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Summary

The objective of particle detectors in high-energy physics research is to reveal the fun-
damental laws of nature. The Minimum Ionizing Particle Detector (MTD) has been de-
signed to enhance the timing precision of the CMS (Compact Muon Solenoid) detector at
CERN to 50 ps under the increased number of particle impacts after upgrading the Large
Hadron Collider (LHC) to the High-Luminosity LHC. The Barrel Timing Layer (BTL) seg-
ment of the MTD uses silicon photodetectors (SiPMs), whose timing accuracy depends
on their operating temperature and the number of photons they detect. This dissertation
presents numerical methods to improve the timing precision of these SiPMs through the
design of thermoelectrical coolers and scintillation crystals.

On the one hand, thermoelectrical coolers (TECs) can lower the SiPMs temperature,
reducing signal-to-noise ratio and recovering radiation-induced damage through con-
trolled annealing procedures. We provide an analytical model to study the landscape
of TEC topology optimization with a lower temperature objective, power constraints
and two density design variables. This study leads to the recommendation of penal-
ization coefficients for SIMP (solid isotropic material with penalization) in the form of
kp = kσ > kα with kp the thermal conductivity, kσ the electrical conductivity and kα
the Seebeck’s penalization coefficient to reduce the nonconvexity induced by the power
constraint. These coefficients reduce nonconvexity from power constraints, allowing
FEM topology optimization via SIMP to achieve lower material volumes and tempera-
tures without volume constraints and filtering schemes. FEM optimization examples
are provided, which incorporate electrical working points through a voltage gradient de-
sign variable and constant material properties. These examples reduce the temperature
by up to 10 ◦C compared to the optimal electrical working point of the original designs.
Finally, comparing these results with designs with non-linear, temperature-dependent
properties shows that the use of constant material properties can lower computational
costs and improve design performance. Although optimized designs achieve lower tem-
peratures, TECs are fragile. The construction of the BTL highlights this fragility, prompt-
ing an extension of the design to address operational thermal and mechanical loads.
This work introduces a FEM-based topology optimization for the coupled thermoelec-
tromechanical problem using SIMP. This also includes the formulation with nonlinear
material properties, and how to deal with the checkerboarding with the extended me-
chanical degreeCelsiuss of freedom. The optimized designs reduce stress concentrations
by half while enhancing cooling capabilities.

On the other hand, we complement the lower signal-to-noise ratio obtained from us-
ing TECs, with an increased number of photon impacts enhancing the SiPM signal. The
number of photons created or the scintillation light yield depends on the material com-
position of the scintillators. However, the photon arrival count at SiPMs is influenced by
their reflective surfaces and volume. We provide a model of BTL within GEANT4, a ray-
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x Summary

tracing particle-matter interaction software. This model incorporates the effect of the
particle impact location and is used in conjunction with NSGAII (non-dominated sort-
ing genetic algorithm) to optimize scintillator shapes to increase the photon detection
count. The study uses multiple objective functions based on the stochastic nature of the
arrival photons. From these results, the recommended objective function is the mean
light collection per energy deposition and the ionizing particle track length, reducing
statistical errors and accounting for energy deposition. The results provide relative gains
to the original designs in the objective function between 15 and 38%.

To overcome the computational limits of Monte Carlo methods, we follow up by trans-
lating the scintillation equations into a transient wave for FEM simulations, matching
GEANT4 pulse shapes. Furthermore, we perform a shape optimization using a static fre-
quency domain scintillation model replicating the variable influence within GEANT4.
The optimal designs obtained with FEM are validated within GEANT4, obtaining gains
of the order of 7.7%. These gains were achieved with less than 1% of the computational
resources needed to perform the GEANT4 optimizations.



1
Introduction

O ne of the main objectives of particle detectors is to detect, trace, and measure the
behaviour of subatomic particles originating from a collision or a decay, an event.

The beginning of particle detectors can be traced to the discovery of radioactivity by H.
Becquerel in 1896 through the blackening of a photographic plate from the radiation
emitted by a uranium sample. Since then, methods have been refined to detect and
accurately measure their energy and momentum and define the spatial coordinates of
their tracks. Today, detection is performed mainly through electronic means with e. g.,
silicon pixel detectors, with ever-increasing data rates of up to GHz in the form of time
(ps), spatial location (µm) and energy resolutions (eV) [1]. These technologies have been
transferred to other industries and fields. In the security sector, we can find particle
detectors as airport scanners to avoid transporting radioactive substances [2] or detect-
ing explosives using diffraction methods [3]. We can find examples of particle detectors
to monitor our health, from simple X-ray scanners to PET (positron emission tomogra-
phy) and SPECT (magnetic resonance imaging). Advances in particle detectors applied
to medicine allow for early detection of possible diseases (such as different cancers and
Alzheimer’s disease) with lower risk of harm to the patient and a higher likelihood of re-
covery [4, 5]. Many industries also look at this technology to prospect underground cav-
ities through muography [6] or to verify the structural integrity of inaccessible structures
[7]. These detectors are also fundamental for studying material structures at the small-
est scales using techniques such as scanning electron microscopy or x-ray diffraction [8].
Finally, these detectors are indispensable for high-energy physics research, enabling sci-
entists to study the fundamental constituents of matter and the forces that govern their
interactions with measurements of the particles corresponding to the boson of Higgs in
2012 [9].

The discovery of the Higgs boson happened at CERN, which houses the world’s largest
and most powerful particle accelerator today, the Large Hadron Collider (LHC). The LHC
allows proton collisions at energies up to 7 TeV, meaning that each proton bunch, a
tightly packed group of protons, is accelerated to an energy level 7 trillion times greater
than an electron at rest, allowing the study of fundamental particles and forces at un-
precedented scales. The LHC consists of an accelerator ring with two beams circulating
in opposite directions and 4 experiments along its 27 km circumference. The LHC will be
upgraded to the High-Luminosity LHC (HL-LHC) [10] in the next maintenance period or

1
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long shutdown (LS), namely LS3, starting 2026. The upgrade of LHC has as an objective
the increase in its luminosity, defined as the rate at which the particles collide in the ac-
celerator per cross-sectional area, from the nominal luminosity of LHC of 1034 s/cm2 to
a 5−7 times higher value. This increase in luminosity is expected to provide further in-
sights into previously unknown particle physics phenomena and reduce the uncertainty
on the current measurements taken by LHC, e. g., the Higgs boson mass. This higher lu-
minosity working regime will be performed continuously under nominal operation with
proton-proton collisions of up to 14 TeV.

The Compact Muon Solenoid (CMS, [11]) experiment is a general-purpose particle de-
tector positioned around an interaction point of the LHC designed to measure the mass
and momentum of particles produced in proton-proton collisions, allowing a complete
reconstruction of the event. This is achieved through multiple detectors working to-
gether in a cylindrical shape around the collision point. Figure 1.1 shows a cross section
of the barrel part of CMS, highlighting a segment through the x − y plane and exam-
ple particle tracks, including muons, electrons, photons, and hadrons. The Tracker de-
tector first captures the path of charged particles as they move through a 4 T magnetic
field. Beyond the Tracker, the electromagnetic calorimeter (ECAL), made from dense
lead tungstate crystals, absorbs photons and electrons, converting their energy into de-
tectable light. Next, the hadronic calorimeter (HCAL) absorbs hadrons, such as protons
and neutrons, using alternating layers of dense absorber materials such as brass and
scintillating tiles to measure their energy. Surrounding these systems is the supercon-
ducting solenoid, which generates the powerful 4 T magnetic field that curves the paths
of charged particles, allowing their momentum to be measured. This large solenoid is
supported by the Iron Yoke, which also serves a dual purpose: enhancing the magnetic
field and housing the Muon Chambers. The muon chambers, made from drift tubes,
cathode strip chambers, and resistive plate chambers, detect muons that penetrate the
entire detector, as muons are less likely to be absorbed by the calorimeters. To fully
enclose the collision point, the cylindrical barrel, whose cross section is shown in Fig-
ure 1.1, is enclosed with disk-like structures called endcaps with the same working as
the barrel layers for particles emitted at small angles with respect to the beam.

The current configuration of the CMS meets operational requirements, but the
upcoming high-luminosity phase will challenge the event reconstruction algorithms.
These systems are responsible for identifying and linking each detected particle to its
specific collision point (vertex). Currently, in each bunch crossing, approximately 20
events are produced; this number is expected to increase by an order of magnitude to
around 200 with HL-LHC [10]. As the luminosity increases, CMS will face difficulties in
distinguishing between collisions that occur very close together in space, relying solely
on spatial information from the detected particles. To overcome this, a "4D" reconstruc-
tion algorithm is proposed. This approach considers not only the spatial trajectory of
particles but also their precise flight time, which will help differentiate collisions that oc-
cur close to each other in both space and time. Figure 1.2 illustrates the improvement
offered by such a timing detector with a resolution of 30 ps. In this figure, the x axis repre-
sents the position along the beam line, with zero indicating the designed collision point
for both opposing beams, and the y axis represents time, with zero corresponding to
the moment when the proton bunches completely overlap. The red dots show collision
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Figure 1.1.: Cross-sectional view of the CMS detector at CERN’s LHC, showing its major
components: the silicon tracker, electromagnetic and hadron calorimeters,
superconducting solenoid, and muon chambers. The detector identifies par-
ticles such as muons, electrons, hadrons, and photons based on their inter-
action with these layers. Particle trajectories are illustrated in different col-
ors: muons (blue), electrons (red), charged hadrons (green), neutral hadrons
(green dashed), and photons (blue dashed). This figure has been modified
from David Barney [12].

vertices reconstructed without using timing information, where the system struggles to
separate collisions that occur close together in the z direction (along the beam). In con-
trast, the blue circles and black crosses depict the results of the 4D reconstruction using
the proposed timing detector. These results show that the algorithm can clearly sepa-
rate events that would otherwise appear merged, providing a significant improvement
in accuracy, reducing the likelihood of merging nearby collisions.

The timing information of the particles will be incorporated into the CMS through a
new timing detector, the MTD [14]. This detector is a specialized time-of-flight detector
capable to distinguish events happening in quick succession. As this detector is intro-
duced in an upgrade of CMS, this will take the space previously allocated to a heat screen
to avoid heat transfer between the Tracker and ECAL detectors with a maximum radial
envelope of 40 mm. The modular design of BTL includes 72 trays comprising indepen-
dent electronics and cooling systems. Each tray has 2 cooling loops that carry biphasic
CO2 (in gas and liquid state) for cooling purposes, read-out electronics, and 72 sensing
modules. Each module is then comprised of two photodetector and scintillator pack-
ages, a copper housing, read-out electronics for each package, and an insulation layer.
Finally, each photodetector and scintillator package comprises 16 scintillator bars, 32
SiPMs or silicon photomultipliers, and 4 thermoelectrical coolers within the same elec-
tronic board. This package is the smallest sensing unit in the barrel timing layer (BTL). It
is in these scintillation crystals that the energy deposited by the ionising particles is con-
verted into light, and the photodetectors transform these photons into an electric signal,
which we can postprocess. This entire assembly is exemplified in Figure 1.3 for one tray.



1

4 1. Introduction

Figure 1.2.: Simulated and reconstructed vertices in a bunch crossing with 200 pileup
interactions, assuming a MIP timing detector with 30 ps time resolution
covering the barrel and endcaps. The horizontal axis is the z position along
the beam line, where the 0 is the centre of the IR. The vertical axis is time,
with 0 being the point in time when the beams completely overlap in z. The
simulated vertices are the red dots. The vertical yellow lines indicate 3D-
reconstructed (i. e., no use of timing information) vertices, with instances of
vertex merging visible throughout the display. The black crosses and the blue
open circles represent tracks and vertices reconstructed using a method that
includes the time information and is therefore referred to as 4D. Many of the
vertices that appear to be merged in the spatial dimension are clearly sep-
arated when time information is available. This figure and description are
taken from CMS [13].

Considering all the BTL detector components, the overall timing precision can be cal-
culated through the quadratic sum of each element’s standard deviation from the optical
processes to the electrical readout. This can be written as

σt =
√(

σclock
)2 + (

σdi g i
)2 + (

σel e
)2 + (

σphot
)2 + (

σDC R
)2 . (1.1)

This expression assumes all contributions are statistically uncorrelated, allowing the to-
tal variance to be expressed as the sum of individual variances. In the previous equation,
the different components that affect total timing resolution σt are defined as the clock
reference system σclock , the digitation process σdi g i , the electronics σel e , the photon
detection σphot , and the dark count rate σDC R . σclock measures uncertainty from time
reference systems. σdi g i represents errors in the conversion of analogue to digital sig-
nals. Electronics introduce noise and delay that affect the measurement (σel e ). σphot

covers time uncertainty in detecting photons due to their arrival times from their gener-
ation location within the scintillator. Finally, σDC R measures the uncertainty due to the
dark count rate (DCR). This DCR is the main source of noise in the SiPMs, resulting from
thermally generated electrons that create an avalanche in the photodiode. The overall
timing resolution of BTL is estimated to be less than 50 ps at the end of life. These results
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Figure 1.3.: Barrel Timing Layer module composed of 16 LYSO bars and 32 SiPM channels
within a copper module for heat transfer and structural stiffness.

recover the current precision of CMS with the increased luminosity of HL-LHC.
The estimated timing performance of BTL is based on experimental measurements

of the photodetectors [15, 16], scintillating crystals [17] and the CO2 biphasic cooling
system [18]. The most influential elements to BTL’s performance are the scintillator and
SiPMs due to their large contribution to the total time resolution compared to the rest
of components following Equation (1.1) with values of σphot around 25-30 ps and an
end of life σDC R of 50 ps. The DCR of the SiPMs will start at a near-zero value. However,
radiation-induced damage will increase the DCR during the expected life of the detector.
The overall performance of BTL can be improved through the design and optimization
of its different components to reduce the DCR and photon arrival time uncertainties.

1.1. Scintillation crystals
From the detection process of ionization particles using scintillation crystals, the first
component of the time resolution (see Equation (1.1)) that affects our results is σphot .
Thisσphot is governed by the statistics of the arrival time of the photons from their origin
within the scintillation crystals to the SiPMs. The scintillation process, by which we con-
vert ionizing radiation into visible photons, is tightly tied to the material properties of the
scintillation crystals. While there exist organic and inorganic scintillators, for harsh envi-
ronments with high radiation doses and high-energy physics applicators, only inorganic
crystals provide high ratios of photon emissions and stopping power (with the ability to
extract energy from ionizing impacting particles) versus radiation hardness (deteriora-
tion under radiation).

Scintillation in inorganic crystals occurs when electrons are excited from the valence
band to the conduction band, followed by deexcitation at impurity sites, producing
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photons. Inefficiencies arise when defects such as substitutional impurities or vacan-
cies trap electrons, return to their ground state without emitting photons (e. g., thermal
quenching), or are reabsorbed, reducing photon yield [19]. The schematics of this local
process within the scintillator can be visualized in Figure 1.4b. Figure 1.4a further shows
a macro schematic of an ionizing particle flying through a scintillator, the photons cre-
ated in a point energy deposition and their arrival at a glued SiPM. We can improve these
properties through material research and adjustment of impurity concentrations [20].
This often involves the use of rare-earth doping agents, which are costly due to geopolit-
ical factors and have expensive manufacturing processes. For the particular case of BTL,
the price of scintillating LYSO:Ce crystals can be estimated to be approximately $4000/kg
[21].
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Figure 1.4.: Schematics of the scintillation process. Figure 1.4a depicts an ionizing parti-
cle (in red) hitting a scintillator, causing local energy deposition and photon
generation. These photons travel toward an optically glued SiPM. A reflective
coating surrounds the scintillator to prevent light loss. Figure 1.4b focuses
on the local processes near the energy deposition site. An electron is excited
from the valence band to the conduction band, moving until it encounters
an impurity. At this point, the electron may either deexcite via scintillation,
emitting a photon or undergo quenching without emission.

The default design of the LYSO:Ce scintillators used in BTL can be seen in Figure 1.5
submitted to an exciting wavelength. These 3x3x57mm crystals are packaged in a reflec-
tive ESR (enhanced specular reflector) coating glued to localized regions to avoid losing
as many photons as possible and attached to SiPM packages at each of their ends ac-
cording to Figure 1.3 and Figure 1.4. These crystals have been experimentally tested in
successive measurement campaigns to improve their light with respect to their Ce dop-
ing composition and the capabilities of the manufacturers [17].

The composition of the material is not the only way to improve overall σphot . Fur-
thermore, the literature shows that the geometrical shape [22], optical surfaces [23], and
coatings [24] of scintillating crystals also affect the overall light collection by the pho-
todetector. In this manner, nonconventional shapes can focus the photons onto the
photodetectors and change the track length of the ionizing particles across the scintil-
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Figure 1.5.: LYSO:Ce bars under an exciting source used within BTL. This figure is taken
from CMS [13].

lator. The use of particle-matter interaction software can alleviate time and monetary
costs by testing multiple geometries without the need for an experimental setup. In-
deed, we find examples in the literature of the characterisation of scintillators’ geome-
tries through GEANT4 – a particle-matter interaction software based on ray-tracing [25]
– such as Danevich et al. [26], which compares 4 different shapes of scintillators in re-
lation to the light extraction characteristics. We can also see some optimizations of the
shape of these crystals through parametric analysis of their thickness ratio in Min et al.
[27].

These particle-matter interaction software packages tend to use ray tracing algorithms
and stochastic data to simulate the behaviour of physical particles. In the case of the
scintillation and optical processes, these stochastic data include the deviation of the
number of photons created in each time step taken from normal distributions, the pho-
ton direction after its generation and non-specular reflections, the wavelength of the
generated photons, etc. These facts lead to the need for gradient-free optimization algo-
rithms for the optimization of scintillator designs.

1.2. Thermoelectrical cooling technology
Thermoelectricity converts electron flow into heat transfer using electrical conductors
with different properties. As shown in Figure 1.6, the Fermi level, which indicates a 50%
probability of finding an electron, is near the valence band (the highest energy band
filled with electrons) in p-type semiconductor materials and closer to the conduction
band (the energy band where electrons are free to move) in n-type materials. Electrons
release heat when they move from the n-type to the p-type because of their difference
in energy, and absorb it when moving in the opposite direction. This is the Peltier effect,
where a current applied through dissimilar conductors creates a heat-pumping effect. A
thermoelectric cooler (TEC), composed of multiple semiconductor connections in series
to a DC source, can be used to actively cool a surface in contact with it using the Peltier
effect, as depicted in Figure 1.6.

Applications of this technology include electronics and medical devices cooling, cryo-
genics, and heat recovery for more efficient systems [28]. Thermoelectric coolers offer an
appealing alternative to conventional compression-based systems due to their minia-
turization capabilities, lack of gas emissions, lack of moving components, and reverse
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Figure 1.6.: Illustration of a thermoelectric module, consisting of alternating p-type and
n-type semiconductor materials. Heat is absorbed on one side of the mod-
ule, while heat is removed on the opposite side. The directional flow (ar-
rows) of electrons and holes (represented by circles with − and + symbols,
respectively) is shown within the n-type and p-type materials, respectively,
highlighting the process of thermoelectric cooling or heating. The module is
connected to an external electrical circuit.

operation capabilities.

With the SiPMs DCR being one of the main contributors to BTL’s loss of timing resolu-
tion, actively controlling their temperature provides multiple advantages. These advan-
tages can be summarized as lower operating temperatures that reduce signal noise in
SiPMs [29] and annealing procedures that help recover radiation-induced damage [30,
31]. The effect of active control of the temperature of SiPMs is modelled in CMS [13] and
represented in Figure 1.7. This plot represents the DCR of the SiPMs on the y axis and
the operation year on the x axis, using different nominal temperatures during operation
and annealing cycles during shutdown periods. This plot suggests that we can reduce the
dark current rate (DCR) of the SiPMs at the end of life for BTL by half for each 10 degrees
lower for their operational temperature and with annealing scenarios above 10 ◦C.

Bornheim et al. [34] describes the BTL cooling system, which consists of biphasic CO2
cooling linked to 4 TECs per 16 SiPMs through a copper housing, and provides prelimi-
nary results for the system based on a mock-up. Boiling liquid CO2 inside steel pipes em-
bedded in an aluminium plate acts as the primary heat sink, dissipating heat from the
detector. However, the CO2 system, shared with the Tracker, operates between −35 ◦C
during use and +10 ◦C during shutdowns. TECs decouple the SiPM temperatures from
the CO2 system, enabling annealing during shutdowns and lower temperatures during
operation. Experiments performed in Bornheim et al. [34] using a water-cooled alu-
minium plate and testing two different Phononic TECs [35], achieve a 10 ◦C temperature
reduction with 420 mW injected into the SiPMs and 600 mW into the 4 TECs. The anneal-
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Figure 1.7.: Evolution of dark count rate at fixed operating over-voltage of 1 V through-
out the detector operation assuming the current baseline running plan of the
HL-LHC [32] and for different scenarios of SiPM temperature during opera-
tion (Top) and during technical stops (Tann) when annealing can be acceler-
ated. This figure and caption is taken from Heering et al. [33].

ing procedure up to 40 ◦C shows a need of 1W for each 4 TECs. The design of the current
BTL system is then based on experimental testing, which is time-consuming and expen-
sive. Thermoelectric simulations can streamline this process by allowing comparisons
of more configurations at a lower cost and a faster pace. Standard TECs use simple rect-
angular semiconductor blocks connected electrically in series and thermally in parallel.
However, the TEC performance depends on semiconductor geometry, not just semicon-
ductor volume or their connections [36]. Recent research applies topology optimization
through finite element methods (FEM) to optimize the shape and distribution of the pel-
lets in simplified 2D models for specific thermoelectric applications [37].

1.3. Research aim and scope
The main research question of this thesis is formulated as

Can numerical design optimization techniques be applied to improve the timing
precision of minimum ionizing particle detectors?

This central question is addressed from the point of view of the overall detector. To
narrow down the question, we focus on the largest components from Equation (1.1) to
the overall time resolution, namely the photonic and DCR influences. In this manner, we
can achieve lower timing resolutions through more efficient active-temperature controls
of the photomultipliers to reduce the ensuing electrical noise and higher light collection
values from the coupled scintillators to increase the overall signal.

Looking first at the σDC R component, we develop a first subquestion as



1

10 1. Introduction

• Can a topology optimization formulation for thermoelectric devices improve cool-
ing performance accounting for material cost and specific operational factors, in-
cluding electrical working points and nonlinear Joule heating?

Using topology optimization, we postulate that we can improve the efficiency of the
TECs attached to the SiPMs. These TECs provide active thermal regulation to the SiPMs,
providing a lower operating temperature and a lower σDC R . Given the limitations of the
power source, if we can provide higher temperature differences across the TECs for the
same power consumption, we can improve the detector timing resolution. However, to
develop this procedure, we first need to understand the convergence of the thermoelec-
trical topology optimization problem under multiple operational points and constraints.
Knowing that the thermoelectrical problem is non-linear due to the Joule heating, the
problem can lead to nonconvexities and a lack of convergence to feasible design regions
during the optimization. Furthermore, we notice that, for cooling approaches, we have
a power limitation but freedom to operate the voltage gradient across the device within
limits.

Answering the previous question can provide an approach to improving the BTL time
resolution. However, thermoelectrical devices are also subject to mechanical loads that
need to be supported by the devices. This leads to the second subquestion of this disser-
tation,

• Can numerical methods optimize coupled thermoelectric-mechanical systems
while considering mechanical and thermoelectrical loads?

Answering this question can prevent the loss of efficiency within the TECs with suc-
cessive loading and unloading during thermal cycles, reduce stresses during installation
procedures, and increase their overall reliability.

The SiPM temperature is not the only factor affecting the timing resolution; the prop-
erties of the scintillators can also modify it. In this manner, we approach the reduction of
the second largest component to the timing resolution, being σphot , with the subques-
tion

• Can shape optimization of scintillation crystal surfaces reduce light re-absorption
and improve performance at the photodetector interface, considering the stochastic
nature of the optimization process?

This question poses the challenge of using the numerical optimization procedures to
scintillator crystals, with the challenge of the stochastic nature of the particle-matter
interaction simulation software associated with these processes. This realization leads
to a final subquestion

• Can deterministic modelling approaches, such as FEM and FDTD, enhance scintil-
lation efficiency through improved photon generation and detection while reducing
the computational demands associated with Monte Carlo methods?

In this last question, we pose the challenge of changing the modelling of the Monte
Carlo-based particle interactions to a deterministic approach to accelerate the optimiza-
tion procedure of scintillation crystals.



1.4. Main contributions and outline

1

11

Overall, providing a satisfactory answer to each one of these questions is bound to
provide an optimization procedure to improve the timing resolution of BTL. The results
are then based on its most significant components, namely the DCR of the SiPMs gov-
erned by their temperature control and the signal level determined by the properties and
geometry of the scintillators.

1.4. Main contributions and outline
This thesis is created over the compendium of papers already published in journal pa-
pers (including Chapter 2 and Chapter 4) or are expected to be published in the coming
months after the submission of this document. This document is organized regarding
the order of the sub-questions stated in Section 1.3.

In particular, the content and main contributions of each chapter are summarized as
follows:

• Chapter 2 studies the design space of thermoelectric devices for cooling applica-
tions, focusing on nonconvex topology optimization of thermoelectric elements.
This framework includes power budget constraints to improve thermal gradients
across the thermocouples. The approach maintains an optimal power-to-heat
extraction ratio by integrating the voltage gradient across the thermocouple as a
design variable. Given the non-linearities present in the problem, we develop a
simplified analytical model to examine how penalization coefficients affect op-
timization convergence. The chapter concludes with topology optimizations of
thermocouples based on the commercial TEC 1MC10-031. The results show that
this method achieves temperature reductions of up to 10 degrees while using 60%
less semiconductor material, with temperature-constant properties that enhance
the correlation with the analytical model. The analysis also verifies the impact of
temperature non-linear material properties on each optimized result.

Chapter 3 expands on Chapter 2 by introducing mechanical degrees of freedom.
The formulation decouples thermoelectric and mechanical calculations, signif-
icantly reducing memory usage. The topology optimization aims to minimize
temperature while accounting for the electrical working point, using voltage as
a design variable and non-linear temperature-dependent materials. We describe
a polynomial fitting method to model the nonlinear materials. Additionally, the
formulation includes power and stress constraints. Stress and temperature objec-
tives are aggregated to prevent hot spots and stress singularities in the optimized
topologies. The section concludes with 2D and 3D optimized thermocouple exam-
ples based on loads present on the thermoelectrical devices during the operation
of a thermocouple. Helmholtz filtering is finally applied to address checkerboard-
ing, preventing porous materials that arise when mechanical degrees of freedom
are included in the optimization. The results include a study on the effect of grey
elements, nonlinear temperature-dependent material properties, and air conduc-
tance on the optimized designs.

• Chapter 4 demonstrates how to apply stochastic data from particle-matter inter-
action software with nongradient-based genetic optimizers. The goal is to es-
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tablish a Pareto front that balances the amount of scintillation material in the
detector, influencing costs, against the number of photons detected by the pho-
todetectors. This research models a scintillator and silicon photomultiplier pack-
age assembly using GEANT4, an open-source software for particle-matter interac-
tions. We describe a method to simplify the modelling process of the BTL mod-
ules within GEANT4 and assess computational requirements for accurate light
collection calculations. The study includes two geometries compatible with BTL.
The model’s geometry employs parameterized splines for smooth results and is
meshed using GMSH, facilitating genetic numerical optimization through NSGAII
(non-dominated sorting genetic algorithm). This approach generates optimized
scintillator geometries and evaluates trade-offs among various objective functions
based on the resulting stochastic data. The Pareto results, whose convergence is
studied using the hypervolume indicator, compare favourably to the original de-
sign, leading to a recommendation to prioritize light collection per energy deposi-
tion and track path length. The findings indicate potential relative improvements
to the original designs of up to 18% for a constant volume in geometries suitable
for the BTL detector design.

• Chapter 5 presents a formulation that transitions scintillator optimization from
nongradient methods to a framework that accommodates derivative-based opti-
mizers. This chapter details the implementation of finite element method (FEM)
techniques to scintillators, which enhance computational efficiency compared to
the use of GEANT4. The chapter introduces boundary condition translation for
scintillation phenomena, converting them into energy pulses in a transient elec-
tromagnetic framework. This translation facilitates the comparison of energy de-
position calculations in different photodetectors and scintillator assemblies. The
chapter also examines a frequency domain problem, fitting its wavelength and en-
ergy losses to fit the GEANT4 model design space depending on the crystal shape.
Validation occurs through comparison with a GEANT4 model, accounting for ge-
ometry and material properties. The findings highlight the significance of self-
absorption and boundary conditions in modelling scintillators through FEM. The
frequency domain model serves as the basis for numerical shape optimization, us-
ing energy deposition as an objective function while adhering to multiple geomet-
ric constraints. The chapter concludes with validation results that demonstrate a
7% improvement in the median light collection distribution, achieved in a fraction
of the time compared to traditional GEANT4 or transient modelling methods.

Finally, Chapter 6 contains a discussion of the results of all previous chapters, includ-
ing further numerical optimization opportunities in the field of particle detectors and
the use of these techniques in fields where there is still no extensive literature and there
is potential for higher time resolution or cooling capabilities. Furthermore, this chapter
discusses how the overall optimization procedures have been able to improve the per-
formance of the BTL detector and future recommendations are provided.
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2
Enhancing the cooling

performance of thermocouples: a
power-constrained topology

optimization procedure

Heat pumping through thermoelectric devices has many advantages over traditional
cooling. However, their current efficiency is a limiting factor in their implementation.
In this paper [1], we formulate and solve the nonconvex topology optimization
problem of thermoelectric cooling elements using the Method of Moving Asymptotes
(MMA), with the objective of maximizing cooling effectiveness per unit power input.
The optimization problem is defined for a given power budget, aiming for the
minimum temperature with a known heat pumping need. The introduction of
power as a constraint justifies the introduction of the voltage gradient across the
thermocouple as a design variable to maintain the thermoelectrical device in its
optimum power-to-heat extraction ratio. To better understand the convergence of this
nonconvex problem, we present a two-variable analytical thermoelectric optimization
model. We use this example to select the material penalty coefficients involved in the
SIMP problem through a combinatorial study of the design spaces of each objective
and constraint. Finally, we test the combination of penalty coefficients given by
kp =σp >αp through numerical optimizations of a model based on the commercial
thermoelectric cooler (TEC) 1MC10-031 using the finite element method (FEM). We
perform these optimizations using constant material properties with temperature to
better correlate with the analytical model and simplify the computational complexity.
The results of these optimizations are studied to understand the effect of multiple
design parameters on the optimized designs found. We show that these optimizations

This chapter has been published as the Structural and Multidisciplinary Optimization Journal, 189
(2024) [1]
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can provide temperatures lower than those of the original design at volumes lower
than those of the imposed constraints. With postprocessing, we can also show that the
gains remain true using nonlinear material properties. Given the test cases studied, we
find designs that achieve temperatures close to 10 degrees lower for 60% less volume
of semiconductor material using thermocouple FEM models.

2.1. Introduction

T he energy consumption for cooling and heating accounts for half of the global
energy consumption and 40% of global energy-related CO2 emissions, respectively

[2]. Most heat-transfer-related activities are carried out through compressor- and
refrigerant-based systems for active thermal management. Conversely, thermoelectric
modules offer an alternative thermal management solution with simpler static
systems, higher reliability, lower maintenance cost, refrigerant-free operation [3],
miniaturization possibilities, and reverse heat-pumping capabilities [4]. These
advantages make thermoelectric-coolers (TECs) ideal for niche applications such
as sustainable self-cooling, cryogenic applications, medical, food or building
refrigeration, thermal cycling and electronic cooling of sensors, lasers and chips [5].
Despite their advantages over conventional systems, TECs have yet to see a significant
adoption in applications where they compete against turbomachinery-based cooling
systems due to their low energy conversion efficiency and high system cost
(approximately $75/W [6] per TEC against $7/W for liquid electronic cooling systems
[7].

The static behaviour and miniaturization possibilities of TECs arise from using the
Peltier effect. First observed in 1834 [8], the Peltier effect dictates that when a current
is passed through two dissimilar conductors, such as a p-n semiconductor junction,
heat absorption occurs at the interface, arising from the elevation of the energy
levels of electrical current electrons from the p-type to the n-type semiconductor.
The Seebeck effect can also be harnessed through dissimilar conductor connections,
called thermocouples, to generate an electrical potential gradient, which can be
harnessed for applications such as heat recovery and power generation in remote
or hard-to-reach locations. Peltier and Seebeck effects exist within the same
thermoelectric device architecture based on thermocouples.

As the smallest unit of thermoelectric device architecture, the thermocouple has
captured significant attention in endeavours aimed at improving the efficiency of
thermoelectric devices. On the one hand, these efforts focus on reconciling the
conflicting material properties of the often-used semiconductor materials. To have
high efficiency, we require high electrical conductivity, low thermal conductivity,
and large Seebeck coefficient gradients – related by the Wiedemann-Franz law
– to maximize the figure of merit or Z T , directly associated with the device’s
efficiency. These properties can be modified through the nanoscale constituents
of semiconductors; however, the procedures required are limited by the available
material composition and manufacturing technologies, with the largest Z T obtained
being in the range of 1–3 [5]. On the other hand, the electrical and thermal
conductivities of the entire device also depend on the thermocouple topology.
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Numerical simulations show that thermocouples with variable cross-sections can
provide higher efficiencies and lower stresses than conventional constant-section
thermocouples [9]. In particular, thermocouple design is highly interesting for the
standard thermoelectrical module architecture (flat-bulk) [10]. Fabián-Mijangos, Min,
and Alvarez-Quintana [11] experimentally tested multiple thermocouple designs,
showing efficiency increases using asymmetric thermocouples for power recovery.

Topology optimization (TO) is a powerful tool for enhancing the efficiency
of thermocouples without the need for extensive experimental testing and its
associated costs. Since its inception with Bendsøe and Kikuchi [12], the method has
promoted different variations such as the commonly used solid isotropic material
with penalization (SIMP) or level set (LS) approaches, among others [13, 14].
TO is practical for designing thermoelectrical compliant microactuators, showing
promise with both SIMP and LS approaches [15–17]. Additionally, TO can increase
the efficiency of heat recovery devices using novel thermocouple designs [18]
and multi-material optimizations [19]. Finally, Soprani et al. [20] delve into the
optimization of thermal coupling materials for TECs, and Lundgaard and Sigmund
[21] looks into the topology optimization of multi-material thermoelectrical devices
for multiple objective criteria.

Despite research on TO applied to thermoelectric-compliant mechanisms and
heat recovery, current formulations fall short regarding cooling applications and
specific working points. A more tailored TO formulation that takes TEC
design considerations into account can provide a reduction of bulk-material costs
(representing approximately 1/3 of the system cost according to Leblanc et al. [6]) and
improved cooling performance. Furthermore, previous formulations have overlooked
important operational factors, such as the working points for electrical and power
consumption and their limitations. The lack of attention to these factors often
leads to postprocessing at different operational points to understand the device’s
actual performance [21]. Furthermore, the lack of study of the multiple electrical
working points neglects the effect of the nonlinear Joule heating over the topology
of the device, which can induce higher local current densities and subsequent
hot spots. Previous results for heat recovery also tend to use volume constraints,
which can reduce material costs, but that can also reduce the performance of
the designs studied, missing optima at higher volumes, depending on the ratio of
thermal conductivity to electrical conductivity of the device [18, 22]. Furthermore,
in thermoelectrical devices, increasing the volumes of semiconductor material in
the design does not necessarily lead to better performances [23]. This fact raises
doubts about the optima found using volume constraints. Additionally, the absence
of thermoelectrical optimization results based on 3D geometries in the literature
raises questions about the influence of intricate geometries on the design of each
semiconductor leg, or pellet, in a thermocouple.

This paper [1] presents a novel approach to optimize three-dimensional TEC
thermocouples using TO. First, we propose an analytical model with two design
variables to study the design space and understand its non-convexity. This model
is studied concerning the material scaling used in SIMP to predict the optimization
parameters to improve the convergence of an optimization problem with a larger
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number of design variables. Secondly, we apply TO to a finite element model of
a thermocouple based on a commercial product, validating the insights from the
lower-dimensionality problem. These models are studied with constant material
properties to compare with the analytical solution of the thermoelectrical equations.
Using constant material properties further reduces the computational complexity and
cost of the models. We later study the error introduced by these assumptions in the
results section. Furthermore, the design considerations of TECs are integrated into
the optimization through the selection of a temperature objective function subject
to power consumption limitations. In this model, the power consumption can be
modified through the density design variables and the voltage gradient through the
thermocouples. This voltage design variable introduces an electrical control over the
nonlinear Joule heating in the device. Finally, the results are studied for multiple
electrical and thermal working points of the thermocouple.

2.2. Governing Equations
The bulk-flat thermoelectrical architecture depicted in Figure 2.1 uses alternating p-
and n-type pellet-shaped thermoelectric materials connected electrically in series and
thermally in parallel. Copper layers on the top and bottom of each thermoelectric
leg serve as electrical contacts, and two ceramic plates provide thermal contacts.
Although all the materials in the thermoelectrical modelling should account for all
three elements, the Seebeck coefficients of the copper layers are often neglected
due to symmetry conditions (meaning copper segments generate equal and opposite
voltages that cancel out), with only thermal degrees of freedom. However, the bulk
properties of the semiconductors are subject to nonlinear thermoelectric coupling.

pellets

ceramic

copper

Figure 2.1.: Flat-bulk thermoelectric cooler (TEC) schematic exemplifying the
electrical contacts between the semiconductor pellets and the thermal
contact plates.

Goupil et al. [24] provides the balance and constitutive equations representing the
thermoelectrical coupling. We can write down the balance equations in stationary
conditions for the electric charge and energy flux as

∇∇∇··· j = 0,

∇∇∇···q+ j ·∇∇∇φ= qΩ ,
(2.1)
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where j is the current density, q is the heat flow, qΩ is the heat generated in the
volume and φ is the electrical potential across the semiconductor material. These
equations then express – within a given volume – the conservation of internal charge
and energy given their flow through the volume boundary without magnetic fields.

The Ohm and Fourier equations,

j =−σ(∇∇∇φ+α∇∇∇T ) , (2.2)

q =αT j−k∇∇∇T , (2.3)

complete the thermoelectrical coupling. Where σ is the electrical conductivity, α is
the Seebeck coefficient, k is the thermal conductivity of the semiconductor material,
and T is its temperature. Equations (3.3) and (3.4) provide the constitutive equations
and a relation between the temperature, heat flux, electrical potential and current
flow. Although we can analytically solve these equations for simple configurations,
complex geometries or nonlinear material properties can only be solved numerically.

2.2.1. Finite Element Modeling
The thermoelectric equations’ finite element formulation makes it possible to solve
the thermoelectric fields in complex semiconductor geometries through discretized
equations and meshing algorithms. With Equations (3.1), (3.3) and (3.4) as the
strong formulation of the thermoelectric problem, we need to introduce the required
boundary conditions to solve it. We can write these boundary conditions as

V =VΓV inΓV ,

j ·n = jc inΓ j ,

T = TΓV inΓV ,

q ·n = qc inΓq ,
(2.4)

where VΓV and TΓV define the prescribed boundary conditions in the domain, and
qc and jc represent the externally prescribed heat flows and current densities,
respectively. The defined boundaries satisfy the conditions ΓV ∪Γ j = Γ ,ΓV ∩Γ j = 0
where Γ represents the entire boundary. Similarly, the thermal boundaries satisfy
ΓT ∪Γq = Γ ,ΓT ∩Γq = 0.

The thermoelectrical system can now be transformed into the weak form of
the Equations (3.1), (3.3) and (3.4), using an approximation function ω and the
divergence theorem,

−
∫
Ω
ω∇∇∇···qdΩ+

∫
Ω
ωj ·∇∇∇φdΩ+

∫
Γq

ωqc dΓ

=
∫
Ω
ωqΩdΩ ,

−
∫
Ω
∇∇∇ω · jdΩ+

∫
Γ j

ω · jc dΓ= 0.

