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Overview annexes D: Structural failure criteria of wood structures 
 

Introduction 
The developed exact theory is given in the appended publications denoted by D, thus:  

D(1991), D(2008a), D(2008b), D(2010), D(2011), D(2012a) D(2012b) and primary, by the 

partly expired D(2006a), D(2006b). Other relevant derivations and applications are 

mentioned in these publications. The theory in all appended publications was derived by 

T.A.C.M. van der Put as theory of perfect plasticity. Because a complete loading history 

analysis, with gradual increasing plasticity, until collapse is too extended and not necessary 

for ultimate state estimation, the relatively simple limit analysis method can always be 

applied instead. Then, no matter how complex the geometry of a problem, or loading 

condition, is, it is always possible to obtain a realistic value of the collapse load. This basic 

theory is discussed in the next section: D-1.  

 

D-1. Upper and lower bound limit analysis of wood structures  
The ultimate state represents a variational extremum problem and thus is based on small 

geometrical changes (using undeformed dimensions in the equilibrium equations). Because of 

the small changes, the virtual work equations apply. Because the top of a loading curve can 

be reached in many ways, differing an internal equilibrium system from each other, the 

previous loading history is not involved in the determination of the extremum and it is 

possible to use a linear- full plastic loading diagram for limit analysis (as is applied e.g. in 

exact fracture mechanics C(2011b)). In Fig.D-1, a scheme of the loading curve is given with 

a boundary (the elastic limit, depending on loading rate, temperature, etc.) where below the 

behavior can be assumed to be elastic (especially after mechanical conditioning) and where 

above the gradual flow of components at peak stresses and micro-cracking may have a 

similar effect as plastic flow with a hardening history up to the ultimate failure stress. The 

total main plane loading curves due to flow, damage and hardening behavior at any 

deformation rate, temperature, moisture content, loading history etc., up to flow and failure, 

fully can be described by deformation kinetics (see Annex B). When this loading curve is 

followed to a chosen or real ultimate stress point and then unloaded, the elastic and “plastic” 

deformation is known of that limit point. (The “plastic” amount (permanent strain in Fig.D-1 

depends on the past, unknown, loading history at growth, drying, manufacturing, transport 

and pre-testing). 
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Fig.D-1. Loading curve 

On reloading, the curve is elastic up to the limit point and it is possible to regard an elastic –

full plastic description of the loading line according to the dashed line in Fig.D-1 as an 

allowable displacement field in the sense of limit analysis (that needs not to be the real 

occurring displacement for the virtual work equations). Also a reduced stiffness can be 

chosen as done for the Building Codes. 

The virtual work equation, represents the extremum condition that the first variation of the 

potential energy is zero. Thus a small variation of the total potential energy vanishes when 

the structure is in equilibrium. Thus the total work of an equilibrium system is zero for any 

virtual displacement. The virtual work equation thus is based on an equilibrium set and a 

compatible set, which need not, and should not, be related. Thus:  
* * *

i i i i ij ij

A V V

T u dA Fu dV dV + =   ,  (D-1) 

integrated over the whole area A and volume V of the body. iT  and iF are external forces on 

surface and in the body; 
ij  are the stresses, in equilibrium with the external forces, which 

need not to be the real actual occurring stresses. The asterisk is used for the compatible set, to 

emphasize that the two sets are not related, thus are completely independent.  

A valid equilibrium set must satisfy the equilibrium equations:  

0
ji

i

j

F
x


+ =


  (D-2)  

and the equilibrium conditions at the load applications points (as boundary condition).  

Of the compatible set, are the strains 
*

ij  compatible with real or imagined (virtual) 

displacement rate *

iu  of the points of application of the external forces, following the strain 

and displacement rate compatibility equation.  
**

*2
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ij

j i

uu

x x



= +
 

 (D-3)  

Virtual displacements are not real, they can be physically impossible but they must be 

compatible with the geometry of the original structure and they must be small enough so that 

the original geometry is not significantly altered.  

As equilibrium set, also the load increments can be used giving the rate equation:  
* * *

i i i i ij ij

A V V

T u dA Fu dV dV + =   .  (D-4) 

In the linear-full plastic schematization is the plastic zone a line in Fig.D-2, but is a plane in 
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stress space. Plastic flow occurs when the yield function ( ) 0ijf  =  is satisfied. It is 

necessary that:  

 
Fig.D-2 Yield surface and flow rule 

 

( ) 0a c p

ij ij ij  −   ,  (D-5) 

Thus this dot product is always positive and shows an angle 090  , because thermo-

dynamical real work (and real dissipation) has to be positive. Eq.(D-5) only is for all cases 

fulfilled when the vector 
p

ij  is perpendicular to the curve ( ) 0ijf  = , thus is in the direction 

of / ijf   . This is the convexity requirement or normality rule wherefore the principle of 

maximal local energy dissipation applies for the actual stress state, i.e. the projection in 

fig.D-2, of vector 
a

ij  on 
p

ij  is then maximal, higher than such projection of any other critical 

vector. In that case also the zero value of eq.(D-5) is reached for the plastic stress increment. 

