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Abstract

Measuring our environment in 3D in real-time has never been so close to the
public before. Range cameras, also called 3D cameras, are sensors capable of
providing range and amplitude images in real-time. Each pixel in an amplitude
image gives information of the amount of reflected light, while each pixel in
the range image gives the metric radial distance from the optical center of the
camera to a surface in the field of view. The range image can be directly trans-
formed into a 3D point cloud providing instant 3D information in the field of
view of the sensor.

The focus in the thesis is on computing one 3D point cloud of the scanned
environment from a series of range images. The images are acquired by moving
the range camera slowly through a static indoor environment.

The process to ’stitch’ all the point clouds into one consistent point cloud is
called registration. Existing methods for registration of range images are mostly
based on the following two techniques:

a. Iterative Closest Point (ICP) - two point clouds a and b are registered
iteratively to transform the points of b into the coordinate system of a. The
calculation is complete if the summed distances between the point cloud is min-
imized.

b. Image feature tracking techniques - like Scale Invariant Feature Transform
(SIFT) can find unique feature points from the amplitude image and track them
within a series of images. Direct feature point correspondences between sub-
sequent images are mapped onto the corresponding feature points from the range
image. Three corresponding 3D points not in a plane are required to calculate
the transformation between two point clouds.

The feature tracking techniques reduce the point sets used to compute the trans-
formation to unique point correspondences. Disadvantages: Low registration
accuracy because less points are considered. Sensitive to lightning condition
because it depends on the amplitude image and the image features may not be
reliable because they are not 3D. Advantage: It is fast because it reduces the
points for registration significantly and it provides direct point correspondence.
The ICP algorithm takes all points into account for determining the transform-
ation. Disadvantages: Slow, mainly because all points are considered. False
registration can occur with ICP, if the overlapping parts of the two point clouds
to be registered are not determined accurately. Advantage: Accurate registra-
tion.

Both techniques were not designed to register range images, but are a conveni-
ent basis to tackle the problem of real-time registration of range image series.
The combination of the mentioned techniques proved to be more robust and
adequately fast than a single technique.



In this thesis a novel method is developed specialized to register range image
series. The chosen approach combines the advantages of both current tech-
niques. To reduce the point set to more meaningful points for the registration,
geometric feature points are detected within the 3D point cloud of the range
images. An adapted ICP algorithm is used to register the geometric features
points. The correspondence finding process takes feature characteristics into
account, to increase the robustness to find the correct correspondence.

The geometric features discussed in this thesis are physical edges like edges
of a table, characterized by its 3D shape. The geometric features are detec-
ted in the range image. The feature points have a distinct topology with the
neighboring points, they are either concave or convex. The physical edges are
captured discontinuous if a part of the edge is occluded from the camera per-
spective and continuous if the edge is completely visible. The geometric features
are viewpoint independent to ensure consistency in the location. Viewpoint in-
dependent means the features do not change in 3D with respect to environment
when viewed from a different camera perspective.

The classification method to find the geometric features takes the measurement
errors caused by the camera and/or environment into account. In particular,
the systematic error caused by lens distortion and distance-related error is cor-
rected based on a correction model derived from repeated measurements in a
test setup. The non systematic errors such as random noise is minimized by
median filtering and floating points caused by the effect of discontinuous edges
are detected and removed. Additionally remaining errors are identified in the
registration results.

In the feature point extraction the distance measurement performance of the
range camera is taken into account. This is done by finding the minimal detect-
able feature size for each distance. The minimal detectable feature size is the
minimum required surface size at a certain distance before the range camera
can measure a correct distance value. This is derived from a test setup with
repeated measurements of a 3D Siemens Star.

In the correspondence matching step of the adapted ICP method, edge inform-
ation is included for finding the ”closest” and ”similar” points as corresponding
pairs. This results in more reliable matches and more robust registration.

The quality of the registration result is dependent on the scene properties and
the camera movements. The reflectivity of surfaces in the scene has showed to
be of significant influence in the registration results.
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Nomenclature

abbreviation Description
2D Two dimensional
3D Three dimensional
CCD Charge-coupled device
CMOS Complementary Metal Oxide Semiconductor
ESM Efficient Second-order Minimization
FOV Field of view
IFOV Instantaneous field of view
ICP Iterative Closest Point
KLT Kanade-Lucas-Tomasi Feature tracker
LIDAR Light Detection And Ranging
RANSAC Random Sample Consencus
RMS Root Mean Square
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Chapter 1

Introduction

1.1 Background

Perception of depth is one of the great abilities of the human sensory system.
Depth perception allowed us to describe the world in three dimensions(3D).
Throughout history the concept ’spatial information’ was formed by describ-
ing the physical location of objects and the relationships between the objects.
Different studies have emerged related to acquiring, enhancing and applying spa-
tial information. Surveying, cartography, geodesy and photogrammetry made it
possible to describe, navigate, monitor and analyze every location on the earth
surface. The physical locations of objects described on cartographic maps can
now be modeled in 3D. The electronic/digital era accelerated the developments
in acquisition and processing of 3D information to such an extent, that almost
every surface around us is recorded and represented as 3D models. The 3D
surface data for these models is commonly acquired by laser scanners or pho-
togrammetric system (See figure 1.1). 3D data acquisition and processing is
expensive, mostly done by Geomatics experts and applied in a certain profes-
sional field (Oil industry, Military, Civil services etc). With the arrival of a new
generation of sensors, called range cameras, scanning the environment in 3D has
come closer to the public than ever before.

(a) A laser scanned data set (b) Photogrammetric data model

Figure 1.1: 3D points from real environment
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3D models of the real environment are based on sets of sampled points on object
surfaces, so-called point clouds. The points are expressed in 3D coordinates or
distances in the coordinate system of the measurement instrument. The co-
ordinates describe the physical location of a sample in the environment.

As mentioned before most 3D point clouds of environments are now scanned
by laser scanners and photogrammetric systems:

1. Laser scanner (LIDAR) is an active system based on mainly two principles:

• Time of flight: Distance computed based on physical characteristics of
light: Frequency, amplitude and speed of light.

• Triangulation: Compute the distance based on triangle: moving mirror, a
sensor and light emitter.

Using one of the two principles, the light is emitted in a pattern through the
scene. Together with the knowledge of the scanner’s pose and movement, dis-
tances to points in the scene are measured one by one at high speed (up to
90000 p/s (Faro, 2012)) (See figure 1.1).

2. Photogrammetric system is a passive system:
Depth information is retrieved from two photographs taken from different per-
spectives. With the intrinsic camera parameters known, matching enough cor-
responding points from the two images, the 3D coordinates of points in the
scene and of the camera position can be computed (See figure 1.1).

Both methods do not capture the depth information of a whole scene in an
instantaneous way. But they were also not designed for this capability. The
laser scanner is used to capture large scenes up to distances of several km in
one scan. As the scanned data can contain millions of points, processing the
data is time consuming and expensive. The photogrammetric process is also
time consuming, suffers from correspondence problems and is dependent of light
conditions.

Figure 1.2: Left: Amplitude image. Right: Range image
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A range camera is an active system that measures distances within the field of
view of the camera instantaneously and it measure the strength of the returned
signal, provided in a range and amplitude image with a resolution of 176x144
(See figure 1.2). The range values are the radial distances from the camera
optic center, the amplitude values reflects the strength of the returned signal.
It acquires images at a relative fast rate of 30 frames per second, such that it
can detect real-time movements in the 3D scene. It is designed for small indoor
environments (range : 1-5 meters) with less external light sources. The data
packages are small sized (1MB-2MB) compared to laser scanned data and pho-
tos (Gigabytes).

There are different techniques to determine the distance with range camera.
Two most often seen techniques are:

Structured light: The system projects a pattern of light into the scene, by
measuring the displacment of the specific pattern in the scene the dis-
tances can be computed. For example the X-box Kinect sensor is based
on structured light principle (Scharstein and Szeliski, 2003).

Time of flight (ToF): Distance computed based on physical characteristics
of light. The range camera SR4000 compute distances by measuring the
phase of the returned active light (Lange, 2000). Note that most laser
scanner measure directly the time of flight, while only short range systems
uses the phase to measure distance.

The focus in this thesis is on acquiring and registering 3D point clouds from
real environments with the Swissranger SR4000 ToF camera. Range cameras
compact size, high acquisition rates and low cost label create new possibilities
for different applications. Current research on range camera data can roughly
be divided into two categories:

1. To detect 3D descriptions of moving objects and patterns in real-time:
Objects (Hagebeuker, 2007),moving hands (Ren et al., 2011), moving hu-
mans (Knoop et al., 2006), facial expressions (Böhme et al., 2009). The
camera should then be in a fixed position or it has to track its own position
in order to distinguish its own movements from the dynamic scene.

2. To track 3D object surface and patterns in real-time: Reconstruct camera
own trajectory, 3D static scene reconstruction. The camera should be
moved with care through a static scene.

Currently, many new methods are developed to achieve the tasks mentioned
above. This thesis will contribute to advancements in the second category.

In this thesis a new approach is developed to reconstruct a 3D point clouds
from the range images of the SR4000, inspired by current approaches and the
idea to map an indoor environment real-time.
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1.2 Problem statement

The process from data acquisition, data processing to the application, recon-
struct one 3D point cloud of the scanned environment is evaluated. In order to
fit within the time constraint, this is done with some restrictions and extra focus
on certain topics. The problem description, research questions and objectives is
described in this section.

The small physical size, fast acquisition rate and small data output of the range
camera, make it possible to investigate the whole mapping process:

1. Data acquisition: Scan the object or environment by moving the range
camera.

2. Calibration: Correct the systematic errors present in the data.

3. Filtering: Remove points that are considered not use-able.

4. Registration: The process to align two points clouds.

The range camera is moved by hand through the scene, with the following
assumptions:

• The scene is static: There are no other moving objects.

• The scene is within the limitations of the cameras performance.

The range and amplitude measurement provided by the range camera are in the
form of images. The range image contains for each pixel the radial distance to
a physical surface in the field of view. The amplitude image contains for each
pixel the strength of the returned signal. The errors in the images are described
by systematic and random errors. Random errors have a zero arithmetic mean
for repeated measurements, while systematic errors show a deviation, so-called
bias from the mean. This implies that the systematic errors can be corrected
based on analysis of the repeated measurements in a test set-up. The system-
atic errors are minimized in the calibration process and a part of the random
errors is removed in the filter process. To reconstruct one 3D point cloud from
the scanned scene, the range images are registered together in one coordinate
system, such that it represent the real scene in 3D points.

The registration problem is not new and discussed since 1992, when a successful
algorithm is designed by (Besl and McKay, 1992) to register two 3D point clouds,
the Iterative Closest Point (ICP). The purpose is to find for two corresponding
point sets the best transformation parameters (rotation and translation) that
maps one set of points onto the other. The criteria for the ”best” in ICP al-
gorithm is to minimizes the sum of squared distances between the points in an
iterative process.

6



Since the introduction of the range camera, new adapted registration approaches
have been developed. The approaches can be divided in three classes by means
of their required input:

a The ICP algorithm or variants of it to register the range images. Data input:
Range images

b Detect point correspondences by image feature tracking techniques on the
subsequent amplitude images. Map the point correspondences to the 3D
points in the range image. Use the correspondences to directly solve the
transformation parameters for registering the range images. Data input:
Amplitude images

c A combination of a and b or an algorithm that combines the data input range
and amplitude image for registration. This is popular for range camera,
because it exploits both the available range and amplitude data and covers
the weaknesses of a and b. Data input: Range and amplitude images.

The key issue noticed in method b is that image features are 2D in nature, the
features are derived from the texture information in the 2D image space. The 2D
image is a simplification of the 3D space. Image features are reliable only if the
camera does not translate in 3D, but this does not hold when the camera moves.
The detected image features that are actually defined by their 3D physical shape
like corners of a table or edge of a leaf cannot be tracked correctly (See figure
1.3b). Although there are still 2D features available to track, like an edge of
a poster on a wall that is not described by its 3D physical shape (See figure 1.3a).

(a) Poster on wall (b) A computer case

Figure 1.3: 2D feature and 3D feature

Image features reduce the amount of points considered for registration. Direct
point correspondences from image features solves the transformation paramet-
ers quickly, but it lacks robustness due to the 2D nature of image features. The
idea to find 3D geometric features to assist the registration process has emerged.
Image features could still be used but only the ones that are not 3D physically
related.
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In this thesis I have developed a new approach for registration of range im-
ages by using geometric features. The novel aspect of the method is to extract
geometric features from the range images and use the geometric features to
register the range images in an adapted ICP. The geometric features do not
provide direct point correspondences, therefore the transformation parameters
have to be determined in an iterative way. The method takes as input only
range images.

The method takes the range camera specific performance and error charac-
teristics into account. Because the error is of high influence on the registration
results, all the error sources have to be handled and addressed. In the geometric
feature classification method, camera specific relations derived from a data ana-
lysis related to the noise and resolution is used. The method is thereby adaptive
to the performance of the range camera.