(2.5)

We can now discretize Equation (2.5) to reach the Garlekin formulation using the
approximation shape functions as

T = N⊺T ,

φ= N⊺V ,
(2.6)
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where V and T are the temperature and voltage degrees of freedom and N contains
the shape functions. Combining Equation (3.10) with Equation (2.5) and creating a
homogeneous equation system, we obtain the residual R for a given nodal value
solution,

R =
[

RA

RB

]
,

RA =−
∫
Ω

N∇∇∇···qdΩ+
∫
Ω

Nj ·∇∇∇N⊺VdΩ+∫
Γq

Nqc dΓ−
∫
Ω

NqΩdΩ= 0 ,

RB =−
∫
Ω
∇∇∇N · jdΩ+

∫
Γ j

N · jc dΓ= 0 .

(2.7)

We can separate this residual into its components related to the temperature,
RA, and voltage, RB, degrees of freedom. Pérez-Aparicio, Taylor, and Gavela [25]
provides a more detailed development of the thermoelectric finite element method
(FEM) equations with benchmark tests concerning analytical solutions and nonlinear
material properties.

To obtain the solution of this system, we use the Newton-Raphson (NR) algorithm
with the tangent system matrix, Kk, calculated for each iteration and equal to the
derivative of the residual concerning the problem degrees-of-freedom;

Kk =
[
ÇRk

ÇT
ÇRk

ÇV

]
=

 ÇRk
A

ÇT
ÇRk

A
ÇV

ÇRk
B

ÇT
ÇRk

B
ÇV

 . (2.8)

We can expand the derivatives of the residual to an integral form for any given
iteration,

ÇRA

ÇT
=−

∫
Ω
∇∇∇N

Çq

ÇT

⊺
dΩ+

∫
Ω

N(
Çj

ÇT

⊺
∇∇∇N⊺V)⊺dΩ ,

ÇRA

ÇV
=−

∫
Ω
∇∇∇N

Çq

ÇV

⊺
dΩ+

∫
Ω

N(
Çj

ÇV

⊺
∇∇∇N⊺V)⊺dΩ

+
∫
Ω

N(j⊺∇∇∇N)⊺dΩ ,

ÇRB

ÇT
=−

∫
Ω
∇∇∇N

Çj

ÇT

⊺
dΩ ,

ÇRB

ÇV
=−

∫
Ω
∇∇∇N

Çj

ÇV

⊺
dΩ ,

(2.9)

These equations depend on the heat and current flow derivatives. Using constant
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material properties with the temperature, we can write the equations as follows:

Çj

ÇV
=−σ∇∇∇N⊺ ,

Çj

ÇT
=−ασ∇∇∇N⊺ ,

Çq

ÇV
=α(N⊺T)

Çj

ÇV
,

Çq

ÇT
=α(N⊺T)

Çj

ÇV
+αjN⊺−k∇∇∇N⊺ .

(2.10)

Notice that simplifying the material description using non-temperature-dependent
material properties reduces the complexity of the TO. However, the lack of material
nonlinearities disregards the Thomson effect. The Thomson effect relates to
the gradient of the Seebeck coefficient with temperature and induces an extra
component in the electrical current flow. However, this effect is small compared to
the other thermoelectric effects and can be ignored [26]. Disregarding the Thomson
effect implies that the results are inaccurate for large temperature deviations from
the temperature point used to measure the material properties [27].

The nonlinearities in the problem, arising from the strong coupling of the
thermoelectrical equations and subsequent Joule heating, can produce convergence
issues within the NR. Higher-order elements provide exact results for the second-
order thermoelectric equations within each element, improving convergence. Using
higher-order elements also increases the overall computational complexity of the
problem. However, the nanometer validity limit for the thermoelectrical equations
and manufacturability limitations to micrometre level [28] reduce the element and
system size we need to solve. Using a filter to set a characteristic length scale
could also mitigate these effects at the cost of higher complexity. To reduce
the computational cost of the higher-order element, we use 20-node serendipity
elements and a 14-point integration scheme based on integration locations in the
corners and faces of a hexahedron internal to the element. Hoit and Krishnamurthy
[29] describes the advantages and development of this integration scheme with
benchmark examples, and the whole element and integration implementation can
be found in Appendix A.

2.3. Optimization Formulation
The optimization problem formulation employed in this work follows that proposed
first by Bendsøe and Kikuchi [12]. The design variable xe represents a variation of
the density of the element associated with it,

ρe (xe ) = xeρ0 , (2.11)

where ρe is the density of element e dependent on its design variable, ρ0 is the
nominal density of the material associated with that element, and xe is comprised
between 0 and 1. We define the rest of the material properties with respect to the
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design variable xe with a penalty coefficient as

αe =αmin +xpα
e (α0 −αmin) ,

ke = kmin +xpk
e (k0 −kmin) ,

σe =σmin +xpσ
e (σ0 −σmin) ,

(2.12)

where we interpolate between the minimum allowed value, denoted by the subindex
min, and the nominal value of the semiconductor material, denoted by the
subindex 0. This interpolation helps to avoid numerical singularities at each linear
solve of the NR iterations. Furthermore, the penalization coefficient pi for each
material property helps to avoid intermediate density results, rapidly decreasing the
influence of each variable at lower densities if the volume constraints are active or
the optimum is found at lower material quantities than the initial design.

Once we have defined the material properties concerning our design variables, we
can define the objectives and constraints of our optimization from the problem’s
governing equations. Traditionally, the objective function for thermoelectric devices
is their efficiency, which involves the ratio of the heat extracted against the power
consumption, defined as the coefficient-of-performance (COP) for a heat pumping
device,

COP = Q[W]

P [W]
, (2.13)

where Q is the heat extracted by the TEC and P is its power consumption, whose
ratio can be higher than 1. Knowing the power dissipation of the electronic
system we want to cool down, we know the heat extracted Q. Fixing Q limits
a COP maximization objective to reduce power consumption and increase device
efficiency. However, reducing power consumption for a known heat extraction
does not necessarily correlate to a lower temperature in our electronics, which is
critical for specific applications [30]. Defining the electronics temperature as our
optimization objective means that we must include the power limitation – or power
budget – of the thermoelectric system as a constraint, as it is no longer present in
our objective function.

As we can easily modify the power consumption by external operational inputs –
applied voltage or current through the device – to work on more efficient states, we
must include this operation in the optimization to compare to the initial design. For
this purpose, we introduce an externally applied voltage boundary condition as a
design variable. This voltage allows us to compare the optimum working point of the
non-optimized designs without postprocessing. Furthermore, the voltage gradient
design variable considers the system’s nonlinear behaviour concerning the applied
electrical load.

In some cases, reducing the volume does not improve the TEC’s performance. If
we still want to limit the material used and associated costs, we must introduce a
volume constraint to the problem.

The optimization shall take into account the objective and constraints as
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x =argmin :
x

Tav g (x,T) = 1

nn

nn∑
i=1

(Ti ) = L⊺T , (2.14a)

subject to: Rk = 0 , (2.14b)

cv =
ne∑

e=1

ve xe

v0vob j
−1 ≤ 0, (2.14c)

cP = P

Pob j
−1 < 0, (2.14d)

V f =Vmin +xne+1(Vmax −Vmin) , (2.14e)

where the objective function, Tav g , is defined as the average temperature value of
the specified nodal values. Only the nodal values of the surface of the thermocouple
in contact with the device to cool down – in this case, one of the copper interfaces
– need to be taken into account for the objective value, with nn being the total
number of nodes in this surface. This summation can then be represented as
a matrix product of a vector of constant values (L) – equal to 1

nn
for the nodal

temperature values within the surface to cool down and zero otherwise – by the
vector U that contains the nodal degrees of freedom (DOFs). For this calculation
to be accurate, after the optimization has converged, we need to ensure that the
temperature DOFs at the copper surface temperature have a uniform value.

Furthermore, the established limit volume for optimization, vob j , and design
variables, x, are scaled between 0 and 1. The volume constraint, Equation (3.25d), is
calculated dependent on each element design variable, xe , related to the total initial
design volume, v0, and the desired maximum volume percentage, vob j . While the
power consumption constraint, Equation (3.25c), can surpass a value of 1, it is made
dimensionless with the limiting power budget, Pob j . If both values are of the same
order of magnitude, the optimization should not be affected.

To calculate the overall power consumption, we need to define the power
differential as the current density multiplied by the differential of the voltage gradient
at a given point. We can calculate the total power consumption of the thermocouple
through the sum of the volume integral of this power differential for each element as

P =
ne∑

e=1
Pe =

ne∑
e=1

(
−

∫
Ωe

j⊺∇∇∇N⊺Ve dΩe

)
, (2.15)

where ne is the total number of elements in the FEM model, Ωe the volume
associated with a given element with e denoting element-based properties, and
the minus sign takes into account the opposite sense of the current and voltage
differentials.

To be able to maintain the optimized power consumption for any xe density
design space, within our power budget limitations, we introduce an extra design
variable xne+1 stored in the last index of the design variable vector x of size ne +1.
This variable is related to the voltage boundary condition (V f ) through a linear
interpolation, Equation (3.25e), between user-selected voltage values (Vmax,Vmin).
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As stated in the objective and design variable discussion, this variable introduces
the nonlinear dependency of the power consumption and Joule heating into the
problem. Using xne+1 as a design variable allows the thermoelectrical pellet
to operate at an electrically favourable load within the optimization framework,
reducing the postprocessing needs to study different working points and avoiding
lower efficiencies due to high current density concentrations at higher electrical
loading.

We can now solve this problem with the method of moving asymptotes (MMA)
[31] optimization algorithm. MMA is popular in the structural optimization field
due to its robustness, flexibility and ability to handle multiple constraints, even if
other optimization algorithms provide better computational efficiency [32, 33]. MMA
is based on the local approximation of specific convex functions to the nonlinear
problem. These approximations require the derivative of the objective and constraint
equations concerning the design variables xe that are calculated in each iteration of
MMA.

Subsequently, each MMA step needs to recalculate the FEM solution running an
NR algorithm from a given initial point. Using the linearized equations concerning
the nodal degrees of freedom, Equations (3.15), (7.22) and (7.23), we find that certain
conditions for the NR initial point can improve the convergence of the method:

• For the first step of the MMA algorithm, without information on previous NR
solutions,

T = 0 ,

V = 0 ,
(2.16)

provides convergent solutions if the boundary conditions are not electrically or
thermally disconnected.

• Having a solution from a previous MMA step, we can improve the NR
convergence rate using the initial point,

Tt+1 = Tt ,

Vt+1 = Vt
V t+1

f

V t
f

,
(2.17)

where t represents the i th step of the MMA procedure.

2.3.1. Sensitivity calculation
In this section, we separate the problem, Equation (4.12), into each of its objectives
and constraints to calculate their derivatives concerning the design variables. We can
use these sensitivities to find an optimum thermocouple design through gradient
descent optimization algorithms. We calculate these sensitivities through the adjoint
method due to its efficiency for a large number of design variables. A development
of the adjoint method for structures optimization is developed in [34, 35].
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Objective Function

The objective function defined in Equation (3.25a) defines the average temperature
from the surface of the thermocouple in charge of extracting heat from the
environment. From this equation, we can apply the adjoint theorem to calculate its
derivatives using an equivalent objective defined as

T ∗
av g = L⊺U+Λ⊺Rk ,

where we include the residuals from the thermoelectric system solution, which tends
to zero for convergence conditions of the Newton-Raphson algorithm, multiplied by
a vector of unknown constants Λ. We can write the derivative of this new expression
of the objective function concerning the design variables as

dT ∗
av g

dx
= L⊺ dU

dx
+Λ⊺

(
dRk

dx

)
. (2.18)

Considering the dependencies of each variable and the values of the prescribed
degrees of freedom (Ū), we can write

Rk = R(U,Ū,x) ,

U = U(x,V f );Ū = Ū(V f ) ,

V f =V f (xne+1) ,

(2.19)

and applying the chain rule to the residual derivative, we get

dRk

dx
= ÇRk

Çx
+Kk

(
ÇŪ

ÇV f

dV f

dx
+ dU

dx

)
. (2.20)

We can then write the derivative of the average temperature as

dT ∗
av g

dx
=(L⊺+Λ⊺Kk)

dU

dx

+Λ⊺

(
ÇRk

Çx
+Kk ÇŪ

ÇV f

dV f

dx

)
,

(2.21)

and we obtain the adjoint equation so that the components multiplying a derivative
of U concerning a design variable is zero,

Λ=−(Kk)−⊺L . (2.22)

Substituting Equation (2.22) into Equation (2.21), we can now calculate the
derivatives concerning the design variables,

dT ∗
av g

dx
=+Λ⊺

(
ÇR⊺

Çx
+Kk ÇŪ

ÇV f

dV f

dx

)
, (2.23)
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where this solution can be reduced to the element level, taking into account that
each element depends only on each density design variable xe , and we can treat
xne+1, which modifies the voltage boundary conditions separately. We can calculate
the sensitivity concerning a xe density design variable as

dT ∗
av g

dxe
=Λ

⊺
e
ÇRk

Çxe
, (2.24)

where the derivatives of the residual can be written in an integral form using the
element densities,

ÇRk
A

Çxe
=−

∫
Ωe

∇∇∇N
Çq

Çxe

⊺
dΩe +

∫
Ωe

N(
Çj

Çxe

⊺
∇∇∇N⊺V)⊺dΩe ,

ÇRk
B

Çxe
=−

∫
Ωe

∇∇∇N
Çj

Çxe

⊺
dΩe .

(2.25)

We can also reduce the derivatives of the heat and current densities to the element
level as

Çj

Çxe
=−Çσe

Çxe

(∇∇∇N⊺Ve +αe∇∇∇N⊺Te
)+σÇαe

Çxe
∇∇∇N⊺Te ,

Çq

Çxe
= Çαe

Çxe

(
N⊺Te

)
j+αe

(
N⊺Te

) Çj

Çxe
− Çke

Çxe
∇∇∇N⊺Te ,

(2.26)

where Ve and Te refer to the nodal values relative to the associated element. To
conclude the formulation, we can write the dependence of the material properties
on the density variables (Equation (3.24)),

Çαe

Çxe
= pαxpα−1

e (α0 −αmin) ,

Çke

Çxe
= pk xpk−1

e (k0 −kmin) ,

Çσe

Çxe
= pσxpσ−1

e (σ0 −σmin) ,

(2.27)

for the SIMP method.
Remembering we still have an extra design variable controlling the voltage across

the thermocouple that is not considered in the previous density derivatives, xe . We
store this design variable in the same vector that stores the density design variables
with index ne +1. If we do not apply the boundary conditions to any element with
an associated xe , we can calculate its sensitivity as the matrix product

dT ∗
av g

dxne+1
=+Λ⊺Kk ÇŪ

ÇV f

dV f

dxne+1
, (2.28)

and the derivative of Rk with respect to the vector of prescribed nodal values Ū is
equal to the rows of the Rk matrix corresponding to the fixed degrees of freedom in
Ū. Now, the partial derivative of the prescribed degrees of freedom concerning V f
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equals one in the prescribed values and zero otherwise. Given the interpolation of
the voltage boundary condition, Equation (3.25e), its derivative with respect to the
ne +1 design variable is

dV f

dxne+1
=Vmax −Vmin , (2.29)

which provides all the information needed to calculate the derivative of the objective
function.

Volume Constraint

For an isotropic material, we calculate the derivative of the volume constraint
element-wise using the volume of each element. Starting from the formulation in
Equation (3.25d), the derivative of the constraint concerning each density variable is,

dcv

dxe
=
Ç
∑ne

e=1

(
xe ve

v0vob j

)
Çxe

= ve

v0vob j
. (2.30)

From this formulation, we can also appreciate that the derivative from any external
boundary condition, including voltage, V f , will be zero,

dcvol

dV f
= 0. (2.31)

Power Constraint

Using the definition of the power consumption in Equation (3.58), we can calculate
its derivative concerning the density design variable xe with e ≤ ne ,

dPe

dxe
=−

∫
Ω

(
dj

dxe

)⊺
∇∇∇N⊺Ve dΩ−

∫
Ω

j⊺∇∇∇N⊺ dVe

dxe
dΩ . (2.32)

The current density in the previous equation depends on the nodal voltages and
temperature values given by Equation (3.3). The derivative of the current density can
be written as

dj

dxe
=− Çσ

Çxe
(∇∇∇N⊺Ve +α∇∇∇N⊺Te)

−σ
(
∇∇∇N⊺ dVe

dxe
+ Çα

Çxe
∇∇∇N⊺Te +α∇∇∇N⊺ dTe

dxe

)
.

(2.33)

In this equation, we can separate the components that multiply the derivatives of
the system nodal degrees of freedom, LdUe, from the rest of the integrator, LU e ,
element-wise,

LU e =Ve
⊺∇∇∇N

Çσ

Çxe
∇∇∇N⊺Ve+

Ve
⊺∇∇∇N

(
Çα

Çxe
σ+α Çσ

Çxe

)
∇∇∇N⊺Te ,

LdUe =
[

Ve
⊺∇∇∇Nσα∇∇∇N⊺

Ve
⊺∇∇∇Nσ∇∇∇N⊺− j⊺∇∇∇N⊺

]
,

(2.34)



2

32 2. Enhancing the cooling performance of thermocouples

We can observe that the first term LU e is a constant value within the element, and
we can extract this term outside the integral,

dPe

dxe
= LU e ve +

∫
Ω

(
LdUe

⊺ dUe

dxe

)
dΩ . (2.35)

Applying the summation from Equation (3.58) and Equation (2.35) we can
assemble both terms, LU e and LdUe, for the full system nodal values into LU and LdU

respectively. The result of taking the derivative for all density values, xe with e ≤ ne

is,

dP

dx
= LU +LdU

⊺ dU

dx
,

LU =
[

LU 1v1 LU 2v2 ... LU N vN

]
.

(2.36)

Introducing the derivative of the power, Equation (2.36), in the constraint derived
in Equation (3.25c) and using an equivalent formulation with an adjoint vector, ΛP,
multiplied by the residuals we obtain,

c∗pow = P

Pob j
−1+ΛP

⊺Rk . (2.37)

The derivative of this new c∗pow can be re-written as

dc∗pow

dx
=

dP
dx

Pob j
+ΛP

⊺ dRk

dx
, (2.38)

where we can substitute Equation (2.36),

dc∗pow

dx
= 1

Pob j

(
LU +LdU

⊺ dU

dx

)

+ΛP
⊺

(
ÇRk

Çx
+Kk dU

dx
+ ÇRk

ÇŪ

ÇŪ

ÇV f

dV f

dx

)
.

(2.39)

Finally, we can select the adjoint vector ΛP imposing that the components of
the derivative of the system nodal degrees of freedom, dU

dx , are removed from the
equation as

ΛP =−(Kk)
−⊺

(
1

Pob j
LdU

)
. (2.40)

Equation (2.40) can now be used with Equation (2.39) to calculate the derivatives
concerning the density variables, reducing it to the element level as

dc∗pow

dxe
= 1

Pob j
LU e Ve +ΛPe

⊺ ÇRk

Çxe
, (2.41)

where Equation (7.24) provides the derivative of the residual concerning the element
density.
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The calculation of the derivative concerning the xne+1 design variable controlling
the voltage gradient across the thermocouple, Equation (3.25e), can be calculated by
noticing that the material properties do not depend on the voltage (α,σ,k ̸= f (V f )),
LU e = 0. We can calculate the derivative as

dc∗pow

dxn+1
=+ΛP

⊺ ÇRk

ÇŪ

ÇŪ

ÇV f

dV f

dxn+1
. (2.42)

where the conclusion and procedure from Equation (2.28) can still be applied with
the new adjoint vector, ΛP .

2.4. Results
The use of SIMP provides a simple integration with FEM and flexibility with
modifications using filtering techniques. SIMP shows excellent results in mechanical
problems with penalty factors, pi , higher than 1 and usually equal to 3. However,
for high nonlinear or multi-physics problems, these coefficients might need to be
re-evaluated empirically to improve the convergence of TO [36].

In this section, we study the use of an analytical problem of low dimension
that can help to provide insight into the larger FEM problem. Notably, we want
to understand the influence of the parameters introduced in the optimization –
material penalty coefficients – and the starting points of the MMA algorithm over
the optimized designs.

Finally, the proposed method in Section 2.4.2 is applied to a FEM thermocouple
model using the insight obtained from the analytical model and with the application
of different heat extraction and power consumption requirements, studying their
effects over the optimized designs.

2.4.1. Landscape study through analytical models
For a thermocouple optimization, a parallel semiconductor problem with two pillars
per thermoelectric leg and two design variables, x1 and x2 – associated with each
one of the two pillars of each thermoelectric leg, see Figure 2.2 – provides one of the
smallest problems that we can solve analytically, providing insights into the problem
and avoiding electrical and thermal disconnections.

The schematic in Figure 2.2 describes a problem with two legs for each pellet with
two different density variables, x1 and x2, in each electrical connection to the copper
layers – elements shaded in grey – to avoid disconnected designs unless both density
variables are equal to zero. The heat injection, qi n , ground voltage level, V0, with
the voltage gradient V f and constant temperature sink T0 represent the boundary
conditions for the problem. Finally, A and L provide each column’s cross-sectional
area and height, with z representing a certain height along the legs starting from the
heat sink.

Notice that we apply the boundary conditions at the bottom and top of each leg or
semiconductor column in the copper layers connections, providing the compatibility
equations between the legs, which we can write using Equations (3.1), (3.3) and (3.4)
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qi n

V0,T0 V f ,T0

A

L

z

x1 x2 x2 x1

Figure 2.2.: Thermocouple analytical problem schematic with 4 columns and 2
density design variables, x1 and x2. The geometry of the design is
defined through a constant cross-section area A, and height of L, with
the height dimension being represented by the z coordinate. The
boundary conditions are represented by a heat injection qi n , a heat sink
temperature T0 and 2 voltages, V0 and V f .

and Figure 2.2 as ∑
xi

qp,xi (L)+∑
xi

qn,xi (L) =−qi n

A
,∑

xi
jp,xi (L)+∑

xi
jn,xi (L) = 0,

Tp,xi (L) = Tn,xi (L) = Tc ,

φp,xi (L) =φn,xi (L) =Vc ,

Tp,xi (0) = Tn,xi (0) = T0 ,

φp,xi (0) =V0 = 0,

φn,xi (0) =V f ,

(2.43)

where p and n indices refer to the p or n-type semiconductors – positioned in series
through a copper connection – and xi to the design variable associated with each
parallel leg, Figure 2.2. Finally, Tc and Vc represent the unknown values in the top
cold connection at location z == L according to Figure 2.2.

The solution of the integration of Equations (3.1), (3.3) and (3.4) along the length,
z, of a constant cross-section leg provides,

T (z) =− j 2

kσ

z2

2
+C1z +C2 ,

φ(z) =+α j

σk

z2

2
− j

σ
z +αC3z +C4 ,

(2.44)

where the Ci are constants that need to be solved using the boundary conditions
Equation (2.43). The voltage and temperature distributions of Equation (2.44) are
quadratic functions across the bulk material with constant material coefficients. The
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semiconductor material properties for each of the p −Bi2Te3 and n −Bi2Te3 pellets
are available from the manufacturer and taken from Hu et al. [37], where the data
from ULVAC-Riko Co. Ltd is fit to polynomials of the form,

αp = 8.33e −12T 3 −1.32e −8T 2 +6.3e −6T −7.04e −4,

ρp =−7.36e −13T 3 +6.14e −10T 2 −6.35e −8T −1.78e −6,

kp = 1.59e −8T 3 −3.32e −6T 2 −2.177e −3T +1.5775,

αn =−3.98e −12T 3 +7.34e −9T 2 −3.82e −6T +3.95e −4,

ρn =−6.83e −13T 3 +6.66e −10T 2 −1.55e −7T +1.81e −5,

kn = 2.19e −8T 3 −4.60e −6T 2 −4.51e −3T +2.48,

(2.45)

where each subindex refers to p-type or n-type semiconductors, respectively. We
ignore the copper Seebeck coefficient due to symmetry, with its effects counteracted
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Figure 2.3.: Material penalization coefficient cold temperature isolines for a 4 column
TEC problem with 2 design variables and a power constraint, shadowed
in black. The MMA optimization starting with the point (1,1) is reflected
with grey to black lines turning darker until convergence.
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in the full thermoelectric circuit. To simplify the problem to constant material
properties, we fix the values at 300 K as summarized in Table 2.1.

ρ (Ωm) k (W/K) α (V/K)

p −Bi2Te3 1.45e −05 1.054963 2.17e −04

n −Bi2Te3 1.30e −05 1.305023 −1.99e −4

Cu 1.67e −08 385 0

Table 2.1.: TEC Semiconductor Material Properties at 300 K.

To solve the system, we require the Ci constants for four different legs, leading to
a system of 11 equations, plus an additional equation for the power,

P =−A
(∑

jl i (Vc −V0)+∑
jr i (V f −Vc )

)
, (2.46)
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Figure 2.4.: Graphs exemplifying the final convergence values of a cold temperature
Tc MMA optimization of a 2D analytical thermocouple with a power
constraint of 0.065 W for different initial design variables in the horizontal
and vertical axis. The top figures represent the results of Tc , total
iterations until convergence and the optimized x1 found (x1−opt ) for
a combination of penalty coefficients of pk = pσ = 5, pα = 1 while the
bottom row uses the penalty coefficients pk = pα = 1, pσ = 5.
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for constant values of the material coefficients (α,σ,k).
To solve the system, we select a given operational point, defined by all the

parameters needed to solve the problem, given by,

T0 = 298.15K , qi n = 0.01W/m2 ,

L = 1.2mm , A = 1mm2 , V f = 0.05V ,

and the parametric solution to Equations (2.43) and (2.44) found in Appendix B.
Notice that in this solution, we set all minimum material properties – αmi n , kmi n

and σmi n from Equation (3.24) – to zero for simplification purposes.
The quadratic nature of the system provides two different solutions. We look for a

solution with temperatures above absolute zero to evaluate which one has a physical
meaning. For the material properties, we use the values of the p-semiconductor
from Table 2.1. Notice that, to account for an n-type semiconductor using a given
direction of the current and a constant positive α, we need to provide a negative
sign to the Seebeck coefficients using Equation (2.44).

In Figure 2.3, we represent the objective temperature, Tc , for multiple combinations
of the material penalty coefficients. The infeasible region of the power constraint,
given by Equation (2.46), is superimposed to Tc as a grey-shadowed region limited
by a red line. We represent this power consumption with a darker grey colour the
higher the power consumption to visualize its landscape. The path followed by the
MMA optimizer, drawn with grey arrows that grow darker with successive iterations,
starting from a full density design – xi = 1 for both design variables – provides
information on the convergence of the problem.

We find 3 different possible landscapes depending on the material penalty
coefficients, which will affect the convergence of the problem. Except for Figure 2.3f,
all penalty coefficients present an objective temperature global minima in the full
density design point, and local minima at the locations with one single design
variable with full density, i.e. x1 = 0 and x2 = 1 or x1 = 1 and x2 = 0. With regards
to the power constraint, it can either present a negative slope in all the infeasible
design regions (Figures 2.3a, 2.3e and 2.3f) or set the full density design point in a
valley region, having a maximum within the infeasible region (Figures 2.3b to 2.3d).

These landscapes affect the convergence of MMA. The landscapes where the power
presents a maximum in the infeasible design space do not move from the initial
point, chosen as the full-density design, as all directions increase the constraint
value. This non-convexity leads to results within the infeasible design space in the
cases in Figures 2.3b to 2.3d. From the remaining cases, we want to avoid global
minima in grey design areas that lead to equivalent non-manufacturable porous
materials, such as Figure 2.3f.

To further identify the best combination of penalty coefficients for this problem,
we look into the convergence properties and final results of Figures 2.3a and 2.3e,
which show convergence from the full density design to local minima in the feasible
design space. Between both cases, Figure 2.3e shows a steeper design space and
lower achieved objective values. However, different initial design points might
influence these results. Figure 2.4 studies these two cases for multiple initial points,
x0

i , represented on the horizontal and vertical axis, and plotting in colour the final
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temperature values, number of iterations until convergence, ni t , and x1−opt or
optimized x1 design variable. We do not represent the design variable x2−opt due to
the symmetry of the problem.

Figures 2.4a and 2.4d shows that both penalty coefficients can reach similar values
for Tc depending on the initial chosen point. However, the case pk = 5, pσ = 5,α= 1
shows a lower dispersion in the results from different initial points. There is no
better configuration regarding the number of iterations until convergence. Still,
it does suggest that values slightly off the full-density design might reduce the
number of iterations until convergence. Both combinations of penalty coefficients
show numerical errors at low initial density values for both design variables due to
the disconnection between the boundary conditions, which leads to values close to
infinity in Tc .

The previous study only considered the power constraint. We now introduce the
volume constraint through the definitions in Equation (3.25d) and Equation (2.30) to
study the entire landscape. The new landscape in Figure 2.5 uses a power constraint
of 0.05 W in addition to a volume constraint of 85 %. This volume constraint appears
as a straight line at 135◦, and its location gives rise to 3 distinct cases depending
on the constraint limit. We can find that both constraints, volume and power,
cross each other Figure 2.5, with the possibility of either of them being active at
convergence or finding one of them being the most limiting, in which case it will be
the only constraint to be active at convergence.
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1
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100

Tc
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Tc

Figure 2.5.: Temperature landscape for a 2D analytical thermocouple optimization
with a power constraint of 0.05 W and 85 % initial volume with the
non-allowed design space shadowed in gray.

Figure 2.6 represents the value for the optimized x1 design variable found, x1−opt ,
for a maximum of 85 iterations with respect the initial design variables, x0

1 and x0
2 ,

represented in the horizontal and vertical axis using the previously defined problem,
with power and volume constraints. Compared to Figure 2.4, this graph shows that
the algorithm removes intermediate density values from the converged results, and
only 2 solutions remain. These remaining solutions are the local minima with one of
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both design variables equal to one and the other one equal to zero.
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Figure 2.6.: Design variable , x1−opt , of the obtained local minima in the analytical
problem for 85 MMA iterations of a 2D analytical thermocouple
optimization with a power constraint of 0.05 W and 85 % initial volume.

As a last consideration, Figure 2.7 shows the convergence of the objective function
for different penalty values for the case pα < pσ = pk starting from a full density
design. While higher values of pk = pσ provide lower objective values, the higher
these values, the higher the nonlinearities introduced in the problem. The case with
a nonlinear penalty coefficient for pα shows worse convergence and final results and
should be avoided.
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Figure 2.7.: Convergence of the objective function for several penalty coefficients in
a thermocouple analytical model.

Notice that Figures 2.3b to 2.3c cases did not converge starting from a full-density
design. However, these study cases might converge from different initial design
locations. Nevertheless, lacking information on the optimized design, a homogeneous
density equal to the full density as a starting point is desirable for larger problems.
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The results and reasoning in this section lead to the recommendation of penalty
coefficients of pk = pσ > pα = 1 and initial density values of xe = 1.

2.4.2. Thermocouple optimization examples through FEM
This section showcases optimization examples using the proposed TO methodology
based on the 1MC10-031 TEC from RMT Ltd. The data sheet of the 1MC10-031 TEC
provides the dimensions of 1.2×1×1mm3 separated by an air-gap of 0.4 mm which
we reduce in 0.1 mm to have a larger feasible semiconductor design volume.

In this model, we assume a uniformly distributed heat input along the top surface
of the thermocouple. We also model the heat sink as having a constant temperature
at its bottom. We consider the TEC to consist of 32 pairs of pellets, Np , considered
for the calculation of the boundary conditions as,

qi n = qT /Np ,

Pc = PT /Np ,

where PT and Pc represent the TEC’s total heat extraction and power consumption,
assuming each pair extracts equal heat. Additionally, a voltage gradient is imposed
between both copper slabs, with a value of 0 close to the p-type semiconductor and
the desired electrical potential, V f , at the other electrical contact, see Figure 2.8.
This V f =0.05 V is modified through the design variable xne+1 with limits between
0.5V f and 2V f , equivalent to Vmi n and Vmax in Equation (3.25e).

Tav g

T0 T0

V0 V f

q
n =

0

Figure 2.8.: Front and side view of the thermocouple mesh with the applied boundary
and symmetry conditions.

We represent the mesh and boundary conditions in Figure 2.8 where we use
symmetry boundary conditions, simplifying the thermocouple model and imposing
no heat or current fluxes through this surface. The copper is a non-design domain
used to apply the surface boundary conditions. We should consider additional terms
to the previously calculated sensitivities if the copper is within the design domain.

We can now run the FEM optimization with multiple boundary conditions and
constraints using the material properties specified in Table 2.1. To avoid numerical
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Figure 2.9.: Convergence of the objective and constraint functions – constrained limit
in red – for discarded penalization coefficients combinations following
the development in section 2.4.1, starting with a full density design.

singularities, following Equation (3.24), all material properties have a minimum
scaling value of 1e −9. To compare to the analytical model, we first select a constant
value of 5333 W/m2 as heat injection and 0.011 W as power constraint with different
penalty coefficients.

In the previous Section 2.4.1, we predicted the behaviour of the thermoelectrical
optimization problem for multiple penalization coefficients. In particular, the
combination pk = pσ > pα shows the most promise, while the rest of the
combinations lead to higher minima values and infeasible results. If we repeat this
study with the unsatisfactory penalty coefficients using the FEM problem, we obtain
Figure 2.9. In this figure, we observe the convergence of the objective value and
constraints using the rejected penalization coefficients. In all these cases, we observe
that, while there is no volume constraint – it is set to 100% of the original volume –
most optimizations get stuck at full volume. We can correlate this issue to the cases
studied in analytical form, where we find a maximum value in the power constraint
close to the full volume, which makes it difficult to achieve convergence in MMA.
Furthermore, we can also appreciate that the combination pk > pσ = pα leads to a
disconnection of the electrical circuit, leading to heating of the objective surface and
an eventual non-convergence of the Newton-Raphson FEM solver. The prediction
from the analytical model also leads us to think that the combination pk = pσ > pα
can remove the convergence issues found with the other combinations.

Figure 2.10 shows the convergence history of three different configurations of
penalty coefficients with the objective and constraint values using the penalization
coefficient format, pk = pσ > pα. Furthermore, the limiting values in both constraint
plots, vob j and Pob j , are drawn as red dotted lines. In Figure 2.10, we observe
from the temperature objective path that higher penalty factors with a unity pα
lead to large oscillations until the algorithm provides a solution close to the
minima. Furthermore, the model with a higher value pα demonstrated a smoother
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Figure 2.10.: Convergence of the objective and constraint functions – constrained limit
in red – for 3 combinations of penalization coefficients following the
approach that showed good convergence in section 2.4.1, pk = pσ > pα,
starting with a full density design.

convergence, but the final result was 8 ◦C higher compared to the unity penalty
coefficient case. Finally, the increased pα = pk = 6 model only achieved a 1 ◦C
improvement compared to pα = pk = 4. These results imply that larger coefficients
can lead to improved designs, but the gains might not compensate for the
convergence deterioration. Nevertheless, all combinations of penalty coefficients
using pk = pσ > pα converge to optimized values volumes with lower minima than
all other tested combinations as predicted in Section 2.4.1.

Looking at the constraint convergence results, we further observe that while the
power constraint always becomes active – the TEC uses all available power – the
volume constraint does not always remain active, with a total volume under the
imposed vob j . Furthermore, the volume continues to increase after the convergence
of the objective temperature value, which remains constant with less than 0.001 ◦C
variation from the 20th iteration. This increase in volume after the objective
convergence introduces low intermediate density values electrically disconnected
from the rest of the system and, as such, are not relevant for the final manufacturable
design and are visualized in the resulting design in Figure 2.11.

Figure 2.11 shows the result of an optimization where each element is coloured
from white to black depending on its associated density. We can appreciate that
we obtained column-like structures with surrounding grey or intermediate-density
regions in this plot. These grey regions are disconnected from the rest of the design,
with densities under 2%. However, these grey elements do not transmit heat or
electrical current, as we do not appreciate any effect on the objective function.

Maintaining a constant value for the penalty coefficient of pk = pσ = 4 and
pα = 1, we can run the optimization for different heat injection, power, and volume
constraint values to understand the effect of the boundary conditions and constraints
on the final converged designs.

Figure 2.12 shows the effect, over the objective value, of the change in the heat
injection and power constraint in successive blue lines. Furthermore, since we use



2.4. Results

2

43

Figure 2.11.: Element density, xe , for a converged thermocouple TO with for
boundary conditions and constraints qi n = 5333W2/m,Pob j = 11mW
and vob j = 0.3.

the voltage as a design variable, we can compare it with the lowest temperature value
achievable in the full-density design for the same power consumption, seen as purple
lines in the same plot. The different curves show that a higher power constraint
provides lower temperature values. However, there seems to be an asymptotic
behaviour with smaller gains for higher power constraint values. Furthermore, an
increase in heat injection results in a vertical translation of the objective function
towards higher temperature values, with smaller gains with respect to the initial
design. This effect can be taken to the limit, where the optimized solution results in
the full volume design at high enough heat injections. The overlap in the purple and
blue lines in Figure 2.12 confirms this statement.
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Figure 2.12.: Change in the final average temperature, Tav g , with respect to the heat
injection and power constraint. The figure further compares the lowest
temperature achievable for each power in the full density design, cv = 0,
to the optimized designs, cvopt . The results are given for multiple heat
injections detailed in the figure legend.

As we obtain the optimization results using constant material properties with
temperature, it is convenient to post-process them using a nonlinear material
property formulation following Pérez-Aparicio, Taylor, and Gavela [25]. The results
plotted in Figure 2.13 show the optimized designs found with constant material
properties, run using the material properties in Equation (2.45). This plot shows
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the full density results for nonlinear material properties in purple for comparison
purposes. These results show that, while the results differ from the constant material
properties, in all cases, the optimized still performs better than the original design
at a lower computational cost and there is a limited effect of the non-convexity on
the problem.
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Figure 2.13.: Postprocessing of the optimized designs in Figure 2.12 using a full
nonlinear material formulation following Equation (2.45) plotted in blue.
In violet, we compare the optimized results to the full-density designs,
cv = 0, using nonlinear material properties in both cases.

We can also appreciate the effect of the loading conditions on the optimized
thermocouple volume. Figure 2.14 shows the final volume of the designs against the
power constraint and heat injection values, calculated as,

v% =
∑nx>0.9

e xe

v0
, (2.47)

where nx>0.9 denotes only the elements with densities higher than 0.9, to account
for the resulting intermediate density elements. The higher the heat injection in
Figure 2.14, the higher the amount of semiconductor volume for the optimized
geometry of the thermocouple. Indeed, at the highest studied heat injection values,
the optimizer does not move from the initial full-density design. The optimizer can
converge at lower thermocouple volumes for lower heat injection values, achieving a
minimum objective value at a given power constraint.

While in the previously studied scenarios, the volume constraint was set to
full volume and always satisfied, activating the constraint to limit the amount of
semiconductor material and reduce material costs is interesting. Figure 2.15 shows
in blue lines the effect of lower volume constraints for the largest heat input studied
of 20000 W/m2 – whose converged design is always at full density – and increased
power constraints relative to the obtained optimized temperature. This plot shows
that for small volume reductions, there are small decreases in the objective function
value, which is evidence that the design space is flat in this region of the landscape.
However, Figure 2.15 presents a critical value of the volume constraint – around 70%
volume – where the objective value increases rapidly. This behaviour is still present
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Figure 2.14.: Change in the final design volume percentage over the total initial
volume with respect to the heat injection and power constraint.

if we post-process the results with nonlinear material properties Equation (2.45),
plotted as purple lines in Figure 2.15. However, nonlinear material properties
slightly decrease the objective function for lower volumes, in the order of 2 degrees,
compared to the full volume design optimum. This result means that while the
optimizations performed with constant material properties provide better designs
with lower computational nonlinearities, the problem can present better minima
when running with nonlinear material properties.
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Figure 2.15.: Change in the final average temperature, Tav g , with respect to the
volume constraint vob j and the power constraint, Pob j for a constant
heat injection. The results plotted include the temperature-dependent
postprocessing of the optimizations following Equation (2.45) in purple.