Thus for the plastic flow increment then is:  

0p

ij ij  =   (D-6) 

From eq.(D-4) and (D-6) follows, that when the limit load is reached and the deformation 

proceeds under constant load, all stresses remain constant and only plastic, (not elastic) 

increments of strain occur. Because at collapse, eq.(D-4) becomes:  
c c c c c c

i i i i ij ij

A V V

T u dA F u dV dV + =   .  (D-7) 

With 0c c

i iT F= = , and with elastic and plastic parts of strain, 
c ec pc

ij ij ij  = +  is eq.(D-7):  

( ) ( ) 0c c c ec pc c ec

ij ij ij ij ij ij ij

V V V

dV dV dV      = + = =     (D-8) 

because of eq.(D-6), and thus 0c ec

ij ij  = . Thus the elastic strain increment and consequently, 

the elastic stress increment, are zero and all deformation is plastic. Thus the elastic 

characteristic plays no part in the collapse at the limit load.  

Next it is possible to give the proof of the lower and upper bound theorems of limit analysis.  

The lower bound theorem states that, if an equilibrium distribution of stress 
E

ij , covering the 

whole body, can be found, which balances the applied loads and is everywhere below yield 

( ) 0E

ijf   , then the body will not collapse.  

To prove this, assume that it is false, then two collapse equations exist:  
c c c c c c

i i i i ij ij

A V V

T u dA F u dV dV + =    

c c c c E c

i i i i ij ij

A V V

T u dA F u dV dV + =    
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and consequently is, because all deformation is plastic:  

( ) 0c E pc

ij ij ij

V

dV  − = ,  (D-9) 

and because according to eq.(D-5): ( ) 0c E pc

ij ij ij  −   for 
E

ij  below yield, eq.(D-9) cannot be 

true and the lower bound theorem is proved.  

The upper bound criterion states that if a compatible mechanism of plastic deformation is 

found, which satisfies the displacement boundary conditions, then the loads, determined by 

equating the rate, at which the external forces do work, eq.(D-10): 
* *p p

i i i i

A V

T u dA Fu dV+  ,  (D-10) 

to the rate of internal dissipation, eq.(D-11): 
* *( )p p p

ij ij ij

V V

D dV dV  =    (D-11) 

will be either higher or equal to the actual limit load.  

Again, assume the theorem false, and the computed loads to be less than the actual limit load, 

then the following equation should apply:  
* * *p p E p

i i i i ij ij

A V V

T u dA Fu dV dV + =     (D-12) 

with 
E

ij  everywhere below yield. Because iT  and iF  follow from equating eq.(D-10) and 

eq.(11), it follows that:  
* *( ) 0p E p

ij ij ij

V

dV  − =   (D-13) 

However, according to eq.(D-5) 
* *( ) 0p E p

ij ij ij  −   for 
E

ij  below yield, what leads to a 

contradiction and thus to the proof of the upper bound theorem.  

Some corollaries, to be mentioned, following from the lower bound theorem, are, that:  

- Initial stress or deformation have no effect on the plastic limit or collapse load provided the 

geometry is essential unaltered. This is e.g. applied in C(2014).  

- The limit load, computed from a convex yield surface, which circumscribes the actual 

surface, will be an upper bound on the actual limit load. The limit load computed from an 

inscribed surface will be a lower bound of the actual collapse load. This last is  applied in the 

derivations of e.g. D(2008a), by using the, in the von Mises inscribed Tresca polynomial). 

The graphical proof of the lower and upper bound is as follows:  

In fig.D-3 is the plastic strain increment c  normal to the failure surface and is vector l  just 

inside the surface. Index c stands for actual collapse load and index l indicates lower bound.  
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Fig.D-3. Proof of the lower bound theorem 

 

 
Fig.D-4. Proof of the upper bound theorem 

 

According to the virtual work principle is for collapse:  

c c c c
V

F w dV =   

and for a lower bound:  

l c l c
V

F w dV =   

where F is the external force and w the displacement of F. The internal stress is c  with    

as strain increment. The dot product is the product of the strain increment with the 

components of the stress vector in the direction of strain increment. According to fig.D-3 is  

l c c c   
  

thus is a lower bound due to the convexity of the yield function.  

For the proof of the upper bound criterion applies, according to fig.D-4, that collapse must 

have occurred if:  

u u u u
V

F w dV =    

According to the virtual work equation is: the upper bound criterion 

c u c u
V

F w dV =    

The figure shows by projection of u  and c  on u that:  

u u c u      

Thus also u cF F and uF  thus is the upper bound because of the convexity of the yield 

function.  

