn(z) for all z ≥ 0 then it is unique by Theorem 2. Suppose

(x1, h1), (x2, h2),…, (xk, hk) is the sorted realization of the points of 𝜂0 with x1,…, xk ∈ Wn and
h1 ≤ h2 ≤ · · · ≤ hk. We may write:

Ĝn(z) =
1

𝜈d(Wn)

k∑

i=1
1{hi ≤ z}.

Set h0 = 0 such that F̂0
n(h0) = 0. Clearly, Ĝn is piecewise constant, with jump locations at h1,…, hk.

Recall from the proof of Theorem 2 that the Lebesgue-Stieltjes measures associated with F̂0
n and

GF̂0
n

are mutually absolutely continuous. As a consequence, if F̂0
n exists, it is necessarily also piece-

wise constant with the same jump locations as GF̂0
n
= Ĝn. Therefore, if we can uniquely specify

the value of F̂0
n at h1,…, hk, existence and uniqueness of F̂0

n is established. Let i ∈ {1,…, k} then,
for the F̂0

n we are looking for:

Ĝn(hi) = Ĝn(hi−1) +
∫

hi

hi−1

exp

(

−𝜅d
∫

h

0
(h − t)

d
2 dF̂0

n(t)

)

dF̂0
n(h)

= Ĝn(hi−1) + exp

(

−𝜅d

i∑

j=1

(
hi − hj

) d
2
(

F̂0
n(hj) − F̂0

n(hj−1)
)
)

(
F̂0

n(hi) − F̂0
n(hi−1)

)

= Ĝn(hi−1) + exp

(

−𝜅d

i−1∑

j=1

(
hi − hj

) d
2
(

F̂0
n(hj) − F̂0

n(hj−1)
)
)

(
F̂0

n(hi) − F̂0
n(hi−1)

)
.
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1828 VAN DER JAGT et al.

Since F̂0
n(h0) = 0, F̂0

n is recursively defined via:

F̂0
n(hi) = F̂0

n(hi−1) +
(

Ĝn(hi) − Ĝn(hi−1)
)

exp

(

𝜅d

i−1∑

j=1

(
hi − hj

) d
2
(

F̂0
n(hj) − F̂0

n(hj−1)
)
)

. (14)

Note that the RHS of (14) only depends on the values F̂0
n(hj)with j < i. So indeed, (14) completely

defines F̂0
n. Moreover, this expression is also a convenient formula for computing F̂0

n in practice.

4.2 Consistency

In this section, we show that F̂0
n, as in Definition 3, is a strongly consistent estimator for F. The

first step is to show that the estimator Ĝn as in Equation (13) for GF is strongly consistent. For
empirical estimators such as Ĝn, their consistency follows from a spatial ergodic theorem. From
Proposition 13.4.I. in Daley and Vere-Jones (2008), and the ergodicity of the Poisson process under
consideration, we obtain:

Theorem 4 (Spatial ergodic theorem). Let 𝜂 be a Poisson process on X = Rd × (0,∞)
with intensity measure 𝜈d × F. Here, F is a locally finite measure concentrated on (0,∞).
Let g(𝜓, h) be a measurable non-negative function on N(X) × (0,∞). Then, for any
convex averaging sequence (Wn)n≥1:

lim
n→∞

1
𝜈d(Wn)

∑

(x,h)∈𝜂
1Wn(x)g(Sx𝜂, h)

a.s.
=
∫

∞

0
E
(

g
(
𝜂 + 𝛿(0,h), h

))
F(dh).

We do note that Proposition 13.4.I in Daley and Vere-Jones (2008) is phrased in the context
that F is a finite measure. However, like Theorem 12.2.IV in the same reference (another spatial
ergodic theorem), which is stated under the assumption that F is locally finite, the result remains
valid if F is locally finite. Besides the spatial ergodic theorem, we also need the following useful
lemma for estimators of monotone functions:

Lemma 2. Let (Fn)n≥1 be a random sequence of monotone functions on R, and let F be
a deterministic monotone function on R. If for all z ∈ R: P(limn→∞ Fn(z) = F(z)) = 1,
then: P(limn→∞ Fn(z) = F(z), ∀z ∈ R) = 1.

The proof of Lemma 2 is given in Appendix A. We obtain the following result:

Corollary 1. With probability one: limn→∞ Ĝn(z) = GF(z) for all z ≥ 0.

Proof. Let z ≥ 0, by Lemma 2 it is sufficient to show that limn→∞ Ĝn(z) = GF(z) almost
surely. Using the same notation as in the proof of Lemma 1, note that 𝜂(Ax,h,0) =
Sx𝜂(A0,h,0) for all (x, h) ∈ 𝜂 almost surely. As a consequence, Ĝn(z) may be written as
follows:

Ĝn(z) =
1

𝜈d(Wn)
∑

(x,h)∈𝜂
1Wn(x)1(0,z](h)1{Sx𝜂(A0,h,0) = 0}.

Following the computation in the proof of Lemma 1, it is readily verified that applying
the spatial ergodic theorem with g(𝜓, h) = 1(0,z](h)1{𝜓(A0,h,0) = 0} yields the result
with the desired limit. ▪
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VAN DER JAGT et al. 1829

Finally, we need the following continuity result:

Lemma 3. Let (Fn)n≥1 be a sequence of functions in + and let F ∈ +. Let R > 0. If
limn→∞ Fn(z) = F(z) for all z ∈ [0,R), then limn→∞ GFn(z) = GF(z) for all z ∈ [0,R). In
particular, if limn→∞ Fn(z) = F(z) for all z ≥ 0, then limn→∞ GFn (z) = GF(z) for all z ≥
0.

The proof of Lemma 3 is given in Appendix A. Combining the previous results with Theorem 2,
we prove the following consistency result.

Theorem 5 (Consistency of F̂0
n). With probability one, limn→∞ F̂0

n(z) = F(z) for all
z ≥ 0.

Proof. Let (Ω,,P) be a probability space supporting a Poisson process 𝜂, with inten-
sity measure 𝜈d × F. By Corollary 1 there exists a setΩ0 ∈ with P(Ω0) = 1 such that
for all 𝜔 ∈ Ω0 and z ≥ 0 we have limn→∞ Ĝn(z;𝜔) = GF(z). Let z ≥ 0, we show that
limn→∞ F̂0

n(z;𝜔) = F(z).
Pick M > 0 such that F(z) < M. For n ∈ N and h ≥ 0, define: Fn(h) =

min{F̂0
n(h;𝜔),M}. Then, (Fn)n≥1 is a uniformly bounded sequence of monotone func-

tions. Let (nl)l≥1 ⊂ (n)n≥1 be an arbitrary subsequence. By Helly’s selection principle
there exists a further subsequence (nk)k≥1 ⊂ (nl)l≥1 such that Fnk converges point-
wise to some monotone function F as k → ∞. This implies that limk→∞ F̂0

nk (h;𝜔) =
limk→∞ Fnk (h) = F(h) for all h ∈ [0,R) with R ∶= sup{h ≥ 0 ∶ F(h) < M}. By
Lemma 3 we obtain:

lim
k→∞

Ĝnk (h;𝜔) ∶= lim
k→∞

GF̂0
nk
(⋅;𝜔)(h) = GF(h) for all h ∈ [0,R).

Because the whole sequence Ĝn(h;𝜔) converges to GF(h) as n → ∞, for h ≥ 0, we
obtain GF(h) = GF(h) for all h ∈ [0,R). Theorem 2 now yields F(h) = F(h) for all
h ∈ [0,R), and since z ∈ [0,R) we have in particular F(z) = F(z). As a consequence:
limk→∞ F̂0

nk (z;𝜔) = F(z). Because the initial subsequence was chosen arbitrarily, the
whole sequence converges: limn→∞ F̂0

n(z;𝜔) = F(z). ▪

In Figure 3, a single realization of Ĝn and F̂0
n are shown. We present additional simulation

results in Section 7.

F I G U R E 3 Left: A realization of Ĝn. Right: The corresponding realization of F̂0
n. The actual underlying F is

equal to the CDF of a uniform distribution on (0, 1).
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1830 VAN DER JAGT et al.