All these simulations use an averaged temperature objective, taking as a hypothesis
that there are no hot spots on the cold surface. In all the resulting optimized designs,
the change in the temperature distribution in the thermocouple cold side surface
is lower than 0.2 ◦C. These results remain valid after postprocessing the optimized
results using nonlinear material properties. This temperature change along the
objective surface is small enough to accept the initial hypothesis taken, stating that
the temperature of this surface is homogeneous. If this difference were larger, an
aggregation function rather than the average temperature of the surface would need
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to be incorporated to take into account the higher sensitivity of the hot spots.
Once we understand the effect of the different parameters on the optimization, we

can look into the resulting designs. Figure 2.16 shows the geometry and temperature
field of the converged optimization for different boundary conditions and constraints
with the penalty factors of pk = pσ = 4 and pα = 1.

The results in Figure 2.16 show a preference towards combinations of column-like
results for the lowest heat injection studied. These columns grow and merge with
higher power constraints and heat injections. These shapes are related to the
constant Peltier effect, which only depends on the material Seebeck coefficient
gradient in the p-n connections and the decrease in overall thermal and electrical
conductivity with lower volume percentage. This ratio can be quantified through the

figure-of-merit (Z T = α2σ
k T ), related to the efficiency of TEC devices.

The power constraint effect on the design is not so evident, as it can either
increase or decrease the final volume percentage, see Figure 2.14. This can be
explained through the competing desired effects of low thermal and high electrical
conductivity. For low power consumption, the Joule self-heating is not as important
as providing good insulation to the warmer heat sink, resulting in lower volume
designs. At the same time, at higher current flows, the optimizer minimizes the
electrical resistance to reduce the device self-heating.

Finally, we can look at the case in Figure 2.16 where the volume constraint
becomes active for a volume constraint of 40 % and a power constraint of 30 mW.
This result is dissimilar to the previous ones, finding internal cavities, lower contact
surface, and an acute difference between both leg’s thermal profiles, with the p-type
leg noticeably warmer than its counterpart, given the worse electrical to thermal
conductivity ratio of the p-type semiconductor.

2.5. Conclusions
This paper describes a procedure for the computational design of thermocouples for
cooling applications using TO. We also use power constraints to maintain optimized
operational conditions and volume constraints to limit the material used in the final
design.

The problem results in a non-convex design space influenced by the nonlinear
thermoelectric equations, the power constraint and the material penalty coefficients.
We propose an analytical model which allows us to visualize and understand the
effect of different variables on the problem convergence with lower computational
expense than FEM models. This study leads to the definition and recommendation
of material penalty coefficients for SIMP TO of thermoelectrical devices. The
penalty coefficients chosen, kp =σp >αp = 1, allow for convergence under non-active
volume constraints and with the smallest dispersion of objective values depending
on the starting point using MMA between the penalty coefficients studied. Higher
values for kp = σp lead to better final objective values. However, these higher
values also increase the non-linearities affecting the problem convergence. We
also show that some combinations of initial designs and operational conditions
can lead to unfeasible high or low non-physical temperatures with thermoelectrical
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Figure 2.16.: Elements with densities xe > 0.99 resulting from TO of a thermocouple
following section 2.4.2 for several boundary conditions and constraints.
The temperature plots comprise, from left to right, the side view
of the entire thermocouple and isometric views of each n- and p+
semiconductors.
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disconnections and intermediate densities.
The use of quadratic elements in combination with the selected penalty coefficients

reduces the need for TO filtering techniques in mechanical problems [38], which
could also apply to thermoelectrical problems. The use of quadratic elements also
improves the nonlinear solver’s FEM convergence for the thermoelectric equations at
the cost of higher computational complexity. While filtering is not required, it could
be helpful to introduce a length scale to remove the optimizer’s tendency to create
electrically and thermally disconnected regions with intermediate densities.

While the final converged solution results in full-density elements and disregards
isolated material regions, we are still subject to manufacturing constraints.
Historically, thermoelectric pellets are manufactured through sintering, limiting
the complexity of the inner structures in thermoelectric pellets. However, new
technologies, such as emerging trends in thermoelectric additive manufacturing,
could alleviate these limitations. Nevertheless, manufacturability constraints are
crucial to streamline the geometry and mitigate stress concentrations that negatively
impact the reliability of the bulk-TEC design.

The initial geometry for the optimization also carries importance in the final
optimized results. This study focuses on the bulk-TEC geometries due to their
common use and previous experimental testing of the significance of their pellet
geometry. However, this formulation could also benefit other current designs,
including cylindrical, flat or wearable TEC designs with direct pn electrical
connections without copper layers; see He, Schierning, and Nielsch [10]. In some
of these designs, introducing mechanical degrees of freedom can limit stresses due
to differences in thermal expansion coefficients and allow for the design of elastic
modules for wearable technologies. The use of multi-material formulations can also
be helpful for the design of stacked semiconductors or metamaterials. Furthermore,
the rise in porous thermoelectric materials can improve TEC properties through
microstructure optimization.

While microstructures might play a large part in future thermoelectric modules,
the material coefficients assume a homogeneous medium that might no longer be
valid at small feature scales. Another reason for revising the discrete thermoelectric
equations is the case of TEC use under magnetic fields, which are known to modify
thermoelectric coefficients. Furthermore, the material models used in this study
keep the material coefficients constant with temperature to better understand the
equivalent analytical problem. The results obtained with fixed material properties
at a given temperature are only accurate for small temperature variations from this
reference point.

This paper [1] provides solutions to convergence issues when attaining lower
temperatures for TEC at lower volume geometries using TO. However, the material
modelling and mechanical studies on the bulk- and other TEC designs should still
be studied in further detail.
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3
Mechanical considerations in

thermoelectric topology
optimization, a stress-constraint

approach for higher reliability

This paper addresses the topology optimization of thermocouples for cooling
applications, considering stress constraints to enhance reliability under service loads.
We provide a first approach to derive sensitivities using SIMP (solid isotropic material
with penalization) for thermo-electro-mechanical systems with temperature-dependent
material properties. The proposed formulation decouples the thermoelectrical system
from the mechanical degrees of freedom, reducing computational memory usage from
a fully coupled approach. The study focuses on the formulation of thermocouples for
cooling applications using the Peltier effect, which considers electrical power limits,
electrical working points, and material stress thresholds. Furthermore, while the
thermoelectrical problem does not show the need for filtering techniques, including the
mechanical degrees of freedom, we show that we recover undesirable porous optimized
designs. We provide 2D thermocouple example optimizations with geometries and
boundary conditions based on a practical case for the implementation of thermoelectric
coolers in the Minimum Ionizing Particle Timing Detector (MTD) at CERN. The
optimizations are performed with increased complexity, including the unfiltered
thermoelectrical and thermo-electro-mechanical problems and a Helmholtz-filtered
example. The optimizations are compared with constant and nonlinear material
properties with temperature and with respect the consideration of air-conductance
losses within the devices. Although more efficient topologies can be achieved without
the need for volume constraints, we include an example with a constraint of 60%

* Parts of this chapter have been submitted to the Structural and Multidisciplinary Optimization
Journal
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volume to understand its effect on the design and provide a methodology to reduce
semiconductor-associated costs at lower efficiency costs. Finally, we explore the
same formulation in 3D. The results provide guidelines for manufacturing compliant
thermocouples, increasing their reliability without decreasing efficiency.

3.1. Introduction

T hermoelectric coolers utilize the Peltier effect to induce a heat flux by
connecting dissimilar semiconductor materials. Compared to traditional

vapour compression refrigeration, thermoelectric cooling offers static operation,
miniaturization, subambient temperature capability, high reliability, absence of
gaseous emissions, and noiseless operation. These benefits have led to the
application of Thermoelectric Coolers (TECs) in diverse fields such as cryogenics [1],
on-chip thermal management [2], laser and fibre optics with precise temperature
regulation requirements [3, 4], medical devices [5], and localized cooling in space
vehicles [6]. Despite ongoing research on its large-scale implementation, such as
building refrigeration [7], cost-effectiveness remains a challenge due to its lower
efficiencies compared to vapour compression systems. These lower efficiencies are
due to the need to balance the properties of the thermoelectric material within the
semiconductor components [8].

The material composition of a TEC determines its intrinsic properties. However,
the arrangement of materials in each semiconductor leg can also modify the
device’s overall characteristics. The impact of the semiconductor leg shape was
investigated in Fabián-Mijangos, Min, and Alvarez-Quintana [9], who provided
a manufacturing method and demonstrated a higher efficiency for asymmetric
pyramidal or trapezoidal thermocouple shapes compared to regular cubic shapes. In
Sun et al. [10], these shapes are combined with segmented legs containing more than
a single semiconductor material to train a neural network to provide an optimized
combination of geometric parameters and output power. Additionally, topology
optimization (TO) through the SIMP (solid isotropic material with penalization)
method with volume constraints can be employed to improve the efficiency of
heat recovery thermoelectric devices. Takezawa and Kitamura [11] introduce this
methodology for thermoelectric generators with all material penalization coefficients
equal to unity and a 1D model to validate the sensitivities. In Xu et al. [12], the
previous method is extended to segmented semiconductor legs using multimaterial
TO. There is also literature on the system integration of thermoelectrical devices
with Soprani et al. [13] optimizing the thermal coupling material from the TECs
to its thermal contacts, with simplifications of the thermoelectrical module as a
single material block for a downhole oil well intervention tool. Finally, Lundgaard
and Sigmund [14] examine the TO formulation for different thermoelectrical
objectives and problem formulations, including power output, conversion efficiency,
temperature, heat flux and coefficient of performance using two different materials
in direct contact. Together, these studies highlight the importance of material
arrangement and leg optimization in shaping TEC performance.
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TO algorithms can reduce semiconductor materials’ volume and material costs
– up to a third of the system cost [15] – maintaining efficiency. However, the
topology shapes that arise can compromise their mechanical reliability. Mechanical
ageing, which occurs from the dissimilar materials in the thermocouple composition,
introduces efficiency losses. A single thermocouple involves a solder and an
electrode with thermoelastic properties different from the semiconductor’s, leading
to mechanical loading. Additionally, these devices experience temperature variations
through their thickness, influencing the properties of the semiconductor material and
the fatigue conditions. This ageing process, which increases electrical resistivity and
decreases Seebeck coefficients of the affected thermocouples, decreases efficiency
over time. Due to the importance of this efficiency loss, multiple approaches have
been proposed to predict it. For instance, Merienne et al. [16] and Williams et al.
[17] highlight the effect of thermal cycling on commercial thermoelectric generators,
revealing the increased resistance due to material cracking over time. Wang et al.
[18] use digital image correlation to experimentally identify the cracking spot at the
copper-Bi2Te3 interface to provide a diagnostic method. Gong et al. [19] present a
model to estimate thermal loads and proposes improvements over previous models
considering copper and ceramic layers. The electrical operation also impacts the
ageing process, as demonstrated by Fan, Rezania, and Gao [20], who showed that
pulse operation could reduce thermally induced stresses. The effect of the shape
of the thermoelectric semiconductor is highlighted in the literature through FEM
(finite element method) models. Erturun, Erermis, and Mossi [21] look into the
effect of the shape of the pellets on the thermo-electro-mechanical performance of
thermoelectric generators in ANSYS, and Zhang et al. [22] use COMSOL to perform
similar measures within a thermoelectric cooler and a parametric analysis of the
dimensions of the design. Finally, Suhir and Shakouri [23] develop an analytical
model to estimate the shear stress along the bonded layers of a TEC and compares
it to an ANSYS model. The results from these works emphasize the higher induced
thermal stresses at the edges of the legs and their contact with the solder layer.
Different leg designs, including truncated cones or trapezoidal shapes with variable
cross-sections, show promise in reducing stress at material interfaces [24–26].

TO can alleviate local stresses, with formulations dating back to Yang and Chen
[27]. Verbart [28] and Yvonnet and Da [29] summarize recent advances in fracture
TO, which presents commonly used stress aggregations to mitigate fatigue and crack
initiation in materials. Verbart, Langelaar, and van Keulen [30] outline various
options for structural stress aggregation, highlighting their distinct impacts on
optimized outcomes. Lastly, Meng et al. [31] explore the thermoelastic stress-based
TO. These techniques are readily applicable to thermoelectric devices, and their
thermoelastic behaviour is incorporated to minimize induced thermal stresses and
enhance operational reliability. In Mativo et al. [32], a simplified thermomechanical
model using SIMP is further used to reduce shear loading-induced stresses. Another
example of designs of thermo-electro-mechanical compliant mechanisms through
the level set method can be found in Furuta et al. [33] with linear material properties
with temperature. In essence, TO methods offer a versatile approach to reducing
stress and optimizing thermoelectric device performance and reliability.
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There are limited examples of multiphysics thermo-electro-mechanical optimiza-
tions considering the Peltier effect in the literature. Some of the relevant work in the
field includes Furuta et al. [33], which provides a level-set optimization formulation
for thermoelectric mechanical actuators based on the Peltier effect or Xing et al. [34],
which uses a Kriging optimization and COMSOL to optimize a flexible thermoelectric
generator without the use of sensitivities. Pérez-Aparicio, Moreno-Navarro, and
Gómez-Hernández [35] perform shape optimization using simulated annealing for
transient pulse shapes and associated temperature profiles with limits to the induced
stresses using linear elasticity. Chen et al. [36] use ANSYS and multi-objective
genetic optimization algorithms to reduce stresses in a full thermoelectric module
through the parameterization of the cooling fin distribution. Maduabuchi [37] shows
the use of deep learning network techniques trained through ANSYS simulations
for parametric optimization of thermoelectrical for faster calculations using power,
efficiency, and induced stresses as objectives.

The numerical implementation and performance of fully coupled thermo-
electro-mechanical topology optimization remains largely unexplored compared to
parametric analysis on these structures. Particularly, the SIMP method — widely
adopted in structural optimization — has seen little application in this field.
Despite the critical impact of stresses on device reliability and failure, the influence
of optimization parameters on the resulting designs has not been studied in
detail. Current optimization approaches for thermo-electro-mechanical problems
lack sensitivity formulations to account for stress concentrations in these devices.
Furthermore, existing studies rely on idealized fixed boundary conditions and neglect
thermal losses to the environment, limiting the accuracy of the optimized designs.

This work presents a topology optimization framework for thermoelectric devices
that incorporates mechanical stress considerations using the SIMP method, an
approach not seen in the literature for this class of multiphysics problems. Unlike
existing studies that focus solely on thermal and electrical behaviour, this method
introduces mechanical degrees of freedom into the optimization process, enabling
the inclusion of stress constraints critical to device reliability. We explore decoupled
thermoelectrical and mechanical equations for the FEM simulations, examining their
optimization convergence and optimized designs. A simplified model is proposed
to simulate the electrical operating conditions of TECs using its voltage gradient
across a thermocouple. We use this model to analyze the optimization results with
and without stress constraints, addressing the impact of length scale on optimized
designs through filtering techniques. We evaluate the effect of the results of Heaviside
and Helmholtz filters and the need for filtering techniques due to the addition of
stress constraints. This further contemplates studying the effect of grey regions in
optimized thermo-electro-mechanical designs as opposed to pure thermoelectrical
optimization. The examples consider both vacuum and air-filled environments
to capture realistic thermal losses during operation. Prior work shows that air
conduction dominates while convection is negligible and radiation contributions
depend on leg geometry with less than 10% effect for the device efficiency with
leg gaps under 1 mm [38]. A detailed study by Cai et al. [39] confirms the limited
impact of radiation at low temperatures, particularly on power output rather than
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conversion efficiency. Additionally, we present illustrative 2D and 3D results for a
thermocouple under various constraint conditions, demonstrating convergence to
lower semiconductor volumes with larger efficiencies and compliance compared to
the initial design.

3.2. Governing Equations
The physics of thermoelectric coolers in steady-state conditions is governed by
the thermoelectric coupling given by the electric charge and energy balance or
equilibrium equations, i. e.,

∇∇∇··· j = 0,

∇∇∇···q+ j ·∇∇∇φ= qΩ .
(3.1)

In these equations, we find the balance of current density j and heat flow q
within our material depending on the applied electric field φ and the internal heat
generation qΩ. Furthermore, to study the induced stress, we also need to consider
the mechanical static equilibrium

∇∇∇···σ+b = 0 , (3.2)

with σ being the Cauchy stress tensor, b the body forces.
The constitutive equations in this problem rely on Ohm’s equation, i. e.,

j =−γ(∇∇∇φ+α∇∇∇T ) . (3.3)

This equation relates the current density j with the electric potential φ, the electrical
conductivity γ, with the thermoelectric coupling to the temperature field T , through
the Seebeck coefficient α. The coupling of the thermoelectric equations also involves
Fourier’s equation

q =αT j−κ∇∇∇T , (3.4)

which represents the contributions to the total energy flow of the current flow and
the heat conduction. From Equation (3.4), we see that the thermal conduction term
depends on the temperature gradient and thermal conductivity κ, while the heat
due to the current flow depends on the Seebeck coupling and current flow. Finally,
the generalized Hooke equation or the isotropic linear thermoelastic constitutive
equation for small displacements assumption in a 2D plane stress situation using
the Voigt notation is

σ̂= Cε−βT θ , (3.5)

θ = (T −Tr e f ) , (3.6)

βT = E

1−2ν

[
1 1 0

]⊺
αT = CetrαT , (3.7)

where the isotropic coefficient of expansion αT affects the normal stresses through
a trace operator etr. This equation relates the stresses with the material properties
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considering the thermoelastic problem where we define E as the Young’s modulus
of the material, and ν the Poisson’s ratio, the reference temperature Tr e f , the
temperature at which there are no thermally induced stresses, ϵ is the strains tensor,
and C is the constitutive relation between the mechanical strain and stresses without
thermal stresses. In a 2D plane stress problem, we define this constitutive relation as

C = EC0 = E

1−ν2


1 ν 0

ν 1 0

0 0 1−ν
2

 .

The strong form of the problem is completed by the boundary conditions

V =VΓ on ΓV ,

j ·n = jc on Γ j ,

T = TΓ on ΓT ,

q ·n = qc on Γq ,

Up =UΓ on ΓU ,

σ ·n = tc on Γt .
(3.8)

In these boundary conditions, we impose fixed DOFs in the form of voltages VΓ,
temperatures TΓ, and displacements UΓ, and external loads along their respective
boundaries ΓV , ΓT and ΓU . The boundaries that prescribe primal and dual variables
must be disjoint, i. e., , Γ = ¯ΓV ∪Γ j and ΓV ∩Γ j = ; for the electrical problem.
Similarly, for the thermal problem we have Γ= ¯ΓT ∪Γq and ΓT ∩Γq =; and for the
mechanical equilibrium Γ= ¯ΓU ∪Γt and ΓU ∩Γt =;.

We approach the nonlinear thermoelectric problem previously presented through
numerical procedures to overcome the challenge posed by an analytical solution.

3.2.1. Finite element modelling
To solve the coupled thermo-electro-mechanical through FEM, we reformulate the
equations in weak form and discretize them by approximation functions. Using the
residual, Garlekin’s, and the divergence theorems, we get

−
∫
Ω
ω∇∇∇···qdΩ+

∫
Ω
ωj ·∇∇∇φdΩ+

∫
Γq

ωqc dΓ

=
∫
Ω
ωqΩdΩ ,

−
∫
Ω
∇∇∇ω · jdΩ+

∫
Γ j

ω · jc dΓ= 0,∫
Γ
ω ·σdΓ−

∫
Ω
σ ·∇∇∇ω= 0,

(3.9)

where ω is the weight function.
To discretize the weak forms in Equation (3.9), we use standard bilinear shape

functions. For the thermoelectric problem, temperature T and electric potential φ
are interpolated using N. For the mechanical problem, the displacement field Up

is interpolated using NU. All these vectors are represented in column form. This
interpolation is written as

T = N⊺t , φ= N⊺v , Up = NU
⊺u , θ = N⊺ (

t −−−Tr e f
)

, (3.10)
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where vectors t, v and u are the temperature, electric potential, and displacement
DOFs at element level, respectively. We use these shape functions and discretized
displacements to define the strain-displacement matrix B as

ε= Bu. (3.11)

The strain-displacement matrix can be introduced into the mechanical weak-form
equation and using the Hooke thermoelastic relation, Equation (3.5), to obtain the
residual from the mechanical coupling ru

ru =
∫
Γ

NU
⊺σdΓ−kuu+kΘθ = 0 ,

ku =
∫
Ω

B⊺CBdΩ ,

kΘ =
∫
Ω

B⊺βT N⊺ dΩ .

(3.12)

The residuals of the remaining thermoelectrical coupling given by Equation (3.9) are

rt =−
∫
Ω

N∇∇∇···qdΩ+
∫
Ω

Nj ·∇∇∇N⊺vdΩ+∫
Γq

Nqc dΓ−
∫
Ω

NqΩdΩ= 0 ,

rv =−
∫
Ω
∇∇∇N · jdΩ+

∫
Γ j

N · jc dΓ= 0 .

(3.13)

The residual and element-level state vector are assembled into

r =
[

ru rt rv

]⊺
and

s =
[

u t v
]⊺

.
(3.14)

The derivative of this residual concerning the unknown DOFs is the tangent matrix
K. Considering the null derivatives of the residual, this matrix can be written at the
element level as

k(k) = dr

ds
=


Çr(k)

u
Çu

Çr(k)
u
Çt 0

0
Çr(k)

t
Çt

Çr(k)
t
Çv

0 Çr(k)
v
Çt

Çr(k)
v
Çv

 , (3.15)

where the development of each derivative of the residual can be found in Appendix C.
The global stiffness matrix can be obtained through the standard FEM assembly
procedure

K(k) = dR(k)

dS
=

ne∑
e=1

k(k) , (3.16)
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with R and S the global residual and state vectors arising from the assembly of k
and for all elements e.

From the definition in Equation (3.15), we see that the thermoelectrical DOFs,
are decoupled from the mechanical DOFs u. This decoupling allows us to use the
reduced thermoelectrical tangent stiffness

K(k)
TV =

 ÇR(k)
T

ÇT
ÇR(k)

T
ÇV

ÇR(k)
V

ÇT
ÇR(k)

V
ÇV

 , (3.17)

to compute the global thermal and electrical DOFs
[

T V
]

using the Newton-Raphson

method, starting with
[

T V
]
= 0 as an initial solution. Each system is solved using

MATLAB’s direct sparse linear solver. Subsequently, global displacements U are
determined in a second step, incorporating the computed temperature field into the
thermoelastic equation Equation (3.12). Notably, in this formulation, the solution
step of the thermoelastic equation is only nonlinear in scenarios featuring a Young’s
modulus or coefficient of thermal expansion that is temperature-dependent.

To validate the MATLAB implementation, a test routine was developed using
analytical benchmarks from Pérez-Aparicio, Taylor, and Gavela [40], supplemented
with analytically calculated thermoelastic deformations. Matrix dimensions and
implementation details are provided in Appendix C. For a fully coupled FEM
formulation including thermoelectricity, displacement, and magnetic flux, see
Pérez-Aparicio, Palma, and Taylor [41].

3.3. Problem formulation
With the finite element formulation of the coupled thermo-electro-mechanical
problem in place, we define our design optimization procedure. We use a
density-based TO formulation, following the three-field-density formulation from
Lazarov, Wang, and Sigmund [42]. In this material representation, we use three
density fields (x̄ρ , x̃ρ , xρ). Each one represents the density design variables used by
the optimizer xρ , the filtered density design variables x̃ρ , and the physical density
design variables x̄ρ .

The filtered density field is obtained through the Helmholtz equation B. S. Lazarov
[43]

−d 2
r ∇2x̃ρ + x̃ρ = xρ , (3.18)

where x̃ρ and xρ represent filtered density design variables and the density variables
used by MMA at the element level. In the equation, dr is a characteristic radius that
introduces a length scale in the optimization.

We discretize the Helmholtz equation using standard linear interpolation functions
Nh at the element level, based on standard 8-node hexahedral elements (in 3D) or
4-node quadrilateral elements (in 2D). We use the relation xρ = N⊺

h xe and x̃ρ = N⊺
h x̃e .

In these relations, xe and x̃e are the nodal density values for each field at the
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element level. The discretized Helmholtz equation is written as

−
∫

Nhd 2
r ∇2(N⊺

h x̃e )dΩ+
∫

NhN⊺
h x̃e dΩ

=
∫

N⊺
h xe dΩ .

(3.19)

Applying the divergence theorem and Neumann boundary conditions, we obtain∫
∇Nhd 2

r ∇(N⊺
h x̃e )dΩ+

∫
NhN⊺

h x̃e dΩ=
∫

N⊺
h xe dΩ . (3.20)

We can write the previous equation as a system of linear equations using a filtering
stiffness matrix Kh using our design variables xρ and an assembly procedure, i. e.,

Kh x̃ρ = Hxρ , where

Kh =
ne∑
e

(∫ (∇N⊺
h d 2

r ∇Nh +N⊺
h Nh

)
dΩ

)
.

(3.21)

In this formulation, H is a matrix whose column i contains the element level
integration

∫
NhdΩ for the nodes of the element e == i .

The preconditioned conjugate gradients method provides the solution to this
system. As this Kh matrix only depends on the mesh, we use a single preconditioning
and store it throughout the optimization procedure, reducing the computational
cost of filtering the design space [14]. Finally, to recover the element density
after filtering, we use the approximation function for the centroid of each element
Nh(0,0,0).

To provide a sharp change between void and solid material, we apply a Heaviside
projection to the filtered design that provides the physical density design variable

x̄ρ =
tanh

(
βµ

)+ tanh
(
β(x̃ρ −µ)

)
tanh

(
βµ

)+ tanh
(
β(1−µ)

) . (3.22)

The β variable determines the sharpness of the projection, and µ the step location.
The physical density design variable provides the relation

ρe = x̄ρρs , (3.23)

where the physical density design variable of the e-th design element is directly
related to the density of the eth element ρe , with respect to its solid density ρs .

The rest of the material properties can be written for each element using a power
law following a modified SIMP approach [44, 45], as follows:

α=αv + x̄pα
ρ (αs (T )−αv ) ,

κ= κv + x̄pκ
ρ (κs (T )−κv ) ,

γ= γv + x̄
pγ
ρ (γs (T )−γv ) ,

E = Ev + x̄pE
ρ (Es (T )−Ev ) .

(3.24)
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The properties of the solid material are indicated by the subscript □s in
Equation (3.24), and we define them according to experimental data. Minimum
material properties for void elements are imposed to avoid the singularity in the
tangent matrices with a user-defined value □v . pS , pκ, pγ and pE are the
penalization coefficients for their corresponding material property. Intermediary
densities in the optimized design are equivalent to non-manufacturable porous
materials. For this reason, the penalization coefficient tries to ensure the optimized
results lead to a fully black-and-white design.

Furthermore, we use nonlinear temperature-dependent properties for each
material. We modelled the properties of the semiconductors following the
measurements for Bi2Te3 by Witting et al. [46], using the lowest doping values for
each semiconductor. The provided values are fitted to a continuous polynomial as
detailed in Appendix E within the measured temperature range. We enforce constant
material properties for temperatures outside of this range. If the outcome from the
optimization falls within this constant material property range, their results should
be reevaluated, or the material properties extended to accommodate a broader
range. In addition to semiconductor material, we need to define the properties of
copper for electrical terminals, aluminium nitride (AlN) for the thermal ceramic
contacts, and SAC 305 (tin-silver-copper) as solder. These material properties are
kept constant with temperature to avoid further nonlinear effects added to the
optimization procedure. We summarize all temperature-constant material properties
used in this model in Table 7.5.

3.3.1. Topology optimization formulation
With the density design variables and filtering techniques established, we need to
define the optimization problem that will guide the design variables. We can define
this problem for cooling applications through a temperature-based objective, power
constraints and voltage design variables to limit the electrical working point, stress
constraints for reliability, and volume fraction limits to reduce costs. We can describe
this formulation as:

x∗Φ = argmin
xΦ

Φ=Ψ (TΦ) , (3.25a)

such that cσ =Ψ

(
σV M

σ0

)
−1 ≤ 0, (3.25b)

cP = P

P0
−1 ≤ 0, (3.25c)

cv =
ne∑

e=1

ve xρ
v0vob j

−1 ≤ 0, (3.25d)

VΓ =Vmin +xS (Vmax −Vmin) , (3.25e)

R = 0 , (3.25f)

where we look for the design variables xΦ that minimize an objective function Φ

submitted to several constraints. For this optimization we define a vector of design



3.3. Problem formulation

3

63

variables xΦ =
[

xρ xS

]⊺
, containing the density design variables xρ and the design

variables controlling the voltage Dirichlet imposed boundary conditions xS which
for our model can be reduced to a single boundary condition VΓ between a given
minimum and maximum voltages defined as Vmin as Vmax.This allows us to take
into account the optimum efficiency of thermocouples with respect to the current
flow across the device for all geometries, which is a nonlinear effect. The overall
objective of our optimization is then the temperature of our heat injection surface,
considering a power limit and controlling the power consumption of the system.
Furthermore, we limit the stresses to which the device is submitted and incorporate
a volume constraint to reduce semiconductor material volume and associated costs.
The objective function depends on a temperature field TΦ on ΓΦ and an aggregation
function Ψ. The problem is subjected to various constraints, including a stress
constraint cσ, a power constraint cP and a volume constraint cv . The stress
constraint is based on limiting stress σ0 and a field of von Mises stresses aggregated
through the same function as the objective function. The power constraint requires
a ratio between the overall power consumption of the device P and a limit power P0.
The volume constraint depends on the summation of the volume of each element ve

compared to the total volume of the original design v0 and a limiting volume vob j .
As an aggregation function Ψ, we use the P-mean, which increases the influence

on the function of the values that deviate most from the mean of the input values
using a penalization factor pΨ. The P-mean is defined as,

Ψ(f) =
(

1

ni

ni∑
i=1

f pΨ
i

) 1
pΨ

, (3.26)

with f a vector field and ni its size. Ψ provides a lower-bound of the maximum
value stored in f,

Ψ(f) ≤ max( f1, f2, ..., fni ) , (3.27)

leading to an underpenalization of the constraints or maximum values in the
field Fernández et al. [47]. This function has an asymptotic behaviour towards
the maximum in the distribution with increasing pΨ values [30]. This means
its behaviour will also lead to higher nonlinearities, the larger the penalization
coefficient pΨ. The stress constraint and the objective functions use this formulation
to avoid stress concentrations and hot spots in the optimized designs. The values
used within the exponential aggregation function must be rescaled to values close to
unity to avoid singularities in the numerical calculation. This can be done in each
case through a reference temperature, where we use the initial device temperature
of 25 ◦C, and the limiting stress σ0.

We also rescale the other constraints to maximum values between 1 and 100 using
the objective volume and power to improve the convergence of the MMA optimizer
[48]. This algorithm, proposed by Svanberg [49], uses a local convex approximation
function in successive iterations to find local minima. MMA has been repeatedly
tested in TO problems with success in finding minima. The stopping criteria of
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the algorithm used is based on a total number of iterations or the relative change
between the design variables x̄Φ,

Stop if
1

dim(x̄Φ)

∥∥∥(
x̄(i−2)
Φ

− x̄(i )
Φ

)
⊘ x̄(i )

Φ

∥∥∥
2
< εKKT

or i ≥ imax.

Because MMA is a gradient descent algorithm, we must formulate the sensitivities
for the objective and constraint functions.

3.3.2. Sensitivity calculation
To apply a gradient-based optimization algorithm, we need analytical expressions
for the sensitivities of each objective and constraint function concerning the
design variables and validate them against finite differences methods according to

Appendix D. We calculate these sensitivities for the filtered field, x̄Φ =
[

x̄ρ xS

]⊺
,

although these can be easily extended to any number of boundary condition control
variables. Given the use of xρ by the optimizer and the x̄ρ by our FEM, to recover
the sensitivities of a function ψ, with respect to the density design variables we need
to follow the chain rule

Çψ

Çxρ
= Çψ

Çx̄ρ
· Çx̄ρ
Çx̃ρ

· Çx̃ρ
Çxρ

. (3.28)

We can express the derivative of the filtered design space relative to the density
values as

Çx̃ρ
Çxρ

= K−1
h H . (3.29)

We can recalculate the result of the modified sensitivities through the vector
containing the sensitivities to the filtered design variables and a single calculation
using the conjugate gradients method. The nodal sensitivities can then be recovered
as the mean of each element, as we do for the filtered densities.

The derivative of the physical field concerning the filtered field is given by:

Çx̄ρ
Çx̃ρ

= β
(

tanh2 (
β(µ− x̃ρ)

)−1
)

tanh
(
β(µ−1)

)− tanh
(
βµ

) . (3.30)

The sensitivities with respect to the physical density field are then solved through
the adjoint method through the definition of the Lagrangian

L =ψ+Λ⊺R . (3.31)

In this definition, L represents the Lagrangian, Λ is the adjoint vector, and ψ is the
objective or constraint function. The general solution to the total derivative of any
Lagrangian functional can be solved through the definition of a Λ constant vector
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that removes from the equation the derivative of the state vector S concerning our
design variables x . The general equation that solves Λ looks like

−
(
ÇR

ÇS

)⊺
Λ=

(
Çψ

ÇS

)⊺
. (3.32)

Given that the first component of the equation is the tangent stiffness matrix,
we can decompose this calculation as we do for the Newton-Raphson iterative
procedure, reducing memory allocation. The solution can then be the following 2
steps:

−
(
ÇRU

ÇU

)⊺
ΛU =

(
Çψ

ÇU

)⊺
, (3.33)

− (KTV)⊺ΛT V =
[
Çψ
ÇT

Çψ
ÇV

]⊺+(
ÇRU

ÇT

)⊺
ΛU . (3.34)

In the previous separation of the mechanical and thermoelectric solutions of the
adjoint vector, we separate it as

Λ⊺ =
[
ΛU ΛT ΛV

]
=

[
ΛU ΛTV

]
. (3.35)

Substituting these solutions into the Lagrangian derivative, we can calculate the
derivatives of the function ψ as

dL

dx̄Φ
= dψ

dx̄Φ
= Çψ

Çx̄Φ
+Λ⊺

(
ÇR

Çx̄Φ

)
. (3.36)

This solution still requires the derivative of the residual and the function ψ

concerning each design variable in x . This x̄Φ comprises filtered density design
variables and boundary condition control variables. We can identify two different
cases. In the case of the derivatives concerning a density variable x̄ρ , the calculation
can be taken to the element level as:

dψ

dx̄ρ
= Çψ

Çx̄ρ
+Λ⊺

e

(
Çr

Çx̄ρ

)
. (3.37)

In the previous equation, Λe represents the adjoint solution for the DOFs associated
with element e and x̄ρ its associated density design variable. The second case refers
to the sensitivity concerning a boundary condition. In this case, we can use the
chain rule as

dψ

dxS
= Çψ

ÇS

ÇS

ÇSΓ

ÇSΓ
ÇxS

−Λ⊺
(
ÇR

ÇS

ÇS

ÇSΓ

ÇSΓ
ÇxS

)
. (3.38)

In this equation, we require the derivative of ψ concerning the state vector, already
calculated for the adjoint vector system. Now, we need to define the derivative of the
state vector concerning the fixed value used in our boundary condition SΓ. While
this is a general formulation that can be applied to Dirichlet boundary conditions in
U , T or V as expressed in Equation (3.8), we particularize it for a voltage boundary
condition VΓ as

ÇU

ÇVΓ
= 0 , (3.39)
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ÇT

ÇVΓ
= 0 , (3.40)

ÇVi

ÇVΓ
=

{
1 if x(i ) ∈ ΓV ;

0 otherwise,
(3.41)

where ΓV is the location of the boundary condition we control through xS and x is
the coordinates of node i .

The last component needed is the derivative of the value associated with the
boundary condition concerning its control variable, following the description in
Equation (3.25e). The derivative of the voltage boundary condition concerning the
control variable can be expressed as

ÇVΓ

ÇxS
=Vmax −Vmi n , (3.42)

where Vmax and Vmi n define the minimum and maximum voltage that we apply
across our thermoelectrical device.

Given the previous formulation, we can observe that the derivative of the
ψ function concerning a design variable controlling boundary condition is only
different from zero if the domain that the objective or constraint affects contains the
nodes from the boundary condition. We can state this fact for our voltage boundary
condition as

Çψ

ÇS

ÇS

ÇVΓ
= Çψ

ÇVΓ
= 0 if Γψ∩ΓV =; , (3.43)

where Γψ are the DOFs used by ψ.
These equations provide all the quantities that need to be defined to calculate

for each objective and constraint. In the following subsections, we provide the
derivatives of each ψ function with respect to S and x̄Φ. The common derivatives
for all functions of r and material properties are provided in the Appendix C.

Objective Function

We use the P-mean of the nodal temperature values in the cold surface of the
thermocouple as our objective, ΓΦ. This equation is written in Equation (4.12).

To calculate its derivative with respect to the state vector, we can rewrite it in
terms of the of all DOFs using a vector LΦ which stores the components of T
present in ΓΦ, and performs the division concerning the number of elements in the
summation. This multiplier LΦ contains

LΦ(i ) =
{

1
nΦ

if x(i ) ∈ ΓΦ;

0 otherwise.
, (3.44)

with nΦ is the number of DOFs used to summate the P-mean function and x are
the coordinates of node i . The objective function can then be written as

Ψ(TΦ) = (
L⊺
Φ

T◦pΨ
) 1

pΨ . (3.45)
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The derivative of this objective with respect to the global temperature DOFs can now
be written as

ÇΦ

ÇT
= LΦ ◦T◦(pΦ−1) (

L⊺
Φ

T◦pΦ
)( 1

pΦ
−1

)
. (3.46)

This can be rewritten in terms of the global state vector S as

ÇΦ

ÇS
=


ÇΦ
ÇU

ÇΦ
ÇT

ÇΦ
ÇV

=


0

ÇΦ
ÇT

0

 . (3.47)

The partial derivative of the objective function with respect to any density design
variable is zero

ÇΦ

Çx̄ρ
= 0 . (3.48)

Notice that these equations do not depend on the mechanical DOFs. Therefore,
the two-step adjoint equation calculation can be simplified with

ΛU = 0 . (3.49)

Stress constraint

For each element, we consider a single σ̂ value calculated at its centroid – equivalent
to a zero value for its local coordinates ξ= 0. The space of these centroids makes up
ΓΦ. The centroid reference for the stresses provides an exact value for hexahedral
serendipity elements (H20) without the need for extrapolation for Gauss integration
schemes if ξ = 0 is used as an integration point [50]. The lack of extrapolation
and use of a single evaluation point per element simplifies the calculation of this
constraint at the cost of a lower number of evaluation points for the stress constraint.
Given these assumptions, we can reduce the derivative of the von Mises stress with
respect to each one of the stresses stored in the Voigt notation to the element level.

The partial derivative of the P-mean function of the stress within the design
domain requires the calculation of a summation along all nodes nσ included in the
design domain. Following the chain rule, we have

Çcσ
ÇS

= kσ
nσ∑

e=1


(
σ(e)

V M

σ0

)pΨ−1


Çσ(e)

V M
Çσ̂

Çσ̂
Çu

Çσ(e)
V M
Çσ̂

Çσ̂
Çt

Çσ(e)
V M
Çσ̂

Çσ̂
Çv



 . (3.50)

In this equation, we have a kσ constant arising from the derivative of the P-mean
function and defined as

kσ = 1

nσσ0

(
1

nσ

nσ∑
e=1

(
σ(e)

V M

σ0

)pΨ) 1
pΨ

−1

. (3.51)
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Each derivative of a single von Mises stress value with respect to the local stresses
is given by

Çσ(e)
V M

Çσ̂
= 1

2σ(e)
V M



(2σx −σy −σz )

(2σy −σx −σz )

(2σz −σy −σx )

6τy z

6τxz

6τx y



⊺

, (3.52)

and the derivative of the local stress vector with respect to the element-level DOFs
are

Çσ̂

Çu
= CB, (3.53)

Çσ̂

Çt
= ÇC

ÇT
BuN⊺− ÇβT

ÇT
θN⊺−βT N⊺, (3.54)

Çσ̂

Çv
= 0. (3.55)

The derivative of the stress constraint with respect to the density design variables
can be calculated at the element is

Çcσ
Çx̄ρ

= kσ

 nσ∑
e=1

(
σ(e)

V M

σ0

)pΨ−1
Çσ(e)

V M

Çσ̂

Çσ̂

Çx̄ρ

 , (3.56)

where the element-level derivative of the Voigt notation stress of each element is

Çσ̂

Çx̄ρ
= ÇC

Çx̄ρ
Bu− ÇC

Çx̄ρ
αTθ . (3.57)

Power constraint

We calculate the thermocouple power through the summation of the integration
of the current density multiplied by the voltage gradient within each one of the
elements in the mesh used for the power calculation nP , i. e.,

P =
nP∑

e=1
Pe =

nP∑
e=1

(
−

∫
Ω

j⊺∇∇∇N⊺vdΩ

)
. (3.58)

The integral is performed at the element level, so the derivative can also be
calculated at the element level and assembled through the summation of each
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element’s component. The derivative of this function with respect to the state vector
can be written as,

Çcp

ÇS
= 1

P0

nP∑
e=1

∫
Ω


0

− Çj
Çt

⊺∇N⊺v

− Çj
Çv

⊺∇N⊺v−∇Nj

 dΩ . (3.59)

The derivative of the power with respect to the density design variables can also be
reduced to the element-level as

Çcp

Çx̄ρ
= −1

P0

∫
Ω

(
Çj

Çx̄ρ

)⊺
∇N⊺vdΩ . (3.60)

The partial derivatives of the current density with respect to the density design
variables and element-level DOFs are provided in Appendix C.