1.3 Research objectives

The main research question:

Is it possible to do continuous registration of range images based on geomet-
ric features with the SR4000 Swiss ranger?

The following sub questions are important related to the mapping process:

1. How to manage the error in range images?

2. What are the geometric features and how to segment them from the range
data?

3. How is the novel method performing relative to a current registration
approach ?

The new registration approach is developed with the following objectives:

• Able to cope with the range camera specific performance.

• Able to produce robust results given a set conditions.

The main goal of the research is to improve the registration process of range
images by a developing a new registration approach based on key elements of
existing methods and knowledge from Geomatics. The chosen approach uses
geometric features to exploit the spatial information available in the range im-
age, this improves the robustness and achieve reasonable speed compared to
existing methods. The method should be adaptive to the range camera per-
formance, by taking the noise behavior and resolution into account.
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1.4 Methodology

The geometric feature registration method developed in this thesis is based
on key advantages of existing approaches: ICP-based and Image feature-based
registration. Extraction of useful geometric features from the range data reduces
the amount of input data for the ICP process. The geometric features are 3D
(viewpoint independent) and there therefore invariant to 3D movement of the
camera. The main steps taken to design the method are as follow:

1. First a literature study of existing calibration, processing to registration
approaches with range camera is performed to gain knowledge of state
of art techniques. Leading to the conclusion that the chosen approach
”Registration of range images with geometric features in an adapted ICP”
is new and promosing.

2. The range data is analyzed for its resolution in 3D by a test setup with a
3D Siemens Star, in which the minimal surface required for the camera to
measure a correct distance is determined. The systematic errors lens dis-
tortion, distance-related error and fixed noise pattern is corrected based
on a correction model. The lens distortion is corrected by a standard
Photogrammetric calibration. The correction model for distance-related
error and fixed noise pattern error is derived from a test setup where re-
peated measurements of a white wall from variable distances is performed.
Remaining random errors: floating edges are detected and removed by ex-
isting techniques and noise is minimized by median filtering.

3. Geometric feature is defined as physical edges visible in the range image
such as an edge of a table. They are viewpoint independent, as these
features do not change in location when viewed from a different perspect-
ive. A classification method is designed to segment the geometric feature
points in the range image taken into account the result of data analysis.

4. Use the set of geometric feature points in an adapted ICP to find the
optimal transformation parameters between two point clouds (range im-
ages). The main difference from normal ICP is the addition of a geometric
feature attribute in the correspondince finding process. Parameter access
to the method allow the possibility to fine-tune the registration.

5. From the registration results the performance of the method is evaluated.
The evaluation leads to suggestions for future improvements.
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1.5 Outline of the thesis

The thesis is organized in six chapters. Following the introduction, in chapter
2 a literature review is presented with state-of-art theory discussed for the
range camera, the calibration and filter process and the existing registration
approaches. In Chapter 3 results of data analysis for two test set-up is given
and the calibration and filtering process of the SR4000 is presented. In Chapter
4 the geometric features are defined and the classification method to segment
geometric feature points is described. In Chapter 5 the geometric feature points
are used in an adapted ICP and the registrations results are evaluated. In
Chapter 6 conclusions are drawn from the registration results, limitations are
identified, the advantages and disadvantages of the method is discussed future
works is proposed.
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Chapter 2

Theory and Literature
review

In this chapter a literature review is presented focused on the state-of-the-art
achievements on ”Continuous 3D mapping with range cameras”. The general
process involves data acquisition, calibration, filtering and application. The goal
of this chapter is to get familiar with the essential background and to identify
the problems arising with the 3D mapping process.

This chapter leads to the conclusions that: 1. More spatial information in range
images can be exploited in the mapping process, 2. The main unsolved errors
are random in nature, 3. Current registration approaches with a single range
camera are not robust enough for consistent real-time 3D mapping. Remarking
that the title of the thesis is ”Continuous registration of range images with geo-
metric features.”, this chapter also underlines the innovation of the thesis w.r.t
existing approaches.

In Figure 2.1 the general mapping process is illustrated. First the theoretical
background of the instrument for data acquisition is explained, then a section
about possible data errors and their handling to improve data quality is presen-
ted. Then different existing methods concerning 3D point cloud registration
will be presented. Finalizing this chapter by concluding the problems of state
currently existing 3D mapping methods. An overview of the state of technology
is presented in this chapter

Figure 2.1: General Mapping Flow Diagram
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2.1 Range camera

The category of sensors that produce images with distance information stored
in each pixel are generally called range cameras. The depth information in the
field of view of the camera is acquired instantaneous in a stream of images.
The acquisition speed is multiple frames per second, implying that real-time
3D information of the scene is retrieved. Different techniques can be used to
determine the distance for each pixel, the type of range camera is usually named
after this technique.

Common used measuring principles are:

• Time-of-flight, based on physical property of light (discussed next section)

• Structured Light, based on stereo vision (Scharstein and Szeliski, 2003)

The type of range camera used in the thesis is a Time-of-flight (ToF) cam-
era, the Swissranger SR4000. The underlying technique, data properties and
functionality the SR4000 is described next.

2.1.1 Swissranger SR4000

The Swissranger SR4000 is a ToF camera (See Figure 2.2). The main character-
istics of the SR4000 are, a field of view (FOV) of 43.6◦ x 34.6◦, image resolution
of 176x144, operating range is 1-5 meter and acquisition speed up to 30 f/s.
The strong points of the range camera are the speed and the instantaneous 3D
scene capturing ability. Complete specification is described in the datasheet
(SR4000-DataSheet, 2011).

Figure 2.2: The Swissranger SR4000

The instantaneous field of view (IFOV) of a single detector (pixel) is not given.
There are two options: 1. The IFOV would be different for each pixel, if the
optic is designed to compensate slant view distortion, meaning the pixels are all
equal in sizes. 2. The IFOV is assumed to be regular, the same for all pixels if
the optic is not designed to compensate slant view distortion. The pixel size is
then dependent of the pixel coordinate.

Time of flight principle

The distance measurement is relying on the physical properties of light. The
phase difference of the modulated light emitted from the sensor to the surface
objects in the field of view and back to the sensor is measured. With the speed
of light given in standard atmospheric conditions together with the measured

12



phase, the distance to the surface object can be derived from the phase differ-
ence. See Figure 2.3 for a schematic overview of the Time of Flight principle. It
should be noted that the principle ”Time of flight” is different for laser altimeter.

Figure 2.3: Time of flight principle (Lange, 2000)

With an array of near-infrared light sources (LEDS) the SR4000 emits a signal
modulated in amplitude, into the field of view. After the signal is reflected back
from a surface, the phase delay between the emitted and returned signal can
be resolved by looking at the modulation. The phase difference is measured in
each pixel within the array image sensor (CCD/CMOS).

The distance is determined as a fraction of one full cycle of the modulated
signal (see relation 2.1), where c is the speed of light and f is the modulation
frequency. The operating range is dependent of the modulation frequency, this
model operates at a modulation frequency of f=30 MHZ, assuming the speed
of light c= 300000000 [m/s], the operating range is then about D=5 meter.

D =
c

2f
(2.1)

Demodulation is achieved by correlating the original modulation signal g(t) with
the returned signal s(t), this procedure is called cross correlation. With t the
real time and τ the delayed time with respect to t. The cross correlation func-
tion is shown in equation 2.2 as c(t) (Lange, 2000).

c(τ) = s(t)⊗ g(t) = lim
T→∞

1

T

∫ −T
2

−T
2

s(t) · g(t+ τ)dt (2.2)

The returned signal s(t) is composed of an offset signal(background noise) and
a sinusoidal modulated signal. The original emitted signal g(t) is sinusoidal as
well. The phase difference is φ. A is the modulation ampltitude. The equations
are given below:

s(t) = 1 +A · cos(ω · t− φ)

g(t) = cos(ω · t)
(2.3)
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The SR4000 evaluates the cross correlation function in 4 fixated phase delays
wτ0 = 0◦,wτ1 = 90◦, wτ2 = 180◦ and wτ3 = 270◦. A schematic of the signal is
illustrated in Figure 2.4 with the relations A, B and φ.

Figure 2.4: Time of flight sampling of returned signal (SR4000Manual, 2011)

φ = atan
c(τ3)− c(τ1)

c(τ0)− c(τ2)

B =
c(τ0) + c(τ1) + c(τ2) + c(τ3)

4

A =

√
[C(τ3)− C(τ1)]2 + [C(τ0)− C(τ2)]2

2

(2.4)

Signal B is the mean of the total incoming light on the sensor, this includes
the background noise and modulated signal. The B signal is used to plot the
intensity image. By high reflective material the offset B indicates whether or
not saturation occurs in the solid state image sensor. The amplitude A is a
direct measure of the accuracy. The phase delay φ is directly proportional to
the target distance D. The distance is computed as follow:

D = L · φ

2 · π
,with L =

c

2 · fm
(2.5)

The L is the non-ambigious operating range of the camera with c the speed of
light and fm the modulation frequency. This method is known as the four steps
method, Lange (2000).

Data properties

The SR4000 provides continuous images up to 30 frames per seconds. The fol-
lowing output can be retrieved:
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1. Amplitude image: Strength of returned signal per pixel.

2. Range image: Spherical radial distance per pixel.

3. XYZ-format: The calibrated spherical distances transformed into Cartesian
coordinates. (only provided by software)

4. Confidence map: Indication of reliability of the measurement for each
pixel. (only provided by software)

In the context of this thesis we use the manufacturer provided calibration as a
reference to compare our custom calibration in Chapter 3.

A summary of the general data specification is given in table 2.1 below:

Absolute accuracy +/- 10 mm
Repeatability central pixels 4 to 7 mm
Repeatability outer pixels 7 to 14 mm

Table 2.1: General data specification

The absolute accuracy is the difference between the mean value and the distri-
bution of the real value, also called the standard deviation or the Root Mean
Squared error (RMS). This value describes the precision of the range camera.
The repeatability is the standard deviation of the noise region present in the
data, the noise increases with increasing distance from the image center.

Integration time

The SR4000 allows access to the integration time, this can enhance the accuracy
performance of the SR4000. The integration time has influence on 3 aspects,
a compromise of the three is eventually needed for a certain setting (See table
2.2).
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Acquisition speed The frame rate at which the images are acquired is
inversely proportional to the integration time. Smal-
ler integration time means:
- Higher frame rate.
- Less movement artifacts from moving objects.
- minimizing the time budget needed for the overall
measurement.

Measurement quality The noise of the measurement is inversely propor-
tional to the integration time: Longer integration
time allows capturing a larger amount of reflected
light, which in turn reduces noise.

Type of measured object - The amount of light reflected from the measured
objects is proportional to their reflectivity ( in the
infrared domain). Thus to reach the same meas-
urement quality (repeatability), a higher integration
time needs to be set for low reflective objects than
for high reflective objects.
- the light intensity decreases with the scare of the
traveled distance. Farther away, a higher integration
time is needed.

Table 2.2: The influence of integration time on measurement quality

The integration time is left on default mode, this means an optimal integra-
tion time is set by the driver software of the camera.

Filters from the camera

Filters are available from the camera’s driver. They help reducing errors to a
certain extend. The following default filters are available:

1. Median filter

2. Convert gray mode: Compensate for the light intensity send out by the
sensor itself.

3. Adaptive Neighborhood Filter: Hardware-implemented noise filter. It re-
duces noise while preserving detail such as edges or small structures.

In this thesis only the default filters are used in the data acquisition process.

2.2 Error and calibration

The range data acquired with range cameras contains error. The difference
between a measured value and the actual value is a quantification of the error.
The error sources can be group into two main categories:
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systematic errors they are predictable and can be corrected based on a re-
lation that is derived from repeated measurements in a fixed test set-up.
They do not have a null arithmetic mean, therefore have a constant bias
with respect to the mean value.

non-systematic error also called random errors. The random errors on
contrary are unpredictable, scattered around the true value. They have a
null arithmetic mean.

A brief summary of the errors present in the data and their possible correction
is given based on various related publications. The focus of the thesis is not on
improving the calibration process, but to understand the errors present in the
range data. Only the calibration methods that are directly applicable based on
the analysis done in chapter 3 is used in the thesis.

2.2.1 Systematic errors

Systematic errors are that have a fixed behavior in measurements repeated in
time. The measured distances show a constant bias with the true distance. The
bias can be modeled to correct the error.

Lens distortion
Lens distortion is caused by the physical interaction of light through a lens.
This is characterize by a radial distortion and a tangential distortion effect. In
Figure 2.5(left) the red line is curved by the lens distortion, but in reality it is
a straight line.

Figure 2.5: Lens distortion illustration: Left distorted. Right undistorted.