5 INFERENCE VIA THE VOLUME-BIASED WEIGHT
DISTRIBUTION

5.1 Definition of an estimator

In this section, we define a second estimator for F, which depends on all points of 𝜂∗ in Wn × (0,∞)
as well as the volumes of the Laguerre cells corresponding to these points. As such, this estima-
tor depends on more data compared to the estimator in the previous section. First, we present
a result for Poisson-Laguerre tessellations in Rd; the estimator itself is defined specifically for
the planar case (d = 2). Suppose for now that F is a finite measure, such that 𝜂 may be inter-
preted as an independently marked Poisson process. Because F then determines the distribution
of the weights (h-coordinates) of the points of 𝜂, a natural question is to ask how the distri-
bution of the weights of the points of 𝜂∗ is related to F. As it turns out, it is more tractable to
study a biased or weighted version of this distribution. We introduce the so-called volume-biased
weight distribution in the following definition, which is also well-defined if F is not a
finite measure:

Definition 4 (volume-biased weight distribution). Let 𝜂 be a Poisson process
on Rd × (0,∞), d ≥ 2, with intensity measure 𝜈d × F. Here, F is a locally finite
measure concentrated on (0,∞). Let A ∈ (R), define the following probability
measure:

F
V (A) ∶= E

(
∑

(x,h)∈𝜂
1[0,1]d(x)1A(h)𝜈d(C((x, h), 𝜂))

)

. (15)

Consider the Poisson-Laguerre tessellation generated by 𝜂, then the interpretation of FV

is as follows. FV describes the distribution of the random weight associated with a ran-
domly chosen Laguerre cell, the probability of picking any given cell being proportional to
its volume. Because there is an infinite number of Laguerre cells in the tessellation, care
needs to be taken in making this statement precise. This can be done via Palm calculus for
marked point processes, see for instance chapter 3 in Schneider and Weil (2008). Note that
the sum in Equation (15) effectively only sums over points (x, h) ∈ 𝜂 with a Laguerre cell
C((x, h), 𝜂) of positive volume. Hence, it can also be seen as a sum over points of 𝜂∗. From
its definition, it is not immediately obvious that FV is a well-defined probability measure.
Specifically, it is not immediately evident that FV (R) = 1. We address this in the proof of the
following theorem, where we derive the CDF (Cumulative Distribution Function) associated
with FV .

Theorem 6. Let 𝜂 be a Poisson process as in Definition 4, and let z ≥ 0. Define
F(z) ∶= F((0, z]) and FV (z) ∶= FV ((0, z]), the distribution functions corresponding
to F and FV , respectively. The measure FV is a probability measure and FV is
given by:

FV (z) = 1 − exp
(
−𝜅d
∫

z

0
(z − t)

d
2 dF(t)

)
+

+ d𝜅d

2 ∫

∞

z
exp

(
−𝜅d
∫

u

0
(u − t)

d
2 dF(t)

)

∫

z

0
(u − h)

d
2
−1dF(h)du.
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VAN DER JAGT et al. 1831

Proof. By the translation invariance of Lebesgue measure and Fubini’s theorem, we
may write:

FV (z) = E

(
∑

(x,h)∈𝜂
1[0,1]d(x)1(0,z](h)𝜈d(C((x, h), 𝜂) − x)

)

= E

(
∑

(x,h)∈𝜂
1[0,1]d(x)1(0,z](h)

∫
Rd

1{y ∈ C((x, h), 𝜂) − x}dy

)

=
∫

Rd
E

(
∑

(x,h)∈𝜂
1[0,1]d (x)1(0,z](h)1{x + y ∈ C((x, h), 𝜂)}

)

dy

=
∫

Rd
E
(
𝜂

y([0, 1]d × (0, z])
)
dy. (16)

With 𝜂y as in Equation (4). In Lemma 1, we computed the expectation in Equation
(16). Plugging in this expression, and passing to polar coordinates by substituting y =
r𝜃, with r ≥ 0 and 𝜃 ∈ Sd−1, we obtain:

FV (z) =
∫

Rd ∫

z

0
exp

(

−𝜅d
∫

||y||2+h

0

(
||y||2 + h − t

) d
2 dF(t)

)

dF(h)dy

= d𝜅d
∫

z

0 ∫

∞

0
exp

(

−𝜅d
∫

r2+h

0

(
r2 + h − t

) d
2 dF(t)

)

rd−1drdF(h) (17)

= d𝜅d

2 ∫

z

0 ∫

∞

h
exp

(
−𝜅d
∫

u

0
(u − t)

d
2 dF(t)

)
(u − h)

d
2
−1dudF(h) (18)

= d𝜅d

2 ∫

∞

0
exp

(
−𝜅d
∫

u

0
(u − t)

d
2 dF(t)

)

∫

min{u,z}

0
(u − h)

d
2
−1dF(h)du. (19)

In Equations (17) and (19), we apply Fubini’s theorem, and in Equation
(18), we substitute u = r2 + h. We can now write FV (z) as a sum of two
integrals:

FV (z) = d𝜅d

2 ∫

z

0
exp

(
−𝜅d
∫

u

0
(u − t)

d
2 dF(t)

)

∫

u

0
(u − h)

d
2
−1dF(h)du+

+ d𝜅d

2 ∫

∞

z
exp

(
−𝜅d
∫

u

0
(u − t)

d
2 dF(t)

)

∫

z

0
(u − h)

d
2
−1dF(h)du. (20)

The first integral of (20) can be calculated explicitly since the integrand has an explicit
primitive. The first term of (20) is given by:

[
− exp

(
−𝜅d
∫

u

0
(u − t)

d
2 dF(t)

)]z

0
= 1 − exp

(
−𝜅d
∫

z

0
(z − t)

d
2 dF(t)

)
.

Plugging this back into (20) yields the expression for FV as stated in the theorem.
Finally, via (19) we can show that limz→∞ FV (z) = 1. After all, the integrand in
Equation (19) (considering the integral w.r.t. u) can be bounded from above using the
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1832 VAN DER JAGT et al.

inequality min{u, z} ≤ u. Via the dominated convergence theorem, it follows that:

lim
z→∞

FV (z) = d𝜅d

2 ∫

∞

0
exp

(
−𝜅d
∫

u

0
(u − t)

d
2 dF(t)

)
lim
z→∞∫

min{u,z}

0
(u − h)

d
2
−1dF(h)du

=
∫

∞

0
exp

(
−𝜅d
∫

u

0
(u − t)

d
2 dF(t)

)
d𝜅d

2 ∫

u

0
(u − h)

d
2
−1dF(h)du

=
[
− exp

(
−𝜅d
∫

u

0
(u − t)

d
2 dF(t)

)]∞

0
= 1.

▪

The Stieltjes integrals in the expression for FV may be written as Lebesgue integrals using
integration by parts. For instance:

∫

z

0
(z − t)

d
2 dF(t) = 0 ⋅ F(z) − z

d
2 F(0) −

∫

z

0
F(t)d

(
(z − t)

d
2

)
(t) = d

2∫

z

0
F(t)(z − t)

d
2
−1dt. (21)

As announced at the beginning of this section, we will now focus on the case d = 2, which
is important for practical applications. In that case, Theorem 6 and (21) yield the following
expression for FV .

Corollary 2. Let z ≥ 0, if d = 2 the CDF FV is given by:

FV (z) = 1 − exp
(
−𝜋
∫

z

0
F(t)dt

)
+ 𝜋F(z)

∫

∞

z
exp

(
−𝜋
∫

u

0
F(t)dt

)
du. (22)

Let us now introduce some convenient notation that will be used throughout this section. For
z ≥ 0, F ∈ + and m ≥ 0 we define:

V(z;F,m) ∶= 1 − exp
(
−𝜋
∫

z

0
F(t)dt

)
+ 𝜋F(z)

(
m −

∫

z

0
exp

(
−𝜋
∫

u

0
F(t)dt

)
du

)
.

mF ∶=
∫

∞

0
exp

(
−𝜋
∫

u

0
F(t)dt

)
du.

Note that if m = mF , then V(⋅;F,m) = FV , with FV as in Equation (22). In other words, V(⋅;F,m)
is then the volume-biased weight distribution induced by F. We obtain the following identifiabil-
ity result:

Theorem 7. Let F1,F2 ∈ +, let R > 0. If mF1 = mF2 and V(z;F1,mF1) = V(z;F2,mF2)
for all z ∈ [0,R), then F1(z) = F2(z) for all z ∈ [0,R). Consequently, if mF1 = mF2 and
V(⋅;F1,mF1) = V(⋅;F2,mF2), then F1 = F2.

The proof of Theorem 7 as well as the proofs of most of the remaining lemmas in this section
are postponed to Appendix A. The techniques used for proving these results are similar to the
techniques used in Section 4. We now define the following natural estimator for the distribution
function FV :

F̃V
n (z) ∶=

1
𝜈d(Wn)

∑

(x,h)∈𝜂
1Wn(x)1(0,z](h)𝜈d(C((x, h), 𝜂)). (23)
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VAN DER JAGT et al. 1833

Alternatively, the following estimator for FV may be defined:

F̂V
n (z) ∶=

∑
(x,h)∈𝜂 1Wn(x)1(0,z](h)𝜈d(C((x, h), 𝜂))
∑
(x,h)∈𝜂 1Wn(x)𝜈d(C((x, h), 𝜂))

. (24)

Remark 2. Note that the estimators F̂V
n and F̃V

n for FV do not incorporate edge effects.
For instance, a Laguerre cell may be partially observed through the observation win-
dow Wn, such that computation of the estimators requires information outside of the
window. In practice, one could artificially shrink the observation window such that
the estimators can be computed based on this smaller window.