As in the case of the temperature objective, the mechanical adjoint vector is zero.
This can simplify the calculation of these derivatives.

Volume constraint

This constraint does not depend on the state vector or the boundary conditions,
leading to the values:

Çcv

ÇS
= 0 . (3.61)

Nevertheless, this equation does depend on the element-level densities

Çcv

Çx̄ρ
= ve

v0vob j
. (3.62)

Given the previous equations, this solution does not require the calculation of the
adjoint as the solution to the system Equation (3.32) provides the trivial solution.

3.4. Results
This section provides examples of how we apply our formulation to the standard
thermoelectrical element mechanical assembly. This is commonly done by
introducing the TEC between two plates that can be tightened together using
fasteners, adding a compression force into the thermoelectric device. These two
plates act as cooling surfaces and heat sinks, respectively. After assembly, the
entire thermocouple is under compression loading and cannot expand through its
thickness.

3.4.1. 2D results
Each TEC usually consists of multiple thermocouples, with each thermocouple being
an in-series connection between dissimilar semiconductors. For our model, we
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simplify it to a single thermocouple, considering they are all submitted to the same
loads. A 2D cross-section of a single thermocouple is depicted in Figure 3.1. In this
figure, we can appreciate a cross-section of the y z plane of a thermoelectrical pellet
composed of a p+ and n− semiconductor pellets joined together by a solder (white
blocks) and a copper layer (solid grey blocks). Two ceramic layers (hatched blocks)
act as the thermal contacts in this assembly. This figure also shows the boundary
conditions at each of the outer edges. The mechanical boundary conditions include
a zero displacement in the heat sink and cooling surface along the z axis to
simulate the mechanical assembly and at the connection with the surrounding
thermocouples with zero displacements along the ceramic and copper connections
to the surrounding material in the x direction. The thermoelectrical model imposes
a heat flux qi n at the cold surface of the TEC and a heat sink with a prescribed
temperature T0 on the opposite surface. Both these thermal boundary conditions are
imposed in the ceramic layers. Electrical boundary conditions are applied to each
copper electrode, i. e., a voltage V f > 0 at one end and V0 = 0 in the opposite one,
according to the definition of the p+ and n− materials. Reversing this definition
would warm the objective surface instead of cooling it. Finally, as ceramic materials
are not electrically conductive, we fix the voltage value of these solids to zero to
avoid numerical instabilities. The nodes in contact between both solids, the copper
and the ceramic layer, are not fixed and are solved in each iteration.

With our 2D model, we now set the optimization parameters. The TO
computational domain within the design in Figure 3.1 is set only to the
thermoelectrical elements, i. e., Bi2Te3 material regions. While the copper, ceramic,
and solder layers can impact the objective and constraint functions, we do not
include their topology in the design space. We create the mesh of Bi2Te3
using a regular 60×60 grid, totalling 3600 serendipity 8-node elements (Q8) per
semiconductor leg. The dimensions of the default thermoelectrical pellet are based
on standard thermoelectrical devices and are equal to 1mm×1.2mm. The solder,
copper, and ceramic layers measure 0.05, 0.1, and 0.2 mm, respectively, and the gap
between two pellets is 0.2 mm. We set the limits of the voltage gradient across the
thermocouple defined by the xS design variable to 0.01 V and 0.06 V and equal to V f .
The initial value imposed to xS during the optimization is 0, providing the smallest
voltage possible according to Equation (3.25e).

For subsequent optimizations without any filtering scheme, we start from the
full density design, x̄Φ = xΦ = 0.5, given the lack of information on a better
initialization design and the need for a fully-connected design. The minimum
material property value for all materials according to Equation (3.24) is set to 10−6

to avoid numerical instabilities. Furthermore, we fix the heat flux to 7500 W/m2 and
the power consumption to 15 mW per thermocouple. We can translate this power
consumption limit for the 2D case to 15 W/m, considering a thickness of 1 mm
for the thermocouple. Finally, the MMA algorithm requires the definition of some
parameters, including a hyperparameter cm , to penalize the problem for infeasible
design spaces. All cm values are set to 20000 and the optimization is run for a
number of iterations im of 150. Notice that we obtain these values by trial and error,
and if set too low, we might end up with an infeasible design. The penalization
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qi n ,Uz0

T0,Uz0

V f V0Ux0 Ux0

Ux0 Ux0

y

x

n−p+
1.2 mm

1 mm

Figure 3.1.: Thermocouple FEM simplified model. The figure includes the heat
injection qi n and temperature boundary conditions T0 in red, voltages
(V0,V f ) in green and displacements in blue Ux0. The different layers
include a grey copper connection, a hashed ceramic layer, and two
thermoelectrical pellets soldered to the copper through a solder layer.

coefficient for each material property involved in the optimization has been selected
by combinatorial analysis from an analytical model in Reales Gutiérrez et al. [51]
to achieve convergence. For all optimizations, we use the set of penalization
coefficients satisfying

pS < pk = pγ < pE . (3.63)

We summarize all parameters required for the optimizations in Table 3.1 following
the methodology in Section 3.3.

Parameter Value Parameter Value

Vmin 0.01 V cm 20000

Vmax 0.06 V dr 0.11 mm

pE 5 Pobj 15 mW/mm

pS 1 σ0 10E6

pσ 3 Tref 298.15 K

pk 3 Th 350 K

qi n 7500 W/m2 εKKT 10−8

β 64 x(i=0)
S 0.5

µ 0.4 im 150

Table 3.1.: MMA optimization parameter summary according to Equation (4.12),
Equation (3.18), and Equation (3.24) for the optimization results in
Figure 3.2.
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We increase the complexity through multiple optimizations to better understand
the problem and the successive nonlinearities introduced. For this reason, we
successively add stress constraints and filtering techniques to a pure thermoelectrical
optimization with power constraints. Furthermore, we repeat this analysis for
different material conditions for the model, from constant material properties at
350 K, to nonlinear material properties with temperature, to the introduction of air
material in the void regions and in between the thermocouple legs. The results
from these successive optimizations are represented in Figure 3.2 with an increased
number of constraints and filtering techniques toward the right and increased model
and material complexity further down. Each plot in this figure represents the density
field for the 150th iteration or convergence conditions for each optimization with
a linear colour scale, with white representing void material and black full-density
material.

The pure thermoelectrical TO with power constraints but without stress or volume
constraints are shown in Figures 3.2a, 3.2e and 3.2i. These plots show an asymmetry
between each pellet, given their different thermoelectrical properties of p+ and
n-type semiconductors. Notice that the Peltier effect is based on the change
of energy of the electrons moving between different outer valence energy levels
between two dissimilar semiconductors. Therefore, the effect only requires contact
between dissimilar semiconductors. The optimization objective tries to reach an
optimized configuration between decreasing the thermal conductivity and increasing
the electrical conductivity of each semiconductor. Given the material properties
used, see Appendix E, we use the same thermal conductivity for both semiconductors
and the optimization should leave the largest amount of the material with the lowest
electrical conductivity at each operational temperature to compensate for it. Indeed,
we observe that the electrical conductivity provided in Appendix E decreases with
temperature; with the highest temperature located at the bottom surface of the
thermocouple, the heat sink, the optimized pellets present the largest amount of
material at this location, with the lowest amount of material at the cold top surface
contact with the higher electrical conductivity. The optimizer also tries to reduce
Joule heating concentrations by creating multiple electrical paths, avoiding hot spots
and distributing the Peltier effect through multiple contacts along the cold surface.

A second set of optimizations include a stress constraint to 10 MPa (Figures 3.2b,
3.2f and 3.2j). These optimizations maintain features of the pure thermoelectrical TO,
such as continuous paths for the electrical and thermal flow, but also present joints
and smaller contacts to the top and bottom surfaces to reduce the thermally induced
stresses in the thermocouple. These joints are made through features of a single
element and porous material. This is an undesirable and difficult-to-manufacture
topology. A Hemlholtz filter can introduce a length scale, removing all single-element
features and providing mesh independence to the results. A third set of optimizations
using a filter radius dr = 0.11mm is showed in Figures 3.2c, 3.2g and 3.2k. A
larger feature size increases the overall stresses in the structure, and the use
of the same mechanical properties under an active stress constraint for both
semiconductors leads to an increased symmetry between both legs. However, these
results maintain intermediate density elements between the solid and void material.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.2.: Physical density field for 2D thermocouple optimizations, ranging from
full-density elements (in black) to full-void elements (white). Grey
elements represent regions with intermediate density values. ubfigures
Figures 3.2a to 3.2d use constant material properties at 350 K. Subfigures
Figures 3.2e to 3.2h apply nonlinear properties with temperature. The
nonlinear material properties and their values at 350 K are described in
Appendix E. Subfigures Figures 3.2i to 3.2l also include air as a material
in voids and between pellets. Figures 3.2a, 3.2e and 3.2i show results
from pure thermoelectric optimizations under power constraints, without
filtering or stress constraints. Figures 3.2b, 3.2f and 3.2j include stress
and power constraints without filtering. Figures 3.2c, 3.2g and 3.2k
apply a Helmholtz filter in addition to stress and power constraints.
Figures 3.2d, 3.2h and 3.2l combine stress and power constraints with
both Helmholtz and Heaviside filters. The values for each constraint and
filtering technique are summarized in Table 3.1.
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These intermediate densities can introduce thermoelectric artefacts due to changes
in Seebeck’s coefficient, the Thompson’s effect, and temperature gradients.

To remove these intermediate densities, we introduce a Heaviside projection after
the Helmholtz filtering to obtain a sharper transition between the void and solid
material in Figures 3.2d, 3.2h and 3.2l. We use a Heaviside projection with µ= 0.4
and a β= 64. This optimization requires modifying the initial xρ = 0.4 and default
parameters of MMA to obtain convergence and avoid a thermoelectric disconnection
of the design. We reduce the movement of the asymptotes in MMA using a move
limit, an increase and decrease of the asymptotes, and an initial asymptote of 2%.
The results maintain previously found design characteristics, with a crisp transition
between solid and void material. We can see that each electrical path develops
a rotational joint to accommodate thermal deformation. Between each joint, the
algorithm increases the material amount to compensate for the reduced electrical
conductance at the joints with smaller cross-sections.

To justify the Heaviside filtering and the impact of grey regions in Helmholtz
filtering, the optimized configuration in Figures 3.2f to 3.2h was modified by
retaining elements with xe > 0.85. These elements were assigned full density, while
others were set to xe = 1e −6. Figure 3.3 compares the new black-and-white
designs with the original optimized geometry as ∆Ξ=ΞBW−Ξopt, where Ξ represents
the respective objective or constraint. The black design is colored based on
its temperature difference from the optimized design and deformed according to
the displacement field difference, scaled by 1000. In Figure 3.3a, grey areas are
electrically disconnected, causing minimal thermal variation, with a total deviation
of 0.38 ◦C in localized areas localized at the smallest electrical path contact to the
cold surface. In contrast, Figure 3.3b shows larger temperature changes up to 1.4 ◦C,
particularly near the device centre along z. Figure 3.3c improves on the behaviour
of Figure 3.3b, with temperature differences of 0.38 ◦C in localized areas compared
to the optimized design, without single element joints. Table 3.2 presents the final
values of the objectives and constraints for each black-and-white design, along
with the differences from the optimized designs. The grey areas in Figure 3.3a
have minimal impact on the metrics compared to the filtered designs. The filtered
designs show similar corrected objectives, differing only in the second decimal for
the black-and-white designs. However, the objective difference from the optimized
designs is two orders of magnitude larger in the design with only the Helmholtz
filter. Finally, the stress constraint is not satisfied in all black-and-white designs,
with the largest difference found in the design with only the Helmholtz filter.

Although the material properties are nonlinear, the study focuses on the range from
333 to 350 K, where nonlinear effects are moderate compared to the full temperature
range, as shown in Appendix E. This suggests that approximating the material
properties at a fixed temperature may yield a sufficiently accurate geometry without
requiring full nonlinear modelling. Therefore, optimization is performed using
properties evaluated at 350 K, as shown in Figures 3.2a to 3.2d. The resulting density
fields are then reevaluated using nonlinear material properties and the same voltage
gradient. Table 3.3 presents the results, comparing the constant-property-based
optimized design to the nonlinear case using ∆Ξ=Ξnonlin −Ξcte. These results show
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(a) -0.02

0.01
∆T ◦C

(b) -1.4

0.02
∆T ◦C

(c) -0.3

0.38
∆T ◦C

Figure 3.3.: Difference in the thermomechanical response between the black-and-
white design (thresholded with xe > 0.85 assigned full density and
xe = 0.001 otherwise) and the corresponding optimized design. Field
differences are computed for Figures 3.2f to 3.2h in Figures 3.3a to 3.3c,
respectively. The colored map shows the temperature field difference,
∆ΞT =ΞT,BW −ΞT,opt. The displacement field difference is depicted as
∆Ξu =Ξu,BW −Ξu,opt, scaled 1000× for visualization, with respect to the
original edges of the undeformed design.

Figure 3.3a Figure 3.3b Figure 3.3c

Φ 333.484419 334.142404 333.239808

Cp 5.9×10−5 −8.3961×10−2 −2.072×10−3

Cσ 1.0×10−6 2.10919×10−1 1.9486×10−2

∆Φ −1.129×10−3 −1.153401 −4.6457×10−2

∆Cp 5.9×10−5 −8.3961×10−2 −1.974×10−3

∆Cσ 4.0×10−6 2.1092×10−1 2.003×10−2

Table 3.2.: Comparison between the optimized design results (shown in Figures 3.2e
to 3.2g) and the corresponding black-and-white design, obtained by
thresholding elements with xρ > 0.85 to full material and the rest to void.
The values for Φ, Cp , and Cσ correspond to the black-and-white design,
and the differences are computed as: ∆Ξ=ΞBW −Ξopt, where Ξ denotes
any of the considered objective or constraints, with subscripts BW and
opt indicating the black-and-white design and the optimized design,
respectively.

lower objective and stress values but fail to meet the power constraint. The power
deviation corresponds to a maximum increase of 0.7 mW per thermocouple in the
design shown in Figure 3.2d. In this case, grey elements in Figure 3.2c appear to
limit both the increase in power and the reduction in stress. Nonlinear evaluation
leads to temperatures up to 0.46 ◦C lower than those from constant-property models.

To account for conduction losses, an air model is introduced between the
thermoelectric legs. This model uses a void thermal conductivity κv of 0.033 W/(Km)
and assigns the minimum value for the Young’s modulus, electrical conductivity,



3

76 3. Mechanical considerations in thermoelectric topology optimization

Figure 3.2a Figure 3.2b Figure 3.2c Figure 3.2d

Φ 335.53 333.10 334.91 332.81

Cp 4.14×10−2 4.69×10−2 3.99×10−2 4.57×10−2

Cσ – −3.72×10−3 −3.10×10−3 −4.98×10−3

∆Φ −2.40×10−1 −3.93×10−1 −3.61×10−1 −4.59×10−1

∆Cp 4.14×10−2 4.69×10−2 3.99×10−2 4.58×10−2

∆Cσ – −1.04×10−2 −9.49×10−3 −1.17×10−2

Table 3.3.: Comparison between the results obtained using constant material
properties defined at 350 K and those obtained from the same optimized
designs using nonlinear material optimization (Figures 3.2e to 3.2h).
The values of Φ, Cp , and Cσ correspond to the results obtained using
constant material properties, while the differences are computed as
∆Ξ=Ξnonlin −Ξcte, where Ξ ∈ {Φ,Cp ,Cσ}.

and the Seebeck coefficient. The resulting density fields are shown in Figures 3.2i
to 3.2l. These fields resemble previous designs but show greater separation between
solid regions near the cold and hot surfaces due to the increased thermal resistance
through the air. Grey regions vanish in these designs, as higher densities in
those areas would worsen performance due to non-negligible thermal conductivity.
Table 3.4 summarizes the objectives and constraints, comparing the air model
designs to those with void materials Figures 3.2e to 3.2h using ∆Ξ = Ξair −Ξvoid.
These optimizations show a temperature increase of up to 0.84 ◦C in the optimized
geometries. The lowest difference arises in the pure thermoelectric optimization due
to the larger optimized volume of semiconductors compared to stress-constrained
optimizations. Air inclusion also raises stress levels, as the optimizer increases
semiconductor material to counteract heat flux, expanding the contact area with
mismatched αT values. Compared to constant property assumptions, these losses
have a more pronounced impact, making them significant for accurate optimization.

Figure 3.2i Figure 3.2j Figure 3.2k Figure 3.2l

Φ 336.41 334.20 336.14 334.06

∆Φ 0.24 0.71 0.84 0.77

Table 3.4.: Comparison of optimized results considering two modelling approaches
for void regions: treated as true void and as air. The values of
Φ correspond to the results where void is modeled as air (shown in
Figures 3.2i to 3.2l), while the differences are computed as ∆Ξ=Ξair−Ξvoid.

We perform one last optimization with all filters, considering air-conduction losses,
and a volume constraint of 50%, close to 10% lower than the obtained volume for
the Figure 3.2l optimization. We show the deformation field of the physical density
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335.2

350

T ◦C

Figure 3.4.: Thermomechanical response of the optimized thermo-electro-mechanical
design after 150 iterations with the power and stress constraints defined
in Table 3.1 and a volume constraint of 50%. The figure shows all
elements with xρ > 0.1, the mechanical deformation is shown in a
colored map that represents the temperature range. The displacements
are introduced with a scale of 90 times their nominal value.

field in Figure 3.4 with a scale 90 times the actual deformation superimposed to the
undeformed edges. This figure shows the elements in the mesh with xρ > 0.1. The
colour plot shows the temperature of this design for the maximum power allocation
allowed of P =15 mW/mm. In these results, we can observe a contraction in the
middle of the thermocouple and an expansion towards its outer edges, pivoting
around the joint in each leg. The temperature field shows a similar profile to that of
the previous optimization, with losses in the order of 1.15 ◦C.

The values of the objective function and all constraints for the first 150 MMA
iterations for all optimizations are shown in Figure 3.5. This figure includes the
values for the objective aggregated temperature Ψ(TΦ) (Figure 3.5a), the power
consumption (Figure 3.5b), the stress aggregated value Ψ(σV M ) (Figure 3.5c), the
voltage gradient across the thermocouple (Figure 3.5d), and percentage of the
original semiconductor volume (Figure 3.5e). The objective for the filtered and
volume constraint optimization, Figure 3.4, is the one with the highest moving rate
by the end of the 150 iterations. Even for this case, the change in the objective
is lower than 0.2% between the last ten iterations. The delay in convergence for
the Heaviside-filtered designs arises from the slow-moving limits imposed on the
MMA optimizer. The temperature objective remains stable after 50 iterations for the
rest of optimizations. There is also an initial jump in temperature caused by the
excessive power consumption of the initial designs and by its subsequent lowering
by MMA. The power constraint is satisfied for all optimizations and is equal to the
maximum available. The oscillation present for its value can also be correlated to
the stress constraint. In the unfiltered and Helmholtz-filtered designs, there is a
peak in the stress constraint that induces a lower voltage and power consumption,
reducing the current and joule heating along the device and thermal deformations
to satisfy it. These peaks are not present when we reduce the moving limits for
MMA or in pure thermoelectrical optimization. While the stress constraint increases
the complexity of the problem, it is active for all final results. It can reduce the
stresses compared to the pure thermoelectrical optimization to a fifth of its initial
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Figure 3.5.: Convergence results for the 2D TO for the 4 different cases summarized
in Figure 3.2. Each plot shows the evolution of a different variable,
including: Figure 3.5a the objective temperature; Figure 3.5b power;
Figure 3.5c stress; Figure 3.5d voltage gradient; and Figure 3.5e volume
constraints.
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value without compromising the temperature achieved.
We can observe the complexity of the design space field from the multiple designs

obtained in Figure 3.2, which can provide similar temperature profiles according
to Figure 3.5a. This can partly be achieved through the different final xS shown
in Figure 3.5d. This plot shows that no design shares the same voltage gradient
for the optimized temperature profile. Furthermore, the fact that the temperature
obtained for the pure thermoelectrical optimization is higher than for the rest
of the optimizations, with a difference of ≈2.5 ◦C implies that there are multiple
local optima and the stress constraint steers the optimizer towards new optima
not reachable by MMA with the imposed parameters from the initial optimization.
Furthermore, while the stress-constrained optimization provides one of the lowest
temperature profiles and the Helmholtz filter decreases these gains due to the
introduced intermediate densities, the Heaviside filter can recover these results with
a more manufacturable design.

The higher sensitivity to the voltage design variable compared to the density design
variables can be seen as the overall volume of the design keeps changing. Still, the
impact on the objective temperature is lower than 1% of its value. In particular,
for the volume unconstrained and unfiltered models, there is an increase in the
volume of disconnected areas in the latter iterations of the optimizer. Furthermore,
the convergence to lower design volumes without volume constraints due to the
search for low thermal conductivity reduces the semiconductor material we need
to use in these designs. We can see that while we converge to lower volumes for
stress-constrained optimisations, this does not lead to worse objective performance.
In all cases, the lower volume is compensated by a higher voltage gradient across the
thermocouple, leading to multiple local minima present, dependent on this design
variable. The intermediate densities are also considered adverse for the objective, as
the design obtained by only using the Helmholtz filter increases its value compared
to the other stress-constrained designs. Regarding convergence, we show the first 100
MMA iterations, enough to provide convergence for all objective functions. However,
in the case of the Heaviside filtered optimizations, the lower bounds for the MMA
parameters, lead to larger movements of the density design variables when we reach
the maximum iteration value.

3.4.2. 3D results
The 3D model dimensions are the same as those of the 2D model. However, we
extend the design space outside the contact area. The parameters of the model’s y z
plane are shown in Figure 3.6. The square cross section across z is of 0.5 mm with
a symmetry condition is at z = 0. Given this symmetry condition, we use a power
constraint of 7.5 mW. l1 =0.2 mm and l2 =0.05 mm delineate the extra design space
along the third dimension. Each semiconductor leg is meshed with a 24×24×13 and
regular grid, with a total of 7488 serendipity 20-node elements (H20) per leg.

We perform two 3D optimizations without air modelling between pellets to reduce
DOFs, including a thermal conductivity of κv =0.033 W/(Km) . Each optimization is
run with either no volume constraint or 40% volume constraint. Both optimizations
use Helmholtz and Heaviside filters. The same power and stress constraints, filtering,
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Figure 3.6.: 3D thermocouple FEM model modifications to Figure 3.1. The figure
shows the lateral view of Figure 3.1 for a 3D TO model with an increase
in material along the z direction and a symmetry boundary condition for
the mechanical DOFs.

(a) (b) 326

350
T ◦C

Figure 3.7.: Results of a 3D TO of a thermocouple with stress constraints using no
volume constraint Figure 3.7a or a volume constraint of 40% of the
original volume Figure 3.7b. We plot the topology results either for
convergence conditions or the 150th iteration. The figure shows the
resulting elements with more than 10% density in the design domain and
the axis system for each figure. The colour plot shows the temperature
gradient of the semiconductor material.
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density and voltage design variables and limits, and MMA parameters as in the 2D
optimizations are applied, as summarized in Table 1. The filtering parameters are
µ= 0.4, β= 64, an initial semiconductor density of 0.4, and MMA moving limits of
2%.

We show the physical density design variables with values xρ > 0.1 for an
optimization of the 3D geometry following the values in Table 3.1, using the
Helmholtz and Heaviside filter in Figure 3.7, and the MMA parameters are those used
for the results in Figure 3.2h. This plot includes the non-semiconductor materials as
a transparent volume and the semiconductor material as a colour plot representing
its temperature. The two results represent an optimized design with no volume
constraint in Figure 3.7a and an optimized design with a volume constraint of 40%
in Figure 3.7b. These plots lead to a quasi-symmetrical design for both pellets. As
with the 2D results, the mechanical stress constraint dominates the problem. The
volume-constrained model leads to a tuning fork or U-shaped geometry featuring a
central contact line along x on the heat sink surface aligned with the middle of the
z axis. This central contact then branches into two separate contacts located at the
edges in z of the heat injection surface. The unconstrained volume optimization
leads to a structure with larger changes along the x axis and a rhomboid hole
in the y z plane cross-section. turning around the y axis. In both cases, the
resulting topology accommodates the deformations with a topology focused on the
y z cross-section.

The convergence history is plotted in Figure 3.8 for the temperature and volume.
The volume constrained optimization has found a 35% original volume design
compared to the original design with temperature objectives with less that 0.1 ◦C
difference with a voltage up to 4 times higher than in the volume unconstrained
optimization. This indicates the presence of non-convex local minima dependent
on the voltage that can be reached through the volume constraint.We can further
compare the 2D and 3D results by extruding the 2D design into the third dimension
(i. e., 2.5D) to the equivalent 3D dimension. The equivalent final volumes of the
optimized designs in the 3D configuration are lower than in the 2.5D case. The 3D
model also provides a lower optimized temperature of 326 K compared to the 334 K
obtained by the 2.5D design, given its larger design space freedom.
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Figure 3.8.: Temperature objective in blue and volume percentage in reds for both
results in Figure 3.7 along each iteration of the optimizer.
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3.5. Summmary and conclusions
This paper deals with the thermo-electro-mechanical optimization of thermocouples.
We do so by linearizing and decoupling the mechanical and thermoelectric DOFs.
This approach reduces the memory required to solve the thermo-electro-mechanical
problem and is valid for problems with small thermal deformations. As a result, this
approach can provide designs that minimize stress concentrations and increase their
expected lifetime for thermoelectrical devices.

In the model proposed, we consider a single pellet, and the resulting TEC could
be built, making all pellets follow it. However, in reality, some effects are not
taken into account when we model the entire device. In particular, the edges
and inner regions of the TEC will not absorb the same amounts of heat. This
could be considered through homogenization techniques, where each thermocouple
can be a unit cell of the final design. The optimization could also incorporate
the orientation, location, and number of thermocouples. However, the use of
homogenization may increase the number of FEM solves. Neglecting Joule heating
in the device can convert the nonlinear thermoelectric equations into a linear
system without needing a Newton-Raphson solver for temperature-constant material
properties [52]. If these simplifications are taken, the optima found must be
post-processed to verify their accuracy compared to the nonlinear models. Future
studies could also be conducted on the effect of the overall dimensions of the
initial thermocouple design and surrounding materials to optimize the design
further. This could also involve the integration of the optimization procedure with
boundary-dependent radiation thermal loads, as these are shown by Bjørk et al. [38]
to have a significant contribution to their efficiency, the larger the internal spacing
between thermoelectric legs. Onodera and Yamada [53] already show a methodology
to integrate these loads in thermomechanical level-set TO problems, and a simple
boundary identification algorithm could also be adapted to environment radiation
loading [54].

Even with our simplifying assumptions, the optimizations led to multiple optima
with similar objective values and different geometries. This seems to be related to the
use of the voltage as a design variable, allowing further flexibility in the design space.
However, this flexibility over the electric working point can flatten the design space,
hindering convergence. Although the volume constraint can steer the algorithm
towards a new solution, this is not ideal as, we do not know the optimized volume
for a given working point. Techniques for exploring the overall design space, such as
genetic algorithms, could be helpful in understanding the location of these multiple
minimum values. Deflation, relaxation, or preconditioning techniques could be used
to find other minima [55]. Furthermore, the effect of penalization coefficients on the
material properties and their relative ranges has already been shown to affect the
overall nonconvexity and the convergence of the problem objective and constraints.
In the past, heuristic algorithms have been used to study the effects of optimization
parameters [56]. However, heuristics are computationally expensive and must be
applied to each problem studied separately. While analytical models help understand
the physics behind the problem, techniques to evaluate the fitness of an objective
or constraint in higher dimensionality should be explored. New high-dimensionality
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projection techniques could be used for this purpose, allowing the selection between
different initial parameter values [57].

We also see the need for a length scale filter to avoid single-element features
in thermo-electro-mechanical optimizations and to decouple the solution from the
mesh resolution in problems involving material nonlinearities. We find that the
Helmholtz filter can introduce this length scale. Still, a Heaviside filtering is also
needed to provide a sharp design and avoid the intermediate densities from the
Helmholtz filter that provides worse optimized objective values. Convergence to
lower objectives is also achieved without the need to reinitialize the optimization to
gradually increase the filter sharpness. We find that a µ≥ 64 is enough provide a
black and white design with minimal grey regions in the thermo-electro-mechanical
optimization problem. Zhou et al. [58] provides an alternative approach to introduce
a length scale function based on constraints on the filtered fields that could also
improve the problem solution without introduction of grey regions. We notice as
well the tendency of the pure thermoelectrical TO with air losses to remove grey
elements, which itself could act as a filter to provide sharp edges geometries with
the cost of a single thermoelectrical calculation per MMA iteration for different
problems. Different constraints could also be implemented to prevent small
features. In particular, the current flow seems attractive for this purpose. Smaller
feature sizes lead to higher electrical resistance and smaller current flows through
these features. Constraints over the current flow or the resistance it sees could
remove these small features from the optimized designs. Furthermore, the imposed
constraints do not limit the possibility of dangerous or fatal situations during
dynamic situations regarding current flow concentrations or thermal shocks, which
should be considered.

The use of stress constraints, while reducing stresses within the assembly that
elongate the device’s lifespan, further increases the complexity of the problem.
Note that we use no contact formulation, and the small size of these devices and
the more flexible designs can lead to short circuits that must be avoided. This
could be considered a displacement constraint in our optimization or the addition
of material between the legs in our model. To simplify the problem formulation
further, we could also consider only the most critical solder regions as defined in
Awrejcewicz et al. [59]. Another further simplification could be reducing the design
space of the mechanical constraints to a single pellet, given the dominance of the
stress constraint over the thermoelectric variables. This would require special mesh
preconditioning between both pellets and mirroring the sensitivities to each pellet.

In summary, we propose a TO approach that uses stress constraints in
thermoelectrical problems for cooling applications. Although the proposed
formulation can lower stress concentration measurements – up to 5 times lower
compared to regular thermoelectrical optimization in the proposed examples – the
non-convexity problem still leads to challenges in finding local minima. Furthermore,
manufacturing the optimized thermocouples should still be studied and further
implemented in the optimization process.
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4
Multi-objective scintillator shape

optimization for increased
photodetector light collection

Inorganic scintillators often use exotic, expensive materials to increase their light
yield. Although material chemistry is a valid way to increase the light collection, these
methods are expensive and limited to the material properties. As such, alternative
methods such as the use of specific reflective coatings and crystal optical shapes
are critical for the scintillator crystal design procedure. In this paper, we explore
the modelling of a scintillator and SiPM (silicon-photomultiplier) assembly detector
using GEANT4. GEANT4, an open-source software for particle-matter interaction
based on ray-tracing, allows the modelling of a scintillator-based detector while
offering methods to simplify and study the computational requirements for a precise
calculation of the light collection. These studies incorporate two different geometries
compatible with the BTL (barrel timing layer) particle detector that is being built for
the CMS (Compact Muon Solenoid) experiment at CERN. Furthermore, the geometry
of our model is parameterized using splines for smoother results and meshed using
GMSH to perform genetic numerical optimization on the crystal shape through
genetic algorithms, in particular NSGAII (non-dominated sorting genetic algorithm
II). Using NSGAII, we provide a series of optimized scintillator geometries and study
the trade-offs of multiple possible objective functions, including the light output,
light collection, and light collection per energy deposited and track path length. The
converged Pareto results according to the hypervolume indicator are compared to
the original simplified design, and a recommendation towards the use of the light
collection per energy deposition and track path length is given based on the results.
The results provide increases in this objective of up to 18% for a constant volume
for a geometry compatible with the current design of the BTL detector.

This chapter has been published in the JSON B journal, 41 (2024) [1].
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4.1. Introduction

S cintillation materials can absorb energy from ionising radiation and convert it
to visible light, making them useful for detecting and measuring radiation in a

variety of applications. Scintillator crystals are commonly used in the medical sector
[2], radiation safety, and high-energy physics research, among other fields [3, 4]. As
components of medical imaging technologies – e.g. positron-emission-tomography
(PET) or single-photon-emission-computed-tomography (SPECT) [5] – they are a
key material for obtaining high resolution of the body’s anatomy and function,
allowing for early detection of diseases such as cancer or cardiovascular diseases
[6]. Furthermore, in high-energy physics research, scintillator crystals play a key
role in the study of fundamental particles and the nature of matter and energy [7].
Lastly, as radiation detectors used in the security sector, they help to monitor the
use of radioactive material e. g., in airports, nuclear power plants, and other critical
infrastructures [8, 9].

In spite of their importance to the aforementioned industry, solid inorganic
scintillation materials are often prohibitively expensive. In particular, LYSO:Ce
crystals cost up to $4000/kg, constituting more than 50% of the total production cost
for scintillator crystals [10]. The factors that contribute to this high cost are the rare
materials used – often these crystals require scarce resources, such as rare earths
(e.g. caesium or thallium) – the required manufacturing methods, such as crystal
pulling or vapour transport, and specialized tooling and machinery. There is a trend
to mitigate these costs by searching for cheap organic and polymeric scintillator
materials and new manufacturing techniques. Pla-Dalmau, Bross, and Mellott [11]
already shows how the extrusion technique applied to plastic scintillators reduces
the cost from $40/kg to the order of $7/kg compared to other techniques.

Even if the future of organic scintillators is promising, plastic materials do
not comply with the radiation hardness, high density, and light yield (LY ) –
photons created per energy deposited by ionizing sources – required for their
use in high-energy physics experiments, leading to the use of expensive inorganic
scintillation crystals [12–14]. The need for inorganic crystals makes their design
critical, including their optical coupling materials, assembly to the photodetector,
and the crystal geometry to increase the light collection with the lowest amount
of material possible, which is directly proportional to the crystal cost. The usual
high refractive index of scintillators, such as CsI(Tl) or BaF2, their surface finish
or reflective coatings, can help reflect and redirect light towards the attached
photodetector, increasing the overall light collection and the signal-to-noise ratio
of the detected signal [15]. However, experimentally testing the light collection of
multiple shapes is time-consuming and expensive.

The complexity of the scintillation crystal design and optimization can be seen
in the literature, with various optimization examples that include their chemical
and design criteria. We can find examples of chemical optimization in Khodyuk
et al. [16], which provides a combinatorial algorithm to predict the light yield of the
crystals depending on the composition of the material. In Berg, Roncali, and Cherry
[17], we can find an example of the effect of the surface finish of the crystals on
their light collection. This study shows, through simulation and experimentation,
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that samples with rougher surfaces can improve light collection. The shape of
different crystals can also affect the efficiency of the system. Danevich et al.
[18] experimentally show that a hexagonal crystal improves the energy resolution
compared to a cylindrical shape. Knowing that the shape of these crystals affects
their timing and light collection, Min et al. [19] perform a parameter study of
the thicknesses of the crystals with good correlation with the experimental results
and Li et al. [20] introduce a first sizing optimization using genetic algorithms for
the optimization of three design parameters through the Monte Carlo N-Particle
software (MCNP, [21]). Direct experimental testing on multiple shapes of inorganic
scintillation crystals is tested in Xie et al. [15] without any reflective coatings. The
results of the experiments showed a higher precision for the tetrahedral shapes
compared to those of the other geometries studied. Zhao et al. [22] study the
coupling shape between SiPM (silicon-photomultiplier) and scintillator, where a
runway-shaped groove in the contact region could improve the non-uniformity with
low light output loss. Although the literature already cited uses numerical models
to explain and enhance the light collection of the scintillator crystals, much of the
research is focused on time-consuming and costly experimental results.

The use of numerical modelling and optimization can reduce experimental time
and cost. However, the procedure to perform these modellings and optimizations
is not evident. Particle-matter interaction software based on ray-tracing and
Monte Carlo, such as GEANT4 [23], deals with results in the form of stochastic
data. This leads to difficulties in the available numerical optimization techniques,
with the need for gradient-free optimization [24] techniques to numerically model
multiple shapes of scintillation crystals and optimize them for improved light
collection measurements. These optimization techniques avoid the need for
analytical expressions for the objective derivatives concerning the design variables.
These optimizers applied to multi-objective optimization can also help to identify
trade-offs between conflicting objectives and are well-suited for near-global searches
in complex design spaces, depending on the optimizer selected parameters.

Parameterization and optimization of scintillation crystal surfaces can further
enhance their efficiency compared to parametric or size optimization. Shape
optimization can reduce the light reabsorption within the crystals and take
into account the effect of localized higher-energy depositions with regard to
the photodetector interface location. While these materials are not easy to
machine, through advances in free-form optical manufacturing [25], and numerical
optimization techniques, we should reconsider the way scintillation crystals are
designed nowadays. Furthermore, the lack of numerical optimization examples in
the literature and the stochastic nature of the problem do not provide a clear design
objective for numerical optimization algorithms and methods to calculate them in
an efficient manner.

In this paper [1], we propose a simulation model for a scintillation-based particle
detector and its sensitivity to manufacturing tolerances. We used the state-of-the-art
detector from MTD-BTL (Minimum Ionizing Particle Timing Detector- Barrel Timing
Layer, [26]) to be installed at CMS-CERN as a configuration reference for our model.
Starting from MTD-BTL, we propose simplification approaches and techniques
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for faster computational time using GEANT4, which is required for a feasible
numerical optimization due to the large computational time of Monte Carlo
studies. This paper further proposes a one-dimensional design space to prove the
dependence of the detector light collection on the scintillator shapes and compare
optimization formulations. Finally, two base geometries considered for MTD-BTL
are parameterized to perform shape optimization on the scintillation crystals.
The optimization is performed using the non-dominated sorting genetic algorithm
II (NSGA-II, [27]) with photon count and volume objectives to understand the
trade-off between the contrasting objectives. The algorithm’s convergence is studied
through the hypervolume of successive generations of the genetic algorithm, and
the configurations with the same volume as the initial designs are post-processed
to verify the optimization outputs and provide further understanding of the
optimization procedure for future scintillation crystal design.

4.2. Methodology
Accurate scintillation modelling involves the use of specialized particle-matter
interaction software to calculate track and the energy deposition of the particles
within the crystals and the resulting number of generated photons. One such software
is GEANT4 [28], an open-source Monte Carlo ray tracing library implemented in
C++, which has been extensively tested in various fields such as medical engineering,
research in high-energy physics and radiation protection.

This section starts by describing the definition of the detector geometries studied
in this paper within GEANT4, continues with the particle event definition for the
detector characterization, and finishes with the parameterization and definition of
the optimization algorithm to perform shape optimization on scintillating crystals.
Although this section provides the information needed to model the scintillation
phenomena, all relevant material properties used in this paper are summarized in
Appendix F for clarity purposes.

