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Probabilistic Recursive Reasoning for Multi-agent Reinforcement Learning
Ying Wen*, Yaodong Yang*, Rui Luo, Jun Wang and Wei Pan

University College London, TU Delft

Motivations
Similar to the way of thinking adopted by humans, Recursive Reasoning represents the
belief reasoning process where each agent considers the reasoning process of other agents,
based on which it expects to make better decisions. Importantly, it allows an opponent to
reason about the modeling agent rather than being a fixed type; the process can therefore be
nested in a form as:

"I believe that you believe that I believe ...". 
there has been little work that tries to adopt this idea into the multi-agent deep reinforcement
learning (DRL) setting.

Multi-agent Learning Objective
Each agent is presumed to pursue the maximal cumulative reward expressed as:

Non-correlated Joint Policy Factorization
One common approach is to decouple the joint policy assuming conditional independence of
actions from different agents:

But impacts of one agent‘s action on other agents, and the subsequent reactions from other
agents are not molded. It gives non-correlated multi-agent learning objective:

Experiments
• Iterated Matrix Game 
IGA fails to converge to the equilibrium but rotate 
around the equilibrium point. On the contrary, PR2-
Q can find precisely the central equilibrium with a 
fully distributed fashion.

Probabilistic Recursive Reasoning Policy 
Gradient
By considering the level-1 recursion, we re-formulate the joint
policy:

Given the opponent policy 𝜋"#$
%& , and that each agent tries to

maximize its objective defined in Eq. 1, we establish the policy
gradient theorem by accounting for the PR2 joint policy
decomposition in Eq. 3:

Variational Inference on Opponent 
Conditional Policy
Optimization-based approximation to infer the unobservable
𝜌(#$
%& (𝑎%&| 𝑠, 𝑎&) via variational inference with soft RL formulation:

PR2-Q learning dynamics on matrix game IGA learning dynamics on matrix game

Learning Dynamics on Quadratic Game, Left: PR2-AC, Right: MADDPG.
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Probabilistic Recursive Reasoning Framework 
PR2 decouples the connections between agents. Step 1: agent 𝑖 takes the best response
after considering all the potential consequences of opponents‘ actions given its own action
𝑎&. Step 2: how agent 𝑖 behaves in the environment serves as the prior for the opponents to
learn how their actions would affect 𝑎&. Step 3: similar to Step 1, opponents take the best
response to agent 𝑖. Step 4: similar to Step 2, opponents’ actions are the prior knowledge to
agent 𝑖 on estimating how 𝑎& will affect the opponents. Looping from Step 1 to 4 forms
recursive reasoning.

• Differential Game
PR2-AC model finds the peak point in joint action
space, the agents can quickly go through the
shortcut out of the local basin in a clever way, while
other algorithms just converge to the local
equilibrium.

Learning Curve on Quadratic Game
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Figure 2: Diagram of multi-agent PR2 learning algorithms. It conducts decentralized training with
decentralized execution. The light grey panels on two sides indicate decentralized execution for each
agent whereas the white counterpart shows the decentralized learning procedure. All agents share the
interaction experiences in the environment inside the dark rectangle in the middle.

policy via a best-fit model from a family of distributions. We denote this family as ⇢�i
��i (a�i|s, ai)

with learnable parameter ��i . PR2 is probabilistic as it considers the uncertainty of modeling
⇡�i
✓�i (a�i|s, ai). The reasoning structure is now established as shown in Fig. 1. With the recursive

joint policy defined in Eq. 3, the n-agent learning task can therefore be formulated as

argmax
✓ i,��i

⌘i
⇣
⇡i✓ i (ai|s)⇢�i

��i (a�i|s, ai)
⌘
, (4)

argmax
✓�i,�i

⌘�i
⇣
⇡�i
✓�i (a�i|s)⇢i�i (ai|s, a�i)

⌘
. (5)

With the new learning protocol defined in Eq. 4 and 5, each agent now learns its own policy as
well as the approximated conditional policy of other agents given its own actions. In such a way,
both the agent and the opponents can keep track of the joint policy by ⇡i✓ i (ai|s)⇢�i

��i (a�i|s, ai) !
⇡✓(ai, a�i|s)  ⇡�i

✓�i (a�i|s)⇢i�i (ai|s, a�i). Once converged, the resulting approximate satistfies:
⇡✓(ai, a�i|s) = ⇡i✓ i (ai|s)⇢�i

��i (a�i|s, ai) = ⇡�i
✓�i (a�i|s)⇢i�i (ai|s, a�i), according to Eq. 3.