Similarly to F̂0
n, we can define an inverse estimator for F using an estimator for FV . We choose

to use F̂V
n for this purpose, since it satisfies limz→∞ F̂V

n (z) = 1, in general this is not the case for F̃V
n .

In view of Theorem 7, we need to keep in mind that the constant mF is unknown. We can resolve
this by first using F̂0

n to estimate mF . That is, we define:

m̂n ∶= mF̂0
n
=
∫

∞

0
exp

(
−𝜋
∫

u

0
F̂0

n(t)dt
)

du. (25)

Finally, we define our second estimator for F as follows:

Definition 5 (Second inverse estimator of F). Define F̂n to be the unique function
F̂n ∈ + which satisfies for all z ≥ 0:

F̂V
n (z) = 1 − exp

(
−𝜋
∫

z

0
F̂n(t)dt

)
+ 𝜋F̂n(z)

(
m̂n −

∫

z

0
exp

(
−𝜋
∫

u

0
F̂n(t)dt

)
du

)
, (26)

with F̂V
n as in Equation (24) and m̂n as in Equation (25). That is, F̂n is the unique

function F̂n ∈ + which satisfies for all z ≥ 0: V(z; F̂n, m̂n) = F̂V
n (z).

We again discuss why F̂n is well-defined. If there exists a function F̂n ∈ + which satisfies
V(z; F̂n, m̂n) = F̂V

n (z) for all z ≥ 0 then it is unique by Theorem 7. From Equation (26), we see that
F̂n cannot be the zero function. Moreover, we see that F̂n should satisfy the following:

mF̂n
= lim

z→∞∫

z

0
exp

(
−𝜋
∫

u

0
F̂n(t)dt

)
du = m̂n − lim

z→∞

F̂V
n (z) − 1 + exp

(
−𝜋∫ z

0 F̂n(t)dt
)

𝜋F̂n(z)
= m̂n.

The final equality follows from the fact that limz→∞ F̂V
n (z) = 1 and limz→∞ F̂n(z) > 0, since F̂n is

non-zero. Therefore, F̂n necessarily satisfies:

F̂V
n (z) = 1 − exp

(
−𝜋
∫

z

0
F̂n(t)dt

)
+ 𝜋F̂n(z)

∫

∞

z
exp

(
−𝜋
∫

u

0
F̂n(t)dt

)
du. (27)

Recall from Equation (22) that this means that F̂V
n is the volume-biased weight distribution

induced by F̂n. Suppose (x1, h1), (x2, h2),…, (xm, hk) is the sorted realization of the points of 𝜂∗
with x1,…, xk ∈ Wn and h1 ≤ h2 ≤ · · · ≤ hk. Clearly, F̂V

n is piecewise constant, with jump loca-
tions at h1,…, hk. In the proof of Theorem 7 we observe that the Lebesgue-Stieltjes measures
associated with F̂n and V(⋅; F̂n, m̂n) = V(⋅; F̂n,mF̂n

) = F̂V
n are mutually absolutely continuous. As

a consequence, F̂n is necessarily also piecewise constant with the same jump locations as F̂V
n .
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1834 VAN DER JAGT et al.

Therefore, we simply need to specify the value of F̂n at h1,…, hk. Taking z = h1 in Equation (26),
and using the fact that ∫ h1

0 F̂n(t)dt = 0 we can solve for F̂n(h1):

F̂n(h1) =
F̂V

n (h1)
𝜋(m̂n − h1)

. (28)

In Appendix B an explicit formula for m̂n is given, which also shows that m̂n > h1. Let i ∈ {2,…, k}
then, via Equation (18) from the proof of Theorem 6, it follows that for the F̂n we are looking for:

F̂V
n (hi) = F̂V

n (hi−1) + 𝜋
∫

hi

hi−1
∫

∞

h
exp

(
−𝜋
∫

u

0
F̂n(t)dt

)
dudF̂n(h)

= F̂V
n (hi−1) + 𝜋

∫

∞

hi

exp
(
−𝜋
∫

u

0
F̂n(t)dt

)
du

(
F̂n(hi) − F̂n(hi−1)

)
.

Hence,

𝜋
∫

∞

hi

exp
(
−𝜋
∫

u

0
F̂n(t)dt

)
du =

F̂V
n (hi) − F̂V

n (hi−1)
F̂n(hi) − F̂n(hi−1)

. (29)

Equation (27) may be used to obtain an expression for F̂V
n (hi), plugging (29) into this expression

and solving for F̂n(hi) yields:

F̂n(hi) = F̂n(hi−1)
⎛
⎜
⎜
⎜
⎝

F̂V
n (hi) − 1 + exp

(
−𝜋∫ hi

0 F̂n(t)dt
)

F̂V
n (hi−1) − 1 + exp

(
−𝜋∫ hi

0 F̂n(t)dt
)

⎞
⎟
⎟
⎟
⎠

= F̂n(hi−1)
⎛
⎜
⎜
⎜
⎝

F̂V
n (hi) − 1 + exp

(
−𝜋

∑i−1
j=1(hi − hj)

(
F̂n(hj) − F̂n(hj−1)

))

F̂V
n (hi−1) − 1 + exp

(
−𝜋

∑i−1
j=1(hi − hj)

(
F̂n(hj) − F̂n(hj−1)

))

⎞
⎟
⎟
⎟
⎠

. (30)

Note that the RHS of (30) only depends on the values F̂n(hj) with j < i. Hence, (28) along with
(30) completely defines F̂n. From Equation (30), it is evident that F̂n ∈ +, and this expression
may be used to compute F̂n in practice.

5.2 Consistency

In this section, we show that F̂n, as in Definition 5, is a strongly consistent estimator for F. We
start with a Lemma which implies that m̂n is a strongly consistent estimator for mF .

Lemma 4. Let (Fn)n≥1 be a sequence in +, and let F ∈ + be non-zero. If
limn→∞ Fn(z) = F(z) for all z ≥ 0, then limn→∞ mFn = mF .

Next, we show that F̃V
n and F̂V

n are strongly consistent and uniformly strongly consistent
estimators of FV , respectively.
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VAN DER JAGT et al. 1835

Lemma 5. With probability one, limn→∞ F̃V
n (z) = FV (z) for all z ≥ 0. Additionally,

with probability one we have limn→∞ ||F̂V
n − FV ||∞ = 0. Here, F̃V

n and F̂V
n are given by

(23) and (24), respectively.

Proof. We first show that with probability one, limn→∞ F̃V
n (z) = FV (z) for all z ≥ 0. Let

z ≥ 0, by Lemma 2 it is sufficient to show that limn→∞ F̃V
n (z) = FV (z) almost surely.

Again, we apply the spatial ergodic theorem (Theorem 4). This can be done since
for all (x, h) ∈ 𝜂 we have: C((x, h), 𝜂) − x = C((0, h), Sx𝜂). Hence, by the translation
invariance of Lebesgue measure, F̃V

n (z) may be written as:

F̃V
n (z) =

1
𝜈d(Wn)

∑

(x,h)∈𝜂
1Wn(x)1(0,z](h)𝜈d(C((0, h), Sx𝜂)).

So indeed, the spatial ergodic theorem yields limn→∞ F̃V
n (z) = FV (z) almost surely.

Similarly, we may argue that limn→∞ F̃V
n (∞) = 1 almost surely. Since F̂V

n (z) =
F̃V

n (z)∕F̃V
n (∞), we obtain via the continuous mapping theorem that limn→∞ F̂V

n (z) =
FV (z) almost surely. The uniform strong consistency follows from repeating the steps
in the proof of the Glivenko-Cantelli theorem. ▪

We need one more lemma before we prove the consistency result for F̂n.

Lemma 6. Let (Fn)n≥1 be a sequence in +, and let F ∈ +. Let (mn)n≥1 be a sequence
in (0,∞) and let m > 0. If limn→∞ Fn(z) = F(z) for all z ≥ 0 and limn→∞ mn = m, then
limn→∞ V(z;Fn,mn) = V(z;F,m) for all z ≥ 0.

Theorem 8 (Consistency of F̂n). With probability one, limn→∞ F̂n(z) = F(z) for all
z ≥ 0.

Proof. Let (Ω,,P) be a probability space supporting a Poisson process 𝜂, with inten-
sity measure 𝜈2 × F. By Lemmas 4 and 5, there exists a set Ω0 ∈  with P(Ω0) =
1 such that for all 𝜔 ∈ Ω0 and z ≥ 0 we have limn→∞ F̂V

n (z;𝜔) = V(z;F,mF) and
limn→∞ m̂n(𝜔) = mF . Let z ≥ 0, we show that limn→∞ F̂n(z;𝜔) = F(z).