4.2.1. Geometry
The detector geometry studied in this paper is based on the BTL detector [26],
specifically designed for the detection of minimum ionizing particles within the
Compact Muon Solenoid (CMS) detector at CERN. The BTL current configuration
consists of 16 rectangular LYSO:Ce bars with 32 SiPM channels optically glued to
both ends of each bar. Figure 4.1 shows the dimensions and tolerances used in the
model, closely based on the BTL detector. The drawing represents the LYSO bars with
a length of 57 mm with ±0.1mm for the coating thicknesses. In Figure 4.1, we can
also see a cut section with the different layers in the optical connection consisting
of an adhesive layer and a protective resin layer before the SiPM, supported in an
FR4 package. This bar scintillator configuration covers a continuous cylindrical area
of radius 1991 mm. This configuration is designed so that it can be stacked and
reduce the dead area, the area where the scintillators cannot provide any sensing
capabilities. However, the mechanical components and optical interfaces account
for the 9.5% dead area relative to the total cylindrical area of the detector. For
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any further improvements and changes in the detector, we need to consider the
stackability of the scintillator crystals to ensure that this dead area does not increase.
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Figure 4.1.: Standard LYSO module schematics for BTL with tolerances used in the
GEANT4 model and dimensions in mm.

To maintain this dead area as small as possible, another configuration of interest
for the detector is a geometry in which the photodetectors or SiPMs are found in
the bottom flat surface of the scintillator. This tile-based configuration can reduce
the dead area associated with the SiPM package, maintaining the advantages of the
previously described bar configuration. In this geometry, we impose the location of
the 2 SiPMs for a single tile along one of its symmetry axes, maintaining the same
number of SiPMs and their characteristics to compare to the bar configuration. The
sensitive area of each tile must also be comparable to the sensitive area of each
scintillator bar in the previous configuration to avoid increasing the total number of
channels in the detector. Figure 4.2 shows a lateral view and a cut section for the
scintillators in the tile configuration with the respective location of the SiPM.

LYSO

GlueResin
SiPM

FR4

Figure 4.2.: LYSO-SiPM package schematics for BTL tile-configuration with dimen-
sions in mm with a lateral and a cut view.



4

96 4. Multi-objective scintillator shape optimization

As the smallest unit of the detector, we focus on these crystal modules for our
setup within GEANT4, considering impacts only in a single-crystal sensitive area.
The crystal geometry is constructed using a tetrahedral volumetric mesh generated
with GMSH [29], and subsequently imported into GEANT4 through the points of
each tetrahedral element. Notice that while geometries defined through triangular
elements that can be stored in STL format have the advantage of faster loading times
in GEANT4, volumetric meshes defined through multiple volumes in the form of
tetrahedral elements exhibit computational benefits, particularly when dealing with
a large number of events or particle impacts. The resulting lower computational
cost of volumetric meshes arises from the reduced cost to determine collision points
with the next surface in the model, given a connectivity matrix for the volumetric
elements. This is thoroughly tested in Poole et al. [30] for complex geometries.

4.2.2. Event definition
To start a particle-matter interaction simulation within GEANT4, we need to define
the event interaction that we are going to study. This simulation setup involves
defining high-energy particles in a trajectory that impacts our material of interest.
For this reason, we differentiate between two different particle impacts of interest. To
facilitate direct comparisons with experimental results in the laboratory, we model
the particles as 511 keV gamma rays emitted from a 22Na source. By simulating
these specific gamma rays, which are commonly used for the characterization of
BTL crystals in laboratory settings [31], we ensure that our simulation closely aligns
with experimental measurements. In addition to 22Na gamma rays, we also provide
the option of setting the ionizing particle as muons with an energy of 2 MeV in our
simulations. The use of muons aims to emulate a closer operational condition to
CMS. Unlike 511 keV gamma rays, which are locally absorbed within the crystal,
higher energies of muons enable them to penetrate the crystal and produce a trace
of photons as they cross the scintillator.

The location of the particles’ impact also impacts the light collection, and for
this reason, two testing scenarios for particle impact positions are implemented.
To create a realistic testing scenario that captures the effects of the randomized
impact location under radiation sources, we apply a random distribution of the
particle impact positions along the x and z coordinates within the crystal’s
longitudinal-sectional area. This allows us to explore how the particle trajectories
influence the generation and propagation of photons within the crystal. To simplify
the definition, we consider that the particles fly parallel to the y axis, perpendicular
to the crystal x − z plane, which ensures the impact and a full exploration of the
entire volume of the crystal with enough impacts. We further incorporate the
option to run a uniform pattern impact distribution using symmetry conditions
on the assembly, which allows us to simulate a representative subset of impact
positions efficiently. Uniform impact distribution locations can reduce the number of
simulations required to comprehensively evaluate the scintillator response to particle
interactions.

We define a total of nI = nx ×nz impact points arranged uniformly on a
two-dimensional grid over the x-z plane. The grid consists of nx points evenly
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spaced along the x-axis and nz points evenly spaced along the z-axis. The crystal
surface extends from 0 to X1 along the x-axis and from 0 to Z1 along the z-axis,
where X1 and Z1 represent the half-lengths of the crystal along their respective axes.

To ensure that impact points are not located exactly on the edges of the crystal
surface, a minimum margin lmin is enforced from the boundaries. The coordinates
of the impact points are then given by

xI (i ) = X1 − lmin − X1

nx
(i −1) , i ∈ {1, ..., nx },

zI ( j ) = Z1 − lmin − Z1

nz
( j −1) , j ∈ {1, ..., nz },

(4.1)

where xI (i ) and zI ( j ) denote the coordinates of the i -th and j -th points along the x
and z axes, respectively. Each impact point coordinate is then defined as

PI (i , j ) = (
xI (i ), zI ( j )

)
.

This formulation results in a uniform grid of nI impact points distributed across the
crystal surface, with a consistent margin from the edges.

Figure 4.3 shows a schematic of the Monte Carlo impacts in the bottom left quarter
of the crystal and an example of the uniform impact distribution for nx = 10 and
nz = 5 on the bottom right quarter. Given the symmetry conditions, only one-quarter
of the surface needs to be covered by the events. Figure 4.3 also shows the system of
reference for the impact definition, the characteristic half-lengths of the geometry Z1

and X1 and the minimum lengths with respect to the edges of the geometry as lmi n .

PI (xI (1), zI (5))

x
y

z
2X1

Z1

lmi n

lmi n

PI (xI (1), zI (5))

x
y

z
2X1

Z1

lmi n

lmi n

Figure 4.3.: Schematics of a random and uniform pattern of impacts on a crystal
represented as green or blue dots respectively within one-quarter of the
crystal due to symmetry conditions. The particle is represented by a red
arrow showing its perpendicular direction against the top surface of the
initial design of the crystals. The symmetry conditions of the crystal are
represented as blue dash-dotted lines.

4.2.3. Scintillation
For the model under investigation, we have chosen LYSO:Ce as the scintillator
material, with reference to the BTL detector. The selection of LYSO:Ce is motivated
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by its widespread use in the industry, its proven radiation hardness, high density,
and light yield (LY ) [26].

To model the scintillation phenomena, we need to calculate the number of
photons created within the scintillator (Nγ) in each time step of our ray-tracing
algorithm. A Gaussian distribution is used to model the number of photons as,

µNγ = E ·LY , (4.2)

σNγ = rs ·
√

E ·LY , (4.3)

Nγ = N (µNγ ,σNγ ), (4.4)

In these equations, E represents the energy deposited by an ionizing particle within
the crystal during each time step, and rs represents the resolution scale or possible
deviation of the location of the mean value of the distribution. The normal
distribution from which we extract NY is determined by its standard deviation σNγ

and mean µNγ based on the previously defined LY , rs and E .
While rs and LY are parameters measured experimentally, the mean energy

deposited per track length of the impacting particle, ÇE
Çx , is precomputed for the

different materials, particles and incident energies and stored in table data [28].
During runtime, ÇE

Çx values are recovered, interpolated, and used to define the time
step size according to an energy loss limit. This energy deposition exhibits stochastic
behaviour, following a Landau distribution. The Landau distribution notably leads to
tails at large energy-deposition values, caused by possible knock-on electrons turning
themselves into ionizing particles, influencing the outcome of the photons detected.

Once the number of photons created is calculated, we need to define their time
characteristics. This behaviour can be described by an exponential rise and decay
process, i. e.,

NΓ(t ) = Nγ

τd −τr
(e

− t
τd −e−

t
τr ), (4.5)

where t denotes time, and τd and τr represent the decay and rise times of the
exponential growth and decay of the scintillation process, respectively [32].

The generated photons must also have a given wavelength. This wavelength is
calculated through an intensity distribution function from experimental data defined
as the spectrum of the scintillator. For our particular LYSO:Ce the spectrum and
LY measured by Addesa et al. [33] and M. Campana and R. Paramatti [34].
These photons propagate through the scintillator, refract, and reflect on the optical
surfaces of the detector until they are reabsorbed by the scintillator or arrive at
the photodetectors. For the implementation of the scintillation constants and their
intensity function within this paper, refer to Appendix F.3.

Although the high refractive index of LYSO:Ce compared to air mitigates the loss
of photons to the environment, any escaping photons can create false signals in
neighbouring photodetectors. For this reason, it is common practice to coat or
cover scintillators with a reflective layer. In our model, we employ an enhanced
specular reflector (ESR) that is superimposed on the crystal with an air gap to
the LYSO:Ce capitalizing on the substantial refractive index difference between the
air-LYSO interface [35], see Appendix F.2. The internal reflections then account for an
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optically polished surface for the LYSO-air interface, based on the surface roughness
specifications for BTL of Ra < 15nm, and a specular reflector for the ESR.

4.2.4. Photon detection
The photons are detected by the SiPMs, which exhibit a photon-detection efficiency
(PDE) or probability of detection of the incident photons. These SiPMs are modeled
as a silicon block whose PDE depends on the overvoltage (ov), or the voltage across
the terminals of the SiPM above its breakdown voltage, and the incident wavelength,
λ, given by the expression

PDE(Vov ,λ) = 0.393(1−e−0.583Vov ) ·Fλ(λ) . (4.6)

Although Vov can be modified during operation, we consider a Vov of 3.5 V for
comparison purposes in the subsequent simulations. This specific value is utilized
in conjunction with the PDE data obtained from the manufacturer’s datasheet to
scale the function Fλ, see Appendix F.4. This PDE is implemented such that when a
photon impacts the SiPM we retrieve a value from a uniform distribution, U (0,1),
and the photon is considered detected if this value is higher than its corresponding
PDE. The total number of photons detected, or light collection (LC ), can be
calculated from each impact and the summation

Li
C =

{
Li−1

C +1 if ui ∼U (0,1) > PDE(Vov ,λi )

Li−1
C if ui ∼U (0,1) ≤ PDE(Vov ,λi )

, (4.7)

where ui denotes a value taken from a uniform random distribution, and λi

represents the wavelength of the impacting photon i . Whether detected or not, all
photons that reach the SiPM are subsequently terminated in the next calculation
step within GEANT4. This photon-killing procedure simulates their absorption within
the SiPM and reduces the computational cost of these traces.

4.2.5. Numerical optimization
Due to the inherently statistical nature of the results obtained from GEANT4,
calculating the sensitivities for this problem presents a challenge. As a solution,
we turn to the use of genetic algorithms inspired by natural selection, which have
demonstrated their effectiveness as heuristic approaches to solve complex problems
without the need for exact analytical solutions. In particular, we have chosen to
use the Non-dominated Sorting Genetic Algorithm II (NSGA-II, [27]). NSGA-II uses
an initial random population of solutions that evolves in successive generations
into candidate optimized solutions through crossover, mutation, selection, and
non-dominated sorting of each population.

Several indicators assess the quality of populations in multiobjective optimization.
Li and Yao [36] surveys various quality indicators, organizing them by the specific
aspect of optimization quality they measure. We use the hypervolume indicator [37]
which focuses on the convergence of the optimization and the spread of the solution.
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This measure is commonly used due to its robustness and practical implementation
compared to other indicators. This hypervolume measure can be defined as

HV (Q,Pr ) = κ
( ⋃

q∈Q

no∏
i=1

[q[i ],Pr ]

)
, (4.8)

where κ denotes the Lebesgue measure, Q and q represent a population and each
one of its individuals, and no is the total number of objective values of each
individual. For the calculation of this hypervolume, we need to define a reference
point. The selection of this point must be chosen as the nadir point – defined as the
worst possible value for all objectives – or the closest approximation to it. In our
case, we know the ranges of the volume given the range of the design variables and
the light collection, energy deposition, and length paths within the crystal are always
higher or equal to zero. Taking this into account, we define the reference point

Pr = (H ,V ) = (0,4Z0Y0lmax ). (4.9)

The hypervolume indicator can be understood as a measure of the area of the
Pareto front with respect to this reference point, Pr . Although the hypervolume
has limitations due to an increase in the runtime of O(no) with each optimization
dimension, its sensitivity to any modification in the Pareto front and the fact that it
also provides information on the spread of the set make it one of the most common
convergence indicators for multiobjective optimizations [38].

Although the hypervolume provides a measure of the change in the ranked
population provided by NSGA-II, the randomness inherent in the algorithm does not
guarantee that an absence of change in two consecutive generations is indicative
of having discovered an optimized design. To address this, the delay parameter nh

compares the hypervolume of the current generation to that of nh generations prior.
The convergence criterion uses this delayed hypervolume normalized by the initial
generation’s hypervolume, requiring it to fall below a tolerance Tol . This approach
reduces the risk of prematurely declaring convergence caused by random fluctuations
in the hypervolume, smoothening transient variations and better reflecting when the
population quality has stabilized. Nevertheless, this heuristic does not guarantee
reaching a global minimum or the true Pareto front. The convergence criteria and
the NSGA-II algorithm are represented in Figure 4.4.

Once we have defined the optimization algorithm, we need to provide the design
variables and objective functions of the problem. To be able to perform shape
optimization on the crystals, we parameterize the shape of the crystal along the y −z
cross-section using a series of control points and Catmull-Rom splines. To simplify
the definition of control points, we use symmetry conditions along the x − y plane
and uniformly distribute control points along the z axis. Figure 4.5a exemplifies this
parameterization of the bar-configuration with the original flat design superposed by
an optimized design, its splines, and control points. Additionally, we provide one last
degree of freedom: the crystals’ length or width. To maintain a constant sensitive
area in the detector, this degree of freedom is constrained by,

Z1X1 = Z0X0 , (4.10)
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Figure 4.4.: NSGAII formulation flowchart.
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where Z1 and X1 represent the half-width and half-length, and Z0 and X0 are
the half-width and half-length of the original configuration. This constraint avoids
increasing the number of photodetector channels to cover the same sensitive area as
the original detector. The top view of the parameterized crystal shown in Figure 4.5b
exemplifies these width and length changes. The SiPM is always maintained at the
X1 location.
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Figure 4.5.: Lateral and top view of the parameterized bar-shaped crystal. Figure
4.5a shows the x − y plane with control points along z defining the top
and bottom surfaces with their maximum and minimum. Figure 4.5b
shows the z − x view with changes in width and length according to the
constant sensitive area constraint.

Although the splines fully represent the geometry, the mesh must capture its
curvature. We recommend a minimum of twice the number of mesh nodes along
the splines compared to the number of control points, which should be higher than
our number of impacts through the z axis, nz .

In numerical optimization algorithms, the results are affected by the parameteriza-
tion of the problem. For this reason, if we want to study a second configuration, we
either need to make sure it is attainable with our current parameterization scheme
or provide a different one. To study the tile configuration, with the SiPMs in the
bottom x − z plane, see Figure 4.2, we parameterize the top x − z plane through
nodes along 2 lines in the z direction at locations x = {0, X0}. We exemplify this
assembly and parameterization in Figure 4.6. The parameterization of this new
configuration uses two planes of symmetry along the z == 0 and x == 0. This design
is no longer possible to extrude, and the bottom surface has a new variable in terms
of the location of the SiPMs, the centre of which is imposed in a location z along the



4.2. Methodology

4

103

line x = y = 0. As we still need to maintain a constant sensitive area for comparison
with the original geometry, we define the centre location of the SiPMs with respect
to each configuration value Z1 as

c = Z0ZS , ZS ∈ [0,1]. (4.11)

Equation (4.11) defines the location of the SiPM in z, c, with a new design variable
ZS constrained between a value of 0 and 1.
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Figure 4.6.: Lateral and bottom view of the parameterized tile-shaped crystal with 2
nodes per x section. Figure 4.6a shows the x − y plane with control in
each vertex. Figure 4.6b shows the z − x view with changes in width and
length according to the constant sensitive area constraint.

The optimization formulation for the bar-configuration can then be written as

[Φ, Z1, Zs ] = argmin
Φ,V

Φ(θ, Z1, Zs )&V (θ, Z1), (4.12a)

subject to: X1Z1 = X0Z0, (4.12b)

Zo ∈ [Zmi n , Zmax ], (4.12c)

θ ∈ [ymi n , ymax ], (4.12d)

Zs ∈ [zsmi n , zsmax ], (4.12e)

where the list θ contains the location along the Y axis of each control point of
the top and bottom splines as depicted in Figure 4.5 and Z1 is the half-length,
following symmetry conditions, of the crystal. Furthermore, the design variables
θ, Zs , and Z1 are limited within a specific range relative to the default design
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values. Notice that the variable c is only used in the tile-configuration to displace
the SiPM locations. For the bar configuration, the SiPM position can be imposed
through zsmi n = zsmax or by removing this design variable from the formulation.
The objective values in Equation (4.12a) consist of two functions: the total volume
of the crystal V and a measure Φ obtained from the distribution of photons that
impact the photodetectors. The total volume V is directly related to the crystal cost
and prevents larger volumes, favouring larger energy deposition through longer path
lengths within the scintillator. This volume V is calculated by the sum of the volume
of each tetrahedral element,

V =
Ne∑

e=1
µe , (4.13)

where µe represent the volume of the tetrahedron e in a mesh of Ne elements.
The measure Φ is a measure of the distribution of detected photons. In this

paper, we study three different ways to define Φ. The first approach is to use LC ,
Equation (4.7), or the sum of all detected photons. Another objective distribution
worth studying is the light output LO , or the photons detected per unit of energy
deposited in the crystal and SiPM:

LO = LC

Ee
, (4.14)

with Ee the energy deposited in the crystal during the event, measured in MeV.
Equation (4.14) characterizes the performance of the crystal with respect to different
impact particles for a constant cross-sectional area. However, if the impacts have
multiple track lengths along the crystal, which is ensured if we modify its thickness,
LO loses information pertinent to the total number of photons created or energy
deposited. This loss of information means that we can have a large relative energy
deposition in the SiPMs compared to the energy deposited within the crystal, while
the total number of photons detected is too small to actually measure.

We define a new objective LSP as the total number of photons detected per
unit of energy deposited in the crystal and track path length (which we call
pseudo-stopping-power) i. e.,

LSP = LC

SP
= LC lµ

Ee
,

where lµ represents the total path length of the ionizing particle within the
scintillator for the event in which we calculate LSP .

In all cases, all photon count measures have a positive value, and as NSGA-II
minimizes the objectives, we need to negate the objective to maximize the light
measure received by the detector. Furthermore, these values are not constant per
event, and we must consider their behaviour as a distribution. We propose the use
of the average and mean as initial values for the optimization of these distributions.
The studied objectives can be condensed into
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Φ ∈
{
−LC ,−L̃C ,−LO ,−L̃O ,−LSP ,−L̃SP

}
, (4.15)

where the straight line, Φ, implies the average of the distribution and the tilde, Φ̃,
represents the median.

4.3. Results
In this section, we present a summary of the results obtained from the GEANT4
simulations. This includes an evaluation of the default geometry for BTL, possible
simplifications and their sources of error, a one-dimensional design space study to
understand the effect of the crystal shape on multiple objectives, and numerical
optimization results for the two proposed parameterizations in the previous section.
The section ends with a verification of the results obtained in the optimization.

4.3.1. Default Geometry
Our initial focus is to characterize the GEANT4 results for the default geometry and
explore the impact of different parameters on the simulation. This analysis provides
valuable information on the design space, computational time, and the feasibility
of numerical optimization for this problem. For these simulations, we employ a
Monte Carlo, or random distribution, to define the x and z location of the particles’
impacts created, considering both Na22 gamma rays with 511 MeV energy and muons
with 2 MeV energy. By using both of these event definitions, we can assess the
scintillator’s performance under different scenarios.

The results depicted in Figure 4.7a show the geometry schematic for the 16
LYSO:Ce bars accompanied by the corresponding light output LO distributions for
both types of particles, muons and gamma rays. On examination of the histograms
of LO from Figure 4.7a, it becomes apparent that muon impacts exhibit a smaller
interquartile range (IQR) and smaller means, compared to Na22 impacts. In both
cases, the difference between the mean and the P50 (median) values in these
distributions is below 0.2%, indicating a near-symmetric behaviour. The lack of
skewness comes from the optical processes occurring within GEANT4, modeled as
Gaussians. The influence of the light yield, governed by a Landau distribution, has
been considered through the division of energy deposition in Equation (4.14). Due to
the slight error between the P50 and the mean, we can fit these results to a sum of
Gaussian distribution with accurate predictions. This provides a model simplification
for the entire GEANT4 model and a comparison between the resulting Monte Carlo
studies for different model parameters. The fitting function can be written as

N f (x) =
n f∑
i

ai
1√

2πσ2
i

·e
− (x−µi )2

2σ2
i (4.16)

with µi , σi and the amplitude, ai , as the fitting parameters. These parameters
represent the mean, standard deviation and amplitude of each normal distribution
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up to n f . The fitting parameters are initialized to

σ1 = i ·σi>1 =σ( f ), ai = max( f ),

µ1 =µ( f ), µi>1 =µ( f )+σ( f )/i , (4.17)

where f refers to the relative frequency – the proportion of observations in a given
interval of the histogram compared to the total number of observations – of the
subsequent histogram. The fit is performed using a least squares algorithm with all
the data from each event in GEANT4.
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Figure 4.7.: Light output characteristics of the default geometry with 16 LYSO bars
and 32 SiPMs. Figure 4.7a shows the resulting light output distribution
per SiPM for muons (µ) and gamma rays of 2 and 0.511 MeV, respectively,
with a fit to a linear combination of normal distributions. Figure 4.7b
shows a box plot of the averaged light collection between both SiPMs
depending on the impact location along the length of the crystal.

The statistical nature of LO depends on the length of the photon path until
detection and its probability of self-absorption within the crystal, see Appendix F.2.
Figure 4.7b shows the distribution of LO as a function of the location of the impact
along the crystal in the z axis direction, which can be considered as a measure of
the proximity of the impact to each SiPM. This figure shows that the impacts closer
to the SiPM in z provide higher light collection for the same energy deposition.
However, near the SiPMs, we observe a substantial increase in the LO interquartile
range (IQR). The increased IQR close to the edges of the crystal is attributed to
a greater number of photon paths with substantial incidence angles to the glue
interface. Despite this local deviation, the relationship between the LO mean and
its dependence on the impact of the location z can be accurately represented by
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fitting it to a quadratic polynomial yielding a R2 of 0.98. This observation highlights
the significance of considering the relationship between the impact and the SiPM
location when analyzing the scintillator’s performance and designing optimized
crystal shapes.

Not only can the location of the impact affect the light collection results, but
the manufacturing tolerances, see Figure 4.1, can also modify the light output.
To estimate the impact of manufacturing uncertainties, we perform simulations
following the uniform impact description in Equation (4.1) using a value of nx and
nz of 4 and 15, respectively. The results of a change in the thickness of the glue layer
between 0.1 and 0.3 mm are presented in Figure 4.8a, where each box corresponds to
a specific thickness of the glue layer. Following the same procedure for the variation
of the resin layer between 0.4 and 0.6 mm, we obtain Figure 4.8b. Both plots show a
linear trend for their mean values, with a linear fit of R2 = 1, maintaining a value
close to the constant standard deviation within the expected geometric tolerances.

The impact of both the thickness of the glue layer and the thickness of the resin
package on the overall light output of the device provides a similar effect; increasing
the thickness of any of these elements leads to a decrease in the light output.
However, the glue layer has a higher sensitivity in the final light output distribution,
exhibiting a steeper slope in the linear fit. These effects can be attributed to the
different refractive indices of each material – larger for the glue layer, see Appendix F
– which significantly influence photon propagation and collection.
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Figure 4.8.: Effect on the nominal distribution of the manufacturing tolerances in
Figure 4.1. Figure 4.8a shows the LO change for a linear change in the
glue layer thicknesses around its nominal value of 0.2 mm. Figure 4.8b
shows the LO change for a linear change in the SiPM resin package
thicknesses around its nominal value of 0.5 mm. Both plots include a
linear fit using the mean of each boxplot with its formula and R2.

Notice that even a slight change of 0.2 mm in any of these dimensions can result
in up to an 8% variance in the nominal light output. This level of uncertainty can
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pose challenges when trying to measure and compare the light output of different
geometries and validate the simulation results. As such, it is crucial to account
for these variations when studying different scintillator geometries or assembling
scintillator devices experimentally. However, these effects only lead to a translation
in the objective values for comparison purposes.

4.3.2. 1-dimensional space study
We perform a first design space study of the effect of the shape of the scintillating
crystals with a single design variable. Nonetheless, employing the same methodology
as in the calculations from the previous Section 4.3.1, where each crystal shape
was characterized using over 10000 events for precise Monte Carlo analysis, would
require excessive computational time for optimization purposes. Each event can take
up to 2 minutes to simulate a 6 mm track of a 2 MeV muon inside the crystal on the
CMS TierII Computing Facility.

To reduce computational time, we simplify the geometry, reducing the number
of LYSO:Ce crystals, photodetectors, and the number of tetrahedral elements that
define the geometry. To investigate the impact of these simplifications on objective
functions, we define and compare two configurations against the one studied in
the previous section; see Figure 4.7a. In the first simplification, we remove all but
one LYSO crystal and its attached SiPMs, while maintaining the original SiPM resin
and FR4 package length. In the second configuration, we further reduce the SiPM
package to the size of a single SiPM. These simplified geometries allow us to study
the impact and sensitivity of internal reflections in the resin package on the LO .

The results presented in Figure 4.9 illustrate the LO distributions for the two
simplified geometries. The new distributions exhibit a displacement towards higher
LO values, with increases of up to 4.6% and 12% in the nominal and shortened SiPM
resin packages, respectively. These improvements can be attributed to the reflections
within the simplified resin geometry that would otherwise impact a non-sensitive
area, improving the light collection efficiency. This effect could be reproduced
through an air gap between neighbouring SiPMs, increasing light collection through
internal reflections while minimizing cross-talk between SiPM channels. Although
there is a clear difference in the LO distributions related to the simplified geometries,
the difference between muons and the impacts of Na22 particles remains consistent
with those observed in the default study of the geometry of the 16 LYSO:Ce bars.

From the two simplified cases, we select the nominal resin length with a single
LYSO crystal as the most representative model for the optimization process. This
choice balances geometry complexity and computational resources, making it a
suitable compromise for the more computationally demanding optimization iterative
procedure.

The next step is to parameterize the design for the optimization problem. For
simplicity, we sought the most straightforward model that maintains a constant
volume to allow a direct comparison with the base model. This parameterization
involves using two parallelepipeds controlled by a single variable, θ, scaled between
0 and 200. This variable adjusts the thickness in the middle of the crystal while
simultaneously compensating its thickness at the edges, maintaining a constant
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Figure 4.9.: Simplified LYSO:Ce module geometry LO distributions. Figure 4.9a shows
the geometry and LO distributions for a SiPM package with a full-length
resin layer and a single LYSO:Ce bar. Figure 4.9b shows the geometry
and LO distributions for a SiPM package with a 3 mm wide single SiPM
at each end of a single LYSO:Ce bar. Both plots include results for
511 MeV and 2 MeV 22Na and muon impacting particles and a fit for each
distribution following Equation (4.17).



4

110 4. Multi-objective scintillator shape optimization

volume, as illustrated in Figure 4.10. The limiting values of θ correspond to a
zero thickness in the middle or edge of the LYSO:Ce bars and a double thickness,
compared to the default geometry, in the opposite location. In this geometry
change, the SiPM location and size remain constant, as we are only interested in the
effect of the scintillator, and the resin and glue layers are changed to accommodate
the size of the edge of the crystals. While these simplifications limit the design
space and possible gains, they preserve the influence on the design space of the
reflective surfaces and energy depositions of the ionizing particles. This study then
provides information on the behaviour of the objective functions concerning these
parameters.

2l0

(
2− θ

100

)
2l0

(
θ

100

)
2l0

Figure 4.10.: Schematic for the 1D design exploration and optimization with the
variable θ modifying the thickness of the crystal in the middle and edge
of the crystals with the provided values in the figure, maintaining a
constant volume.

In Figure 4.11, we show the mean and median for the distributions LC , LO , and
LSP obtained from the 10 runs, with the impact distributions nx = 4 and nz = 15,
with varying values of θ between 25 and 175. This pattern provides an estimation of
a maximum calculation time of two hours per individual. The deviations observed
in these distributions correspond to the variability expected in higher-dimensionality
studies. In particular, LC exhibits a larger IQR and more outliers than the other
two objectives. This outcome aligns with expectations, as the Landau distributions
exhibit tails that can lead to larger deviations than normal distributions for a given
number of events.

Furthermore, we observe that when θ is equal to 100, these distributions show
symmetric behaviour – the data are balanced around its central point, and the mean,
represented in blue, is equal to the median, represented in red – and we appreciate
that this corresponds to the original flat configuration, refer to Figure 4.7a. However,
at different values of θ, the mean and median are no longer equivalent, indicating
non-symmetric behaviour. This characteristic has implications for selecting the
appropriate measure for each objective. For optimization LC , the median value is
more suitable, as it reduces the overall deviation in successive evaluations of the
function and accounts for the influence of low values on the distribution. On the
other hand, for the optimizations LO and LSP , the mean value is more conservative,
being affected by the extreme or outlier values in the distributions.

In particular, we identify an optimized value θ that represents a decrease in
thickness between 20% and 40% in the middle of the crystal for all objectives,
resulting in a relative increase in the objective between 3 and 8%. This result is
correlated with the study by Figure 4.7b in which we observe a lower LO sensitivity
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Figure 4.11.: Distributions for multiple objective functions according to 10 runs of 60
– 15 along z and 4 along x – events for each θ value used. Figure 4.11a
shows the results for the LC , Figure 4.11b for the LO , and Figure 4.11c
for the LSP objective. In all cases, we use the P50 and an average of
each objective for the representation.

to the same energy deposition in the middle of the bar.

These results show a better fitness for the LO and LSP objectives, with minor
design space roughness and stochastic errors. These results can be extrapolated
to higher dimensionality spaces which maintain the same dependencies. The only
factor not studied through this simplified model, included in the Equation (4.12)
formulation, is a volume objective to reduce material costs. This objective is
expected to provide a linear design space directly proportional to the overall energy
deposition in the crystals. However, the LO objective is indifferent to the energy
deposition in the system and can lead to convergence problems not studied with
this simplified model.
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4.3.3. Evolutionary optimization
A space study of low dimensionality is useful to understand the problem better
and provide simple shape modifications; however, higher-dimensional design spaces
allow for more freedom in designs and possibly lower minima. We use NSGA-II
following the description in Section 4.2.5 to get close to the Pareto fronts of the
optimization problem that relates the volume and a measure of the photon collection
in the photodetector.

Bar-configuration

We start by performing the optimization based on the bar configuration, shown
in Figure 4.5. Given the definition of NSGA-II in Figure 4.4 and the optimization
definition in Equation (4.12) without the design variable Zs , the values used in the
subsequent simulations are summarized in Table 4.1.

Parameter Value

Maximum Number of Generations , ng 100

Individuals per Generation, ni 100

Tournament Participants 2

Selection Probability 90%

Mutation Percentage 5%

Convergence delay, nh 10

Convergence Tolerance, Tol 1%

[Zmi n , Zmax ] [20mm,28.5mm]

[ymi n , ymax ] [0.1mm,3mm]

[nx ,nz ] [4,15]

Table 4.1.: NSGA-II parameters for simulations.

The maximum number of generations (ng ) controls the algorithm’s runtime and
final population closeness to the Pareto front, where a larger number of generations
allows for a more thorough search but increases computational cost. The individuals
per generation (ni ) define the population size, affecting the genetic diversity of each
population, convergence speed, and the computational cost of each population.
Tournament participants determine the selection pressure during the tournament
selection process. A selection probability of 90% indicates a high likelihood
of selecting superior individuals, promoting faster convergence. A 5% mutation
percentage ensures genetic diversity, adding random modifications to each offspring
of a maximum of 5%, preventing premature convergence to local optima. A value
too high for the mutation percentage can lead to convergence difficulties. The
convergence delay (nh) allows the algorithm to avoid early convergence measurement
by avoiding hypervolume changes based on outlier populations with overly small
changes in the hypervolume. We select a 10 for nh as a trade-off between higher
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computational time and accuracy in the final converged output. The convergence
tolerance (Tol ) sets the precision for stopping criteria, ensuring the algorithm halts
when improvements between the last nh generations are marginal compared to
the initial Pareto front area or hypervolume set according to the user. The design
variable range for Z [Zmi n , Zmax ] and y[ymi n , ymax ] define the allowable limits for
the crystal’s half-length and height according to Figure 4.5, ensuring feasible and
practical solutions. The limits on these variables are set by the nominal half-length
of the crystal of 28.5, and the space allocation for these detector crystals of 6 mm.
The lower bound for the half-length of the crystal is set as a compromise so that
the crystal can reduce its length and increase the light collection of impacts in z = 0,
without unnecessarily extending the design space. The lower bound for the y nodal
location is set to a small value higher than zero to avoid computational issues if
part of the crystal has zero thickness during the random geometry generation by
NSGA-II. The grid resolution parameter for the number of impacts as defined in
Equation (4.1) [nx ,nz ] dictates the balance of solution accuracy and computational
efficiency and is studied in the 1D solution. The values of 4 impacts through the
half-x dimension and 15 impact along the z direction showed, in the 1D analysis, to
provide an error under 1% for the LO and LSP objectives for ten different evaluations,
reducing computational time for a good result reliability compared to LC .

Optimizations are performed for the same objectives studied in Section 4.3.1,
including the mean and median values of the LO , LC , and LSP photon counts.
To study the convergence of these optimizations through the hypervolume we
use its change concerning the hypervolume of the converged generation, for each
generation of LO and LSP , which is plotted in Figure 4.12a. From this plot, we can
further appreciate the difference in convergence rates of different objectives where
LO is the fastest and L̃SP is the slowest in the 43 and 75 generations, respectively.
The hypervolume value not only offers insights into the convergence rate but also
serves as an indicator of the spatial distribution of the converged Pareto fronts.
Specifically, the highest hypervolume of LO is found to be 3.2e6, less than half of the
smallest LSP hypervolume of 7.8e6. This difference shows that the optimized designs
within LO are located within a significantly smaller region of the design space than
the Pareto of LSP . Due to the metaheuristic nature of NSGA-II, the hypervolume
indicates when we are close to the Pareto front, which can be reached for multiple
NSGA-II runs. However, we cannot ensure that we obtain the same individuals
within the front between multiple runs, and the convergence rate can vary within
the same orders of magnitude. These conclusions remain true for the objectives
using the mean and median of each photon count distribution.

Figure 4.12 shows individuals close to Pareto fronts for the three different light
collection measurements for the last NSGA-II generation run, and the volume value
of the default initial configuration in Section 4.3.1 as a dashed horizontal line. In each
subplot of the Pareto front depicted in Figure 4.12, there is a cross symbolizing the
mean value of the distribution from the corresponding photon count measurement
using the simplified geometry of the full resin width; see Figure 4.9a. This plot can
provide further information compared to the 513 mm3 default bar design, and the
reference point, or nadir point, used for the hypervolume calculation, represented
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Figure 4.12.: Results for the bar-configuration optimization with NSGA-II. Figure 4.12a
shows the hypervolume change with respect to the final calculated value
with respect to the generation index, and convergence satisfaction for
the LO and LSP mean and median objectives. The results for a subset
of the last NSGA-II generation is plotted in Figure 4.12b, Figure 4.12c
and Figure 4.12d for the LC , LO and LSP mean and median objectives,
respectively. These plots include the original objective value for the bar
configuration as a cross, its volume as a dashed horizontal line, and the
nadir point as a circle in the top right of each figure.
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in the top right corner of each plot. The visually smoothest Pareto is obtained
from the LO optimization. However, the LO optimizations converge to Pareto fronts
at lower volumes compared to the other objectives, leading to subsequent lower
photon counts. This observed effect is rectified in both LC and LSP objectives
by incorporating the impacting particle’s path length within the scintillator into
the objective, either directly within LSP or through the consideration of energy
deposition in LC .

From Figure 4.12, it is evident that the rate of increase in the photon count slows
as the values approach the maximum allowed volume. The individual with the
maximum value is known and defined as the maximum thickness for all design
variables, θ == ymax , see Figure 4.5. This maximum volume design results in a
design featuring flat parallel surfaces, equivalent to the original design with a larger
volume. Therefore, the optimized designs found in larger volumes have an active
restriction on their thickness, limiting the design space. Expanding the ranges of θ
for design variables that reside in the limits of the Pareto front may reveal better
designs at these volumes.

A comparison of optimized results with respect to the default crystal bar volume
allows us to discern the effects of the optimization between the P50 and mean
objectives. When confronted with distributions that show tails at higher values,
P50 tends to yield the most conservative results, focusing primarily on the lower
values of the distribution. In contrast, for objectives such as LO and LSP , the mean
results are more conservative, as P50 allows inclusion of lower objective results while
maintaining a higher value of P50.

The resulting geometries for the same volume as the original bar, 513 mm3, are
plotted in Figure 4.13. In the case of the objective LO , the Pareto front does not
reach the value of 513 mm3, and we plot the results for the value of 200 mm3, close
to the highest volume found in the Pareto. These plots use the GMSH library to
create the exact same mesh introduced in GEANT4 and are superimposed to the
default rectangular section. We can see from Figure 4.13 that while the design is
based on a spline, the number of nodes in the mesh affects the design, creating flat
surfaces, which also affects the final design and its manufacturing. Furthermore, not
all geometries have the same number of tetrahedral elements besides having the
same number of nodes. This means that we can have geometries with far more
complex meshes due to their shape, deteriorating the computational time.

Figure 4.13 not only gives information on the mesh of the models but also
on the results from each different objective. The LO objectives show a reduced
thickness in the middle of the crystal bar that progressively increases toward its
edges, ultimately covering a significant portion of the SiPM area at the crystal’s end.
Likewise, comparable trends are observed between the LC and LSP objectives for
each of the used distribution metrics, median and mean values. This behaviour is
similar to the results obtained in the 1D study, where a lower energy deposition in
the middle of the crystal is compensated by focusing of the photons into the SiPMs,
and a higher sensitivity of the objective to impacts near the SiPMs. Concerning the
median metric, both photon count objectives tend to decrease the thickness in the
middle section of the crystal, as in the case LO . This lower thickness results in
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(a) 200mm3, L̃O = 3497

(b) 513mm3, L̃C = 14605, ∆r =+14%

(c) 513mm3, L̃SP = 10031, ∆r =+38%

(d) 513mm3, LO = 3062

(e) 513mm3, LC = 16780, ∆r =+20%

(f) 513mm3, LSP = 8535, ∆r =+18%

Figure 4.13.: Resulting geometries in GMSH for the last converged generation for
multiple objectives, in red, superimposed to the mesh used in GEANT4
and the original bar configuration in blue. The comparable geometries
with the same volume provide the resulting objectives and their relative
difference, ∆r , to the corresponding values of the original simplified
design Figure 4.9.
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lower energy deposition in the areas where the light output is the smallest due to
a larger path length to the SiPM with a subsequent larger number of self-absorbed
photons; see Figure 4.7b. In the case of objectives based on the mean of the
distributions, both outcomes yield a wavy design that facilitates photons reaching
SiPMs through successive reflections, featuring increased material concentrations in
the middle of the crystal. This creates longer path lengths within the scintillator for
ionizing particles and larger energy depositions, counteracting the lower light output
previously observed in these regions for the default design. Furthermore, in these
latest cases, the crystal is optimized to a smaller length and proportionally larger
width, maintaining a constant sensitive area. This change reduces the overall photon
path to the photodetector while increasing the losses in the SiPM interface – the
SiPM size remains constant – to an optimum value. The gains of the optimized
design can be obtained from the relative difference of the objectives to the original
design,

∆r = Φi −Φ0

Φ0
. (4.18)

In Equation (4.18), Φi is the photon count measure from the optimized design and
Φ0 the values from the original design, see Figure 4.14. From this relative difference,
we obtain the highest gains through the L̃SP objective with a 38% increase. Other
objectives provide more conservative gains between 15 and 20% for the same
amount of volume.