 

D-2. Derivation of the bearing strength perpendicular to grain of locally 

 loaded timber blocks, D(2008a). 
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The theory of (practical unlimited) triaxial compressive strength is applied for several cases.  

The fundamental derivation is given in D(2008a) (and in the appendix of D(1991)).  

Based on the equilibrium method of plasticity, a stress field can be constructed in the plastic 

region of a specimen which satisfies the equilibrium conditions and boundary conditions and 

nowhere surmounts the failure criterion.  

 

This provides the theoretical explanation of 

the high bearing strengths of locally loaded 

timber blocks what is derived in the 

Appendices of D(2008a). The resulting stress 

of this construction of an ultimate shear- or 

slip line field by the method of characteristics 

can precisely be represented by an analytical 

function of the outer logarithmic spiral slip 

line, which is the exact analytical solution. 

Fig.D-5. Shear direction lines of max. stress  This function in one  variable, can be given in 

 the power law form, leading to a theoretical 

and experimental value of that power of 0.5. This power representation of the stress 

spreading model of the strength increase, by confined dilatation, provides simple rules for the 

code and a simple design method that precisely matches to the data in all circumstances and 

loading cases and explains the apparent contradictory test results of Suenson, the Eurocode, 

the French rules, Graf, Korin, Kollmann and Augustin et al., discussed in the Appendix of 

D(1991), and, as shown before, explains other comparable loading cases of stress spreading 

as e.g. by nails and pin dowel connections, F(2012a,b), D(2008b). The slip-line field also 

provides an upper bound solution, which is as high as the lower bound solution and thus is 

equal to the real solution. As mentioned in the “Discussion of annexes A”, stress 

redistribution at initial failure of the matrix increases the compression stress in the matrix and 

increases the tensile stress in the reinforcement as hardening by stress redistribution, so that, 

by the high triaxial compression strength, matrix failure by compression, only can be in 

shear, thus according to the Tresca criterion.  

The slip line solution is only a lower bound solution when also in the elastic regions, outside 

the plastic slip line region, the stress is low enough, below the ultimate value. This means that 

the ratio L/H should be just high enough to reach the same ultimate load as for longer blocks 

with higher L/H values. For shorter blocks, H of the plastic region should be limited to this 

lowest L/H value to obtain a lower bound solution. A safe method to find a sufficient low H 

for the ultimate state is to follow the spreading depth of the load of about 1.5 to 1. Thus for 

lower lengths L, the height H is limited and the slip line does not reach to the bottom of the 

block in order to have a real elastic state outside the slip lines. For ultimate load at initial 

flow, the St. Venant spreading 1 to 1 of the stresses in the isotropic matrix can be assumed, to 

have sufficient low stresses in the elastic area. This limitation of H depending on L and s is 

inserted in the theoretical formulas, providing a lower bound solution of the slip line 

construction. The theoretical formulas are not very sensitive for the assumed slopes also 

because of the adaptation of the Tresca value of these formulas to the measurements. The 

choice of H simply states a boundary condition for a lower bound solution by the theory. 

Based on theory, a correction is necessary according to: D(2012a): “Restoration of exact 

design for partial compression perpendicular to the grain”. Code rules in the past always were 

based on the exact lower bound equilibrium method, but were replaced the last decennia by 

empirical rules, sometimes based on a few test-specimens without accounting the immense 

amount of data of other investigations. This also happened to the accepted and generally 

applied Eurocode rules given in the Appendix of D(1991). To correct the new incorrect 
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empirical design rules for locally loaded beams and blocks of Eurocode 5, the necessary 

theoretical explanation of these rules and of the applied test data is given in D(2012a). The by 

the coordinator of CIB-W18 given Eurocode rules, based on serviceability have nothing the 

do with the by him added test data. By putting them together a relation is suggested, but the 

tests are separate, full plastic, compression strength tests and the serviceability criterion is a, 

not related, arbitrarily chosen, criterion, not based on any investigation. It is shown in 

D(2012a) that such a criterion is mostly too safe, preventing the possibilities of most 

applications of wood but, in the same time, may be too unsafe for other boundary conditions. 

Instead of this Eurocode rule, the exact spreading rule has to be restored because this strength 

contains a necessary geometric factor as also applies e.g. for fracture mechanics and by 

volume effects of shear- tensile- and embedding strengths. As mentioned in D(2012a), only a 

strength criterion has to apply and it is illegal, against European law, to apply a serviceability 

condition as strength criterion. The European agreement (pact) of not excluding reliable 

European products on national markets by additional serviceability requirements, prevents 

e.g. that a  steel country may exclude building in wood by an additional requirement of 

compressibility equal to steel or that a wood country may prevent building is steel by the 

requirement of providing sufficient compressibility as applies to wood.  