Wiggling error, circular distance error, distance-related error
In theory the signal for modulation interferometer is assumed sinusoidal, but if
in reality the signal is not sinusoidal (See Figure 2.6. This will result in system-
atic bias in the computed phase delay and distance.
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(a) Left: Returned sinusoidal signal. Right: Difference with ideal
sinus signal (Fuchs and May, 2007)

(b) Distance deviation (Lindner
et al., 2010)

Figure 2.6: Distance-related error

Amplitude related error
Amplitude related error is caused by nonlinearities of the pixel’s electronic com-
ponents. The arrival of different numbers of photons at a constant distance
results in different distance measurements (Lindner and Kolb, 2007) (See Fig-
ure2.7). The accuracy of the distance measurement relies on the amount of
returned Near Infrared Red active light. This is dependent of the surface IR-
reflectivity and surface orientation. When there is a reasonable signal to noise
ratio, the distance measurement can only be influenced if the signal shape is
distorted. Assume the reflectivity has a systematic influence on the shape of
the signal, such that it produce biased distance measurement. Note the rough-
ness of the surface also shapes the returning signal.

Figure 2.7: Distance deviation due to variable reflectivity of surfaces in the same
plane. On the right side a calibration method is applied in (Lindner and Kolb,
2007) to reduce the effect.

Inhomogeneous image illumination
Depends on the configuration of the LEDS, the optics, and the cameras field of
view. The illumination decreases in radial direction from the center as a result
of two effects (See Figure 2.8 ):

• The inhomogeneous scene illumination through the sensor’s active emit-
ters.

• The vignette effects induced by the sensors optics.
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Note that this error contains contribution of systematic and nonsystematic er-
rors in different proportion.

Figure 2.8: Decreasing illumination in radial direction from the center (May
et al., 2009)

Fixed pattern noise
Fixed pattern noise is a unique error depending of hardware properties (May
et al., 2009):

• Each pixel has an individual characteristic due to an imperfect manufac-
turing process and different material properties in each CMOS gate, which
yields pixel-individual fixed measurement offset.

• The triggering of each pixel depends on the position on the chip and its
distance to the signal generator.

The systematic errors can be corrected by applying a correction model. The
error function is determined from a series of repeated measurements. Such an
error function can correct for several errors.

2.2.2 Random errors

The errors that do not have a fixed behavior in repeated measurements. The
random errors cannot be modeled.

Noise
The noise inherent to the hardware limits the performance of ToF camera. Lange
(2000) subdivided this noise in three classes:

1. Photon shot noise: Describes the statistical Poisson-distributed nature of
the arrival process of photons and the generation process of electron-hole
pairs.

2. Photocharge conversion noise: Includes all noise sources(reset noise, flicker
noise, thermal noise, shot noise of dark current) that disturb the ”optical”
information in the process chain of converting the optically generated elec-
tron hole pairs into an analogous output signal. They all increase with
temperature.
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3. Quantization noise: Caused in the analog-to-digital conversion.

Figure 2.9: Noise illustration

Multipath
A signal not directly reflected back to the sensor give a false distance measure-
ment. Typically this is caused by multiple subsequent reflections from a concave
area, e.g a corner(See Figure 2.10).

Figure 2.10: Multipath illustration

Mixed pixel or floating pixel
The footprint of the reflected signal is an area consisting of surface at different
distances (See Figure 2.11).

Figure 2.11: Floating or mixed pixel illustration
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Saturated pixel
The amplitude of the signal is too high or low caused by either:

1. The objects is out of range requirement (1- 5 meters)

2. Too much incoming light caused by external light sources

3. High reflective property of the objects surface.

Internal scattering
Artifacts created by multiple internal reflection of the received signal occurring
between the camera lens and the image sensor. This occurs when the weak sig-
nal from far objects is affected by the strong scattering signal from foreground
objects.

Mixed pixel and saturated pixels are caused under specific conditions. Although
it cannot be corrected globally, but it can be removed given the conditions the
error is detectable.

Also explained by Lange (2000) the background illumination(external light sources)
influences the accuracy. Optical filter that only transmit the spectrum of mod-
ulated light is applied to reduce the background illumination. The closer the
distance to the object, the more ”active” emitted light is returning to the sensor,
thus increasing the accuracy.

2.2.3 Calibration techniques

In Zhang (2000) and in Heikkila and Silven (1997) a calibration procedure for
determining lens distortion parameters and interior orientation parameters is
explained. The calibration test set-up only requires a camera and a grid pat-
terned surface like a chessboard with known geometry. The procedure is always
a closed form solution for determining the interior and distortion parameters of
the camera followed by a nonlinear refinement.

In Kahlmann et al. (2006) the accuracy of the distance measurements is in-
vestigated. In the test-setup accurate distance tracking devices were used to
obtain a ground truth. The influence of different integration time settings and
different reflectivity was tested. The final distance correction model is based
on a look-up table for different integration times. The bias to the ground truth
was estimated by linear and cosine functions, but the results were not better
than the look-up table. The look-up table was based on measurements of one
central pixel. In an ideal case the distance calibration should be done for each
individual pixel, as each pixel can be seen as an individual sensor. An altern-
ative way is to approximate a Fixed Pattern Noise matrix by measuring a flat
wall, but take into account that this is done for one fixed integration time.

In Lindner and Kolb (2006) a distance calibration for the wiggling error and
fixed pattern noise developed. By measuring a flat surface with a grid pattern
(chessboard) two main calibration steps were taken. First a global distance ad-
justment for the entire image is applied by using a cubic B-spline fit to account
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for the global error, secondly a per-pixel distance calibration is applied after the
global correction. Further attempt has been made in Lindner et al. (2008) to
improve the distance accuracy by enhanced demodulation schemes. But the ad-
vantages were not clear compared to the constant or linear per pixel adjustment
of the original demodulation scheme. In Lindner et al. (2010) the amplitude
related error is investigated more in depth. The calibration procedure involves
planar chessboard with different levels of reflectivity. The approach provides a
significant improvement in correction of the amplitude related error.

In the publication Fuchs and May (2007) and Fuchs and Hirzinger (2008) a
calibration procedure using distance and amplitude measurements is developed.
Done in a test set-up with an external positioning system (robot-arm). First
a number of amplitude and depth images of a chessboard is taken for intrinsic
camera calibration. Second the images are used to create a depth correction
model taken into account the wiggling error, amplitude error and fixed pattern
noise. This method has shown to provide significant data improvement.

In recent studies different calibration approaches have been suggested to correct
the systematic errors. In these approaches the correction models are always de-
pendent of quantities that can be measured or computed.

It can be concluded that for most of the systematic errors, a calibration is
available. To correct the errors, a measurement set-up is configured. In table
2.3 below a summary of the errors and the possible corrections is given.
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Systematic error Correction model
Lens distortion Correction: Calibrated by a photogrammetric pro-

cess, by which a set of camera parameters that de-
scribe the mapping between 3D object coordinates
and 2D image coordinates are determined. There are
different closed-form solutions and nonlinear minim-
ization solutions for the calibration process. In the
thesis a calibration process is used as described in
Heikkila and Silven (1997).

Distance related error Correction: Performing repeated measurements of
a white plane from different distances to the plane
to determine the deviations to a best fitting plane.
Model the distance related error.

Amplitude related error Correction: Performing repeated measurements of a
plane with different reflectivity properties. Model
the Amplitude related error.

Inhomogeneous lightning Correction: This type of error cannot be modeled
seperately from the other errors in the repeated
measurements, but can be seen in the distance re-
lated error.

Fixed pattern noise Correction: Performing repeated measurements of a
white plane. The error is included per pixel in the
deviations to a best fitting plane.

Random error Correction
Noise Correction: All can be reduced or eliminated by

signal processing techniques or cooling except the
photon shot noise. Photon noise cannot be sup-
pressed and is the theoretical limitation of all photo
detectors. Lange (2000)

Multipath Cannot be corrected
Mixed pixel Can be detected but not corrected
Saturated pixel Can be detected but not corrected
Internal scattering Cannot be corrected

Table 2.3: Summary of errors

Implemented calibration techniques
In the thesis the systematic errors caused by lens distortion, distance-related,
fixed pattern noise and the non-systematic ”mixed pixel” error and noise is
handled.

The systematic error can be corrected based on an correction model (discussed
in chapter 3). The lens distortion is corrected with a photogrammetric calib-
ration process. For the distance related error and fixed pattern noise error a
measurement test set-up is created to model the error and create a correction
model.

The non-systematic error cannot be corrected, but can be detected and min-
imized. Removing noise involves a certain smoothing procedure applied to the
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dataset. The most reliable method mentioned in literature is the median filter.
The median filter exhibits the benefit to be edge preserving, which is important
in geometric 3D data. The mixed pixels can be detected based on local angle
technique (May et al., 2009) or local point distribution technique (Rusu and
Cousins, 2011) and removed.

2.3 Registration approaches

In this section the registration problem is explained and the literature is re-
viewed. State of the art techniques are discussed and a novel approach is pro-
posed ”Registration of range images based on geometric features”.

Figure 2.12: Registration problem

The registration problem is described as follow (See Figure 2.12): There are
two 3D point sets describing tro overlapping parts of the same surface. Each
set of points is described in its own (sensor) coordinate system. The objective
is to transform (rotation and translation) one set of points into the coordinate
system of the other set of points, such that the combined set of points describes
the scene a signle coordinate system in the same coordinate system. The two
sets of points are not exactly corresponding, meaning the points are distributed
differently, but describe the same surface area. If the 2 sets of points were ex-
actly corresponding, the absolute distance between the two sets of points after
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transformation would be zero. In our case the two set of points are scanned by
a sensor system, the point density is determined by the resolution of the sensor
system.

The main problems in registration are the following:

• How to determine the transformation?

• How to verify the transformation is correct?

• How to determine the points representing the same surface, if both point
clouds contain some number of sample points on different surfaces?

The registration problem is a long discussed problem in computer vision and
mathematics, key developments found in literature are described in the follow-
ing sections in chronological order.

2.3.1 Iterative closes point: ICP

In Besl and McKay (1992), a well-known general algorithm to register two 3D
shapes is developed. To register the data shape with N points to a model shape
with X primitives, the optimal rotation and translation is estimated by minim-
izing the distance between the shapes. Assume the data shape is measured in
a sensor coordinate system. With X primitives is meant that the model shape
can be a set of points, lines, curves, triangles, parametric surfaces described in
a model coordinate system.

The ICP algorithm is stated as:

a Compute the closest point in the model for each point in the data shape.

b Using the corresponding closest points, compute the transformation paramet-
ers for registration using Singular Value Decomposition (SVD) or Qua-
ternion’s.

c Apply the registration, transform the data shape using the transformation
parameters

d Do the steps a-c again with the latest transformed data shape, stop the iter-
ation when the change in mean squared distance between model and data
shape is below a chosen threshold.

The shortcoming of the standard ICP algorithm are:

• Sensitive to outliers.

• Time consuming because all points considered

• Initial alignment of the two shape is needed.

• The data shape is assumed to overlap completely with the model shape.
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• It may not converge to the desired global minimum, but find a non-optimal
local minimum.

• Does not work when there is no orientable surface in the scene, for ex-
ample only a flat wall does not work.

2.3.2 Efficient ICP

After the ICP algorithm of Besl and McKay (1992), many variants have been
proposed to improve different phases of the ICP algorithm. Rusinkiewicz and
Levoy (2001) give a review of different variants and evaluated on their running
time to achieve an correct registration (alignment). From this comparison the
best variants for the following six stages of the ICP algorithm is described here:

1. Selection of some point set of both model and data set:
Random sampling for selecting point sets

2. Matching the points:
Projection-based algorithm to generate point correspondences

3. Weighting the corresponding point pairs:
Constant weighting of the point pairs

4. Rejection certain pair of points:
Distance threshold for rejecting pairs

5. Assign error metric based on point pairs:
Point-to-plane-error metric

6. Minimize the error metric:
Standard ”Select-match-minimize ICP iteration”

The combination of the best variants of ICP has delivered a refined version of
ICP where the following problems are minimized:

• Non-overlapping area is minimized by distance threshold.

• Not all points are considered, results in data reduction.

• Point-to-plane metric is evaluated to converge fastest.

2.3.3 Registration approaches with range camera

Next to the 3D registration problem, 2D image registration is researched thor-
oughly in computer vision to compute 3D models from several 2D images. For
the large 3D point clouds acquired from aerial laser scanner or terrestrial laser
scanner, the registration process is done by using control points (known co-
ordinates) in the scanned area. The ICP is applied afterwards to refine the
registration, this is often a manual process and the duration of the process was
not an issue. The use of range camera for real-time mapping an environment
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introduced some specific challenges to the registration problem.

The challenges can be summarized in the following points:

1. To enable real-time mapping, the registration approach should perform at
real-time speed.

2. The registration approach should be robust and fully automatic.

3. Having no additional sensors or control points, the position of the scan-
ner(camera) is estimated solely based on the range images.