While the Pareto fronts and resulting geometries offer insights into the algorithm’s
objectives, these solutions include errors stemming from the stochastic nature of
GEANT4 ray-tracing simulations. Consequently, a thorough examination of each
resulting individual is required to validate the accuracy of the photodetector photon
counts with respect to the optimization outcomes. In Figure 4.14, the results of each
individual illustrated in Figure 4.13, are presented using boxplots for the various light
measures employed in this study. Each box plot features the mean of the distribution
marked with a red point, while the result obtained from the NSGA-II algorithm is
denoted by a dark blue star. For comparative analysis, the distributions for the
initial default geometry (Def.) are included alongside the optimized crystal shapes.
The NSGA-II results demonstrate a commendable alignment with the detailed light
characteristics of each individual, as evidenced by the blue stars in Figure 4.14.
An exception to this pattern is observed in the optimization of LC , where the
error committed is approximately ±3% for each objective. In contrast, the error is
considerably lower for LO at 0.5% and for LSP at 0.7%. The 1D model predicted these
higher errors for the LC objectives, see Figure 4.11. These results suggest a higher
reliability of the LO and LSP individuals that result at a comparable computational
cost.

However, not all results from a different objective perform equally well in the
other photon count metrics. The optimized results for LO provide the highest LO

values compared to the other metrics, but perform worst in total light collection.
This is again due to the lack of impact of the path length of the ionizing particles
within the crystal in this measure. We can also appreciate that the optimized results
P50 displace the distribution toward larger light collections but do not introduce
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Figure 4.14.: Resulting light function distributions (LO ,LC and LSP ) as boxplots
against the default configuration (Def.) for three different objectives
(LO ,LC and LSP ) and two distribution metrics (P50 and x̄) for a volume
of 513 mm3 together with the corresponding scalar values obtained from
the NSGA-II optimization as a blue cross.
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larger IQR values into the distributions. In the case of LC , this more significant
deviation is limited by the Landau distribution shape to larger values; however, for
other objectives, this can introduce photon counts near to zero for certain impact
locations. From these results, it becomes obvious that from the objectives studied,
the LSP provides a Pareto front with the largest gains in total light collection for any
particle without reducing the minimum value of light collected and most accurate
results with the same GEANT4 number of events. Using the results of the optimized
results LSP as a reference, we can further study the optimized result by comparing it
with the original design depending on the position of the impact.

Figure 4.15 shows the LSP objective for the original design in red and for the
optimized design of the same volume in blue for half of the LYSO bar. This boxplot
still shows the expected parabolic profile in the default design; however, the values
for the optimized design provide a much higher value for LSP in each of the bumps
due to the larger track-path-length of the impacting particles within the scintillator.
This can lead to more complex data processing with a larger variation of the photon
count depending on the impact location.
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Figure 4.15.: LSP distributions against the impact point along the z half-length of the

optimized geometry obtained for the LSP objective with 513 mm3 and
the default simplified geometry.

Tile Configuration

The previous optimization, based on Figure 4.5, uses an extrusion of a 2D profile
to simplify crystal manufacturing. However, this can lead to lower light collections
compared to a full surface optimization. Using the configuration with SiPMs at the
bottom of the LYSO crystals or tile-configuration, and the parameterization described
in Figure 4.6, we can perform a complete surface shape optimization.

To perform this optimization, we focus on the LSP objective given the results in
Figure 4.14. Furthermore, this optimization includes the position of the SiPM in the
bottom y == 0 plane as a variable defined in Equation (4.11). In this case, since we
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are only displacing the location of the y nodes from the top surface, rather than the
bottom and top as in the bar configuration, we modify the variable limits to

[ymi n , ymax ] = [0.85mm,6mm]. (4.19)

This maintains the maximum height of the scintillator below 6 mm using a single
control point for the top surface following Figure 4.6. The only other change from
the parameters in Table 4.1 is the pattern of impact points set to

[nx ,nz ] = [6,6], (4.20)

using a lower number of impacts compared to the previous simulations. This is
helpful in reducing the computational time along the optimization process, as a
larger computational complexity is expected of this problem, which has more design
freedom than previous ones. This extra computational complexity or computation
time arises from the larger number of elements created to define the geometry that
needs to be evaluated in the photon paths.

The results of this optimization provide a new Pareto front plotted in Figure 4.16.
This figure shows a Pareto front with higher LSP for intermediate volume objective
values than the previous case, highlighting the influence of initial parameterization
and design freedom on the results.
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Figure 4.16.: Pareto front for the tile-configuration, see Figure 4.6. The plot includes
the volume objective and the negative LSP in the y and x axis,
respectively. The plot also includes the reference point Hv in black and
the default configuration LSP as a blue cross.

In particular, we find that for a volume of 490 mm, we obtain a relative gain with
the default bar-configuration of up to 47%, LSP = 10584, compared to the previous
value of 18%. The resulting geometry for this particular individual is represented in
Figure 4.17 with two lateral views corresponding to the projections of the plane x − y
and y − z.
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This result has a value of ZS of 25%, which locates the centre of the SiPM below
the first node from the centre of the crystal in z. Furthermore, the optimization
creates an inclined top surface with lower thickness towards the edges. This has two
effects: firstly, it redirects photons toward the central region of the crystal, precisely
where the SiPMs are positioned; secondly, it induces a lower-energy deposition at a
greater distance from the SiPMs.

z

y

(a)

x

y

(b)

Figure 4.17.: Front Figure 4.17a and lateral Figure 4.17b view of the resulting
geometries from GMSH for the last converged generation for the
Tile, see Figure 4.6. The results are obtained from the Pareto front
at a volume of 490 mm. The individual has an objective value of
LSP =−10588 with a relative gain of 47%.

This new configuration, while attractive because of a larger light collection, has
some disadvantages. In particular, the manufacturing of the optical surfaces becomes
more complex, and we have a larger dependence of the light collection on the y
impact locations. Furthermore, the discretization of the surface does not ensure a
smooth contour as we would obtain with a spline definition.

We still need to verify the results of the NSGA-II algorithm, as the lower number
of impacts can impose a greater error on the objective values LSP . Running a Monte
Carlo study on the optimized configuration showed in Figure 4.17, we can obtain
an accurate prediction of its LO distributions at the cost of a larger computational
complexity, which is not feasible for optimization purposes. Furthermore, we can
also try to discern the design criterion that the algorithm applies to the design of
these crystals by investigating the dependence of LSP on the impact locations. This
verification shows a resulting mean of 8950, with a relative gain of 24% rather than
47% for the optimized design. This means that we have an overestimation of the
objective of the photon count in the Pareto front of 18% with respect to the default
bar-configuration measure. To better understand the source of these differences and
the inner workings of the algorithm, we need to understand the effect of the location
of the particle impacts on the geometry.

Figure 4.18 shows the dependence of LSP with the impact locations along z and x
based on the verification Monte Carlo analysis. The distributions in Figure 4.18a show
the variation of the LSP depending on the z axis impact location while Figure 4.18b
shows this effect along the x axis, including each distribution percentiles, mean and
outliers. From these figures, we deduce that the algorithm maximizes the light



4

122 4. Multi-objective scintillator shape optimization

collection from the central location of the crystal in x and z, disregarding the effects
of the edges along x and z. From these plots, we can also see that the use of more
than one row of control points along x leads to a clear dependence on the output
mean with regard to this axis. This dependence seems to correlate with the overall
thickness change in each region linearly. The disregard of the edge locations can be
related to the smaller number of impact points, with larger gaps in these regions.
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Figure 4.18.: LSP for an optimized LYSO:Ce Tile configuration with respect to the
impact location using a random impact pattern. Figure 4.18a shows
the distribution effect with respect to the z impact location while
Figure 4.18b shows the dependence of the x impact location.

These results suggest that a low number of impacts can provide improved
scintillator geometries at a lower computational cost. However, the objective
functions for the scintillator optimizer are sensitive to the impact locations studied
and should be selected for each particular case so as not to deteriorate the
optimization procedure and limit the objective value variability over multiple
evaluations.

4.4. Conclusions
In this paper, we have introduced a novel approach that involves design criteria and
modelling techniques to increase the light collection of scintillation crystal-based
photodetectors with GEANT4. Moreover, we conducted a comprehensive comparison
of different optimization objectives capable of modifying the resulting light collection
distributions while keeping constant the material-associated costs. Through our
research, we have found that neither the light collection nor the light output are
adequate indicators of the problem. Instead, we propose a new objective function
based on the light collection per pseudo-stopping-power, LSP , which yields improved
Pareto fronts, objective distributions, and convergence for this problem. These
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studies have been performed through a simplified 1D model to isolate the influence
of the reflective surfaces and energy deposition from the material volume and study
the problem fitness. The results of this 1D model have then been extrapolated
to a multidimensional optimization and compared, obtaining design criteria for
the LYSO:Ce crystals. Although this model is capable of predicting the fitness of
the problem and expected errors due to the stochastic nature of the problem, the
problem could be further studied through landscape analysis at a possible higher
computational cost and lower pre-processing required to simplify the problem in
question [39].

Compared to the previous literature in the optimisation of scintillator geometries,
we provide a shape optimisation capable of higher flexibility and generalizability of
the design methodology rather than the commonly used parametric optimisation
with predispositions made by the designers [19, 22]. The multiple-objective study
looks into the overall light collection using a multiobjective optimizer. The focus
on the light collection can be seen to be related to the timing of the detector [40].
However, using the light collection as a single objective can lead to larger widths
for the optimized distributions, which is the focus of previous optimizations [20,
22]. The formulation with NSGAII allows for the introduction of multiple objectives
that could ensure selecting the shapes with the highest light collection, highest
time precision, and smallest distribution width, with the addition of the extra
objectives and a higher computational cost. Some proposed objectives to reduce the
width of these distributions are the interquartile range (IQR) for non-symmetrical
distributions or the minimum values within the distribution. We also notice that
the use of normalization techniques could improve the behaviour of some of the
objectives in multiobjective optimization, and techniques to deal with the stochastic
noise could reduce the objective variability between different runs, such as dynamic
sampling rates during the optimization.

Furthermore, our results emphasize the critical role of the SiPM or photodetector
model and its location in achieving overall detector efficiency; notice how the ends
of the crystals always adapt to the photodetector shape. The impact of SiPMs on
the collection area is appropriately recognized, and we underscore the importance
of considering the SiPM power needs and its changes with its area under a joint
LYSO-SiPM optimization. Additionally, our optimized results reveal that a larger
crystal area in contact with the SiPM module may lead to higher losses to the
environment. Nevertheless, in the bar configuration, this decrease in performance
from a larger contact area can be counteracted by a lower length of the overall
crystal.

Not only the photodetector model but also the material models have an impact
on the results. Our material models are derived from measured prototypes, which
serve as a valuable guide for future designs. However, there is limited information
available on scintillating materials, which should be considered when interpreting
the model output. However, because the LYSO:Ce crystals have a non-negligible cost,
experimental tests are limited. In the case of plastic scintillators, which present lower
light yields and refractive indices, the optimization results are speculated to provide
lower gains based on the reflective surfaces under a direct air-scintillator interface.
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This could be mitigated through directly deposited reflective coatings, increasing
the objective sensitivity to these surfaces. The use of non-polished surfaces also
shows promise in increasing light collection in scintillator-based detectors [15].
According to our model, we can reduce material costs without losing light collection
efficiency. Nevertheless, the resulting shapes might require the use of free-form
optics. This manufacturing technology is relatively recent, and there is no current
good way to estimate the cost of these intricate shapes derived by optimization. As
this complexity increases, careful evaluation of the associated manufacturing cost
becomes essential. This paper deals with the optimization of a BTL-based design
which limits the variability of surface roughness of the crystals and their coatings.
However, the use of localized surface treatments could be introduced as a further
design variable, alleviating the manufacturing constraints and potentially modifying
the light collection and timing. For experimental testing of the optimized results,
plastic scintillators also have an advantage as they can be easily machined and are
less expensive.

Despite the potential of our automated design procedure to enhance performance
and reduce costs, further investigation and access to cluster computing tools
are currently necessary due to the computational demands of genetic algorithms
and ray-tracing software, with its associated costs. Nevertheless, our research
highlights the potential for numerical optimization in particle detectors, extending
its applicability beyond scintillation material modelling to the optical interfaces of
the assembly. To further tackle the computational challenges arising from the lack
of sensitivities in Monte Carlo-based problems, we suggest exploring methods such
as finite element methods (FEM) or finite differences in the time domain (FDTD) to
incorporate scintillation models and improve computational efficiency.

As the field of numerical optimization in particle detectors continues to evolve,
we anticipate numerous opportunities for improvement and new discoveries, not
only in scintillation geometries but also in the optical interfaces of the assembly.
Additionally, the recent application of 3D printing technologies to the manufacturing
of scintillators opens new avenues for utilizing this optimization approach.
Furthermore, the insights obtained from our study can be extrapolated to different
detector geometries, such as fibre-based ones, as well as other detector types
where shape optimization can increase efficiency. We strongly encourage further
exploration in these areas to broaden the scope of this optimization technology.

In conclusion, our work [1] presents valuable insights and guidelines for designing
efficient and cost-effective scintillation-crystal-based photodetectors, serving as a
foundation for future research and advancements in this domain. By considering
the proposed optimization objectives and modelling techniques, researchers can
make informed decisions to enhance the performance of particle detectors and drive
innovation in the field.
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5
An efficient shape optimization of

scintillator crystals through
deterministic models

In this paper, we provide an alternative formulation to ray-tracing for the optical
modelling and analysis of scintillators through an electromagnetic finite element
method (FEM) formulation. We provide the required boundary conditions and material
properties to translate the scintillation phenomena from a stochastic definition to
an energy pulse. We perform this translation using a non-steady electromagnetic
formulation that can provide a measure of the photon energy depositions in the
photodetectors with time. Furthermore, we study equivalent frequency domain
problems as a surrogate model of the effect of the impacts with respect to their
location along the crystal. We compare these models with the results obtained for
the equivalent GEANT4 model. This comparison is performed through multiple
functions based on the energy deposition within the photodetector material blocks
in the simulation and a simplified one-degree-of-freedom parameterized geometry.
These functions depend on multiple impacts along the crystals to capture their effect
and a corresponding adaptive integration scheme. The results show the importance
of self-absorption and boundary conditions for modelling the phenomena. The
losses of the frequency domain model are tuned with the GEANT4 model obtaining
similar dependencies of the objective function with good agreement of a simplified 1D
geometry. We parameterize this model and use it to optimize the numerical shape of
the scintillation crystals using FEM and a simplex algorithm. To obtain better designs,
we incorporate geometric constraints to ensure the manufacturability of the resulting
design. The optimized scintillator shape gains are validated within GEANT4 with
gains higher than 7% in the median distribution for light collection. Furthermore,
the optimized designs are obtained with a fraction of the time that would take using
GEANT4 or a FEM transient model.
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5. Computationally efficient simulation and shape optimization of scintillator

crystals through finite elements

5.1. Introduction

S cintillation transforms high-energy particles (e. g., X-rays, gamma rays, muons)
into photons in the visible spectrum, enabling detection via photodetectors.

This process helps detect radioactive materials for security, both passively and
actively, e. g., in cargo inspection [1, 2]. In medicine, scintillation detectors are
essential for non-invasive imaging instruments such as PET (positron emission
tomography), SPECT (single-photon emission computed tomography), and X-ray
scanners [3]. The scientific community also uses this technology for spectrometry
and crystallographic studies [4]. Finally, in high energy physics, they allow for more
precise identification and research of new particles and physical phenomena [5].
Improvements in the capacity of scintillators to provide higher spatial and temporal
resolution allow precise imaging with lower doses, which benefits medical patients
and improves early diagnosis. Enhancing the number of photons produced per
energy deposited in scintillators can reduce material costs and increase sensitivity to
radioactive materials for safety applications [6]. In high-energy physics, fast timing
measurements are necessary to handle higher pile-ups, or particle collision bunches,
in new accelerators and associated particle detectors [7].

Recent advances in understanding the scintillation phenomena have enabled
a higher efficiency of engineered scintillating materials through experimental
combinatorial strategies to test doping agents and activators [8]. The literature also
shows efforts to reduce radiation damage, which can increase the self-absorption of
photons within the crystal, reducing its transparency [9], and afterglow, which can
avoid detection of successive impacts due to photons still present in the crystal after
the initial impact [10]. However, using these scintillators in extreme environments
(such as high-energy physics experiments, nuclear facilities, or outer space) [11]
limits the use of cheap organic or plastic scintillators. The use of high-end inorganic
scintillators increases costs due to the need for rare-earth elements such as Ce
and Re [12]. These scintillators can cost up to $4000/kg [13] and are subject
to geopolitical constraints. Additionally, these scintillators often require specialized
manufacturing techniques, such as the Czochralski method [14] – growth technique
for single crystals – and optical polishing [15].

To reduce their cost, there is an ongoing effort to improve the efficiency of
scintillators through methods not based on material composition. Liu et al. [16]
proposes a cheaper manufacturing method through a glass matrix with embedded
high-yield scintillator materials. Developments in sintering scintillating materials
have also been shown to reduce manufacturing costs [17]. A similar process
is carried out in recent advances in 3D-printing of inorganic crystals [18, 19]
through stereolithography and powdered ceramic scintillators, where composition
and crystal shape can be controlled locally. Another way to improve the spatial
resolution is through the pixelization of the scintillator, which reduces the crosstalk
between different channels. This pixelization has been achieved in the literature
through vapour-deposition [20] and porous Si filling [21]. Similar research into
patterned nanophotonic scintillators is theorized to be able to improve the yield
and directionality depending on the spatial distribution of its scintillating centres
[22]. In this way, we can observe that the shape and size of the crystal can affect



5.1. Introduction

5

133

the scintillation yield in bulk designs, as shown in Xie et al. [23] with various
macro-scintillator shapes and reflective surface angles tested for PET scanners [24].
Studies on the effect of the shape of the scintillating crystal have also been able to
enhance the time resolution [25] and the light collection [26]. These experiments also
put effort into studying the coupling surface to the photodetector through embedded
photodetectors and curved scintillator surfaces. Another design criterion that can
improve the light collection without changing the scintillation intrinsic properties
is the outer optical surface and coatings. Several texts deal with improving light
collection using different surface finishes, from diffuse to polished optical surfaces.
Bircher and Shao [27] show how the roughness of the surface finish can impact the
light loss within the scintillator and how this effect is more pronounced the larger
the cross-section to length ratio of the scintillator. Kilimchuk, Tarasov, and Vlasova
[28] provide a study on the effect of the surface roughness of a scintillator on the
light output, providing higher photon counts and double peaks for the spectra of
CsI:Tl crystals for finer surface polishes. However, Ghal-Eh and Koohi-Fayegh [29]
show that a diffuse paint coating can reduce the number of reflections that the
photons experience before reaching the photodetectors. Romanchek et al. [30] show
how optical coupling using grease can affect the overall light collection and how
these interfaces respond to temperature changes. Furthermore, current research in
photonic crystals has been applied and measured to increase the light output of
scintillators and resolution by reducing photon loss, focusing scintillation photons
into the photodetector [31]. Surani et al. [32] show an example of the design
process of photonic crystals (PhCs) applied to scintillators requiring an interface
between the FDTD (finite differences in the time domain) and ray-tracing libraries
(GEANT4 [33]). Using FDTD Yasar et al. [34] study PhCs made of scintillators for a
higher spatial resolution X-ray detector. Although the literature shows several paths
for improving the efficiency of scintillating crystals, experimental measurements are
costly and time-consuming. GEANT4 can be used to improve the efficiency of
particle detectors through parameter analysis Binkley [35]. Using particle-matter
interaction codes to extract the optical wave pulse and using an FDTD software to
simulate it provides a faster and more economical method to test multiple designs
before production. Deilami et al. [36] use COMSOL to simulate and select the
optimized pair of scintillator and photodiode for nine different designs. Elsey et al.
[37] study the coupling of a scintillator to an optical fibre using an analytical model
and a numerical approach for more complex shapes.

While being a particle-matter interaction effect, our primary focus on improving
the scintillating efficiency is on photon generation and detection. In this manner,
there are deterministic approaches to model electromagnetic waves that are
more computationally efficient than Monte Carlo-based particle-matter interaction
software that can provide faster optimization procedures and ease of post-processing.
Although FDTD has been used in optical modelling and for the coupling of
ray-tracing to wave description for the design of photonic crystals [38], it is not
well-posed for complex geometries [39]. Furthermore, the use of a finite element
method (FEM) or FDTD scintillating model can remove the need to interface the
ray-tracing libraries to design photonic crystals and provide analytical derivatives
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to move along the design space. These simulations, while faster, should also be
compared to the results used within GEANT4 to validate the sensitivity to the results
of the different parameters studied.

In this paper, we propose a model through FEM using COMSOL [40] for an
ionizing particle impact in a scintillator crystal detector. The detector studied is
based on the MTD-BTL (Minimum Ionizing Particle Timing Detector - Barrel Timing
Layer) to be installed in the CMS (Compact Muon Solenoid) at CERN. We study
a one-degree-of-freedom (1DOF) design space with the energy deposition from an
equivalent electromagnetic wave at the point of impact. We compare transient
and frequency space models and validate the results obtained through GEANT4.
The FEM-based models that agree with the GEANT4 result’s objective function
shapes provide optimized scintillator geometries. Finally, we compare the optimized
shapes with their light collection outputs in GEANT4. This output results in a less
computationally costly approach to testing scintillator shapes.

5.2. Methodology
To reduce the calculation cost of modelling and optimizing scintillators using FEM,
a unified framework linking particle-matter interactions and FEM calculations is
necessary. Establishing this requires a simplified geometry compatible with GEANT4
and COMSOL and a shared metric for comparison. This section outlines the detector
geometry and its corresponding models in both software packages, detailing the
physical equations used to simulate photon propagation and scintillation in GEANT4
and COMSOL. To integrate these stochastic processes into FEM, the methodology
translates them into a continuous electromagnetic pulse. This pulse is implemented
in COMSOL as a boundary condition, which is detailed in this section. With the
established physics framework, the section defines the optimization objectives and
constraints for scintillator shape optimization in COMSOL.

5.2.1. Geometry
This research is based on the BTL detector geometry, comprising a rectangular
LYSO:Ce scintillation bar of a rectangular cross-section attached to a silicon
photodetector package with sensors at the end of each bar. In GEANT4, it is
represented as a horizontal bar along the z-axis with a square cross-section of 3×3
mm and a 57 mm length. The crystal is bonded to a resin package containing
two photodetectors per bar. An OpenGL-based rendering in Figure 5.1 shows the
assembly submerged within a block made of air, with the coordinate axes displayed
for orientation.

This configuration is simplified for a FEM model in COMSOL using a 2D model
with the cross-section of the crystal in the y − z plane of GEANT4 Figure 5.2. In this
geometry, we can further appreciate the cross-section of the photodetector package.
This package is bonded to the scintillator using an optical RTV-45 glue. An optical
resin also protects the photodetectors. The muon impact that causes the generation
of light within the scintillator is defined in the FEM model as a discontinuity for the
application of the corresponding boundary conditions along the y-axis in COMSOL.
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Figure 5.1.: OpenGL rendering of a LYSO bar with square cross-section along the z
axis and associated photodetector packages at its ends within GEANT4.

The reference system showed in Figure 5.2 also establishes the zero in the middle of
the crystal and a nominal full length of 57 mm. We also introduce a non-dimensional
variable Ip representing the location of the impact along x with a transformation
over the overall length Ip = x

LY SOL
.

Air

LYSO LYSO

Air

Muon
Impact

y

x (mm)

28.5 0 -28.5

Ip1 -1

Air

LYSO LYSO

Air

Muon
Impact

y

x (mm)

28.5 0 -28.5

Ip1 -1

Figure 5.2.: 2D FEM representation of the scintillator detector in COMSOL including
a LYSO-Air interface and the photodetector at the end of the scintillator
of 57 mm of length in x. This photodetector comprises glue, resin, and
silicon layers or blocks, with the silicon block being the sensitive area.
The muon impact is represented as a discontinuity in the crystal for
applying the boundary conditions, where the muon flies in the positive
y axis direction.

The modelling and optimization of the photodetector or silicon photomultipliers
(SiPMs) is a separate problem. Because this leads to increased power consumption
for the particle detector in higher detection areas, it will not be optimized in the
following studies.
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5.2.2. Scintillation modeling
The GEANT4 and COMSOL models must provide an equivalent model for light
collection from the scintillation process. The physical scintillation process is
described in Korzhik, Tamulaitis, and Vasil’ev [41]. The process begins with an
ionizing particle that deposits energy into a scintillating material. This energy
deposition per unit distance, dE

dl , depends on the material and particle properties
and can be obtained from pre-computed tables from the GEANT4 libraries. The
deposited energy is converted to a total number of emitted photons Np , calculated
using the experimentally measured light yield of the material Y . This is expressed as

Np =
∫

l

dE

dl
Y δl ≈ dE

dl
Y ∆l , (5.1)

where l represents the particle path length through the scintillator.
These photons are generated over time, following an exponential rise and decay,

as described by

N (t ) = Np

(
exp

{
t

tr

}
−exp

{
t

td

})
. (5.2)

In Equation (5.2), the total number of photons created in time N (t ), depends on
the rise time tr and decay time td of the scintillator material. The wavelength of
these photons arises from an intensity function defined by the user. The scintillation
properties for the GEANT4 model have been extracted from Reales et al. [42]. The
wavelength intensity distribution for LYSO:Ce has a peak at 420 nm that will be used
as the nominal wavelength for the emitted photons in the deterministic models.

Finally, the photons are emitted in random directions from the interaction point.
Ray-tracing is traditionally used to follow the path of each of these photons until
they disappear due to self-absorption within the material involved or leave the space
of study.

5.2.3. Finite Element Representation
Rather than using ray tracing within a particle matter interaction software, COMSOL
can solve the continuum electromagnetic equations through FEM. Although there is
a particle-wave duality description of the photon, the conversion from a ray-tracing
simulation algorithm to a continuous description through FEM is not evident.
In this section, we detail the equations used within COMSOL in transient- and
frequency-domain FEM models to obtain an equivalent description of the previously
detailed scintillation process.

Transient Electromagnetic modeling

The electromagnetic equations used by COMSOL depending on time t take the form

µ0σ
ÇA

Çt
+µ0ϵ0

Ç

Çt

(
ϵr
ÇA

Çt

)
+∇× (

µ−1
r ∇×A

)= 0. (5.3)

To solve the electromagnetic equations in a given medium, we must define each
material’s relative magnetic permeability µr , electrical relative permittivity ϵr , and
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electrical conductivity σ. These equations depend on the vacuum permeability and
permittivity constants

(
µ0,ϵ0

)
and are solved for the magnetic potential A in each

time step. This magnetic potential can be related to the electrical and magnetic
fields through the relations

B =∇×A , (5.4)

E =−∇V − ÇA

Çt
, (5.5)

which provide the fields of interest for the scintillation process. The results of this
differential equation require boundary conditions to be solved, which must define
the scintillation light pulse.

To simulate the scintillation energy pulse, we introduce, in a cut along the
scintillator in the y direction, see Figure 5.2, a scattered electrical wave of a
known amplitude |E(t )|. The energy injection of this wave must correlate with the
scintillation phenomena in the given material. Given that we work with dielectric
isotropic materials, the electrical energy of the wave can be defined as

We =
∫
ΓI

(∫ T

ti (l )

1

2
ϵϵr E ·Ed t

)
dΓI , (5.6)

where T is the evaluation time of the simulation, ti represents the time at which
photon generation begins or the time of impact, and ΓI is the integration domain,
equal to the previously defined vertical line used for the boundary condition or
impact location for the ionizing particle. The total electrical energy deposited in the
scintillation process can also be written as,

We =
Np∑
i=1

hc

λi
≈ hc

λp
Np , (5.7)

where we substitute the wavelength of each photon λi created by the peak of the
wavelength intensity λp of 420 nm and its time evolution is given by Equation (5.2).
Given T >> tr >> ti (l ) ≈ 0 we consider the electric field independent on the y
coordinate along the impact location, E = E(t ). The equality between Equations (5.6)
and (5.7) provides the electric field norm

|E | =K 2

(
exp

{
t

2td

}√
1−exp

{
t (tr − td )

td tr

})
. (5.8)

In the previous equation, K is a proportionality constant. For td >> tr , the term
within the square root can be deprecated for the integral calculation leading to a
relation between the scintillation and FEM energy deposition of,

K 2 ≈
hc
λ

dE
dl Y

ϵr ϵ0td

(
−1+exp

{
T
td

}) . (5.9)

valid for a T >> td so that most of the photon energy has been released by the end
of the COMSOL scintillation simulation. Finally, to define the electric value by each
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one of its components, and considering a polarized wave along (1,1), we remove the
absolute value from the electric field with a factor of 1p

3
in each component of E.

The previous scintillation wave description provides an approximation of energy
deposition over time where T >> td >> tr and T >> ti (l ). To consider the ionizing
particle characteristic time across the crystal, we can modify this deposition
depending on ti (l ), given the speed of the ionizing particle along the crystal.
Considering the movement of the impacting particle along the y-axis, ti can be
written as

ti = t − (y − ymi n)/vµ = t − t0(y), (5.10)

where t is the absolute simulation time, vµ is the velocity of the ionizing particle,
and ymi n is the location along the muon path smaller than the minimum y location
of the scattering boundary condition that introduces the scintillation wave into the
system.

To avoid numerical issues while solving the electromagnetic equations, we add a
step function approximated by a Heaviside equation to ensure no energy deposition
is introduced in the model before t0(y),

Hβ ,t0 (t ) = 1

2

[
1+ tanh

(
t − t0

β

)]
. (5.11)

The steepness of this Heaviside function depends on the β parameter, which needs
to be small compared to the characteristic scintillation rise time, β<< tr . To avoid
an intensity source in direct contact with the air, leading to electric energy released
in the air medium, we can add two more Heaviside functions dependent on the
maximum and minimum y values of the impact surface,

Hβy ,ymi n (y) = 1

2

[
1+ tanh

(
y − ymi n

βy

)]
, (5.12)

Hβy ,ymax (y) = 1− 1

2

[
1+ tanh

(
y − ymax

βy

)]
. (5.13)

Finally, the intensity of the input electric wave in each direction takes the form

Ei (y) = Kp
3

(
exp

{
t − t0

2td

}√
1−exp

{
(t − t0) (tr − td )

td tr

})
Hβ,t0 Hβy ,ymi n Hβy ,ymax . (5.14)

All the remaining boundary conditions to the system are defined as plane wave
scattering surfaces to remove as much electrical energy arriving from the system as
possible.

Frequency Domain

While a transient solution provides information on the time of arrival of the
photons to the photodetector, this leads to a FEM solution per time step. To save
computational time, the electromagnetic equations can be rewritten using a known
solution for the electric and magnetic fields of sinusoidal shape,

E = Ee jωt ,H = He jωt , (5.15)
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The equation to solve the electric field then looks like,

∇× (∇×E)−k2
0 n̄2E = 0 (5.16)

In this equation, n̄ considers the real and imaginary parts of the refractive index,

n̄ = n − j k , (5.17)

with k being the extinction coefficient directly related to the dielectric losses within
the material and related to the absorption lengths L and the photon wavelength
used by GEANT4 as

k = λ

4πL
. (5.18)

Finally, the wave number k0 is defined as

k0 = ω

c0
, (5.19)

with c0 the speed of light in vacuum and ω the angular frequency of the wave.
The boundary conditions in this model, which introduce the harmonic wave,

require an electric field amplitude. For simplification purposes, the amplitude is
defined as a constant in all directions, representing the scintillation pulse. This
simplified approach assumes a purely harmonic input and response, which does
not reflect the actual scintillation process. However, it captures the influence of
reflective surfaces and surface-dependent energy deposition when the wavelength is
short enough to interact with the scintillator. The rest of the boundary conditions
are the same as those of the transient COMSOL model.

This formulation reduces the cost of solving multiple time steps at the expense of
requiring a mesh resolution small enough to capture the introduced wavelengths,
typically at least ten times lower than the wavelength. This limits how small a
wavelength can be accurately modelled for large design spaces in terms of memory
requirements.

Numerical Optimization

We not only want to have a numerical model using FEM that can represent the
dependence of the light collection of the scintillator depending on its shape but
also to numerically optimize its design. For this purpose, we parameterize the
scintillator’s top and bottom boundaries through splines to study different reflective
surfaces of the LYSO crystals. However, the impact location along the x axis of the
crystal, its distance to each photodetector, and the energy deposition also play a role
in the photodetectors’ overall energy absorption.

To take into account the energy deposition at different impacts along x, we use
the symmetry conditions at x = 0 and evaluate the energy deposition in the Si block
over multiple impacts along x. The overall objective function can be written as,

Φ=−
∫ I1

I0

Ψ
(|E|2) dIp (5.20)
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where Ψ is the function depending on the crystal’s impact location along Ip , and we
integrate over a region I0 < Ip < I1. This objective function needs to be a measure of
the number of photons detected in the photodetectors or, in the case of FEM, the
electrical energy deposited. The objective function also introduces a minus sign, as
typical optimizers are designed to minimize the objective. At the same time, we look
to maximize the absorbed energy, and the energy always provides a value greater
than zero.

To avoid unnecessary simulations and computational time and ensure a given
tolerance of the result, we use an adaptive Simpson’s integration to solve the previous
integral over the impact location of the crystals. This adaptive integration decides
on the number of evaluation points, comparing the integration values with an s
size interval between a and b from a user input preset interval through the error
estimation based on the Simpsons’ rules given by

Q1(s) = s

3

(
Φ(a)+4Φ

(
a +b

2

)
+Φ(b)

)
, (5.21)

Q2(s/2) = s

6

(
Φ(a)+4Φ

(
a + b −a

4

)
+2Φ

(
a +b

2

)
+4Φ

(
a + 3(b −a)

4

)
+Φ(b)

)
. (5.22)

The error for a given interval can be given as,

Er r or =
∣∣∣∣ 1

15
(Q2−Q1)

∣∣∣∣ . (5.23)

The Simpsons rule provides fast convergence with a small number of function
evaluations for functions well approximated by cubic polynomials. If this were not
true, a more sophisticated integration, such as the Kronrod or Chlenshaw-Curtis
quadratures, should be used for the objective function.

Besides the objective function, we need to impose a volume constraint on the
LYSO material to avoid higher material-associated costs, noticing that a higher
material thickness will always provide higher energy deposition by the impacting
ionizing particles. This volume constraint can be defined as,

cv = vLY SO

v0
−1 < 0, (5.24)

the value of the constraint cv must be maintained lower than zero to be satisfied,
depending on a maximum volume given as an input v0 and the current geometry
volume vLY SO , depending on the design variables.
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The overall optimization for the FEM calculation can be defined as

y = argmin
y

Φ(Ψ(y)) =−
∫ I1

I0

Ψ
(|E|2) dIp , (5.25a)

subject to: cv = vLY SO

v0
−1 < 0, (5.25b)∮

ÇV
E ·dA = Q

ϵ0
, (5.25c)∮

ÇV
B ·dA = 0, (5.25d)∮

ÇS
E ·d l =− d

d t

∫
S

B ·dA , (5.25e)∮
ÇS

B ·d l =µ0I +µ0ϵ0
d

d t

∫
S

E ·dA , (5.25f)

where we want to minimize our objective function dependent upon a measure of the
electric field norm and the impact location of our particle with respect to a series
of design variables y. The Maxwell’s equations we need to solve, Equations (5.25c)
to (5.25f), can be tailored to either transient or frequency domain FEM calculations.

We use a Simplex exploration algorithm within the ‘fminsearchbnd‘ MATLAB
function for the optimization algorithm. This implementation provides a design
space pattern search without requiring derivatives and the ability to handle bound
constraints on the design variables. With θ being the vector of variables with bounds
according to L ≤ θ ≤ U, the transformation function maps the bounded variables θ

to an unbounded space θ′ where the simplex search algorithm can be applied. This
transformation is defined mathematically as

θ′i =


log(θi −Li ) if θi is bounded below only,

log(Ui −θi ) if θi is bounded above only,

log
(
θi−Li
Ui−θi

)
if θi is bounded both below and above.

(5.26)

The inverse transformation provides the objective design variables.

5.3. Results
This section summarises the results obtained from the developed COMSOL model
defined in the previous section. These results include a comparison with the
scintillation results from GEANT4 for both the transient- and frequency-domain
FEM models. This study consists of the transient model’s pulse shape and the
transient model’s absolute energy deposition. For both FEM approaches, we study a
simplified 1D parameterized model with constant volume and its design space. An
agreement of this 1D model between GEANT4 and COMSOL ensures that the shape
and influence of the objective function have an equivalent behaviour depending on
the design variables.

The material properties for the scintillation in GEANT4 are summarized in
Appendix F and those used for the COMSOL models in Appendix G. The



5

142
5. Computationally efficient simulation and shape optimization of scintillator

crystals through finite elements

physics-controlled mesh in COMSOL automatically adapts the mesh element size
based on the physics involved and the material properties. For electromagnetic
simulations, we use standard triangular linear elements and the mesh element size
is scaled relative to the wavelength in each medium, typically set to about one-fifth
of the vacuum wavelength in 3D with quadratic elements. This approach ensures
accurate resolution of wave behaviour while maintaining computational efficiency.
Additionally, the mesh refines near material interfaces and sources, providing a
balanced and reliable discretization for all simulations.

5.3.1. Comparison of scintillation models
The methodology section defines boundary conditions to replicate the energy
deposition from scintillation in the FEM transient simulation (Equation (5.8)). To
evaluate the processes in GEANT4 and COMSOL, the number of photons reaching
the photodetectors is analyzed. This metric is derived from the overall energy
deposition, as done for photons generated through scintillation (Equation (5.6)). This
approach measures the scintillation shape’s efficiency, correlating the total photons
created with those detected for physical measurements. We can first compare the
GEANT4 and COMSOL models in terms of the overall electric energy collection per
unit of time. Figure 5.3a shows a histogram of the total number of photons arriving
at the photodetector Na per unit of time and width of the SiPMs – as the GEANT4
simulation is performed in 3D against a 2D simulation in COMSOL – with respect
to the total number of photons created in the scintillation process Np . Assuming
minor wavelength deviations, the photon ratio is proportional to the energy ratio of
created to absorbed photons (Equation (5.6)). We plot the results from COMSOL in
Figure 5.3a, a line representing the energy deposition in the Si block surface Wa

with respect to the total electric energy deposited in the boundary condition for
the entire simulation time Wi . Figure 5.3b shows for both of these plots the total
integrated ratio in time.

The results show that both plots have the same temporal behaviour. These plots
follow the exponential rise and decay of the energy introduced into the system. The
rise time in these plots is so fast compared to the design study time that the overall
pulse is barely perceptible, validating the assumption T >> td >> tr . The absolute
values depend on the representation and width of the GEANT4 histogram. However,
the COMSOL simulation does not include losses within the material, and the FEM
model simplification implies an infinite crystal along the z axis, disregarding the
effect of the impacts along this direction on the energy deposition. Overall, the total
energy deposition is expected to be higher in COMSOL. Figure 5.3b shows that the
ratio of energy deposition in the COMSOL model is more than twice that obtained
in GEANT4.