Pick M > 0 such that F(z) < M. For n ∈ N and h ≥ 0, define: Fn(h) =
min{F̂n(h;𝜔),M}. Then, (Fn)n≥1 is a uniformly bounded sequence of monotone func-
tions. Let (nl)l≥1 ⊂ (n)n≥1 be an arbitrary subsequence. By Helly’s selection principle
there exists a further subsequence (nk)k≥1 ⊂ (nl)l≥1 such that Fnk converges point-
wise to some monotone function F as k → ∞. This implies that limk→∞ F̂nk (h;𝜔) =
limk→∞ Fnk (h) = F(h) for all h ∈ [0,R) with R ∶= sup{h ≥ 0 ∶ F(h) < M}. By
Lemma 6, we obtain along this subsequence:

lim
k→∞

F̂V
nk (h) ∶= lim

k→∞
V(h; F̂nk (⋅, 𝜔), m̂nk (𝜔)) = V(h;F,mF) for all h ∈ [0,R).

Because the whole sequence F̂V
n (h;𝜔) converges to V(h;F,mF) as n → ∞, for h ≥ 0, we

obtain V(h;F,mF) = V(h;F,mF) for all h ∈ [0,R). Theorem 7 now yields F(h) = F(h)
for all h ∈ [0,R), since z ∈ [0,R), we have in particular F(z) = F(z). As a consequence:
limk→∞ F̂nk (z;𝜔) = F(z). Because the initial subsequence was chosen arbitrarily, the
whole sequence converges: limn→∞ F̂n(z;𝜔) = F(z). ▪
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1836 VAN DER JAGT et al.

Remark 3 (Density estimation). For many practical applications, it is reasonable to
assume F is absolutely continuous with respect to Lebesgue measure and has a density
f . One could then define estimators for f via kernel smoothing. Let k be a symmetric
kernel, 𝜏 > 0 and z ∈ R, then we may define:

f̂
0
n(z) = ∫

∞

0

1
𝜏

k
(z − t

𝜏

)
dF̂0

n(t) and f̂ n(z) = ∫

∞

0

1
𝜏

k
(z − t

𝜏

)
dF̂n(t). (31)

In the classical context of kernel density estimation, it is well-known which choices
of the bandwidth parameter 𝜏 lead to consistent and/ or optimal rates of convergence,
see for instance chapter 24 in van der Vaart (1998). We also refer to Groeneboom and
Jongbloed (2014) for various examples of density estimators obtained via smoothing
of estimators of distribution functions. In our setting, it is not yet clear which choices
of 𝜏 lead to consistent estimators, because much of the behavior of the estimators F̂n
and F̂0

n is unknown. In practice, one can still apply the density estimators in Equation
(31) by manually choosing a value for 𝜏, being careful to take a value which does not
lead to under- or oversmoothing.

6 STEREOLOGY

In this section, we study a special type of Poisson-Laguerre tessellations, namely sectional
Poisson-Laguerre tessellations. By this, we mean that we intersect a Poisson-Laguerre tessella-
tion with a hyperplane, and we consider the resulting tessellation in this hyperplane. In Theorem
4.1, in Gusakova and Wolde-Lübke (2025) it was shown that intersecting a Poisson-Laguerre
tessellation in Rd with a hyperplane, yields a tessellation in this hyperplane which is again a
Poisson-Laguerre tessellation. Because our parameterization is subtly different from the setting
in Gusakova and Wolde-Lübke (2025), we derive the intensity measure of the Poisson process
corresponding to the sectional Poisson-Laguerre tessellation, for which we also use a different
argument.

Suppose we observe the extreme points and the corresponding cells of a Poisson-Laguerre tes-
sellation L(𝜂) in Rd−1, through the observation window Wn. The underlying Poisson process 𝜂 has
intensity measure 𝜈d−1 × F, where F is a locally finite measure concentrated on (0,∞). Hence, we
may use any of the estimators in the previous two sections to estimate F(z) = F((0, z]). Through-
out this section, we assume that Fn is a piecewise constant, strongly consistent estimator for F.
Now, this Poisson-Laguerre tessellation in Rd−1 is the sectional tessellation corresponding to a
Poisson-Laguerre tessellation L(Ψ) in Rd. The Poisson process Ψ of this higher-dimensional tes-
sellation has intensity measure 𝜈d ×H, where H is a locally finite measure concentrated on (0,∞).
For z ≥ 0 define: H(z) ∶= H((0, z]). In this section, we show how F is related to H, and how a con-
sistent estimator for F can be used to obtain a (locally) consistent estimator for H. Thereby, we
have a solution to the stereological problem. First, we need the following lemma for obtaining an
expression for F in this stereological setting:

Lemma 7. Let 𝜑 ⊂ Rd × (0,∞) be an at most countable set. Let 𝜃 ∈ Sd−1 and s ∈
R. Define the hyperplane T ∶= {y ∈ Rd ∶ ⟨𝜃, y⟩ = s}. For (x, h) ∈ 𝜑, with x ∈ Rd and
h > 0 let:

x′ ∶= x − (⟨𝜃, x⟩ − s)𝜃
h′ ∶= h + ||x′ − x||2 = h + (⟨𝜃, x⟩ − s)2.
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VAN DER JAGT et al. 1837

Note that x′ ∈ T and define 𝜑
′ ∶= {(x′, h′) ∶ (x, h) ∈ 𝜑}. Then, for all (x, h) ∈ 𝜑:

C((x, h), 𝜑) ∩ T = C′((x′, h′), 𝜑′) with:

C′((x′, h′), 𝜑′) = {y ∈ T ∶ ||y − x′||2 + h′ ≤ ||y − x||2 + h for all (x, h) ∈ 𝜑′}.

Proof. Let y ∈ T and (x, h) ∈ 𝜑, then a direct computation yields:

||x′ − y||2 = ||x − y||2 − 2(⟨𝜃, x⟩ − s)⟨x − y, 𝜃⟩ + (⟨𝜃, x⟩ − s)2 = ||x − y||2 − h′ + h.

Since ||x′ − y||2 + h′ = ||x − y||2 + h, the claim follows. ▪

This lemma describes the set of weighted points that generates a sectional Laguerre dia-
gram. We now apply this to the Poisson-Laguerre tessellation generated by the Poisson process
Ψ. Because a Poisson-Laguerre tessellation is stationary and isotropic, the choice of hyperplane
does not affect the distribution of the sectional tessellation. For x ∈ Rd write: x = (x1, x2,…, xd).
We choose the hyperplane xd = 0 which corresponds to taking 𝜃 = (0,…, 0, 1) ∈ Sd−1 and s = 0 in
Lemma 7. In view of Lemma 7, consider the function which maps a pair (x, h) ∈ Ψ to the corre-
sponding (x′, h′). Hence, this function is given by (x1,…, xd, h) → (x1,…, xd−1, 0, h + x2

d). Naturally,
the d-th component of the resulting vector is always zero. We identify the hyperplane xd = 0 with
Rd−1 and therefore we consider the function 𝜏 ∶ Rd × (0,∞)→ Rd−1 × (0,∞)which is defined via:
𝜏(x, h) = (x1,…, xd−1, h + x2

d). Hence, the point process 𝜂 ∶= 𝜏(Ψ) generates the sectional tessella-
tion. By the mapping theorem (see Theorem 5.1 in Last and Penrose (2017)) 𝜂 is again a Poisson
process on Rd−1 × (0,∞)with intensity measure: E(Ψ(𝜏−1(⋅))). Let B ⊂ Rd−1 be a Borel set and let
z ≥ 0. Note that h + x2

d ≤ z if and only if h ≤ z and xd ∈ [−
√

z − h,
√

z − h]. As a result:

𝜏(x, h) ∈ B × (0, z] ⇔ x ∈ B ×
[
−
√

z − h,
√

z − h
]

and h ≤ z. (32)

Via the Campbell formula and (32) we find:

E
(
Ψ(𝜏−1(B × (0, z]))

)
=
∫

Rd ∫

∞

0
1{𝜏(x, h) ∈ B × (0, z]}dH(h)dx

=
∫

Rd ∫

z

0
1
{

x ∈ B ×
[
−
√

z − h,
√

z − h
]}

dH(h)dx

= 𝜈d−1(B)2
∫

z

0

√
z − hdH(h).

Hence, we obtain:

F(z) = 2
∫

z

0

√
z − hdH(h).

Let us discuss some properties of this function F. First of all, F is not a bounded function. Indeed,
choose z0 > 0 such that H(z0) > 0, and let z > z0, via integration by parts we observe:

F(z) =
∫

z

0
H(h) 1

√
z − h

dh ≥
∫

z

z0

H(h) 1
√

z
dh ≥ H(z0)

z − z0√
z
. (33)
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1838 VAN DER JAGT et al.