4.2 PROBABILISTIC RECURSIVE REASONING POLICY GRADIENT

Given the true opponent policy ⇡�i
✓�i and that each agent tries to maximize its cumulative return in

the stochastic game with the objective defined in Eq. 1, we establish the policy gradient theorem by
accounting for the PR2 joint policy decomposition in Eq. 3.
Proposition 1. In a stochastic game, under the recursive reasoning framework defined by Eq. 3, the
update for the multi-agent recursive reasoning policy gradient method can be derived as follows:

r✓ i⌘i = Es⇠p,ai⇠⇡ i


r✓ i log ⇡i✓ i (ai|s)

Z

a�i

⇡�i
✓�i (a�i|s, ai)Qi(s, ai, a�i) da�i

�
. (6)

Proof. See Appendix B.2. ⌅

Proposition 1 states that each agent should improve its policy toward the direction of the best response
after it takes into account all kinds of possibilities of how other agents would react if that action
is taken, which implicitly forms level-1 recursive reasoning. The term of ⇡�i

✓�i (a�i|s, ai) can be
regarded as the posterior estimation of agent i’s belief about how the opponents would respond to
his action ai , given opponents’ true policy ⇡�i

✓�i (a�i|s) serving as the prior. Note that compared to
the direction of policy update in the conventional multi-agent policy gradient theorem (Wei et al.,
2018),

R
a�i ⇡

�i
✓�i (a�i|s)Qi(s, ai, a�i) da�i , the direction of the gradient update in PR2 is guided by

the term
R
a�i ⇡

�i
✓�i (a�i|s, ai)Qi(s, ai, a�i) da�i which shapes reward after considering its affect to

opponents.

In practice, agent i might not have access to the opponents’ actual policy parameters ✓�i , it is often
needed to approximate ⇡�i

✓�i (a�i|s, ai) by ⇢�i
��i (a�i|s, ai), thereby we propose Proposition 2.

Proposition 2. In a stochastic game, under the recursive reasoning framework defined by Eq. 3,
with the opponent policy approximated by ⇢�i

��i (a�i|s, ai), the update for the multi-agent recursive
reasoning policy gradient method can be formulated as follows:
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2018), Multi-Agent Soft-Q (Wei et al., 2018), and LOLA (Foerster et al., 2018), can be classified
into this category (see more clarifications in Appendix B). Although the non-correlated factorization
of the joint policy simplifies the algorithm, this simplication is vulnerable because it ignores the
agents’ connections, e.g. impacts of one agent’s action on other agents, and the subsequent reactions
from other agents. One might argue that during training, the joint Q-function should potentially
guide each agent to learn to consider and act for the mutual interests of all the agents; nonetheless,
a counter-example is that the non-correlated policy could not even solve the simplest two-player
zero-sum differential game where two agents act in x and y with the reward functions defined by
(xy,�xy). In fact, by following Eq. 2, both agents are reinforced to trace a cyclic trajectory that
never converge to the equilibrium (Mescheder et al., 2017).

It is worth clarifying that the idea of non-correlated policy is still markedly different from the
independent learning (IL). IL is a naive method that completely ignore other agents’ behaviors. The
objective of agent i is simplified to ⌘i(⇡✓ i ), depending only on i’s own policy ⇡✓ i compared to Eq. 1.
As Lowe et al. (2017) has pointed out, in IL, the probability of taking a gradient step in the correct
direction decreases exponentially with the increasing number of agents, letting alone the major issue
of the non-stationary environment due to the independence assumption (Tuyls & Weiss, 2012).

4 MULTI-AGENT PROBABILISTIC RECURSIVE REASONING

In the previous section, we have shown the weakness of the learning algorithms that build on the non-
correlated factorization on the joint policy. Here we introduce the probabilistic recursive reasoning
approach that aims to capture how the opponents believe about what the agent believes. Under
such setting, we devise a new multi-agent policy gradient theorem. We start from assuming the true
opponent conditional policy ⇡�i

✓�i is given, and then move onward to the practical case where it is
approximated through variational inference.