Since the introduction of the range camera novel registration approaches spe-
cific for real-time mapping have emerged. In robot navigation, Simultaneous
Localization And Mapping (SLAM) has become an important topic. SLAM en-
ables a robot to map the 3D environment and to determine the robot (camera)
position in real-time with respect to the environment (odometry). In Davison
(2003) it is described that a robot should be able to navigate autonomously
with a range camera in an indoor environment without additional sensors. A
summary of the recent approaches developed for 3D mapping using only a ToF
camera is found in May et al. (2009). Two new approaches additional to the
classical ICP method are discussed: The image feature based registration and
the range-amplitude combined approach.

Image feature based registration
Point correspondences are found based on image feature tracking between sub-
sequent amplitude image. Two well-known image feature tracking techniques
can be used: Scale Invariant Feature Tracker (SIFT) and the Kanade-Lucas-
Tomasi Feature Tracker KLT. The point correspondences found in image space
are then applied to the 3D points from range image, taking into account that
those 3D points may be mixed pixels or outliers. The 6 transformation paramet-
ers can be directly calculated, if at least three correct corresponding 3D point
pairs are available.

The image feature approach has the following key points:

• It is less computationally heavy than the ICP approach.

• Image feature tracking techniques depend on the amplitude image, which
is sensitive to external light sources and reflectivity of surfaces.

• Does not work when there is no significant texture information.

• Can only give reliable 2D features. 2D images are projections of the
3D scene, because of that KLT and SIFT are dependent on the camera
orientation. 3D features are not reliably tracked.

Range and Amplitude image combined registration approach
In Malis (2007) is a Efficient Second-order Minimization(ESM) method is de-
scribed to find an optimal transformation between two subsequent data sets. It
is implemented to utilize both amplitude and range images.

In Henry et al. (2010) a combined approach using image features (SIFT) and
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3D shape alignment (ICP) is used for the registration.

It is shown in both cases that by applying both range and amplitude images,
the robustness of the registration approach is increased.

The three main registration approaches are summarized in table 2.4 below:

ICP-based High computational cost. Very sensitive to non over-
lapping parts, that has highly variable depth struc-
ture. Shows most accurate registration results.

Image Feature based Low computational cost. No large overlap between
images is required, but distinct image features. Re-
gistration result is of lower in accuracy compared to
ICP approach, because it is based on a small subset
of points (Image features). The registration is likely
to be distorted by depth errors. Result depends on
amount of texture in amplitude, which is relative low
in range camera.

Combined approach Good registration, but is less accurate as the ICP ap-
proach, mainly because of sparse and possible wrong
tracked 2D features.

Table 2.4: Table

The three registration methods are a good representation of the current avail-
able approaches. By combining the ICP and Image Feature based methods a
more robust and efficient approach can be developed. Now that the majority
of registration approaches has been discussed, the following concluding points
form my motivation to develop a novel approach in this thesis:

1. Accuracy: ICP-based method is the best algorithm in terms of accurate
transformation. It depends on the point distribution and amount of noise.

2. Robustness: Combining ICP-based and Image Feature-based methods
gives reasonable robustness. It fails in cases when the image feature track-
ing is not able to find reliable 2D features.

3. Running time: Image Feature-based methods is fast, because of the re-
duced data set of image features and the point correspondence informa-
tion.

From these points the following idea emerged:
The ignored problem in using image features techniques for the registration
problem is that image features are 2D. The registration problem is 3D but im-
age features are 2D in nature. More strictly saying 2D features stays the same
in 2D space, and the 2D image is a projection of the 3D scene. Meaning the
2D image features can be tracked correctly, if the camera is only rotating and
not changing in position (fixed 3D coordinates). The image features cannot
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be tracked correctly if the camera is translating in 3D, because of the orienta-
tion of 3D physical objects changes with camera perspective. The problem can
be ignored in image application, because it is not a 3D problem. But in the
registration process it cannot be ignored. Currently the false 2D features are
filtered by statistical methods combining the knowledge of the corresponding
3D coordinates.

It is shown in literature that image features techniques improved the speed
and robustness of the general registration process. Having discussed the ig-
nored problem of using 2D features in the 3D registration problem, the idea to
use 3D features to be detected from the range image has emerged. The chosen
approach developed in this thesis is based on the idea to detect 3D geometric fea-
tures in the 3D point cloud from the range image, which is 3D invariant. Using
these geometric features in an adapted ICP will improve the overall registration
process by maintaining a speed similar to the combined ICP-ImageFeature ap-
proach but with increased robustness.

Geometric feature detection techniques
In Lo and Siebert (2009) a method 2.5D SIFT is developed based on the image
feature tracking techniques Scale Invariant Feature Transform (SIFT). It finds
geometric features from range images in similar way as SIFT. Concluding that
2.5D SIFT produce more reliable features matches than SIFT, but the principle
is based on SIFT, which is not designed to deal with 3D data.

In Novatnack and Nishino (2008) a method to find scale dependent geomet-
ric features is described. It gives a scale dependent/invariant local 3D shape
descriptor to the range image. For the registration the correspondences is de-
termined based on the similarity of the average angle between corresponding
normals. RanSAC is used to determine the best transformation that maximizes
the area of overlap between two 3D point sets. Random sampling is performed
from the coarsest scale to the finest scale, because in each scale different geo-
metric features can be found. With condition that both range images have the
same scale, only one successful case was demonstrated.

Attempts to classify 3D geometric features in range images have been made.
But none where designed with the goal ”Real-time mapping with the range
camera”. In this thesis a new method to do the registration of range images
with geometric features is designed. The method is described in chapter 4.

2.4 Summary and conclusion

Summarizing the key points of the consulted literature related to ”Real-time
3D mapping with range cameras”, with topics related to the data acquisition,
calibration, filtering and registration.

Calibration and filtering process
In the calibration process the errors are identified and corrected. The errors are
systematic or random of nature.
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• Systematic errors in the range data can be minimized by modeling the
error.

• Non-systematic error cannot be corrected by modeling the error as they
appear ’random’. However some can be detected locally by measurable
quantities.

The systematic error sources have to be corrected to give more reliable meas-
urements. In chapter 3 a test set-up is made to correct the systematic errors:
distance-related error and fixed noise pattern error. The non-systematic er-
rors noise is minimized by median filtering and the mixed pixel is detected and
removed based on local angle technique (May et al., 2009) and local point dis-
tribution technique (Rusu and Cousins, 2011).

Registration process
In the registration process the 3D point clouds from range images are sub-
sequently mapped over each other, resulting in one 3D point cloud such that it
represents the scanned scene.

• The approach is using a combination of an adapted ICP and image feature
correspondence tracking is to be most robust to data errors and efficient
in time.

• The image feature tracking detects 2D features that may be 3D in nature.
This results in wrong feature correspondences.

• 3D geometric features are not yet used in the registration process, but
have the potential to improve the process.

In efficient ICP methods all 3D points are considered equal in importance and
used to find the correct transformation parameters in an iterative way. The im-
age feature tracking technique needs only 3 point correspondences to solve the
transformation parameters, if the 3 points are correct. The combination of im-
age feature tracking and ICP as an approach improves the robustness and speed
of the registration. Image features are high level information entities providing
direct point correspondences in the 2D image space, but they are not able to
distinguish a 3D feature from a 2D feature. This give rise to the idea to use 3D
geometric features for improving the general registration problem with range
camera’s. The 3D geometric feature points are segmented from the 3D point
cloud of the range image.

Geometric feature points do not give unique point correspondences between
subsequent images like in the Image-feature tracking approach. Therefore it
uses an adapted ICP method, to determine the optimal transformation from
the segmented subset of 3D point clouds, given by the 3D geometric image
features
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Chapter 3

Calibration and 3D
resolution analysis

In this chapter errors specific to the swissranger SR-4000 are investigated. As
explained in the literature review in chapter 2, the systematic errors can be
corrected. The errors ”lens-distortion”, ”distance-related” and ”fixed noise pat-
tern” are corrected in this chapter. The errors are contained in the distance
values, measured for each pixel in the range image. By modeling the deviation
between the acquired distance and an assumed ’true’ distance, a correction
model is created for each systematic error. The systematic errors are modeled
in two measurement experiments.

First a common photogrammetric calibration process is applied to correct the
lens distortion. This is done in a test-setup by taking images of a chessboard
from different perspectives. Second a test-setup is made to correct the system-
atic distance-related and fixed noise pattern error in the measured distances of
the range image. Repeated measurements of a flat wall are taken from different
distances to the wall. A correction model for the systematic errors is made
based on the analysis of the measurements.

Non-systematic errors cannot be modeled, but they can be minimized by median
filtering. Mixed pixels can be detected and removed by local angular filtering.

The 3D radial resolution analysis is to measure the ability of the range camera
to give correct distance measurements in relation to the object surface size. This
is necessary because the 2D standard resolution does not say anything about
depth resolution. In the 2.5D range image the Z-value may be incorrect for
example at a mixed pixel. A wrong distance that occurs at the edges, which
can be detected and removed. It is important to know the performance of the
range camera in the 3D dimensions: At what distance and at what size of ob-
ject surface area can it measure a correct distance value. A third test-setup
is made to measure a cut-out Siemens star at different distances. Analysis of
the measurements described the ”minimal detectable feature size” as function
of the distance.
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3.1 Lens distortion correction

Lens distortion is caused by the physical interaction of light through a medium
in the shape of a lens. There are mainly two effects:

1. The circular effects are caused by the circular shape of a lens. In Figure
3.1 the lens effect is clearly visible.

2. ”de-centering effect” is caused by manufacturing error, where the exact
mounting of the lens is not at the center of the image.

Figure 3.1: Left:Lens distorted. Right: Lens distortion corrected

The lens distortions is corrected by a photogrammetric calibration process, in
which the 3D object space is related to the 2D image space taking into account
the lens distortion (See figure 3.2).

Figure 3.2: Object space and image space (Khoshelham, 2011)

The relation between the 3D coordinates of object space and the 2D coordinates
in the image space is described in the collinearity equation (Khoshelham, 2011).
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x− x0 + ∆x = −f × m11(X −Xo) +m12(Y − Yo) +m13(Z − Zo)

m31(X −Xo) +m32(Y − Yo) +m33(Z − Zo)

y − y0 + ∆y = −f × m21(X −Xo) +m22(Y − Yo) +m23(Z − Zo)

m31(X −Xo) +m32(Y − Yo) +m33(Z − Zo)

(3.1)

Here x and y are the image space pixel coordinates. The x0 and y0 are the
principal point (the center coordinates of the image coordinate system). The
capitalized X Y Z are the corresponding 3D object space coordinates, with XC

YC ZC the translation to image space coordinate system. The focal length f
is expressed in pixel units, the m contains all the three rotational parameters
φ,ω and κ. The distortion of lens is corrected by the terms ∆x and ∆y , they
describe the radial and de-centering effect.

∆x = ∆xr + ∆xd

∆y = ∆yr + ∆yd
(3.2)

Radial effect:

∆xr = x̄
∆r

r
, where x̄ = (x− x0)

∆xr = x̄
∆r

r
, where x̄ = (x− x0)

∆r = k1r + k2r
3 + k3r

5 + k4r
7

(3.3)

De-centering effect:

∆xd = P1(r2 + 2x̄2) + 2P2x̄ȳ

∆yd = P2(r2 + 2ȳ2) + 2P1x̄ȳ
(3.4)

In the photogrammetric calibration process, the lens distortions parameters are
estimated from a set of measurements of a chess board from different perspect-
ives. The calibration procedure is done by using a Matlab calibration toolbox,
which is similar to the work of Heikkila and Silven (1997) and Zhang (2000). The
set of measurements consist of images of a chessboard with known geometry from
different perspectives. Looking at the collinearity equations described earlier,
there are in total 11 unknowns to be estimated: 3 rotations, 3 translations, 1
focal length, k1 , k2, P1, P2. The main focus is to get the focal length in pixels
and the lens distortion parameters. It is assumed that the lens distortion can
be modeled by k1, k2, P1, P2. Two equations and 11 unknowns means at least
6 tie-points with known coordinates in 2D image space and 3D object space is
required. To model the lens distortion as accurate as possible, measurements
from different perspectives are taken.

3.1.1 Result lens distortion calibration

The following focal length, principal point location and lens distortion paramet-
ers are estimated from 18 sequenced images of a chessboard from 18 different
perspectives.

With a pixel error in column and row = [ 0.14401 0.15657]
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Focal length = 249.4446 [pixels]

k1 = 0.8472 k2 = 2.0688 P1 = 0.0072 P2 = -0.0044

In Figure 3.3 two sample images of the chessboard is shown. The tie-points
with known coordinates in image coordinates and object coordinates are the
corner locations of the black and white squares in the chessboard. For every im-
age in total 9x7=63 corners are known, in both image space and objects space.
The calibration process to solve the lens distortion parameters is done with 63
points for each of the 18 different perspectives.

Figure 3.3: 2 sample images from the 18 images used

In Figure 3.4 is shown the pixel error per point detected in the chessboard im-
ages. The respective error in pixel units is given. It can be concluded that the
precision is at sub-pixel level.