It immediately follows that limz→∞ F(z) = ∞. Another property of F is that it is absolutely
continuous, and has a Lebesgue density f given by:

f (z) =
∫

z

0

1
√

z − t
dH(t).

Indeed, via Fubini’s theorem, we can verify that f is a density of F:

∫

z

0
f (s)ds =

∫

z

0 ∫

s

0

1
√

s − t
dH(t)ds =

∫

z

0 ∫

z

t

1
√

s − t
dsdH(t) = 2

∫

z

0

√
z − tdH(t) = F(z).

It is possible to express H in terms of F, because this is an Abel integral equation. For a direct
derivation of the inversion formula, see, e.g., Srivastav (1963). Here, we simply show that the
following expression is indeed an inversion formula for H(z):

1
𝜋∫

z

0

1
√

z − t
dF(t) = 1

𝜋∫

z

0

1
√

z − t∫

t

0

1
√

t − s
dH(s)dt

=
∫

z

0 ∫

z

s

1
𝜋

1
√

z − t
√

t − s
dtdH(s)

=
∫

z

0 ∫

1

0

1
𝜋
(1 − u)−

1
2 u−

1
2 dudH(s) (34)

= H(z). (35)

In Equation (34), we substituted u = (t − s)∕(z − s). Finally, (35) follows from the fact that the
inner integral in Equation (34) is equal to one, since this integral represents the Beta function
evaluated in (1∕2, 1∕2). A plugin estimator for H(z) is therefore given by:

Hn(z) ∶=
1
𝜋∫

z

0

1
√

z − t
dFn(t), (36)

where Fn is a piecewise constant, strongly consistent estimator for F. This estimator is, however,
rather ill-behaved. While H is a monotone function, Hn is not. Because Fn is piecewise constant,
Hn is decreasing between jump locations of Fn. Moreover, if z0 is a jump location of Fn, then
limz↓z0 Hn(z) = ∞. Therefore, we use isotonization to obtain an estimator for H which is mono-
tone, and show that it is consistent. We note that our estimator is similarly defined as the isotonic
estimator in Groeneboom and Jongbloed (1995). For the remainder of this section, let k = k(n)
be the number of jump locations of Fn. Let h1, h2,…, hk with 0 < h1 < h2 < · · · < hk < ∞ be the
jump locations of Fn. To introduce the isotonic estimator, we define for z ≥ 0:

Un(z) ∶=
∫

z

0
Hn(t)dt = 2

𝜋∫

z

0

√
z − tdFn(t). (37)

Choose (a large) M > 0 and write zM ∶= min{hk,M}. Let UM
n be the greatest convex minorant of

Un on [0, zM]. That is, UM
n is the greatest convex function on [0, zM] which lies below Un. Then,

define:

ĤM
n (z) ∶=

{
UM,r

n (z) if z ∈ [0, zM)
UM,l

n (zM) if z ≥ zM ,
(38)
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VAN DER JAGT et al. 1839

where UM,l
n , UM,r

n denote the left- and right-derivative of UM
n , respectively. The reason we cannot

simply extend the definition of UM
n to the whole of [0,∞) is due to the fact that Un is concave on

[hk,∞). As a result, the greatest convex minorant of Un on [0,∞) is the zero function. Because of
the convexity of UM

n on [0, zM], ĤM
n is guaranteed to be non-decreasing, and is referred to as an

isotonic estimator. Analogously to (37) we define for z ≥ 0:

U(z) ∶=
∫

z

0
H(t)dt = 2

𝜋∫

z

0

√
z − tdF(t). (39)

Note that Ur(z) = H(z), so indeed, the right-derivative of UM
n is a natural choice for an estimator

of H. In the next theorem, we prove the consistency of ĤM
n . Currently, it is not known whether

Ĥn ∶= Ĥ∞
n is a globally consistent estimator.

Theorem 9 (Consistency of ĤM
n ). Let M > 0 and let ĤM

n be as in Equation (38). Let
z ∈ [0,M), then with probability one:

H(z−) ≤ lim inf
n→∞

ĤM
n (z) ≤ lim sup

n→∞
ĤM

n (z) ≤ H(z).

In particular, if z is a continuity point of H: limn→∞ ĤM
n (z) = H(z) almost surely.

Proof. Let z ∈ [0,M). Because Fn is piecewise constant and a consistent estimator
of the unbounded function F (recall Equation (33)), it follows that limn→∞ hk(n) = ∞
almost surely. Let (Ω,,P) be a probability space supporting a Poisson process 𝜂,
with intensity measure 𝜈d−1 × F. Choose Ω0 ∈  with P(Ω0) = 1 such that for all
𝜔 ∈ Ω0 we have limn→∞ hk(n)(𝜔) = ∞ and limn→∞ Fn(h;𝜔) = F(h) for all h ≥ 0. For
the remainder of the proof, take n sufficiently large such that hk(n)(𝜔) > M. Note how
Un and U depend on Fn and F respectively, see Equations (37) and (39). As a conse-
quence, the pointwise convergence of Fn(⋅;𝜔) to F implies: limn→∞ Un(x;𝜔) = U(x)
for all x ≥ 0. Note that U is non-decreasing and continuous, therefore the conver-
gence is also uniform on [0,M]. That is, limn→∞ supx∈[0,M] |Un(x;𝜔) − U(x)| = 0.
Because U is defined as the integral of a non-decreasing function, it is convex. A
variant of Marshall’s lemma (the convex analogue of 7.2.3. on p. 329 in Robertson
et al. (1988)) directly yields:

sup
x∈[0,M]

||U
M
n (x;𝜔) − U(x)|| ≤ sup

x∈[0,M]
|Un(x;𝜔) − U(x)|.

Therefore, we also have limn→∞ supx∈[0,M]
||UM

n (x;𝜔) − U(x)|| = 0. Take 𝛿 > 0 such
that z + 𝛿 < M. Then, for each 0 < h < 𝛿 we have by the convexity of UM

n :

UM
n (z;𝜔) − UM

n (z − h;𝜔)
h

≤ UM,l
n (z;𝜔) ≤ UM,r

n (z;𝜔) ≤
UM

n (z;𝜔) − UM
n (z + h;𝜔)

h
.

By using limn→∞ supx∈[0,M]
||UM

n (x;𝜔) − U(x)|| = 0, the following holds:

U(z) − U(z − h)
h

≤ lim inf
n→∞

UM,r
n (z;𝜔) ≤ lim sup

n→∞
UM,r

n (z;𝜔) ≤ U(z) − U(z + h)
h

.
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1840 VAN DER JAGT et al.

The result follows from letting h ↓ 0 and by recognizing that Ul(z) = H(z−) and
Ur(z) = H(z). ▪

Remark 4. By choosing M > 0 very large, the estimators Ĥn ∶= Ĥ∞
n and ĤM

n will in
practice often coincide, since we will typically observe hk < M. Therefore, in the
remainder of this paper, we will only consider computational aspects and simulation
performance of the estimator Ĥn.

We now show that computing the isotonic estimator Ĥn is equivalent to solving an iso-
tonic regression problem. This is achieved via the following lemma, which is a straightforward
modification of Lemma 2 in Groeneboom and Jongbloed (1995).

Lemma 8. Let M > 0, and let 𝜑 be an a.e. continuous non-negative function on [0,M].
Define the function Φ, for z ≥ 0 as:

Φ(z) =
∫

z

0
𝜑(x)dx.

Let Φ∗ be the greatest convex minorant of Φ on [0,M]. Let Φ∗,r be the right-derivative of
Φ∗, then:

∫

M

0
(𝜑(x) − 𝜓(x))2dx ≥

∫

M

0
(𝜑(x) − Φ∗,r(x))2dx +

∫

M

0
(Φ∗,r − 𝜓(x))2dx,

for all functions 𝜓 in the set:

M ∶=
{
𝜓 ∶ [0,M]→ [0,∞) ∶ 𝜓 is non-decreasing and right-continuous

}
.

We use Lemma 8 to show that Ĥn may be interpreted as the L2-projection of Hn on the
space of monotone functions. Recall that h1, h2,…, hk are the unique jump locations of Fn.
Additionally, let h0 = 0. Define H̃n to be the piece-wise constant function on [0, hk) which is
given by:

H̃n(z) =
Un(hi+1) − Un(hi)

hi+1 − hi
, z ∈ [hi, hi+1), i ∈ {0, 1,…, k − 1}.