Although the absolute values do not correspond between COMSOL and GEANT4,
we only need to obtain the same relative effect of the design variables to obtain
designs that improve our objective function through numerical optimization. For
this reason, we study a simple design space of a simplified geometrical tapered
configuration with a single design variable. This simplified configuration is
represented in Figure 5.4. This geometry uses symmetry in the location x = 0
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Figure 5.3.: Comparison for the energy deposition using GEANT4 and a transient
COMSOL model for an impact at Ip = 0. Figure 5.3a shows the
histogram of the number of photons obtained in G4 per number of
photons created and unit of width of the SiPM compared to the energy
intensity received in the photodetector using COMSOL per total energy
introduced. Figure 5.3b shows the integration in time of the functions
used in Figure 5.3a.

and y = 0 and a reference half-thickness of y0 = 1.5mm. The design is further
parameterized through a single degree of freedom (DOF) Θ ∈ (0,2). The result is a
geometric parameterization of a constant volume. This allows us to compare the
light collection without an overall increase in material in the design. This geometry
simplification is represented in Figure 5.4.
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Figure 5.4.: 1DOF tapered geometric model simplification of the scintillator geometry
through an extra symmetry axis along x = 0 and y = 0 defined through
the variable Θ using a default thickness of y0 = 1.5mm.

1DOF geometric model base response in GEANT4

With the previous geometry for the crystals, we use GEANT4 to study the effect of
Θ with a sweep from 0.25 to 1.75 over a measurement of the number of impacting
photons. For this measurement, we use the light collection per energy deposited in
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the scintillator E and path length within the crystal ∆l ,

LSP = Na

E
∆l , (5.27)

where Na is the number of photons that arrived at the photodetector. This function
provides information on the energy deposition within the photodetectors. The
advantage of this function is the removal of the tails from the energy deposition
of the ionizing particle, associated with a Landau function, while maintaining its
information through the particle track length within the crystal. Figure 5.5a shows
the LSP distributions for five geometries according to Figure 5.4 and increasing
values of Θ. For each one of these tapered geometries, 60 events or particle impacts
are run for an increased value of Ip between zero and one and the corresponding
boxplot is represented. For each Θ, the average LSP for each Ip is used to plot a
quadratic fit through a dashed red line. The results show the dependence of LSP

on the impact across the length of the crystal. If we start from a configuration of
Θ= 0.5, we can see that until we reach a value of Θ= 1, the LSP suffers a vertical
translation to higher values for a higher Θ.
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Figure 5.5.: Figure 5.5a shows the dependence of light collection per energy
deposition and track length on the impact point for five different Θ

values and a dashed quadratic fit (red dashed lines) to their mean
following the 1DOF model description in GEANT4. Figure 5.5b shows the
design space of the GEANT4 simulation of the averaged LSP for 10 runs,
each one of 60 events equally spaced in the x axis, depending on Θ.

As in this case, the crystal is smaller than the photodetector, and most of these
losses arise from self-absorption in the crystal. After we reach a value of Θ = 1,
increasing the taper leads to a smaller thickness in the middle of the crystal, with
lower LSP from impacts at this location. This configuration also leads to higher
photon losses to the environment with a crystal larger than the photodetector in the
contact region. However, the larger sensitivity of the LSP to the material close to the
photodetector can keep increasing its value for small values of Θ over one. This
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leads to an optimum value for the taper depending on the material arrangement and
environmental losses. The overall design space is shown in Figure 5.5b. This plot
shows the boxplot representation of the average LSP from 10 different simulations
using 60 impacts uniformly distributed along the length of the crystal for each one.
The average value of LSP , which we call L̃SP , shows a maximum for Θ close to the
value of 1.2.

In Figure 5.5a, we also observe discontinuities near the end of the crystal, I0 ≈ 0.9,
because of the proximity to the optical surface. The edge of the crystals should be
discounted from the region of interest for the scintillator, given the outlier effect
over the distribution.

To obtain a satisfactory characterization of scintillation crystals through other
models, we should be able to replicate the dependencies on Θ observed in
Figure 5.5a and Figure 5.5b.

1DOF geometric model response in the Transient Pulse Design Space

A transient model for scintillation is most beneficial in obtaining the arrival
distribution of the photons into the photodetectors, as shown in Figure 5.3a.
However, this formulation’s lack of material self-absorption causes significant
differences in the energy deposition in the SiPMs as seen in Figure 5.3b. To compare
against the design space depending on Θ in this model, we use the function

Φt =Φ(Ψt (φ(Θ))) =−
∫ I1

I0

∫ T

0

∫
Γw

φdΓw dt dIp =−
∫ I1

I0

∫ T

0

∫
Γw

1

2
ϵϵr E ·EdΓw dt dIp ,

(5.28)

which calculates the total electrical energy deposition of the scintillation
electromagnetic wave into the SiPM area Γw during a simulation time T with the
same importance for all impact points between I0 and I1. These two points are
selected according to the GEANT4 results as Ip ∈ [I0, I1] = [0.05,0.9]. This range
avoids possible discontinuities at Ip = 0 and close distance to the SiPMs. Figure 5.6a
provides the dependence of the electric energy deposition Ψt with respect to the
impact location for multiple Θ values. This plot leads to a design space where there
is no vertical translation of the light collection dependent on the impact location as
in Figure 5.5a. All geometries depending on Θ provide an energy deposition that
crosses at Ip = 0.5 while maintaining a discontinuity close to the edge of the crystal,
I p ≈ 1, with an exponential increase in energy deposition. Looking into the design
space for the 1DOF model, the lack of material self-absorption translates into a
higher light collection for a Θ smaller than 1 where a larger number of photons are
created in the middle of the crystal and which reach the photodetector through a
larger path length than in GEANT4.

This lack of self-absorption for these dielectric materials can be remedied by
adding electrical losses through an electrical conductivity value greater than zero.
However, the definition of this electrical conductivity is not evident for an equivalent
model. The provided formulation is based on the relative permittivity and electrical
conductivity in COMSOL. The permittivity can be written as,

ϵ̄= ϵ+ϵ′ = n̄2 = n2 −k2 −2nk j , (5.29)
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Figure 5.6.: Figure 5.6a shows the dependence of light collection per energy
deposition and track length on the impact point for five different Θ

values following the 1D model description in COMSOL. Figure 5.6b
shows the design space of the transient COMSOL simulation of the
−Φt (Ψt (We )) Jns/m function depending on Θ.

where the complex part of the permittivity can be related to the losses due to the
electrical conductivity of the material σ. This relation is given by the respective
angular frequency ω,

ϵ0ϵ
′ 2πc

λ
=σ . (5.30)

This relation can be used to calculate ϵ′ from the electrical conductivity and solve
Equation (5.16) considering these losses. However, the scintillation decay process
lacks a defined angular frequency. The model relies on determining a λ that
replicates the expected losses.

1DOF geometric model response in the Frequency Domain Design Space

In the steady results in the frequency domain, we simplify the integral of the
objective function to an integral over the impact location and over the SiPM surface
of the electric field as

Φ f =Φ(Ψ f (φ(Θ))) =−
∫ I1

I0

∫
Γw

φdΓw dIp =−
∫ I1

I0

∫
Γw

(|E|2)dΓw dIp . (5.31)

The value in the surface integral is proportional to the energy deposition per surface
area We and can save computational time.

For this model, we must select a given wavelength for the input sinusoidal wave
at the impact location. For this reason, we need to strike a balance between the
higher memory for the FEM calculation due to mesh refinement needed for smaller
wavelength and the computational complexity of the simulation while maintaining
the losses expected from the GEANT4 model. These losses mainly arise from
self-absorption and the confinement factor within the scintillator. The losses can
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be modelled as an exponential decay of the field amplitude from the origin of the
source

|E(x)| = |E0|e−α|x|,
with the attenuation constant

α=αL +αΓ = 2πk

λ
+αΓ(λ) .

The first source of losses αL is due to the material losses. The second source of
losses αΓ arises from radiation losses. We can have a measure of the radiation
losses for leaky modes through the confinement factor. These radiation losses for
leaky modes can be expressed as the ratio of the power of the confinement factor.
This measurement is a ratio between the power that escapes to the surrounding
environment in the form of evanescent waves compared to the guided power along
a waveguide. According to Saleh and Teich [43], for the fundamental TE mode in a
symmetrical slab waveguide, the confinement factor can be estimated as

Γ= Pcore

P
=

∫ +d

−d
ε(x)|E(x)|2 d x∫ +∞

−∞
ε(x)|E(x)|2 d x

≈ 1

1+ 2

V 2

, (5.32)

where, V is the normalized frequency

V = 2π

λ
· d

2
·
√

n2
1 −n2

2 . (5.33)

In this equation, d is the core width, n1 is the core refractive index, and n2 is
the surrounding material refractive index. Hu and Menyuk [44] studies in detail
radiation losses in leaky modes for slab waveguides.

For a higher wavelength, we can see that the confinement decreases, leading to
higher power losses, being the main cause of losses up to the photodetector, while
for lower wavelengths, self-absorption becomes important. As we want to reach an
equilibrium between mesh size and accurate losses within the crystals, we estimate
the highest wavelength we can study before the wave becomes evanescent. This
frequency can be estimated through the cutoff wavelength for each mode m, which
can be calculated through

λcutoff,m = 2d

m

√
n2

1 −n2
2 , (5.34)

where m is the integer defining the mode. Only modes with λ< λcutoff,m remain
confined in the core of a waveguide. For the first mode we get a cutoff wavelength of
approximate 9.34 mm for a width of 3 mm of the LYSO and of 14 mm for a width of
4.5 mm. Given the tapered shape of the benchmark, we start testing the simulation
results at an intermediate value of 12 mm wavelengths. For this purpose, we study
a mesh convergence of the different settings of the physics-informed mesh creation
from COMSOL. The results of this mesh convergence are shown in Figure 5.7 with
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Figure 5.7.: Mesh convergence of Ψ f (φ(Θ)) for Ip = 0.05 versus the number of degrees
of freedom created by each physics-controlled mesh in COMSOL.

respect to the settings used, the number of degrees of freedom and the resulting
objective for an impact point at the middle of the crystals, Ip = 0.05. In the rest of
the studies, a Normal setting for meshing is used.

In Figure 5.8, the design space for the wavelength of 12 mm is shown concerning
the design variable Θ. Comparing Figure 5.8a to the results in GEANT4 for energy
deposition concerning the location of the impact, we can identify a similar trend
in the relative location of each curve concerning the variable Θ, except for its
sinusoidal nature. Higher values of Θ provide higher energy depositions closer to the
photodetector, whereas impacts close to the middle of the crystal for these Θ provide
smaller objective values due to the smaller energy introduced into the system. For
Θ< 1, the optical surfaces lead to higher self-absorption of the electric wave within
the scintillator, displacing these curves to smaller objective values. This leads to a
design space comparable to that shown in Figure 5.5b with a maximum found for
Θ> 1.

Notice that to capture the shape of the sinusoidal nature of Wa(Ip ) in this case,
the adaptive integration must add a larger number of points along the impact
location compared to the transient study case. Taking into account the time taken
to solve the system using an i7-12700H processor and ten cores, we find that the
transient calculation takes an average of 10 evaluations 57 s, while each evaluation in
the frequency domain takes 8 s each for the same number of evaluations and Θ= 1
for a number of degrees of freedom close to 15000 in each remeshing procedure
for the frequency analysis and close to 36000 for the transient case. The frequency
domain has an advantage in computational complexity over the transient model for
the same number of function evaluations.

We conclude that this wavelength of 12 mm can replicate the behaviours we
observe in GEANT4 with a lower confinement factor, reducing the higher energy
collection in the photodetector in relation to the energy deposited within the crystal.
Lowering this wavelength decreases these losses, moving the Figure 5.8b plot to the
right while increasing the self-absorption that eventually should move the plot back
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Figure 5.8.: Figure 5.8a shows the dependence of light collection per energy
deposition and track length on the impact point for five different Θ

values following the 1D model description in COMSOL. Figure 5.8b
shows the design space of the frequency domain COMSOL simulation of
the −Φ f

(
Ψ f

(|E|2))
)(

V2
)

function depending on Θ.

towards the left at wavelengths close to the 420nm. Higher wavelengths end up
with an unconfined wave with similar distributions of the objective function as the
transient model. This study shows that for specific problems, we can replicate the
energy loss of electromagnetic fields at higher wavelengths, reducing the required
mesh size, given their nonlinear behaviour, using the frequency domain simulation
in COMSOL.

5.3.2. Scintillator numerical optimization through frequency domain
FEM

Having found in the frequency domain model a solution that correlates to the results
obtained from GEANT4, we can run an optimization over the Θ variable for the
design in Figure 5.4 using a simplex algorithm with bounded design variables using
a wavelength of 1.5 mm. The results of this optimization are plotted in Figure 5.9.

The optimization of the 1DOF design space provides an optimum at Θ= 1.15 with
14 iterations of the simplex algorithm. Although there is a correlation between the
COMSOL and GEANT4 models, the location of the optimum is 5% lower compared
to the value of Θ= 1.2. The lack of study of multiple wavelengths in COMSOL and
possible differences in the treatments of the reflections and material interfaces can
lead to differences in the output, even if the effect of the different variables remains
comparable. The output of the optimization leads to a design with gains in LSP

compared to the analysis shown in Figure 5.5b. This optimization indicates that the
optimization procedure is viable and can also provide gains in GEANT4. However,
this is still a model with a single design variable and an optimization with a larger
number of design variables is expected to provide higher gains.

The geometry of the crystals can be parameterized with a larger number of design
variables through interpolation curves defined as shown in Figure 5.10. This figure
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Figure 5.9.: Results for a numerical optimization using a bounded simplex algorithm
of the COMSOL 2D scintillation model in the frequency domain. The x
axis of this plot shows the iteration number within the algorithm, while
the left axis shows the change of the Θ design variable, and the right axis
shows the value of the objective function −Φ f
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shows the top and bottom surfaces of the LYSO in COMSOL generated through 9
points each. The points for the top surface are named pi , and the ones at the
bottom mi . These points are uniformly distributed through the half-length of the
crystals along x. These points define two splines that can be modified through the
absolute y distance of the points to y = 0. This can be written as

y(pi ) = y0 ∗ ypi , (5.35)

y(mi ) =−y0 ∗ ymi , (5.36)

where the y0 is the original half-thickness of the crystals of 1.5 mm and ypi and ymi

are the design variables associated to the y location of each point along the splines.
All design variables are collected in a vector as y = [yp , ym ]. A symmetry plane is
defined at x equal to zero for the crystal geometry, and the top and bottom surfaces
can be modified independently.
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Figure 5.10.: Half-crystal parameterized through 18 points using its top (pi ) and
bottom (mi ) surface from COMSOL.
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Using the frequency domain COMSOL model, we now run two optimizations using
the same objective as in the 1DOF optimization and a new objective considering
the length of the impact location,

Φ=Φ f
(
Ψ f (φ(y))

)=Φ f

(
Ψ f

( |E|2
∆l

))
. (5.37)

Given that the ionizing particle’s energy deposition in the crystals can be considered
proportional to the length it travels within it, this measurement can be viewed as a
measure of the energy deposition in the photodetectors by the energy deposition in
the crystal.

We now impose the volume constraint defined in Equation (5.25b) to compare two
geometries with the same amount of scintillating material. The volume constraint is
set to a value equal to the original scintillator area calculated with a total thickness
of 3 mm and length of 57 mm. The starting point for the following optimizations
is defined as the geometry with all design variables equal to 0.99 to avoid a
non-satisfied constraint for the initial design. The range of the y design variables is
set to [0.1,2]. The final shape of the crystals and the convergence of the objective
function for both optimizations are shown in Figure 5.11 for a run of 200 iterations
of the simplex algorithm.
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Figure 5.11.: Convergence for Φ f
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(
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)) (
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)
with φ = |E|2 (Figure 5.11b) and

φ= |E|2
∆l (Figure 5.11a) objective values according to Equation (5.25) and

geometries for the last iteration of each optimization.

The results for both objectives show a gains. However, none of them show
convergence under 200 iterations. The results from the crystals in both cases show
curved surfaces to direct the photons towards the photodetector. These shapes
also show a minor influence on the thickness or material close to the middle of
the crystal compared to the material close to the photodetectors. The smaller
thickness near the centre of the crystal also focuses the photons created in a single
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photodetector rather than trying to divide the detection between them. This can
be counterproductive for timing detection, where using both photodetectors can
increase the timing precision by

p
2 [45].

To avoid small thickness along the crystal, we introduce an extra constraint related
to the minimum Ψ f (φ) depending on the impact location Ip ,

cΨ =−min
(
Ψ f (φ)

)
Jmi n

+1 < 0, (5.38)

with Jmi n the minimum value required. Another option is to impose the constraint
over the minimum thickness of the crystal, directly related to the energy deposited
in the crystal,

ct =− y0(ypi − ymi )

tmi n
+1 < 0, (5.39)

applied to each couple of points pi and mi with a minimum thickness tmi n .
This formulation limits the smallest thickness of the crystal while allowing any
shape within the design limits of each pi and mi point rather than using the
design variables’ bounds. Another possibility of introducing this constraint is to
reparameterize the design with the points mi or pi referenced to their counterpart pi

or mi , avoiding the definition of the constraint. However, this means a reformulation
of the parameterization proposed in this paper.

Rerunning the optimization using the same starting point and iteration limit, the
objective function −Φ f

(
Ψ f

(|E|2)) with the same volume constraint as the previous
ones, a minimum thickness constraint of 1 mm and a minimum value of Ψ f

(|E|2) of
0.02 V2 we obtain the final shape and convergence plotted in Figure 5.12.
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Figure 5.12.: Convergence for the |E|2 objective values according to Equation (5.25)
with a geometry constrained to 1 mm thickness (tmi n) and a minimum
energy deposition of 0.02 V2 (Jmi n). The resulting geometry is plotted
for the last iteration.

This optimization provides a wavy design with a softer slope across both splines,
the same common traits as in the previous cases, and a smaller thickness in the
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middle than next to the photodetectors. In this case, the final iterations’ objective
function is much flatter, indicating a faster convergence than without the thickness
constraints, although the gains seem to be smaller.

These results need to be validated and compared with the results within GEANT4.
Although the interpolation for GEANT4 does not use the same spline definitions, the
representation is considered close enough to verify the optimum geometry objective
value. Section 5.3.2 shows the histograms of light output LO = Na

E within GEANT4 for
the default geometry with constant crystal thickness and parallel surfaces in red and
the crystal with the optimized shape from Figure 5.12 in blue. This plot shows how
the light collection per energy deposited in the crystal for the optimized geometry
found also provides gains in GEANT4. In particular, the optimized geometry raises
the average LO from a median of the distribution of 2400 ph/MeV to a value of
2585 ph/MeV with a relative gain of 7.7% and with a similar bottom value close to
2200 ph/MeV.
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Figure 5.13.: Light output or photons per energy deposited in the crystal detected in
the GEANT4 model for the default geometry with flat surfaces in red
and optimized geometry found in COMSOL reevaluated in GEANT4 in
blue.

5.4. Conclusions
In this document, we provide an approach to translate the scintillation pulse to
an electrical wave boundary condition for the transient continuum electromagnetic
equations solved through FEM. The resulting FEM model provides a proportional
energy deposition in the photodetectors in time to the GEANT4 model. However, the
absolute values of both simulations did not reach an agreement. This is expected
to arise from the different electromagnetic losses within the materials between the
two models. Other effects that could affect the different results are the reflection
treatment between different materials and the lack of internal dielectric losses within
COMSOL for the transient electromagnetic simulations, taking the refractive index
as input. While through the wave-particle duality of light, an agreement between
the ray-tracing and FEM continuous description is feasible, the parameters must be
tuned between both simulations.



5

154
5. Computationally efficient simulation and shape optimization of scintillator

crystals through finite elements

Although absolute correlation in this chapter is not achieved between both
simulations, we only require the same trend in the design space or the same
influence of the different design variables involved to compare and optimize multiple
designs. We show that with COMSOL’s frequency domain solution to the Maxwell
equations, we can maintain the relevant effect on the light collection objectives of
the energy input and energy deposition within the photodetector. The optimization
shape results provide gains in the light output once retested within GEANT4.
Furthermore, this process avoids the use of stochastic processes in the calculation
of the efficiency measure of the scintillating crystals. This also means that the error
arising from the stochastic processes in GEANT4 is not dealt with for calculating
the objective functions, providing a deterministic and repeatable approach to the
optimization process and an advantage in computational complexity. Using FEM,
obtaining the deviation from the light collection measurements through multiple
wavelengths and material properties can provide further information about the
scintillating system.

Not only is the reproducibility of the numerical optimization achieved, but these
models also provide a much lower computational cost than the requirements of a
Monte Carlo study for each scintillator configuration. This computational complexity
is further reduced using a static surrogate model to solve the problem within the
frequency domain. Although static solutions cannot represent one-by-one the energy
pulse generated within a scintillation process, they maintain the influence of the
reflecting surfaces, energy deposition in the scintillator, and material properties on
the output. This model also shows the importance of the internal material losses in
the scintillation process in relation to the design space in GEANT4 for sufficiently
small wavelength inputs. Notice that the wavelength used within this paper has
been found experimentally to solve a trade-off problem between a small enough
wavelength to capture the design geometry and a large enough one to capture the
energy function oscillations through the Simpson’s adaptive quadrature and reduce
the computational time through coarser meshes.

The use of simplified models can accelerate the optimization of scintillation
crystals. However, once we validate a scintillation model in FEM, there are multiple
ways to decrease the complexity of optimization further. The need to change the
surface to introduce the electrical wave boundary condition leads to a re-meshing
for each impact location. This could be avoided with boundary conditions applied
within the design domain and mesh-morphing approaches, potentially reducing the
computational cost of re-meshing multiple times for each objective value. Another
way to further accelerate the convergence of the optimization algorithm is through
derivative-based optimizers such as the typically used method of moving asymptotes.
However, derivatives are often challenging to evaluate from commercial software
without full access to their solvers and related linear systems used during FEM
calculations. Using derivative-based optimizers could also facilitate the introduction
of topology optimization for scintillators.

Not only is the calculation time essential, but so is the precision of the results.
The precision of the objective value is defined through a tolerance introduced into
the adaptive Simpson’s routine. Although this method converges fast for functions
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close to cubic polynomials, the possibility of discontinuities could benefit from
other approaches, such as Clenshaw-Curtis or spline-based quadrature procedures.
The number of evaluations required for this numerical integration is also a large
part of the overall computational cost of the optimization procedure. Fitting
procedures or approximations through a lower number of evaluation points with
a better understanding of the shape of the light collection concerning the impact
location have the potential to reduce the computational cost of this problem further.
Extended degrees of freedom through the defined impact location could provide
these benefits without more precise meshing through the impact surface. In all
cases, the results of the optimization still need to be retested within GEANT4 for
validation of the gains achieved. For a more accurate optimized design, the solutions
obtained through FEM surrogate models could be re-optimized within GEANT4 using
these optima as starting point. This can lead to a more accurate and precise output
with a fraction of the computational time than if all the optimization iterations are
calculated in GEANT4.

Finally, taking into account that 3D-printing is becoming a new tool also
in scintillation manufacturing, faster scintillation simulation and its optimization
procedure must mature at the same time. Topology optimization of scintillators
typically requires the evaluation of many design variables and their design
sensitivities, for which non-derivative-based optimizers often lead to unbearable
calculation times. The use of FEM and topology optimization for scintillation could
lead to scintillators with properties not otherwise available and specific doping
locations for higher light yields.

In summary, we validate a first approach to tackle the simulation of scintillators
through FEM using a transient formulation and a simplified model in the frequency
domain that maintains the sensitivity to the geometric design variables from
GEANT4. Although the design of the scintillator shape to improve its efficiency is
still in its infancy, we believe it has the potential to improve its performance with
the rise of new manufacturing techniques.
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6
Conclusions and

recommendations

T his thesis demonstrated the use of topology and shape numerical optimization
to increase the photon-collection efficiency, the cooling capabilities, and the

reliability of thermoelectrical elements based on the design of the BTL particle
detector. Unlike experimental research, the simulation-based methods developed
provide a faster and more cost-efficient approach for testing and selecting preliminary
designs for particle detectors and related applications. The research also leads
to recommendations for future particle detectors with specific scintillator and
thermocouple designs. The core research question,

Can numerical design optimization techniques be applied to improve the timing
precision of minimum ionizing particle detectors?

is addressed affirmatively, with thermal and optical improvements supported by the
results of the multiple optimization methods tested. This question has then been
divided into smaller subquestions, since it was determined that thermal and optical
aspects are the most influential on detector timing precision. In Equation (1.1) the
largest component is σDC R , which can be reduced through active cooling. For this
reason we decided to include thermoelectrical elements in the BTL detector system
to reduce the radiation damage through thermal cycling. This can reduce the base
electrical noise and the one induced by the radiation damage of the photodetectors.
However, the design of these devices is not evident, which led to the sub-question:

• Can a topology optimization formulation for thermoelectric devices improve
cooling performance accounting for material cost and specific operational
factors, including electrical working points and nonlinear Joule heating?

Throughout Chapter 2, we studied the topology optimization of the
semiconductors of a thermocouple to provide lower temperatures under a
power constraint. Furthermore, we introduced the electrical operational
condition of the TEC as an optimization variable, which allowed us to maintain
a favourable electrical working point even if we removed or added material.
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The use of an optimized voltage drop for all designs provided designs that
were comparable to the initial design. An analytical model with two density
design variables was used to understand the non-convexity of the problem
and select the optimization parameters, which allowed convergence to lower
minima and volumes without the need for volume constraints. The visual
inspection of the results shows that we need to use a penalization coefficient
for the thermal Seebeck coefficient smaller than for the thermal and electrical
conductivities kp = σp > σα to improve convergence using SIMP. This visual
inspection also shows how the combination of the power constraint and
objective functions causes the non-convexity convergence issues with a local
maximum close to the full-density design. However, certain combinations
of penalization coefficients can also lead to undesirable intermediate density
optima due to manufacturing considerations and possible solutions through
an electrical disconnection. We also proposed a particular set of initial points
for the Newton-Raphson FEM iterations to accelerate its convergence based on
the previous iterations.

The convergence to lower volume quantities for improved performance also
reduces material costs, which are estimated to be up to one-third of the
thermoelectric cooler costs. Although the optimized device for specific
operating ranges is the full-density design, it is also concluded that introducing
a volume constraint under this methodology can still remove the material with
low-performance loss. The results provide up to 10◦ lower temperatures for the
same power limitations compared to the original design.

The installation of thermoelectrical coolers (TECs) in the BTL detector revealed
frequent early failures of TECs shortly after deployment. For this reason, we decided
to investigate the mechanical reliability of these devices, which often use fragile
ceramic material, glued or soldered between the working surfaces, and suffer from
thermal expansion loading.

The following subquestion was then formulated related to the mechanical stability
of TEC devices:

• Can numerical methods optimize coupled thermoelectric-mechanical systems
while considering mechanical and thermoelectrical loads?

Following the research in Chapter 2, in Chapter 3 we modify the previous
formulation to include mechanical degrees of freedom and the expected
loads under operation. We proposed a decoupled approach between the
thermoelectrical and mechanical degrees of freedom for lower computational
memory requirements and complexity. The mechanical constraints were
introduced through a stress constraint and an aggregation function to consider
discontinuities in the stress field. This P-mean aggregation function was also
introduced in the temperature objectives to include the effect of hot spots
in the objective function. Furthermore, we provided a strategy to introduce
temperature-dependent material properties as a continuous function within
the expected working regimes. This was done through a polynomial fitting and
constant values in the unknown temperature regimes.
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The results showed that the decoupling could be performed without significant
loss of information between the thermoelectrical and mechanical degrees of
freedom. Furthermore, the new formulation required filtering techniques to
obtain manufacturable designs. This density filtering through the Helmholtz
and Heaviside equations introduces a length scale and avoids design with
porous regions arising from the stress constraints in the model. The density-
optimized field resulted in quasi-symmetrical designs, given that we used
the same Young modulus for both semiconductors. However, the dissimilar
thermoelectric properties introduced different thermoelectrical paths for each
semiconductor. The results showed up to 10 times lower stress measurements
while still finding a thermoelectric optimum at lower semiconductor volumes.
Furthermore, we show that the air thermal conductivity has an impact on
results and can be included in the model without increased cost through
the minimum thermal conductivity of the elements. The increased minimum
thermal conductivity also leads to a removal of grey elements from the
optimized topologies without the need of filters.

The second largest component from Equation (1.1) arises from the optical
uncertainties within scintillator crystals. Scintillator design is then a fundamental
part of particle detector technology, transforming the energy from ionizing radiation
into detectable photons and directing them towards the photodetectors. However,
little to no effort has been made to understand the effect of their shape on their
light collection and timing uncertainties. This leads to the question:

• Can shape optimization of scintillation crystal surfaces reduce light reabsorption
and improve performance at the photodetector interface, considering the
stochastic nature of the optimization process?

We first approached the scintillator light collection in Chapter 4 through the
already available particle-matter interaction software GEANT4. This effort
led to a model comparison and validation concerning the experimental data
available in the literature for the BTL project. These validations allowed us to
simplify the geometry to lower computational costs. Given the lack of analytical
sensitivities from stochastic simulations, a lower computational complexity
was required to perform an exploration of the design space through genetic
algorithms. We then performed heuristic optimizations through NSGAII with
two objectives: material volume for lower costs and light collection measures.
We defined a new objective based on the photon count, energy deposition, and
particle tracking to improve the output distributions with the highest precision
possible and lowest computational complexity. Compared to the previous two
objectives studied, this allowed for a move of the distribution to higher light
collection values with higher accuracy in the objective function for the same
number of events and taking into account the effect of the energy deposited
in the crystal. We also studied two different parameterizations, which showed
their importance over the final optimized designs. The results provided gains
higher than 30% for certain light collection measurements as compared to the
original design.
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Due to the computational complexity and the stochastic nature of the problem, the
characterization of light collection distributions can lead to high estimation errors
during the optimization procedure, which needs to be re-evaluated. This led to the
following research focus in Chapter 5 and the last subquestion:

• Can deterministic modelling approaches, such as FEM and FDTD, enhance
scintillation efficiency through improved photon generation and detection while
reducing the computational demands associated with Monte Carlo methods?

To answer this question, we proposed an FEM procedure to gain insight
into the scintillator optical designs. This approach allowed us to compare
the scintillator outputs without the need for precise characterization that
can be performed in specialized particle-matter software. For this purpose,
we translated the scintillation phenomena with information extracted from
GEANT4 to boundary conditions in FEM. We used a transient electromagnetic
model in COMSOL to obtain the time characteristics of the energy deposition.
We also proved that a frequency-based electromagnetic model in COMSOL is
enough to replicate the behaviour of the light collection objective functions
studied in Chapter 4. We then performed a new design space exploration using
a simplex algorithm over a 2D FEM model, which included manufacturing
constraints. The resulting shapes were tested using GEANT4, showing lower
gains than the optimizations performed with GEANT4, of up to 7%, but at a
small fraction of the time previously required.

6.1. Conclusions
While the focus of this thesis is on specific elements, namely thermoelectric coolers
and scintillators, the numerical approaches developed apply broadly across particle
detector design. Numerical design for such components remains in its infancy,
presenting opportunities to enhance efficiency in various applications, including not
only high-energy physics but also medicine [1–3], aerospace [4], and security [5]. For
example, this thesis’s main cohesion point is how SiPMs can provide signal intensity
through improved light collection and reduced noise via temperature control.
Decoupling the lower temperature and higher luminosity objectives avoids increasing
the simulation complexity with an increased number of objectives and constraints.
The capabilities of numerical optimization in this thesis underscore the necessity of
integrating optimization techniques into the early stages of detector development
to ensure higher performance, given current trends towards pico-second timing
resolutions. The proposed workflow in this dissertation also lays a foundation for
integrating these effects into a unified model for the entire detector. However, the
optimization procedures described could also be applied directly to these SiPMs.

Using the proposed methodology to provide active signal control for SiPMs through
temperature optimization is relevant in quantum computing technologies [6], where
precise photon detection is critical for quantum state measurements. Mitigating
radiation damage through optimized thermoelectrical devices can contribute to
extending the lifetime of SiPMs [7] and lowering maintenance costs, following
sustainability drivers. Lowering the power consumption of thermoelectrical devices
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can also lead to lower operational costs and power consumption in the overall
system. Considering the power dissipation of SiPMs also depends upon their
operational temperature. As society tackles climate change challenges, reducing raw
material and energy use, and precision optimization shown in this research can
contribute to reducing these effects for particle detector design.

The use of numerical tools for optimization of scintillators can also lead to a
reduction in costs, not only in material but also in allowing more compact detectors
with similar resolutions. The SiPM size required for a given resolution could also
be reduced with a higher focus on the generated photons, leading to lower costs.
Reducing the detector size would also lower the cost of associated infrastructures
(e. g., shielding and support structures). With a density of 7200 kg/m3 for LYSO:Ce
and a total weight of 1800 kg for BTL, of which more than 50% is comprised
of these scintillators, a weight reduction could lead to further gains. We could
also select scintillators with lower photon emission or different time characteristics,
whose efficiency could be improved by optimizing their shape instead of relying on
higher-quality materials. This includes the introduction of scintillator 3D-printing
and the mixing of different materials in the same structure to provide different
properties to the final design. These numerical tools also enable the design of
specific experiments with non-uniform particle fluxes or non-uniform efficiencies
across its detection area. The computational cost of these simulations using
non-differentiable particle-matter ray-tracing-based software is still computationally
expensive. Tailored surrogate models become key for future particle detector
optimization. These simplified models would also apply to the previously mentioned
medical, aerospace, and security fields. Deterministic models and hybrid approaches
could be further refined to replace or complement stochastic simulations, enabling
faster iteration in particle detector design.

The research in this thesis further signals how the computational aspects of
multiphysics optimizations are still underdeveloped compared to pure mechanical
numerical optimization. This often leads to poorly chosen objectives and constraints.
One such constraint is the volume constraint, which serves as an optimization
objective subject to design criteria, such as timing resolution, light collection,
temperature gradient, and heat absorption. While constraints generally add
complexity to the objective landscape, a volume constraint can influence the
optimization process by guiding it toward different optima, often aiding convergence
through altered objective landscapes or hyperparameter tuning.

Furthermore, the computational methodologies developed here and shared with
the community, see Appendix H, can serve as training platforms for students and
researchers. This becomes of higher importance as we move to more complex
optimizations and models, reducing the barrier of entry. These have only been
possible thanks to the interdisciplinary research through the multiple expertise of
physicists and engineers in a common environment, as is CERN. This emphasizes
the importance of open source, public research, and interdisciplinary organizations.

We can summarize that numerical optimization in particle detector design is a
field with significant potential for further advancement.
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6.2. Recommendations and future research directions
In this section, I provide recommendations under the themes of the thermal and
optical optimizations performed in this thesis and the overall application to particle
detectors.

6.2.1. Thermoelectrical devices and topology optimization
In this thesis, I have detailed several processes by which we can improve the
performance of thermoelectrical coolers through topology optimization. However,
the application of TO to thermoelectric devices is still in its initial stages, and
multiple options still exist to improve the results which are detailed hereafter.

As shown in this thesis, TO optimization convergence needs to be studied for all
new multiphysics optimization problems. For density-based TO, the penalization
coefficients using SIMP should be examined for each objective and constraint. The
analytical model we used in this thesis could be extended to similar thermoelectric
problems, including mechanical behaviour and other objectives. A summary of
the objectives where this methodology could improve the algorithm convergence is
provided in Lundgaard and Sigmund [8]. All proposed objectives for thermoelectric
TO, including temperatures and heat extraction or injection, could also benefit from
the introduction of the optimization of their boundary conditions, as we did in
this dissertation. Otherwise, multidimensional projection could be used directly to
gain insights into the design space. Malan [9] offers a review of landscape analysis
algorithms that could be used for this purpose. A comparison with other methods,
such as level set TO, could lead to different results, reducing the influence of material
discontinuities and providing different material arrangements.

The convergence to the final topology is also dependent on the initial design.
However, the bulk thermoelectrical designs are not the only thermoelectrical device
configuration. Previous tests and analytical models have been developed for bulk
thermoelectrical modules due to their common use and the previous knowledge of
their shape-dependent efficiency [10]. However, the TO approach developed in this
thesis could be extended to other configurations with different heat and electrical
transport directionalities to gain insights into the different problem landscapes.

Different configurations also lead to different mechanical loading that affects
their performance. TECs lose efficiency with cycling loading. We modelled the
results for a stress-constrained TEC under thermal loading. Other loading scenarios,
such as shearing or bending loads, can affect the final designs and optimizations.
The contact region between different layers, such as semiconductor, soldering
material, and ceramic, can also affect reliability. Large deformation implementations
may further support newer flexible TEC designs or wearable TECs [11].

The thermocouple, the smallest unit of a thermoelectric device, is convenient for
optimization models, but clearer benchmark guidelines are needed to solve this
thermoelectrical TO problem. However, the studied thermocouples are just part
of a multiscale problem. We have studied the use of optimization techniques
over a single thermocouple, but 3D effects in the full thermoelectric device
should be considered. Given the computational cost of modelling a full TEC, a
homogenization or linearization procedure should be implemented to consider 3D
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effects. Furthermore, the entire TEC is prone to experiment load concentration in
specific locations, such as its corners, rather than in a single thermocouple [12]. This
means that homogenization could also be useful for stress-constrained optimization
of thermoelectrical devices. The use of multi-scale topology optimization algorithms
is another way to include these effects in a full thermoelectrical device comprised
of multiple thermocouples. Multi-scale topology optimization algorithms are
summarized in Wu, Sigmund, and Groen [13]. Also, the evidence that porous
semiconductor materials can improve thermocouples’ efficiency makes this research
direction interesting [14].

Thermoelectrical devices also need to be able to be manufactured, and there
is currently limited experimental testing on results from topology optimization.
While an experimental setup exists to test the standard TEC used within BTL, further
efforts are needed to test optimized designs. This might require more effort due to a
lack of manufacturing constraints. In this thesis, we approached the manufacturing
limitations through Helmholtz and Heaviside filtering, limiting feature size. However,
other constraints might need to be implemented depending on the manufacturing
method. The manufacturing methods available to produce thermoelectrical devices
are summarized in Song et al. [15], including inkjet printing and extrusion, among
others.

The length scale and filtering prevent nanoscale designs where the thermoelectric
equations are no longer valid due to size effects [16]. However, miniaturizing
thermoelectric devices may require equations that account for nanoscale electronic
transport, enabling topology optimization for such designs. However, introducing
smaller-sized elements in the simulation could lead to designs with better objective
values. Furthermore, the presence of a magnetic field could lead to changes in the
material properties not considered in the equations of this thesis [17].

Finally, looking at our particular problem, the timing resolution from SiPMs can
be tuned through multiple working points of the TECs. For the application of SiPM
detectors, we are interested in cooling and annealing cycles. However, the results in
this thesis focused on the cooling aspects of TECs. A multiobjective optimization
could include the efficiency of cooling and heating up the photomultiplier in reverse
polarity operation. A multiobjective optimization or an aggregation of multiple
electrical points or power consumptions could also increase the range of operation
of a single device. This leads to difficulties arising from higher computational costs
and the device’s opposite requirements between electrical and thermal conductivities
for both operational modes.

6.2.2. Scintillation crystal design and optimization
Although the results offered higher light collection, the optical surfaces or geometrical
design is a single aspect of the design of these crystals.

Not only the shape but also the properties of the scintillator surfaces affect the
light output. This is evidenced by research on the effect of different roughness
and materials to coat the scintillators to improve the light collection [18]. Using
metalenses or photonic crystals has also been shown to improve light collection
in scintillators [19]. Topology optimization for the design of optical surfaces could
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be used to tune the refractive indices of photodetectors or to create specific
reflective properties along the crystals [20]. We could decouple the effects of
energy deposition and reflective surfaces with metalenses and obtain improved light
collection. However, these structures require the use of FDTD or FEM modelling
rather than ray tracing, such as in GEANT4, for their design and optimization to
obtain gradient information.

While the Finite Element Method (FEM) is not strictly required for gradient-based
optimization – any system of C 1 functions can be optimized using these methods–
its use facilitates the modeling and testing of complex structures. In particular,
it enables the application of gradient-based optimization of scintillators, where a
major challenge lies in the stochastic nature of particle-matter interactions, typically
requiring Monte Carlo simulations. The use of FEM, as in Chapter 5, enables the
use of deterministic models and sensitivities. This can accelerate the optimization
procedure. The use of FEM also enables a fully optimizable model of scintillating
crystals and metalenses in a single simulation rather than having to extract the
scintillation properties from GEANT4 and iterate with a FEM model. Furthermore,
the optimized geometries found could be reintroduced into particle-matter software
for a second optimization stage, leading to more accurate and improved objective
values and designs at a lower cost than a full optimization in GEANT4.