Because safety of people is a governmental issue, sufficient reliability now is necessary by 

European law. This only can be provided by applying exact theory, (the law of nature), which 

always can be applied accordingly to the lower bound equilibrium method of Limit analysis. 

Exact theory, means: derivation according to the scientific method, and verification of the 

derivation by all known published data and by predicting never measured behavior, which 

then has to be verified to be right by controlling test. That is why exact theory is able to 

predict design and never measured behavior with the right calculable reliability.  

The failure data of the coordinator can not be analyzed because information of the tests is  

 
 

lacking. Even the beam-ends specimen form is not known. Probably this was a compression 

test on a specimen in the form of a beam end, what does not say anything on real failure 

modes of beams by combined loading cases. The failure has to be analyzed by the exact 

method and it is necessary to get information about these few tests, (with e.g. photos of the 

failure form), to show any relevance, because the rules have to be followed by whole Europe.   
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Since an extrapolated empirical rule is never identical to the theoretical description, the 

extrapolations are always unacceptably unreliable. This is shown and reported for the new 

rules of the Eurocode 5 to the Eurocode 5 Code-committee but did not pass the Dutch and 

German censorship against theory. Examples of abandoned theoretical approaches, which 

were initially accepted by the former CIB-W18 and Eurocode 5 Committee members are for 

example: E(1990): Stability design, CIB-W18/23-15-2; C(1990): Tension perpendicular, 

CIB-W18/23-10-1; D(1991): Failure criterion + Appendix bearing strength, CIB-W18/24-6-1 

and A(1993): Failure criterion, CIB-W18/26-6-1.  In D(2012a), this replacement of theory by 

unsafe and uneconomical empirical rules is shown for design of locally loaded beams and 

blocks to make necessary corrections possible. Further, the necessary theoretical explanation 

of the applied empirical Eurocode 5 rules is not given and 

is derived in D(2012a). This also was necessary because 

lack of possible correlation of the too limited data on 

which these rules are based. The data were e.g. deliberate 

restricted to only one spreading distance to deny the huge 

spreading effect of Fig.D-6. First in Section 2, the 

necessary derivation of the empirical Eurocode rule, 

Equation 1, of Blass and Gorlacher (2004) is given, 

leading to a new explanation of this empirically applied 

equation; which is based on the derivation of Madsen (see 

Madsen et al. 1982, discussed in Section 2.3 of 

D(2012a)). Next, in Section 3, the necessary theoretical 

analysis of the applied test results is given, followed in 

Appendix A by a retrieval of the earlier proposed; (theory 

based) Code rules which are in accordance with all 

known data and are applied since long in many countries. 

The theoretical derivation of the empirical Madsen 

equation is shown in Section 2 to apply only 

approximately (when extended and adapted) for very thin, 

long bearing blocks. This follows from the explanation of 

the constants, leading to an extended Madsen equation. 

Fig.D-6. Spreading strength   This Madsen equation, thus, cannot be applied as general 

 design and Eurocode rule. In contrast, it is shown by 

Table II of Section 3.1, (given above), that all strengths values of all loading lines of Fig.D-6, 

follow precisely the spreading equation from plasticity theory discussed in D(2008a), and 

D(2006b). This leads to the necessary application of the given, simple (already since 1991 

generally applied) design rules of Appendix A of D(1991), covering not only line 3, 

(following Blass and the Eurocode 5 rule) but all lines 1-7 in Fig.D-6 precisely and covering 

all the different lines of the other investigations as shown in D(1991) for the old Eurocode 

and French rules and for the measurements of Suenson and Graf, given in Kollmann (1984) 

and Korin (1990). Thus, the apparent contrary and totally different empirical results of all 

these different investigations are fully explained even by the simple power law representation 

of the exact theory of e.g. D(2008a, 2008b, 2006b) and C(2000). This theory is based on the 

solution of the continuum mechanics boundary value problem by the method of 

characteristics. It is shown that the exclusion of the knowledge of the spreading effect in 

Eurocode 5 can be highly unsafe. This already occurred for example by measuring high 

embedding strengths on specimens with large nail distances and applying this to the low 

embedding strength structure by small nail distances. The reliable and economical design 

method, based on theory, demanded by European law, thus exists and is given for the first 

time in D(1991) and its Appendix B for locally loaded bearing blocks. For locally loaded 
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beams, design should be based on plasticity theory with the failure criterion for combined 

stresses, given in A(2009). Design rules also exist in technical reports of the Stevin 

laboratory for pin-dowel joints, and in particle board, accounting for the possible very high 

embedding strength. This is common knowledge, already applied for over 30 years, (e.g. by 

the particle board industry). Concluding: 

Based on the plasticity theory the theoretical explanation of the strength data is given 