For z ∈ [0, hk], let: Ũn(z) = ∫
z

0 H̃n(t)dt. Then, Un(hi) = Ũn(hi) for all i ∈ {0, 1,…, k}. While Un is
concave between successive jump locations (due to the square root), Ũn is linear between succes-
sive jump locations. As a consequence, Un and Ũn have the same greatest convex minorant. Hence,
Ĥn(z) = U∗,r

n (z) = Ũ∗,r
n (z), for z ∈ [0, hk). Finally, by taking 𝜑 = H̃n (and 𝜑 = Hn) and M = hk in

Lemma 8 we see that:

U∗,r
n = arg min

H∈hk
∫

hk

0
(H(x) −Hn(x))2dx = arg min

H∈hk
∫

hk

0
(H(x) − H̃n(x))2dx. (40)

Because H̃n is piece-wise constant, in Equation (40) we may even minimize over all func-
tions in hk which are also piece-wise constant with jump locations at h1, h2,…, hk. Hence, Ĥn is
piece-wise constant, and when solving the minimization problem in Equation (40), we only seek
to determine the values Ĥn attains at these jump locations. Let yi = H̃n(hi), and wi = hi+1 − hi.
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VAN DER JAGT et al. 1841

F I G U R E 4 A comparison of the plugin estimator Hn and the isotonic estimator Ĥn. The actual underlying
H is equal to the CDF of a uniform distribution on (0, 1).

Then, by setting 𝛽 = (Ĥn(h1), Ĥn(h2),…, Ĥn(hk−1)), (40) may be written as:

𝛽 = arg min
𝛽∈+

k−1∑

i=1
(𝛽i − yi)2wi, (41)

where the closed convex cone + is given by: + ∶= {𝛽 ∈ Rk−1 ∶ 0 ≤ 𝛽1 ≤ 𝛽2 ≤ · · · ≤ 𝛽k−1}.
Finally, observe that Ĥn(hk) = Ĥn(hk−1). The optimization problem in Equation (41) is indeed an
isotonic regression problem. We note that implementations for solving this problem are widely
available. In Figure 4, a realization of Hn and the corresponding realization of Ĥn is shown.

7 SIMULATIONS

In previous sections, we have derived consistent estimators for the distribution function cor-
responding to the underlying Poisson process 𝜂, both in the direct setting (Rd) and in the
stereological setting (Rd−1). Additionally, we have shown how to compute these estimators. In
this section, we perform some simulations such that we can assess their performance. We note
that edge effects, which occur in practice, were not taken into account for the simulations in this
section. We discuss practical issues arising from edge effects in Section 8. For the simulations, we
compute Laguerre tessellations using the Voro++ software Rycroft (2009). For the estimators F̂0

n
and F̂n we focus on the case d = 2. Let M > 0 and z ≥ 0, we consider the following choices for the
underlying F.

F1(z;M) = z ⋅ 1{z < M} +M ⋅ 1{z ≥ M} (42)

F2(z) = 0.01 ⋅ 1{z ≥ 1} + 0.04 ⋅ 1{z ≥ 8} + 0.95 ⋅ 1{z ≥ 10}. (43)

Note that F2 corresponds to the F in Example 1. For both choices of F, it is simple to sim-
ulate a corresponding Poisson process, because these Poisson processes can be recognized as
independently marked homogeneous Poisson processes. Throughout this section we write Pn ∶=
E(𝜂0(Wn × (0,∞)). We choose a square observation window Wn such that Pn = 1000. In words,
we choose a square Wn with an area such that the expected number of observed points of 𝜂0 in Wn
is equal to 1,000. First, we consider F1 as the underlying truth. For M = 1 and M = 3 we repeat
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1842 VAN DER JAGT et al.

F I G U R E 5 Simulation results for F̂0
n and F̂n, where F is given by (42), with M = 1 (Left) and M = 3 (Right).

the simulation procedure with this F 100 times, such that we obtain 100 realizations of F̂0
n and

F̂n for each value of M. For each estimator and each choice of M, we also compute the pointwise
average of all realizations. The results are shown in Figure 5. A blue line is a realization of an
estimator, and a black line is a pointwise average. We can clearly see that estimates of F(z) for z
close to zero are much more accurate than estimates of F(z) for large values of z. This is especially
evident for the results corresponding to M = 3. This is not too surprising in view of the crystal-
lization interpretation of a Laguerre tessellation as described in Section 3. We expect that points
with large weights are less likely to generate non-empty cells. As a result, we sample points with
large weights less often, which makes estimation of F(z) for large values of z more difficult. This
also means that we expect that the accuracy of an estimate of F near zero is much more impor-
tant if we wish to use this estimate to simulate a Poisson-Laguerre tessellation, which is similar to
the observed tessellation. From Figure 5, it is not very clear whether there are significant differ-
ences between F̂0

n and F̂n, though it does seem that F̂0
n performs slightly better on average when

z is large.
Now, we consider F2 as the underlying truth. For this choice of F, we only observe points with

weights in the set {1, 8, 10}. As a result, realizations of F̂0
n and F̂n will only have jumps at these val-

ues. We can therefore easily quantify the error of F̂0
n by computing F(z) − F̂0

n(z) for z ∈ {1, 8, 10}.
Of course, we can do the same for F̂n. Again, we repeat the simulation procedure 100 times.
This time, however, we also repeat this for multiple choices of observation windows. We choose
Wn such that Pn is equal to 500, 1,000, 2,000, or 5,000. The simulation results are shown in
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T A B L E 1 Simulation results for F̂0
n, where F is given by (43).

F(1) − ̂F0
n(1) F(8) − ̂F0

n(8) F(10) − ̂F0
n(10)

Pn mean (| ⋅ |) (2.5%, 97.5%) mean (| ⋅ |) (2.5%, 97.5%) mean (| ⋅ |) (2.5%, 97.5%)
500 0.002 84 (−0.0057, 0.0052) 0.007 34 (−0.018, 0.018 ) 0.0430 (−0.11, 0.10)

1000 0.001 97 (−0.0042, 0.0046) 0.004 24 (−0.010, 0.0099) 0.0327 (−0.065, 0.091)

2000 0.001 45 (−0.0034, 0.0029) 0.003 49 (−0.0079, 0.0081) 0.0192 (−0.042, 0.046)

5000 0.000 845 (−0.0019, 0.0020) 0.002 06 (−0.0046, 0.0052) 0.0146 (−0.030, 0.031)

T A B L E 2 Simulation results for F̂n, where F is given by (43).

F(1) − ̂Fn(1) F(8) − ̂Fn(8) F(10) − ̂Fn(10)

Pn mean (| ⋅ |) (2.5%, 97.5%) mean (| ⋅ |) (2.5%, 97.5%) mean (| ⋅ |) (2.5%, 97.5%)
500 0.002 94 (−0.0069, 0.0057) 0.007 62 (−0.019, 0.017 ) 0.386 (−1.9, 0.47)

1000 0.001 98 (−0.0039, 0.0050) 0.004 42 (−0.010, 0.010 ) 0.267 (−1.1, 0.33)

2000 0.001 51 (−0.0037, 0.0031) 0.003 54 (−0.0074, 0.0083) 0.170 (−0.61, 0.25)

5000 0.000 885 (−0.0020, 0.0020) 0.002 13 (−0.0048, 0.0045) 0.107 (−0.30, 0.21)

F I G U R E 6 Simulation results for Ĥn where H is given by (42), with M = 1 (Left) and M = 3 (Right).

Tables 1 and 2. This table contains the mean over all 100 absolute errors for each choice of Wn
and for each choice of z. We also include the 2.5% and 97.5% quantiles of these 100 errors. We
can see that at z = 1 and z = 8 the performance of the estimators F̂0

n and F̂n is quite similar.
However, at z = 10 it is clear that F̂0

n performs much better. This is somewhat surprising, after
all, F̂n takes into account more information than F̂0

n. We do not yet know whether the differ-
ence in performance is due to differences in numerical stability of the inversion procedures or
due to different rates of convergence of the estimators. We also should point out that for a sin-
gle realization of F̂n corresponding to Pn = 500, we observed a numerical overflow. That is, we
observed: F̂n(10) < F̂n(8). It may therefore be of future interest to study whether there are more
numerically stable ways to compute F̂n.

Finally, we show some simulation results for Ĥn. In the previous simulations we observed that
F̂0

n performs better than F̂n. Therefore, we compute Ĥn via Fn = F̂0
n. We consider d = 3 such that
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1844 VAN DER JAGT et al.

we observe a 2D sectional tessellation. We take the underlying H equal to F1 as in Equation (42).
Again, we choose Wn such that Pn = 1000 and perform 100 repeated simulations for both M = 1
and M = 3. The results are shown in Figure 6. As expected, in the stereological setting, we observe
a bigger variance in realizations of Ĥn compared to the realizations shown in Figure 5. Overall,
all estimators seem to perform satisfactorily.