4.1 PROBABILISTIC RECURSIVE REASONING

The issue on the non-correlated factorization is that it fails to help each agent to consider the
consequence of its action on others, which could lead to the ill-posed behaviors in the multi-agent
learning tasks. On the contrary, people explicitly attribute contents such as beliefs, desires, and
intentions to others in daily life. It is known that human beings are capable of using this ability
recursively to make decisions. Inspired by this, here we integrate the concept of recursive reasoning
into the joint policy modeling, and propose the new probabilistic recursive reasoning (PR2) framework.
Specifically, we employ the nested process of belief reasoning where each agent simulates the
reasoning process of other agents, thinking about how its action would affect others, and then make
actions based on such predictions. The process can be nested in a form as "I believe [that you believe
(that I believe)]". Here we start from considering the level-1 recursion, as psychologist have found
that humans tend to reason on average at one or two level of recursion (Camerer et al., 2004), and
levels higher than two do not provide significant benefits (De Weerd et al., 2013a;b; de Weerd et al.,
2017). Based on this, we re-formulate the joint policy by

⇡✓(ai, a�i|s) = ⇡i✓ i (ai|s)⇡�i
✓�i (a�i|s, ai)

| {z }
Agent i’s perspective

= ⇡�i
✓�i (a�i|s)⇡i✓ i (ai|s, a�i)

| {z }
The opponents’ perspective

. (3)

Similar ways of decomposition can also be found in dual learning (Xia et al., 2017) on machine
translation. From the perspective of agent i, the first equality in Eq. 3 indicates that the joint policy
can be essentially decomposed into two parts. The conditional part ⇡�i

✓�i (a�i|s, ai) represents what
actions would be taken by the opponents given the fact that the opponents know the current state of
environment and agent i’s action; this is based on what agent i believes other opponents might think
about itself. Note that the way of thinking developed by agent i regarding how others would consider
of itself is also shaped by opponents’ original policy ⇡�i

✓�i (a�i|s), as this is also how the opponents
actually act in the environment. Taking into account different potential actions that agent i thinks the
opponents would take, agent i uses the marginal policy ⇡i✓ i (ai|s) to find the best response. To this
end, a level-1 recursive procedure is established: ai ! a�i ! ai . The same inference logic can be
applied to the opponents from their perspectives, as shown in the second equality of Eq. 3.

Albeit intuitive, Eq. 3 may not be practical due to the requirement on the full knowledge regarding
the actual conditional policy ⇡�i

✓�i (a�i|s, ai). A natural solution is that one approximates the actual
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3 PRELIMINARIES

For an n-agent stochastic game (Shapley, 1953), we define a tuple (S,A1, . . . ,An, r1, . . . , rn, p, �),
where Sdenotes the state space, p is the distribution of the initial state, � is the discount factor for
future rewards, Ai and r i = r i(s, ai, a�i) are the action space and the reward function for agent
i 2 {1, . . . , n} respectively. Agent i chooses its action ai 2 Ai according to the policy ⇡i✓ i (ai|s)
parameterized by ✓i conditioning on some given state s 2 S. Let us define the joint policy as the
collection of all agents’ policies ⇡✓ with ✓ representing the joint parameter. It is convenient to
interpret the joint policy from the perspective of agent i such that ⇡✓ = (⇡i✓ i (ai|s), ⇡�i

✓�i (a�i|s)),
where a�i = (a j)j 6=i , ✓�i = (✓ j)j 6=i , and ⇡�i

✓�i (a�i|s) is a compact representation of the joint policy
of all complementary agents of i. At each stage of the game, actions are taken simultaneously. Each
agent is presumed to pursue the maximal cumulative reward (Sutton et al., 1998), expressed as

max ⌘i(⇡✓) = E
" 1X

t=1

�tr i(st, ai
t, a

�i
t )

#
, (1)

with (ai
t, a

�i
t ) sample from (⇡i✓ i, ⇡

�i
✓�i ). Correspondingly, for the game with (infinite) time horizon,

we can define the state-action Q-function by Qi
⇡✓
(st, ai

t, a
�i
t ) = E

⇥P1
l=0 �

lr i(st+l, ai
t+l, a

�i
t+l)

⇤
.

3.1 NON-CORRELATED FACTORIZATION ON THE JOINT POLICY

In the multi-agent learning tasks, each agent can only control its own action; however, the resulting
reward value depends on other agents’ actions. The Q-function of each agent, Qi

⇡✓
, is subject to the

joint policy ⇡✓ consisting of all agents’ policies. One common approach is to decouple the joint
policy assuming conditional independence of actions from different agents (Albrecht & Stone, 2018):

⇡✓(ai, a�i|s) = ⇡i✓ i (ai|s)⇡�i
✓�i (a�i|s). (2)