D(2008), D(2006b). It is shown when the design rules are up to a factor 6 too conservative 

and when too unreliable. It also is shown why the Blassian premise and conclusion of no 

influence of the dimensions and depth of the test specimen on the strength is opposed by all 

other investigations and only applies for the chosen spreading free test specimen dimensions 

of his Eurocode investigation. It further is demonstrated, every 10 years, that the theory 

predicts and precisely explains and fits to all known data and provides a very simple reliable 

design rule for the Eurocode (given in Appendix B of D(2008)). The analysis further shows 

that design rules for bearing blocks don’t apply unconditionally for support stresses on 

beams. This design has to be based on the failure criterion for combined stresses D(2011) 

showing that (except for unwanted early local failure due to under dimensioned bearing 

plates) the shear strength is determining for failure.  

 

D-3. Failure criterion for timber beams loaded in bending compression 

 and shear 
Limit analysis of beams is derived in: D(2010) and in D(1991). Tests demonstrated a volume 

effect leading to a follow-up program, for combined loading,  

 

 

 

 

 

 

 

 

 

 

 Fig. D-7. Loading lines and ultimate bending stress diagram    

on semi-full-scale glulam beams with the theoretically necessary perfect boundary conditions 

of the supports. There always occurred damage through lateral buckling, as follows from the 

cracking sounds during loading and the decreased (lateral) modulus of elasticity after 

unloading, even after the smallest possible lateral displacements and even for the most 

slender beams. The theory of elasticity in Chen and Atsuta (1972) does not show bifurcation 

for the three dimensional lateral buckling case, and the large displacements analysis (third 

order theory) shows a continuous rise in the loading curve (see fig.D-7). This means that the 

top of a loading curve always is due to damage and failure and therefore elastic buckling does 

not exist in praxis for the applied full size structural elements, as confirmed by the tests. 

Stability design thus is a common second order strength 

calculation. The solutions of the second order equilibrium 

equations have to satisfy the failure criterion. This failure 

criterion is therefore essential and as shown in A(2009), 

for statically indeterminate structures, and for combined 

loading, the idealized linear elastic calculation applied for 

failure, as given by the dashed lines in Fig.D-8, is not 

sufficient to describe and predict strength behavior and 
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needs to be replaced by the elastic-plastic calculation (solid lines in Fig.D-8).  

The existing models and proposed design rules of the Eurocode 5 (2004) therefore have to be 

corrected in this way.  

Now 3 different criteria are prescribed in the Eurocode for basically the same strength 

calculation: eq. 6.19, eq. 6.23 and eq. 6.35. This needs to be replaced by one equation of the 

real failure criterion (eq.D-5), which accounts for the elastic-plastic behavior of wood, 

showing unlimited bending and shear plastic flow in compression Fig. D-8 Ultimate stresses 

 and brittle- stress, like behavior for tension.  

 u

2

m u,a u

6M M N 4N / N
1 1

f bh M N 3s 1

 
= = − +  

−  
 

 (D-5) 

The assumption of all existing models for 

combined bending and compression loading, 

that a specific compression strain limit is 

determining for failure is shown to be 

incorrect. For instance, it predicts from the 

compression failure that there is no size effect 

of the strength. The measurements and theory 

show that there always is a size effect at any 

value of s and for any load combination 

because the bending tensile strength is always 

greater than the pure tension strength of the specimen. For this reason, bending tension 

failure always occurs, which leads to the starting point of unlimited flow in compression of 

the modified plasticity approach. The derived failure criterion for combined bending with 

compression is given by eq. (D-5). This equation can be approximated to two straight lines 

(eqs 15 and 16 of D(2010)), providing simple equations for design and for implementation of 

the Code. The derived failure criterion for combined shear with bending and compression is 

given by eq. (9). Because this line will give a cut-off of the ultimate bending-compression 

strength lines, this combined shear strength criterion always has to be checked, which should 

be in the Code. The size effect is lacking throughout the Blass model, giving questionable 

predictions of the strengths and an incorrect form of the interaction curves. The parabolic 

failure criterion of the failure criterion for timber beams, applied for Eurocode 5, is unsafe 

and denies the strong influence of quality and moisture content on the form of the curve 

(given by the parameter s). The derived equation, eq.(21) shows the curvature along the beam 

to be a quadratic function of the bending stress, instead of a linear function, as is the incorrect 

basis of the existing approaches discussed in the previous section. Equation (21) provides a 

simple method for the ultimate second order bending moment estimation. 

In D(2012b) ,the derivation is given of the combined bi-axial bending, compression and shear 

strength of timber beams. As for other materials the elastic–full plastic limit design approach 

applies, which already is shown to precisely explain and predict uniaxial bending strength 

behavior. The derivation is based on choosing the location of the neutral line. This provides 

the stress distribution in the beam cross section in the ultimate state for that case, making it 

possible to calculate the associated ultimate bending moments in both main directions and 

ultimate normal- and shear  

Fig. D-9. Bi-axial bending  + compression. force. The derived general equations are 

 simplified to possible elementary design 

 equations, applicable for building regulation. 