8 DISCUSSION

In this paper, we have defined two estimators for the distribution function F, which describes the
distribution of the arrival times of the generators. For these estimators, we have established their
consistency and studied their performance in simulations. We have also considered statistical
inference in a stereological setting. When computing the proposed estimators in practice, one
has to deal with edge effects, and we now briefly discuss some of the challenges caused by this
phenomenon. Throughout this paper, all points of 𝜂∗ in Wn × (0,∞) are considered to be known,
as well as the Laguerre cells corresponding to these points. In practice, it is often the case that
some of the cells near the boundary of Wn are only partially observed. Then, one could follow
the suggestion in Remark 2 and compute the estimator based on a smaller window W ′

n ⊂ Wn.
Here, one should choose W ′

n ⊂ Wn as large as possible such that C((x, h), 𝜂) ⊂ Wn for all (x, h) ∈
𝜂
∗ ∩ (W ′

n × (0,∞)). The estimator of interest can then be computed, replacing Wn by W ′
n in the

definition of the estimator.
In a practical setting, a Laguerre tessellation may have been fitted to some image data using a

reconstruction algorithm. It could be the case that a generator point in the observation window
cannot be reconstructed because its cell is located outside of the observation window. Because
there are various ways of reconstructing Laguerre tessellations and their extreme points, detailed
simulations that consider the constraints induced by those reconstruction methods are out of the
scope of this paper. We believe it will be useful to perform those kinds of simulations in future
research, to better understand how well the estimators perform when all practical considerations
are taken into account. For now, it should also be possible to mitigate these edge effects caused by
the reconstruction approach by computing the estimators based on a smaller observation window
W ′

n ⊂ Wn.
Besides challenges arising from edge effects, we would also like to discuss a few possible

directions that may be pursued in future research. There are various important properties of
the estimators F̂0

n and F̂n which are still unknown. For instance, at present we do not know
which of the estimators F̂0

n or F̂n should, in general, be preferred in practice. Hence, it may be
of interest to study the rates of convergence of these estimators. Another important challenge
for future research is the derivation of the asymptotic distributions of F̂0

n and F̂n. Knowledge
of these asymptotic distributions is essential for deriving (asymptotic) confidence intervals for
F̂0

n and F̂n. This information may then also be used to determine guidelines for required obser-
vation window sizes. Finally, from a practical point of view, it is also of interest to know
how the estimators F̂0

n and F̂n perform when the underlying point process is not necessarily a
Poisson process.
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APPENDIX A. PROOFS

Proof of Lemma 2. Let (Ω,,P) be a probability space supporting the sequence
(Fn)n≥1. For z ∈ R, there exists by assumption a set Ωz ∈  be such that
limn→∞ Fn(z;𝜔) = F(z) for all 𝜔 ∈ Ωz and P(Ωz) = 1. Define D ∶= {z ∈ R ∶ z ∈
Q or z is a discontinuity point of F}. Because monotone functions have at most
countably many discontinuity points and because the rationals are countable, it
follows that D is countable. Letting Ω′ ∶= ∩z∈DΩz we obtain P(Ω′) = 1. Let z ∈
R and 𝜔 ∈ Ω′, we show that limn→∞ Fn(z;𝜔) = F(z). If z ∈ Q or if z is a dis-
continuity point of F, then the result is immediate. Suppose that z ∈ R ⧵Q is
a continuity point of F. For m ∈ N choose 𝛿m > 0 such that |F(z) − F(x)| < 1∕m
whenever |z − x| < 𝛿m. Choose rm, sm ∈ Q such that rm ≤ z ≤ sm and |rm − z| < 𝛿m
and |sm − z| < 𝛿m. By the monotonicity of each Fn, and since 𝜔 ∈ Ω′ we have for
all m ∈ N:

F(rm) = lim
n→∞

Fn(rm;𝜔) ≤ lim
n→∞

Fn(z;𝜔) ≤ lim
n→∞

Fn(sm;𝜔) = F(sm).

Due to the choice of rm and sm we obtain:

− 1
m
< F(rm) − F(z) ≤ lim

n→∞
Fn(z;𝜔) − F(z) ≤ F(sm) − F(z) < 1

m
.

The result now follows since |limn→∞ Fn(z;𝜔) − F(z)| < 1∕m for all m ∈ N. ▪

Proof of Lemma 3. Let R > 0 and assume limn→∞ Fn(z) = F(z) for all z ∈ [0,R). Fix
z ∈ [0,R). We introduce the following shorthand notation, for h ∈ [0, z]:

𝜙n(h) ∶=
∫

h

0
(h − t)

d
2 dFn(t), and 𝜙(h) ∶=

∫

h

0
(h − t)

d
2 dF(t).
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The triangle inequality yields the following bound:

||GFn (z) − GF(z)||

≤

||||||
∫

z

0
exp

(

−𝜅d
∫

h

0
(h − t)

d
2 dFn(t)

)

− exp

(

−𝜅d
∫

h

0
(h − t)

d
2 dF(t)

)

dFn(h)
||||||
+

+
||||||
∫

z

0
exp

(

−𝜅d
∫

h

0
(h − t)

d
2 dF(t)

)

d(Fn − F)(h)
||||||

≤ sup
h∈[0,z]

|exp (−𝜅d𝜙n(h)) − exp (−𝜅d𝜙(h))|Fn(z)+

+
||||∫

z

0
exp (−𝜅d𝜙(h))d(Fn − F)(h)

||||
. (A1)

Let us consider the first term of (A1). Fix h ∈ [0, z]. Since Fn converges pointwise to F
on [0, z] and t → (h − t)

d
2 1{h ≥ t} is continuous and bounded on [0, z] it follows that

limn→∞ 𝜙n(h) = 𝜙(h). Hence, the sequence of monotone functions exp (−𝜅d𝜙n(⋅)) con-
verges pointwise to the monotone function exp (−𝜅d𝜙(⋅)) on [0, z]. Because 𝜙 is (abso-
lutely) continuous, the limit function exp (−𝜅d𝜙(⋅)) is continuous. The convergence is
therefore uniform on [0, z], and we obtain:

lim
n→∞

sup
h∈[0,z]

|exp (−𝜅d𝜙n(h)) − exp (−𝜅d𝜙(h))|Fn(z) = 0 ⋅ F(z) = 0.

Let us now consider the second term of (A1). Because exp (−𝜅d𝜙(⋅)) is continuous and
bounded, it immediately follows from the pointwise convergence of Fn to F on [0, z]
that this second term vanishes as n → ∞. This proves that limn→∞ GFn (z) = GF(z). The
proof remains valid when R = ∞. ▪

Proof of Theorem 7. Let z ≥ 0. For i ∈ {1, 2} write FV
i ∶= V(⋅;Fi,mFi). From

Equation (18), it can be seen that the (Lebesgue-Stieltjes) measures associated with
FV

i and Fi are mutually absolutely continuous. The corresponding Radon-Nikodym
derivative is given by:

dFV
i

dFi
(z) = 𝜋

∫

∞

z
exp

(
−𝜋
∫

u

0
Fi(t)dt

)
du =∶ pi(z).

Hence, we may also write:

Fi(z) =
∫

z

0

dFi

dFV
i

(h)dFV
i (h) = ∫

z

0

1
pi(h)

dFV
i (h).

Since mFi < ∞ (this is shown in the proof of Lemma 4), we have pi(0) < ∞, and from
its definition, it is clear that pi is a decreasing function. Because x → 1∕x is Lipschitz
on (c,∞) for c > 0 with Lipschitz constant 1∕c2 we have for h ∈ [0, z]:

||||
1

p1(h)
− 1

p2(h)
||||
≤ max

{
1

p1(h)2
,

1
p2(h)2

}
|p1(h) − p2(h)| ≤ C(h)|p1(h) − p2(h)|.
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1848 VAN DER JAGT et al.