The study regarding the topic of “centralized training with decentralized execution” in the deep RL
domain, including MADDPG (Lowe et al., 2017), COMA (Foerster et al., 2017), MF-AC (Yang et al.,
2018), Multi-Agent Soft-Q (Wei et al., 2018), and LOLA (Foerster et al., 2018), can be classified
into this category (see more clarifications in Appendix B). Although the non-correlated factorization
of the joint policy simplifies the algorithm, this simplication is vulnerable because it ignores the
agents’ connections, e.g. impacts of one agent’s action on other agents, and the subsequent reactions
from other agents. One might argue that during training, the joint Q-function should potentially
guide each agent to learn to consider and act for the mutual interests of all the agents; nonetheless,
a counter-example is that the non-correlated policy could not even solve the simplest two-player
zero-sum differential game where two agents act in x and y with the reward functions defined by
(xy,�xy). In fact, by following Eq. 2, both agents are reinforced to trace a cyclic trajectory that
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It is worth clarifying that the idea of non-correlated policy is still markedly different from the
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such setting, we devise a new multi-agent policy gradient theorem. We start from assuming the true
opponent conditional policy ⇡�i

✓�i is given, and then move onward to the practical case where it is
approximated through variational inference.
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Diagram of  multi-agent PR2 learning algorithms. It conducts decentralized training with decentralized execution. The light grey panels 
on two sides indicate decentralized execution for each agent whereas the white counterpart shows the decentralized learning procedure. All 
agents share the interaction experiences in the environment inside the dark rectangle in the middle.
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Algorithm 2: Multi-Agent Probabilistic Recursive Reasoning Q-Learning (PR2-Q).
1 x Result: Policy: ⇡i , Opponent Recursive Reasoning: ⇢�i(a�i|s, ai).
2 Initialize Qi(s, ai, a�i) arbitrarily, set ↵ as the learning rate, � as discount factor;
3 while not converge do
4 Given the current s, calculate the opponent best response ⇢�i(a�i|s, ai) according to:
5

⇢�i(a�i|s, ai) =
1

Z
exp(Qi(s, ai, a�i)�Qi(s, ai))

6 Select and sample action ai based on the Recursive Reasoning ⇢�i(a�i|s, ai);
7

softmax(

Z

a�i

⇢�i(a�i|s, ai)Qi(s, ai, a�i))

8 Observing joint-action (ai, a�i), reward r i , and next state s0;
9

Qi(s, ai, a�i) (1� ↵)Qi(s, ai, a�i) + ↵(r i + �V i(s0))

Qi(s, ai) (1� ↵)Qi(s, ai) + ↵(r i + �V i(s0))
where,

V i(s) = max
ai

Z

a�i

⇢�i(a�i|s, ai)Qi(s, ai, a�i)

10 end

The Algorithm 2 shows the variant of Decentralized Multi-Agent Probabilistic Recursive Reasoning.
We can simply approximate the ⇢�i(a�i|s, ai) by counting:⇢�i(a�i|s, ai) = C(ai, a�i, s)/C(ai, s)
in tabular if the state-action space is small, where C is the counting function. It this case, an agent
only needs to learn a joint action Q-function, and if the game is static, our method would degenerate
to Conditional Joint Action Learning (CJAL) (Banerjee & Sen, 2007).

B MULTI-AGENT POLICY GRADIENT

B.1 MULTI-AGENT NON-CORRELATED POLICY GRADIENT

Since ⇡✓
�
ai, a�i|s

�
= ⇡i✓ i

�
ai
�
⇡�i
✓�i

�
a�i|,ai

�
= ⇡�i

✓�i

�
a�i|s

�
⇡i✓ i

�
ai|s, a�i

�
, ⇡✓

�
ai, a�i|s

�
can be

factorized as ⇡i✓ i (ai|s)⇡�i
✓�i (a�i|s) if ai and a�i are non-correlated. We follow the policy gradient

formulation (Sutton et al., 2000; Wei et al., 2018) using Leibniz integral rule and Fubini’s theorem
which can give us Multi-Agent Non-correlated Policy Gradient:

⌘i =

Z

s

Z

ai

Z

a�i

⇡(ai, a�i|s)Qi(s, ai, a�i) da�i dai ds

=

Z

s

Z

ai

Z

a�i

⇡i(ai|s)⇡�i(a�i|s)Qi(s, ai, a�i) da�i dai ds

=

Z

s

Z

ai

⇡i(ai|s)
Z

a�i

⇡�i(a�i|s)Qi(s, ai, a�i) da�i dai ds.