In D(2011) D(2006a), the derivation is given of the shear strength of continuous beams  

As continuation on the theoretical explanation of the bearing strengths of locally loaded 
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blocks, the bracing model is extended and it is shown that, with the right dimensioning, 

always the shear strength is determining. The elastic-plastic beam theory is extended for the 

influence of normal force and shear. Based on this extension the apparent contradictory test 

results of the shear- and bending strengths of beams and continuous beams is explained and 

also the shear and bracing action of beams loaded close to the supports is derived and verified 

by tests. It appears that the theory of elasticity is not able to explain the data and to give the 

right stress distribution in two span beams, underestimating the bearing capacity by a factor 

2/3, while the elastic-plastic beam theory gives a very precise description of the data and the 

determining shear- and bending strengths. The derivations, confirmed by tests, lead to 

requirements for design rules of the Codes.  

Thus the concluding final theory is published in two articles as:  

1. “Failure criterion for timber beams loaded in bending, compression and shear”, were based 

on the, for precise data explanation, necessary elastic-plastic strength calculation a derivation 

is given of the failure criterion for combined bending, compression and shear. This exact 

limit state criterion replaces the unacceptable unsafe criteria of the Eurocode 5, (EN 1995-1-

1:2004)). It is shown that the thus far used principle of limited “flow” in axial compression as 

determining failure criterion, predicting e.g. no influence of a size effect, does not hold. 

Instead it is derived and confirmed by the data that bending tension failure is always 

determining showing the existence of a size effect and correction thus is necessary of the 

existing calculation method. Because the primary importance of the size effect for the 

strengths, also for combined bending- compression, a simple derivation of the size effect 

design equations is given and discussed.  

2. "Derivation of the shear strength of continuous beams,  

The elastic- full plastic loading curve is for all materials sufficient to explain the strength of 

beams and beam columns loaded by bending and compression. This theory is extended for 

the influence of shear stress and it is shown to be the only way to explain the combined 

bending-shear strength from test results. Also the in the past derived bearing strength theory 

is extended here for bracing action. It will be shown for continuous beams as example, that 

besides moment redistribution by plastic flow in bending, a plastic shear flow mechanism 

exists that also is able to cause full moment redistribution. The derivations lead to 

requirements for the design rules and show how the shear stress may reduce the ultimate 

bending capacity. 

 

 

Overview Annexes E: Stability  
 
Introduction 
This publication is part of compilation of work of the author to a total rigorous theory, 

containing the latest developments with goal of a thesis and book. The appended articles are 

given in full as acknowledgment for the original journal publication.  

The developed exact theory is given in the appended publications denoted by E, thus: 

E(1990) and E(2013). Other important derivations and applications are mentioned in these 

publications. The theory in all appended publications was derived by T.A.C.M. van der Put,  

 

Discussion of annexes “E” about the exact stability criterion of wood  
In vdPut E(1990), a general approach is given of the buckling and twist-bend buckling 

problem of symmetrical profiles loaded in bending in the two main directions and at the same 

time in torsion and compression. The model, according to the second order stress theory, 

provided a complete extension of the existing models by accounting for eccentrically lateral 
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loading, for instance by purlin hangers, in combination with bending in the horizontal 

direction (wind loading etc.), with the influence of the initial eccentricities, the warping 

rigidity and the failure criterion. The limit analysis approach was applied for the start of 

lateral buckling, based on second order stress theory. Although lateral bifurcation is not 

possible by 3-dimensional structures, a calculation is possible by first regarding only vertical 

deformation up to the limit state and then superpose stresses by (the start of) horizontal and 

rotational movement, up to the ultimate state, which is controlled by a safe failure criterion 

for the total end-state. For this case, the worst combined failure case is regarded which 

includes possible shear failure. This design approach is e.g. applied in the Dutch building 

Code: TGB since 1990, and was proposed for the Eurocode 5 (according to Appendix 3 of 

E(1990)). Although this proposal was accepted by CIB-W18 and members of the Eurocode 5 

Committee, it could not be implemented because Germany wanted a year respite. And, 

although bifurcation is not possible but only a much lower ultimate state, this respite resulted 

in a sneaky insertion of their inconsistent, unsafe and unreliable quasi eigenvalue rules, in the 

Eurocode 5 draft, showing again that the Eurocode 5 has no meaning any more for reliable 

structural design. Official comment did not reach the international Eurocode Committee and 

could not be published because of a personal censorship. The anti-theory leadership of CIB-

W18, formulated this as follows: “Articles of van der Put can no longer be published at CIB-

W18, because of the many equations of the complete and controllable derivation that are 

given, (as is necessary for exact theory). Regrettably this takes too much paper, and thus too 

much intolerable environmental pollution”. Clearly the importance of the, for the Board 

unreachable, exact new theory is noticed and therefore prohibited, to avoid unmasking of the 

usual published pseudo-science of CIB-W18. The censorship, by judging the scientific  

 

 
Fig. E-1. Compression with bi-axial bending.  

content of an article by a peer review of the abstract (don’t laugh) is effective. For that reason 

is the, in series A to F, developed theory, not generally known and is therefore e-published. 