Figure 3.4: The error of pixels in x and y

The exterior camera orientation parameters are retrieved along the calibration
process, that is the camera position with respect to the chessboard. See Figure
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3.5.

Figure 3.5: The camera position w.r.t to images

The result after calibration is clearly visible comparing Figure 3.6 and Figure
3.3.

Figure 3.6: The calibrated 2 sample images

Note that the lens distortion exists only in the image plane. After estimation of
the lens distortion parameters the range image can be transformed into to 3D
coordinates, with the X and Y coordinates corrected for lens distortion. The
range image covers a field of view (FOV) 43◦x34◦ (See Figure ??). Each value in
the range image represent the spherical radial distance between the lens optical
center and the sampled point of object surface. To transform the radial distance
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to X, Y , and Z, the following relations are used.

xundistorted =
X

Z

yundistorted =
Y

Z
Z = Rcosφ

(3.5)

The xundistorted and yundistorted are related to X and Y through a normaliza-
tion with Z. Given the radial distance for each pixel, the X, Y , and Z can be
computed if the φ is known for each pixel coordinate. As discussed in Chapter
2 section 2.1.1, depending on the optic design the instantaneous field of view
(IFOV) is constant for all pixels or the pixel size is constant for all pixels. Be-
cause the optic design is not clear from literature, it is assumed that the IFOV
is constant for each pixel. The depth calibration in the next chapter will take
the possible distortions into account. A fixed IFOV means that the angles are
constant for each pixel. With a FOV of 43◦x34◦ over 176x144 pixels, the fixed
angles are the α = 43◦

176 and β = 34◦

144 . The φ can be calculated for each pixel
(row,column). Because the angle φ for each pixel can be computed, if α and β
is known for each pixel (see Figure 3.7). The spatial resolution (pixel size and
shape) is then dependent of pixel location.

(a) Spherical (b) Field of view of SR4000

Figure 3.7: The fixed angle φ related to the fixed regular sensor array

The resulting 3D coordinates are corrected for lens distortions. In the next sec-
tion the Z-value is analyzed and corrected for errors.
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3.2 Depth distortion calibration

Here we will describe how to deal with the systematic error in the measured
distance values of the range image. There exist an error in the range image
not covered by the conventional photogrammetric calibration process, which
in this case only accounts for the distortions in the 2D image space by the
lens effect. The distance measured in the range image contains systematic and
non-systematic errors, discussed in Chapter 2. To simplify the case only the
transformed Z-value from the range image is analyzed and corrected for the sys-
tematic error. In this thesis a test set-up is made to account for the following
two systematic errors:

1. Distance-related error.
2. Fixed pattern noise error

3.2.1 Distance-related error

(a) Test Setup (b) Points of scanned wall in X-Z plane

Figure 3.8: Test Configuration

In the test-setup a flat wall is measured from variable distances covering a large
part of operating range of the camera. Test set-up shown in figure 3.9. 10
measurements are made from variable distances to the wall, with the distance
interval of 10 cm from 1 meter to 3.5 meters. In total 250 range images were
made by the range camera fixed on a tripod. Assume the wall is perfect flat. By
fitting a plane through the measured point cloud and remove the fitted plane
from the measured values. The deviations from the plane show a systematic be-
havior of the error present in the measurements, they are most probably caused
by the distance-related error and fixed noise pattern error. The measurements
are of a white wall, showing no variability in reflectivity, the error caused by
variable reflectivity ”amplitude-related error” is not considered here.
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(a) XYZ measured values of wall

(b) XYZ fitted plane

(c) Deviation from plane

Figure 3.9: Plane deviations per pixel
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A trend is existing in the deviations, the pixels in the middle tend to be closer to
the camera than the pixels on the outer boundary (See Figure 3.10). This effect
is accounted in the so-called fixed pattern noise error. The plane deviations with
increasing distance to the wall is shown in Figure 3.10 as a plot of the ”Standard
deviation (RMS) of the plane deviations” versus ”the distance to wall”.

Figure 3.10: Standard Deviation of the Error versus distance to wall

The RMS is increasing with the distance to the wall. This is the noise behavior
of the range camera. It is a limitation of the camera that cannot be corrected
systematically. However the distance-related error is visible by its sinusoidal or
wave-like form, this trend in the noise can be corrected.

(a) STD (b) Linear detrended STD

Figure 3.11: Linear detrend the standard deviation

The distance-related error can be minimized globally, because it is consistent
for all pixels. First the noise behavior is linear detrended see Figure 3.11.
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(a) Linear detrended STD (b) Wiggling corrected STD

Figure 3.12: Correction for the wiggling error

Then a Fourier approximation of the curve is applied. See Figure 3.12 after
removing the fitted trend, the remaining error does not show the sinusoidal ef-
fect anymore. An alternative is to make an look-up table, to correct for the
distortion. The correction model is the fitted curve as function of the Z value.

Edistance−related(Z) = a0 +

9∑
i=1

a1 cos(
2πZ1

i−1
2

P
) + sin(

2πZ1
i−1
2

P
) (3.6)

The sinusoidal behavior is removed from the noise, the correction improved the
noise model accuracy from 0.006 meter to a 0.001 meter.

3.2.2 Fixed pattern noise

(a) Deviation per measurement (b) Average deviation

(c) Deviation per measurement (d) Average deviation

Figure 3.13: Pixel dependent behavior of plane deviations

The different plane deviation behavior related to the pixel position (row, column)
is part of the fixed pattern noise error. In Figure 3.13, the average deviations
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from plane of a center pixel and an outer pixel is shown. The pixels in the center
tend to deviate negative from the plane, they appear to be closer to the camera.
The pixels on the outer boundary have depth values greater than in the center.
The trend in deviation of the specific pixel is shown in Figures 3.14a and 3.14c

The fixed pattern noise (FPN) error is dependent of pixel. The error is accoun-
ted per pixel by a linear fit. The equation is dependent of the pixel location
and distance to wall. In figure 3.14 a correction is applied to an inner and outer
pixels.

(a) Average deviation (b) Corrected deviation

(c) Average deviation (d) Corrected deviation

Figure 3.14: Corrected deviation for each pixel

The systematic correction is applied by removing the linear trend from the meas-
ured Z-value. The linear trend per pixel is only dependent of Z-value value:

Er,c(Z) = αZ + β (3.7)

3.2.3 Result systematic error correction

Two systematic errors in the measured Z-value are detected and corrected.

1. One is a linear trend in depth deviation dependent of pixel position and
Z-value wall.

2. Second the sinusoidal behavior in the standard deviation of plane deviation
versus Z-value.

The remaining noise cannot be corrected as it has a zero arithmetic mean. It is
a limitation of the range camera. The fixed noise pattern and distance-related
errors are minimized. The improvements are visible in the standard deviation
of plane deviations in Figure 3.15.
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Figure 3.15: The RMS after correction

The error in depth is minimized by a factor of 2.5. This shows the necessity to
correct the systematic error in Z-value. It is assumed that the noise effect also
exist in X and Y direction, but in this thesis this is not handled. In Figure 3.16
the point cloud of a wall with and without correction is shown.

Figure 3.16: The depth value corrected

In Figure 3.17 the inner pixel (72,88) is corrected for the pixel and distance
related error.
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(a) Deviation and correction fit (b) Corrected deviation

Figure 3.17: Depth correction pixel (72,88)

The influence by the reflectivity of the surface will not be corrected (amplitude
related error), it can be corrected by a more elaborate calibration process de-
scribed in Lindner et al. (2010).

3.3 Non-systematic error correction

The non-systematic errors cannot be corrected, because it has a null arithmetic
mean. However it can be minimized and may be detectable. The noise is re-
duced by median filtering, a filtering technique without smoothing effect and
preserving edges. The mixed pixel error, which is often assumed to be ran-
dom, can be localized on discontinuous edges. The mixed pixel gives an wrong
distance measurement, because its footprint covers partly surfaces of different
distances (See Figure 3.18).

Figure 3.18: Wrong distance information on discontinuous edges

It can be detected by an local angle technique in May et al. (2009), also called
the jump edge filtering.

43



(a) The mixed pixels (b) The Triangle between camera and
2 neighboring points

Figure 3.19: Local angular filter

LPn−camera =
√
X2

n + Y 2
n + Z2

n

LPi−Pn
=

√
(Xn −Xi)2 + (Yn − Yi)2 + (Zn − Zi)2

LPn−camera

sin θ
=
LPn−Pi

sinα

θ = arcsin
Pn sinα

LPi−Pn

(3.8)

Here θ is the maximum allowable angle between two points. For every point in
the range image, the θ with the neighboring 8 points is checked. If more than
6 points have an θ > 120◦, the points is considered an mixed pixel. The local
angle filtering is sensitive to noise and therefore applied after median filtering.
In Figure 3.20 the mixed pixels are filtered out.

Figure 3.20: Filtered mixed pixel
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3.4 Minimal detectable surface size

In this analysis the ability of the range camera to measure correct distance de-
pending on the object surface area is derived. In theory the resolution is the
surface area covered by a pixel at a certain distance. Now it is assumed that
the minimum surface area required to measure a correct distance is the same
as the standard resolution. But this is not true as the standard resolution only
applies to 2D images, where the depth is not relevant. The pixels in the range
image give the radial distance, where after calibration the image (row, column
and radial distance) is transformed into real 3D Cartesian coordinates. Now not
only the resolution in X and Y is important to know, but also in Z direction.
The noise in Z-direction is already identified and minimized in the previous sec-
tion. It is important to identify the minimum surface area to measure correct
distances. This to assure the geometric features detected in Chapter 4 should
be based on an minimum surface area with valid distance measurements.

A test set-up is made to derive the minimal detectable surface size as func-
tion of the distance to object surface. The object surface may have different
shapes,but for the test a flat surface area is assumed. This surface is approx-
imatly perpendicular to the Z-axis of the camera. In the test setup a cut-out
Siemens star is used to assess the ”3D resolution”. The Siemens star is origin-
ally created to test the resolution of optical instruments (See Figure 3.23). The
black and white part touches each other only in the center. The center of the
Siemens star is visible in our eyes, but the sensor can only resolve the center
of the Siemens star to a certain degree from the center (See Figure 3.23). The
resolution limit of optical devices are tested based on the minimal resolvable
detail from the Siemens star center by checking the distance from the center
where the white and black strokes are not mixed up.

Figure 3.21: Left: Standard Siemens Star. Right: Resolution limit visible in
center.

The surface area represented by each pixel can be determined by the 2D resolu-
tion of the camera. Knowing the camera geometry, the projection of each pixel
into object space is fixed and determined by its pixel position and distance to
object surface in the scene (See figure fig:theo1). This holds for the amplitude
and range image.
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(a) Theoretical resolution at 4 meter (b) Theoretical average resolution per distance

Figure 3.22: Theoretical resolution of range camera SR4000

The main interest is to investigate is whether or not a correct range is returned
for each pixel for variable surface area. Each patch of the cut-out Siemens star
in figure 3.23a has a decreasing width in the direction to the center. By track-
ing from what radial distance of the center, correct distance measurements are
returned by the range camera. The radial resolution is determined with the
setup shown in(See figure 3.23b). This radial resolution is called the ”Minimal
detectable feature size”. A test setup is made to check the ’minimal detectable
feature size’ as function of distance to object. The minimal detectable feature
size, is actually the radial resolution at which the range camera is able to return
a correct range measurement.

A manual detection in the range images acquired from the adapted Siemens
Star at different distances is used to model the relation ”Minimal detectable
feature size” as function of distance (see relation 3.9). Measurements are taken
from distances from 1 to 3 meters to the 3D Siemens star (See figure 3.23a).
The minimal detectable feature size is described by the radial resolution, that
is the minimal detectable width of one patch of the Siemens Star (See figure
3.23b).

(a) Radial grated cardboard for testing
the true resolution of the range image

(b) Minimal detectable feature
size in Radial resolution

Figure 3.23: Test set-up Siemens Star for range resolution
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θ = (
2π

32
)

Radial resolution = θ ×R
(3.9)

The radial resolution is a measure of the ”minimal detectable feature size” at a
certain distance. The radial resolution increases with the distance to the object,
in this case the Siemens star. In Figures 3.24 and 3.25 are shown plots of the
points detected on the range image of the Siemens star at a distance of 1.6m and
a distance 2.8m. The plot shows only the points detected in the Z-value region
1.55m - 1.65m and 2.75 - 2.85m of the cardboard area. The other points are
not considered correct distant measurements or not relevant to the experiment.

(a) Range image at 1.6 meter (b) Range image at 2.8 meter

Figure 3.24: Range images at different distance

(a) Detected points of Siemens star at 1.6 meter (b) Detected points of Siemens star at 2.8 meter

Figure 3.25: The detected points on Siemens star at different distances

The further away from the Siemens Star, the smaller the ratio points per square
meter P/m2 are. The process to detect the correct distance measurement of
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the Siemens star is done manually by noting the radial distance from the cen-
ter to the first correct measurement, the radial resolution is then calculated by
equation (3.9). In two experiments 20 range images were made in total from
a distance to wall of 0.8m to 3.3m. For each image 8 radial distances of the
first correct distance measurement were noted down. The following relation of
Minimal Detectable Size in Radial resolution is retrieved from the experiment
(See figure 3.26).