The amount of light reflected on each surface also depends on the material’s
refractive index. Direct application to cheaper and 3D-printable plastic scintillators
implies lower gains due to their lower refractive index and lower light yield
[21, 22]. These disadvantages could be mitigated through the coating and the
surface or topology optimization of these scintillators. Furthermore, 3D-printing of
scintillators can lead to the realization of composite scintillators, thereby combining
their different material properties. This could lead to a scintillator composite with
high refractive index, high light yield, and/or fast scintillation through local material
changes. This research direction hints at tailoring metascintillator properties [23].
The material changes could be directly implemented in the GEANT4 optimization
procedure through the methodology provided in this dissertation.

6.2.3. Design techniques for particle detectors
In the previous section, I mentioned that the techniques developed can be applied
to other detector parts. The first components of interest are the SiPMs themselves,
which provide σDC R . Research has been conducted on improving their efficiency by
tailoring their cell size [24]. SiPMs are microdevices with limited changes available
to their manufacturing. Their performance depends on factors such as the series
quenching resistor, electric current density, self-heating, doping levels, and trenches
or metal-filled cutouts between detector cells, which prevent electro-optical coupling
[25].

Within the MTD detector, SiPMs will be cooled down and annealed in successive
cycles to reduce their radiation damage and associated dark current or noise. This
behaviour can be predicted, and an optimum cycling condition could be found
to reduce the overall noise at the end of life for maximum operational time or
maximize the detector life [26].
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This can be achieved through models of parts of the overall detector. However,
these optimizations could benefit from their integration into a single model to
understand the system’s performance. This could lead to new challenges in
computational complexity and the ability to model the entire detector accurately.
For this purpose, it would be convenient to use available data from detector runs
to create surrogate models of the detector that are not subject to the optimization
procedure, such as the electronic response. Current efforts are to integrate AI and
optimization procedures into the design of multiple high-energy physics particle
detectors [27, 28]. All these references and future research recommendations
establish the opportunities that numerical optimization and design space exploration
have over conceptual design for future particle detectors. Furthermore, this is
also applicable not only to timing or scintillation-based detectors, but to other
particle detectors as well. Given the common use of scintillators and waveguides in
calorimeters, the developed approaches in this thesis are directly applicable to them.
Electromagnetic shields protect sensitive components from external electromagnetic
interference (such as background suppression) can make use of optimization
techniques to enhance detector signal integrity at reduced overall weight [29, 30].
The use of specific collimator shapes or designs and simplified models that allow
for gradient-based optimizers is also noted in the literature [31]. Drift chambers
require optimized layouts and structural elements to maximize particle tracking
efficiency while maintaining mechanical stability [32, 33]. Sensor layout and size
significantly impact detection area and resolution, requiring careful optimization for
specific applications. Examples of this study in the literature include Shi et al. [34]
and Dubé et al. [35], which provide research on the optimal location of sensors for
non-intrusive radioactive particle tracking to monitor the behaviour of hydrodynamic
systems. Resistive plate chambers depend on material and geometric configurations
to improve performance [36]. Photomultiplier tubes, require optimization of the
focusing electrodes, voltage applications, and bulbs to maximize photon collection
and signal output [37, 38]. Finally, silicon strip sensors within tracking detectors
provide precise spatial resolution by detecting charged particle trajectories and are
dependent, as SiPMs, on the microdevice layers to reduce hot-spots [39–41]. These
are only some elements I have identified, and I have no doubt that more will arise
as technology progresses in additive manufacturing and numerical modelling.

The selection and usage of different optimization algorithms for detectors also
require careful evaluation. This thesis applies heuristics to optimize scintillator
shapes and gradient-based methods for thermoelectrical elements. Each method
offers distinct advantages and trade-offs that affect computational cost and research
effort. Gradient-based optimizers converge quickly to local minima using sensitivity
information, but are sensitive to hyperparameters and non-convex functions.
Although computationally expensive, heuristic optimizers handle discontinuous
objective functions in ray-tracing software without requiring surrogate models
or sensitivity analysis and can use standard particle-matter interaction tools in
high-energy physics. Further research should guide optimizer selection for specific
problems or hybrid approaches that combine both methods. Both methods face the
curse of dimensionality, where the increase of design variables increases runtime
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exponentially. Isogeometric analysis and geometric projection parameterizations for
scintillators and semiconductors offer a promising mitigation strategy and require
further exploration. These parameterizations also highlight the differences between
the traditional sizing optimization in high-energy physics and the higher flexibility of
the shape and topology optimization discussed in this thesis. Despite manufacturing
constraints on topology optimization, advances like additive manufacturing and
free-form optics present opportunities for further research.
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Appendices
T his section presents all complementary information for previous chapters included

in the corresponding journal papers for clarification purposes.
The structure for the appendices chronologically follows the presentation of each

chapter. The contents of each appendix can be summarized as:

• Appendix A: presents the FEM element and integration used in Chapter 2.

• Appendix B: presents the analytical solution equations for the results in Chapter 2.

• Appendix C: presents the thermoelectric equations sensitivities required to run TO
in Chapter 3

• Appendix D: presents the finite differences validation of the sensitivities used in
Chapter 3.

• Appendix E: presents the thermoelectric non-linear material properties used in
Chapter 3.

• Appendix F: presents material and model properties used for the optical materials
used in Chapter 4.

• Appendix G: presents material and model properties used for the optical materials
used for the COMSOL simulations in Chapter 5.

• Appendix H: presents provides the references of the codes required for the replica-
tion of the results in this document.
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Appendix A Serendipity 20 node element formulation
Serendipity 20 node elements are used in this work to reduce the complexity of the calcu-
lations while using second-order approximation polynomials. These elements and their
reduced points of integration following a 14-point scheme developed in [1] are repre-
sented in Figure 7.1.
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Figure 7.1.: Hexahedral 20 node element and 14 point reduced integration points with
the superimposed element in dotted lines.

In Figure 7.1, we see the local coordinate system of the element in terms of ξi , the num-
bering system of each node. Table 7.1 represents the location of each of these nodes and
their associated shape function.

Finally, we perform the element’s integration in an internal hexahedron to the ele-
ment. The integration points are then located in the internal hexahedron corners and
face centres as defined in Table 7.2.
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Node ξ1 ξ2 ξ3 Shape Functions

1 -1 -1 -1 (1−ξ2)(1−ξ3)(1−ξ1)(−ξ2 −ξ3 −ξ1 −2)/8

2 1 -1 -1 (1+ξ2)(1−ξ3)(1−ξ1)(ξ2 −ξ3 −ξ1 −2)/8

3 1 1 -1 (1+ξ2)(1+ξ3)(1−ξ1)(ξ2 +ξ3 −ξ1 −2)/8

4 -1 1 -1 (1−ξ2)(1+ξ3)(1−ξ1)(−ξ2 +ξ3 −ξ1 −2)/8

5 -1 -1 1 (1−ξ2)(1−ξ3)(1+ξ1)(−ξ2 −ξ3 +ξ1 −2)/8

6 1 -1 1 (1+ξ2)(1−ξ3)(1+ξ1)(ξ2 −ξ3 +ξ1 −2)/8

7 1 1 1 (1+ξ2)(1+ξ3)(1+ξ1)(ξ2 +ξ3 +ξ1 −2)/8

8 -1 1 1 (1−ξ2)(1+ξ3)(1+ξ1)(−ξ2 +ξ3 +ξ1 −2)/8

9 0 -1 -1 (1−ξ2
2)(1−ξ3)(1−ξ1)/4

10 1 0 -1 (1+ξ2)(1−ξ2
3)(1−ξ1)/4

11 0 1 -1 (1−ξ2
2)(1+ξ3)(1−ξ1)/4

12 -1 0 -1 (1−ξ2)(1−ξ2
3)(1−ξ1)/4

13 -1 -1 0 (1−ξ2
2)(1−ξ3)(1+ξ1)/4

14 1 -1 0 (1+ξ2)(1−ξ2
3)(1+ξ1)/4

15 1 1 0 (1−ξ2
2)(1+ξ3)(1+ξ1)/4

16 -1 1 0 (1−ξ2)(1−ξ2
3)(1+ξ1)/4

17 0 -1 1 (1−ξ2)(1−ξ3)(1−ξ2)/4

18 1 0 1 (1+ξ2)(1−ξ3)(1−ξ2)/4

19 0 1 1 (1+ξ2)(1+ξ3)(1−ξ2)/4

20 -1 0 1 (1−ξ2)(1+ξ3)(1−ξ2)/4

Table 7.1.: Node Locations and Shape Functions for Hexahedral 20-Node Serendipity El-
ement

Type Integration Point Location Weight

Corner Points

ξ1 = ±.7587869106

0.3351800554ξ2 = ±.7587869106

ξ3 = ±.7587869106

Center Points

ξ1 = ±.7958224257 ξ2=ξ3=0

0.8864265927ξ2 = ±.7958224257 ξ1=ξ3=0

ξ3 = ±.7958224257 ξ1=ξ2=0

Table 7.2.: 14 point integration scheme for a 20 node hexahedral element
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Appendix B Analytical Problem Solution
The system of equations formed by Equations (2.43) and (2.44) can be solved, imposing
a value of V0 = 0, obtaining a value of Tc equal to,

Tc = Tn

Td
, (7.1)

Tn =k ( 2ασV f x2pα+pσ+pk
2 xpα+pσ

1 −4kx2pk
2 x2pα+pσ

1

−4α2σTh x2pα+pσ+pk
2 x2pα+pσ

1

−4α2σTh xpk
2 x2(2pα+pσ)

1 +2ασV f xpk
2 x3pα+2pσ

1

+4kx2pα+pσ+pk
2 xpk

1

±α2σLx2(2pα+pσ)
2 (Sq)xpk

1 +4kx2pα+pσ
2 x2pk

1

+2ασV f x2pα+pσ
2 xpα+pσ+pk

1

−4α2σTh x2pα+pσ
2 x2pα+pσ+pk

1

−4kxpk
2 x2pα+pσ+pk

1

±2α2σLx2pα+pσ
2 (Sq)x2pα+pσ+pk

1

+2ασV f x3pα+2pσ+pk
1 −4α2σTh x4pα+2pσ+pk

1

±α2σL(Sq)x4pα+2pσ+pk
1 ) ,

(7.2)

Td =2α2σ(x2pα+pσ
1 +x2pα+pσ

2 )(−ασV f (x2pα+pσ
1 +

x2pα+pσ
2 )xpα+pσ

1 +2α2σTh(x2pα+pσ
1 +x2pα+pσ

2 )

x2pα+pσ
1 +k(2x2pα+pσ

1 xpk
2 −2xpk

1 x2pα+pσ
2 )),

(7.3)

with Tc providing two results to the system depending on the sign of the square root, Sq ,

Sq =
√

Sn

Sd
, (7.4)

Sn =x−2pk
1 (ασV f (x2pα+pσ

1 +x2pα+pσ
2 )xpα+pσ

1

−2α2σTh(x2pα+pσ
1 +x2pα+pσ

2 )x2pα+pσ
1

+2k(xpk
1 x2pα+pσ

2 −x2pα+pσ
1 xpk

2 ))2

(4Aσ2T 2
h (x2pα+pσ

1 +x2pα+pσ
2 )2α4

−4Aσ2ThV f (x2pα+pσ
2 xpα+pσ

1 +xpα+pσ
2 x2pα+pσ

1

+x3pα+2pσ
1 +x3pα+2pσ

2 )α3

+σ(x2pα+pσ
1 +x2pα+pσ

2 )(Aσ(xpσ
1 +xpσ

2 )V 2
f

+4Lq +8AkTh(xpk
1 +xpk

2 ))α2

+4Ak2(xpk
1 +xpk

2 )2),

(7.5)
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Sd = Aα4σ2k2L2
(
x2pα+pσ

1 +x2pα+pσ
2

)4
. (7.6)

The other result we need to extract from the analytical formulation is the device’s
power consumption. We can define this power consumption as

P =∑∣∣ ji AVc
∣∣ , (7.7)

where the Vc value is evident, noting that both electrical contacts, made by legs influ-
enced by both xi , will always have the same material properties overall and are written
as,

Vc =
V f

2
. (7.8)

The current densities ji are then equal for each leg with the same density variable with
opposite signs,

j1 =− j4, (7.9)

j2 =− j3. (7.10)

We can write the results for these current densities as,

ji = jni

jd
, (7.11)

with the equations,

jn4 =xpσ
1 (−α2σ2V 2

f x2(2pα+pσ)
2 xpα+pσ

1 +4α3σ2ThV f x2(2pα+pσ)
2 x2pα+pσ

1

+4ασkV f x2pα+pσ+pk
2 x2pα+pσ

1 +8α3σ2ThV f x2pα+pσ
2 x2(2pα+pσ)

1

+4ασkV f xpk
2 x2(2pα+pσ)

1 +4α3σ2ThV f x3(2pα+pσ)
1

−4α4σ2T 2
h x2(2pα+pσ)

2 x3pα+pσ
1 −4k2x2pk

2 x3pα+pσ
1

−8α2σkTh x2pα+pσ+pk
2 x3pα+pσ

1

−2α2σ2V 2
f x2pα+pσ

2 x3pα+2pσ
1 −8α4σ2T 2

h x2pα+pσ
2 x5pα+2pσ

1

−8α2σkTh xpk
2 x5pα+2pσ

1 −α2σ2V 2
f x5pα+3pσ

1

−4α4σ2T 2
h x7pα+3pσ

1 −2ασkV f x2(2pα+pσ)
2 xpk

1

+4α2σkTh x2(2pα+pσ)
2 xpα+pk

1

+4k2x2pα+pσ+pk
2 xpα+pk

1 ±α2σkLx2(2pα+pσ)
2 (Sq )xpα+pk

1

−4k2xpk
2 x3pα+pσ+pk

1

±2α2σkLx2pα+pσ
2 (Sq )x3pα+pσ+pk

1

+2ασkV f x4pα+2pσ+pk
1

−4α2σkTh x5pα+2pσpk
1 ±α2σkL(Sq )x5pα+2pσ+pk

1 +4k2x2pα+pσ
2 xpα+2pk

1 ),

(7.12)
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and,

jn2 =xpσ
2 (4α4σ2T 2

h x3(2pα+pσ)
1 xpα

2

−2α3σ2ThV f x5pα+3pσ
1 xpα

2

−2ασkV f x3pα+2pσ+pk
1 xpα

2

+4α2σkTh x4pα+2pσ+pk
1 xpα

2

∓α2σkLx4pα+2pσ+pk
1 (Sq )xpα

2

−4α3σ2ThV f x2(2pα+pσ)
1 x2pα+pσ

2

+2α2σ2V 2
f x3pα+2pσ

1 x2pα+pσ
2

+2ασkV f x2pα+pσ+pk
1 x2pα+pσ

2

+α2σ2V 2
f xpα+pσ

1 x2(2pα+pσ)
2

−2α3σ2ThV f x2pα+pσ
1 x2(2pα+pσ)

2

+2ασkV f xpk
1 x2(2pα+pσ)

2

+8α4σ2T 2
h x2(2pα+pσ)

1 x3pα+pσ
2

−4α3σ2ThV f x3pα+2pσ
1 x3pα+pσ

2

−4k2x2pk
1 x3pα+pσ

2

−2ασkV f xpα+pσ+pk
1 x3pα+pσ

2

∓2α2σkLx2pα+pσ+pk
1 (Sq )x3pα+pσ

2

−2α3σ2ThV f xpα+pσ
1 x5pα+2pσ

2

+4α4σ2T 2
h x2pα+pσ

1 x5pα+2pσ
2

−4α2σkTh xpk
1 x5pα+2pσ

2 ∓α2σkLxpk
1 (Sq ))x5pα+2pσ

2

−2ασkV f x2(2pα+pσ)
1 xpk

2

+8α2σkTh x2(2pα+pσ)
1 xpα+pk

2

−2ασkV f x3pα+2pσ
1 xpα+pk

2

+4k2x2pα+pσ+pk
1 xpα+pk

2

−2ασkV f x2pα+pσ
1 x2pα+pσ+pk

2

−2ασkV f xpα+pσ
1 x3pα+pσ+pk

2

+8α2σkTh x2pα+pσ
1 x3pα+pσ+pk

2

−4k2xpk
1 x3pα+pσ+pk

2

+4k2x2pα+pσ
1 xpα+2pk

2

−2α3σ2ThV f x3(2pα+pσ)
1 +α2σ2V 2

f x5pα+3pσ
1 ),

(7.13)

characterizing all current density flow numerators and with a common denominator for
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all current densities,

jd =2αL(x2pα+pσ
1 +x2pα+pσ

2 )(−ασV f (x2pα+pσ
1 +x2pα+pσ

2 )

xpα+pσ
1 +2α2σTh(x2pα+pσ

1 +x2pα+pσ
2 )x2pα+pσ

1

+k(2x2pα+pσ
1 xpk

2 −2xpk
1 x2pα+pσ

2 )).

(7.14)
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Appendix C Residual derivatives
In this appendix we develop the required derivatives of the residual for the thermo-
electro-mechanical FEM system for the calculation related to of the adjoint sensitivities
and tangent matrix.

To derive the residual derivatives for the thermo-electro-mechanical finite element
system, the element-level dimensions of the involved matrices and vectors must be es-
tablished. These sizes vary with the element type and determine the structure of both
the tangent matrix and the adjoint sensitivities. Table 7.3 presents the relevant quantities
at the element level for quadratic 2D (Quad8) and 3D (Hex20) elements, including field
variables, constitutive matrices, and shape function representations. This information
defines the computational framework used in the derivation of the sensitivity equations.

Symbol Description 2D (Q8) 3D (H20)

j Curr. density 2×1 3×1

q Heat flux 2×1 3×1

σ̂ Stress (Voigt) 3×1 6×1

u Displacement 16×1 60×1

t Temperature 8×1 20×1

v Elec. potential 8×1 20×1

C0 Elastic matrix 3×3 6×6

βT Thermal stress 3×1 6×1

etr Trace operator vector 3×1 6×1

∇∇∇N Shape func. (scalar) 8×3 20×3

N Shape func. (scalar) 8×1 20×1

NU Shape func. (disp) 16×1 60×1

B Strain-displ. mat. 3×16 6×60

ru Mech. residual 16×1 60×1

rt Thermal residual 8×1 20×1

rv Elec. residual 8×1 20×1

Table 7.3.: Matrix and vector sizes in thermo-electro-mechanical FEM (Quad8/Hex20).

The first derivatives we need to define are the derivatives of the residual with respect
to the element level state vector s composed of the element level displacement u, tem-
perature t, and voltage v degrees of freedom. These derivatives are,

Çru

Çt
= kΘ+

∫
Ω

B⊺ ÇβT

ÇT
θN⊺dΩ

−
∫
Ω

B⊺ ÇC

ÇT
BuN⊺dΩ , (7.15)

Çru

Çu
=−kU , (7.16)

Çrt

Çt
=−

∫
Ω
∇∇∇N

Çq

Çt
dΩ+

∫
Ω

N(
Çj

Çt

⊺
∇∇∇N⊺v)⊺dΩ , (7.17)
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Çrt

Çv
=−

∫
Ω
∇∇∇N

Çq

Çv
dΩ

+
∫
Ω

N(
Çj

Çv

⊺
∇∇∇N⊺v)⊺dΩ

+
∫
Ω

Nj⊺∇∇∇N⊺dΩ , (7.18)

Çrv

Çt
=−

∫
Ω
∇∇∇N

Çj

Çt
dΩ , (7.19)

Çrv

Çv
=−

∫
Ω
∇∇∇N

Çj

Çv
dΩ . (7.20)

The temperature derivative of C and βT are

ÇC

ÇT
= C0x̄pE

ρ

ÇE

ÇT
,

ÇβT

ÇT
= x̄pE

ρ

1−2ν
etr

(
αT

ÇE

ÇT
+E

ÇαT

ÇT

)
.

(7.21)

From these equations, we can recognize that the derivatives of the thermoelectrical de-
grees of freedom concerning the displacements are zero,

Çrt

Çu
= 0 ,

Çrv

Çu
= 0,

Çru

Çv
= 0 . (7.22)

These equations still require the calculation of the derivative of the heat and current
flows with respect to the nodal degrees of freedom,

Çj

Çv
=−γ∇∇∇N⊺ ,

Çj

Çt
=−αγ∇∇∇N⊺− Çα

ÇT
γ∇∇∇N⊺tN⊺− Çγ

ÇT
α∇∇∇N⊺tN⊺ ,

Çq

Çv
=α(N⊺t)

Çj

Çv
,

Çq

Çt
=α(N⊺t)

Çj

Çv
+ Çα

ÇT

(
N⊺t

)
j+αjN⊺+ Çα

ÇT
jN⊺tN⊺

−κ∇∇∇N⊺− Çκ

ÇT
∇∇∇N⊺ tN⊺ .

(7.23)

The derivative and formulation of the thermoelectrical material properties with respect
to the temperature is shown in Appendix F, completing these sensitivities.

We also require the sensitivities of the residual with respect to its physical density de-
sign variable for the MMA algorithm. The sensitivities of the thermoelectrical element
level residuals with respect to the physical design are

Çrt

Çx̄ρ
=−

∫
Ω
∇∇∇N

Çq

Çx̄ρ
dΩ+

∫
Ω

N(
Çj

Çx̄ρ

⊺
∇∇∇N⊺v)⊺dΩ ,

Çrv

Çx̄ρ
=−

∫
Ω
∇∇∇N

Çj

Çx̄ρ
dΩ .

(7.24)
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Knowing that the heat and current flow derivatives, with material properties depen-
dent only on each elemental density variable,

Çj

Çx̄ρ
=− Çγ

Çx̄ρ
(∇∇∇N⊺v+α∇∇∇N⊺t)−γ Çα

Çx̄ρ
∇∇∇N⊺t ,

Çq

Çx̄ρ
= Çα

Çx̄ρ

(
N⊺t

)
j+α(

N⊺t
) Çj

Çx̄ρ
− Çκ

Çx̄ρ
∇∇∇N⊺t .

(7.25)

Finally, the derivatives of the material properties with respect to their elemental, follow-
ing Equation (3.24), value are

Çα

Çx̄ρ
= pαx̄ρ

pα−1(α0 −αmin) ,

Çκ

Çx̄ρ
= pκx̄ρ

pκ−1(κ0 −κmin) ,

Çγ

Çx̄ρ
= pγx̄ρ

pγ−1(γ0 −γmin) .

ÇE

Çx̄ρ
= pE x̄ρ

pE−1(E0 −Emin) .

(7.26)

where the last two components have been calculated in Equation (7.24). Finally, the
derivative of the displacement associated residual at element level is

Çru

Çx̄ρ
=−ÇkU

Çx̄ρ
u+ ÇkΘ

Çx̄ρ
θ ,

ÇkU

Çx̄ρ
=

∫
Ω

B⊺ ÇC

Çx̄ρ
BdΩ ,

ÇkΘ
Çx̄ρ

=
∫
Ω

B⊺ ÇβT

Çx̄ρ
N⊺ dΩ .

(7.27)

Depending on the derivative of the constitutive equation and thermoelastic material
properties

ÇC

Çx̄ρ
= C0pE x̄pE−1

ρ (E0 −Emi n) ,

ÇβT

Çx̄ρ
=

(
pE x̄pE−1

ρ (E0 −Emi n)
)

1−2ν
etrαT ,

(7.28)

The derivatives of each material property with respect to the temperature field are pro-
vided in Appendix F as Equation (7.36) using the coefficients in Table 7.5.
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Appendix D Finite Differences and Sensitivity Validation
To validate the sensitivities within our code, we use forward finite differences for a sim-
plified problem to obtain and compare the sensitivity values.

Let the objective function or constraint be denoted by f (xi ), where xi is the design
variable. The finite difference approximation of the sensitivity with respect to the design
variable xi is given by

d f

dxi
≈ f (xi +ϵ)− f (xi )

ϵ
, (7.29)

where and ϵ is a small perturbation. The error between the finite difference and the
FEM formulation for the sensitivites in Section 3.3 can be quantified by the relative error
between both

δrel(ϵ) =
∣∣∣∣∣∣

dψ
dxi

− d f
dxi

dψ
dxi

∣∣∣∣∣∣ . (7.30)

Using the Taylor approximation for f (xi +ϵ) we can also observe that the relative error
scales with

δrel(ϵ) ≈ ϵ

2

∣∣∣∣∣∣∣
d2 f
dx2

i

d f
dxi

∣∣∣∣∣∣∣+O (ϵ2) . (7.31)

In a log-log plot of δrel(ϵ) versus ϵ, we can make a prediction of the expected shape of the
convergence of finite differences, expressing this relationship as

log(δrel(ϵ)) ≈ log


∣∣∣∣∣∣∣

d2 f
dx2

i

2 d f
dxi

∣∣∣∣∣∣∣
+ log(ϵ) , (7.32)

where the first variable is a constant, the slope of this plot is ≈ 1, indicating first-order
convergence.

x1

x2

Figure 7.2.: Mesh simplification description for a coarse mesh from the model used in
Section 3.4 and location of the studied design variables for the finite differ-
ences validation, x1 and x2, in one of the thermocouple legs.

We now apply finite differences to the same model as for the optimization in Figure 3.2f
with a reduced mesh to 3x3 within each semiconductor. To validate the sensitivity results
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obtained via topology optimization, the error is plotted as a function of ϵ. The pertur-
bation ϵ is varied, and the error is computed for each value. This comparison provides
insight into the accuracy of the finite difference method relative to the FEM solution.
This figure shows a linear rate of convergence for all objectives and constraints until
the rounding errors dominate the problem for ϵ < 10−6 and errors under 10−5 at these
perturbation levels. The volume constraint is removed from this validation as it can be
validated through the volume calculation of the elements themselves.
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Figure 7.3.: Convergence of Error with ε for each constraint and objective function used.
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Appendix E Thermoelectromechanical Material properties
There are multiple studies of the properties of thermoelectrical materials within the liter-
ature. We use the measured thermoelectric values for Bi2Te3 from Witting et al. [2] where
the effect of doping agents in Bi2Te3 over its material properties is studied. The thermal
expansion values with respect to temperature for Bi2Te3 are taken from Pavlova, Shtern,
and Mironov [3]. The experimental data have been fitted to a sixth-order polynomial,

fp (T ) = a6T 6 +a5T 5 +a4T 4 +a3T 3 +a2T 2 +a1T +a0 (7.33)

which allows the capture of the quadratic behaviour of the materials. For each material
property, we fit this polynomial to the temperature ranges provided and to a constant
value for higher or lower values to avoid discontinuities in the definition,

f (T ) =


fp (T0) if T < T0 ,

fp (T ) if T0 ≤ T ≤ T1

fp (T1) if T > T1

(7.34)

To have a continuous material model up to C 1, we enforce a zero derivative in the inter-
section point of the functions, f ′

p (T0) = f ′
p (T1) = 0. Notice that for an accurate result, we

must ensure the optimization lies within the measured temperature range.
The derivatives of these functions with respect to the temperature required to calculate

the residual can be written as,

f ′(T ) =


0 if T < T0

f ′
p (T ) if T0 ≤ T ≤ T1

0 if T > T1

(7.35)

where f ′(T ) is,

f ′
p (T ) = 6a6T 5 +5a5T 4 +4a4T 3 +3a3T 2 +2a2T +a1 . (7.36)

The temperature dependent material properties used are plotted in Figure 7.4 together
with the experimental data as dots and each polynomial coefficients are provided in Ta-
ble 7.4.

The other materials involved in a thermocouple are treated as temperature constants
for simplicity purposes, and their properties are summarized in Table 7.5.

In all these materials, the Seebeck coefficient is considered to be zero, either due to the
lack of electrical conductivity of the material or for a symmetrical material distribution
in the models.

Note that E represents Young’s modulus, ν represents Poisson’s ratio,κ represents ther-
mal conductivity, α represents the Seebeck coefficient, αT represents the coefficient of
thermal expansion, and σ is the electrical conductivity. The σ value of the ceramic AlN
is not provided as there is no expected electrical current flow through the material. The
mechanical properties of Bi2Te3 are also considered equal for the p+ and n− semicon-
ductors. In terms of the α, all materials are considered to have zero thermal stresses at
25.15 ◦C.
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Fit a0 a1 a2 a3 a4 a5 a6 T0(K) T1(K) fp (350K)

κ -76.4 1.23 -7.64e-3 2.45e-05 -4.4e-08 4.1e-11 -1.6e-14 235.48 605.34 2.717 W/(mK)

σp -2.73e7 5.88e5 -4996 21.95 -0.053 6.70e-05 -3.46e-08 173.5 451.5 1.84e05 S/m

σn -3.31e7 4.75e5 -2768 8.48 -0.0144 1.29e-05 -4.75e-09 289.17 618.62 1.79E05 S/m

αp 0.00396 -8.22e-05 7.00e-07 -3.09e-09 7.47e-12 -9.40e-15 4.80e-18 177.2 478.2 1.30e −04 V/K

αn -0.0253 3.79e-4 -2.37e-06 7.81e-09 -1.44e-11 1.42e-14 -5.75e-18 292.8 529.42 −1.36E −04 V/K

αT 2.84e-06 9.25e-08 -2.34e-10 3.67e-13 -9.49e-16 1.64e-18 -9.47e-22 35 650 14.86e −6 1/K

Table 7.4.: Coefficients for the 6th order polynomial fit for each semiconductor material
according to Equation (7.36). The temperature range for the fit is represented
in the last 2 columns as T0 and T1. The evaluated value at T = 350K is shown
in the last column.
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Figure 7.4.: Material properties of the semiconductor materials used in the optimization,
including their Seebeck coefficients, and their thermal and electrical con-
ductivities with respect to the temperature in ◦C. The results are plotted for
the p+ and n− semiconductors when the used data differs for each one of
them.
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E ν κ σ×107 αT ×10−6

(GPa) (WK/m) (S/m) (1/K)

Cu 130 0.34 385 59.9 17

AlN 300 0.21 319 — 5

SAC 70 0.42 50 8.5 24

Bi2Te3 61.6 0.241 Figure 7.4 Figure 7.4 Figure 7.4

Air — — 0.033 — —

Table 7.5.: Temperature Constant Material Properties for the models used in Section 3.4.
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Appendix F Scintillation Detector Material
In this appendix, we provide the material data used in the model within GEANT4 to fa-
cilitate the reproduction of the results in this paper.

Appendix F.1 Material composition
The material composition and density are required for the energy deposition calcula-
tions. The properties of all the material involved are summarized in Table 7.6.

Composition Density (kg/m3)

LYSO:Ce (Lu2(1–x)Y2xSiO5)yCe1–y 7125

Epoxy Resin H32N2C15O4 1160

RTV3145 H5Si3O5C5 1270

Silicon Si 2400

SiO2 SiO2 2201

FR4 (SiO2)0.528Epoxy(0.472) 1451

Table 7.6.: Material compositions used in the GEANT4 BTL module model.

The LYSO:Ce composition, follows a density value dependent upon the Y content that
was fitted in Addesa et al. [4] to the linear equation:

ρL = 7390−3020x . (7.37)

In Equation (7.37), x represents the Y percentage and its relation to the LYSO:Ce density,
ρL , in kg/m3. Fixing the density of the crystal to the most common measured value in
Addesa et al. [4], 7125 kg/m3, we obtain a percentage of the mass of Ce given by x =
0.0877 in the LYSO:Ce composition. The percentage of Ce is fixed by a given value of
y = 0.981, equivalent to 0.19% of Ce.

Appendix F.2 Optical Properties
In the context of the light propagation within the detector assembly, the material prop-
erties to include in the model are the refractive index, absorption coefficient, and scat-
tering coefficient of the different materials involved.

Refraction Index

An accurate refractive index is required for a correct material boundary simulation for
each photon trace. Furthermore, the different wavelengths and the dependence of the
refractive index on their energy can lead to different outcomes.

The refractive index of the LYSO, optical glue coupling and epoxy resin is summarized
in Figure 7.5. These materials are the most influential in the path of the photons as they
will need to go through their interfaces before reaching the photodetectors.

For the rest of the materials, we assume a constant refractive index with respect to the
involved photon wavelengths. These properties are summarized in Table 7.7.



F. Scintillation Detector Material

7

195

2 2.5 3 3.5

1.4

1.6

1.8

(eV)

R
ef

ra
ct

iv
e

In
d

ex LYSO

RTV3145

Epoxy

Figure 7.5.: LYSO [4], optical glue (RTV3145), and protective epoxy resin [5] refractive in-
dex depending on the photon wavelength or energy.

Refractive Index References

Air 1 Agostinelli et al. [6]

Si 4 Refractive Index Database [7]

SiO2 1.4585 Refractive Index Database [7]

FR4 1.4585 Refractive Index Database [7]

Table 7.7.: Material compositions used in the GEANT4 BTL module model.
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Self-absorption Lengths

In the context of optical materials, wherein photons traverse the majority of their tra-
jectory en route to the Silicon Photomultiplier (SiPM), the potential for re-absorption is
a noteworthy consideration. To address this concern, we establish the self-absorption
length of both the adhesive substance and the LYSO with respect to photon energy, as il-
lustrated in Figure 7.6. These data serve as input for the GEANT4 simulation framework,
enabling the determination of a threshold path length for the termination of generated
photons.

2 2.5 3 3.5
100

101

102

103

(eV)

Le
n

gt
h

(m
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)

LYSO

Epoxy

Figure 7.6.: Self-absorption and scattering lengths for LYSO [8], and protective epoxy
resin depending on the photon wavelength or energy [5].

The rest of the components do not include self-absorption for simplification purposes.

Scattering Lengths

The scattering length, as illustrated in Figure 7.7, is delineated across the X-axis, rep-
resenting the photon energies. Notably, while the scattering length for LYSO is metic-
ulously characterized and highlighted in the figure, it is intentionally neglected for all
other materials.

Enhanced-specular-reflector (ESR)

In order to prevent the loss of photons in the surrounding environment and to reduce
the occurrence of false positives, it is common practice to coat or cover scintillators with
a reflective layer. In our model, we employ an enhanced specular reflector (ESR) layer
covering the LYSO, maximizing the air-LYSO contact area to capitalize on the substantial
refractive index difference between these materials, which enhances the probability of
photon reflection back into LYSO:Ce [9]. To achieve this, we use the polishedbackpainted
model of GEANT4, which accounts for a thin layer of air without the need for an explicit
geometric definition.

The ESR is assumed to be a perfect specular reflector [10], which does not include
backscatter, Lambertian reflection, or specular spikes, as supported by the measure-



F. Scintillation Detector Material

7

197

2 2.5 3 3.5
0

50

100

150

200

250

(eV)

Le
n

gt
h

(m
m

)

Figure 7.7.: Scattering length for LYSO [8].

ments presented in Padera and Lynch [11] and Janecek [12]. The reflectivity of the ESR,
which represents the likelihood of an impacting photon to be reflected rather than ab-
sorbed – is illustrated in Figure 7.8.
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Figure 7.8.: ESR reflectivity as a function of the incident photon wavelength for multiple
incident angles [11].

From the data available for multiple impact angles, we use the most limiting at 60 deg.
This reflectivity still provides reflectivity values higher than 0.98 for the wavelengths
measured by the LYSO scintillator.
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Appendix F.3 LYSO:Ce scintillation
The LYSO:Ce crystals or scintillator for the particle detector need to be characterized in
terms of light yield (LY ) – the number of photons created within the scintillator per unit
of energy deposited. To ensure accuracy in the model, we rely on the crystal properties
measured in Addesa et al. [4] and M. Campana and R. Paramatti [13]. In contrast, other
research works, such as Van Der Laan et al. [8] and Brown, Brunner, and Schaart [14],
propose their own models, which further validate the material properties chosen.
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Figure 7.9.: LYSO emission spectra [4, 13].

Figure 7.9 provides the intensity of photon creation for each possible wavelength, with
a nominal LY of 40000γ/MeV.

Furthermore, to simplify the model, we select an rs of zero with no statistical variance
of LY . Finally, the time characteristics are given as a single rise and decay times of 60 ns
and 39.1 µs respectively. These values are summarized in Table 7.8. These timing quanti-
ties for the LYSO scintillation measured in M. Campana and R. Paramatti [13] by the light
detected from the crystals encompass the characteristic delay from the Ce +

3 absorption
and re-emission.

rs τr (ns) τd (µs) LY (γ/MeV )

0 60 39.1 40000

Table 7.8.: Characteristics of the LYSO scintillation process used in GEANT4 [13].

Appendix F.4 Silicon Photomultiplier (SiPM) detection
The SiPMs have a certain photon detection efficiency (PDE), which determines if a pho-
ton impact is detected. This PDE depends upon the photon energy and the overvoltage
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applied. For this purpose, we use the PDE characteristics given by Hamamatsu of the
S13360-1325CS SiPM adimensionalized with respect to its 420 nm value, Figure 7.10.
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Figure 7.10.: 420 nm S13360-1325CS normalized PDEλ.

The measured dependence of the rest of the spectrum is considered linear with respect
to the 420 nm peak and is represented by the formula Equation (4.6).
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Appendix G COMSOL material properties
This appendix summarizes all material properties required to run the scintillation sim-
ulations within COMSOL.

For all subsequent models, we use the defined optical material properties summarized
in Table 7.9. This table includes the required optical properties for the LYSO, glue, resin
and photodetector models, considered a Si block.

Material Name LYSO Glue Resin Silicon

Refractive Index (n) 1.8 1.5 1.55 5.099

Relative Permeability 1 1 1 1

Electrical Conductivity 0 0 0 0

Extinction Coefficient (k) 8.356e-05 2.571e-06 4.178e-07 0.2379

References [4, 6–8] [5, 7] [5, 7] [7]

Table 7.9.: Optical Material Properties.

We also define in Section 5.2.2 the parameters on which the scintillation photon gen-
eration process depends. The parameters required for the electrical amplitude wave in-
troduced in the COMSOL model are defined in Table 7.10. These parameters influence
the boundary condition of the introduced electrical amplitude wave according to Equa-
tion (5.14).

Properties td (ns) tr (µs) A β v (m/s) T

39 60 1e3 tr
100 c ×0.99 5× td

Table 7.10.: Scintillation parameters used within the COMSOL FEM transient model.

In this last table, a new parameter, A, is defined to introduce a modifier to the electric
field amplitude, scaling it as a proportional coefficient. This parameter is an experimen-
tally obtained value to avoid numerical precision issues, increasing the energy deposi-
tion values to values close to unity.

In GEANT4, these parameters depend on the wavelength of the emitted photons, in-
cluding the absorption lengths converted to an extinction coefficient and refractive in-
dexes. The values used within COMSOL are kept constant for simplicity, using a single
pulse of the peak of 420 nm. The parameters required to calculate the number of pho-
tons created in GEANT4 for a particle impact include the definition of the yield Y of
LYSO and the energy deposition by the ionizing particles per track length. These values
are extracted from GEANT4 and summarized in Table 7.11.

Properties Y ph/MeV dE
d x MeV/mm Formula

40000 2.9 (Lu2(1–0.9123)Y0.1754SiO5)0.981Ce0.019

Table 7.11.: Scintillation parameters used within the GEANT4.
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Appendix H Replication of results

I n this section, we detail the data availability and repositories for the replication of
results from each chapter in this dissertation.

• chapter 2 and chapter 3: All required code to replicate the results can be found in
the TOTEM_M repository as the MATLAB version of TOTEM [15].

• chapter 4: The code used to obtain the results in this chapter can be found in the
SO-CRYSTAL repository [16].

• chapter 5: The COMSOL files used for the models in this chapter can be found
in the following repository together with the MATLAB codes required to run the
scintillation optimization, [17]. The GEANT4 codes used for validation have been
run using the SO-CRYSTAL repository.

All other data can be extracted from the plots and data provided in this dissertation or
can be provided by the main author through the email provided at the beginning of this
dissertation or g.realesguti@gmail.com.
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