In D(2012b), is for the first time, the combined, elastic-plastic, compression, shear and 

biaxial bending strength derived, what can not be found in any other publications. Based on 

this, is in E(2013), for the first time, a derivation given of exact stability design rules 

according to limit analysis, applied to timber beam-columns, based on the real bi-axial 

bending strength criterion. The equilibrium equations, according to the second order stress 

theory, are solved with aid of virtual work principle. These design rules provide real and 

calculable reliability as is required according to European pacts and laws. As for other 

materials, the elastic-full plastic limit design approach is applied, which is already known to 

precisely explain and predicted uniaxial bending strength behavior E(1990). The strength 

derivation is based on choosing the location of the neutral line. This provides the stress 

distribution in the beam cross section in the ultimate state for that case, providing the 

possibility to calculate the associated ultimate bending moments in both main directions 

combined with the ultimate normal- and shear forces. The derived general strength and 

equilibrium equations are simplified to possible elementary design equations, applicable for 
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building regulations. However exact theory is not able to pass the CIB-W18 censorship of the 

last decades. This lack of a demand of real theory causes, of course, the lack of knowledge of 

theory, as presented in the Annexes and e.g. of knowledge of elementary standard second 

order theory of buckling. This is not only demonstrated by the unacceptable Eurocode 5 

design rules, but also by thesis work, (see E(2008a,b)) guided, for timber structures, by the 

CIB-W18 -coordinator. Despite of many written comments and discussions during years, it 

could not be prevented that the nonsense dissertation was written, what therefore is discussed 

in E(2008a,b) as warning for the chosen way to ridicule and destroy theory (see also 

D(2010)).  

The given equations of the biaxial bending strength are in accordance with the limit analysis 

method and thus based on elastic-full-plastic behavior. Therefore, the analysis is rigorous and 

the strength prediction realistic and the result has to be applied in the Building Codes to 

provide the by Euro-law prescribed sufficient precise reliability calculation (also for the right 

prediction of behavior of totally new, never occurred and never measured, cases). 

For the highest lower bound solution of biaxial bending strength, is necessary, that the neutral 

axis is a straight line, and that unlimited flow in pure compression occurs. Thus there is 

bending-tension failure and the shear stress is carried in the elastic part of the cross section. 

This is an improvement with respect to the thus far applied, (not unique) old model of Johns, 

and Buchanan, which is based on restricting the ultimate plastic compression strain at failure. 

The derived general expressions in coordinates of the boundary line of the full compression 

area provide 3 cases for design. For simplicity of design, is chosen for separate ultimate shear 

strength and ultimate bending-compression strength equations. The equations contain also the 

solution for uniaxial bending cases, which are already shown to precisely explain and fit data 

by the applied elastic full plastic limit analysis. The value of /t cs f f=  appears to be about 

constant for all determining load combinations of bending with compression, indicating again 

(by the data of Johns and Buchanan) that there always is failure by the ultimate tensile 

strength. A volume effect by stress distribution thus needs not to be regarded as follows from 

the uniaxial data. The volume effect thus now is caused by the volume alone due to 

decreasing quality by volume increase. 

The solutions of the most general equilibrium equations, eq.(54) and eq.(58) of E(2013) are 

exact, complete and universal, applicable for any material and load combination, based on the 

virtual work principle, which also is the basis of the lower and upper bound solutions of limit 

analysis and which always provides an exact solution however complex the equilibrium 

equations are. The equilibrium equations have to satisfy the mentioned biaxial failure 

criterion of the stability problem, which is always a strength problem for full scale timber 

beams as empirically verified in the past.  

 

Overview of Annexes F: Nailed wood products to wood joints  
 
Introduction 
These publications are part of compilation of work of the author to a total theory according to 

the latest developments with possible goal of a thesis or a book. The appended articles are 

given in full as acknowledgment for the original journal publication. The developed exact 

theory is given in the appended 3 publications denoted by “F”, thus: vdPut F(2008), 

F(2012a), and F(2012b). Other important derivations and applications are mentioned in these 

3 publications. The theory in all appended publications was derived by T.A.C.M. van der Put.   