Figure 3.26: Radial resolution compared with Theoretical resolution

The required surface area for the range camera to detect a correct distance is
approximatly 30% larger than the theoretical resolution. The radial resolution
is the average ”Minimal detectable feature size” per distance. With the linear
relation an approximation of the minimal detectable feature size per distance
is given. This relation will be used in the classification method described in
chapter 4, it forms the limiting boundary for the SR4000 to detect features of
certain sizes.
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Chapter 4

Registration method with
Geometric features

In this chapter a novel method is described for ”registration of range images with
geometric features”. The geometric features addressed are physical 3D edges
and corners. To characterize edges and corners in the range image, geometric
descriptors are used. The geometric descriptor takes into account the cameras
noise and resolution properties. In the end an adapted ICP is described to use
the geometric features for registration of the range images.

4.1 Geometric feature classification

Geometric feature is a broad term. In the context of geometry every feature
that can be described by a function of spatial coordinates is a geometric feature.
The focus is on easy recognizable 3D geometric features seen in our daily indoor
environment: Edges and corners. In Figure 4.1 a frame is shown of a common
scene in an office.

(a) Amplitude image office
scene

(b) Range image office scene (c) Canny edge detection

Figure 4.1: Common scene in office

Edge detection is a well developed area in the field of image processing. A
simple way is using gradient operator where significant change in amplitude
value in neighboring pixels is an indication of an edge. An example of the
popular Canny edge operator is illustrated in figure 4.1. The identified edges
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are locally dependent on amplitude values, which is sensitive to the lightning
condition and the reflective properties of the surface. The way the edges are
identified in the amplitude image has no connection with the physical 3D geo-
metry, while most of the detected edges are characterized by their 3D physical
shape. More 3D geometry information of these edges needs to be extracted.
All the edges characterized by their 3D physical shape are referred as geometric
features. The physical edges and corners are to be detected from the 3D points
of the range image. Conventional 2D edges detection techniques are not used
because they do not utilize the 3D information of the range image, but only
the range values in the 2D image space. The novel method takes into account
the full 3D information of the range image. The edges in 3D are the boundary
of a surface, or more specific a surface curved along a line. Some important
requirements have to be considered about 3D edges and its nature in the point
clouds of range images:

Scale Depending in which scale you are looking at an edge, it may not even
appear as an edge. Like you don’t see the earth is spherical when you are
standing on it. To describe geometric features, knowledge of the feature
size is required. The discussed physical edges in the range image of the
swissranger can typically be described in the scale of centimeters.

Surface The physical edges are part of a surface and the surface is described
by points in the range image. To describe the most simple surface plane,
at least three 3D points are required. To describe an curved surface that
may be an edge, a minimum of 4 points is required. The size of the surface
area indicates the feature size (scale).

Orientation The 3D points represent the physical locations of a surface area
and is described in the coordinate system of the range camera. If the
camera position changes, the orientation of the 3D points describing the
same surface changes. What does not change is the physical location of
the objects in the scene with respect to each other. The geometric features
found in the range images are always dependent of the camera orientation.
It is therefore important to find geometric features in the range images
that are independent of camera position.

Range camera limitation Range image data have limits in 3D resolution and
accuracy. The relations for noise and minimal detectable feature size found
in Chapter 3 forms a limiting boundary for the camera to detect physical
edges of smaller sizes.

These characteristics are taken into account in the edge classification method.
First the different types of 3D edges are discussed next.

4.1.1 Geometric features: Viewpoint independent 3D edges

There are different types of 3D edges visible in the range image, but which ones
are to be used and not to be used as geometric features. In Figure 4.2 a range
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image is shown with four edges highlighted.

Figure 4.2: Different edge types: Yellow is a concave and discontinuous edge.
Blue is a convex and discontinuous edge. Green is a convex and continuous
edge. Red is a concave and continuous edge

The following attributes are found to be of interest in describing the different
edges:

Concave or Convex edge Convex and concave are distinct geometric fea-
tures in 3D. They describe whether or not a curved surface bends inward
or outwards. In Figure 4.2 a concave edge is displayed in red and a
convex edge is displayed in green.

Continuous edge The physical edges are visible from the camera’s perspect-
ive. The edges are not half occluded. Continuous edges are the red and
green edges in Figure 4.2. A continuous edge is either concave or convex.

Discontinuous edge Only half of the edge is visible from the camera’s per-
spective. The other half is occluded, this part is referred as the shadow
edge. A discontinuous edge is colored blue and yellow in Figure 4.2.
The edge on the foreground (blue) is a true physical edge, the shadow
edge (yellow) is not a physical edge. A discontinuous edge is always con-
vex(blue) and concave(yellow) edge together.

Following the orientation requirement useful edges are the ones that do not
change in location when the camera position is changed. These are referred
to as viewpoint independent edges. The concave and discontinuous edge, the
yellow edge in Figure 4.2 does not fulfill this requirement. This is the shadow
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edge, an edge created in the shadow of the front edge (blue line) with respect to
the camera (light source). The shadow edge moves with the camera perspective,
like the edge of a shadow moves with the light source movement. The remaining
three types of edges, the red, blue and green ones are viewpoint independent
edges. They are characterized by the following attributes:

1. The continuous and concave edge (red).

2. The continuous and convex edge (green).

3. The discontinuous and convex edge (blue).

Next is described the method to segment the points part of the viewpoint inde-
pendent edges.
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4.1.2 The classification method

A novel method is developed to extract geometric feature points from the range
images. These points are part of viewpoint independent edges. As described in
the last section the view point independent edges are:

1. The continuous and concave edge.

2. The continuous and convex edge.

3. The discontinuous and convex edge.

The method takes as input a range image and it gives a set of 3D points as
an output, which represents the viewpoint independent edges. The set of 3D
points have the following properties:

1. Part of the viewpoint independent 3D edges.

2. Not a mixed pixel

3. Not on the boundary of a range image

The classification method consists of two main steps:

1. Create the data layers:

(a) The mixed pixels: Dmix

(b) The discontinuous edge area: Ddis

(c) The boundary of image: Db

(d) The descriptor to detect concavity and convexity: Ddes

2. To segment the geometric feature points: Perform a sequence of overlay
operations with the data layers

Dedgesunfiltered
= [‖Ddes > 2‖ − [Ddis ⊗ (Ddes < −2)]]

Dedgesfiltered = Dedgesunfiltered ⊗Dmix ⊗Db

DXedges
= Dedgesfiltered

⊗DX

DYedges
= Dedgesfiltered

⊗DY

DZedges
= Dedgesfiltered

⊗DZ

(4.1)

The data layers are all derived from the input range image, therefore they all
have the size 174x144. The ⊗ operation is an elementwise multiplication. The
DX ,DY and DZ are the 3D coordinates transformed from the radial distance
in the range image. How the classification method was designed and how the
data layers were derived is explained in the following section.
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4.1.3 The classification method: Algorithm design

The algorithm design is based on the requirements discussed in Chapter 4.1
for detecting 3D edges in range images. The design choices for the algorithm
implementation is explained and visualized.

The method to detect 3D edges has to take into account the following require-
ments:

• Surface: 3D edges are part of surface. A minimum of 4 points is required
to detect them, because an 3D edge can be described by two triangles
sharing an edge.

• Scale and size: The size of the surface required to detect the 3D edge
indicates the scale of the edge. Necessary to know because it is directly
related to the capability of the scanner.

• Range camera limits: Noise and Minimal detectable surface area has to
be considered in the process, because it determines what can be detected
and what not.

• Orientation: This requirement is included by detecting only viewpoint
independent edges, they are invariant with respect to orientation.

The edges can be identified by the attributes:

• Concave or convex

• Continuous or discontinuous

This resulted in the following design choices illustrated in the table 4.1 below:

Requirement Algorithm implementation
Surface A 3x3 kernel is used, the surface is always described

by 9 points.
Scale The surface area covered by the 9 points indicate the

scale
Range camera limits The effect of noise and minimal detectable feature

size is incorporated in the kernel operation
Edge attributes

1. The concavity and convexity of the surface area
covered by the geometric descriptor Ddes: Op-
eration with the 9 points in 3x3 kernel.

2. Whether an edge is continuous or discontinu-
ous is covered by the overlay operations with
the geometric descriptor Ddes and the discon-
tinuous edge area layer Ddis.

Table 4.1: Requirements implemented in classification algorithm

Next the design choices for the algorithm implementation and the algorithm
working principle are explained in detail.
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Surface by 9 points: 3x3 kernel
The surfaces in the scene are described by the range image. To describe a 3D
edge at least 4 points is required. The pixels in the range image contains the
radial distances, which are transformed into Cartesian coordinates X,Y and Z
with the camera as origin and the XY -plane parallel to the image plane. The
X,Y and Z are stored 2D arrays. The size of the arrays the image size. The
range image of the SR4000 is a structured array of the size 176x144. Given this
data structure, a common operation is to use a kernel to classify new features
(see figure 4.3). Making advantage of the array structure, a kernel of 3x3 is used
to describe each point in terms of its 8 neighboring points.

Figure 4.3: Geometric C-descriptor

Edge attributes
To detect the points related to 3D edges in the range image, all points has to
be classified in terms of the edge attributes:

1. Concave or convex

2. Continuous or discontinuous

Edge attribute: Concave or convex
The kernel operation that give a measure whether a point is part of a concave
or convex surface is called the C-descriptor (See figure 4.4). The kernel size is
3x3, the level of concavity or convexity of a point is determined by comparing
the Z-value with its neighboring 8 points and assign 1,0, or -1.

Figure 4.4: Geometric C-descriptor

The C-descriptor give an additional attribute to each point, that is the meas-
ure of ”concavity or convexity”. It is based on the ”concave-convex” principle
explained in Figure 4.5.
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Figure 4.5: Geometric C-descriptor describing a discontinuous edge

The most simple case of concavity or convexity is explained by a line of 3 points
in the Z−X-plane. Point B is concave (bending outward), if the point is on the
left side of the line formed by the points A to C. Point B is convex (bending
inward) when it is on the right side of the line A to C. Describing a surface in
terms of how much it bends in or outward can be done by checking the point in
the middle of the kernel with respect to the cross-side neighboring points in the
Z image. whether it is higher or lower than the considered point. This can be
done with the 8 neighboring points. The summation of the neighboring points
is a measure how concave or convex the points are (See figure 4.6 and 4.7)).
Negative G means a concave point and positive G is a convex point.

Figure 4.6: C-descriptor describing a continuous surface

Figure 4.7: Geometric C-descriptor describing a discontinuous surface

There is no clear boundary between an 3D edge and a corner. But if the value
is high or maximal like in Figure 4.6, then the points are considered as corners.
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The C-descriptor create the data layer that is referred in chapter 4.1.2 as Ddes.

Edge attribute: Continuous or discontinuous edges
To detect whether or not a point is part of a discontinuous surface is done by
an additional G-descriptor.

• Continuous edges: The physical edge is visible and described completely
by the range image.

• The discontinuous edge: The physical edge is partly occluded and not
completely described by the range image, the other part is occluded from
the cameras perspective.

The method to discriminate the continuous and discontinuous edges is to look
at the gradient magnitude of the Z-value image, that is the magnitude in change
of the Z-value between the points. With the gradient, the discontinuous edges
can be detected if they show a change larger than minimal twice the standard
deviation of the nominal gradient(See figure 4.8).

Figure 4.8: Discontinuous edge

The nominal gradient is the ”standard deviation of depth changes between
points of a continuous surfaces”. It is as function of the Z-value, similar to
the noise relation derived in chapter 3. The only difference is in noise the de-
viation from plane is modeled and for gradient the deviation from the average
depth changes. This relation basically tells a point is discontinuous if the change
in depth with the surrounding points are above twice the standard deviation
2σ, which means 95% of the cases.(See figure 4.8).

As discussed earlier the concave side of the discontinuous edge is not view-
point independent. This side of the edge is removed by the following overlay
operations:

Dviewpoint independent = ‖Ddes > 2‖ − [Ddis ⊗ (Ddes < −2)] (4.2)

The value 2 is used to distinguish edges from planar surfaces. With the C-
descriptor and the G-descriptor all the useful viewpoint independent edges are
extracted.
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Range camera limits

There are two limitations of the camera analyzed in the thesis. They are also
considered in the process to segment feature points.

1. Minimal detectable surface: The size of detectable surfaces is determined
by the relation found in the Siemens star tests in chapter 3: The radial
resolution (See Figure 4.9) is a limitation of the range camera. Features
smaller described by a surface smaller than the radial resolution give no
reliable distance measurement.

2. Noise: The noise present in the range measurement is limiting the accur-
acy. This means a difference of neighboring Z-values under the noise level
is not considered a reliable difference.