Here we have defined C(h) ∶= max{1∕p1(h)2, 1∕p2(h)2}, which is increasing. As a
consequence, we obtain the following upper bound for |F1(z) − F2(z)|:

|F1(z) − F2(z)| =
||||∫

z

0

1
p1(h)

− 1
p2(h)

dFV
1 (h) + ∫

z

0

1
p2(h)

d(FV
1 − FV

2 )(h)
||||

≤ C(z)
∫

z

0
|p1(h) − p2(h)|dFV

1 (h) +
||||∫

z

0

1
p2(h)

d(FV
1 − FV

2 )(h)
||||
. (A2)

We consider the two terms in Equation(A2) separately. The first term of (A2) is
bounded by:

𝜋C(z)
∫

z

0

|||||∫

∞

0
exp

(
−𝜋
∫

u

0
F1(t)dt

)
− exp

(
−𝜋
∫

u

0
F2(t)dt

)
du

|||||
dFV

1 (h)+

+ 𝜋C(z)
∫

z

0

|||||∫

h

0
exp

(
−𝜋
∫

u

0
F1(t)dt

)
− exp

(
−𝜋
∫

u

0
F2(t)dt

)
du

|||||
dFV

1 (h). (A3)

The first term of (A3) is equal to 𝜋C(z)FV
1 (z)||mF1 −mF2

|| and the second term of (A3)
is bounded by:

𝜋C(z)
∫

z

0 ∫

h

0

|||||
exp

(
−𝜋
∫

u

0
F1(t)dt

)
− exp

(
−𝜋
∫

u

0
F2(t)dt

)|||||
dudFV

1 (h)

≤ 𝜋2C(z)
∫

z

0 ∫

h

0 ∫

u

0
|F1(t) − F2(t)|dtdudFV

1 (h)

≤ 𝜋2C(z)FV
1 (z)z∫

z

0
|F1(t) − F2(t)|dt. (A4)

In Equation (A4), we used the fact |e−x − e−y| ≤ |x − y| for x, y ≥ 0. Via the integration
by parts formula, the second term of (A2) is bounded by:

|||||

(
FV

1 (z) − FV
2 (z)

) 1
p2(z)

−
∫

z

0
FV

1 (h) − FV
2 (h)d

(
1

p2(h)

)
(h)

|||||

≤
1

p2(z)
||F

V
1 (z) − FV

2 (z)|| + sup
h∈[0,z]

||F
V
1 (h) − FV

2 (h)||
|||||∫

z

0
d
(

1
p2(h)

)
(h)

|||||

≤
2

p2(z)
sup

h∈[0,z]
||F

V
1 (h) − FV

2 (h)||.

Collecting all results, we obtain:

|F1(z) − F2(z)| ≤ 𝜋C(z)FV
1 (z)||mF1 −mF2

|| + 𝜋
2C(z)FV

1 (z)z∫

z

0
|F1(t) − F2(t)|dt+

+ 2
p2(z)

sup
h∈[0,z]

||F
V
1 (h) − FV

2 (h)||.

Applying Theorem 3 and (9) yields:

|F1(z) − F2(z)| ≤ K(z)
(
𝜋C(z)FV

1 (z)||mF1 −mF2
|| +

2
p2(z)

sup
h∈[0,z]

||F
V
1 (h) − FV

2 (h)||

)
. (A5)
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VAN DER JAGT et al. 1849

Here, K(z) is given by:

K(z) ∶=
(
1 + 𝜋2C(z)FV

1 (z)z
2 exp

(
𝜋

2C(z)FV
1 (z)z

2))

The statement of the theorem immediately follows from Equation (A5). ▪

Proof of Lemma 4. We first note that we may assume without loss of generality that
(Fn)n≥1 is a sequence of functions not containing the zero function. Indeed, we could
take an arbitrary subsequence (nl)l≥1 ⊂ (n)n≥1, and then use the pointwise conver-
gence of Fn to F to choose a further subsequence (nk)k≥1 ⊂ (nl)l≥1 such that (Fnk )k≥1 is
a sequence which does not contain the zero function. If we then show limk→∞ mFnk

=
mF then the whole sequence also converges: limn→∞ mFn = mF .

We introduce the following notation: For u ≥ 0 let:

pn(u) ∶= exp
(
−𝜋
∫

u

0
Fn(t)dt

)
, p(u) ∶= exp

(
−𝜋
∫

u

0
F(t)dt

)
.

Via the inequality |e−x − e−y| ≤ |x − y| for x, y ≥ 0 and (21) we obtain the following
upper bound for |pn(u) − p(u)|:

|pn(u) − p(u)| ≤ 𝜋
||||∫

u

0
F(t) − Fn(t)dt

||||
= 𝜋

||||∫

u

0
(u − t)d(F − Fn)(t)

||||
. (A6)

Due to the pointwise convergence of Fn to F, we obtain that pn converges pointwise
to p as n → ∞. The triangle inequality yields:

||mFn −mF|| ≤ ∫

z

0
|pn(u) − p(u)|du +

∫

∞

z
|pn(u) − p(u)|du. (A7)

The first term of (A7) vanishes as n →∞. Indeed, pn converges pointwise to p as
n → ∞, and since |pn(u) − p(u)| ≤ 1 the dominated convergence theorem may be
applied. The dominated convergence theorem can also be used to show that the
second term of (A7) vanishes as n → ∞. We now show which dominating function
g may be used. Choose z ≥ 0 large enough such that F(z) > 0 and set c ∶= F(z). We
show that mF <∞:

mF =
∫

z

0
p(u)du +

∫

∞

z
p(u)du

≤ z + exp
(
−𝜋
∫

z

0
F(t)dt

)

∫

∞

z
exp

(
−𝜋
∫

u

z
F(t)dt

)
du

≤ z +
∫

∞

z
exp

(
−𝜋c
∫

u

z
dt

)
du = z + 1

𝜋c
. (A8)

Choose N ∈ N large enough such that Fn(z) ≥ c∕2 for all n ≥ N. This can be done
since Fn converges pointwise to F. Applying the same bound as in Equation (A8)
yields |pn(u)| ≤ exp (−𝜋c(u − z)∕2) for all u ≥ z and all n ≥ N. Hence, we may define
the dominating function g ∶ [z,∞)→ [0,∞) as:

g(u) ∶= p(u) +max
{

max
k∈{1,…,N}

pk(u), exp
(
−𝜋 c

2
(u − z)

)}
.
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1850 VAN DER JAGT et al.

Note that mF < ∞ and mFk < ∞ for all k ∈ {1,…,N} by (A8), applied to F and Fk,
respectively. As a consequence, g is integrable on [z,∞). Because |pn(u) − p(u)| ≤ g(u)
for all u ≥ z the proof is finished. ▪

Proof of Lemma 6. Let z ≥ 0, we readily obtain the following bound:

|||V(z;Fn,mn) − V(z;F,m)|||

≤

|||||
exp

(
−𝜋
∫

z

0
F(t)dt

)
− exp

(
−𝜋
∫

z

0
Fn(t)dt

)|||||
+

+ 𝜋|F(z) − Fn(z)|
|||||
m −

∫

z

0
exp

(
−𝜋
∫

u

0
F(t)dt

)
du

|||||
+

+ 𝜋Fn(z)

(

|mn −m| +
|||||∫

z

0
exp

(
−𝜋
∫

u

0
Fn(t)dt

)
− exp

(
−𝜋
∫

u

0
F(t)dt

)
du

|||||

)

(A9)

Each of the three terms of (A9) vanishes as n → ∞, and each of the terms appearing
here also appears in the proof of Lemma 4. The fact that the first term vanishes follows
from Equation (A6). The second term vanishes due to the pointwise convergence of
Fn to F. The third term vanishes since limn→∞ Fn(z) = F(z), limn→∞ mn = m, and by
using the same argument as for the first term in Equation (A7). ▪

APPENDIX B. COMPUTATIONAL FORMULA

First of all, note that:

m̂n =
∫

h1

0
exp

(
−𝜋
∫

u

0
F̂0

n(t)dt
)

du +
∫

∞

h1

exp
(
−𝜋
∫

u

0
F̂0

n(t)dt
)

du (B1)

The first integral of (B1) is equal to h1, since F̂0
n is zero on [0, h1). Let hk+1 > hk, via a direct

computation we obtain:

∫

hk+1

h1

exp
(
−𝜋
∫

u

0
F̂0

n(t)dt
)

du =

=
k+1∑

i=2
∫

hi

hi−1

exp
(
−𝜋
∫

u

0
F̂0

n(t)dt
)

du

=
k+1∑

i=2
exp

(

−𝜋
∫

hi−1

0
F̂0

n(t)dt

)

∫

hi

hi−1

exp
(
−𝜋
∫

u

hi−1

F̂0
n(t)dt

)
du

=
k+1∑

i=2
exp

(

−𝜋
∫

hi−1

0
F̂0

n(t)dt

)

∫

hi

hi−1

exp
(
−𝜋(u − hi−1)F̂0

n(hi−1)
)
du

=
k+1∑

i=2
exp

(

−𝜋
i−1∑

j=1
F̂0

n(hj)(hj − hj−1)

)
1

𝜋F̂0
n(hi−1)

(
1 − exp

(
−𝜋F̂0

n(hi−1)(hi − hi−1)
))
.
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VAN DER JAGT et al. 1851

Letting hk+1 →∞ we obtain:

m̂n = h1 + exp

(

−𝜋
k∑

j=1
F̂0

n(hj)(hj − hj−1)

)
1

𝜋F̂0
n(hk)

+

+
k∑

i=2
exp

(

−𝜋
i−1∑

j=1
F̂0

n(hj)(hj − hj−1)

)
1

𝜋F̂0
n(hi−1)

(
1 − exp

(
−𝜋F̂0

n(hi−1)(hi − hi−1)
))
.
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