 

F(2008): Explanation of the embedding strength of particle board  

By applying the earlier derived exact theory of the tri-axial embedding strength, D(2006b) 
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based on the exact method of limit analysis of plasticity, and by the derivation of the volume 

effect of the strength, it was possible to fully and precisely explain the empirical relations and 

test results of an extended investigation of the embedding strength of particle board, leading 

to a new insight for the right design rules, (which should be in Eurocode 5).   

The basic theory of the embedding strength is given in: D(2008): “Derivation of the bearing 

strength perpendicular to the grain of locally loaded timber blocks"  

The following is shown:  

- The quasi linear dependence of the embedding strength on the density is explained. The 2 

constants of the line have a constant ratio as explained by the theory.  

- The high embedding strength is explained by confined dilatation due to the spreading effect 

as follows from the theory of plasticity.  

- Splitting has no effect on spreading and therefore the embedding strength did not show an 

influence of the boundary conditions around the dowel (open or closed slit).  

- Besides the plastic mechanism, a brittle splitting mechanism occurs at the dowel, explaining 

the volume effect for small dowels. Only due to this splitting, the succeeding embedment 

flow is possible.  

The advantage of the power law approximation is that the powers of the spreading effect and 

of the volume effect can be summarized and the simple design equation is maintained.  

- Based on the spreading and the volume effect, the empirical equations of the extended 

investigation of Budianto et al. (1977) can exactly be explained by the theoretical 

expressions. For instance, Eq. 18 explains as well the straight part as the curved part of the 

line of Fig. 4 and Eq. 26 explains the change of the slope of the lines of Fig. 5.  

- The highest ultimate embedding strength is due to a local mechanism at the dowel as is 

verified in the TU-Delft investigation.  

- The theory shows the embedding strength of Fig. 6 to be dependent on the b/d ratio and not 

on the a/d ratio of Fig. 3. This also follows from Dutch measurements at constant a/d with 

different b/a ratios. The verification of Eq. 9 or Eq. 27 follows from tests with one dowel 

diameter at different b/d ratios. These tests are lacking in Budianto et al. (1977) and it is 

necessary to adapt the Codes at these points for the right design.  

- The theory and the TU-Delft investigation did show a very high embedding strength for 

nails with a limited working length due to 3-dimensional spreading. 

 

F(2012) Nailed particle board to wood joints 

This is published at the Toronto Conference and given by two articles in one file F(2012):  

1. Explanation of the strength particle board-to-wood joints with nails and staples  

2. Estimation of the Influence of Rows of Nails in Particle Board to Wood Joints  

Sub 1:  

By the earlier derived theory of the embedding strength, based on limit design, it is possible 

to explain the extremely high embedding strength of nailed particle board to wood joints 

leading to a new exact failure equation for the embedding strength as necessary correction for 

design and for the Codes.  

The following is shown:  

- The stress spreading theory explains the high embedding strength for nails with a limited 

working length due to 3-dimensional spreading. The test-results confirm this behavior. 

- The nail head reaction is important for spreading in thickness direction of the nailed particle 

board to wood plate. Stress spreading in thickness direction of the particle board plate can not 

be accounted for head-less nails.  

- To account for this very high embedding strength of nailed particle board to wood joints, an 

iterative adaption for the spreading strength is derived, verified by test data.  

- Also the derivation for a direct analytical estimation method of this high embedding 
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strength is given with the simplification of the formula and the very good fit to data is shown.  

- Based on the local mechanism of fig. 4, the derivation is given of the highest possible 

ultimate embedding strength of particle board, which is verified by the discussed tests.  

Sub 2: 

The exact spreading theory, provides in article 1, the universal law of the embedding strength 

of nailed particle board to wood joints and even in the simplified power law form, this law is 

very precise. The consequence of the theory is that it also provides the right row factor for 

rows of nails, as is discussed in article 2, leading to a necessary application for design and for 

the Building Codes.  

The following is shown:  

- The stress spreading theory explains the high embedding strength for nails and the row 

factor for rows of nails. Test-results confirm this behavior.  

- The test result of the designed critical specimen, which is critical for all different failure 

mechanisms (as combined bending–tension and shear failure of the plate with nail 

withdrawal) at the same time did indeed show the equal possibility of occurrence of all these 

mechanisms indicating the possibility of stress redistribution of the spreading stress and 

therefore no interaction of the failure mechanisms occurred (being all critical at about the 

same time).  

- The derivation of the row factor is given, verified by data and a simplification for the 

Building Regulations is proposed. 

- The necessary extension of the Johansen equation for nail head clamping and for stress 

spreading effect is given with the simplification of the formulas. 

Correction factors of the strength for shorter nails are necessary.  

All conclusions above also apply for nailed wood products to wood joints, when the wood 

products are quasi isotropic or are reinforced transverse to the nail loading direction (as e.g. 

wood, loaded perpendicular to grain or as plywood).  

 