(a) Radial resolution (b) Noise

Figure 4.9: Limitation of the SR4000

A reliable distance can only be measured above the range camera radial res-
olution limit. The descriptor is based on 9 points in the kernel that span a
certain surface area. The size of surface area can be roughly determined by the
width and length spanned in the row and column direction of the 3x3 kernel.
The width of the kernel in columns-direction is the sum of distances between
the 3 points in the center row. The length of the kernel is the sum of distances
between the 3 points in the center column (See Figure 4.10). To account for the
radial resolution, the width and length should be at least twice as big as the
radial resolution for the respective distance to object (Z-value).
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Figure 4.10: Descriptor’s surface area

To account for the noise, the difference in Z-value between point 0 and its neigh-
boring points should be at least twice the standard deviation of noise (See Figure
4.11).

Figure 4.11: Descriptor’s noise boundary

Result: Classified geometric feature points
The different edges detected in the range images with the described method is
illustrated in Figure 4.12. These edges are invariant in 3D and therefore useful
geometric features for the registration.
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Figure 4.12: Geometric descriptor: Left: A book with a root on top. Middle:
A corner of ceiling and walls. Right: Set-up with skeleton of a bed.

The edges are characterized by the C-descriptor as large magnitude values. Con-
cave edges are negative values displayed as the blue pixels in the image. Convex
edges are positive, displayed as red pixels. Discontinuous edge is detected by the
G-descriptor. The concave discontinuous edges are removed. This is done using
the G-descriptor to detect the discontinuous edges and filter out the concave
side of the discontinuous edges(See Figure 4.13).

(a) Discontinuous edges (b) Viewpoint independent edges

Figure 4.13: Filtering concave discontinuous edges
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(a) Viewpoint independent edges (b) Thinned edges

Figure 4.14: The most important physical edges

The points closer by the physical edges are more valuable than the points farther
away. When all the edges are identified, a morphological operation is performed
to remove the interior of every clustered points, leaving only the edges of the
”edges” in the image (See figure 4.14). It is important to use points closest to
the real edges in the registration process, because points on a plane are not the
viewpoint independent.

4.1.4 The classification method: Limiting case

A case of viewpoint dependent edges is not solved in the current classification.
In Figure 4.15 is shown the extreme cases of viewpoint independent and view-
point dependent edges. Both cases have discontinuous edges, but the convex
physical edge part of the discontinuous edge was assumed to be viewpoint inde-
pendent. This is not the case for a sphere or cylinder, where the physical edge
is changing in location depending on the viewpoint, it is a viewpoint dependent
edge.

Figure 4.15: Physical edge

In the current method is these viewpoint dependent physical edges are not re-
moved.
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4.2 Geometric feature registration method

The points of viewpoint independent edges are extracted with the classification
method discussed last chapter. These points are used in an adapted ICP to
register the 3D point clouds from subsequent range images into one large point
cloud, representing of the scanned 3D scene. The registration process takes 2
subsequent range images at a time and calculates the transformation paramet-
ers. Additionally the edge attribute level of concavity of the 3D points are used
to assist the correspondence finding criteria in the ICP process. The level of
concavity is given by the C-descriptor. The original ICP code is written by
(Mia, 2005)

The main steps of the adapted ICP algorithm, referred as GM-ICP:

a With as input two subsequent reduced point sets of geometric features, where
point set Pa is the reference model and point set Pb is to be registered to
Pa.

b Find corresponding point in Pa for each point in Pb by finding the minimum
d in the normalized ”closest similar point” relation:

d(Pa, Pb) = α �
D2

D2
max

+ β �
∆C2

∆C2
max

D2 = (xa − xb)2 + (ya − yb)2 + (za − zb)2

∆C2 = (Ca − Cb)
2

Correspondence = d(Pa, Pb)min

(4.3)

Where D is the metric distance between the points in Pa and Pb, normal-
ized by Dmax.The C is the edge attribute concavity. The scale factors α
and β determines the weight of importance between the two, this is on
default 1. The d is unitless, with maximum value 2.

c Reject point pairs by a distance threshold.

d Compute transformation parameters based on the correspondences by Singu-
lar Value Decomposition(SVD).

e Perform the registration and do steps a to d again until the following minim-
ization criteria is satisfied:

e =

∑
‖Pa − Pb‖
Npoints

‖δe‖ < Resolution/10000

(4.4)

The value of concavity is included in the correspondence searching. The cor-
respondence searching process will deliver point pairs that are close in metric
distance and similar in concavity. More spatial information is exploited from the
range image, by including the edge attribute in the ICP process and robustness
is increased.
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Putting the viewpoint independent edges into the adapted ICP will produce
the following results.

(a) Frame1 (b) Frame2

(c) Registration frame2 into frame1

Figure 4.16: A registration with GM-ICP
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(a) Frame1 (b) Frame2

(c) Registration frame2 into frame1

Figure 4.17: A registration with a normal ICP

A successfull registration by GM-ICP is illustrated in Figure 4.16. In Figure
4.17 a failed registration by normal ICP is shown. The main reason for failure
in normal ICP is that all points are considered of equal importance, but not all
points provide equal spatial information. In the GM-ICP method the geometric
features are points from viewpoint independent 3D edges. The points on 3D
edges are fixed along the 3D edge, they have only one degree of freedom. The
points of an 3D corner are totally fixed in a 3D, they have no degree of freedom.
These points are much more valuable than a point on a surface, which has two
degree of freedom on the plane. But more important there is no classification
between these points in normal ICP.

From the first registration result with the GM-ICP (figure 4.16) is concluded
that it more robust that the normal ICP (figure 4.17).
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4.2.1 Input parameters

There are 4 input parameters introduced to fine-tune the registration with geo-
metric features. As the method is still experimental, it is necessary to check the
influence of the different decisions made in the method. The input parameters
are:

1. Noise factor: The factor that multiplies the noise level used in the C-
descriptor in the classification method. It is apparently better to have a
higher factor when large part of the scene is far away from the camera.

2. Gradient factor: The factor that multiplies the gradient level used in the
G-descriptor in the classification method, to determine a discontinuous
edge.

3. Excluding factor: The factor that determines the criteria for excluding
points in the correspondence finding process in the adapted ICP. It is the
”excluding factor” times resolution.

4. Kernel factor: The factor that multiplies the ”Minimal detectable feature
size”, that determines the surface covered by the 3x3 kernel.
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Chapter 5

Results

5.1 Registration results

The registration of three different scenes is evaluated by the following points:

Speed Compare the relative speed of registration between standard ICP and
the geometric feature ICP (GM-ICP).

Robustness Compare the robustness of the registration process between an
standard ICP and the geometric feature ICP.

Error Assess the quality of registration by the accumulated error and by ad-
dressing the remaining errors:

1. After each ICP registration there exist an error en, expressed by
the average distance between the corresponding geometric feature
points in the overlapping part of the two registered point clouds

en =
∑

(Pframe1−Pframe2)
Ncorrespondences

, where Pframe1 − Pframe2 is an array of ab-

solute distances of the pointpairs, N is the number of point pairs, n
is the number of registration. In each registration the transformation
parameters are based on two subsequent images (1 and 2). The error
created during each registration accumulates over the whole registra-
tion process. The total error after registration has a range of

∑
en.

This error indicates the maximum possible deviation from the true
value. The error is derived from the minimized distance between the
geometric feature points of subsequent frames.

2. The quality of registration is determined by the errors. The reflection
plays an important role in the range measurement and therefore in
the registration. It is caused by external illumination and the mater-
ials reflective property.
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These points are evaluated, because in real-time mapping with range cameras
the speed and robustness of the registration algorithm is important. The speed
is now evaluated relatively between the new method GM-ICP and normal ICP.
The third point is that the errors created per registration is traced, and the
error sources causing of a failed registration is addressed. A failed registration
is a direct result of the random errors caused by the conditions of the scanned
environment or by simply having not enough geometric features. Inaccurate
and wrong distance measurements are caused by the inability of the camera to
measure consistent correct distances from variable surface reflectivity or inter-
fering illumination.

Not the code is written in Matlab, the speed is therefore not close to real-time,
but it gives a good comparison with an existing registration ICP approach in
Matlab using only range images.
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5.1.1 Scene 1: Box on a black table nearby a corner.

(a) Frame1 (b) Frame2 (c) Frame3 (d) Frame4 (e) Frame5

Figure 5.1: Scene 1: Box on dark table with a corner

(a) Frame1 (b) Frame2 (c) Frame3 (d) Frame4 (e) Frame5

Figure 5.2: Scene 1: With the geometric features as white spots

In figure 5.2 can be noticed that there are wrong geometric features detected
on the dark table. Low reflective surfaces increases the noise in the distance
measurement causing wrong geometric features detection.

(a) Frame1 (b) Frame2 (c) Frame3

(d) Frame4 (e) Frame5

Figure 5.3: Scene 1: Geometric features with the value indicating concave or
convex point
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(a) Scene 1:Top-view of the 5 registered point
clouds

(b) Scence 1: Side-view of the registered point
clouds

Figure 5.4: Scene 1: Top and side view

In figure 5.4b is illustrated the unclear surface of the table. It can be concluded
that low reflective surface not only increases noise, but tends to yield higher
distance measurements. Nevertheless the registered point cloud correctly re-
gistered according to the available range data.

(a) Plot in XY plane of the registered 3D point
cloud in Matlab

(b) Pointcloud visualized in Meshlab

Figure 5.5: Scene 1: 5 images registered

Speed: The time required to register 5 images with standard ICP is 172.83
seconds and with GM-ICP it is 62.83 seconds.

• The average time to register 2 subsequent image in standard ICP is 32.81
seconds.

• The average time to register 2 subsequent image in GM-ICP is 14.61
seconds.
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(a) GM-ICP registration 5 images visualized in
Meshlab

(b) ICP registration 5 images visualized in Mesh-
lab

Figure 5.6: Scene 1: 5 images registered

Robustness: It is clear in figure 5.6 that the standard ICP registration is not
robust in the subsequent registration. The main indication can be seen in the
not overlapped front part of the box, that should have been overlapping. The
5 different colors indicate the 5 subsequent images made. It can be seen that
the boundaries of subsequent images is more overlapping in the standard ICP
compared to the GM-ICP. This is true because all the points are taken into
account in standard ICP and they are of equal importance. The amount of
points on the walls is much more than the points on the physical edges of the
box. The normal ICP algorithm just overlap the larger amount of points on the
wall surface.

Quality of registration∑
en Registering 5 range images accumulates the errors e1 to e4. The error

after full registration has a range of
∑
en.

e1=0.019 [m]
e2=0.024 [m]
e3=0.027 [m]
e4=0.017 [m]
This give an accumulated error range of

∑
enn=0.0900 [m].It is the maximum

possible deviation from the true value based on the distances between geometric
features

In this case the error related to the reflectivity has a large influence to the re-
gistration. Normally the concave edge between table and wall should be clearly
detected, but in this case it is not. For this point the scene 1 has been redone
with the table covered with white paper.
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5.1.2 Scene 1: Box on a white table nearby a corner.

(a) Frame1 (b) Frame2 (c) Frame3 (d) Frame4 (e) Frame5

(f) Frame1 (g) Frame2 (h) Frame3 (i) Frame4 (j) Frame5

Figure 5.7: Scene 1: Box on white table with a corner

(a) Scene 1:Top-view of the 5 registered
point clouds

(b) Scence 1: Side-view of the re-
gistered point clouds

Figure 5.8: Scene 1: Top and side view

Comparing Figures 5.8b and 5.4b, it can be concluded that the difference
between a white and black table is significant.
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(a) Plot in XY plane of the registered
3D point cloud in Matlab

(b) Pointcloud visualized in Meshlab

Figure 5.9: Scene 1: 5 images registered

Speed: The 5 registrations were done in 171.73 seconds by ICP and in 62.80
by GM-ICP.

Robustness: The probability of correct registration is increased in the GM-ICP
because more correct geometric feature points were detected, see the comparison
in figure 5.3a and 5.7f. Wrong geometric feature point detection is caused by
reflectivity issue, a correct registration is therefore dependent of the reflectivity
of surfaces in the scene.