(13)

Suppose the ⇡i(ai) is parameterized by ✓i , and we apply the gradient over the ⌘i:

r✓ i⌘i = Es⇠p,ai⇠⇡ i [r✓ i log ⇡i(ai|s)
Z

a�i

⇡�i(a�i|s)Qi(s, ai, a�i) da�i]. (14)

In practice, off-policy is more data-efficient. In MADDPG (Lowe et al., 2017) and COMA (Foerster
et al., 2017), the replay buffer is introduced in a centralized deterministic actor-critic method for
off-policy training. They apply batch sampling to the centralized critic which gives the joint-action
Q-values:

r✓ i⌘i = Es,ai,a�i⇠D[r✓ i µi✓ i (ai|s)raiQi(s, ai, a�i)|ai=µi(s)]. (15)
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r✓ i⌘i =Es⇠p,ai⇠⇡ i

"
r✓ i log ⇡i✓ i (ai|s) · Ea�i⇠⇢�i

��i

"
⇡�i
✓�i (a�i|s, ai)

⇢�i
��i (a�i|s, ai)

Qi(s, ai, a�i)

##
. (7)

Proof. Substituting the approximated model ⇢�i
��i (a�i|s, ai) for the true policy ⇡�i

✓�i in Eq. 6. ⌅

Proposition 2 raises an important point: the difference between decentralized training (algorithms
that do not require the opponents’ policies) with centralized learning (algorithms that require the
opponents’ policies) can in fact be quantified by a term of importance weights, similar to the
connection between on-policy and off-policy methods. If we find a best-fit approximation such that
⇢�i
��i (a�i|s, ai) ! ⇡�i

✓�i (a�i|s, ai), then Eq.7 collapses into Eq. 6.

Based on Proposition 2, we could provide multi-agent PR2 learning algorithm. As illustrated in
Fig. 2, it is a decentralized-training-with-decentralized-execution algorithm. In this setting, agents
share the experiences in the environment including state and historical joint actions, while each agent
receive its rewards privately. Our method does not require the knowledge of other agents’ policy
parameters. We list the pseudo-code of PR2-AC and PR2-Q in Appendix A. Finally, one last piece
missing is how to find the best-fit approximation of ⇢�i

��i (a�i|s, ai).

4.3 VARIATIONAL INFERENCE ON OPPONENT CONDITIONAL POLICY

We adopt an optimization-based approximation to infer the unobservable ⇢�i
��i (a�i|s, ai) via vari-

ational inference (Jordan et al., 1999). We first define the trajectory ⌧ up to time t including the
experiences of t consecutive time stages, i.e. ⌧ = [(s1, ai

1, a
�i
1 ), . . . , (st, ai

t, a
�i
t )]. In the probabilistic

reinforcement learning (Levine, 2018), the probability of ⌧ being generated can be derived as

p(⌧) =

"
p(s1)

TY

t=1

p(st+1|st, ai
t, a

�i
t )

#
exp

 
TX

t=1

r i(st, at, a�i
t )

!
. (8)

Assuming the dynamics is fixed (i.e. the agent can not influence the environment transition prob-
ability), our goal is then to find the best approximation of ⇡i✓ i (ai

t |st)⇢�i
��i (a�i

t |st, ai
t) such that the

induced trajectory distribution p̂(⌧) can match with the true trajectory probability p(⌧):

p̂(⌧) = p(s1)
TY

t=1

p(st+1|st, ai
t, a

�i
t )⇡i✓ i (ai

t |st)⇢�i
✓�i (a�i

t |st, ai
t). (9)

In other words, we can optimize the opponents’ policy ⇢�i
��i via minimizing the KL-divergence, i.e.

DKL(p̂(⌧)kp(⌧)) = �E⌧⇠p̂(⌧)[log p(⌧)� log p̂(⌧)]

= �
t=TX

t=1

E⌧⇠p̂(⌧)

h
r i
�
st, ai

t, a
�i
t

�
+ H

⇣
⇡i✓ i

�
ai
t |st
�
⇢�i
��i

�
a�i|st, ai

t

�⌘i
. (10)

Besides the reward term, the objective introduces an additional term of the conditional entropy on
the joint policy H

⇣
⇡i✓ i

�
ai
t |st
�
⇢�i
��i

�
a�i|st, ai

t

�⌘
that potentially promotes the explorations for both

the agent i’s best response and the opponents’ conditional policy. Note that the entropy here is
conditioning not only on the state st but also on agent i’s action. Minimizing Eq. 10 gives us:
Theorem 1. The optimal Q-function for agent i that satisfies minimizing KL-divergence in soft RL is
formulated as:

Qi
⇡✓
(s, ai) = log

Z

a�i

exp(Qi
⇡✓
(s, ai, a�i)) da�i . (11)

And the corresponding optimal opponent conditional policy reads:

⇢�i
��i (a�i|s, ai) =

1

Z
exp(Qi

⇡✓
(s, ai, a�i)� Qi

⇡✓
(s, ai)) (12)

Proof. See Appendix C. ⌅
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