Quality:Registering 5 range images accumulates the errors e1 to e4. The error
after full registration has a range of

∑
en.

e1=0.021 [m]
e2=0.020 [m]
e3=0.016 [m]
e4=0.0087[m]
This give an accumulated error range of

∑
enn=0.067 [m], this is less than the

accumulated error with a black table. The edge of table with the wall is now
more visible, because the table is covered with white paper. It can be con-
cluded that the increased noise by low reflective surface has great effects on the
registration performance and the accumulated error.
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5.1.3 Scene 2: Part of room with bookshelf and sofa

(a) Frame1 (b) Frame2 (c) Frame3 (d) Frame4 (e) Frame5

(f) Frame1 (g) Frame2 (h) Frame3 (i) Frame4 (j) Frame5

(k) Frame6 (l) Frame7 (m) Frame8 (n) Frame9 (o) Frame10

(p) Frame6 (q) Frame7 (r) Frame8 (s) Frame9 (t) Frame10

Figure 5.10: Scene 2: Amplitude images with the classified geometric features
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(a) Frame11 (b) Frame12 (c) Frame13 (d) Frame14 (e) Frame15

(f) Frame11 (g) Frame12 (h) Frame13 (i) Frame14 (j) Frame15

(k) Frame16 (l) Frame17 (m) Frame18 (n) Frame19 (o) Frame20

(p) Frame16 (q) Frame17 (r) Frame18 (s) Frame19 (t) Frame20

Figure 5.11: Scene 2: Amplitude images with the classified geometric features

(a) Pointcloud plot in Matlab (b) Pointcloud visualized in Meshlab

Figure 5.12: Scene 2: 20 images registered

Speed: The time required to register 20 images with standard ICP is 674
seconds and with GM-ICP it is 255 seconds.

• The average time to register 2 subsequent image in standard ICP is 33.72
seconds.
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• The average time to register 2 subsequent image in GM-ICP is 13.61
seconds.

(a) GM-ICP registration 20 images visualized in
Meshlab

(b) ICP registration 20 images visualized in
Meshlab

Figure 5.13: Scene 2: 20 images registered

Robustness: It figure 5.13 can be seen that the standard ICP registration is
not robust in the subsequent registration at all. Like in scene 1. There are
a lot of unsuccessful registrations. The GM-ICP performes well despite of the
different

Quality of registration∑
en Registering 20 range images accumulates the errors e1 to e19. The error

after full registration has a range of
∑
en.

e1=0.0191 [m] e5=0.0170 [m] e9=0.0341 [m] e13=0.0411 [m] e17=0.0380 [m]
e2=0.0177 [m] e6=0.0231 [m] e10=0.0444 [m] e14=0.0412 [m] e18=0.0315 [m]
e3=0.0296 [m] e7=0.0268 [m] e11=0.0291 [m] e15=0.0317 [m] e19=0.0348 [m]
e4=0.0375 [m] e8=0.0386 [m] e12=0.0424 [m] e16=0.0375 [m]

This give an accumulated error range of
∑
enn=0.6153 [m].

A manual measurement was performed in figure to measure the orange line
in figure 5.13a. The measurement in the registered point cloud showed 2.19 [m],
while the manual measurement showed 2.24 [m], showing a difference of only
0.06[m] . This is in within the expectation of the accumulated error.

Not all geometric features are detected. The main cause are the amplitude-
error and random errors.

5.1.4 Scene 3: Freeform object

Registration example of an object with viewpoint dependent edges. It is possible
to register such an objects if there are sufficient ”good” geometric features in
the field of view.
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(a) Frame1 (b) Frame2 (c) Frame3 (d) Frame4 (e) Frame5

(f) Frame1 (g) Frame2 (h) Frame3 (i) Frame4 (j) Frame5

(k) Frame6 (l) Frame7 (m) Frame8 (n) Frame9 (o) Frame10

(p) Frame6 (q) Frame7 (r) Frame8 (s) Frame9 (t) Frame10

Figure 5.14: Scene 3: Amplitude images with the classified geometric features

(a) Frame1 (b) Frame2 (c) Frame3 (d) Frame4 (e) Frame5

(f) Frame1 (g) Frame2 (h) Frame3 (i) Frame4 (j) Frame5

Figure 5.15: Scene 3: Amplitude images with the classified geometric features
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(a) Frame1

Figure 5.16: Scene 3: Registered point cloud in Meshlab

Speed: The time required to register 15 images with standard ICP is 505
seconds and with GM-ICP it is 191 seconds.

• The average time to register 2 subsequent image in standard ICP is 34.72
seconds.

• The average time to register 2 subsequent image in GM-ICP is 14.65
seconds.

Robustness: The standard ICP registration is performing equal to the GM-
ICP method, this is because the walls perpendicular to each other are strong
for the normal ICP.

Quality of registration∑
en Registering 15 range images accumulates the errors e1 to e15. The error

after full registration has a range of
∑
en.

e1=0.0116 [m] e5=0.0106 [m] e9=0.0151 [m] e13=0.0104 [m]
e2=0.0110 [m] e6=0.0383 [m] e10=0.0144 [m] e14=0.0108 [m]
e3=0.0162 [m] e7=0.0173 [m] e11=0.0120 [m] e15=0.0157 [m]
e4=0.0122 [m] e8=0.0125 [m] e12=0.0078 [m]

This give an accumulated error range of
∑
enn=0.2167 [m]. This value is rel-

ative large, but in this case the registered point cloud does not show deviation
as large as 0.2167m. As described before this value indicates the maximal devi-
ation possible.
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It is possible to register freeform object with viewpoint dependent edges (edges
of the doll), by having enough viewpoint independent edges in the scene (edges
of the box and wall junctions).

5.1.5 Input parameters

The registration were made with the following input parameters.

1. Noise factor is 2.5: A bit more than 2σ.

2. Gradient factor is 10: It is much larger than 2σ, it has effect on removing
the discontinuous concave edges. To preserve these edges, this value has
to be high.

3. Excluding factor is 20: This means the maximum separation in distance
between points is allowed to be 20 times the resolution.

4. Kernel factor is 4: This means 4 times the ”Minimal detectable surfaces”.

These parameters proved to be working in all scenes. The following conclusions
related to the input parameters have been drawn in the process of fine tuning
different scenes.

The noise factor is related to the amount of geometric features found in the
range image, a larger factor means only large geometric features are found. The
gradient factor is related to removing the discontinuous shadow edges, a larger
factor means removing all the points that are labeled as shadow edges. Shadow
edges may occur because of noise. The Excluding factor is chosen after scanning
different scenes, it seems that the movement of the camera, or more specifically
the overlap between subsequent frame is influencing this factor. The bigger the
kernel factor, the lesser the chance an outlier will be labeled as a geometric
feature.
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5.2 Comparison with existing ICP approaches

Compared to the common ICP method the data reduction for the compu-
tationally heavy task in ICP by using geometric features increased the speed of
registration. The process to find corresponding closest points is improved by in-
cluding the level of concavity, it is now called finding the closest ’similar’ points.

Compared to the image-feature based technique the geometric features
are based on 3D points and viewpoint independent but does not provide unique
corresponding points like in image features. The image features are invariant
in image space, but not in 3D space. Image features can provide unique point
correspondence in 2D, but is not reliable because 3D features changes with re-
spect to camera viewpoint. Geometric features are 3D invariant.

The additional value to existing methods
The method is an improvement to the existing ICP approaches and a valuable
addition to the existing general registration approaches for range images. By
using image features and geometric features in ICP, a more robust registration
approach can be achieved.
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Chapter 6

Conclusions

The registration results are concluded and the limitations of the method are
discussed in this final chapter. The answers to the research questions are given
and improvements of the method are suggested.

6.1 Method performance

From the registration results it is concluded that the developed method is able
to classify points from the viewpoint independent edges in the scene. The regis-
tration process with an adapted ICP is performing relative faster and more ro-
bust to systematic and non-systematic errors than conventional ICP algorithms.

Main observations:

• The reduced geometric feature point set increased the speed of the ICP
algorithm.

• The reduced point sets are located on viewpoint independent edges, these
points are fixed along the 3D edge. They are more valuable in geometric
sense: A point on a flat surface has two degrees of freedom, a point on a
viewpoint independent edge has one degree of freedom.

• The point correspondences are found based on shortest metric distance and
the similarity of the level of concavity. The criteria is changed from the
closest point to closest ”similar” points. Similar by means of of the newly
introduced concavity measure. The ability to find correct correspondences
compared to the conventional ICP is improved.

• In the classification of geometric feature points the camera performance
is taken into account: Noise and the ”Minimal detectable feature size” is
considered in the classification method.

• The systematic errors ”Lens distortion”, ”distance-related error” and ”fixed
noise pattern” are corrected. The ”Mixed pixel” is detected and removed,
while the random noise is reduced by median filtering.
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6.2 Limitations

From the registration results it is concluded that the method is sensitive to errors
caused by the camera. The noise proved to be of big influence in finding correct
geometric features. Because it is caused by different factors like reflectivity
of surface material and external light sources, which is difficult to deal with in
practice. The method only works when there are enough viewpoint independent
geometric feature points found to orient in 3D.

6.2.1 Limits by sensor performance

The spatial resolution or point density is decreasing with the scan distance and
thefore the accuracy too. The accuracy is partly determined by the system-
atic errors. The radial resolution determined in Chapter 3 allows only feature
detection above the minimal detectable surface. However it does not exclude
features from smaller than the minimal detectable size. The noise boundary
relation determined in chapter 3 does not hold true when low reflective material
is in the scene. Because the noise relation is derived from an experiment with a
high reflective white wall.

The remaining systematic error related to the amplitude is not corrected and
can create large deviations, mainly caused by the variable reflectivity of surface
material in the scene.

Non-systematic noise effects can produce artifacts, or false data that cannot
be filtered in the current method. The reflectivity of surface material contrib-
utes both to the systematic amplitude error and the random errors. External
light sources cause inferences with the sensors illumination contributing to the
random errors. False geometric features detected due to these errors cause poor
registration results. Avoiding the conditions where the discussed errors are
prone to happen would help.

6.2.2 Limits by geometric features: Viewpoint independ-
ent edges

In the method the geometric features are points from viewpoint independent
edges. The point is assumed to be fixed along the 3D edge or totally fixed in a
3D corner, they are classified by the level of concavity. This means 2D transla-
tion and 2 rotation is solved if one detect the same edge in two point clouds.

The scene is fully described in space by the 6 transformation parameters: 3
rotation and 3 translation, if the one of the following can be found in the range
image:

• Minimum two viewpoint independent 3D edges not in the same plane.

• Minimum three viewpoint independent corners not in the same plane.

In the current classification method there are viewpoint dependent edges that
cannot be removed yet. These are the edges along a curved surface like a sphere.
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They have a negative influence on the registration process.

6.2.3 Limits by the adapted ICP algorithm

Unknown overlap is a problem in the ICP process. Currently it is minimized by
selecting the points within a certain distance threshold. As discussed in Chapter
4, this threshold is the resolution times an input parameter. Moving the camera
slowly, will reduce the effect of non-overlapping areas.

There should be enough geometric features available in the scene such that
unequal distribution of geometric features will not disturb the process. Point-
ing the camera in the scene to a field of view with a lot of geometric features
will help the registration.

6.3 Answers to research questions

Answering all the research questions.
Sub questions:

1. How to manage the error in range images?
Correct the systematic error by modeling the error in repeated measure-
ments in a test setup. Minimize the noise by median filtering. Detect and
remove random error such as mixed pixels. (Chapter 3, section 3.1,3.2)

2. What are the geometric features and how to segment them from the range
data?
The discussed geometric features are points on viewpoint independent edges.
They are points that are fixed independent of the camera perspective. The
classification method discussed in chapter 4 can extract the geometric fea-
ture points from the range image, by an overlay operation on different data
layers. The 3D resolution and noise properties of the camera is taken into
account in the classification method. (Chapter 4, section 4.1.2)

3. How is the novel method performing relative to a current registration ap-
proach ?
The registration process is faster than the current ICP approaches, because
the defined geometric features reduces the input for the ICP process. The
registration process is more robust than current ICP approaches, because
the correspondence finding process is based on closest similar points, the
similarity of the points level of concavity is taken into account. Compared
to the image feature tracking based approach it is more correct, because the
features are fully 3D. (Chapter 4, section 4.2. Chapter 5)
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Main research question

”Is it possible to do continuous registration of range images based
on geometric features with the SR4000 Swiss ranger?”

This is proven to be possible under the conditions:

1. The camera is moved steady and slow in a static environment

2. There are sufficient viewpoint independent edges in the field of view to
orientate the scene.

3. With a registration error that is increasing per registration of two sub-
sequent point clouds.

The results of the geometric feature registration approach is showing to be prom-
ising to register a complete scene. The approach is new and can be used with
other range cameras. The method is a valuable addition to existing approaches
for the purpose ”Real-time mapping with range cameras”.

6.4 Future work

• The systematic amplitude-related error can be corrected by analyzing the
distance deviations for variable reflectivity of surface object.

• The non-systematic error may be minimized by localizing the source by
means of geometry, such as multipath is bound to happen in corners.
By researching the external light source influence on the data, a more
advanced light filtering technique may be applied on software level or
hardware level.

• The registration process can be improved by extracting more types of
geometric features and use them in their own class in terms of degree of
freedom, such as planes, centre points etc..

• Post processing to reduce the error in the final point cloud by loop clos-
ure or other known error relaxation techniques. Loop closure is used in
SLAM (Chapter 2, section 2.3.3) to relieve the accumulated error through
the registration process, by memorizing and detecting features that have
been encountered before.

• Combine image feature tracking technique with geometric feature ICP to
attain an even more robust method registration method for range images.
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